WorldWideScience

Sample records for river usa experience

  1. Longitudinal heterogeneity of flow and heat fluxes in a large lowland river: A study of the San Joaquin River, CA, USA during a large-scale flow experiment

    Science.gov (United States)

    Bray, E. N.; Dunne, T.; Dozier, J.

    2011-12-01

    Systematic downstream variation of channel characteristics, scaled by flow affects the transport and distribution of heat throughout a large river. As water moves through a river channel, streamflow and velocity may fluctuate by orders of magnitude primarily due to channel geometry, slope and resistance to flow, and the time scales of those fluctuations range from days to decades (Constantz et al., 1994; Lundquist and Cayan, 2002; McKerchar and Henderson, 2003). It is well understood that the heat budget of a river is primarily governed by surface exchanges, with the most significant surface flux coming from net shortwave radiation. The absorption of radiation at a given point in a river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient (Dozier, 1980). Few studies consider the influence of hydrologic alteration to the optical properties governing net radiative heat transfer in a large lowland river, yet it is the most significant component of the heat budget and definitive to a river's thermal regime. We seek a physically based model without calibration to incorporate scale-dependent physical processes governing heat and flow dynamics in large rivers, how they change across the longitudinal profile, and how they change under different flow regimes. Longitudinal flow and heat flux analyses require synoptic flow time series from multiple sites along rivers, and few hydrometric networks meet this requirement (Larned et al, 2011). We model the energy budget in a regulated 240-km mainstem reach of the San Joaquin River California, USA equipped with multiple gaging stations from Friant Dam to its confluence with the Merced River during a large-scale flow experiment. We use detailed hydroclimatic observations distributed across the longitudinal gradient creating a non-replicable field experiment of heat fluxes across a range of flow regime

  2. DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA

    Science.gov (United States)

    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  3. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    Science.gov (United States)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years.

  4. Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Michael C., E-mail: newman@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Xu Xiaoyu, E-mail: xiaoyu@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Condon, Anne, E-mail: anne_condon@fws.gov [U.S. Fish and Wildlife, 6669 Short Lane, Gloucester, VA 23061 (United States); Liang Lian, E-mail: liang@cebam.net [Cebam Analytical, Inc., 18804 North Creek Parkway, Suite 110, Bothell, WA 98011 (United States)

    2011-10-15

    Mercury biomagnification on the South River floodplain (Virginia, USA) was modeled at two locations along a river reach previously modeled for methylmercury movement through the aquatic trophic web. This provided an opportunity to compare biomagnification in adjoining trophic webs. Like the aquatic modeling results, methylmercury-based models provided better prediction than those for total mercury. Total mercury Food Web Magnification Factors (FWMF, fold per trophic level) for the two locations were 4.9 and 9.5. Methylmercury FWMF for the floodplain locations were higher (9.3 and 25.1) than that of the adjacent river (4.6). Previous speculation was not resolved regarding whether the high mercury concentrations observed in floodplain birds was materially influenced by river prey consumption by riparian spiders and subsequent spider movement into the trophic web of the adjacent floodplains. Results were consistent with a gradual methylmercury concentration increase from contaminated floodplain soil, to arthropod prey, and finally, to avian predators. - Highlights: > First comparison of methylmercury biomagnification in adjacent river/land food webs. > Methylmercury increased more rapidly in the terrestrial, than the aquatic, food web. > Methylmercury increased gradually from soil, to prey, and, to avian predators. - Higher methylmercury biomagnification on South River floodplain than the associated river likely explain high mercury in floodplain birds.

  5. Freshwater mussel assemblage structure in a regulated river in the Lower Mississippi river Alluvial Basin, USA

    Science.gov (United States)

    Wendell R. Haag; Melvin L. Warren

    2007-01-01

    1. This paper documents a diverse, reproducing freshwater mussel community (20 species) in Lower Lake } an impounded, regulated portion of the Little Tallahatchie River below Sardis Dam in Panola Co., Mississippi, USA. 2. Despite being regulated and impounded, the lake has a heterogeneous array of habitats that differ markedly in mussel community attributes...

  6. Particle-bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA

    Science.gov (United States)

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head ...

  7. Gonad organochlorine concentrations and plasma steroid levels in white sturgeon (Acipenser transmontanus) from the Columbia River, USA

    Science.gov (United States)

    Foster, E.P.; Fitzpatrick, M.S.; Feist, G.W.; Schreck, C.B.; Yates, J.

    2001-01-01

    Sturgeon are an important fishery resource world-wide, providing food and income through commercial, sport, and tribal fisheries. However, sturgeon populations are imperiled in many areas due to overharvest, habitat loss, and pollution. White Sturgeon (Acipenser transmontanus) are found along the west coast of North America from San Francisco Bay, USA to British Columbia, Canada. The Columbia River, located in the Pacific Northwest USA, supports active commercial, sport, and tribal white sturgeon fisheries. The white sturgeon fishery in the Columbia River estuary is one of the most productive sturgeon fisheries in the World. Despite the success of the Columbia River estuary white sturgeon fishery, the populations within the impounded sections (i.e. behind the hydroelectric dams) of the Columbia River experience poor reproductive success (Beamesderfer et al. 1995). This poor reproductive success has been attributed to hydroelectric development, but water pollution could also be a significant factor. The bottom dwelling life history and late maturing reproductive strategy for this species may make it particularly sensitive to the adverse effects of bioaccumulative pollutants.The Columbia River receives effluent from bleached-kraft pulp mills, aluminum smelters, municipal sewage treatment plants and runoff from agricultural. industrial, and urban areas. Bioaccumulative contaminants that have the potential for endocrine disruption have been detected in fish and sediments from the Columbia River (Foster et al. 1999). An integrated system of hormones control reproduction in vertebrates. Plasma steroids direct developmental events essential for reproduction. Disruption of endocrine control by contaminants has been linked to reproductive anomalies and failure in a number of vertebrate species (Guillette et al. 1996; Jobling et al. 1996). Because of this, it is important to understand if organochlorine compounds are accumulating in Columbia River white sturgeon and having

  8. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    Science.gov (United States)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  9. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    Science.gov (United States)

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  10. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  11. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  12. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    Science.gov (United States)

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  13. Strontium-90 migration in Hanford sediments, USA

    International Nuclear Information System (INIS)

    Steefel, C.I.; Yang, L.; Carroll, S.A.; Roberts, S.; Zachara, J.M.; Yabusaki, S.B.

    2005-01-01

    Full text of publication follows: Strontium-90 is an important risk-driving contaminant at the Hanford site in eastern Washington, USA. Disposal operations at the Hanford 100-N area released millions of liters of reactor cooling water containing high concentrations of strontium-90 into the vadose zone immediately adjacent to the Columbia River. The effectiveness of pump-and-treat methods for remediation have been questioned, largely because the strontium is strongly sorbed on subsurface sediments via ion exchange reactions and co-precipitation in carbonates. In addition, groundwater monitoring wells show a fluctuating seasonal behavior in which high strontium-90 concentrations correlate with high Columbia River stage, even while average concentrations remain approximately constant. A series of fully saturated reactive transport column experiments have been conducted to investigate the important controls on strontium migration in Hanford groundwater [1]. The experiments were designed to investigate the multicomponent cation exchange behavior of strontium in competition with the cations Na + , Ca +2 , and Mg +2 , the concentration of which differs between river water and groundwater. Reactive transport modeling of the experiments indicates that the Sr +2 selectivity coefficient becomes larger with increasing NaNO 3 concentration, a behavior also shown by the divalent cations Ca +2 and Mg +2 . A new set of column experiments investigates the effect of wetting and drying cycles on strontium- 90 sorption and migration by considering episodic flow in Hanford sediments. In addition, the effect of fluctuating aquifer chemistry as a result of changes in the Columbia River stage on Sr +2 sorption is addressed. Modeling of multicomponent reactive transport under variably saturated conditions is used to interpret the results of the episodic flow/chemistry experiments. [1] Experimental and modeling studies of the migration behavior of strontium in Hanford sediments, USA. C

  14. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Science.gov (United States)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  15. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    Science.gov (United States)

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  16. Recovery of thermophilic Campylobacter by three sampling methods from classified river sites in Northeast Georgia, USA

    Science.gov (United States)

    It is not clear how best to sample streams for the detection of Campylobacter which may be introduced from agricultural or community land use. Fifteen sites in the watershed of the South Fork of the Broad River (SFBR) in Northeastern Georgia, USA, were sampled in three seasons. Seven sites were cl...

  17. Adaptive management of flows in the lower Roanoke River, North Carolina, USA.

    Science.gov (United States)

    Pearsall, Sam H; McCrodden, Brian J; Townsend, Philip A

    2005-04-01

    The lower Roanoke River in North Carolina, USA, has been regulated by a series of dams since the 1950s. This river and its floodplain have been identified by The Nature Conservancy, the US Fish and Wildlife Service, and the State of North Carolina as critical resources for the conservation of bottomland hardwoods and other riparian and in-stream biota and communities. Upstream dams are causing extended floods in the growing season for bottomland hardwood forests, threatening their survival. A coalition of stakeholders including public agencies and private organizations is cooperating with the dam managers to establish an active adaptive management program to reduce the negative impacts of flow regulation, especially extended growing season inundation, on these conservation targets. We introduce the lower Roanoke River, describe the regulatory context for negotiating towards an active adaptive management program, present our conservation objective for bottomland hardwoods, and describe investigations in which we successfully employed a series of models to develop testable management hypotheses. We propose adaptive management strategies that we believe will enable the bottomland hardwoods to regenerate and support their associated biota and that are reasonable, flexible, and economically sustainable.

  18. Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change

    Science.gov (United States)

    Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-01-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological

  19. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    Science.gov (United States)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  20. Predicting thermal reference conditions for USA streams and rivers

    Science.gov (United States)

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most

  1. Impacts of Migratory Sandhill Cranes (Grus canadensis) on Microbial Water Quality in the Central Platte River, Nebraska, USA

    Science.gov (United States)

    Wild birds have been shown to be significant sources of numerous types of pathogens that are relevant to humans and agriculture. The presence of large numbers of migratory birds in such a sensitive and important ecosystem as the Platte River in central Nebraska, USA, could potent...

  2. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA

    Science.gov (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2015-01-01

    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  3. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  4. Green electricity - experiences from USA; Groen el - erfarenheter fraan USA

    Energy Technology Data Exchange (ETDEWEB)

    Graens, N

    1995-10-01

    Environmental concern has opened a market for electric power produced from renewable energy sources in USA. A number of American electric utilities have responded to the interest from the public and offered green electricity at a price somewhat above the normal rates. Most of these programs, that have existed for a few years, have succeeded quite well, giving the utilities better relations to their customers and experiences from marketing new products. The customers have been satisfied and shown enthusiasm for the new product. The present report reviews the attitudes to and drive behind green electricity from/relative to utilities, customers, environmental organizations and authorities. The programs and experiences of the utilities are described, and the prospects for green power on a deregulated market are discussed. Speculations about market responses to green power in Sweden are also made. 37 refs, 13 figs

  5. Hydrodynamics and Connectivity of Channelized Floodplains: Insights from the Meandering East Fork White River, Indiana, USA

    Science.gov (United States)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2017-12-01

    High resolution topography reveals that meandering river floodplains in Indiana commonly have networks of channels. These floodplain channel networks are most prevalent in agricultural, low-gradient, wide floodplains. It appears that these networks are formed when floodplain channels connect oxbows to each other and the main river channel. Collectively, the channels in the floodplain create an interconnected network of pathways that convey water beginning at flows less than bankfull, and as stage increases, more of the floodplain becomes dissected by floodplain channels. In this work, we quantify the hydrodynamics and connectivity of the flow on the floodplain and in the main channel of the East Fork White River near Seymour, Indiana, USA. We constructed a two-dimensional numerical model using HECRAS of the river-floodplain system from LiDAR data and from main-channel river bathymetry to elucidate the behaviour of these floodplain channels across a range of flows. Model calibration and verification data included stage from a USGS gage, high-water marks at a high and medium flow, and an aerial photograph of inundation in the floodplain channels. The numerical model simulated flow depth and velocity, which was used to quantify connectivity of the floodplain channels, exchange between the main channel and floodplain channels, and residence time of water on the floodplain. Model simulations suggest that the floodplain channels convey roughly 50% of the total flow at what is typically considered "bankfull" flow. Overall, we present a process-based approach for analyzing complex floodplain-river systems where an individual floodplain-river system can be distilled down to a set of characteristic curves. Notably, we map the East Fork White River system to exchange-residence time space and argue that this characterization forms the basis for thinking about morphologic evolution (e.g., sediment deposition and erosion) and biogeochemistry (e.g., nitrate removal) in floodplain-river

  6. Rheomorphic ignimbrites of the Rogerson Formation, central Snake River plain, USA

    DEFF Research Database (Denmark)

    Knott, Thomas R.; Reichow, Marc K.; Branney, Michael J.

    2016-01-01

    Rogerson Graben, USA, is critically placed at the intersection between the Yellowstone hotspot track and the southern projection of the west Snake River rift. Eleven rhyolitic members of the re-defined, ≥420-m-thick, Rogerson Formation record voluminous high-temperature explosive eruptions....... Between 11.9 and ∼8 Ma, the average frequency of large explosive eruptions in this region was 1 per 354 ky, about twice that at Yellowstone. The chemistry and mineralogy of the early rhyolites show increasing maturity with time possibly by progressive fractional crystallisation. This was followed......-margin monocline, which developed between 10.59 and 8 Ma. The syn-volcanic basin topography contrasted significantly with the present-day elevated Yellowstone hotspot plateau. Concurrent basin-and-range extension produced the N-trending Rogerson Graben: early uplift of the Shoshone Hills (≥10.34 Ma) was followed...

  7. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    Science.gov (United States)

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.

    2012-01-01

    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  8. Scroll bar growth on the coastal Trinity River, TX, USA

    Science.gov (United States)

    Mason, J.; Hassenruck-Gudipati, H. J.; Mohrig, D. C.

    2017-12-01

    The processes leading to the formation and growth of scroll bars remain relatively mysterious despite how often they are referenced in fluvial literature. Their definition is descriptive; they are characterized as arcuate topographic highs present on the inner banks of channel bends on meandering rivers, landward of point bars. Often, they are used as proxies for previous positions of point bars. This assumption of a one-to-one correspondence between point bars and scroll bars should be reconsidered as 1) planform curvature for scroll bars is consistently smaller than the curvature for adjacent point bars, and 2) deposition on the scroll bar is typically distinct and disconnected from the adjacent point bar deposition. Results from time-lapse airborne lidar data as well as from trenches through five separate scroll bar - point bar pairings on the Trinity River in east TX, USA, will be discussed in relation to formative scroll bar processes and their connection to point bars. On the lidar difference map, scroll bar growth appears as a strip of increased deposition flanked on both the land- and channel-ward sides by areas with no or limited deposition. Trenches perpendicular to these scrolls typically show a base of dune-scale cross stratification interpreted to be associated with a previous position of the point bar. These dune sets are overlain by sets of climbing-ripple cross-strata that form the core of the modern scroll bar and preserve a record of multiple transport directions (away from, towards, and parallel to the channel). Preliminary Trinity River grain-size analyses show that the constructional scrolls are enriched in all grain sizes less than 250 microns in diameter, while point bars are enriched in all grain sizes above this cut off. Scroll bars are hypothesized to be akin to levees along the inner banks of channels-flow expansion caused by the presence of point bars induces deposition of suspended sediment that defines the positions of the scroll bars.

  9. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA

    Science.gov (United States)

    Walters, David M.; E.J. Rosi-Marshall,; Kennedy, Theodore A.; W.F. Cross,; C.V. Baxter,

    2015-01-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17–1.59 μg g–1 Hg and 1.35–2.65 μg g–1 Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ15N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6–100% and 56–100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. Environ Toxicol Chem2015;9999:1–10

  10. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    Science.gov (United States)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  11. Applying downscaled Global Climate Model data to a groundwater model of the Suwannee River Basin, Florida, USA

    Science.gov (United States)

    Swain, Eric D.; Davis, J. Hal

    2016-01-01

    The application of Global Climate Model (GCM) output to a hydrologic model allows for comparisons between simulated recent and future conditions and provides insight into the dynamics of hydrology as it may be affected by climate change. A previously developed numerical model of the Suwannee River Basin, Florida, USA, was modified and calibrated to represent transient conditions. A simulation of recent conditions was developed for the 372-month period 1970-2000 and was compared with a simulation of future conditions for a similar-length period 2039-2069, which uses downscaled GCM data. The MODFLOW groundwater-simulation code was used in both of these simulations, and two different MODFLOW boundary condition “packages” (River and Streamflow-Routing Packages) were used to represent interactions between surface-water and groundwater features.

  12. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    Full Text Available Study region: Karst watershed in Lower Flint River Basin (LFRB, southwestern Georgia, USA. Study focus: Baseflow discharges in the LFRB have declined for three decades as regional irrigation has increased; yet, the location and nature of connectivity between groundwater and surface water in this karstic region are poorly understood. Because growing water demands will likely be met by further development of regional aquifers, an important management concern is the nature of interactions between groundwater and surface water components under natural and anthropogenic perturbations. We conducted coarse and fine-scale stream sampling on a major tributary of the Lower Flint River (Ichawaynochaway Creek in southwestern Georgia, USA, to identify locations and patterns of enhanced hydrologic connectivity between this stream and the Upper Floridan Aquifer. New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy. Keywords: Karst hydrogeology, Hydrologic connectivity, Groundwater/surface water interaction, Upper Floridan Aquifer, Groundwater Irrigation

  13. The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA

    Science.gov (United States)

    Kui, Li; Stella, John C.; Shafroth, Patrick B.; House, P. Kyle; Wilcox, Andrew C.

    2017-01-01

    On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.

  14. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    Science.gov (United States)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  15. Cadmium and lead in tissues of Mallards (Anas platyrhynchos) and Wood Ducks (Aix sponsa) using the Illinois River (USA)

    International Nuclear Information System (INIS)

    Levengood, J.M.

    2003-01-01

    Tissue lead and cadmium concentrations were examined in two common, widely distributed species of duck, utilizing a major river system. - Cadmium and lead concentrations were determined in the tissues of Mallards and Wood Ducks collected from two waterfowl management areas along the Illinois River, USA, during the autumn and late winter of 1997-1998. Lead concentrations in livers of Mallards were lower than previously reported, and, along with those in a small sample of Wood Duck livers, were within background levels (<2.0 μg/g wet weight). Mean concentrations of cadmium in the kidneys of Wood Ducks utilizing the Illinois River were four times greater than in after-hatch-year Mallards, and 14 times greater than in hatch-year Mallards. Concentrations of cadmium in the kidneys of Wood Ducks were comparable with those of specimens dosed with cadmium or inhabiting contaminated areas in previous studies. Wood Ducks utilizing wetlands associated with the Illinois River, and presumably other portions of the lower Great Lakes region, may be chronically exposed to cadmium

  16. Use of geochemical tracers for estimating groundwater influxes to the Big Sioux River, eastern South Dakota, USA

    Science.gov (United States)

    Neupane, Ram P.; Mehan, Sushant; Kumar, Sandeep

    2017-09-01

    Understanding the spatial distribution and variability of geochemical tracers is crucial for estimating groundwater influxes into a river and can contribute to better future water management strategies. Because of the much higher radon (222Rn) activities in groundwater compared to river water, 222Rn was used as the main tracer to estimate groundwater influxes to river discharge over a 323-km distance of the Big Sioux River, eastern South Dakota, USA; these influx estimates were compared to the estimates using Cl- concentrations. In the reaches overall, groundwater influxes using the 222Rn activity approach ranged between 0.3 and 6.4 m3/m/day (mean 1.8 m3/m/day) and the cumulative groundwater influx estimated during the study period was 3,982-146,594 m3/day (mean 40,568 m3/day), accounting for 0.2-41.9% (mean 12.5%) of the total river flow rate. The mean groundwater influx derived using the 222Rn activity approach was lower than that calculated based on Cl- concentration (35.6 m3/m/day) for most of the reaches. Based on the Cl- approach, groundwater accounted for 37.3% of the total river flow rate. The difference between the method estimates may be associated with minimal differences between groundwater and river Cl- concentrations. These assessments will provide a better understanding of estimates used for the allocation of water resources to sustain agricultural productivity in the basin. However, a more detailed sampling program is necessary for accurate influx estimation, and also to understand the influence of seasonal variation on groundwater influxes into the basin.

  17. Integrating understanding of biophysical processes governing larval fish dispersal with basin-scale management decisions: lessons from the Missouri River, USA

    Science.gov (United States)

    Erwin, S. O.; Jacobson, R. B.; Fischenich, C. J.; Bulliner, E. A., IV; McDonald, R.; DeLonay, A. J.; Braaten, P.; Elliott, C. M.; Chojnacki, K.

    2017-12-01

    Management of the Missouri River—the longest river in the USA, with a drainage basin covering one sixth of the conterminous USA—is increasingly driven by the need to understand biophysical processes governing the dispersal of 8-mm long larval pallid sturgeon. In both the upper and lower basin, survival of larval sturgeon is thought to be a bottleneck limiting populations, but because of different physical processes at play, different modeling frameworks and resolutions are required to link management actions with population-level responses. In the upper basin, a series of impoundments reduce the length of river for the drifting larval sturgeon to complete their development. Downstream from the mainstem dams, recruitment is most likely diminished by channelization and reduced floodplain connectivity that limit the benthic habitat available for larval sturgeon to settle and initiate feeding. We present a synthesis of complementary field studies, laboratory observations, and numerical simulations that evaluate the physical processes related to larval dispersal of sturgeon in the Missouri River basin. In the upper basin, we use one-dimensional advection-dispersion models, calibrated with field experiments conducted in 2016-2017 using surrogate particles and tracers, to evaluate reservoir management alternatives. Results of field experimentation and numerical modeling show that proposed management alternatives in the upper basin may be limited by insufficient lengths of flowing river for drifting larvae to fully develop into their juvenile lifestage. In the intensively engineered lower basin, we employ higher resolution measurements and models to evaluate potential for channel reconfiguration and flow alteration to promote successful interception of drifting larvae into supportive benthic habitats for the initiation of feeding and transition to the juvenile life stage. We illustrate how refined understanding of small-scale biophysical process has been incorporated

  18. Tracing nutrient sources in the Mississippi River Basin, U.S.A

    International Nuclear Information System (INIS)

    Kendall, C.; Silva, S.R.; Chang, C.C.Y.; Wankel, S.D.; Hooper, R.P.; Frey, J.W.; Crain, A.S.; Delong, M.D.

    2003-01-01

    Full text: Periodic hypoxia in the Gulf of Mexico near the mouth of the Mississippi River is of increasing concern. The condition is thought to be primarily the result of nitrate delivered to the Gulf by the Mississippi River. However, as much as half of the nitrogen transported by large rivers to coastal areas is in dissolved or particulate organic form, with the remainder primarily as nitrate. Nitrate is thought to be conservatively transported in the Mississippi and other large rivers, but reduction can occur in marshy pools and backwater channels. Thus, it is important to examine all forms of nitrogen and their potential transformations, in both in groundwater and in riverine environments. To provide critically needed information for the development of management strategies to reduce N loads and enhance N attenuation mechanisms, we have been using isotopic techniques to investigate the sources and cycling of nutrients at a number of sites in the Mississippi Basin (which includes the Ohio and Missouri River Basins) since 1996, in collaboration with several national monitoring programs. One of our most noteworthy finding was that about half of the POM in the Mississippi (and other big rivers in the USA) is composed of plankton and/or heterotrophic bacteria. This suggests that in-situ productivity may be a significant source of bioavailable organic matter contributing to the hypoxia in the Gulf of Mexico. Monthly samples from 19 river sites in the Basin sampled over 5 years showed that δ 15 N and δ 13 C were quite useful in discriminating among four major categories of POM: terrestrial soil, fresh terrestrial vegetation, aquatic macrophytes, and plankton/bacteria. The δ 13 C values for the sites ranged from about -35 to -20 per mille, and the δ 15 N values ranged from about -15 to +15 per mille. The isotopic data, along with ancillary chemical and hydrologic measurements, were also useful for documenting seasonal changes in in-situ processes. A pilot study in

  19. Application of hydrologic tools and monitoring to support managed aquifer recharge decision making in the Upper San Pedro River, Arizona, USA

    Science.gov (United States)

    Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.

    2014-01-01

    The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  20. Application of Hydrologic Tools and Monitoring to Support Managed Aquifer Recharge Decision Making in the Upper San Pedro River, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Laurel J. Lacher

    2014-11-01

    Full Text Available The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr. Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  1. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  2. Adult tree swallow survival on the polychlorinated biphenyl-contaminated Hudson River, New York, USA, between 2006 and 2010

    Science.gov (United States)

    Custer, Christine M.; Custer, Thomas W.; Hines, James E.

    2012-01-01

    The upper Hudson River basin in east central New York, USA, is highly contaminated, primarily with polychlorinated biphenyls (PCBs). Reduced adult survival has been documented in tree swallows (Tachycineta bicolor) at a similarly PCB-contaminated river system in western Massachusetts. The purpose of the present study was to assess whether adult survival of tree swallows was likewise affected in the Hudson River basin. Between 2006 and 2010, a total of 521 female tree swallows were banded, of which 148 were retrapped at least once. The authors used Program MARK and an information theoretic approach to test the hypothesis that PCB contamination reduced annual survival of female tree swallows. The model that best described the processes that generated the capture history data included covariate effects of year and female plumage coloration on survival but not PCB/river. Annual survival rates of brown-plumaged females (mostly one year old) were generally lower (mean phi = 0.39) than those of blue-plumaged females (mean phi = 0.50, one year or older). Poor early spring weather in 2007 was associated with reduced survival in both plumage-color groups compared to later years. Models with the effects of PCB exposure on survival (all ΔAICc values >5.0) received little support.

  3. Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): Relative effects of pesticides and suspended particles

    International Nuclear Information System (INIS)

    Anderson, B.S.; Phillips, B.M.; Hunt, J.W.; Connor, V.; Richard, N.; Tjeerdema, R.S.

    2006-01-01

    Laboratory dose-response experiments with organophosphate and pyrethroid pesticides, and dose-response experiments with increasing particle loads were used to determine which of these stressors were likely responsible for the toxicity and macroinvertebrate impacts previously observed in the Salinas River. Experiments were conducted with the amphipod Hyalella azteca, the baetid mayfly Procloeon sp., and the midge Chironomus dilutus (Shobanov, formerly Chironomus tentans). The results indicate the primary stressor impacting H. azteca was pesticides, including chlorpyrifos and permethrin. The mayfly Procloeon sp. was sensitive to chlorpyrifos and permethrin within the range of concentrations of these pesticides measured in the river. Chironomus dilutus were sensitive to chlorpyrifos within the ranges of concentrations measured in the river. None of the species tested were affected by turbidity as high as 1000 NTUs. The current study shows that pesticides are more important acute stressors of macroinvertebrates than suspended sediments in the Salinas River. - Pesticides are the primary stressor impacting macroinvertebrates in sections of the lower Salinas River

  4. Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): Relative effects of pesticides and suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.S. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)]. E-mail: anderson@ucdavis.edu; Phillips, B.M. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States); Hunt, J.W. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States); Connor, V. [Division of Water Quality, State Water Resources Control Board, 1001 I. Street, Sacramento, CA 95814 (United States); Richard, N. [Division of Water Quality, State Water Resources Control Board, 1001 I. Street, Sacramento, CA 95814 (United States); Tjeerdema, R.S. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Laboratory dose-response experiments with organophosphate and pyrethroid pesticides, and dose-response experiments with increasing particle loads were used to determine which of these stressors were likely responsible for the toxicity and macroinvertebrate impacts previously observed in the Salinas River. Experiments were conducted with the amphipod Hyalella azteca, the baetid mayfly Procloeon sp., and the midge Chironomus dilutus (Shobanov, formerly Chironomus tentans). The results indicate the primary stressor impacting H. azteca was pesticides, including chlorpyrifos and permethrin. The mayfly Procloeon sp. was sensitive to chlorpyrifos and permethrin within the range of concentrations of these pesticides measured in the river. Chironomus dilutus were sensitive to chlorpyrifos within the ranges of concentrations measured in the river. None of the species tested were affected by turbidity as high as 1000 NTUs. The current study shows that pesticides are more important acute stressors of macroinvertebrates than suspended sediments in the Salinas River. - Pesticides are the primary stressor impacting macroinvertebrates in sections of the lower Salinas River.

  5. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA

    Science.gov (United States)

    Hatten, J.R.; Parsley, M.J.

    2009-01-01

    Concerns over the potential effects of in-water placement of dredged materials prompted us to develop a GIS-based model that characterizes in a spatially explicit manner white sturgeon Acipenser transmontanus rearing habitat in the lower Columbia River, USA. The spatial model was developed using water depth, riverbed slope and roughness, fish positions collected in 2002, and Mahalanobis distance (D2). We created a habitat suitability map by identifying a Mahalanobis distance under which >50% of white sturgeon locations occurred in 2002 (i.e., high-probability habitat). White sturgeon preferred relatively moderate to high water depths, and low to moderate riverbed slope and roughness values. The eigenvectors indicated that riverbed slope and roughness were slightly more important than water depth, but all three variables were important. We estimated the impacts that fill might have on sturgeon habitat by simulating the addition of fill to the thalweg, in 3-m increments, and recomputing Mahalanobis distances. Channel filling simulations revealed that up to 9 m of fill would have little impact on high-probability habitat, but 12 and 15 m of fill resulted in habitat declines of ???12% and ???45%, respectively. This is the first spatially explicit predictive model of white sturgeon rearing habitat in the lower Columbia River, and the first to quantitatively predict the impacts of dredging operations on sturgeon habitat. Future research should consider whether water velocity improves the accuracy and specificity of the model, and to assess its applicability to other areas in the Columbia River.

  6. Utilization of protein expression profiles as indicators of environmental impairment of smallmouth bass (Micropterus dolomieu) from the Shenandoah River, Virginia, USA.

    Science.gov (United States)

    Ripley, Jennifer; Iwanowicz, Luke; Blazer, Vicki; Foran, Christy

    2008-08-01

    The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption.

  7. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    Science.gov (United States)

    Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying

    2010-01-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.

  8. Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA

    Directory of Open Access Journals (Sweden)

    Natalie S. Wagenbrenner

    2018-01-01

    Full Text Available This work investigates gap winds in a steep, deep river canyon prone to wildland fire. The driving mechanisms and the potential for forecasting the gap winds are investigated. The onset and strength of the gap winds are found to be correlated to the formation of an along-gap pressure gradient linked to periodic development of a thermal trough in the Pacific Northwest, USA. Numerical simulations are performed using a reanalysis dataset to investigate the ability of numerical weather prediction (NWP to simulate the observed gap wind events, including the timing and flow characteristics within the canyon. The effects of model horizontal grid spacing and terrain representation are considered. The reanalysis simulations suggest that horizontal grid spacings used in operational NWP could be sufficient for simulating the gap flow events given the regional-scale depression in which the Salmon River Canyon is situated. The strength of the events, however, is under-predicted due, at least in part, to terrain smoothing in the model. Routine NWP, however, is found to have mixed results in terms of forecasting the gap wind events, primarily due to problems in simulating the regional sea level pressure system correctly.

  9. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  10. From USA operation experience of industrial uranium-graphite reactors

    International Nuclear Information System (INIS)

    Burdakov, N.S.

    1996-01-01

    The review on materials, presented by a group of the USA specialists at the seminar in Moscow on October 9-11, 1995 is considered. The above specialists shared their experience in operation of the Hanford industrial reactors, aimed at plutonium production for atomic bombs. The purpose of the above visit consisted in providing assistance to the Russian specialists by evaluation and modernization of operational conditions safety improvement of the RBMK type reactors. Special attention is paid to the behaviour of the graphite lining and channel tubes with an account of possible channel power interaction with the reactor structural units. The information on the experience of the Hanford reactor operation may be useful for specialists, operating the RBMK type reactors

  11. New Data on Conodonts of the Upper Devonian of the Polar Urals (Ostantsovy Section, Malaya Usa River

    Directory of Open Access Journals (Sweden)

    M.A. Soboleva

    2016-09-01

    Full Text Available The main features of the Upper Devonian sediments on the right side of the Ostantsovy Creek (the left tributary of the Malaya Usa River in the eastern part of the Bielsko-Eletskaya structural formational belt on the western slope of the Polar Urals have been considered. The late Frasnian age of these sediments has been determined on the basis of conodonts (the linguiformis zone of the standard conodont scale. The transition from clastic and organic limestones with massive stromatoporoid forms to limestones with fused (reservoir stromatoporoid forms and Palmatolepis biofacies is indicative of the transgressive shift of the linguiformis phase. This transgressive level is an indirect expression of the Upper Kellwasser global event.

  12. Proposal for adaptive management to conserve biotic integrity in a regulated segment of the Tallapoosa River, Alabama, U.S.A

    Science.gov (United States)

    Irwin, Elise R.; Freeman, Mary C.

    2002-01-01

    Conserving river biota will require innovative approaches that foster and utilize scientific understanding of ecosystem responses to alternative river-management scenarios. We describe ecological and societal issues involved in flow management of a section of the Tallapoosa River (Alabama, U.S.A.) in which a species-rich native fauna is adversely affected by flow alteration by an upstream hydropower dam. We hypothesize that depleted Iow flows, flow instability and thermal alteration resulting from pulsed flow releases at the hydropower dam are most responsible for changes in the Tallapoosa River biota. However, existing data are insufficient to prescribe with certainty minimum flow levels or the frequency and duration of stable flow periods that would be necessary or sufficient to protect riverine biotic integrity. Rather than negotiate a specific change in the flow regime, we propose that stakeholders--including management agencies, the power utility, and river advocates--engage in a process of adaptive-flow management. This process would require that stakeholders (1) develop and agree to management objectives; (2) model hypothesized relations between dam operations and management objectives; (3) implement a change in dam operations; and (4) evaluate biological responses and other stakeholder benefits through an externally reviewed monitoring program. Models would be updated with monitoring data and stakeholders would agree to further modify flow regimes as necessary to achieve management objectives. A primary obstacle to adaptive management will be a perceived uncertainty of future costs for the power utility and other stakeholders. However, an adaptive, iterative approach offers the best opportunity for improving flow regimes for native biota while gaining information critical to guiding management decisions in other flow-regulated rivers.

  13. Pre-spawning migration of adult Pacific lamprey, Entosphenus tridentatus, in the Willamette River, Oregon, U.S.A.

    Science.gov (United States)

    Clemens, Benjamin J.; Mesa, Matthew G.; Magie, Robert J.; Young, Douglas A.; Schreck, Carl B.

    2012-01-01

    We describe the migration distances and timing of the adult Pacific lamprey, Entosphenus tridentatus, in the Willamette River Basin (Oregon, U.S.A.). We conducted aerial surveys to track radio-tagged fish upstream of a major waterfall and hydropower complex en route to spawning areas. We detected 24 out of the 43 fish that passed the waterfall-hydropower complex. Of the detected fish, 17 were detected multiple times. Their maximum migration distance upstream in the mainstem Willamette approximated a normal distribution. The maximum distance migrated upstream did not significantly correlate with total body length (r = −0.186, P = 0.385) or date that the fish passed Willamette Falls (r = −0.118, P = 0.582). Fish migrated primarily during the spring to early summer period before stopping during the summer, when peak river temperatures (≥20°C). However, at least three fish continued to migrate upstream after September. Behavior ranged from relatively slow migration, followed by holding; to rapid migration, followed by slow migration further up in the basin. This study provides a basis for informing more detailed research on Pacific lamprey in the future.

  14. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Voytek, Emily B.; Lane, John W.

    2016-01-01

    The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers), thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling), and geophysical (electromagnetic-induction) methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared) may be useful in locating and protecting other currently unknown mussel populations.

  15. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon in the upper reaches of the Delaware River, northeastern USA

    Directory of Open Access Journals (Sweden)

    D. O. Rosenberry

    2016-10-01

    Full Text Available The remaining populations of the endangered dwarf wedgemussel (DWM (Alasmidonta heterodon in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers, thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling, and geophysical (electromagnetic-induction methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared may be useful in locating and protecting other currently unknown mussel populations.

  16. Experience in Use of Project Method during Technology Lessons in Secondary Schools of the USA

    Science.gov (United States)

    Sheludko, Inna

    2015-01-01

    The article examines the opportunities and prospects for the use of experience of project method during "technology lessons" in US secondary schools, since the value of project technology implementation experience into the educational process in the USA for ensuring holistic development of children, preparing them for adult life, in…

  17. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  18. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  19. Experiences of Asian Psychologists and Counselors Trained in the USA: An Exploratory Study

    Science.gov (United States)

    Goh, Michael; Yon, Kyu Jin; Shimmi, Yukiko; Hirai, Tatsuya

    2014-01-01

    This study qualitatively explored the pre-departure to reentry experiences of Asian international psychologists and counselors trained in the USA. Semi-structured interviews were conducted with 10 participants from four different Asian countries. Inductive analysis with Consensual Qualitative Research methods was used to analyze the interview…

  20. Anthropogenic impacts on mercury concentrations and nitrogen and carbon isotope ratios in fish muscle tissue of the Truckee River watershed, Nevada, USA

    International Nuclear Information System (INIS)

    Sexauer Gustin, Mae; Saito, Laurel; Peacock, Mary

    2005-01-01

    The lower Truckee River originates at Lake Tahoe, California/Nevada (NV), USA and ends in the terminal water body, Pyramid Lake, NV. The river has minimal anthropogenic inputs of contaminants until it encounters the cities of Reno and Sparks, NV, and receives inflows from Steamboat Creek (SBC). SBC originates at Washoe Lake, NV, where there were approximately six mills that used mercury for gold and silver amalgamation in the late 1800s. Since then, mercury has been distributed down the creek to the Truckee River. In addition, SBC receives agricultural and urban nonpoint source pollution, and treated effluent from the Reno-Sparks water reclamation facility. Fish muscle tissue was collected from different species in SBC and the Truckee River and analyzed for mercury and stable isotopes. Nitrogen (?δ 15 N) and carbon (?δ 13 C) isotopic values in these tissues provide insight as to fish food resources and help to explain their relative Hg concentrations. Mercury concentrations, and ?δ 15 N and ?δ 13 C values in fish muscle from the Truckee River, collected below the SBC confluence, were significantly different than that found in fish collected upstream. Mercury concentrations in fish tissue collected below the confluence for all but three fish sampled were significantly greater (0.1 to 0.65 μg/g wet wt.) than that measured in the tissue collected above the confluence (0.02 to 0.1 μg/g). ?δ 15 N and ?δ 13 C isotopic values of fish muscle collected from the river below the confluence were higher and lower, respectively, than that measured in fish collected up river, most likely reflecting wastewater inputs. The impact of SBC inputs on muscle tissue isotope values declined down river whereas the impact due to Hg inputs showed the opposite trend

  1. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    Science.gov (United States)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-09-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  2. The new Wallula CO2 project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project

    Science.gov (United States)

    Schwartz, Michael O.

    2018-02-01

    A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.

  3. Assessing the impacts of river regulation on native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats in the upper Flathead River, Montana, USA

    Science.gov (United States)

    Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian

    2012-01-01

    Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.

  4. Does Habitat Restoration Increase Coexistence of Native Stream Fishes with Introduced Brown Trout: A Case Study on the Middle Provo River, Utah, USA

    OpenAIRE

    Mark C. Belk; Eric J. Billman; Craig Ellsworth; Brock R. McMillan

    2016-01-01

    Restoration of altered or degraded habitats is often a key component in the conservation plan of native aquatic species, but introduced species may influence the response of the native community to restoration. Recent habitat restoration of the middle section of the Provo River in central Utah, USA, provided an opportunity to evaluate the effect of habitat restoration on the native fish community in a system with an introduced, dominant predator—brown trout (Salmo trutta). To determine the ch...

  5. Channel-planform evolution in four rivers of Olympic National Park, Washington, U.S.A.: The roles of physical drivers and trophic cascades

    Science.gov (United States)

    East, Amy E.; Jenkins, Kurt J.; Happe, Patricia J.; Bountry, Jennifer A.; Beechie, Timothy J.; Mastin, Mark C.; Sankey, Joel B.; Randle, Timothy J.

    2017-01-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history. All four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, evident from landslide response on the Elwha River. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. In this sediment-routing system with high connectivity, such climate-driven signals appear to propagate downstream without being buffered substantially by sediment storage. Legacy effects of anthropogenic modification likely also affect the Quinault River planform. We infer no correspondence between channel geomorphic evolution and elk abundance, suggesting that trophic-cascade effects in this setting are subsidiary to physical controls on channel morphology. Our findings differ from previous interpretations of Olympic National Park fluvial dynamics and contrast with the classic example of Yellowstone National Park, where legacy effects of elk overuse are apparent in channel morphology; we attribute these differences to hydrologic regime and large-wood availability.

  6. Mechanisms of carbon storage in mountainous headwater rivers

    Science.gov (United States)

    Ellen Wohl; Kathleen Dwire; Nicholas Sutfin; Lina Polvi; Roberto Bazan

    2012-01-01

    Published research emphasizes rapid downstream export of terrestrial carbon from mountainous headwater rivers, but little work focuses on mechanisms that create carbon storage along these rivers, or on the volume of carbon storage. Here we estimate organic carbon stored in diverse valley types of headwater rivers in Rocky Mountain National Park, CO, USA. We show that...

  7. The experience of discrimination by US and Internationally educated nurses in hospital practice in the USA: a qualitative study.

    Science.gov (United States)

    Wheeler, Rebecca M; Foster, Jennifer W; Hepburn, Kenneth W

    2014-02-01

    To document experiences of nurses educated abroad and in the USA in 2 urban hospitals in the southeastern USA. Nurses are responsible for providing quality patient care. Discrimination against nurses in the workplace may create hostile environments, potentially affecting patient care and leading to higher nurse attrition rates. Structuration theory posits that agents' interactions create structures. Agents' use of resources and rules shapes interactions, potentially changing the structures. In this study, nurses described interactions with patients and their families and other healthcare personnel, their strategies for managing interactions and rationales behind their selected strategy. This study employed a qualitative, explorative approach using structuration theory. In 2011, 42 internationally educated and 40 USA-educated nurses practising in two urban hospitals in the southeastern USA were interviewed about their experiences in the workplace. Forty-one nurses were re-interviewed to explore the issues raised in the preliminary round: 21 internationally educated and 20 USA. Transcripts were analysed using the constant comparative method. Although internationally educated nurses experienced more explicit discrimination, all nurses experienced discrimination from their patients, their nurse colleagues and/or other hospital personnel. Internationally educated nurses and USA nurses shared similar coping strategies. The prevalence of nurses' experiences of discrimination suggests that healthcare institutions need to strengthen policies to effectively address this harmful practice. More research is needed about discrimination against nurses in the workplace because discrimination may have serious psychological effects that impact nurse retention and the quality of patient care. © 2013 John Wiley & Sons Ltd.

  8. Short-term vegetation response following mechanical control of saltcedar (Tamarix spp.) on the Virgin River, Nevada, USA

    Science.gov (United States)

    Ostoja, Steven M.; Brooks, Matthew L.; Dudley, Tom; Lee, Steven R.

    2014-01-01

    Tamarisk (a.k.a. saltcedar, Tamarix spp.) is an invasive plant species that occurs throughout western riparian and wetland ecosystems. It is implicated in alterations of ecosystem structure and function and is the subject of many local control projects, including removal using heavy equipment. We evaluated short-term vegetation responses to mechanical Tamarix spp. removal at sites ranging from 2 to 5 yr post-treatment along the Virgin River in Nevada, USA. Treatments resulted in lower density and cover (but not eradication) of Tamarix spp., increased cover of the native shrub Pluchea sericia (arrow weed), decreased density and cover of all woody species combined, increased density of both native annual forbs and the nonnative annual Salsola tragus (prickly Russian-thistle), and lower density of nonnative annual grasses. The treated plots had lower mean woody species richness, but greater herbaceous species richness and diversity. Among herbaceous species, native taxa increased in richness whereas nonnative species increased in both species richness and diversity. Thus, efforts to remove Tamarix,/i> spp. at the Virgin River reduced vegetative cover contributing to fuel loads and probability of fire, and resulted in positive effects for native plant diversity, with mixed effects on other nonnative species. However, absolute abundances of native species

  9. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    Science.gov (United States)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  10. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  11. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy E.

    2018-06-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  12. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy

    2018-01-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  13. Polychlorinated biphenyl congener patterns in tree swallows (Tachycineta bicolor) nesting in the Housatonic River watershed, western Massachusetts, USA, using a novel statistical approach

    International Nuclear Information System (INIS)

    Custer, Christine M.; Read, Lorraine B.

    2006-01-01

    A novel application of a commonly used statistical approach was used to examine differences in polychlorinated biphenyl (PCB) congener patterns among locations and sample matrices in tree swallows (Tachycineta bicolor) nesting in the Housatonic River watershed in western Massachusetts, USA. The most prevalent PCB congeners in tree swallow tissue samples from the Housatonic River watershed were Ballsmitter Zell numbers 153, 138, 180, 187, 149, 101, and 170. These congeners were seven of the eight most prevalent congeners in Aroclor[reg] 1260, the PCB mixture that was the primary source of contamination in the Housatonic River system. Using paired-Euclidean distances and tolerance limits, it was demonstrated that congener patterns in swallow tissues from sites on the main stem of the Housatonic River were more similar to one another than to two sites upstream of the contamination or from a nearby reference area. The congener patterns also differed between the reference area and the two upstream tributaries and between the two tributaries. These pattern differences were the same in both pipper (eggs or just hatched nestlings) and 12-day-old nestling samples. Lower-chlorinated congeners appeared to be metabolized in nestlings and pippers compared to diet, and metabolized more in pippers compared to nestlings. Euclidean distances and tolerance limits provide a simple and statistically valid method to compare PCB congener patterns among groups. - Polychlorinated biphenyl congener patterns in swallows differed between the main stem of the Housatonic River, MA and other locations in the watershed

  14. Predicted effects of future climate warming on thermal habitat suitability for Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in rivers in Wisconsin, USA

    Science.gov (United States)

    Lyons, John D.; Stewart, Jana S.

    2015-01-01

    The Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) may be threatened by future climate warming. The purpose of this study was to identify river reaches in Wisconsin, USA, where they might be vulnerable to warming water temperatures. In Wisconsin, A. fulvescens is known from 2291 km of large-river habitat that has been fragmented into 48 discrete river-lake networks isolated by impassable dams. Although the exact temperature tolerances are uncertain, water temperatures above 28–30°C are potentially less suitable for this coolwater species. Predictions from 13 downscaled global climate models were input to a lotic water temperature model to estimate amounts of potential thermally less-suitable habitat at present and for 2046–2065. Currently, 341 km (14.9%) of the known habitat are estimated to regularly exceed 28°C for an entire day, but only 6 km (0.3%) to exceed 30°C. In 2046–2065, 685–2164 km (29.9–94.5%) are projected to exceed 28°C and 33–1056 km (1.4–46.1%) to exceed 30°C. Most river-lake networks have cooler segments, large tributaries, or lakes that might provide temporary escape from potentially less suitable temperatures, but 12 short networks in the Lower Fox and Middle Wisconsin rivers totaling 93.6 km are projected to have no potential thermal refugia. One possible adaptation to climate change could be to provide fish passage or translocation so that riverine Lake Sturgeon might have access to more thermally suitable habitats.

  15. Using 87Sr/86Sr ratios to investigate changes in stream chemistry during snowmelt in the Provo River, Utah, USA

    Science.gov (United States)

    Hale, C. A.; Carling, G. T.; Fernandez, D. P.; Nelson, S.; Aanderud, Z.; Tingey, D. G.; Dastrup, D.

    2017-12-01

    Water chemistry in mountain streams is variable during spring snowmelt as shallow groundwater flow paths are activated in the watershed, introducing solutes derived from soil water. Sr isotopes and other tracers can be used to differentiate waters that have interacted with soils and dust (shallow groundwater) and bedrock (deep groundwater). To investigate processes controlling water chemistry during snowmelt, we analyzed 87Sr/86Sr ratios, Sr and other trace element concentrations in bulk snowpack, dust, soil, soil water, ephemeral channels, and river water during snowmelt runoff in the upper Provo River watershed in northern Utah, USA, over four years (2014-2017). Strontium concentrations in the river averaged 20 ppb during base flow and decreased to 10 ppb during snowmelt runoff. 87Sr/86Sr ratios were around 0.717 during base flow and decreased to 0.715 in 2014 and 0.713 in 2015 and 2016 during snowmelt, trending towards less radiogenic values of mineral dust inputs in the Uinta Mountain soils. Ephemeral channels, representing shallow flow paths with soil water inputs, had Sr concentrations between 7-20 ppb and 87Sr/86Sr ratios between 0.713-0.716. Snowpack Sr concentrations were generally soils that contain accumulated dust deposits with a less radiogenic 87Sr/86Sr ratio. These results suggest that flow paths and atmospheric dust are important to consider when investigating variable solute loads in mountain streams.

  16. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    Science.gov (United States)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  17. Biological effects of simulated discharge plume entrainment at Indian Point Nuclear Power Station, Hudson River estuary, USA

    International Nuclear Information System (INIS)

    Lanza, G.R.; Lauer, G.J.; Ginn, T.C.; Storm, P.C.; Zubarik, L.; New York Univ., N.Y.

    1975-01-01

    Laboratory and field simulations of the discharge plume entrainment of phytoplankton, zooplankton and fish were carried out at the Indian Point Nuclear Station, Hudson River estuary, USA. Phytoplankton assemblages studied on two dates produced different response patterns measured as photosynthetic activity. Chlorophyll-a levels did not change following simulated entrainment. Possible explanations for the differences are discussed. The two abundant copepods Acartia tonsa and Eurytemorta affinis appear to tolerate exposure to discharge plume ΔT without adverse effects. Copepods subjected to plume entrainment may suffer considerable mortality during periods of condenser chlorination. In general, the amphipod Gammarus spp. did not appear to suffer significant mortality during simulated entrainment. Juvenile striped bass, Morone saxatilis, were not affected by simulated plume transit before and during plant condenser chlorination; however, a simulated ''worst possible case'' plume ΔT produced statistically significant moralities. (author)

  18. Monitoring and modeling very large, rapid infiltration using geophysics during the 2014 Lower Colorado River pulse flow experiment

    Science.gov (United States)

    Kennedy, J.; Macy, J. P.; Callegary, J. B.; Lopez, J. R.

    2014-12-01

    In March and April 2014, an unprecedented experiment released over 100x106 cubic meters (81,000 acre-feet) of water from Morelos Dam into the normally-dry lower Colorado River below Yuma, Arizona, USA. More than half of the water released from Morelos Dam infiltrated within the limitrophe reach, a 32-km stretch between the Northern U.S.-Mexico International Boundary and the Southern International Boundary, a distance of just 32 river-kilometers. To characterize the spatial and temporal extent of infiltration, scientists from the US Geological Survey, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, and Universidad Autónoma de Baja California carried out several geophysical surveys. Frequency-domain electromagnetic transects throughout the limitrophe reach showed that the subsurface comprised exclusively sandy material, with little finer-grained material to impede or otherwise influence infiltration. Direct current resistivity clearly imaged the rising water table near the stream channel. Both techniques provide valuable parameterization and calibration information for a surface-water/groundwater interaction model currently in development. Time-lapse gravity data were collected at 25 stations to expand the monitoring well network and provide storage-coefficient information for the groundwater model. Despite difficult field conditions, precise measurements of large gravity changes showed that changes in groundwater storage in the upper reach of the study area, where groundwater levels were highest, were constrained to the near vicinity of the river channel. Downstream near the Southern International Boundary, however, groundwater storage increased substantially over a large area, expanding into the regional aquifer that supplies irrigation water to surrounding agriculture.

  19. Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA

    Science.gov (United States)

    Sobota, D. J.; Compton, J.; Goodwin, K. E.

    2012-12-01

    We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and

  20. Behaviour of wintering Tundra Swans Cygnus columbianus columbianus at the Eel River delta and Humboldt Bay, California, USA

    Science.gov (United States)

    Black, Jeffrey M.; Gress, Carol; Byers, Jacob W.; Jennings, Emily; Ely, Craig R.

    2010-01-01

    Tundra Swan Cygnus columbianus columbinanus phenology and behaviour at the Eel River delta and southern Humboldt Bay in northern California, USA, is described. Counts made each January from 1963 onwards peaked at 1,502 swans in 1988. Monthly counts recorded during the 2006/07 and 2008/09 winters peaked in February, at 1,033 and 772 swans respectively. Swans roosted on ephemeral ponds at the Humboldt Bay National Wildlife Refuge, on ephemeral ponds within grassland pastures in the vicinity of the Refuge, and perhaps also used the Eel River as a roost. Flights between Refuge roosts and the pastures and ponds occurred in the two hours after sunrise and before dark. In winters 2008/09 and 2009/10, the percentage of cygnets in the flocks was 10.6% and 21.4% respectively, and increased to =31% cygnets each year after most swans had departed from the area in March. Average brood size in 2009/10 was 2.1 cygnets. Daily activities consisted of foraging (44.9% of activities recorded), comfort behaviour (22.1%), locomotion (16.2%) and vigilance (15.5%). Eight neck-collared swans identified in the wintering flock were marked at four locations in different parts of Alaska, up to 1,300 km apart.

  1. The western pond turtle (Clemmys marmorata) in the Mojave River, California, USA: Highly adapted survivor or tenuous relict?

    Science.gov (United States)

    Lovich, J.; Meyer, K.

    2002-01-01

    Aspects of the ecology of populations of the western pond turtle Clemmys marmorata were investigated in the Mojave River of the central Mojave Desert, California, U.S.A. One population occupied man-made ponds and the other occurred in natural ponds in the flood plain of the Mojave River. Both habitats are severely degraded as a result of ground water depletion from human activities along the river and one is infested with the exotic shrub saltcedar Tamarix ramosissima. Mean female carapace length (CL) was significantly greater (14.4 cm) than that of males (13.7 cm). Live juveniles were not detected during the period of study. Shelled eggs were visible in X-radiographs from 26 May to 14 July. Mean clutch size was 4.46 and ranged from 3 to 6 eggs. Clutch size did not vary between 1998 and 1999 but was significantly correlated with CL for both years combined, increasing at the rate of 0.548 eggs/cm CL. Gravid female CL ranged from 13.3-16.0 cm. Some females nested in both years. Mean X-ray egg width (21.8 mm) was not significantly correlated with CL or clutch size. X-ray egg width differed more among clutches than within, whether including CL as a co-variate or not. Nesting migrations occurred from 6 June to 8 July with minimum round trip distances ranging from 17.5-585 m with a mean of 195 m. Mean estimated time of departure as measured at the drift fence was 18:13. Most females returned to the ponds in the early morning. Nesting migrations required females to be out of the water for estimated periods of 0.83 to 86 h. The destination of nesting females was typically fluvial sand bars in the channel of the dry riverbed. Overall, the ecology of C. marmorata in the Mojave River is very similar to that reported for populations in less severe habitats along the west coast of the United States. Notable exceptions include long nesting migrations to sandbars in the dry river channel, a possible result of human modifications to the environment, and an apparent lack of

  2. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA.

    Directory of Open Access Journals (Sweden)

    Paradzayi Tagwireyi

    Full Text Available Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation, computed patch metrics (area, density, edge, richness, and shape, and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick's Index [DM], whereas ant diversity (using the Berger-Park Index [DBP] was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57. Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62 whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65. Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64. These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian

  3. Evaluating natural and anthropogenic trace element inputs along an alpine to urban gradient in the Provo River, Utah, USA

    International Nuclear Information System (INIS)

    Carling, Gregory T.; Tingey, David G.; Fernandez, Diego P.; Nelson, Stephen T.; Aanderud, Zachary T.; Goodsell, Timothy H.; Chapman, Tucker R.

    2015-01-01

    Numerous natural and anthropogenic processes in a watershed produce the geochemical composition of a river, which can be altered over time by snowmelt and rainfall events and by built infrastructure (i.e., dams and diversions). Trace element concentrations coupled with isotopic ratios offer valuable insights to disentangle the effects of these processes on water quality. In this study, we measured a suite of 40+ trace and major elements (including As, Cd, Ce, Cr, Cs, Fe, La, Li, Mo, Pb, Rb, Sb, Se, Sr, Ti, Tl, U, and Zn), Sr isotopes ("8"7Sr/"8"6Sr), and stable isotopes of H and O (δD and δ"1"8O) to investigate natural and anthropogenic processes impacting the Provo River in northern Utah, USA. The river starts as a pristine mountain stream and passes through agricultural and urban areas, with two major reservoirs and several major diversions to and from the river. We sampled the entire 120 km length of the Provo River at 13 locations from the Uinta Mountains to Utah Valley, as well as two important tributaries, across the range of hydrologic conditions from low flow to snowmelt runoff during the 2013 water year. We also sampled the furthest downstream site in the Utah Valley urban area during a major flood event. Trace element concentrations indicate that a variety of factors potentially influence Provo River chemistry, including inputs from weathering of carbonate/siliciclastic rocks (Sr) and black shales (Se and U), geothermal groundwater (As, Cs, Li, and Rb), soil erosion during snowmelt runoff (Ce, Cr, Fe, La, Pb, and Ti), legacy mining operations (Mo, Sb, and Tl), and urban runoff (Cr, Pb, and Zn). Although specific elements overlap between different groups, the combination of different elements together with isotopic measurements and streamflow observations may act as diagnostic tools to identify sources. "8"7Sr/"8"6Sr ratios indicate a strong influence of siliciclastic bedrock in the headwaters with values exceeding 0.714 and carbonate bedrock in the

  4. The balancing experiment 1982 (BILEX '82) on the Unter Elbe River

    International Nuclear Information System (INIS)

    Michaelis, W.; Knauth, H.D.

    1985-01-01

    Temporal variabilities and spatial heterogeneities which are characteristic for tidal rivers considerably complicate the treatment of the both ecologically and economically important transport of suspended particulate matter and heavy metals. In 1982, a new concept to tackle this problem and the experimental and theoretical tools developed for its realization were, for the first time, tested in a concerted action. The instrumentation and the simulation models (current simulation model MOHNA, transport model FLUSS) applied have, in principle, proved a success. The experience gained during the campaign allows conclusions with regard to possible improvements to further increase the output. Extensive hydrographic, trace analytical and mathematical results are presented. They permit to judge the chance of success of future experiments of this kind and give hints how to proceed with further transport investigations under the complex conditions of a tidal river. (orig./HP) [de

  5. Comparing particle-size distributions in modern and ancient sand-bed rivers

    Science.gov (United States)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical

  6. Regional Sediment Budget of the Columbia River Littoral Cell, USA

    Science.gov (United States)

    Buijsman, Maarten C.; Sherwood, C.R.; Gibbs, A.E.; Gelfenbaum, G.; Kaminsky, G.M.; Ruggiero, P.; Franklin, J.

    2002-01-01

    Summary -- In this Open-File Report we present calculations of changes in bathymetric and topographic volumes for the Grays Harbor, Willapa Bay, and Columbia River entrances and the adjacent coasts of North Beach, Grayland Plains, Long Beach, and Clatsop Plains for four intervals: pre-jetty - 1920s (Interval 1), 1920s - 1950s (Interval 2), 1950s - 1990s (Interval 3), and 1920s 1990s (Interval 4). This analysis is part of the Southwest Washington Coastal Erosion Study (SWCES), the goals of which are to understand and predict the morphologic behavior of the Columbia River littoral cell on a management scale of tens of kilometers and decades. We obtain topographic Light Detection and Ranging (LIDAR) data from a joint project by the U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), National Aeronautic and Space Administration (NASA), and the Washington State Department of Ecology (DOE) and bathymetric data from the U.S. Coast and Geodetic Survey (USC&GS), U.S. Army Corps of Engineers (USACE), USGS, and the DOE. Shoreline data are digitized from T-Sheets and aerial photographs from the USC&GS and National Ocean Service (NOS). Instead of uncritically adjusting each survey to NAVD88, a common vertical land-based datum, we adjust some surveys to produce optimal results according to the following criteria. First, we minimize offsets in overlapping surveys within the same era, and second, we minimize bathymetric changes (relative to the 1990s) in deep water, where we assume minimal change has taken place. We grid bathymetric and topographic datasets using kriging and triangulation algorithms, calculate bathymetric-change surfaces for each interval, and calculate volume changes within polygons that are overlaid on the bathymetric-change surfaces. We find similar morphologic changes near the entrances to Grays Harbor and the Columbia River following jetty construction between 1898 and 1916 at the Grays Harbor entrance and between 1885 and

  7. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    Science.gov (United States)

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  8. The Cost of Clean Water in the Delaware River Basin (USA

    Directory of Open Access Journals (Sweden)

    Gerald J. Kauffman

    2018-01-01

    Full Text Available The Delaware River has made a marked recovery in the half-century since the adoption of the Delaware River Basin Commission (DRBC Compact in 1961 and passage of the Federal Clean Water Act amendments during the 1970s. During the 1960s, the DRBC set a 3.5 mg/L dissolved oxygen criterion for the river based on an economic analysis that concluded that a waste load abatement program designed to meet fishable water quality goals would generate significant recreational and environmental benefits. Scientists with the Delaware Estuary Program have recently called for raising the 1960s dissolved oxygen criterion along the Delaware River from 3.5 mg/L to 5.0 mg/L to protect anadromous American shad and Atlantic sturgeon, and address the prospect of rising temperatures, sea levels, and salinity in the estuary. This research concludes, through a nitrogen marginal abatement cost (MAC analysis, that it would be cost-effective to raise dissolved oxygen levels to meet a more stringent standard by prioritizing agricultural conservation and some wastewater treatment investments in the Delaware River watershed to remove 90% of the nitrogen load by 13.6 million kg N/year (30 million lb N/year for just 35% ($160 million of the $449 million total cost. The annual least cost to reduce nitrogen loads and raise dissolved oxygen levels to meet more stringent water quality standards in the Delaware River totals $45 million for atmospheric NOX reduction, $130 million for wastewater treatment, $132 million for agriculture conservation, and $141 million for urban stormwater retrofitting. This 21st century least cost analysis estimates that an annual investment of $50 million is needed to reduce pollutant loads in the Delaware River to raise dissolved oxygen levels to 4.0 mg/L, $150 million is needed for dissolved oxygen levels to reach 4.5 mg/L, and $449 million is needed for dissolved oxygen levels to reach 5.0 mg/L.

  9. Improvement in operating incident experience at the Savannah River Burial Ground

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1979-01-01

    Low-level radioactive wastes generated at the Savannah River Plant and Laboratory are stored at the Savannah River burial ground. These wastes have accumulated from >20 years of reprocessing nuclear fuels and materials for defense programs at the Savannah River Plant. Burial in earthen trenches and aboveground storage for transuranic materials are the principal modes of storage. The infrequent operating incidents that have occurred during the 20-year period have been analyzed. The incidents can be categorized as those causing airborne contamination, waterborne contamination, or vegetation contamination through penetration of plant roots into contaminated soil. Contamination was generally confined to the immediate area of the burial ground. Several incidents occurred because of unintentional burial or exhumation of material. The frequency of operating incidents decreased with operating experience of the burial ground, averaging only about two incidents per year during the last six years of operation

  10. Understanding Nutrient Processing Under Similar Hydrologic Conditions Along a River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Mortensen, J.; Van Horn, D. J.; Gonzalez-Pinzon, R.

    2015-12-01

    Eutrophication is one of the main causes of water impairment across the US. The fate of nutrients in streams is typically described by the dynamic coupling of physical processes and biochemical processes. However, isolating each of these processes and determining its contribution to the whole system is challenging due to the complexity of the physical, chemical and biological domains. We conducted column experiments seeking to understand nutrient processing in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (eight stream orders), in New Mexico (USA). For each stream order, we used a set of 6 columns packed with 3 different sediments, i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (> 2mm) and native sediments from each site. We incubated the sediments for three months and performed tracer experiments in the laboratory under identical flow conditions, seeking to normalize the physical processes along the river continuum. We added a short-term pulse injection of NO3, resazurin and NaCl to each column and determined metabolism and NO3 processing using the Tracer Additions for Spiraling Curve Characterization method (TASCC). Our methods allowed us to study how changes in bacterial communities and sediment composition along the river continuum define nutrient processing.

  11. Understanding Single-Thread Meandering Rivers with High Sinuosity on Mars through Chemical Precipitation Experiments

    Science.gov (United States)

    Lim, Y.; Kim, W.

    2015-12-01

    Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.

  12. The operational and logistic experience on transportation of Brazilian spent fuel to USA

    International Nuclear Information System (INIS)

    Maiorino, Jose Rubens; Frajndlich, Roberto; Mandlae, Martin; Bensberg, Werner; Renger, August; Grabow, Karsten

    2000-01-01

    A shipment of 127 spent MTR fuel assemblies was made from IEA-R1 Research Reactor located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, Brazil to Savannah River Site Laboratory in the United States. This paper describes the operational and logistic experience on this transportation made by IPEN staff and the Consortium NCS/GNS. (author)

  13. Managing Floodplain Expectations on the Lower Missouri River, USA.

    Science.gov (United States)

    Bulliner, E. A., IV; Jacobson, R. B.; Lindner, G. A.; Paukert, C.; Bouska, K.

    2017-12-01

    The Missouri River is an archetype of the challenges of managing large rivers and their floodplains for multiple objectives. At 1.3 million km2 drainage area, the Missouri boasts the largest reservoir system in North America with 91 km3 of total storage; in an average year the system generates 10 billion kilowatt hours of electricity. The Lower Missouri River floodplain extends 1,300 km downstream from the reservoir system and encompasses approximately 9,200 km2. For the past 150 years, the floodplain has been predominantly used for agriculture much of which is protected from flooding by private and Federal levees. Reservoir system operating policies prioritize flood-hazard reduction but in recent years, large, damaging floods have demonstrated system limitations. These large floods and changing societal values have created new expectations about how conversion of floodplain agricultural lands to conservation lands might increase ecosystem services, in particular decreasing flood risk and mitigating fluxes of nutrients to the Gulf of Mexico. Our research addresses these expectations at multiple spatial scales by starting with hydrologic and hydraulic models to understand controls on floodplain hydrodynamics. The results document the substantial regional spatial variability in floodplain connectivity that exists because of multi-decadal channel adjustments to channelization and sediment budgets. Exploration of levee setback scenarios with 1- and 2-dimensional hydrodynamic models indicates modest and spatially variable gains in flood-hazard reduction are possible if substantial land areas (50% or more) are converted from agricultural production. Estimates of potential denitrification benefits of connecting floodplains indicate that the floodplain has the capacity to remove 100's to 1,000's of metric tons of N each year, but amounts to a maximum of about 5% the existing load of 200,000 ton*y-1. The results indicate that in this river-floodplain system, the ecosystem

  14. Radiation risks and monitoring of transboundary rivers of Kazakhstan

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Solodukhin, V.P.; Khazhekber, S.; Poznyak, V.L.; Chernykh, E.E.; Passell, H.D.

    2006-01-01

    Full text: The condition of the water resources of the Republic of Kazakhstan is characterized with their whole deficiency as well as their high pollution and desiccation. The situation is also aggravated with much relaxation of work coordination on regulation of trans-boundary river flows and control of their water quality as a result of the USSR collapse and isolation of separate republics. The absence of objective information on water condition of rivers and their contamination sources creates a danger of high ecological risk and psychological stress for inhabitants, localities of that related to the basins of these rivers, and serves as reasoning for claims (occasionally unreasonable) to neighboring countries. Following rivers are the largest trans-boundary ones in Kazakhstan: Ile, Syrdarya, Ural and Irtysh. All these rivers are of great importance for people's life-support of the republic. At the same time presence of a number of large industrial centers, agricultural enterprises and radiation-dangerous objects in the basins of these rivers creates a potential danger of chemical and radiation contamination for their water flows. Objective information on its influence rate is required. The most acceptable form of the control of radiation and hydro-chemical situation in the basins of transboundary rivers is their monitoring based on modern nuclear-and-physical methods of analysis. Very important factor in organization of such monitoring system is participation of all the countries concerned with the basin of the river under the control. There is a work experience of many years in Central Asia on monitoring of large Syrdarya and Amudarya rivers. These works have been carried out since 2000 with the framework of the International project NAVRUZ. Participants of this project are organizations of nuclear profile from Uzbekistan, Kirghizia, Tajikistan and Kazakhstan. The collaborator of this project is the Sandia National Laboratories (SNL), USA. Experience of these

  15. Radiation monitoring of Syr-Darya river

    International Nuclear Information System (INIS)

    Barber, D.S.; Howard, H.D.; Betsill, J.D.; Matthews, R.; Yuldashev, B.S.; Salikhbaev, U.S.; Radyuk, R.I.; Vdovina, E.D.; Solodukhin, V.P.; Poznyak, V.L.; Vasiliev, I.A.; Alekhina, V.M.; Juraev, A.A.

    2003-01-01

    The article contains the results obtained during the radiation monitoring of Syr-Darya River, which was conducted within the frames of international collaboration of Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and USA. The data on the nature of salinity of water, alfa- and beta-activity of water, bottom, water plants, and soil was obtained. Dependence of the obtained results on the distance form the source is discussed. The major life-providing arteries for the great region of Central Asia are Syr-Darya and Amu Darya rivers. There are many countries next to the pools of these rivers: Tajikistan, Afghanistan, Turkmenistan, Uzbekistan, Kyrgyzstan, and Kazakhstan. There is a great concern caused by the shortage of supply of fresh water, severe epidemiological situation, and radiation conditions along of the pools of these rivers. Such conditions have developed as a result of intensive economic and industrial activities, and also of geological and geochemical features of this region. One of the most serious aspects of this problem is the weak scrutiny level of influence of large deposits of natural uranium and consequences of technological and industrial activities. Since November, 2000 Scientifics of four of the listed countries (Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan) have come to an agreement carrying out the teamwork on studying and monitoring the environment in the pools of Syr-Darya and Amu Darya rivers [1]. Collaborator of these works is Cooperative Monitoring Center at Sandia National Laboratories, USA. During three expeditions each country in 15 control sites on their territory has conducted field researches and has obtained the samples of elements of the environment. Laboratory researches were carried out in Kazakhstan and Uzbekistan. The first results were obtained in (2,3) and later in [4].Currently, the analysis of the data on salinity of water and alpha- and beta- activities of samples along Syr-Darya River is presented

  16. Chemical composition of the mineral waters of the Congo River

    International Nuclear Information System (INIS)

    Tshiashala, M.D.; Lumu, B.M.; Lobo, K.K.; Tshisumpa, M.; Wembo, L.S.

    2003-01-01

    Atomic absorption spectrophotometry has been applied to river Congo waters for a global monitoring of trace element contents. 15 elements Ag, Au, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn have been determined in samples collected at 2 sites along the river Congo. Results are compared with those observed in other river waters collected in Kinshasa and elsewhere and for compliance with the international quality standards elaborated by the Who, USA and SSRU. The waters of river Congo have been found less mineralized than those of river Niger. They are of the same order of magnitude than those observed in some local rivers such as Ndjili, Lubudi, Funa, Tshangu and Tshenke.

  17. Harmonization of dosimetric information obtained by different EPR methods: Experience of the Techa river study

    Energy Technology Data Exchange (ETDEWEB)

    Volchkova, A. [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation); Shishkina, E.A., E-mail: ElenaA.Shishkina@gmail.com [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation); Ivanov, D. [Institute of Metal Physics, Russian Academy of Sciences, 18, S. Kovalevskoy Str., 620041 Yekaterinburg (Russian Federation); Timofeev, Yu. [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation); Fattibene, P.; Della Monaca, S. [Istituto Superiore di Sanita and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161 Rome (Italy); Wieser, A. [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, D-85764 Neuherberg (Germany); Degteva, M.O. [Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk (Russian Federation)

    2011-09-15

    Between 1949 and 1956 the Techa River (Southern Urals, Russia) was contaminated as a result of releases of radioactive waste by the Mayak Production Association. EPR dosimetry with tooth enamel has been used to estimate the external exposure of Techa riverside residents over the last 17 years. The database 'Tooth' of the Urals Research Center for Radiation Medicine (URCRM) has accumulated about 1000 EPR measurements of tooth enamel from the rural population of the Urals region. The teeth were investigated by laboratories of Russia, USA, Germany and Italy. Most of the enamel samples were measured several times in different laboratories. Each laboratory used different equipment and its own methods for sample preparation and EPR spectra analysis. Even measurements performed at the same laboratory over 10-15 years may not be assumed as uniform: methods change with time, and equipment is subject to aging. These two factors influenced EPR performance. The purpose of this study is, therefore, the harmonization of EPR data accumulated during long-term dosimetric investigations in the Southern Urals for further pooled analysis. The results will be used for external dose evaluation in the Techa River region.

  18. Great horned owl (Bubo virginianus) dietary exposure to PCDD/DF in the Tittabawassee River floodplain in Midland, Michigan, USA.

    Science.gov (United States)

    Coefield, Sarah J; Zwiernik, Matthew J; Fredricks, Timothy B; Seston, Rita M; Nadeau, Michael W; Tazelaar, Dustin L; Moore, Jeremy N; Kay, Denise P; Roark, Shaun A; Giesy, John P

    2010-10-01

    Soils and sediments in the floodplain of the Tittabawassee River downstream of Midland, Michigan, USA contain elevated concentrations of polychlorinated dibenzofurans (PCDF) and polychlorinated dibenzo-p-dioxins (PCDD). As a long-lived, resident top predator, the great horned owl (Bubo virginianus; GHO) has the potential to be exposed to bioaccumulative compounds such as PCDD/DF. Site-specific components of the GHO diet were collected along 115 km of the Tittabawassee, Pine, Chippewa, and Saginaw Rivers during 2005 and 2006. The site-specific GHO biomass-based diet was dominated by cottontail rabbits (Sylvilagus floridanus) and muskrats (Ondatra zibethicus). Incidental soil ingestion and cottontail rabbits were the primary contributors of PCDD/DF to the GHO diet. The great horned owl daily dietary exposure estimates were greater in the study area (SA) (3.3 to 5.0 ng 2,3,7,8-TCDD equivalents (TEQ(WHO-avian))/kg body wt/d) than the reference area (RA) (0.07 ng TEQ(WHO-Avian)/kg body wt/d). Hazard quotients (HQs) based on central tendency estimates of the average daily dose and no-observable-adverse effect level (NOAEL) for the screech owl and uncertainty factors were <1.0 for both the RA and the SA. Hazard quotients based on upper end estimates of the average daily dose and NOAEL were <1.0 in the RA and up to 3.4 in the SA. Environ. Toxicol. Chem. 2010;29:2350-2362. © 2010 SETAC.

  19. Infiltration experiment for closure cap evaluation at the Savannah River Site

    International Nuclear Information System (INIS)

    Roddy, N.S.; Cook, J.R.

    1990-01-01

    This document discusses several large waste disposal facilities at the Savannah River Site which are being closed. These facilities include two seepage basins and the low-level waste disposal facility. The key element of the closures is the construction of a cap system to limit the infiltration of water which might reach the disposed waste. Cap designs have been modeled using the Hydrologic Evaluation of Landfill Performance (HELP) computer code. This code was developed by the US Army Corps of Engineers for the Environmental Protection Agency to model the effects of various cap and liner designs on the water balance at landfills. A field experiment has been set up which will allow the results of the HELP Code to be verified at the Savannah River Site (SRS) by measuring the actual water balance created by closure cap configurations which will be used in waste site closures at SRS. Two of the caps will be similar to those used for the planned closure activities. Each one has a specific closure arrangement. Once operational, the experiment will be evaluated for a five-year period

  20. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    Science.gov (United States)

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  1. High frequency measurement of nitrate concentration in the Lower Mississippi River, USA

    Science.gov (United States)

    Duan, Shuiwang; Powell, Rodney T.; Bianchi, Thomas S.

    2014-11-01

    Nutrient concentrations in the Mississippi River have increased dramatically since the 1950s, and high frequency measurements on nitrate concentration are required for accurate load estimations and examinations on nitrate transport and transformation processes. This three year record of high temporal resolution (every 2-3 h) data clearly illustrates the importance of high frequency sampling in improving load estimates and resolving variations in nitrate concentration with river flow and tributary inputs. Our results showed large short-term (days to weeks) variations in nitrate concentration but with no diurnal patterns. A repeatable and pronounced seasonal pattern of nitrate concentration was observed, and showed gradual increases from the lowest values in September (during base-flow), to the highest in June - which was followed by a rapid decrease. This seasonal pattern was only moderately linked with water discharge, and more controlled by nitrogen transformation/export from watershed as well as mixing patterns of the two primary tributaries (the upper Mississippi and the Ohio Rivers), which have distinctly different nitrate concentrations and flow patterns. Based on continuous in situ flow measurements, we estimated 554-886 × 106 kg of nitrate-N was exported from the Mississippi River system during years 2004-2006, which was <9% and <16% lower than U.S. Geological Survey's (USGS) estimates using their LOADEST or composite methods, respectively. USGS methods generally overestimated nitrate loads during rising stages and underestimated the loads during falling stages. While changes in nitrate concentrations in large rivers are generally not as responsive to alterations in diurnal inputs and/or watershed hydrology as small rivers, high-frequency water quality sampling would help in monitoring short-term (days to weeks) variations in nutrient concentration patterns and thus improve the accuracy of nutrient flux estimates.

  2. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    Science.gov (United States)

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  3. Projected Hg dietary exposure of 3 bird species nesting on a contaminated floodplain (South River, Virginia, USA).

    Science.gov (United States)

    Wang, Jincheng; Newman, Michael C

    2013-04-01

    Dietary Hg exposure was modeled for Carolina wren (Thryothorus ludovicianus), Eastern song sparrow (Melospiza melodia), and Eastern screech owl (Otus asio) nesting on the contaminated South River floodplain (Virginia, USA). Parameterization of Monte-Carlo models required formal expert elicitation to define bird body weight and feeding ecology characteristics because specific information was either unavailable in the published literature or too difficult to collect reliably by field survey. Mercury concentrations and weights for candidate food items were obtained directly by field survey. Simulations predicted the probability that an adult bird during breeding season would ingest specific amounts of Hg during daily foraging and the probability that the average Hg ingestion rate for the breeding season of an adult bird would exceed published rates reported to cause harm to other birds (>100 ng total Hg/g body weight per day). Despite the extensive floodplain contamination, the probabilities that these species' average ingestion rates exceeded the threshold value were all <0.01. Sensitivity analysis indicated that overall food ingestion rate was the most important factor determining projected Hg ingestion rates. Expert elicitation was useful in providing sufficiently reliable information for Monte-Carlo simulation. Copyright © 2013 SETAC.

  4. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA

    Science.gov (United States)

    Madole, Richard F.

    2012-09-01

    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450-1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.

  5. Water-quality assessment of the Lower Grand River Basin, Missouri and Iowa, USA, in support of integrated conservation practices

    Science.gov (United States)

    Wilkison, Donald H.; Armstrong, Daniel J.

    2016-01-01

    The effectiveness of agricultural conservation programmes to adequately reduce nutrient exports to receiving streams and to help limit downstream hypoxia issues remains a concern. Quantifying programme success can be difficult given that short-term basin changes may be masked by long-term water-quality shifts. We evaluated nutrient export at stream sites in the 44 months that followed a period of increased, integrated conservation implementation within the Lower Grand River Basin. These short-term responses were then compared with export that occurred in the main stem and adjacent rivers in northern Missouri over a 22-year period to better contextualize any recent changes. Results indicate that short-term (October 2010 through May 2014) total nitrogen (TN) concentrations in the Grand River were 20% less than the long-term average, and total phosphorus (TP) concentrations were 23% less. Nutrient reductions in the short term were primarily the result of the less-than-average precipitation and, consequently, streamflow that was 36% below normal. Therefore, nutrient concentrations measured in tributary streams were likely less than normal during the implementation period. Northern Missouri streamflow-normalized TN concentrations remained relatively flat or declined over the period 1991 through 2013 likely because available sources of nitrogen, determined as the sum of commercial fertilizers, available animal manures and atmospheric inputs, were typically less than crop requirement for much of that time frame. Conversely, flow-normalized stream TP concentrations increased over the past 22 years in northern Missouri streams, likely in response to many years of phosphorus inputs in excess of crop requirements. Stream nutrient changes were most pronounced during periods that coincided with the major tillage, planting and growth phases of row crops and increased streamflow. Nutrient reduction strategies targeted at the period February through June would likely have the

  6. Estimation of dynamic load of mercury in a river with BASINS-HSPF model

    Science.gov (United States)

    Ying Ouyang; John Higman; Jeff Hatten

    2012-01-01

    Purpose Mercury (Hg) is a naturally occurring element and a pervasive toxic pollutant. This study investigated the dynamic loads of Hg from the Cedar-Ortega Rivers watershed into the Lower St. Johns River (LSJR), Florida, USA, using the better assessment science integrating point and nonpoint sources (BASINS)-hydrologic simulation program - FORTRAN (HSPF) model....

  7. Polychlorinated biphenyls in adult black bass and yellow perch were not associated with their reproductive success in the upper Hudson River, New York, USA.

    Science.gov (United States)

    Maceina, Michael J; Sammons, Steven M

    2013-07-01

    Although production and use of polychlorinated biphenyls (PCBs) ceased nearly 35 yr ago, questions still remain concerning the potential chronic effects these compounds may have on wild fish, including their reproductive success. In the upper Hudson River, New York, USA, fish were exposed to PCBs primarily from 2 manufacturing plants located approximately 320 km upstream of New York City, New York, from the 1940s to 1977. The authors collected yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieu), and largemouth bass (M. salmoides) using electrofishing, measured PCBs in these adults, and estimated abundance and size of their offspring at age 1 yr (age-1 fish). Fish were collected annually from 2004 to 2009 from 1 control site upstream of the PCB discharge sites and from 2 sites downstream from where PCBs were released. These sites (pools) are separated by a series of dams, locks, and canals. Muscle tissue wet weight PCB and lipid-based PCB concentrations in adults in the 2 PCB exposure pools averaged approximately 1 to 3 µg/g and 100 to 500 µg/g, respectively. Age-1 abundances were not related to adult PCB concentrations but were inversely related to river flow. Size of age-1 fish was slightly greater at the PCB-exposure sites. Levels of PCBs in yellow perch, largemouth bass, and smallmouth bass in the upper Hudson River did not impair or reduce recruitment or reproductive success. Copyright © 2013 SETAC.

  8. Design of a naturalized flow regime—An example from the Lower Missouri River, USA

    Science.gov (United States)

    Jacobson, Robert B.; Galat, David L.

    2008-01-01

     group of river managers, stakeholders, and scientists met during summer 2005 to design a more naturalized flow regime for the Lower Missouri River (LMOR). The objective was to comply with requirements under the U.S. Endangered Species Act to support reproduction and survival of threatened and endangered species, with emphasis on the endangered pallid sturgeon (Scaphirhynchus albus), while minimizing negative effects to existing social and economic benefits of prevailing river management. Specific hydrograph requirements for pallid sturgeon reproduction are unknown, hence much of the design process was based on features of the natural flow regime. Environmental flow components (EFCs) extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes.The design process incorporated a primary stage in which conceptual hydrographs were developed and assessed for their general ecological and social-economic performance. The second stage accounted for hydroclimatic variation by coding the conceptual hydrographs into reservoir release rules, adding constraints for downstream flooding and low-storage precludes, and running the rules through 100 years of hydroclimatic simulation. The output flow regimes were then evaluated for presumed ecological benefits based on how closely they resembled EFCs in the reference natural flow regime. Flow regimes also were assessed for social-economic cost indicators, including days of flooding of low-lying agricultural land, days over flood stage, and storage levels in system reservoirs.Our experience with flow-regime design on the LMOR underscored the lack of confidence the stakeholders place in the value of the natural flow regime as a measure of ecosystem benefit in the absence of fundamental scientific documentation. Stakeholders desired proof of ecological benefits commensurate with the certainty of economic losses. We also gained insight into the processes of integrating science

  9. A BWR licensing experience in the USA

    International Nuclear Information System (INIS)

    Powers, J.; Ogura, C.; Arai, K.; Thomas, S.; Mookhoek, B.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  10. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  11. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    International Nuclear Information System (INIS)

    Skinner, Lawrence C.

    2011-01-01

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: → In the Hudson River, → PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. → Proximity to known PCB sources govern PCB levels and patterns in fish. → PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. → PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. → PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  12. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrence C., E-mail: lxskinne@gw.dec.state.ny.us [New York State Department of Environmental Conservation, 625 Broadway, Albany, NY 12233 (United States)

    2011-10-15

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: > In the Hudson River, > PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. > Proximity to known PCB sources govern PCB levels and patterns in fish. > PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. > PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. > PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  13. Monitoring biological control agents and leafy spurge populations along the Smith River in Montana, USA

    Science.gov (United States)

    J. Birdsall; G. Markin; T. Kalaris; J. Runyon

    2013-01-01

    The Smith River originates in west central Montana and flows north approximately 100 miles before joining the Missouri River. The central 60 miles of the river flows through a relatively inaccessible, forested, scenic limestone canyon famous for its trout fishing. Because of its popularity, the area was designated Montana's first and only controlled river, with...

  14. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  15. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    Science.gov (United States)

    Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.

  16. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    Science.gov (United States)

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline

  17. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA

    Science.gov (United States)

    Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2011-01-01

    The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.

  18. Managing the Mississippi River floodplain: Achieving ecological benefits requires more than hydrological connection to the river: Chapter

    Science.gov (United States)

    Schramm, Harold; Richardson, William B.; Knights, Brent C.

    2015-01-01

    Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the

  19. Women's health care: the experiences and behaviors of rural and urban lesbians in the USA.

    Science.gov (United States)

    Barefoot, K Nikki; Warren, Jacob C; Smalley, K Bryant

    2017-01-01

    Previous research has consistently demonstrated that, in comparison to their cisgender heterosexual counterparts, lesbians face a multitude of women's healthcare-related disparities. However, very little research has been conducted that takes an intersectionality approach to examining the potential influences of rural-urban location on the health-related needs and experiences of lesbians. The purpose of this study was to quantitatively compare rural and urban lesbians' access to women's health care, experiences with women's healthcare providers (WHCPs), and preventive behavior using a large, diverse sample of lesbians from across the USA. A total of 895 (31.1% rural and 68.9% urban) lesbian-identified cisgender women (ie not transgender) from the USA participated in the current online study. As part of a larger parent study, participants were recruited from across the USA through email communication to lesbian, gay, bisexual, and transgender (LGBT)-focused organizations and online advertisements. Participants were asked to complete a series of questions related to their women's healthcare-related experiences and behaviors (ie access to care, experiences with WHCPs, and preventive behavior). A series of χ2 analyses were utilized in order to examine rural-urban differences across dependent variables. An examination of sexual risks revealed that relatively more rural lesbians reported at least one previous male sexual partner in comparison to the urban sample of lesbians (78.1% vs 69.1%, χ2(1, N=890)=7.56, p=0.006). A similarly low percentage of rural (42.4%) and urban (42.9%) lesbians reported that they have a WHCP that they see on a regular basis for preventive care. In terms of experiences with WHCP providers, relatively fewer rural lesbians indicated that their current WHCP had discussed/recommended the human papillomavirus (HPV) vaccination in comparison to urban lesbians (27.5% vs. 37.2%; χ2 (1, N=796)=7.24, p=0.007). No other rural-urban differences in

  20. [Central American migrants' sexual experiences and rights in their transit to the USA].

    Science.gov (United States)

    Infante, César; Silván, Rubén; Caballero, Marta; Campero, Lourdes

    2013-07-01

    To explore the causes and circumstances that determine the way in which migrants experience their sexuality and how this impacts their sexual rights. Qualitative study conducted between April 2009 and July 2010 in Chiapas, Oaxaca, San Luis Potosí, and Tamaulipas. We conducted 22 in-depth interviews to migrants in transit and to ten different key actors. For the analysis we used elements of grounded theory. Migrants know and identify the risks they may encounter in their transit but have scarce access to services to effectively exercise their sexual and reproductive rights. Their vulnerability makes them internalize and accept the violence enacted on them as part of their destiny and as what they must suffer in order to reach the USA. Violence, including sexual violence, determines much of the experiences of their transit through Mexico. Differences between groups and between male and female migrants are determined by gender inequalities and power.

  1. Enhancing mud supply from the Lower Missouri River to the Mississippi River Delta USA: Dam bypassing and coastal restoration

    Science.gov (United States)

    Kemp, G. Paul; Day, John W.; Rogers, J. David; Giosan, Liviu; Peyronnin, Natalie

    2016-12-01

    Sand transport to the Mississippi River Delta (MRD) remains sufficient to build wetlands in shallow, sheltered coastal bays fed by engineered diversions on the Mississippi River (MR) and its Atchafalaya River (AR) distributary. But suspended mud (silt & clay) flux to the coast has dropped from a mean of 390 Mt y-1 in the early 1950s, to 100 Mt y-1 since 1970. This fine-grained sediment travels deeper into receiving estuarine basins and plays a critical role in sustaining existing marshes. Virtually all of the 300 Mt y-1 of missing mud once flowed from the Missouri River (MOR) Basin before nearly 100 dams were built as part of the Pick-Sloan water development project. About 100 Mt y-1 is now intercepted by main-stem Upper MOR dams closed in 1953. But the remaining 200 Mt y-1 is trapped by impoundments built on tributaries to the Lower MOR in the 1950s and 1960s. Sediment flux during the post-dam high MOR discharge years of 1973, 1993 and 2011 approached pre-dam levels when tributaries to the Lower MOR, including the Platte and Kansas Rivers, contributed to flood flows. West bank tributaries drain a vast, arid part of the Great Plains, while those entering from the east bank traverse the lowlands of the MOR floodplain. Both provinces are dominated by highly erodible loess soils. Staunching the continued decline in MR fine-grained sediment flux has assumed greater importance now that engineered diversions are being built to reconnect the Lowermost MR to the MRD. Tributary dam bypassing in the Lower MOR basin could increase mud supply to the MRD by 100-200 Mt y-1 within 1-2 decades. Such emergency measures to save the MRD are compatible with objectives of the Missouri River Restoration and Platte River Recovery Programs to restore MOR riparian habitat for endangered species. Rapid mobilization to shunt fine-grained sediments past as many as 50 Lower MOR tributary dams in several U.S. states will undoubtedly require as much regional coordination and funding in the 21st

  2. Raft River Geothermal Aquaculture Experiment. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

    1979-08-01

    Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

  3. Water quality trends in the Delaware River Basin (USA) from 1980 to 2005.

    Science.gov (United States)

    Kauffman, Gerald J; Homsey, Andrew R; Belden, Andrew C; Sanchez, Jessica Rittler

    2011-06-01

    In 1940, the tidal Delaware River was "one of the most grossly polluted areas in the United States." During the 1950s, water quality was so poor along the river at Philadelphia that zero oxygen levels prevented migration of American shad leading to near extirpation of the species. Since then, water quality in the Delaware Basin has improved with implementation of the 1961 Delaware River Basin Compact and 1970s Federal Clean Water Act Amendments. At 15 gages along the Delaware River and major tributaries between 1980 and 2005, water quality for dissolved oxygen, phosphorus, nitrogen, and sediment improved at 39%, remained constant at 51%, and degraded at 10% of the stations. Since 1980, improved water-quality stations outnumbered degraded stations by a 4 to 1 margin. Water quality remains good in the nontidal river above Trenton and, while improved, remains fair to poor for phosphorus and nitrogen in the tidal estuary near Philadelphia and in the Lehigh and Schuylkill tributaries. Water quality is good in heavily forested watersheds (>50%) and poor in highly cultivated watersheds. Water quality recovery in the Delaware Basin is coincident with implementation of environmental laws enacted in the 1960s and 1970s and is congruent with return of striped bass, shad, blue crab, and bald eagle populations.

  4. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-03-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. The authors did not study all potential toxic effects, but, on the basis of those that they did consider, they concluded that the treated swans were basically healthy after a chronic exposure to the sediment.

  5. A model to predict stream water temperature across the conterminous USA

    Science.gov (United States)

    Catalina Segura; Peter Caldwell; Ge Sun; Steve McNulty; Yang Zhang

    2014-01-01

    Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating...

  6. Use of Fatty Acid Analysis to Determine Dispersal of Caspian Terns in the Columbia River Basin, U.S.A.

    Science.gov (United States)

    Maranto, C.J.; Parrish, J.K.; Herman, D.P.; Punt, A.E.; Olden, J.D.; Brett, M.T.; Roby, D.D.

    2011-01-01

    Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid-Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C20 and C22 monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base. ??2011 Society for Conservation Biology.

  7. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

    Science.gov (United States)

    Wenger, Seth J.; Isaak, Daniel J.; Dunham, Jason B.; Fausch, Kurt D.; Luce, Charles H.; Neville, Helen M.; Rieman, Bruce E.; Young, Michael K.; Nagel, David E.; Horan, Dona L.; Chandler, Gwynne L.

    2011-01-01

    Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus clarkii) and bull trout (Salvelinus confluentus), as well as nonnative brook trout (Salvelinus fontinalis). We also examined the response of the native species to the presence of brook trout. Analyses were conducted using multilevel logistic regression applied to a geographically broad database of 4165 fish surveys. The results indicated that bull trout distributions were strongly related to climatic factors, and more weakly related to the presence of brook trout and geomorphic variables. Cutthroat trout distributions were weakly related to climate but strongly related to the presence of brook trout. Brook trout distributions were related to both climate and geomorphic variables, including proximity to unconfined valley bottoms. We conclude that brook trout and bull trout are likely to be adversely affected by climate warming, whereas cutthroat trout may be less sensitive. The results illustrate the importance of considering species interactions and flow regime alongside temperature in understanding climate effects on fish.

  8. Patterns and controls on historical channel change in the Willamette River, Oregon, USA

    Science.gov (United States)

    Jennifer Rose Wallick; Gordon E. Grant; Stephen T. Lancaster; John P. Bolte; Roger P. Denlinger

    2007-01-01

    Distinguishing human impacts on channel morphology from the natural behaviour of fluvial systems is problematic for large river basins. Large river basins, by virtue of their size, typically encompass wide ranges of geology and landforms resulting in diverse controls on channel form. They also inevitably incorporate long and complex histories of overlapping human and...

  9. Development of a gamified customer journey plan towards optimal User Experience : Case: Launchpad USA (Amcham Finland)

    OpenAIRE

    Papadopoulou, Kalliopi

    2016-01-01

    The objective of this project was to create a comprehensive, gamified Customer Journey towards engagement, satisfaction and optimal customer experience for the Launchpad USA companies. The sub objectives involved minimizing the bottleneck of numerous face-to-face meetings, giving users freedom to explore their options according to their desires and needs, as well as providing them with a platform for communication with their U.S. partners. The project aimed to outline the process of mapping t...

  10. Science to Manage a Very Rare Fish in a Very Large River - Pallid Sturgeon in the Missouri River, U.S.A.

    Science.gov (United States)

    Jacobson, R. B.; Colvin, M. E.; Marmorek, D.; Randall, M.

    2017-12-01

    The Missouri River Recovery Program (MRRP) seeks to revise river-management strategies to avoid jeopardizing the existence of three species: pallid sturgeon (Scaphirhynchus albus), interior least tern (Sterna antillarum)), and piping plover (Charadrius melodus). Managing the river to maintain populations of the two birds (terns and plovers) is relatively straightforward: reproductive success can be modeled with some certainty as a direct, increasing function of exposed sandbar area. In contrast, the pallid sturgeon inhabits the benthic zone of a deep, turbid river and many parts of its complex life history are not directly observable. Hence, pervasive uncertainties exist about what factors are limiting population growth and what management actions may reverse population declines. These uncertainties are being addressed by the MRRP through a multi-step process. The first step was an Effects Analysis (EA), which: documented what is known and unknown about the river and the species; documented quality and quantity of existing information; used an expert-driven process to develop conceptual ecological models and to prioritize management hypotheses; and developed quantitative models linking management actions (flows, channel reconfigurations, and stocking) to population responses. The EA led to development of a science and adaptive-management plan with prioritized allocation of investment among 4 levels of effort ranging from fundamental research to full implementation. The plan includes learning from robust, hypothesis-driven effectiveness monitoring for all actions, with statistically sound experimental designs, multiple metrics, and explicit decision criteria to guide management. Finally, the science plan has been fully integrated with a new adaptive-management structure that links science to decision makers. The reinvigorated investment in science stems from the understanding that costly river-management decisions are not socially or politically supportable without

  11. Experiments on sediment pulses in mountain rivers

    Science.gov (United States)

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  12. Herbivory by resident geese: The loss and recovery of wild rice along the tidal Patuxent River

    Science.gov (United States)

    Haramis, G.M.; Kearns, G.D.

    2007-01-01

    Well known for a fall spectacle of maturing wild rice (Zizania aquatica) and migrant waterbirds, the tidal freshwater marshes of the Patuxent River, Maryland, USA, experienced a major decline in wild rice during the 1990s. We conducted experiments in 1999 and 2000 with fenced exclosures and discovered herbivory by resident Canada geese (Branta canadensis). Grazing by geese eliminated rice outside exclosures, whereas protected plants achieved greater size, density, and produced more panicles than rice occurring in natural stands. The observed loss of rice on the Patuxent River reflects both the sensitivity of this annual plant to herbivory and the destructive nature of an overabundance of resident geese on natural marsh vegetation. Recovery of rice followed 2 management actions: hunting removal of approximately 1,700 geese during a 4-year period and reestablishment of rice through a large-scale fencing and planting program.

  13. Hyalella azteca (Saussure) responses to Coldwater River backwater sediments in Mississippi, USA.

    Science.gov (United States)

    Knight, Scott S; Lizotte, Richard E; Shields, F Douglas

    2009-10-01

    Sediment from three Coldwater River, Mississippi backwaters was examined using 28 day Hyalella azteca bioassays and chemical analyses for 33 pesticides, seven metals and seven PCB mixtures. Hydrologic connectivity between the main river channel and backwater varied widely among the three sites. Mortality occurred in the most highly connected backwater while growth impairment occurred in the other two. Precopulatory guarding behavior was not as sensitive as growth. Fourteen contaminants (seven metals, seven pesticides) were detected in sediments. Survival was associated with the organochlorine insecticide heptachlor.

  14. Spatial and temporal trends of freshwater mussel assemblages in the Meramec River Basin, Missouri, USA

    Science.gov (United States)

    Hinck, Jo Ellen; McMurray, Stephen E.; Roberts, Andrew D.; Barnhart, M. Christopher; Ingersoll, Christopher G.; Wang, Ning; Augspurger, Tom

    2012-01-01

    The Meramec River basin in east-central Missouri has one of the most diverse unionoid mussel faunas in the central United States with >40 species identified. Data were analyzed from historical surveys to test whether diversity and abundance of mussels in the Meramec River basin (Big, Bourbeuse, and Meramec rivers, representing >400 river miles) decreased between 1978 and 1997. We found that over 20y, species richness and diversity decreased significantly in the Bourbeuse and Meramec rivers but not in the Big River. Most species were found at fewer sites and in lower numbers in 1997 than in 1978. Federally endangered species and Missouri Species of Conservation Concern with the most severe temporal declines were Alasmidonta viridis, Arcidens confragosus, Elliptio crassidens, Epioblasma triquetra, Fusconaia ebena, Lampsilis abrupta, Lampsilis brittsi, and Simpsonaias ambigua. Averaged across all species, mussels were generally being extirpated from historical sampling sites more rapidly than colonization was occurring. An exception was one reach of the Meramec River between river miles 28.4 and 59.5, where mussel abundance and diversity were greater than in other reaches and where colonization of Margaritiferidae, Lampsilini, and Quadrulini exceeded extirpation. The exact reasons mussel diversity and abundance have remained robust in this 30- mile reach is uncertain, but the reach is associated with increased gradients, few long pools, and vertical rock faces, all of which are preferable for mussels. Complete loss of mussel communities at eight sites (16%) with relatively diverse historical assemblages was attributed to physical habitat changes including bank erosion, unstable substrate, and sedimentation. Mussel conservation efforts, including restoring and protecting riparian habitats, limiting the effects of in-stream sand and gravel mining, monitoring and controlling invasive species, and protecting water quality, may be warranted in the Meramec River basin.

  15. Host fishes and infection strategies of freshwater mussels in large Mobile Basin streams, USA

    Science.gov (United States)

    Wendell R. Haag; Melvin L. Warren

    2003-01-01

    We investigated host fishes, timing and modes of glochidial release, and host-attraction strategies for 7 species of freshwater mussels from the Buttahatchee and Sipsey rivers (Mobile Basin), Alabama and Mississippi, USA. We determined hosts as fish species that produced juvenile mussels from laboratory-induced glochidial infections. We established the following...

  16. Assessing water quality suitability for shortnose sturgeon in the Roanoke River, North Carolina, USA with an in situ bioassay approach

    Science.gov (United States)

    Cope, W.G.; Holliman, F.M.; Kwak, T.J.; Oakley, N.C.; Lazaro, P.R.; Shea, D.; Augspurger, T.; Law, J.M.; Henne, J.P.; Ware, K.M.

    2011-01-01

    dry weight) at several river sites, no correlation was detected of adverse water quality conditions or measured contaminant concentrations to the poor survival of sturgeon among riverine test sites. Histopathology analysis determined that the mortality of the river deployed shortnose sturgeon was likely due to liver and kidney lesions from an unknown agent(s). Given the poor survival of shortnose sturgeon (9%) and high survival of fathead minnows (99.4%) at the riverine test sites, our study indicates that conditions in the Roanoke River are incongruous with the needs of juvenile shortnose sturgeon and that fathead minnows, commonly used standard toxicity test organisms, do not adequately predict the sensitivity of shortnose sturgeon. Therefore, additional research is needed to help identify specific limiting factors and management actions for the enhancement and recovery of this imperiled fish species. Published 2010. This article is a US Government work and is in the public domain in the USA.

  17. The Navruz experiment. Cooperative monitoring for radionuclides and metals in Central Asia transboundary rivers

    International Nuclear Information System (INIS)

    Barber, D.S.; Betsill, J.D.; Mohagheghi, A.H.; Passell, H.D.; Yuldashev, B.; Salikhbaev, U.; Djuraev, A.; Vasiliev, I.; Solodukhin, V.

    2005-01-01

    In March of 2000, scientists from four nuclear physics research institutes in the Central Asia Republics of Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, and the U.S. Sandia National Laboratories embarked on a three-year cooperative transboundary river monitoring experiment. The experiment, named Navruz (meaning 'new beginning'), uses standardized methods to monitor basic water quality parameters, radionuclides, and metals in the Syr Darya and Amu Darya rivers. Overall, the project addresses three main goals: (1) to help increase capabilities in Central Asian nations for sustainable water resources management; (2) to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and (3) to help reduce the threat of conflict in Central Asia over water resources. Contamination of these rivers is a result of growing population, urbanization, agricultural uses, and radioactive and metals contamination from a legacy of uranium mining, industry, and other activities of the former Soviet Union. The project focuses on waterborne radionuclides and metals because of the importance of these contaminants to public health and political stability in Central Asia. Moreover, the method of enabling scientists from bordering countries to study a transboundary problem, can lead to a greater scientific understanding, consensus on necessary mitigation steps, and ultimately the political resolution of the issue. The project scope, approach, and preliminary results are presented. (author)

  18. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading

    Science.gov (United States)

    Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.

    2009-01-01

    There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.

  19. Turning the tide: effects of river inflow and tidal amplitude on sandy estuaries in laboratory landscape experiments

    Science.gov (United States)

    Kleinhans, Maarten; Braat, Lisanne; Leuven, Jasper; Baar, Anne; van der Vegt, Maarten; van Maarseveen, Marcel; Markies, Henk; Roosendaal, Chris; van Eijk, Arjan

    2016-04-01

    Many estuaries formed over the Holocene through a combination of fluvial and coastal influxes, but how estuary planform shape and size depend on tides, wave climate and river influxes remains unclear. Here we use a novel tidal flume setup of 20 m length by 3 m width, the Metronome (http://www.uu.nl/metronome), to create estuaries and explore a parameter space for the simple initial condition of a straight river in sandy substrate. Tidal currents capable of transporting sediment in both the ebb and flood phase because they are caused by periodic tilting of the flume rather than the classic method of water level fluctuation. Particle imaging velocimetry and a 1D shallow flow model demonstrate that this principle leads to similar sediment mobility as in nature. Ten landscape experiments recorded by timelapse overhead imaging and AGIsoft DEMs of the final bed elevation show that absence of river inflow leads to short tidal basins whereas even a minor discharge leads to long convergent estuaries. Estuary width and length as well as morphological time scale over thousands of tidal cycles strongly depend on tidal current amplitude. Paddle-generated waves subdue the ebb delta causing stronger tidal currents in the basin. Bar length-width ratios in estuaries are slightly larger to those in braided rivers in experiments and nature. Mutually evasive ebb- and flood-dominated channels are ubiquitous and appear to be formed by an instability mechanism with growing bar and bifurcation asymmetry. Future experiments will include mud flats and live vegetation.

  20. Recent solvent extraction experience at Savannah River

    International Nuclear Information System (INIS)

    Gray, L.W.; Burney, G.A.; Gray, J.H.; Hodges, M.E.; Holt, D.L.; Macafee, I.M.; Reif, D.J.; Shook, H.E.

    1986-01-01

    Tributyl phosphate-based solvent extraction processes have been used at Savannah River for more than 30 years to separate and purify thorium, uranium, neptunium, plutonium, americium, and curium isotopes. This report summarizes the advancement of solvent extraction technology at Savannah River during the 1980's. Topics that are discussed include equipment improvements, solvent treatment, waste reduction, and an improved understanding of the various chemistries in the process streams entering, within, and leaving the solvent extraction processes

  1. Quantitative Analogue Experimental Sequence Stratigraphy : Modelling landscape evolution and sequence stratigraphy of river-shelf sedimentary systems by quantitative analogue experiments

    NARCIS (Netherlands)

    Heijst, Maximiliaan Wilhelmus Ignatius Maria van

    2000-01-01

    This thesis reports a series of flume tank experiments that were conducted to model the stratigraphic evolution of river-delta systems. Chapter 1 introduces the river-delta sedimentary system that is subject of modelling. The chapter also includes an overview of previous research and the summary and

  2. River food web response to large-scale riparian zone manipulations.

    Directory of Open Access Journals (Sweden)

    J Timothy Wootton

    Full Text Available Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks.

  3. Capital costs of light water reactors: the USA

    International Nuclear Information System (INIS)

    MacKerron, G.

    1979-10-01

    The cost of building a modern nuclear power plant is greater than that of almost any other single civilian project - costs of individual plants are reckoned in hundreds of millions of pounds in the UK, and up to a billion dollars or more in the USA. Hence, depending on the size of nuclear programmes and their funding, escalation of nuclear capital costs may have important economic and social consequences through its effects on overall resource allocation. It is therefore important to analyse the extent and, as far as possible, the sources of cost increases and escalation, in order to see if the experience yields implications for technology policy. The USA has much the greatest experience in nuclear construction: it also has by far the largest amount of published information on the subject of capital costs. As all other countries lack either sufficient experience and/or adequate published cost information, it is impossible to conduct a genuine international comparison, and this paper is confined to an examination of US experience. This paper therefore assembles and evaluates currently available data on light water reactor (PWR and BWR) capital costs in the USA. (author)

  4. Comparison of two residential Smart Grid pilots in the Netherlands and in the USA, focusing on energy performance and user experiences

    NARCIS (Netherlands)

    Obinna, U.P.; Joore, J.P.; Wauben, L.S.G.L.; Reinders, A.H.M.E.

    2017-01-01

    Two residential Smart Grid pilots, PowerMatching City, Groningen (NL) and Pecan Street, Austin Texas (USA) have been compared regarding their energy performance and the experiences of users in these pilots. The objective of the comparison was to gain new insights that could support the successful

  5. Effect of Floodplain Inundation on River Pollution in Taiwan's Strong Monsoonal Climate

    Science.gov (United States)

    Hester, E. T.; Lin, A. Y. C.

    2017-12-01

    River-floodplain interaction provides important benefits such as flood mitigation, provision of ecological habitat, and improved water quality. Human actions have historically reduced such interaction and associated benefits by diking, floodplain fill, and river regulation. In response, floodplain restoration has become popular in North America and Europe, but is less practiced in Asia. In Taiwan, unusually strong monsoons and steep terrain alter floodplain dynamics relative to elsewhere around the world, and provide a unique environment for floodplain management. We used numerical models of flow, transport, and reaction in river channels and floodplains to quantify the effect of river-floodplain interaction on water quality in Taiwan's strong monsoon and high topographic relief. We conducted sensitivity analyses of parameters such as river slope, monsoon severity, reservoir operation mode, degree of floodplain reconnection, contaminant reaction rate, and contaminant reaction type on floodplain connectivity and contaminant mitigation. We found significant differences in floodplain hydraulics and residence times in Taiwan's steep monsoonal environment relative to the shallower non-monsoonal environment typical of the eastern USA, with significant implications for water quality. For example, greater flashiness of floodplain inundation in Taiwan provides greater challenges for reconnecting sufficient floodplain volume to handle monsoonal runoff. Yet longer periods when floodplains are reliably dry means that such lands may have greater value for seasonal use such as parks or agriculture. The potential for floodplain restoration in Taiwan is thus significant, but qualitatively different than in the eastern USA.

  6. Water's Way at Sleepers River watershed – revisiting flow generation in a post-glacial landscape, Vermont USA

    Science.gov (United States)

    Shanley, James B.; Sebestyen, Stephen D.; McDonnell, Jeffrey J.; McGlynn, Brian L.; Dunne, Thomas

    2015-01-01

    The Sleepers River Research Watershed (SRRW) in Vermont, USA, has been the site of active hydrologic research since 1959 and was the setting where Dunne and Black demonstrated the importance and controls of saturation-excess overland flow (SOF) on streamflow generation. Here, we review the early studies from the SRRW and show how they guided our conceptual approach to hydrologic research at the SRRW during the most recent 25 years. In so doing, we chronicle a shift in the field from early studies that relied exclusively on hydrometric measurements to today's studies that include chemical and isotopic approaches to further elucidate streamflow generation mechanisms. Highlights of this evolution in hydrologic understanding include the following: (i) confirmation of the importance of SOF to streamflow generation, and at larger scales than first imagined; (ii) stored catchment water dominates stream response, except under unusual conditions such as deep frozen ground; (iii) hydrometric, chemical and isotopic approaches to hydrograph separation yield consistent and complementary results; (iv) nitrate and sulfate isotopic compositions specific to atmospheric inputs constrain new water contributions to streamflow; and (v) convergent areas, or ‘hillslope hollows’, contribute disproportionately to event hydrographs. We conclude by summarizing some remaining challenges that lead us to a vision for the future of research at the SRRW to address fundamental questions in the catchment sciences.

  7. q-triplet for Brazos River discharge: The edge of chaos?

    Science.gov (United States)

    Stosic, Tatijana; Stosic, Borko; Singh, Vijay P.

    2018-04-01

    We study the daily discharge data of Brazos River in Texas, USA, from 1900 to 2017, in terms of concepts drawn from the non-extensive statistics recently introduced by Tsallis. We find that the Brazos River discharge indeed follows non-extensive statistics regarding equilibrium, relaxation and sensitivity. Besides being the first such finding of a full-fledged q-triplet in hydrological data with possible future impact on water resources management, the fact that all three Tsallis q-triplet values are remarkably close to those of the logistic map at the onset of chaos opens up new questions towards a deeper understanding of the Brazos River dynamics, that may prove relevant for hydrological research in a more general sense.

  8. Managing water and riparian habitats on the Bill Williams River with scientific benefit for other desert river systems

    Science.gov (United States)

    John Hickey,; Woodrow Fields,; Andrew Hautzinger,; Steven Sesnie,; Shafroth, Patrick B.; Dick Gilbert,

    2016-01-01

    This report details modeling to: 1) codify flow-ecology relationships for riparian species of the Bill Williams River as operational guidance for water managers, 2) test the guidance under different climate scenarios, and 3) revise the operational guidance as needed to address the effects of climate change. Model applications detailed herein include the River Analysis System  (HEC-RAS) and the Ecosystem Functions Model  (HEC-EFM), which was used to generate more than three million estimates of local seedling recruitment areas. Areas were aggregated and compared to determine which scenarios generated the most seedling area per unit volume of water. Scenarios that maximized seedling area were grouped into a family of curves that serve as guidance for water managers. This work has direct connections to water management decision-making and builds upon and adds to the rich history of science-based management for the Bill Williams River, Arizona, USA

  9. Integrated assessment of the impacts of agricultural drainwater in the Salinas River (California, USA)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.S.; Hunt, J.W.; Phillips, B.M.; Nicely, P.A.; Vlaming, V. de; Connor, V.; Richard, N.; Tjeerdema, R.S

    2003-08-01

    Invertebrate mortality was correlated with levels of water and sediment contaminatioin in the Salinas River. - The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the

  10. Integrated assessment of the impacts of agricultural drainwater in the Salinas River (California, USA)

    International Nuclear Information System (INIS)

    Anderson, B.S.; Hunt, J.W.; Phillips, B.M.; Nicely, P.A.; Vlaming, V. de; Connor, V.; Richard, N.; Tjeerdema, R.S.

    2003-01-01

    Invertebrate mortality was correlated with levels of water and sediment contaminatioin in the Salinas River. - The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the

  11. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  12. Estimating abundance without recaptures of marked pallid sturgeon in the Mississippi River.

    Science.gov (United States)

    Friedenberg, Nicholas A; Hoover, Jan Jeffrey; Boysen, Krista; Killgore, K Jack

    2018-04-01

    Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark-recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12-year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model-averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5-15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6-8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0-9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil-recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure. © 2017 Society for Conservation Biology.

  13. The impact of the Suwannee River Sill on the surface hydrology of Okefenokee Swamp, USA

    Science.gov (United States)

    Yin, Zhi-Yong; Brook, George A.

    1992-08-01

    Okefenokee Swamp, located in southeastern Georgia and northeastern Florida, is one of the largest freshwater wetland complexes and a National Wildlife Refuge in the United States. A low earthen dam, the Suwannee River Sill, was built on the largest outlet stream of Okefenokee Swamp in the early 1960s. The purpose was to raise the water level and thus reduce fire frequency in this National Wildlife Refuge. In this study, hydrologic conditions in the swamp prior to (1937-1962) and after (1963-1986) sill construction were compared by statistical procedures. An average 9 cm increase in swamp water level at the Suwannee Canal Recreation Area was attributed to the sill. Increased precipitation and decreased evapotranspiration during the study period caused another 5 cm increase in water levels. Seasonal changes in climatic factors were also responsible for seasonal changes in water levels and streamflow in the pre- and post-sill periods. Although the effect of the sill on water level was more significant during dry periods, it is doubtful that the Suwannee River Sill actually prevented occurrence of severe fibres in the post-sill period, which was wetter than the period before sill construction. The sill diverted 2.6% of swamp outflow from the Suwannee River to the St. Mary's River. Diversion of flow was more marked during low flow periods. Therefore, the discharge of the St. Mary's River in the post-sill increased more than the discharge of the Suwannee River and its variability became lower that of the Suwannee River. The relationships between swamp water level, streamflow and precipitation were also changed due to construction of the sill.

  14. Flow structure through pool-riffle sequences and a conceptual model for their sustainability in gravel-bed rivers

    Science.gov (United States)

    D. Caamano; P. Goodwin; J. M. Buffington

    2010-01-01

    Detailed field measurements and simulations of three-dimensional flow structure were used to develop a conceptual model to explain the sustainability of self-formed pool-riffle sequences in gravel-bed rivers. The analysis was conducted at the Red River Wildlife Management Area in Idaho, USA, and enabled characterization of the flow structure through two consecutive...

  15. Yellowstone-Snake River Plain seismic profilling experiment: Crustal structure of the eastern Snake River Plain

    International Nuclear Information System (INIS)

    Braile, L.W.; Smith, R.B.; Ansorge, J.; Baker, M.R.; Sparlin, M.A.; Prodehl, C.; Schilly, M.M.; Healy, J.H.; Mueller, S.; Olsen, K.H.

    1982-01-01

    Seismic refraction profiles recorded along the eastern Snake River Plain (ESRP) in southeastern Idaho during the 1978 Yellowstone-Snake River Plain cooperative seismic profiling experiment are interpreted to infer the crustal velocity and attenuation (Q-1) structure of the ESRP. Travel-time and synthetic seismogram modeling of a 250 km reversed refraction profile as well as a 100 km detailed profile indicate that the crust of the ESRP is highly anomalous. Approximately 3 to 6 km of volcanic rocks (with some interbedded sediments) overlie an upper-crustal layer (compressional velocity approx. =6.1 km/s) which thins southwestward along the ESRP from a thickness of 10 km near Island Park Caldera to 2 to 3 km beneath the central and southwestern portions of the ESRP. An intermediate-velocity (approx. =6.5 km/s) layer extends from approx. =10 to approx. =20 km depth. a thick (approx. =22 km) lower crust of compressional velocity 6.8 km/s, a total crustall thickness of approx. =42 km, and a P/sub n/ velocity of approx. =7.9 km/s is observed in the ESRP, similar to the western Snake River Plain and the Rocky Mountains Provinces. High attenuation is evident on the amplitude corrected seismic data due to low-Q values in the volcanic rocks (Q/sub p/ = 20 to 200) and throughout the crust (Q/sub p/ = 160 to 300). Based on these characteristics of the crustal structure and volcanic-age progression data, it is suggested that the ESRP has resulted from an intensitive period of intrusion of mantle-derived basaltic magma into the upper crust generating explosive silicic volcanism and associated regional uplift and caldera collapse. This activity began about 15 m.y. ago in southwestern Idaho and has migrated northeast to its present position at Yellowstone. Subsequent cooling of the intruded upper crust results in the 6.5 km/s velocity intermediate layer. Crustal subsidence and periodic basaltic volcanism as represented by the ESRP complete the sequence of crustal evolution

  16. 75 FR 467 - Notice of Opportunity for Hearing, License Application Request of Powertech (USA) Inc. Dewey...

    Science.gov (United States)

    2010-01-05

    ... Hearing, License Application Request of Powertech (USA) Inc. Dewey-Burdock In Situ Uranium Recovery... Regulatory Commission (NRC) for the Dewey-Burdock In Situ Recovery Facility in Fall River and Custer Counties, South Dakota. The Dewey-Burdock facility would involve the recovery of uranium by in situ recovery (ISR...

  17. Estimation of surface water quality in a Yazoo River tributary using the duration curve and recurrence interval approach

    Science.gov (United States)

    Ying Ouyang; Prem B. Parajuli; Daniel A. Marion

    2013-01-01

    Pollution of surface water with harmful chemicals and eutrophication of rivers and lakes with excess nutrients are serious environmental concerns. This study estimated surface water quality in a stream within the Yazoo River Basin (YRB), Mississippi, USA, using the duration curve and recurrence interval analysis techniques. Data from the US Geological Survey (USGS)...

  18. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns.

    Science.gov (United States)

    Zhang, Qian; Ball, William P; Moyer, Douglas L

    2016-09-01

    The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with

  19. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns

    Science.gov (United States)

    Zhang, Qian; Ball, William P.; Moyer, Douglas

    2016-01-01

    The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with

  20. Design Procedure Enhanced with Numerical Modeling to Mitigate River-Bank Erosion

    Directory of Open Access Journals (Sweden)

    Elhakeem Mohamed

    2016-01-01

    Full Text Available In this study, the 2D Finite Element Surface Water Modeling System (FESWMS is used to design barb structures to mitigate river bank erosion in a stream reach located on the Raccoon River near Adel, Iowa, USA just upstream of the US Highway Bridge 169. FESWMS is used also to access the barbs effect on the study reach. The model results showed that the proposed barb structures successfully reduced the flow velocity along the outside bank and increased the velocity in the center of the stream, thereby successfully increased the conveyance towards the core of the river. The estimated velocities values along the river-banks where the barbs exist were within the recommended values for channel stability design. Thus, the barb structures were able to reduce the erosion along the bankline.

  1. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    Science.gov (United States)

    Smith, J. E., IV

    2016-02-01

    James E. Smith IV1, Samuel J. Bentley, Sr.1, Gregg A. Snedden2, Crawford White1 Department of Geology and Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803 USA United States Geological Survey, National Wetlands Research Center, Baton Rouge LA 70803 USA The Mississippi River Delta has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply, accumulation, and delta geomorphology. In the Mississippi River Delta, hurricanes have been paradoxically identified as both agents of widespread land loss, and positive influences for marsh vertical sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the Mississippi River Delta that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Twenty seven cores have been analyzed for radioisotope geochronology and organic content to establish the chronology of mineral sediment supply to the wetlands over the past 70 years. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  2. Radiation monitoring of Syr-Darya river (II)

    International Nuclear Information System (INIS)

    Yuldashev, B.S.; Salikhbaev, U.S.; Radyuk, R.I.; Vdovina, E.D.; Artemov, S.V.; Radyuk, G.A.; Zaparov, E.A.; Howard, H.D.; Barber, D.S.; Betsill, J.D.; Matthews, R.; Solodukhin, V.P.; Poznyak, V.L.; Vasiliev, I.A.; Alekhina, V.M.; Djuraev, A.A.; Djuraev, An.A.

    2004-01-01

    The article contains the results obtained during the radiation monitoring of Syr-Darya River, which was conducted within the frames of international collaboration of Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and USA. The data on the nature of radionuclide distribution of uranium and thorium rows in bottom and soil is presented. Reasons of formation of the observed dependence of the obtained results on the distance from the source are discussed. (author)

  3. Spectrally based bathymetric mapping of a dynamic, sand‐bedded channel: Niobrara River, Nebraska, USA

    Science.gov (United States)

    Dilbone, Elizabeth; Legleiter, Carl; Alexander, Jason S.; McElroy, Brandon

    2018-01-01

    Methods for spectrally based mapping of river bathymetry have been developed and tested in clear‐flowing, gravel‐bed channels, with limited application to turbid, sand‐bed rivers. This study used hyperspectral images and field surveys from the dynamic, sandy Niobrara River to evaluate three depth retrieval methods. The first regression‐based approach, optimal band ratio analysis (OBRA), paired in situ depth measurements with image pixel values to estimate depth. The second approach used ground‐based field spectra to calibrate an OBRA relationship. The third technique, image‐to‐depth quantile transformation (IDQT), estimated depth by linking the cumulative distribution function (CDF) of depth to the CDF of an image‐derived variable. OBRA yielded the lowest depth retrieval mean error (0.005 m) and highest observed versus predicted R2 (0.817). Although misalignment between field and image data did not compromise the performance of OBRA in this study, poor georeferencing could limit regression‐based approaches such as OBRA in dynamic, sand‐bedded rivers. Field spectroscopy‐based depth maps exhibited a mean error with a slight shallow bias (0.068 m) but provided reliable estimates for most of the study reach. IDQT had a strong deep bias but provided informative relative depth maps. Overprediction of depth by IDQT highlights the need for an unbiased sampling strategy to define the depth CDF. Although each of the techniques we tested demonstrated potential to provide accurate depth estimates in sand‐bed rivers, each method also was subject to certain constraints and limitations.

  4. Accumulation of americium-241 in the biomass of aquatic plants of the Yenisei river: experimental study

    International Nuclear Information System (INIS)

    Zotina, T.A.; Bolsunovsky, A.Y.A.; Bondareva, L.G.

    2004-01-01

    Due to the operation of the Mining-and-Chemical Combine (Krasnoyarsk-26), which has been manufacturing weapons-grade plutonium for several decades, the Yenisei River is contaminated with transuranic elements (including 241 Am). 241 Am was found in the riverside soil, sediment and in the biomass of aquatic plants (Bolsunovsky et al., 1999, 2002). Aquatic plants are an important link in the migration of radionuclides in an aquatic ecosystem. In laboratory experiments, we investigated accumulation of 241 Am by the submerged macrophyte from the Yenisei River: the pond weed (Elodea canadensis) and the aquatic moss (Fontinalis antipyretica), and release of 241 Am from the biomass. The content of 241 Am was measured on a Canberra (USA) gamma-spectrometer. The experiments showed that specific accumulation and concentration factors of 241 Am in the plants were in inverse proportion to their biomass. We obtained new data on release of 241 Am from the biomass of macrophyte. Americium-241 was more firmly fixed in the biomass of the aquatic moss. In 12 months, the biomass of the aquatic moss released about 30% of the initial americium activity into the water. To compare, the biomass of the pond weed released into the water medium up to 64% of the initial 241 Am activity in 1.5 4 months. The release rate was dependent on the decomposition rate of the plant biomass. The experiments showed that submerged macrophyte of the Yenisei River can accumulate considerable activities of 241 Am and retain americium for long periods of time in biomass. (author)

  5. Precipitation Frequency for Ohio River Basin, USA - NOAA Atlas 14 Volume 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GIS grid atlas contains precipitation frequency estimates for the Ohio River Basin and Surrounding states is based on precipitation data collected between...

  6. A comparison of integrated river basin management strategies: A global perspective

    Science.gov (United States)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  7. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  8. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  9. Geomorphic changes resulting from floods in reconfigured gravel-bed river channels in Colorado, USA

    Science.gov (United States)

    Elliott, J.G.; Capesius, J.P.

    2009-01-01

    Geomorphic changes in reconfi gured reaches of three Colorado rivers in response to floods in 2005 provide a benchmark for "restoration" assessment. Sedimententrainment potential is expressed as the ratio of the shear stress from the 2 yr, 5 yr, 10 yr, and 2005 floods to the critical shear stress for sediment. Some observed response was explained by the excess of flood shear stress relative to the resisting force of the sediment. Bed-load entrainment in the Uncompahgre River and the North Fork Gunnison River, during 4 and 6 yr floods respectively, resulted in streambed scour, streambed deposition, lateral-bar accretion, and channel migration at various locations. Some constructed boulder and log structures failed because of high rates of bank erosion or bed-material deposition. The Lake Fork showed little or no net change after the 2005 flood; however, this channel had not conveyed floods greater than the 2.5 yr flood since reconfi guration. Channel slope and the 2 yr flood, a surrogate for bankfull discharge, from all three reconfi gured reaches plotted above the Leopold and Wolman channel-pattern threshold in the "braided channel" region, indicating that braiding, rather than a single-thread meandering channel, and midchannel bar formation may be the natural tendency of these gravel-bed reaches. When plotted against a total stream-power and median-sediment-size threshold for the 2 yr flood, however, the Lake Fork plotted in the "single-thread channel" region, the North Fork Gunnison plotted in the " multiplethread" region, and the Uncompahgre River plotted on the threshold. All three rivers plotted in the multiple-thread region for floods of 5 yr recurrence or greater. ?? 2009 Geological Society of America.

  10. Reproductive health of bass in the Potomac, U.S.A., drainage: part 1. Exploring the effects of proximity to wastewater treatment plant discharge.

    Science.gov (United States)

    Iwanowicz, Luke R; Blazer, Vicki S; Guy, Christopher P; Pinkney, Alfred E; Mullican, John E; Alvarez, David A

    2009-05-01

    Intersex (specifically, testicular oocytes) has been observed in male smallmouth bass (SMB; Micropterus dolomieu) and other centrarchids in the South Branch of the Potomac River, U.S.A., and forks of the Shenandoah River, U.S.A., during the past five years. This condition often is associated with exposure to estrogenic endocrine-disrupting chemicals in some fish species, but such chemicals and their sources have yet to be identified in the Potomac. In an attempt to better understand the plausible causes of this condition, we investigated the reproductive health of bass sampled up- and downstream of wastewater treatment plant (WWTP) effluent point sources on the Potomac River in Maryland, U.S.A. Smallmouth bass were sampled from the Conococheague Creek and the Monocacy River, and largemouth bass (LMB; Micropterus salmoides) were collected near the Blue Plains WWTP on the mainstem of the Potomac River. Chemical analyses of compounds captured in passive samplers at these locations also were conducted. A high prevalence of intersex (82-100%) was identified in male SMB at all sites regardless of collection area. A lower prevalence of intersex (23%) was identified in male LMB collected at the Blue Plains site. When up- and downstream fish were compared, significant differences were noted only in fish from the Conococheague. Differences included condition factor, gonadosomatic index, plasma vitellogenin concentration, and estrogen to testosterone ratio. In general, chemicals associated with wastewater effluent, storm-water runoff, and agriculture were more prevalent at the downstream sampling sites. An exception was atrazine and its associated metabolites, which were present in greater concentrations at the upstream sites. It appears that proximity to effluent from WWTPs may influence the reproductive health of bass in the Potomac watershed, but inputs from other sources likely contribute to the widespread, high incidence of testicular oocytes.

  11. Morphological and molecular confirmation of Myxobolus cerebralis myxospores infecting wild‑caught and cultured trout in North Carolina (SE USA).

    Science.gov (United States)

    Ruiz, Carlos F; Rash, Jacob M; Arias, Cova R; Besler, Doug A; Orélis-Ribeiro, Raphael; Womble, Matthew R; Roberts, Jackson R; Warren, Micah B; Ray, Candis L; Lafrentz, Stacey; Bullard, Stephen A

    2017-11-21

    We used microscopy and molecular biology to provide the first documentation of infections of Myxobolus cerebralis (Myxozoa: Myxobolidae), the etiological agent of whirling disease, in trout (Salmonidae) from North Carolina (USA) river basins. A total of 1085 rainbow trout Oncorhynchus mykiss, 696 brown trout Salmo trutta, and 319 brook trout Salvelinus fontinalis from 43 localities across 9 river basins were screened. Myxospores were observed microscopically in pepsin-trypsin digested heads of rainbow and brown trout from the Watauga River Basin. Those infections were confirmed using the prescribed nested polymerase chain reaction (PCR; 18S rDNA), which also detected infections in rainbow, brown, and brook trout from the French Broad River Basin and the Yadkin Pee-Dee River Basin. Myxospores were 9.0-10.0 µm (mean ± SD = 9.6 ± 0.4; N = 119) long, 8.0-10.0 µm (8.8 ± 0.6; 104) wide, and 6.0-7.5 µm (6.9 ± 0.5; 15) thick and had polar capsules 4.0-6.0 µm (5.0 ± 0.5; 104) long, 2.5-3.5 µm (3.1 ± 0.3; 104) wide, and with 5 or 6 polar filament coils. Myxospores from these hosts and rivers were morphologically indistinguishable and molecularly identical, indicating conspecificity, and the resulting 18S rDNA and ITS-1 sequences derived from these myxospores were 99.5-100% and 99.3-99.8% similar, respectively, to published GenBank sequences ascribed to M. cerebralis. This report comprises the first taxonomic circumscription and molecular confirmation of M. cerebralis in the southeastern USA south of Virginia.

  12. Phytophthora species recovered from the Connecticut River Valley in Massachusetts, USA.

    Science.gov (United States)

    Brazee, Nicholas J; Wick, Robert L; Hulvey, Jonathan P

    2016-01-01

    Little is currently known about the assemblage of Phytophthora species in northeastern North America, representing a gap in our understanding of species incidence. Therefore, Phytophthora species were surveyed at 20 sites in Massachusetts, with 16 occurring in the Connecticut River Valley. Many of the sampled waterways were adjacent to active agricultural lands, yet were buffered by mature floodplain forests composed of Acer, Platanus, Populus and Ulmus. Isolates were recovered with three types of baits (rhododendron leaves, pear, green pepper) in 2013 and water filtration in 2014. Overall, 457 isolates of Phytophthora were recovered and based on morphological characters and rDNA internal transcribed spacer (ITS), β-tubulin (β-tub) and cytochrome oxidase c subunit I (cox1) sequences, 18 taxa were identified, including three new species: P. taxon intercalaris, P. taxon caryae and P. taxon pocumtuck. In addition, 49 isolates representing five species of Phytopythium also were identified. Water filtration captured a greater number of taxa (18) compared to leaf and fruit baits (12). Of the three bait types rhododendron leaves yielded the greatest number of isolates and taxa, followed by pear and green pepper, respectively. Despite the proximity to agricultural lands, none of the Phytophthora species baited are considered serious pathogens of vegetable crops in the region. However, many of the recovered species are known woody plant pathogens, including four species in the P. citricola s.l. complex that were identified: P. plurivora, P. citricola III, P. pini and a putative novel species, referred to here as P. taxon caryae. An additional novel species, P. taxon pocumtuck, is a close relative of P. borealis based on cox1 sequences. The results illustrate a high level of Phytophthora species richness in the Connecticut River Valley and that major rivers can serve as a source of inoculum for pathogenic Phytophthora species in the northeast. © 2016 by The Mycological

  13. Savannah River Site Operating Experience with Transuranic (TRU) Waste Retrieval

    International Nuclear Information System (INIS)

    Stone, K.A.; Milner, T.N.

    2006-01-01

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads from the 1970's through the 1980's. These drums were subsequently covered with tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This paper will describe the operating experience and lessons learned from the SRS retrieval activities. (authors)

  14. Hydraulic modeling of mussel habitat at a bridge-replacement site, Allegheny River, Pennsylvania, USA

    Science.gov (United States)

    Fulton, John W.; Wagner, Chad R.; Rogers, Megan E.; Zimmerman, Gregory F.

    2010-01-01

    The Allegheny River in Pennsylvania supports a large and diverse freshwater-mussel community, including two federally listed endangered species, Pleurobema clava(Clubshell) and Epioblasma torulosa rangiana (Northern Riffleshell). It is recognized that river hydraulics and morphology play important roles in mussel distribution. To assess the hydraulic influences of bridge replacement on mussel habitat, metrics such as depth, velocity, and their derivatives (shear stress, Froude number) were collected or computed.

  15. USA

    DEFF Research Database (Denmark)

    Nedergaard, Peter

    http://www.systime.dk/ungdomsuddannelser/almen-studieforberedelse/usa-en-grundbog-i-politik-og-okonomi.html......http://www.systime.dk/ungdomsuddannelser/almen-studieforberedelse/usa-en-grundbog-i-politik-og-okonomi.html...

  16. Bioaccumulation of polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in fishes from the Tittabawassee and Saginaw Rivers, Michigan, USA

    International Nuclear Information System (INIS)

    Wan, Yi; Jones, Paul D.; Holem, Ryan R.; Khim, Jong Seong; Chang, Hong; Kay, Denise P.; Roark, Shaun A.; Newsted, John L.; Patterson, William P.; Giesy, John P.

    2010-01-01

    Characterizing biological factors associated with species-specific accumulation of contaminants is one of the major focuses in ecotoxicology and environmental chemistry studies. In this study, polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and non- and mono-ortho-substituted polychlorinated biphenyl (PCB) congeners were analyzed in various fish species from the Tittabawassee and Saginaw Rivers (12 fish species; n = 314 individuals), Michigan, USA. Due to their migratory habits, greater δ 13 C stable isotope values were found in walleye and white sucker among 12 fish species. Meanwhile, the δ 15 N values indicated that the trophic status was least in carp and greatest in largemouth bass. The greatest total concentrations of dioxins were found in fishes with the lowest trophic status (carp (n = 50) followed by channel catfish (n = 49)), and concentrations of ΣPCDD/Fs (20-440 pg/g ww (wet weight)), ΣPCBs (16-690 ng/g ww), and TEQs (6.8-350 pg/g ww) in carp were also greater than the least mean concentrations in other fishes. Contributions of various biological factors to the species accumulation were assessed. Body weight and lipid content were found to be the most significant factors influencing accumulation of ΣPCDD/Fs. Lipid content and trophic level seemed to be dominant factors determining accumulation of ΣPCB and TEQs, but negative correlations between trophic status and concentrations of ΣPCBs and TEQs were observed possibly due to the great concentrations in benthivorous fishes such as carp occupying lower trophic levels. These factors can be used to predict the contaminant levels of dioxins and health risks of the fishes in the river ecosystem.

  17. Inundation and draining of the Trinity River floodplain associated with extreme precipitation from Hurricane Harvey, east Texas, USA

    Science.gov (United States)

    Hassenruck-Gudipati, H. J.; Goudge, T. A.; Mohrig, D. C.

    2017-12-01

    Rivers swelled up beyond their historic high-water marks due to precipitation from Hurricane Harvey. We used Harvey-induced flooding to investigate the flow connectivity between the coastal Trinity River and its floodplain by measuring water depth and velocity, as well as sediment-transporting conditions on the natural levee that separates the two. River discharge within the study area peaked at a historic high of 3600 cubic meters per second on September 1, 2017. The levees on two river bends were investigated on September 3 and 4 in order to characterize the hydraulic connectivity between the channel and its floodplain during the early falling limb of this flood. On September 3, a river bend located approximately 28km upstream of the river mouth was visited. Water was overtopping the levee crest at this location, 30m away from the levee crest. This overland flow only experienced about a threefold reduction in average velocity to 0.16 m/s (in 2.2 m of water) 600m away from the levee crest. On September 4, a river bend approximately 59km upstream of the river mouth was investigated. Even though the river stage was at the National Weather Service major flood stage, the levee crest separating the river and floodplain was emergent. Regardless of this local disconnect between the river and its floodplain, substantial and variable drainage velocities were measured depending on drainage patterns controlled by local topography. Velocities measured in shallow water immediately adjacent to the emergent levee were low (< 0.05 m/s in 0.2 m of water). The highest drainage velocity ( 0.18 m/s in 1.7 m of water) associated with the upstream river-bend was measured at 750m from the channel and was similar in magnitude to those recorded for the distal inundating overland flow a day before on the downstream river-bend. Results from this work highlight the maintenance of high flow velocities across the distal floodplain even during its drainage phase. The transport of sediment

  18. The Generation of a Stochastic Flood Event Catalogue for Continental USA

    Science.gov (United States)

    Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.

    2017-12-01

    Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows

  19. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa

    Science.gov (United States)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming

    2013-04-01

    Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur

  20. Accumulation of americium-241 in the biomass of aquatic plants of the Yenisei river: experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.A.; Bolsunovsky, A.Y.A.; Bondareva, L.G. [Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk (Russian Federation)

    2004-07-01

    Due to the operation of the Mining-and-Chemical Combine (Krasnoyarsk-26), which has been manufacturing weapons-grade plutonium for several decades, the Yenisei River is contaminated with transuranic elements (including {sup 241}Am). {sup 241}Am was found in the riverside soil, sediment and in the biomass of aquatic plants (Bolsunovsky et al., 1999, 2002). Aquatic plants are an important link in the migration of radionuclides in an aquatic ecosystem. In laboratory experiments, we investigated accumulation of {sup 241}Am by the submerged macrophyte from the Yenisei River: the pond weed (Elodea canadensis) and the aquatic moss (Fontinalis antipyretica), and release of {sup 241}Am from the biomass. The content of {sup 241}Am was measured on a Canberra (USA) gamma-spectrometer. The experiments showed that specific accumulation and concentration factors of {sup 241}Am in the plants were in inverse proportion to their biomass. We obtained new data on release of {sup 241}Am from the biomass of macrophyte. Americium-241 was more firmly fixed in the biomass of the aquatic moss. In 12 months, the biomass of the aquatic moss released about 30% of the initial americium activity into the water. To compare, the biomass of the pond weed released into the water medium up to 64% of the initial {sup 241}Am activity in 1.5 4 months. The release rate was dependent on the decomposition rate of the plant biomass. The experiments showed that submerged macrophyte of the Yenisei River can accumulate considerable activities of {sup 241}Am and retain americium for long periods of time in biomass. (author)

  1. Isotope niche dimension and trophic overlap between bigheaded carps and native filter-feeding fish in the lower Missouri River, USA

    Science.gov (United States)

    Wang, Jianzhu; Chapman, Duane C.; Xu, Jun; Wang, Yang; Gu, Binhe

    2018-01-01

    Stable carbon and nitrogen isotope values (δ13C and δ15N) were used to evaluate trophic niche overlap between two filter-feeding fishes (known together as bigheaded carp) native to China, silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), and three native filter-feeding fish including bigmouth buffalo (Ictiobus cyprinellus), gizzard shad (Dorosoma cepedianum) and paddlefish (Polyodon spathula) in the lower Missouri River, USA, using the Bayesian Stable Isotope in R statistics. Results indicate that except for bigmouth buffalo, all species displayed similar trophic niche size and trophic diversity. Bigmouth buffalo occupied a small trophic niche and had the greatest trophic overlap with silver carp (93.6%) and bighead carp (94.1%) followed by gizzard shad (91.0%). Paddlefish had a trophic niche which relied on some resources different from those used by other species, and therefore had the lowest trophic overlap with bigheaded carp and other two native fish. The trophic overlap by bigheaded carp onto native fish was typically stronger than the reverse effects from native fish. Average niche overlap between silver carp and native species was as high as 71%, greater than niche overlap between bighead carp and native fish (64%). Our findings indicate that bigheaded carps are a potential threat to a diverse and stable native fish community.

  2. Biological control reduces growth, and alters water relations of the saltcedar tree (Tamarix spp.) in western Nevada, USA

    Science.gov (United States)

    R.R. Pattison; C.M. D' Antonio; T.L. Dudley

    2011-01-01

    We monitored the impacts of a biological control agent, the saltcedar leaf beetle (Diorhabda carinulata), on the saltcedar tree (Tamarix spp.) at two sites (Humboldt and Walker rivers) in Nevada, USA. At the Humboldt site trees that had experienced three to four defoliation events had more negative water potentials and lower...

  3. Savannah River Laboratory's operating experience with glass melters

    International Nuclear Information System (INIS)

    Brown, F.H.; Randall, C.T.; Cosper, M.B.; Moseley, J.P.

    1982-01-01

    The Department of Energy, with recommendations from the Du Pont Company, is proposing that a Defense Waste Processing Facility be constructed at the Savannah River Plant to immobilize radioactive The immobilization process is designed around the solidification of waste sludge in borosilicate glass. The Savannah River Laboratory, who is responsible for the solidification process development program, has completed an experimental program with one large-scale glass melter and just started up another melter. Experimental data indicate that process requirements can easily be met with the current design. 7 figures

  4. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  5. Causes of sinks near Tucson, Arizona, USA

    Science.gov (United States)

    Hoffmann, J.P.; Pool, D.R.; Konieczki, A.D.; Carpenter, M.C.

    1998-01-01

    Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000 m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6 m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2 m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods.

  6. Late Quaternary Stratigraphic Architecture of the Santee River Delta, South Carolina, U.S.A.

    Science.gov (United States)

    Long, J. H.; Hanebuth, T. J. J.

    2017-12-01

    The Santee River of South Carolina is the second largest river in terms of drainage area and discharge in the eastern United States and forms the only river-fed delta on the country's Atlantic coast. Significant anthropogenic modifications to this system date back to the early 18th century with the extensive clearing of coastal wetland forest for rice cultivation. In the 1940's the construction of large upstream dams permanently altered the discharge of the Santee River. These modifications are likely documented within the sedimentary record of the Santee Delta as episodes of major environmental changes. The Piedmont-sourced Santee River system incised its valley to an estimated depth of 20 m during lower glacial sea level. Sedimentation during the subsequent Holocene transgression and highstand has filled much of this accommodation. The Santee system remains largely under-investigated with only a handful of studies completed in the 1970's and 1980's based on sediment cores and cuttings. Through the use of high frequency seismic profiles (0.5 - 24 kHz), sediment cores, and other field data, we differentiate depositional units, architectural elements, and bounding surfaces with temporal and spatial distributions reflecting the changing morphodynamics of this complex system at multiple scales. These lithosomes are preserved within both modern inshore and offshore settings and were deposited within a range of paralic environments by processes active on fluvial/estuarine bars, floodplains, marshes, tidal flats, spits, beach ridges, and in backbarrier settings. They are bound by surfaces ranging from diastems to regional, polygenetic, low-angle and channel-form erosional surfaces. Detailed descriptions of cores taken from within the upper 6 m of the modern lower delta plain document heterolithic, mixed-energy, organic-rich, largely aggradational sedimentation dating back to at least 5 ka cal BP. Offshore, stacked, sand-rich, progradational packages sit atop heterolithic

  7. Tšarterkool USA-s / Johannes Kiersch

    Index Scriptorium Estoniae

    Kiersch, Johannes

    2001-01-01

    24.-27. mainì 01 toimub Tallinnas EFFE 2001 (European Forum of Freedom in Education) konverents "Haridus tänases kodanikuühiskonnas." Konverentsil esineb ka Witteni Waldorf-pedagoogika Instituudi õppejõud Johannes Kiersch. Lähemalt tema artiklist USA-s populaarsust võitvate tsharterkoolide kohta, mis on riigi- ja erakooli vahevorm

  8. Physical Volcanological and Petrogenetic Implications of Intra-lava Flow Geochemical Heterogeneity in the Columbia River Flood Basalt Province, USA.

    Science.gov (United States)

    Vye, C. L.; Barry, T. L.; Self, S.; Gannoun, A.; Burton, K. W.

    2007-12-01

    Continental flood basalt lava flows are widely assumed to represent compositionally uniform and rapidly erupted products of large well-mixed magma reservoirs. However, this study presents new data to illustrate systematic element and isotope variations within the flow field formed by an individual flood basalt eruption, both vertically within each sheet lobe and laterally between the constituent lobes. Such variation is significant in chemostratigraphic correlation of flood basalt lava units, in identifying source variability during one eruption, and in petrogenetic modeling. We investigate the extent and cause of compositional variation through tracing lava sheet lobes in a 2,660 cubic kilometer pahoehoe flow field formed during a single eruption in the Columbia River Basalt Province, USA. This is based on features related to emplacement by the inflation mechanism. This method of emplacement is supported by small but statistically significant and systematic major and trace element variation e.g. MgO 3.09- 4.55 wt%, Ni 17.5-25.6 ppm, indicative of fractional crystallisation. Re-Os isotopes indicate progressive crustal contamination of the magma over the timescale of a single flood basalt eruption. By establishing this physical volcanological framework, we determine a temporal link with the supply of lava from the vent(s) and apply it to investigate sequential magmatic evolution during the timescale of one eruption.

  9. Environmental contaminants in great blue herons (Ardea herodias) from the lower Columbia and Willamette Rivers, Oregon and Washington, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.M.; Anthony, R.G.

    1999-12-01

    Great blue heron (Ardea herodias) eggs and prey items were collected from six colonies in Oregon and Washington, USA, during 1994 to 1995. Contaminant concentrations, reproductive success, and biomagnification factors were determined and effects of residue levels were measured by H4IIE rat hepatoma bioassays. Mean residue concentrations in heron eggs and prey items were generally low. However, elevated concentrations of polychlorinated biphenyls (PCBs) were detected in eggs and prey from Ross Island on the Willamette River. Biomagnification factors varied among sites. Sites were not significantly different in H4IIE tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs), although the TCDD-EQ for Karlson Island was 9 to 20 times greater than that of any other site. Large differences existed between toxic equivalents calculated from egg residue concentrations and TCDD-EQs, which indicated nonadditive interactions among the compounds. Tetrachlorodibenzo-p-dioxin equivalents and nest failure were positively correlated with TCDD concentration. Fledging and reproductive rates were similar to those determined for healthy heron populations, however, indicating that any adverse effects were occurring at the individual level and not at the colony level. Their results support the use of great blue herons as a biomonitor for contamination in aquatic ecosystems. Their relatively low sensitivity to organochlorine contaminants and high trophic position allows contaminant accumulation and biomagnification without immediate adverse effects that are often seen in other, more sensitive species.

  10. NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.; Phuyal, Khem P.; Ji, Lei

    2013-01-01

    In this study, we developed a new approach that adjusted normalized difference vegetation index (NDVI) pixel values that were near saturation to better characterize the cropland performance (CP) in the Greater Platte River Basin (GPRB), USA. The relationship between NDVI and the ratio vegetation index (RVI) at high NDVI values was investigated, and an empirical equation for estimating saturation-adjusted NDVI (NDVIsat_adjust) based on RVI was developed. A 10-year (2000–2009) NDVIsat_adjust data set was developed using 250-m 7-day composite historical eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. The growing season averaged NDVI (GSN), which is a proxy for ecosystem performance, was estimated and long-term NDVI non-saturation- and saturation-adjusted cropland performance (CPnon_sat_adjust, CPsat_adjust) maps were produced over the GPRB. The final CP maps were validated using National Agricultural Statistics Service (NASS) crop yield data. The relationship between CPsat_adjust and the NASS average corn yield data (r = 0.78, 113 samples) is stronger than the relationship between CPnon_sat_adjust and the NASS average corn yield data (r = 0.67, 113 samples), indicating that the new CPsat_adjust map reduces the NDVI saturation effects and is in good agreement with the corn yield ground observations. Results demonstrate that the NDVI saturation adjustment approach improves the quality of the original GSN map and better depicts the actual vegetation conditions of the GPRB cropland systems.

  11. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    OpenAIRE

    John C. Lehrter; John C. Lehrter; Chengfeng Le

    2017-01-01

    Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011) in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging ...

  12. Organic matter dynamics in a karstic watershed: Example from Santa Fe River, Florida, USA

    Science.gov (United States)

    Jin, J.; Khadka, M. B.; Martin, J. B.; Zimmerman, A. R.

    2011-12-01

    Organic matter (OM) dynamics in karstic watersheds can involve a range of interactions between organic and inorganic phases of carbon. These interactions include OM remineralization, which will changes its lability, increase dissolved inorganic carbon (DIC) concentrations, reduce pH, and enhance carbonate mineral dissolution. Dissolved organic carbon (DOC) concentrations are elevated in black-water rivers of northern Florida from both allochthonous and autochthonous sources and these rivers flow into and interact with the karstic Floridan Aquifer. One such river, the Santa Fe River, is split into upper confined and lower unconfined watersheds by the Cody Scarp, which represent the erosional edge of a regional confining unit. Water samples were collected from 8 sites across the entire Santa Fe River watershed (SFRW) during 9 sampling trips from December 2009 to May 2011 at flow conditions that ranged from 27 to 39 m3/s, with the highest flow about 45% higher than baseflow. At sites above the Cody Scarp, the river has elevated DOC concentrations, which decrease downstream, while dissolved inorganic carbon (DIC) and δ13C-DIC show opposite trends. At high flow, DOC concentrations progressively decrease downstream from dilution by low-DOC water discharging from the Floridan Aquifer. At low flow, the water chemistry varies little from upstream to downstream, largely because the composition of upstream water becomes similar to that of downstream water. DOC is inversely and linearly correlated with DIC and δ13C-DIC, but the slope of the correlations vary with discharge, with low flow having more negative slopes than high flow. The OM becomes more labile with distance downstream as assessed using two fluorescence indices, biological/autochthonous index (BIX) and humification index (HIX). This increase in lability suggests that DOC is produced in the river, and this production is reflected in a downstream increase in DOC flux regardless of dilution by the influx of low

  13. Homeschooling as an Alternative Form of Educational Provision in South Africa and the USA

    Science.gov (United States)

    de Waal, Esther; Theron, Tinie

    2003-01-01

    This paper studies homeschooling as an alternative form of educational provision in South Africa and USA to determine what knowledge and experiences from research on homeschooling in the USA may be relevant to the South Africa situation. Homeschooling in the USA has a sound legal foundation and has become an acceptable educational alternative.…

  14. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    Science.gov (United States)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal

  15. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA

    Science.gov (United States)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.

    2011-12-01

    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (ptesting show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late-middle Holocene. We hypothesize that prolonged drought during the early and middle Holocene reduced flood frequency and magnitude and the likelihood of soil burial, resulting in longer soil forming intervals and higher Xlf values. Although precipitation influences the Xlf signature, the results from this study suggest that the magnetic susceptibility values of well-drained buried floodplain soils along the Delaware River Valley are partly a function of time.

  16. A new genus and species of entocytherid ostracod (Ostracoda: Entocytheridae) from the John Day River Basin of Oregon, U.S.A., with a key to genera of the subfamily Entocytherinae.

    Science.gov (United States)

    Weaver, Patricia G; Williams, Bronwyn W

    2017-06-07

    Targeted sampling efforts by the authors for the signal crayfish, Pacifastacus leniusculus, from its native range in the John Day River Basin, Oregon, U.S.A. yielded entocytherid ostracods with a male copulatory complex so clearly different from other entocytherines that a new genus, Aurumcythere gen. nov. is proposed to receive them. This newly proposed, apparently nonsclerotized, genus with hook and spur-like prominences of the posteroventral end of the peniferum is the first new genus of the subfamily Entocytherinae named since Hobbs & Peters described Aphelocythere (= Waltoncythere) in 1977. Aurumcythere gen. nov. represents only the second genus of entocytherid known from the Pacific Northwest. Lack of sclerotization in Aurumcythere gen. nov. provides new insight into poorly understood mating behaviors of entocytherid ostracods.

  17. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    Science.gov (United States)

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  18. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    Science.gov (United States)

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources

  19. Comparison of Cottonwood Dendrochronology and Optically Stimulated Luminescence Geochronometers Along a High Plains Meandering River, Powder River, Montana, USA

    Science.gov (United States)

    Hasse, T. R.; Schook, D. M.

    2017-12-01

    Geochronometers at centennial scales can aid our understanding of process rates in fluvial geomorphology. Plains cottonwood trees (Populus deltoides ssp. Monilifera) in the high plains of the United States are known to germinate on freshly created deposits such as point bars adjacent to rivers. As the trees mature they may be partially buried (up to a few meters) by additional flood deposits. Cottonwood age gives a minimum age estimate of the stratigraphic surface where the tree germinated and a maximum age estimate for overlying sediments, providing quantitative data on rates of river migration and sediment accumulation. Optically Stimulated Luminescence (OSL) of sand grains can be used to estimate the time since the sand grains were last exposed to sunlight, also giving a minimum age estimate of sediment burial. Both methods have disadvantages: Browsing, partial burial, and other damage to young cottonwoods can increase the time required for the tree to reach a height where it can be sampled with a tree corer, making the germination point a few years to a few decades older than the measured tree age; fluvial OSL samples can have inherited age (when the OSL age is older than the burial age) if the sediment was not completely bleached prior to burial. We collected OSL samples at 8 eroding banks of the Powder River Montana, and tree cores at breast height (±1.2 m) from cottonwood trees growing on the floodplain adjacent to the OSL sample locations. Using the Minimum Age Model (MAM) we found that OSL ages appear to be 500 to 1,000 years older than the adjacent cottonwood trees which range in age (at breast height) from 60 to 185 years. Three explanations for this apparent anomaly in ages are explored. Samples for OSL could be below a stratigraphic unconformity relative to the cottonwood germination elevation. Shallow samples for OSL could be affected by anthropogenic mixing of sediments due to plowing and leveling of hay fields. The OSL samples could have

  20. Bedform morphology of salmon spawning areas in a large gravel-bed river

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.

    2007-05-01

    While the importance of river channel morphology to salmon spawning habitat is increasingly recognized, quantitative measures of the relationships between channel morphology and habitat use are lacking. Such quantitative measures are necessary as management and regulatory agencies within the Pacific Northwestern region of the USA, and elsewhere, seek to quantify potential spawning habitat and develop recovery goals for declining salmon populations. The objective of this study was to determine if fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Snake River, Idaho, USA, were correlated with specific bed form types at the pool-riffle scale. A bed form differencing technique was used to objectively quantify the longitudinal riverbed profile into four distinct pool-riffle units that were independent of discharge. The vertical location of thalweg points within these units was quantified with a riffle proximity index. Chinook salmon spawning areas were mapped and correlated with the pool-riffle units through the use of cross-tabulation tables. The results indicate that 84% of fall Chinook salmon spawning areas were correlated with riffles (Chi-square=152.1, df=3, p<0.001), with 53% of those areas located on the upstream side of riffle crests. The majority of Snake River fall Chinook salmon spawning occurred at a vertical location within 80% of the nearest riffle crest elevation. The analyses of bed form morphology will assist regional fish mangers in quantifying existing and potential fall Chinook salmon spawning habitat, and will provide a quantitative framework for evaluating general ecological implications of channel morphology in large gravel-bed rivers.

  1. Health status of Largescale Sucker (Catostomus macrocheilus) collected along an organic contaminant gradient in the lower Columbia River, Oregon and Washington, USA

    Science.gov (United States)

    Torres, Leticia; Nilsen, Elena B.; Grove, Robert A.; Patino, Reynaldo

    2014-01-01

    The health of Largescale Sucker (Catostomus macrocheilus) in the lower Columbia River (USA) was evaluated using morphometric and histopathological approaches, and its association with organic contaminants accumulated in liver was evaluated in males. Fish were sampled from three sites along a contaminant gradient In 2009, body length and mass, condition factor, gonadosomatic index, and hematocrit were measured in males and females; liver and gonad tissue were collected from males for histological analyses; and organ composites were analyzed for contaminant content in males. In 2010, additional data were collected for males and females, including external fish condition assessment, histopathologies of spleen, kidney and gill and, for males, liver contaminant content. Multivariate analysis of variance indicated that biological traits in males, but not females, differed among sites in 2009 and 2010. Discriminant function analysis indicated that site-related differences among male populations were relatively small in 2009, but in 2010, when more variables were analyzed, males differed among sites in regards to kidney, spleen, and liver histopathologies and gill parasites. Kidney tubular hyperplasia, liver and spleen macrophage aggregations, and gill parasites were generally more severe in the downstream sites compared to the reference location. The contaminant content of male livers was also generally higher downstream, and the legacy pesticide hexachlorobenzene and flame retardants BDE-47 and BDE-154 were the primary drivers for site discrimination. However, bivariate correlations between biological variables and liver contaminants retained in the discriminant models failed to reveal associations between the two variable sets. In conclusion, whereas certain non-reproductive biological traits and liver contaminant contents of male Largescale Sucker differed according to an upstream-downstream gradient in the lower Columbia River, results from this study did not reveal

  2. Large-scale dam removal on the Elwha River, Washington, USA: fluvial sediment load

    Science.gov (United States)

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian M.; Foreman, James R.

    2015-01-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload

  3. Tests of bioaccumulation models for polychlorinated biphenyl compounds: a study of young-of-the-year bluefish in the Hudson River estuary, USA.

    Science.gov (United States)

    Leblanc, Lawrence A; Buckel, Jeffrey A; Conover, David O; Brownawell, Bruce J

    2006-08-01

    A field-based study regarding uptake of polychlorinated biphenyl compounds (PCBs) by young-of-the-year (YOY) bluefish (Pomatomus saltatrix) was initiated to test a steady-state model of bioaccumulation and trophic transfer in a rapidly growing fish. Determination of prey composition as well as size-dependent growth and specific consumption rates for YOY bluefish from separate field and laboratory studies enabled the input of these species-specific parameters into the model. Furthermore, the time and duration of the exposure of YOY bluefish to dissolved PCBs from a well-characterized system (Hudson River, USA) was well known. Patterns of accumulation of individual PCB congeners differed relative to the accumulation of total PCBs, with the greatest net accumulation occurring for the higher-molecular-weight congeners. Comparison of lipid-normalized bioaccumulation factors (BAFs) with the octanol-water partition coefficients of individual PCB congeners revealed bluefish to be above the BAFs predicted by lipid-based equilibrium partitioning, suggesting that uptake from food is an important source of PCBs in YOY bluefish. Comparison of measured BAFs with values predicted by a steady-state, food-chain model showed good first-order agreement.

  4. Nuclear fuels accounting interface: River Bend experience

    International Nuclear Information System (INIS)

    Barry, J.E.

    1986-01-01

    This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation

  5. Characterizing seston in the Penobscot River Estuary.

    Science.gov (United States)

    Meseck, Shannon L; Li, Yaqin; Sunila, Inke; Dixon, Mark; Clark, Paul; Lipsky, Christine; Stevens, Justin R; Music, Paul; Wikfors, Gary H

    2017-10-01

    The Penobscot River Estuary is an important system for diadromous fish in the Northeast United States of American (USA), in part because it is home to the largest remnant population of Atlantic salmon, Salmo salar, in the country. Little is known about the chemical and biological characteristics of seston in the Penobscot River Estuary. This study used estuarine transects to characterize the seston during the spring when river discharge is high and diadromous fish migration peaks in the Penobscot River Estuary. To characterize the seston, samples were taken in spring 2015 for phytoplankton identification, total suspended matter (TSM), percent organic TSM, chlorophyll a, particle size (2 μm-180 μm), particulate carbon and nitrogen concentrations, and stable carbon and nitrogen isotopes. The estuarine profiles indicate that TSM behaved non-conservatively with a net gain in the estuary. As phytoplankton constituted only 1/1000 of the particles, the non-conservative behavior of TSM observed in the estuary was most likely not attributable to phytoplankton. Particulate carbon and nitrogen ratios and stable isotope signals indicate a strong terrestrial, allochthonous signal. The seston in the Penobscot River Estuary was dominated by non-detrital particles. During a short, two-week time period, Heterosigma akashiwo, a phytoplankton species toxic to finfish, also was detected in the estuary. A limited number of fish samples, taken after the 2015 Penobscot River Estuary bloom of H. akashiwo, indicated frequent pathological gill damage. The composition of seston, along with ichthyotoxic algae, suggest the need for further research into possible effects upon resident and migratory fish in the Penobscot River Estuary. Published by Elsevier Ltd.

  6. Oldest new genus of Myrmeleontidae (Neuroptera) from the Eocene Green River Formation.

    Science.gov (United States)

    Makarkin, Vladimir N

    2017-10-20

    Epignopholeon sophiae gen. et sp. nov. (Neuroptera: Myrmeleontidae) is described from the early Eocene of the Green River Formation (Colorado, U.S.A.). It represents the oldest confident record of the family. The new genus is remarkable in that tergite 7 of the female is much shorter than its long sternite 7. The preserved wing venation shows that the genus belongs to the subfamily Myrmeleontinae, and most probably to the tribe Gnopholeontini. The discovery of this species is consistent with estimations of relatively dry and warm conditions during deposition of the upper Parachute Creek Member of the Green River Formation.

  7. Channel and island change in the lower Platte River, Eastern Nebraska, USA: 1855 2005

    Science.gov (United States)

    Joeckel, R. M.; Henebry, G. M.

    2008-12-01

    The lower Platte River has undergone considerable change in channel and bar characteristics since the mid-1850s in four 20-25 km-long study stretches. The same net effect of historical channel shrinkage that was detected upstream from Grand Island, Nebraska, can also be detected in the lower river but differences in the behaviors of study stretches upstream and downstream from major tributaries are striking. The least relative decrease occurred downstream from the Loup River confluence, and the stretch downstream from the Elkhorn River confluence actually showed an increase in channel area during the 1940s. Bank erosion was also greater downstream of the tributaries between ca. 1860 and 1938/1941, particularly in stretch RG, which showed more lateral migration. The cumulative island area and the ratio of island area to channel area relative to the 1938/1941 baseline data showed comparatively great fluctuations in median island size in both downstream stretches. The erratic behavior of island size distributions over time indicates that large islands were accreted to the banks at different times, and that some small, newly-stabilized islands were episodically "flushed" out of the system. In the upstream stretches the stabilization of mobile bars to create new, small islands had a more consistent impact over time. Channel decrease by the abandonment of large, long-lived anabranches and by the in-place narrowing resulting from island accretion were more prominent in these upstream stretches. Across all of the study area, channel area appears to be stabilizing gradually as the rate of decrease lessens. This trend began earliest in stretch RG in the late 1950s and was accompanied by shifts in the size distributions of stabilized islands in that stretch into the 1960s. Elsewhere, even in the easternmost study stretch, stabilizing was occurring by the late 1960s, the same time frame documented by investigations of the Platte system upstream of the study area. Comprehensive

  8. Assessing climate-change risks to cultural and natural resources in the Yakima River Basin, Washington, USA

    Science.gov (United States)

    Hatten, James R.; Waste, Stephen M.; Maule, Alec G.

    2014-01-01

    We provide an overview of an interdisciplinary special issue that examines the influence of climate change on people and fish in the Yakima River Basin, USA. Jenni et al. (2013) addresses stakeholder-relevant climate change issues, such as water availability and uncertainty, with decision analysis tools. Montag et al. (2014) explores Yakama Tribal cultural values and well-being and their incorporation into the decision-making process. Graves and Maule (2012) simulates effects of climate change on stream temperatures under baseline conditions (1981–2005) and two future climate scenarios (increased air temperature of 1 °C and 2 °C). Hardiman and Mesa (2013) looks at the effects of increased stream temperatures on juvenile steelhead growth with a bioenergetics model. Finally, Hatten et al. (2013) examines how changes in stream flow will affect salmonids with a rule-based fish habitat model. Our simulations indicate that future summer will be a very challenging season for salmonids when low flows and high water temperatures can restrict movement, inhibit or alter growth, and decrease habitat. While some of our simulations indicate salmonids may benefit from warmer water temperatures and increased winter flows, the majority of simulations produced less habitat. The floodplain and tributary habitats we sampled are representative of the larger landscape, so it is likely that climate change will reduce salmonid habitat potential throughout particular areas of the basin. Management strategies are needed to minimize potential salmonid habitat bottlenecks that may result from climate change, such as keeping streams cool through riparian protection, stream restoration, and the reduction of water diversions. An investment in decision analysis and support technologies can help managers understand tradeoffs under different climate scenarios and possibly improve water and fish conservation over the next century.

  9. Creating World-Class Gathering Places for People and Wildlife along the Detroit Riverfront, Michigan, USA

    Directory of Open Access Journals (Sweden)

    John H. Hartig

    2015-11-01

    Full Text Available Metropolitan Detroit, Michigan, USA is the automobile capital of the world, part of the industrial heartland and Rust Belt, and a major urban area. For over two centuries, the Detroit River was perceived as a working river that supported commerce and industry. Like many other large North American cities, the Motor City made the Detroit River its back door, with businesses facing inland and away from the river. Compounding the problem, Detroit became indifferent to the water pollution that was perceived as a necessary by-product of industrial progress. By the 1960s, the Detroit River was one of the most polluted rivers in North America. Today, the cleanup and recovery of the Detroit River represent one of the most remarkable ecological recovery stories in North America with the return of bald eagles, peregrine falcons, osprey, lake sturgeon, lake whitefish, mayflies, and more. Out of this recovery has come two transformational projects—the Detroit River International Wildlife Refuge and the Detroit RiverWalk—that are helping change the perception of the region from that of a Rust Belt city to one of a leader of urban sustainability that reconnects people to nature, improves quality of life, promotes sustainable redevelopment, and enhances community pride. Key lessons learned include: recruit a well-respected champion; ensure broad support from key stakeholder groups; establish core delivery team, focused on outcomes; build trust; adopt a strategic approach to community engagement, creating a connected community; evoke a sense of place; and measure and celebrate successes to sustain momentum.

  10. [Gender and physical activity in Mexican women with experience of migration to the USA].

    Science.gov (United States)

    Ruiz-Rodríguez, Myriam; Arenas-Monreal, Luz; Bonilla-Fernández, Pastor; Valdez-Santiago, Rosario; Rueda-Neria, Celina M; Hernández-Tezoquipa, Isabel

    2014-01-01

    To analyze the influence of gender on the practice of physical activity, in women with experiences of migration to the U.S.A. Qualitative design with methods based on grounded theory. The information was obtained through in-depth interviews of 19 women living in rural localities in the central zone of Mexico. Through this analysis, a core category arose: social criticism of physical exercise. The results show that married women do not perform physical exercise because, due social norms, it is socially frowned upon and men are responsible for making the decision to permit it. Gender, female identity, women's role as subordinates to men, and social criticism are elements that contribute to understanding the lack of physical activity among these women. We suggest that healthcare programs be designed to promote physical activity among adult women in rural areas, taking gender perspective and the population's context into account.

  11. Hydrological Controls on Dissolved Organic Matter Quality and Export in a Coastal River System in Southeastern USA

    Science.gov (United States)

    Bhattacharya, R.; Osburn, C. L.

    2017-12-01

    Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.

  12. Evaluating methods to establish habitat suitability criteria: A case study in the upper Delaware River Basin, USA

    Science.gov (United States)

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Talbert, Colin; Maloney, Kelly O.

    2016-01-01

    Defining habitat suitability criteria (HSC) of aquatic biota can be a key component to environmental flow science. HSC can be developed through numerous methods; however, few studies have evaluated the consistency of HSC developed by different methodologies. We directly compared HSC for depth and velocity developed by the Delphi method (expert opinion) and by two primary literature meta-analyses (literature-derived range and interquartile range) to assess whether these independent methods produce analogous criteria for multiple species (rainbow trout, brown trout, American shad, and shallow fast guild) and life stages. We further evaluated how these two independently developed HSC affect calculations of habitat availability under three alternative reservoir management scenarios in the upper Delaware River at a mesohabitat (main channel, stream margins, and flood plain), reach, and basin scale. In general, literature-derived HSC fell within the range of the Delphi HSC, with highest congruence for velocity habitat. Habitat area predicted using the Delphi HSC fell between the habitat area predicted using two literature-derived HSC, both at the basin and the site scale. Predicted habitat increased in shallow regions (stream margins and flood plain) using literature-derived HSC while Delphi-derived HSC predicted increased channel habitat. HSC generally favoured the same reservoir management scenario; however, no favoured reservoir management scenario was the most common outcome when applying the literature range HSC. The differences found in this study lend insight into how different methodologies can shape HSC and their consequences for predicted habitat and water management decisions. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. The role of floodplain restoration in mitigating flood risk, Lower Missouri River, USA

    Science.gov (United States)

    Jacobson, Robert B.; Lindner, Garth; Bitner, Chance; Hudson, Paul F.; Middelkoop, Hans

    2015-01-01

    Recent extreme floods on the Lower Missouri River have reinvigorated public policy debate about the potential role of floodplain restoration in decreasing costs of floods and possibly increasing other ecosystem service benefits. The first step to addressing the benefits of floodplain restoration is to understand the interactions of flow, floodplain morphology, and land cover that together determine the biophysical capacity of the floodplain. In this article we address interactions between ecological restoration of floodplains and flood-risk reduction at 3 scales. At the scale of the Lower Missouri River corridor (1300 km) floodplain elevation datasets and flow models provide first-order calculations of the potential for Missouri River floodplains to store floods of varying magnitude and duration. At this same scale assessment of floodplain sand deposition from the 2011 Missouri River flood indicates the magnitude of flood damage that could potentially be limited by floodplain restoration. At the segment scale (85 km), 1-dimensional hydraulic modeling predicts substantial stage reductions with increasing area of floodplain restoration; mean stage reductions range from 0.12 to 0.66 m. This analysis also indicates that channel widening may contribute substantially to stage reductions as part of a comprehensive strategy to restore floodplain and channel habitats. Unsteady 1-dimensional flow modeling of restoration scenarios at this scale indicates that attenuation of peak discharges of an observed hydrograph from May 2007, of similar magnitude to a 10 % annual exceedance probability flood, would be minimal, ranging from 0.04 % (with 16 % floodplain restoration) to 0.13 % (with 100 % restoration). At the reach scale (15–20 km) 2-dimensional hydraulic models of alternative levee setbacks and floodplain roughness indicate complex processes and patterns of flooding including substantial variation in stage reductions across floodplains depending on

  14. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    Science.gov (United States)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; McDowell, Nathan G.; Xu, Chonggang; Vivoni, Enrique; Middleton, Richard S.

    2018-01-01

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash-Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate-disturbance scenarios is at least 6-11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15-21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.

  15. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  16. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Draut, Amy E.

    2014-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian–hillslope–fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic–ecologic interactions in determining arid-landscape evolution.

  17. Geomorphology-based interpretation of sedimentation rates from radiodating, lower Passaic River, New Jersey, USA.

    Science.gov (United States)

    Erickson, Michael J; Barnes, Charles R; Henderson, Matthew R; Romagnoli, Robert; Firstenberg, Clifford E

    2007-04-01

    Analysis of site geomorphology and sedimentation rates as an indicator of long-term bed stability is central to the evaluation of remedial alternatives for depositional aquatic environments. In conjunction with various investigations of contaminant distribution, sediment dynamics, and bed stability in the Passaic River Estuary, 121 sediment cores were collected in the early 1990s from the lower 9.7 km of the Passaic River and analyzed for lead-210 (210Pb), cesium-137 (137Cs), and other analytes. This paper opportunistically uses the extensive radiochemical dataset to examine the spatial patterns of long-term sedimentation rates in, and associated geomorphic aspects of, this area of the river. For the purposes of computing sedimentation rates, the utility of the 210Pb and 137Cs depositional profiles was assessed to inform appropriate interpretation. Sedimentation rates were computed for 90 datable cores by 3 different methods, depending on profile utility. A sedimentation rate of 0 was assigned to 17 additional cores that were not datable and for which evidence of no deposition exists. Sedimentation patterns were assessed by grouping results within similar geomorphic areas, delineated through inspection of bathymetric data. On the basis of channel morphology, results reflect expected patterns, with the highest sedimentation rates observed along point bars and channel margins. The lowest rates of sedimentation (and the largest percentage of undatable cores) were observed in the areas along the outer banks of channel bends. Increasing sedimentation rates from upstream to downstream were noted. Average and median sedimentation rates were estimated to be 3.8 and 3.7 cm/y, respectively, reflecting the highly depositional nature of the Passaic River estuary. This finding is consistent with published descriptions of long-term geomorphology for Atlantic Coastal Plain estuaries.

  18. Behavior and reproductive success of Rock Sandpipers breeding on the Yukon-Kuskokwim River Delta, Alaska

    NARCIS (Netherlands)

    Johnson, Matthew; Conklin, J.R.; Johnson, Branden; McCaffery, Brian J.; Haig, Susan M.; Walters, Jeffrey R.

    2009-01-01

    We studied Rock Sandpiper (Calidris ptilocnemis) breeding behavior and monitored reproductive success from 1998 to 2005 on the Yukon-Kuskokwim River Delta, Alaska, USA. We banded 24 adults and monitored 45 nests. Annual return rate of adults ranged between 67 and 100%. Six pairs of Rock Sandpipers

  19. Landscape-scale Habitat Templates and Life Histories of Endangered and Invasive Fish Species in Large Rivers of the Mid-Continent USA (Invited)

    Science.gov (United States)

    Jacobson, R. B.; Braaten, P. J.; Chapman, D.; DeLonay, A. J.

    2013-12-01

    Many fish species migrate through river systems to complete their life cycles, occupying specific habitats during specific life stages. Regional geomorphology sets a template for their habitat-use patterns and ontogenetic development. In large rivers of the Mid-continent USA, understanding of relations of fish life histories to landscape-scale habitat templates informs recovery of endangered species and prevention of spread of invasive species. The endangered pallid sturgeon has evolved in the Missouri-Mississippi river system over 150 Ma. Its present-day distribution probably results from extensive drainage re-arrangements during the Pleistocene, followed by contemporary fragmentation. The reproductive and early life-stage needs of pallid sturgeon encompass hundreds of km, as adults migrate upstream to spawn and free embryos and larvae disperse downstream. Spawning requires coarse, hard substrate for incubation of adhesive eggs but adult pallid sturgeon are found predominately over sand, indicating that coarse substrate is a critical but transient habitat need. Once hatched, free-embryos initiate 9-17 days of downstream dispersal that distributes them over several hundreds of km. Lotic conditions at the dispersal terminus are required for survival. Persistent recruitment failure has been attributed to dams and channelization, which have fragmented migration and dispersal corridors, altered flow regimes, and diminished rearing habitats. Key elements of the natural history of this species remain poorly understood because adults are rare and difficult to observe, while the earliest life stages are nearly undetectable. Recent understanding has been accelerated using telemetry and hydroacoustics, but such assessments occur in altered systems and may not be indicative of natural behaviors. Restoration activities attempt - within considerable uncertainty -- to restore elements of the habitat template where they are needed. In comparison, invasive Asian carps have been

  20. A legacy of change: The lower Colorado River, Arizona-California-Nevada, USA, and Sonora-Baja California Norte, Mexico

    Science.gov (United States)

    Mueller, G.A.; Marsh, P.C.; Minckley, W.L.

    2005-01-01

    The lower Colorado is among the most regulated rivers in the world. It ranks as the fifth largest river in volume in the coterminous United States, but its flow is fully allocated and no longer reaches the sea. Lower basin reservoirs flood nearly one third of the river channel and store 2 years of annual flow. Diverted water irrigates 1.5 million ha of cropland and provides water for industry and domestic use by 22 million people in the southwestern United States and northern Mexico. The native fish community of the lower Colorado River was among the most unique in the world, and the main stem was home to nine freshwater species, all of which were endemic to the basin. Today, five are extirpated, seven are federally endangered, and three are being reintroduced through stocking. Decline of the native fauna is attributed to predation by nonnative fishes and physical habitat degradation. Nearly 80 alien species have been introduced, and more than 20 now are common. These nonnative species thrived in modified habitats, where they largely eliminated the native kinds. As a result, the lower Colorado River has the dubious distinction of being among the few major rivers of the world with an entirely introduced fish fauna. ?? 2005 by the American Fisheries Society.

  1. Changes in Channel Geometry through the Holocene in the Le Sueur River, South-Central Minnesota, USA

    Science.gov (United States)

    Targos, Courtney Ann

    Paleochannels preserved on terraces via meander cutoffs during an incisional period record the channel geometry and thus discharge at distinct points in time throughout a river's history. We measured paleochannel geometry on terraces throughout the Le Sueur River in south-central Minnesota, to track how channel geometry has changed over the last 13,400 years. A rapid drop in base level 13,400 yr B.P. triggered knickpoint migration and valley incision that is ongoing today. Since the 1800's, the area has developed rapidly with an increase in agriculture and associated drainage, directly impacting river discharge by increasing water input to the river. Five paleochannels were identified on terraces along the Le Sueur River from 1m-resolution lidar data. Ground Penetrating Radar (GPR) was used to obtain a subsurface image across paleomeanders to estimate the geometry of paleochannels. Paleochannel geometry and estimated discharge were then compared to modern conditions to assess how much change has occurred. Three lines were run across each paleochannel perpendicular to the historic water flow. Each of the 15 lines were processed using the EKKO Project 2 software supplied by Sensors and Software to sharpen the images, making it easier to identify the paleochannel geometry. Paleodischarge was determined using the Law of the Wall and Manning's Equation, using modern slope and roughness conditions. OSL samples were collected from overbank deposits on terraces to determine the time of channel abandonment, and supplemented with terrace ages obtained from a numerical model of valley incision. Paleodischarge coupled with depositional ages provide a history of flow conditions on the Le Sueur River. Results show an increase in channel widths from the time paleochannels were occupied to modern channel dimensions from an average of 20 meters to 35 meters. The change was not constant through time, as all paleochannels analyzed on terraces had similar-sized channels. The best way

  2. Bedload transport over run-of-river dams, Delaware, U.S.A.

    Science.gov (United States)

    Pearson, Adam J.; Pizzuto, Jim

    2015-11-01

    We document the detailed morphology and bed sediment size distribution of a stream channel upstream and downstream of a 200-year-old run-of-river dam on the Red Clay Creek, a fifth order stream in the Piedmont of northern Delaware, and combine these data with HEC-RAS modeling and bedload transport computations. We hypothesize that coarse bed material can be carried through run-of-river impoundments before they completely fill with sediment, and we explore mechanisms to facilitate this transport. Only 25% of the accommodation space in our study site is filled with sediment, and maximum water depths are approximately equal to the dam height. All grain-size fractions present upstream of the impoundment are also present throughout the impoundment. A characteristic coarse-grained sloping ramp leads from the floor of the impoundment to the crest of the dam. A 2.3-m-deep plunge pool has been excavated below the dam, followed immediately downstream by a mid-channel bar composed of coarse bed material similar in size distribution to the bed material of the impoundment. The mid-channel bar stores 1472 m3 of sediment, exceeding the volume excavated from the plunge pool by a factor of 2.8. These field observations are typical of five other sites nearby and suggest that all bed material grain-size fractions supplied from upstream can be transported through the impoundment, up the sloping ramp, and over the top of the dam. Sediment transport computations suggest that all grain sizes are in transport upstream and within the impoundment at all discharges with return periods from 1 to 50 years. Our computations suggest that transport of coarse bed material through the impoundment is facilitated by its smooth, sandy bed. Model results suggest that the impoundment is currently aggrading at 0.26 m/year, but bed elevations may be recovering after recent scour from a series of large floods during water year 2011-2012. We propose that impoundments upstream of these run-of-river dams

  3. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    Science.gov (United States)

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  4. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    Science.gov (United States)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  5. The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA

    Science.gov (United States)

    DeGraff, J.V.; Wagner, D.L.; Gallegos, A.J.; DeRose, M.; Shannon, C.; Ellsworth, T.

    2011-01-01

    On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 P.M., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 P.M. Both debris flows caused significant disruption and damage to local communities. ?? 2011 Springer-Verlag.

  6. A MASS BALANCE OF SURFACE WATER GENOTOXICITY IN PROVIDENCE RIVER (RHODE ISLAND USA)

    Science.gov (United States)

    White and Rasmussen (Mutation Res. 410:223-236) used a mass balance approach to demonstrate that over 85% of the total genotoxic loading to the St. Lawrence River at Montreal is non-industrial. To validate the mass balance approach and investigate the sources of genotoxins in sur...

  7. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  8. Programme of research into the management and storage of radioactive waste. Single fracture experiment at Chalk River

    International Nuclear Information System (INIS)

    Bourke, P.J.

    1984-01-01

    A field experiment was carried out at Chalk river to measure the transport of bromine and strontium through a fracture in granite. Retardation of strontium transport by sorption onto the rock was also measured. Data was obtained for bromine but no useful data was obtained for strontium due to failure of the hydraulic equipment. (U.K.)

  9. Identifying the Driving Factors of Water Quality in a Sub-Watershed of the Republican River Basin, Kansas USA.

    Science.gov (United States)

    Burke, Morgen W V; Shahabi, Mojtaba; Xu, Yeqian; Zheng, Haochi; Zhang, Xiaodong; VanLooy, Jeffrey

    2018-05-22

    Studies have shown that the agricultural expansion and land use changes in the Midwest of the U.S. are major drivers for increased nonpoint source pollution throughout the regional river systems. In this study, we empirically examined the relationship of planted area and production of three dominant crops with nitrate flux in the Republican River, Kansas, a sub-watershed of Mississippi River Basin. Our results show that land use in the region could not explain the observed changes in nitrate flux in the river. Instead, after including explanatory variables such as precipitation, growing degree days, and well water irrigation in the regression model we found that irrigation and spring precipitation could explain >85% of the variability in nitrate flux from 2000 to 2014. This suggests that changes in crop acreage and production alone cannot explain variability in nitrate flux. Future agricultural policy for the region should focus on controlling both the timing and amount of fertilizer applied to the field to reduce the potential leaching of excess fertilizer through spring time runoff and/or over-irrigation into nearby river systems.

  10. Wabash River coal gasification repowering project -- first year operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Troxclair, E.J. [Destec Energy, Inc., Houston, TX (United States); Stultz, J. [PSI Energy, Inc., West Terre Haute, IN (United States)

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  11. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.

    2006-03-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.

  12. USA hCG reference service, 10-year report.

    Science.gov (United States)

    Cole, Laurence A; Laidler, Laura L; Muller, Carolyn Y

    2010-08-01

    The USA hCG Reference Service has been dealing with cases of persistent low levels of hCG and gestational trophoblastic diseases for 10years. Here we present the complete experience. Total hCG in serum and urine was measured using the Siemen's Immulite 1000 assay. Hyperglycosylated hCG, nicked hCG, free ss-subunit and ss-core fragment were measured using microtiterplate assays with antibodies B152, B151, FBT11 and B210, respectively. The USA hCG Reference Service has identified 83 cases of false-positive hCG, 71 cases of aggressive gestational trophoblastic disease (GTD), 52 cases of minimally invasive GTD, 168 cases of quiescent GTD and 22 cases of placenta site trophoblastic tumor (PSTT). In addition, 103 cases of pituitary hCG have been identified, 60 cases of nontrophoblastic tumor, 4 cases of inherited hCG and 2 cases of Munchausen's syndrome. This is 565 cases total. Multiple new methods are described and tested for diagnosing all of these disorders. The USA hCG Reference Service experience shows new methods for detecting multiple hCG-related disorders and recommends new approaches for detecting these hCG-related disorders. 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. [Proceedings of the 5th Symposium on Mesozoic and Cenozoic Decapod Crustaceans, Krakow, Poland, 2013: A tribute to Pál Mihály Müller / R.H.B. Fraaije, M. Hyžný, J.W.M. Jagt, M. Krobicki & B.W.M. van Bakel (eds.)]: Neozanthopsis americana (Decapoda, Brachyura, Carpilioidea) from the Middle Eocene Cane River Formation of Louisiana, USA, and associated teleost otoliths

    NARCIS (Netherlands)

    Schweitzer, C.E.; Feldmann, R.M.; Stringer, G.L.

    2014-01-01

    A large collection of Neozanthopsis americana (Rathbun, 1928) from the Middle Eocene (Lutetian) Cane River Formation in Louisiana, USA, represents the first opportunity to describe the species in detail. Detailed analysis of associated teleost otoliths and other vertebrate remains documents a

  14. Laurentide ice sheet meltwater routing along the Iro-Mohawk River, eastern New York, USA

    Science.gov (United States)

    Porreca, Charles; Briner, Jason P.; Kozlowski, Andrew

    2018-02-01

    The rerouting of meltwater as the configuration of ice sheets evolved during the last deglaciation is thought to have led to some of the most significant perturbations to the climate system in the late Quaternary. However, the complex pattern of ice sheet meltwater drainage off the continents, and the timing of rerouting events, remains to be fully resolved. As the Laurentide Ice Sheet (LIS) retreated north of the Adirondack Uplands of northeastern New York State during the last deglaciation, a large proglacial lake, Lake Iroquois, found a lower outlet that resulted in a significant flood event. This meltwater rerouting event, from outflow via the Iro-Mohawk River valley (southern Adirondack Mountains) to the spillway at Covey Hill (northeastern Adirondack Mountains), is hypothesized to have taken place 13.2 ka and disturbed meridional circulation in the North Atlantic Ocean. However, the timing of the rerouting event is not certain because the event has not been directly dated. With improving the history of Lake Iroquois drainage in mind, we obtained cosmogenic 10Be exposure ages on a strath terrace on Moss Island, along the Iro-Mohawk River spillway. We hypothesize that Moss Island's strath terrace became abandoned during the rerouting event. Six 10Be ages from the strath surface average 14.8 ± 1.3 ka, which predates the previously published bracketing radiocarbon ages of 13.2 ka. Several possibilities for the discrepancy exist: (1) the 10Be age accurately represents the timing of a decrease in discharge through the Iro-Mohawk River spillway; (2) the age is influenced by inheritance. The 10Be ages from glacially sculpted surfaces on Moss Island above the strath terrace predate the deglaciation of the site by 5 to 35 ky; and (3) the abandonment of the Moss Island strath terrace relates to knickpoint migration and not the final abandonment of the Iro-Mohawk River as the Lake Iroquois spillway. Further study and application of cosmogenic 10Be exposure dating in the

  15. The socio-hydrologic evolution of human-flood interactions on the Charles and Mystic River, eastern Massachusetts, USA.

    Science.gov (United States)

    Mertz, Z.

    2015-12-01

    Socio-hydrology is an emerging subdiscipline for identifying the emergent properties of human-flood interactions. The Charles and the Mystic Rivers, in eastern Massachusetts, have been the subject of such interactions for hundreds of years. Over time, human dependency and settlement have altered the natural conditions of the rivers, and changed the potential for flood occurrence and property damage. As a result, flood management strategies have been enacted to counter this potential. Before we can assess how human vulnerability and actions related to river flooding will change under future climate conditions, we must first document the evolution of flooding and flood management and understand the motivations and thresholds of response that describe how the system has evolved in the past. We have mined historical data from traditional and non-traditional sources and have developed "mental models" from in-depth interviews of key personnel. We will present the socio-hydrological history of the Charles and Mystic Rivers and recommend how this information can inform future flood management strategies in the face of climate change.

  16. Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling

    Science.gov (United States)

    Sutton, James E.; Screaton, Elizabeth J.; Martin, Jonathan B.

    2015-03-01

    Surface-water/groundwater exchange impacts water quality and budgets. In karst aquifers, these exchanges also play an important role in dissolution. Five years of river discharge data were analyzed and a transient groundwater flow model was developed to evaluate large-scale temporal and spatial variations of exchange between an 80-km stretch of the Suwannee River in north-central Florida (USA) and the karstic upper Floridan aquifer. The one-layer transient groundwater flow model was calibrated using groundwater levels from 59 monitoring wells, and fluxes were compared to the exchange calculated from discharge data. Both the numerical modeling and the discharge analysis suggest that the Suwannee River loses water under both low- and high-stage conditions. River losses appear greatest at the inside of a large meander, and the former river water may continue across the meander within the aquifer rather than return to the river. In addition, the numerical model calibration reveals that aquifer transmissivity is elevated within this large meander, which is consistent with enhanced dissolution due to river losses. The results show the importance of temporal and spatial variations in head gradients to exchange between streams and karst aquifers and dissolution of the aquifers.

  17. Bioavailability and export of dissolved organic matter from a tropical river during base- and stormflow conditions

    Science.gov (United States)

    Tracy N. Wiegner; Randee L. Tubal; Richard A. MacKenzie

    2009-01-01

    Concentrations, bioavailability, and export of dissolved organic matter (DOM), particulate organic matter (POM), and nutrients from the Wailuku River, Hawai'i, U.S.A., were examined under base- and stormflow conditions. During storms, DOM and POM concentrations increased approximately by factors of 2 and 11, respectively, whereas NO3...

  18. River-Based Experiential Learning: the Bear River Fellows Program

    Science.gov (United States)

    Rosenberg, D. E.; Shirley, B.; Roark, M. F.

    2012-12-01

    The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the

  19. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA.

    Science.gov (United States)

    Peters, Colleen A; Bratton, Susan P

    2016-03-01

    Microplastics, degraded and weathered polymer-based particles, and manufactured products ranging between 50 and 5000 μm in size, are found within marine, freshwater, and estuarine environments. While numerous peer-reviewed papers have quantified the ingestion of microplastics by marine vertebrates, relatively few studies have focused on microplastic ingestion by freshwater organisms. This study documents microplastic and manufactured fiber ingestion by bluegill (Lepomis macrochirus) and longear (Lepomis megalotis) sunfish (Centrarchidae) from the Brazos River Basin, between Lake Whitney and Marlin, Texas, USA. Fourteen sample sites were studied and categorized into urban, downstream, and upstream areas. A total of 436 sunfish were collected, and 196 (45%) stomachs contained microplastics. Four percent (4%) of items sampled were debris on the macro size scale (i.e. >5 mm) and consisted of masses of plastic, metal, Styrofoam, or fishing material, while 96% of items sampled were in the form of microplastic threads. Fish length was statistically correlated to the number of microplastics detected (p = 0.019). Fish collected from urban sites displayed the highest mean number of microplastics ingested, followed by downstream and upstream sites. Microplastics were associated with the ingestion of other debris items (e.g. sand and wood) and correlated to the ingestion of fish eggs, earthworms, and mollusks, suggesting that sunfish incidentally ingest microplastics during their normal feeding methods. The high frequency of microplastic ingestion suggest that further research is needed to determine the residence time of microplastics within the stomach and gut, potential for food web transfer, and adverse effects on wildlife and ecosystemic health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    Science.gov (United States)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  1. Habitat use of age 0 Alabama shad in the Pascagoula River drainage, USA

    Science.gov (United States)

    P. F. Mickle; J.F. Schaefer; S.B. Adams; B.R. Kreiser

    2010-01-01

    Alabama shad (Alosa alabamae) is an anadromous species that spawns in Gulf of Mexico drainages and is a NOAA Fisheries Species of Concern. Habitat degradation and barriers to migration are considered contributing factors to range contraction that has left just the Pascagoula River drainage population in Mississippi. We studied juvenile life history and autecology in...

  2. LHV soovib USA-s kohtuvälist kokkulepet / Toivo Tänavsuu

    Index Scriptorium Estoniae

    Tänavsuu, Toivo

    2005-01-01

    Kohtuväline kokkulepe LHV ja USA väärtpaberituru järelevalveasutuse SEC vahel tähendaks külmutatud väärtpaberikontode avamist, ent tõenäoliselt ka seda, et LHV peab maksma trahvi. Kohtuistungil USA-s esindavad LHV töötajaid Kristjan Lepikut ja Oliver Peeki advokaadid. Lisa: Teisedki on "sundpuhkusel"

  3. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljević Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje, podprojekat br. 9: Učestalost bujičnih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  4. Long Range River Discharge Forecasting Using the Gravity Recovery and Climate Experiment (GRACE) Satellite to Predict Conditions for Endemic Cholera

    Science.gov (United States)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.

  5. Multiple lines of evidence risk assessment of American robins exposed to polychlorinated dibenzofurans (PCDFS) and polychlorinated dibenzo-P-dioxins (PCDDS) in the Tittabawassee River floodplain, Midland, Michigan, USA.

    Science.gov (United States)

    Tazelaar, Dustin L; Fredricks, Timothy B; Seston, Rita M; Coefield, Sarah J; Bradley, Patrick W; Roark, Shaun A; Kay, Denise P; Newsted, John L; Giesy, John P; Bursian, Steven J; Zwiernik, Matthew J

    2013-06-01

    Concentrations of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) in Tittabawassee River floodplain soils and biota downstream of Midland, Michigan, USA, are greater than regional background concentrations. From 2005 to 2008, a multiple lines of evidence approach was utilized to evaluate the potential for effects of PCDD/DFs on American robins (Turdus migratorius) breeding in the floodplains. A dietary-based assessment indicated there was potential for adverse effects for American robins predicted to have the greatest exposures. Conversely, a tissue-based risk assessment based on site-specific PCDD/DF concentrations in American robin eggs indicated minimal potential for adverse effects. An assessment based on reproductive endpoints indicated that measures of hatch success in study areas were significantly less than those of reference areas. However, there was no dose-response relationship between that endpoint and concentrations of PCDD/DF. Although dietary-based exposure and reproductive endpoint assessments predicted potential for adverse effects to resident American robins, the tissue-based assessment indicates minimal to no potential for adverse effects, which is reinforced by the fact the response was not dose related. It is likely that the dietary assessment is overly conservative given the inherent uncertainties of estimating dietary exposure relative to direct tissue-based assessment measures. Based on the available data, it can be concluded that exposure to PCDD/DFs in the Tittabawassee River floodplain would not likely result in adverse population-level effects to American robins. Copyright © 2013 SETAC.

  6. Distribution and source analysis of aluminum in rivers near Xi'an City, China.

    Science.gov (United States)

    Wang, Dongqi; He, Yanling; Liang, Jidong; Liu, Pei; Zhuang, Pengyu

    2013-02-01

    To study the status and source of aluminum (Al) contamination, a total of 21 sampling sites along six rivers near Xi'an City (Shaanxi province, China) were investigated during 2008-2010. The results indicated that the average concentration of total Al (Al(t)) in the six rivers increased by 1.6 times from 2008 to 2010. The spatial distribution of Al(t) concentrations in the rivers near Xi'an City was significantly different, ranged from 367 μg/L (Bahe River) to 1,978 μg/L (Taiping River). The Al(t) concentration was highest near an industrial area for pulp and paper-making (2,773 μg/L), where the Al level greatly exceeded the water quality criteria of both the USA (Criterion Continuous Concentration, 87 μg/L) and Canada (100 μg/L). The average concentration of inorganic monometric aluminum (Al(im)) was 72 μg/L which would pose threats to fishes and other aquatic lives in the rivers. The concentrations of exchangeable Al (Al(ex)) in the sediment of the Taiping River sampled were relatively high, making it to be an alternative explanation of increasing Al concentrations in the rivers near Xi'an City. Furthermore, an increasing Al level has been detected in the upstream watershed near Xi'an City in recent years, which might indicate another notable pollution source of Al.

  7. Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA

    Science.gov (United States)

    Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...

  8. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  9. Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA

    Science.gov (United States)

    Rosen, Michael R.; Van Metre, P.C.

    2010-01-01

    Lakes with complex morphologies and with different geologic and land-use characteristics in their sub-watersheds could have large differences in natural and anthropogenic chemical inputs to sub-basins in the lake. Lake Mead in southern Nevada and northern Arizona, USA, is one such lake. To assess variations in chemical histories from 1935 to 1998 for major sub-basins of Lake Mead, four sediment cores were taken from three different parts of the reservoir (two from Las Vegas Bay and one from the Overton Arm and Virgin Basin) and analyzed for major and trace elements, radionuclides, and organic compounds. As expected, anthropogenic contaminant inputs are greatest to Las Vegas Bay reflecting inputs from the Las Vegas urban area, although concentrations are low compared to sediment quality guidelines and to other USA lakes. One exception to this pattern was higher Hg in the Virgin Basin core. The Virgin Basin core is located in the main body of the lake (Colorado River channel) and is influenced by the hydrology of the Colorado River, which changed greatly with completion of Glen Canyon Dam upstream in 1963. Major and trace elements in the core show pronounced shifts in the early 1960s and, in many cases, gradually return to concentrations more typical of pre-1960s by the 1980s and 1990s, after the filling of Lake Powell. The Overton Arm is the sub-basin least effected by anthropogenic contaminant inputs but has a complex 137Cs profile with a series of large peaks and valleys over the middle of the core, possibly reflecting fallout from nuclear tests in the 1950s at the Nevada Test Site. The 137Cs profile suggests a much greater sedimentation rate during testing which we hypothesize results from greatly increased dust fall on the lake and Virgin and Muddy River watersheds. The severe drought in the southwestern USA during the 1950s might also have played a role in variations in sedimentation rate in all of the cores. ?? 2009.

  10. Accumulation and release of 99Tc by a macrophyte of the Yenisei River (Elodea canadensis) in laboratory experiments

    International Nuclear Information System (INIS)

    Bolsunovsky, A.; Bondareva, L.

    2008-01-01

    The study addresses 99 Tc accumulation and release by Elodea canadensis, one of the abundant species of submerged plants in the Yenisei River. 99 Tc in water samples of the 'Elodea - Yenisei River water' model system and in the biomass fractions was measured using a liquid scintillation analyzer. Experiments on accumulation of 99 Tc by Elodea showed that 99 Tc activity concentration can reach 120±6 Bq/g dry wt, with the concentration factor for 99 Tc 2700±500 l/kg dry wt. In experiments on 99 Tc release, over 504 hours about 82% of the total 99 Tc activity was released into the water from the plant; most of 99 Tc was released within the first 192 hours. The data obtained using sequential chemical fractionation of biomass confirmed the experimental data on 99 Tc release, which suggested that most of the biomass-bound 99 Tc was adsorbed on the surface of Elodea. 99 Tc tightly bound to biomass (fractions of organics and mineral residue) constituted just 17% of the total 99 Tc activity. (author)

  11. Rainfall simulation experiments in the southwestern USA using the Walnut Gulch Rainfall Simulator

    Science.gov (United States)

    Polyakov, Viktor; Stone, Jeffry; Holifield Collins, Chandra; Nearing, Mark A.; Paige, Ginger; Buono, Jared; Gomez-Pond, Rae-Landa

    2018-01-01

    This dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semiarid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30 % of the plots, simulations were conducted up to five times during the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots. Simulation sites included brush and grassland areas with various degrees of disturbance by grazing, wildfire, or brush removal. This dataset advances our understanding of basic hydrological and biological processes that drive soil erosion on arid rangelands. It can be used to estimate runoff, infiltration, and erosion rates at a variety of ecological sites in the Southwestern USA. The inclusion of wildfire and brush treatment locations combined with long-term observations makes it important for studying vegetation recovery, ecological transitions, and the effect of management. It is also a valuable resource for erosion model parameterization and validation. The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (DOI: https://doi.org/10.15482/USDA.ADC/1358583).

  12. Damage cost of the Dan River coal ash spill

    International Nuclear Information System (INIS)

    Dennis Lemly, A.

    2015-01-01

    The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value losses totals $295,485,000. Because the environmental impact and associated economic costs of riverine coal ash spills can be long-term, on the order of years or even decades, this 6-month assessment should be viewed as a short-term preview. The total cumulative damage cost from the Dan River coal ash spill could go much higher. - Highlights: • Six-month post-spill damage cost exceeded $295,000,000. • Components of cost include ecological, recreational, human health, property, and aesthetic values. • Attempts by the electric utility to “clean” the river left over 95% of coal ash behind. • Long-term impacts will likely drive the total damage cost much higher. - Damage costs of the Dan River coal ash spill are extensive and growing. The 6-month cost of that spill is valued at $295,485,000, and the long-term total cost is likely to rise substantially

  13. Coastal Wetlands Protection Act: Case of Apalachicola-Chattahoochee-Flint (ACF River

    Directory of Open Access Journals (Sweden)

    Latif Gürkan KAYA

    2007-01-01

    Full Text Available Coastal wetlands, being important components of estuarine and coastal systems, stand for all publicly owned lands subject to the ebb and flow of the tide. They are below the watermark of ordinary high tide. The coastal wetlands contain a vital natural resource system. The coastal wetlands resource system, unless impossible, to reconstruct or rehabilitate once adversely affected by human. In the USA, the Apalachicola-Chattahoochee-Flint (ACF river states (i.e. Georgia, Alabama and Florida have variation in the structure and the function of their wetland program affecting the ACF river basins' wetlands. Although some states have no special wetlands program, they have permits and water quality certification for these areas. Some state programs affect state agencies while local government implements other programs.

  14. Reconstructing the 1935 Columbia River Gorge: A Topographic and Orthophoto Experiment

    Science.gov (United States)

    Fonstad, M. A.; Major, J. H.; O'Connor, J. E.; Dietrich, J. T.

    2017-12-01

    The last decade has seen a revolution in the mapping of rivers and near-river environments. Much of this has been associated with a new type of photogrammetry: structure from motion (SfM) and multi-view stereo techniques. Through SfM, 3D surfaces are reconstructed from nonstructured image groups with poorly calibrated cameras whose locations need not be known. Modern SfM imaging is greatly improved by careful flight planning, well-planned ground control or high-precision direct georeferencing, and well-understood camera optics. The ease of SfM, however, begs the question: how well does it work on archival photos taken without the foreknowledge of SfM techniques? In 1935, the Army Corps of Engineers took over 800 vertical aerial photos for a 160-km-long stretch of the Columbia River Gorge and adjacent areas in Oregon and Washington. These photos pre-date completion of three hydroelectric dams and reservoirs in this reach, and thus provide rich information on the historic pre-dam riverine, geologic, and cultural environments. These photos have little to no metadata associated with them, such as camera calibration reports, so traditional photogrammetry techniques are exceeding difficult to apply. Instead, we apply SfM to these archival photos, and test the resulting digital elevation model (DEM) against lidar data for features inferred to be unchanged in the past 80 years. Few, if any, of the quality controls recommended for SfM are available for these 1935 photos; they are scanned paper positives with little overlap taken with an unknown optical system in high altitude flight paths. Nevertheless, in almost all areas, the SfM analysis produced a high quality orthophoto of the gorge with low horizontal errors - most better than a few meters. The DEM created looks highly realistic, and in many areas has a vertical error of a few meters. However, the vertical errors are spatially inconsistent, with some wildly large, likely because of the many poorly constrained links in

  15. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  16. Effects of Flood Control Works Failure in the Missouri River Basin

    Science.gov (United States)

    2014-06-13

    areas of the Mississippi River drainage basin. Widespread flooding began in mid-June and lasted through mid-September (U.S. Army Corps of Engineers...al., Impact of New Madrid Seismic Zone Earthquakes on the Central USA, vol. 2 ( Urbana , IL: University of Illinois, 2009), A7-210. 60 What FCW...response planning. Urbana , IL: University of Illinois. https://www.ideals.illinois.edu/handle/2142/8787 (accessed 14 March 2014). Creswell, John W

  17. Genomic and transcriptomic differences in community acquired methicillin resistant Staphylococcus aureus USA300 and USA400 strains.

    Science.gov (United States)

    Jones, Marcus B; Montgomery, Christopher P; Boyle-Vavra, Susan; Shatzkes, Kenneth; Maybank, Rosslyn; Frank, Bryan C; Peterson, Scott N; Daum, Robert S

    2014-12-19

    Staphylococcus aureus is a human pathogen responsible for substantial morbidity and mortality through its ability to cause a number of human infections including bacteremia, pneumonia and soft tissue infections. Of great concern is the emergence and dissemination of methicillin-resistant Staphylococcus aureus strains (MRSA) that are resistant to nearly all β-lactams. The emergence of the USA300 MRSA genetic background among community associated S. aureus infections (CA-MRSA) in the USA was followed by the disappearance of USA400 CA-MRSA isolates. To gain a greater understanding of the potential fitness advantages and virulence capacity of S. aureus USA300 clones, we performed whole genome sequencing of 15 USA300 and 4 USA400 clinical isolates. A comparison of representative genomes of the USA300 and USA400 pulsotypes indicates a number of differences in mobile genome elements. We examined the in vitro gene expression profiles by microarray hybridization and the in vivo transcriptomes during lung infection in mice of a USA300 and a USA400 MRSA strain by performing complete genome qRT-PCR analysis. The unique presence and increased expression of 6 exotoxins in USA300 (12- to 600-fold) compared to USA400 may contribute to the increased virulence of USA300 clones. Importantly, we also observed the up-regulation of prophage genes in USA300 (compared with USA400) during mouse lung infection (including genes encoded by both prophages ΦSa2usa and ΦSa3usa), suggesting that these prophages may play an important role in vivo by contributing to the elevated virulence characteristic of the USA300 clone. We observed differences in the genetic content of USA300 and USA400 strains, as well as significant differences of in vitro and in vivo gene expression of mobile elements in a lung pneumonia model. This is the first study to document the global transcription differences between USA300 and USA400 strains during both in vitro and in vivo growth.

  18. Tracking sedimentation from the historic A.D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA

    Science.gov (United States)

    Khan, Nicole S.; Horton, Benjamin P.; McKee, Karen L.; Jerolmack, Douglas; Falcini, Federico; Enache, Mihaela D.; Vane, Christopher H.

    2013-01-01

    Management and restoration of the Mississippi River deltaic plain (southern United States) and associated wetlands require a quantitative understanding of sediment delivery during large flood events, past and present. Here, we investigate the sedimentary fingerprint of the 2011 Mississippi River flood across the Louisiana coast (Atchafalaya Delta, Terrebonne, Barataria, and Mississippi River Delta basins) to assess spatial patterns of sedimentation and to identify key indicators of sediment provenance. The sediment deposited in wetlands during the 2011 flood was distinguished from earlier deposits based on biological characteristics, primarily absence of plant roots and increased presence of centric (planktonic) diatoms indicative of riverine origin. By comparison, the lithological (bulk density, organic matter content, and grain size) and chemical (stable carbon isotopes of bulk organic matter) properties of flood sediments were nearly identical to the underlying deposit. Flood sediment deposition was greatest in wetlands near the Atchafalaya and Mississippi Rivers and accounted for a substantial portion (37% to 85%) of the annual accretion measured at nearby monitoring stations. The amount of sediment delivered to those basins (1.1–1.6 g cm−2) was comparable to that reported previously for hurricane sedimentation along the Louisiana coast (0.8–2.1 g cm−2). Our findings not only provide insight into how large-scale river floods influence wetland sedimentation, they lay the groundwork for identifying previous flood events in the stratigraphic record.

  19. Intermittent ephemeral river-breaching

    Science.gov (United States)

    Reniers, A. J.; MacMahan, J. H.; Gallagher, E. L.; Shanks, A.; Morgan, S.; Jarvis, M.; Thornton, E. B.; Brown, J.; Fujimura, A.

    2012-12-01

    In the summer of 2011 we performed a field experiment in Carmel River State Beach, CA, at a time when the intermittent natural breaching of the ephemeral Carmel River occurred due to an unusually rainy period prior to the experiment associated with El Nino. At this time the river would fill the lagoon over the period of a number of days after which a breach would occur. This allowed us to document a number of breaches with unique pre- and post-breach topographic surveys, accompanying ocean and lagoon water elevations as well as extremely high flow (4m/s) velocities in the river mouth during the breaching event. The topographic surveys were obtained with a GPS-equipped backpack mounted on a walking human and show the evolution of the river breaching with a gradually widening and deepening river channel that cuts through the pre-existing beach and berm. The beach face is qualified as a steep with an average beach slope of 1:10 with significant reflection of the incident waves (MacMahan et al., 2012). The wave directions are generally shore normal as the waves refract over the deep canyon that is located offshore of the beach. The tide is mixed semi-diurnal with a range on the order of one meter. Breaching typically occurred during the low-low tide. Grain size is highly variable along the beach with layers of alternating fine and coarse material that could clearly be observed as the river exit channel was cutting through the beach. Large rocky outcroppings buried under the beach sand are also present along certain stretches of the beach controlling the depth of the breaching channel. The changes in the water level measured within the lagoon and the ocean side allows for an estimate of the volume flux associated with the breach as function of morphology, tidal elevation and wave conditions as well as an assessment of the conditions and mechanisms of breach closure, which occurred on the time scale of O(0.5 days). Exploratory model simulations will be presented at the

  20. Morphology and spacing of river meander scrolls

    Science.gov (United States)

    Strick, Robert J. P.; Ashworth, Philip J.; Awcock, Graeme; Lewin, John

    2018-06-01

    Many of the world's alluvial rivers are characterised by single or multiple channels that are often sinuous and that migrate to produce a mosaicked floodplain landscape of truncated scroll (or point) bars. Surprisingly little is known about the morphology and geometry of scroll bars despite increasing interest from hydrocarbon geoscientists working with ancient large meandering river deposits. This paper uses remote sensing imagery, LiDAR data-sets of meandering scroll bar topography, and global coverage elevation data to quantify scroll bar geometry, anatomy, relief, and spacing. The analysis focuses on preserved scroll bars in the Mississippi River (USA) floodplain but also compares attributes to 19 rivers of different scale and depositional environments from around the world. Analysis of 10 large scroll bars (median area = 25 km2) on the Mississippi shows that the point bar deposits can be categorised into three different geomorphological units of increasing scale: individual 'scrolls', 'depositional packages', and 'point bar complexes'. Scroll heights and curvatures are greatest near the modern channel and at the terminating boundaries of different depositional packages, confirming the importance of the formative main channel on subsequent scroll bar relief and shape. Fourier analysis shows a periodic variation in signal (scroll bar height) with an average period (spacing) of 167 m (range 150-190 m) for the Mississippi point bars. For other rivers, a strong relationship exists between the period of scroll bars and the adjacent primary channel width for a range of rivers from 55 to 2042 mis 50% of the main channel width. The strength of this correlation over nearly two orders of magnitude of channel size indicates a scale independence of scroll bar spacing and suggests a strong link between channel migration and scroll bar construction with apparent regularities despite different flow regimes. This investigation of meandering river dynamics and floodplain

  1. Use of preserved museum fish to evaluate historical and current mercury contamination in fish from two rivers in Oklahoma, USA.

    Science.gov (United States)

    Hill, J Jaron; Chumchal, Matthew M; Drenner, Ray W; Pinder, John E; Drenner, S Matthew

    2010-02-01

    We examined the effects of a commonly used preservation technique on mercury concentration in fish tissue. After fixing fish muscle tissue in formalin followed by preservation in isopropanol, we found that mercury concentration in fish muscle tissue increased by 18%, reaching an asymptote after 40 days. We used formalin-isopropanol-preserved longear sunfish (Lepomis megalotis) from the Sam Noble Oklahoma Museum of Natural History to examine historical changes and predict current mercury concentrations in fish from two rivers in southeastern Oklahoma. Glover River was free-flowing, while Mountain Fork River was impounded in 1970 and a coldwater trout fishery was established upstream from the collection site in 1989. Mercury concentrations in longear sunfish from Glover River showed no historical changes from 1963 to 2001. Mercury concentrations in longear sunfish from Mountain Fork River showed no change from 1925 to 1993 but declined significantly from 1993 to 2003. We also compared mercury concentrations of the most recently collected longear sunfish in the museum to mercury concentrations of unpreserved fish collected from the rivers in 2006. Concentrations of mercury in museum fish were not significantly different from mercury concentrations in unpreserved fish we collected from the rivers. Our study indicates that preserved museum fish specimens can be used to evaluate historical changes and predict current levels of mercury contamination in fish.

  2. Selenium in the Blackfoot, Salt, and Bear River Watersheds

    Science.gov (United States)

    Hamilton, S.J.; Buhl, K.J.

    2005-01-01

    Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 μ g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 μ g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.

  3. TRAC-PF1/MOD3 calculations of Savannah River Laboratory Rig FA single-annulus heated experiments

    International Nuclear Information System (INIS)

    Fischer, S.R.; McDaniel, C.K.

    1992-01-01

    This paper presents the results of TRAC-PF1/MOD3 benchmarks of the Rig FA experiments performed at the Savannah River Laboratory to simulate prototypic reactor fuel assembly behavior over a range of fluid conditions typical of the emergency cooling system (ECS) phase of a loss-of-coolant accident (LOCA). The primary purpose of this work was to use the SRL Rig FA tests to qualify the TRAC-PF1/MOD3 computer code and models for computing Mark-22 fuel assembly LOCA/ECS power limits. This qualification effort was part of a larger effort undertaken by the Los Alamos National Laboratory for the US Department of Energy to independently confirm power limits for the Savannah River Site K Reactor. The results of this benchmark effort as discussed in this paper demonstrate that TRAC/PF1/MOD3 coupled with proper modeling is capable of simulating thermal-hydraulic phenomena typical of that encountered in Mark-22 fuel assembly during LOCA/ECS conditions

  4. Urbanization and the Level of Microplastic Ingestion by Fish: A Comparison of Freshwater Sunfish (Centrarchidae) from the Brazos River watershed, and Pinfish (Sparidae), from the Brazos Estuary and Inshore Marine Sites, Texas, USA

    Science.gov (United States)

    Rieper, K. B.; Peters, C. A.; Bratton, S. P.

    2016-02-01

    While previous research has documented ingestion of macro- and microplastics by aquatic fauna in both freshwater and marine ecosystems, relatively little is known of the environmental and ecological factors influencing the entry and diffusion of plastics and artificial polymers into aquatic foodwebs. Microplastics are defined as 50 μm to 5 mm in length. This study utilized stomach content analysis to compare the level of microplastic artificial polymer ingestion for fish collected from the Brazos River watershed, Brazos estuary, and inshore coastal waters of Texas, USA, in areas with varying levels of urbanization. We collected 318 bluegill (Lepomis macrochirus) and 118 longear sunfish (Lepomis megalotis) at 14 freshwater locales, and 11 samples of 298 pinfish (Lagodon rhomboides) at 6 saltwater locales. Sunfish averaged 12.6 cm in length, and pinfish averaged 14.9 cm. Sunfish averaged .807 microplastics per fish, and pinfish averaged 1.09. The maximum percentage for pinfish with microplastics present per sample (frequency) was 77%, compared to 75% for sunfish. Mean frequencies per sample were also similar: 45% for sunfish and 47% for pinfish. The Brazos River collections, however, had a greater percentage with frequencies of colors. Comparison with presence of natural food items suggests microplastic ingestion is predominantly incidental for these sentinel fish species.

  5. Environmental contaminants in Texas, USA, wetland reptiles: Evaluation using blood samples

    Science.gov (United States)

    Clark, D.R.; Bickham, J.W.; Baker, D.L.; Cowman, D.F.

    2000-01-01

    Four species of reptiles (diamondback water snake [Nerodia rhombifer], blotched water snake [N. erythrogaster], cottonmouth [Agkistrodon piscivorus], and red-eared slider [Trachemys scripta]) were collected at two contaminated and three reference sites in Texas, USA. Old River Slough has received intensive applications of agricultural chemicals since the 1950s. Municipal Lake received industrial arsenic wastes continuously from 1940 to 1993. Blood samples were analyzed for organochlorines, potentially toxic elements, genetic damage, and plasma cholinesterase (ChE). Dichlorodiphenyldichloroethylene (DDE) concentrations reached as high as 3.0 ppm (wet weight) in whole blood of a diamondback water snake at Old River Slough, a level probably roughly equivalent to the maximum concentration found in plasma of peregrine falcons (Falco peregrinus) in 1978 to 1979 when DDE peaked in this sensitive species. Possible impacts on diamondback water snakes are unknown, but at least one diamondback water snake was gravid when captured, indicating active reproduction. Arsenic was not found in red-eared sliders (only species sampled) from Municipal Lake. Red-eared sliders of both sexes at Old River Slough showed declining levels of ChE with increasing mass, suggesting a life-long decrease of ChE levels. Possible negative population consequences are unknown, but no evidence was found in body condition (mass relative to carapace length) that red-eared sliders at either contaminated site were harmed.

  6. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA

    International Nuclear Information System (INIS)

    Peters, Colleen A.; Bratton, Susan P.

    2016-01-01

    Microplastics, degraded and weathered polymer-based particles, and manufactured products ranging between 50 and 5000 μm in size, are found within marine, freshwater, and estuarine environments. While numerous peer-reviewed papers have quantified the ingestion of microplastics by marine vertebrates, relatively few studies have focused on microplastic ingestion by freshwater organisms. This study documents microplastic and manufactured fiber ingestion by bluegill (Lepomis macrochirus) and longear (Lepomis megalotis) sunfish (Centrarchidae) from the Brazos River Basin, between Lake Whitney and Marlin, Texas, USA. Fourteen sample sites were studied and categorized into urban, downstream, and upstream areas. A total of 436 sunfish were collected, and 196 (45%) stomachs contained microplastics. Four percent (4%) of items sampled were debris on the macro size scale (i.e. >5 mm) and consisted of masses of plastic, metal, Styrofoam, or fishing material, while 96% of items sampled were in the form of microplastic threads. Fish length was statistically correlated to the number of microplastics detected (p = 0.019). Fish collected from urban sites displayed the highest mean number of microplastics ingested, followed by downstream and upstream sites. Microplastics were associated with the ingestion of other debris items (e.g. sand and wood) and correlated to the ingestion of fish eggs, earthworms, and mollusks, suggesting that sunfish incidentally ingest microplastics during their normal feeding methods. The high frequency of microplastic ingestion suggest that further research is needed to determine the residence time of microplastics within the stomach and gut, potential for food web transfer, and adverse effects on wildlife and ecosystemic health. - Highlights: • Sunfish ingest microplastics and manufactured materials at significant levels. • Local urbanization influences microplastic ingestion. • Sunfish incidentally ingest microplastics during their normal

  7. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA).

    Science.gov (United States)

    Cira, Emily K; Paerl, Hans W; Wetz, Michael S

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  8. The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA

    Science.gov (United States)

    Bern, Carleton R.; Stogner, Sr., Robert W.

    2017-01-01

    Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.

  9. AGS Spallation Target Experiment (ASTE) Collaboration

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    An experiment on mercury spallation target with high energy proton beam, called as the AGS Spallation Target Experiment (ASTE) Collaboration, has been performed at Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL) in USA, in cooperation among the laboratories in Japan, Europe and USA. The experimental setup, scope and preliminary results are presented in the paper. (author)

  10. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  11. Assessing the sublethal effects of in-river concentrations of parameters contributing to cumulative effects in the Athabasca river basin using a fathead minnow bioassay.

    Science.gov (United States)

    Squires, Allison J; Dubé, Monique G; Rozon-Ramilo, Lisa D

    2013-03-01

    The Athabasca River basin, located in Alberta, Canada, covers 157, 000 km(2) and holds significant cultural and economic importance. Recent research assessed changes in several water quality and quantity parameters that have changed both spatially (along the river continuum) and temporally (pre-development and present day) in the Athabasca River Basin. In particular, parameters such as salinity and dissolved sulphate have changed significantly across the Athabasca River mainstem over the past five decades. Further laboratory testing has linked concentrations of these parameters to changes in fathead minnow reproduction. Research is required to determine whether these changes observed in the laboratory can be applied to actual in-river conditions. The objectives of the present study were to twofold: assess changes in fathead minnow response metrics (i.e., condition, liver and gonad size, egg production, and gill histology) associated with increasing concentrations of salinity and dissolved sulphate and determine whether sublethal effect thresholds established in laboratory experiments correspond to actual in-river concentrations using water from the mouth and headwaters of the Athabasca River. Three dose-response experiments (NaCl, SO4, and water sampled from the mouth of the Athabasca River) were conducted at Jasper National Park, Alberta, Canada. Significant increases in mean eggs per female per day occurred at the 50% treatment for the mouth experiment and thresholds previously developed in the laboratory were verified. Copyright © 2012 SETAC.

  12. Euroopa teadis USA salavanglaist / Tõnis Erilaid

    Index Scriptorium Estoniae

    Erilaid, Tõnis, 1943-

    2005-01-01

    USA endise välisministri Colin Powelli sõnul pole see tema sõpradele Euroopas uudiseks, et USA on viinud vange riikidesse, kus tema seadused ei kehti. USA praeguse välisministri Condoleezza Rice'i sõnul on USA vange üle kuulanud väljaspool USA-d. USA Today kirjeldab Stare Kiejkuty küla Poolas, kus arvatavasti on olnud salavangla

  13. Reaching for 100% participation in a utility conservation programme: the Hood River project

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, Eric

    1989-04-01

    The Hood River Conservation Project (HRCP) was a major residential retrofit demonstration project. The project was intended to install as many cost-effective retrofit measures in all electrically heated homes in Hood River, OR, USA. To achieve 100% participation, HRCP offered a package of 'super' retrofit measures and paid for installation of these measures. Almost all (91%) of the eligible households participated, in stark contrast to the much lower participation levels achieved in other residential conservation programmes. Also, unlike other programmes, HRCP attracted larger fractions of traditionally hard-to-reach groups: low-income households; occupants of multifamily units; and renters. The key factors leading to this phenomenal success include: the offer of free retrofits; determination on the part of staff to enlist every eligible household; the use of community-based marketing approaches; and reliance on extensive word-of-mouth among Hood River residents. (author).

  14. Population dynamics of zebra mussels Dreissena polymorpha (Pallas, 1771) during the initial invasion of the Upper Mississippi River, USA

    Science.gov (United States)

    Cope, W.G.; Bartsch, M.R.; Hightower, J.E.

    2006-01-01

    The aim of this study was to document and model the population dynamics of zebra mussels Dreissena polymorpha (Pallas, 1771) in Pool 8 of the Upper Mississippi River (UMR), USA, for five consecutive years (1992-1996) following their initial discovery in September 1991. Artificial substrates (concrete blocks, 0.49 m2 surface area) were deployed on or around the first of May at two sites within each of two habitat types (main channel border and contiguous backwater). Blocks were removed monthly (30 ?? 10 d) from the end of May to the end of October to obtain density and growth information. Some blocks deployed in May 1995 were retrieved in April 1996 to obtain information about overwinter growth and survival. The annual density of zebra mussels in Pool 8 of the UMR increased from 3.5/m2 in 1992 to 14,956/m 2 in 1996. The average May-October growth rate of newly recruited individuals, based on a von Bertalanffy growth model fitted to monthly shell-length composition data, was 0.11 mm/d. Model estimates of the average survival rate varied from 21 to 100% per month. Estimated recruitment varied substantially among months, with highest levels occurring in September-October of 1994 and 1996, and in July of 1995. Recruitment and density in both habitat types increased by two orders of magnitude in 1996. Follow-up studies will be necessary to assess the long-term stability of zebra mussel populations in the UMR; this study provides the critical baseline information needed for those future comparisons. ?? Published by Oxford University Press on behalf of The Malacological Society of London 2006.

  15. Exploration and discovery of the Pine Ridge uranium deposits, Powder River Basin, Wyoming, USA

    International Nuclear Information System (INIS)

    Doelger, M.

    2014-01-01

    The Pine Ridge uranium deposits are named for a newly identified area between the Pumpkin Buttes and Southern Powder River Basin (PRB) mining districts. This regional prospect, covering nine contiguous townships, is northwest of the Cameco Smith Ranch mine and west of the Uranium One Allemand-Ross project in Converse County, Wyoming. Surface mapping and 350+ measured sections of well exposed outcrops have identified 250 target sandstones and contributed to a model of the complex braided stream channel architecture within the Eocene Watsatch and Paleocene Fort Union Formations. The uranium-bearing sandstones occur in 3- D bundles of vertically aggrading river systems flowing into the PRB from distant uranium source areas of the Granite Mountains to the west and the northern Laramie Range to the south. Large volumes of mudstone overbank and swamp facies separate the individual river systems laterally, resulting in greater vertical reservoir continuity from sandstones stacking. At least five major paleo river systems have been identified and named. High organic content, within the host formations, and rising veils of hydrocarbon gases from underlying oil and gas deposits have resulted in classic roll front uranium deposits in individual sandstones and intervals. Mineralization in stacked sandstone bundles several hundred feet thick show a crescent-shaped distribution within the shallow mineralized interval “attic”, the “cellar” at the base of the alteration cell, and the furthest basin-ward “front door”. World-class uranium resource potential has been identified along 208 miles of redox boundary string length mapped from the 1522 control points consisting of outcrop data, pre-existing uranium drilling, oil and gas wells, and proprietary drilling in 2012 and 2013 by Stakeholder. All data is managed in ARC VIEW GIS with 3-D capability, which will be demonstrated. Very few restrictions apply to the project area. Uranium holes are permitted solely by the

  16. Identifying Societal Preferences for River Restoration in a Densely Populated Urban Environment: Evidence from a Discrete Choice Experiment in Central Brussels

    Science.gov (United States)

    Chen, Wendy Y.; Liekens, Inge; Broekx, Steven

    2017-08-01

    One of the major challenges facing river restoration in densely populated urban areas has been the disparity between the expectations of policy-makers and societal preferences. This study aimed to elicit public preferences and elucidate underlying sources of preference heterogeneity, using the Zenne River in central Brussels, Belgium, as a case study. A discrete choice experiment was administered to a representative sample of the Brussels population. Five attributes were specified, including water quality, ecological status, hydromorphological features of channels, recreational opportunities, and monetary cost. Our econometric analysis based on mixed logit models revealed that overall public would like to have a more natural river (open and naturalized channel, good water quality, and with rich species diversity), while achieving good water quality was the most preferred attribute. Respondents categorized as male, non-Belgian citizen, or not being a member of an environmental organization constituted an inclination to prefer the status quo. Belgian citizens showed a pronounced preference for good biodiversity, and being a member of an environmental organization could moderate the strong preference for good water quality. This study provided insights into the relative attractiveness of key attributes pertaining to river restoration, in general, and served as a useful input to the ongoing discussion concerning the future plan for the Zenne River in Brussels, specifically. Possible implications also exist for other urban river restorations in the rest of Europe, where the Water Framework Directive has become a major impetus for the expansion of freshwater ecosystem restoration from rural and peri-urban areas to densely populated urban areas. Particularly, the cultural heterogeneity of societal preferences should be tested and accounted for to compare the welfare impacts of river restoration and to facilitate benefit transfer, within and between river basins, in the

  17. Identifying Societal Preferences for River Restoration in a Densely Populated Urban Environment: Evidence from a Discrete Choice Experiment in Central Brussels.

    Science.gov (United States)

    Chen, Wendy Y; Liekens, Inge; Broekx, Steven

    2017-08-01

    One of the major challenges facing river restoration in densely populated urban areas has been the disparity between the expectations of policy-makers and societal preferences. This study aimed to elicit public preferences and elucidate underlying sources of preference heterogeneity, using the Zenne River in central Brussels, Belgium, as a case study. A discrete choice experiment was administered to a representative sample of the Brussels population. Five attributes were specified, including water quality, ecological status, hydromorphological features of channels, recreational opportunities, and monetary cost. Our econometric analysis based on mixed logit models revealed that overall public would like to have a more natural river (open and naturalized channel, good water quality, and with rich species diversity), while achieving good water quality was the most preferred attribute. Respondents categorized as male, non-Belgian citizen, or not being a member of an environmental organization constituted an inclination to prefer the status quo. Belgian citizens showed a pronounced preference for good biodiversity, and being a member of an environmental organization could moderate the strong preference for good water quality. This study provided insights into the relative attractiveness of key attributes pertaining to river restoration, in general, and served as a useful input to the ongoing discussion concerning the future plan for the Zenne River in Brussels, specifically. Possible implications also exist for other urban river restorations in the rest of Europe, where the Water Framework Directive has become a major impetus for the expansion of freshwater ecosystem restoration from rural and peri-urban areas to densely populated urban areas. Particularly, the cultural heterogeneity of societal preferences should be tested and accounted for to compare the welfare impacts of river restoration and to facilitate benefit transfer, within and between river basins, in the

  18. History of development of acceleration weapons with relativistic electron beam in USA

    International Nuclear Information System (INIS)

    Pavlov, A.V.

    1996-01-01

    Technological aspects of creating in the USA the accelerating weapon (AW) on the intensive electron beams is discussed. The analysis of the works process on the accelerating topics with priority studies on creating the means for destruction of intercontinental ballistic missiles at 500 km distance is given. Projects on creating perspective board electron high-gradient purposeful accelerators are elucidated and data on the accomplished cosmic experiments with electron beams in the USA are presented

  19. Coastal Wetlands Protection Act: Case of Apalachicola-Chattahoochee-Flint (ACF) River

    OpenAIRE

    Latif Gürkan KAYA

    2007-01-01

    Coastal wetlands, being important components of estuarine and coastal systems, stand for all publicly owned lands subject to the ebb and flow of the tide. They are below the watermark of ordinary high tide. The coastal wetlands contain a vital natural resource system. The coastal wetlands resource system, unless impossible, to reconstruct or rehabilitate once adversely affected by human. In the USA, the Apalachicola-Chattahoochee-Flint (ACF) river states (i.e. Georgia, Alabama and Florida) ha...

  20. A Day in the Life of the Suwannee River: Lagrangian Sampling of Process Rates Along the River Continuum

    Science.gov (United States)

    Cohen, M. J.; Hensley, R. T.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    A key organizing idea in stream ecology is the river continuum concept (RCC) which makes testable predictions about network-scale variation in metabolic and community attributes. Using high resolution (ca. 0.1 Hz) Lagrangian sampling of a wide suite of solutes - including nitrate, fDOM, dissolved oyxgen and specific conductance, we sampled the river continuum from headwaters to the sea in the Suwannee River (Florida, USA). We specifically sought to test two predictions that follow from the RCC: first, that changes in metabolism and hydraulics lead to progressive reduction in total N retention but greater diel variation with increasing stream order; and second, that variation in metabolic and nutrient processing rates is larger across stream orders than between low order streams. In addition to providing a novel test of theory, these measurements enabled new insights into the evolution of water quality through a complex landscape, in part because main-stem profiles were obtained for both high and historically low flow conditions. We observed strong evidence of metabolism and nutrient retention at low flow. Both the rate of uptake velocity and the mass retention per unit area declined with increasing stream order, and declined dramatically at high flow. Clear evidence for time varying retention (i.e., diel variation) was observed at low flow, but was masked or absent at high flow. In this geologically complex river - with alluvial, spring-fed, and blackwater headwater streams - variation across low-order streams was large, suggesting the presence of many river continuua across the network. This application of longitudinal sampling and inference underscores the utility of changing reference frames to draw new insights, but also highlights some of the challenges that need to be considered and, where possible, controlled.

  1. How Physical Processes are Informing River Management Actions at Marble Bluff Dam, Truckee River, Nevada

    Science.gov (United States)

    Bountry, J.; Godaire, J.; Bradley, D. N.

    2017-12-01

    At the terminus of the Truckee River into Pyramid Lake (Nevada, USA), upstream river management actions have dramatically reshaped the river landscape, posing significant challenges for the management of endangered aquatic species and maintenance of existing infrastructure. Within the last 100 years, upstream water withdrawal for human uses has resulted in a rapid lowering of Pyramid Lake which initiated up to 90 ft of channel incision. In 1976 Marble Bluff Dam was constructed to halt the upstream progression of channel incision and protect upstream agricultural lands, tribal resources, and infrastructure. Since construction an additional 40 ft of lake lowering and subsequent channel lowering now poses a potential risk to the structural integrity of the dam. The dynamic downstream river combined with ongoing reservoir sedimentation pose challenges to fish passage facilities that enable migration of numerous endangered cui-ui and threatened Lahontan Cutthroat Trout (LCT) to upstream spawning areas each year. These facilities include a fish lock at the dam, a fish bypass channel which allows fish to avoid the shallow delta area during low lake levels, and a meandering channel constructed by the Nature Conservancy to connect the bypass channel to the receding Pyramid Lake. The reservoir formed by Marble Bluff Dam has completely filled with sediment which impacts fish passage facilities. The original operating manual for the dam recommends year-round flushing of sediment through radial gates, but this can no longer be accomplished. During critical fish migration periods in the spring operators must ensure fish entrance channels downstream of the dam are not buried with released sediment and fish are not trapped in a portion of the reservoir full of sediment that would risk sending them back over the dam. To help inform future reservoir sediment and infrastructure management strategies, we bracket a range of potential river responses to lake level lowering and floods

  2. Butterfly (Papilionoidea and Hesperioidea) assemblages associated with natural, exotic, and restored riparian habitats along the lower Colorado River, USA

    Science.gov (United States)

    Nelson, S.M.; Andersen, D.C.

    1999-01-01

    Butterfly assemblages were used to compare revegetated and natural riparian areas along the lower Colorado River. Species richness and correspondence analyses of assemblages showed that revegetated sites had fewer biological elements than more natural sites along the Bill Williams River. Data suggest that revegetated sites do not provide resources needed by some members of the butterfly assemblage, especially those species historically associated with the cottonwood/willow ecosystem. Revegetated sites generally lacked nectar resources, larval host plants, and closed canopies. The riparian system along the regulated river segment that contains these small revegetated sites also appears to have diminished habitat heterogeneity and uncoupled riparian corridors.Revegetated sites were static environments without the successional stages caused by flooding disturbance found in more natural systems. We hypothesize that revegetation coupled with a more natural hydrology is important for restoration of butterfly assemblages along the lower Colorado River

  3. Understanding river dune splitting through flume experiments and analysis of a dune evolution model

    NARCIS (Netherlands)

    Warmink, Jord Jurriaan; Dohmen-Janssen, Catarine M.; Lansink, Jord; Naqshband, Suleyman; van Duin, Olav; Paarlberg, Andries; Termes, A.P.P.; Hulscher, Suzanne J.M.H.

    2014-01-01

    Forecasts of water level during river floods require accurate predictions of the evolution of river dune dimensions, because the hydraulic roughness of the main channel is largely determined by the bed morphology. River dune dimensions are controlled by processes like merging and splitting of dunes.

  4. Wind tunnel experiments of air flow patterns over nabkhas modeled after those from the Hotan River basin,Xinjiang,China(Ⅱ):vegetated

    Institute of Scientific and Technical Information of China (English)

    Zhizhong LI; Rong MA; ShengLi WU; Janis DALE; Lin GE; Mudan HE; Xiaofeng WANG; Jianhui JIN; Jinwei LIU; Wanjuan LI

    2008-01-01

    This paper examines the results of wind tunnel experiments on models of nabkha,based on those studied in the Hotan River basin.Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation.Artificial vegetation of simulated Tamarix spp.was put on top of each model.Parameters of the shape,including height,width,and diameter of vegetated semi-spherical and conical nabkha.were measured in the Hotan River basin.Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6-14 m/s)to study the influence of vegetation on airflow patterns.Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds,retards airflow over the sand mounds,reduces airflow energy,eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope.Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha.This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area.The existence of vegetation makes fine materials in wind-sand flow to possibly deposit,and promotes nabkha formation.The imitative flow patterns Of different morphological nabkhas have also been verified by on-site observation in the river basin.

  5. Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois

    Science.gov (United States)

    Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.

    2012-01-01

    Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  6. Groundwater remediation of hexavalent chromium along the Columbia River at the Hanford site in Washington state, USA - 59030

    International Nuclear Information System (INIS)

    Foss, Dyan L.; Charboneau, Briant L.

    2012-01-01

    The U.S. Department of Energy Hanford Site, formerly used for nuclear weapons production, encompasses 1500 square kilometers in southeast Washington State along the Columbia River. A principle threat to the river are the groundwater plumes of hexavalent chromium (Cr(VI)), which affect approximately 9.8 square kilometers, and 4.1 kilometers of shoreline. Cleanup goals are to stop Cr(VI) from entering the river by the end of 2012 and remediate the groundwater plumes to the drinking water standards by the end of 2020. Five groundwater pump-and-treat systems are currently in operation for the remediation of Cr(VI). Since the 1990's, over 13.6 billion L of groundwater have been treated; over 1, 435 kg of Cr(VI) have been removed. This paper describes the unique aspects of the site, its environmental setting, hydrogeology, groundwater-river interface, riverine hydraulic effects, remediation activities completed to date, a summary of the current and proposed pump-and-treat operations, the in situ redox manipulation barrier, and the effectiveness of passive barriers, resins, and treatability testing results of calcium polysulfide, bio-stimulation, and electrocoagulation, currently under evaluation. (authors)

  7. River restoration strategies in channelized, low-gradient landscapes of West Tennessee, USA

    Science.gov (United States)

    Smith, D.P.; Diehl, T.H.; Turrini-Smith, L. A.; Maas-Baldwin, J.; Croyle, Z.

    2009-01-01

    West Tennessee has a complex history of watershed disturbance, including agricultural erosion, channelization, accelerated valley sedimentation, and the removal and reestablishment of beaver. Watershed management has evolved from fl oodplain drainage via pervasive channelization to include local drainage canal maintenance and local river restoration. Many unmaintained canals are undergoing excessive aggradation and complex channel evolution driven by upland erosion and low valley gradient. The locus of aggradation in fully occluded canals (valley plugs) moves up-valley as sediment continues to accumulate in the backwater behind the plug. Valley plugs that cause canal avulsion can lead to redevelopment of meandering channels in less disturbed areas of the fl oodplain, in a process of passive self-restoration. Some valley plugs have brought restored fl oodplain function, reoccupation of extant historic river channels, and formation of a "sediment shadow" that protects downstream reaches from excess sedimentation. Despite the presence of numerous opportunities, there is presently no mechanism for including valley plugs in mitigation projects. In 1997 a survey of 14 reference reach cross sections documented relations between drainage area and bankfull geometry of relatively unmodified streams in West Tennessee. Reassessment of seven of those sites in 2007 showed that one had been dammed by beaver and that two sites could not be analyzed further because of signifi cant vertical or lateral instability. In contrast to other regions of North America, the results suggest that stream channels in this region fl ood more frequently than once each year, and can remain out of banks for several weeks each year. ?? 2009 Geological Society of America.

  8. Precipitation Reconstructions and Periods of Drought in the Upper Green River Basin, Wyoming, USA

    Science.gov (United States)

    Follum, M.; Barnett, A.; Bellamy, J.; Gray, S.; Tootle, G.

    2008-12-01

    Due to recent drought and stress on water supplies in the Colorado River Compact States, more emphasis has been placed on the study of water resources in the Upper Green River Basin (UGRB) of Wyoming, Utah, and Colorado. The research described here focuses on the creation of long-duration precipitation records for the UGRB using tree-ring chronologies. When combined with existing proxy streamflow reconstructions and drought frequency analysis, these records offer a detailed look at hydrologic variability in the UGRB. Approximately thirty-three existing tree ring chronologies were analyzed for the UGRB area. Several new tree ring chronologies were also developed to enhance the accuracy and the geographical diversity of the resulting tree-ring reconstructions. In total, three new Douglas-fir (Pseudotsuga menziesii) and four new limber pine (Pinus flexilis) sites were added to the available tree-ring chronologies in this area. Tree-ring based reconstructions of annual (previous July through current June) precipitation were then created for each of the seventeen sub-watersheds in the UGRB. Reconstructed precipitation records extend back to at least 1654 AD, with reconstructions for some sub-basins beginning pre-1500. Variance explained (i.e. adjusted R2) ranged from 0.41 to 0.74, and the reconstructions performed well in a variety of verification tests. Additional analyses focused on stochastic estimation of drought frequency and return period, and detailed comparisons between reconstructed records and instrumental observations. Overall, this work points to the prevalence of severe, widespread drought in the UGRB. These analyses also highlight the relative wetness and lack of sustained dry periods during the instrumental period (1895-Present). Such long- term assessments are, in turn, vital tools as the Compact States contemplate the "Law of the River" in the face of climate change and ever-growing water demands.

  9. Guantanamo rikub USA seadusi / Krister Paris

    Index Scriptorium Estoniae

    Paris, Krister, 1977-

    2003-01-01

    Kaks USA tsiviilkohut leiavad oma otsuses, et USA valitsus rikub USA-s ja Guantanamo sõjaväebaasis kinnipeetavate nn. vaenlasvõitlejate õigusi. Inimõigusorganisatsioonid avaldavad heameelt kohtute otsuste üle

  10. Understanding Stoichiometric Controls in Nutrient Processing Along the River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Gonzalez-Pinzon, R.; Van Horn, D. J.; Covino, T. P.

    2016-12-01

    Eutrophication is the second most common cause of water impairment across the U.S. Nutrient retention in streams is controlled by physical and biochemical processes, including biomass availability and stoichiometric limitations. Decoupling the interactions between hydrology, nutrient supply and biogeochemical processes remains challenging for the scientific community due to lack of mechanistic understanding. Consequently, more knowledge regarding optimal controls for nutrient retention is needed to implement better management and restoration practices. We conducted column experiments to investigate how stoichiometric limitations influence nutrient spiraling in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (which spans eight stream orders), in New Mexico, USA. In each stream order we incubated six columns packed with different sediments (i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (>2mm) and native sediments) from each site for three months. We performed two laboratory tracer experiments using columns of each substrate under identical flow conditions. In the first experiment we added a short-term pulse of reactive and conservative tracers (i.e. NaNO3 and NaBr). In the second experiment we added a short-term pulse of NaBr and nutrients following Redfield's ratio (106C:16N:1P). We estimated uptake kinetics using the Tracer Additions for Spiraling Curve Characterization (TASCC) method and evaluated how ideal stoichiometric conditions controlled efficient nutrient retention along fluvial networks. Our results suggest that biological uptake of nitrate is limited by nitrogen in headwater streams and by phosphorus and carbon in larger stream orders.

  11. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    Science.gov (United States)

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  12. The Role of stocking in the reestablishment and augmentation of native fish in the Lower Colorado River mainstream (1998-2002)

    Science.gov (United States)

    Mueller, Gordon

    2003-01-01

    The Colorado River has experienced dramatic physical and biological change. Rated as the fifth largest river in the USA by volume, today its waters seldom reach the sea. Water diversions gradually reduce its flow to a point where its last remaining waters are diverted at Morales Dam leaving nearly 100 km of historic channel dry. In contrast, lower basin storage reservoirs cover 36% of the historic channel. Remaining portions of the flowing river have been channelized and straightened to a point where it now resembles a large canal. Levees, mechanical dredging, and the natural forces of erosion have degraded the river channel nearly 2 m in some locations, isolating it from its floodplain and affecting local water tables. The river no longer functions as a natural stream system characteristic of spring run-off, summer spates, and droughts. Today it serves as a water storage and conveyance system to meet human needs.

  13. Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA

    Science.gov (United States)

    Yang Yang; Ruth D. Yanai; Charles T. Driscoll; Mario Montesdeoca; Kevin T. Smith

    2018-01-01

    Mercury (Hg) is deposited from the atmosphere to remote areas such as forests, but the amount of Hg in trees is not well known. To determine the importance of Hg in trees, we analyzed foliage, bark and bole wood of eight tree species at four sites in the northeastern USA (Huntington Forest, NY; Sleepers River, VT; Hubbard Brook, NH; Bear Brook, ME). Foliar...

  14. Palliative care for patients in the USA with amyotrophic lateral sclerosis: current challenges

    Directory of Open Access Journals (Sweden)

    Houseman G

    2015-11-01

    Full Text Available Gail Houseman,1 Mary Kelley2 1The ALS Association Greater Philadelphia Chapter, Ambler, PA, USA; 2Department of Neurology, ALS Center at Penn Medicine, Philadelphia, PA, USA Abstract: Amyotrophic lateral sclerosis (ALS is a motor neuron disease that results in eventual paralysis of all voluntary muscles. Cognitive impairment may be a co-occurring condition with the ALS patient. Palliative care, which involves symptom management, is the most utilized treatment of choice. Managing the symptoms of ALS can be challenging. This paper provides experience-based facts on daily care provision in the USA and some practical guidelines. Keywords: amyotrophic lateral sclerosis, ALS, palliative care, challenges, symptom management

  15. Architecture of channel-belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, northeast Nebraska

    Science.gov (United States)

    Skelly, Raymond L.; Bristow, Charlie S.; Ethridge, Frank G.

    2003-05-01

    Architecture of recent channel-belt deposits of the Niobrara River, northeast Nebraska, USA, records the response of a sandy braided river to rapid base-level rise. Up to 3 m of aggradation has occurred within the lower 14 km of the Niobrara River since the mid-1950s as a result of base-level rise at the confluence of the Niobrara and Missouri Rivers. Aerial photographs and channel surveys indicate that the lower Niobrara has evolved from a relatively deep, stable channel with large, bank-attached braid bars to a relatively shallow, aggrading channel with braid bars and smaller secondary channels. Architecture of channel-belt deposits associated with the recent aggradation has been defined using ground-penetrating radar (GPR) and vibracores. The channel-belt deposits exhibit a series of amalgamated channel fills and braid bar complexes (i.e., macroforms). Radar facies identified in the GPR data represent architectural elements of the braid bar complexes, large and small bedforms [two-dimensional (2-D) and three-dimensional (3-D) dunes], and channels. Individual braid bars appear to consist of basal high-flow and upper low-flow components. Preservation of the complete, high-flow bar geometry is generally incomplete due to frequent migration of smaller scale, secondary channels within the channel belt (i.e., braided channel network) at low discharges. The large-scale stratification of the braid bar deposits is dominated by cross-channel and upstream accretion. Elements of downstream accretion are also recognized. These accretion geometries have not been documented previously in similar sandy braided rivers. Braid bar deposits with low-flow modification (e.g., incision by secondary channels) are recognized in the deeper portions of the deposits imaged by GPR. Preservation of braid bars, with both high- and low-flow components, is a result of the rapid base-level rise and channel-bed aggradation experienced by the Niobrara River over the past 45 years. Recent avulsion

  16. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    Science.gov (United States)

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  17. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    Science.gov (United States)

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Ackermann, Hans D.; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  18. Nursery stock quality as an indicator of bottomland hardwood forest restoration success in the Lower Mississippi River Alluvial Valley

    Science.gov (United States)

    Douglass F. Jacobs; Rosa C. Goodman; Emile S. Gardiner; K Frances Salifu; Ronald P. Overton; George Hernandez

    2012-01-01

    Seedling morphological quality standards are lacking for bottomland hardwood restoration plantings in the Lower Mississippi River Alluvial Valley, USA, which may contribute toward variable restoration success. We measured initial seedling morphology (shoot height, root collar diameter, number of first order lateral roots, fresh mass, and root volume), second year field...

  19. A comparison of β-adrenoceptors and muscarinic cholinergic receptors in tissues of brown bullhead catfish (Ameiurus nebulosus) from the black river and old woman creek, Ohio

    Science.gov (United States)

    Steevens, Jeffery A.; Baumann, Paul C.; Jones, Susan B.

    1996-01-01

    β-Adrenoceptors (βARs) and muscarinic cholinergic receptors were measured in brain, gill, and heart tissues of brown bullhead catfish exposed to polycyclic aromatic hydrocarbons in the Black River, Ohio, USA, and were compared to values from Old Woman Creek, Ohio, a reference site. A decreased number of βARs were found in the gill from Black River fish, possibly indicating a compensatory response subsequent to chemical stress.

  20. NAFTA and the USA-Colombia FTA: learning from the past?

    Directory of Open Access Journals (Sweden)

    Josefa Ramoni-Perazzi

    2012-12-01

    Full Text Available Back in 1992, a commercial agreement was signed between USA and Mexico (and Canada, which was supposed to promote the economic growth of its members by removing barriers to trade and investment among the three nations. Twenty years later, some studies indicates that the US have lost more jobs than those created by the agreement and moved from positive to negative trade balance with Mexico, all that due to American companies reallocating their production in Mexico, limiting the possibilities of higher wage claims for low-income workers in USA. Mexico, on the other hand, has not seen the positive impact on manufacturing wages NAFTA was supposed to exert. Based on this experience, what can be expected from the Free Trade Agreement between USA and Colombia in force since May 2012, since it is expected to achieve similar goals than NAFTA using similar policies?

  1. Operating experience with decommissioning of underground components, USA

    International Nuclear Information System (INIS)

    2006-01-01

    In the USA there has over the years been widespread use of underground piping and tank storage systems, as well as use of other storage vaults and miscellaneous underground storage systems. In most instances these systems are associated with other operating facilities such as large nuclear facilities. There has been considerable experience over the last 60 years in the design, installation, operation and decommissioning of these radioactive waste handling and storage structures and systems. Legislation was enacted in the 1980s that required extensive upgrades to existing systems, with newly installed systems being required to meet stringent installation, operation and removal requirements. This has had an impact on the use of some of these underground systems. One major problem with many of these systems is to gauge the integrity of the systems after they have been in operation for many years and to accurately determine whether they have leaked or not. Depending on the results of these investigations, the next question is whether these systems even need to be excavated or if they can be dispositioned in place rather than expending a large amount of effort to excavate them and remove the materials in question to a disposal site for final dispositioning. In some areas this is possible while in others excavation is required. Over the years that nuclear facilities have been operational in the USA, advantage has been taken of the fact that the earth serves as a good location for emplacement of otherwise obtrusive (or even less aesthetically pleasing) structures. These structures are also still clearly able to support the useful mission they were always intended to fulfil. This arrangement also serves as a structural feature favourable to minimizing radiation exposure levels emanating from systems and components containing radioactive materials. In some cases, embedding of various components such as tanks, pits, vaults, pipes and ducting was an easy way to avoid these

  2. The evolution of nuclear power in the USA

    International Nuclear Information System (INIS)

    Davis, W.K.

    1983-01-01

    The development and deployment of commercial nuclear power in the USA has been impressive since the programme began in the early 1950s. Today there are 73 commercial power reactors operating in the USA with combined capacity of about 56 GW(e). By 1990, an additional 64 nuclear power plants with a total capacity of approximately 123 GW(e) will be in operation supplying about 25% of US electrical energy requirements. Despite the cancellation of 91 new units since 1972 and lack of any new plant orders, there is a clear and continuing role for nuclear energy in the USA if we are to experience continued economic growth. New growth for US nuclear industry requires several things to happen. The prospective demand for electricity and new generating plants must increase; the US Government must show that it will fulfill its responsibilities to dispose of nuclear waste; a more stable regulatory process must be implemented so that nuclear power plants can be built with a reasonable degree of assurance beforehand as to what the final design, cost and schedule will be. President Reagan's July 1981 policy statement on Non-Proliferation and Peaceful Nuclear Co-operation and October 1981 Domestic Nuclear Policy Statement provide the policy framework necessary for the USA to maintain a viable domestic nuclear industry to enable nuclear power to make its essential contribution to future US energy needs and to re-establish the USA as a predictable and reliable partner for international nuclear co-operation under adequate safeguards. The US Government has structured its programmes and activities to implement these policies and initiatives. (author)

  3. USA pelgab Hiina tehnoloogialuuret / Tõnis Arnover

    Index Scriptorium Estoniae

    Arnover, Tõnis, 1952-

    2005-01-01

    Hiina Ameerika-vastasest majandusluurest. USA luureameti andmetel on USA-s loodud üle kolme tuhande Hiina firma, kelle ülesandeks on tööstusliku või sõjalise tehnoloogia hankimine. Vt. samas: Hiina firmad ostavad üha suuremaid USA ettevõtteid

  4. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: A tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-01-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  5. ICT literacy – the requirement of foreign countries modern education systems (experience of the USA.

    Directory of Open Access Journals (Sweden)

    I. Malitskaya

    2009-11-01

    Full Text Available In the article the development and present days situation of information and communication technologies and Technological standards implementation in an education system of the USA is analysed.

  6. Restoration of hard mast species for wildlife in Missouri using precocious flowering oak in the Missouri River floodplain, USA

    Science.gov (United States)

    B. C. Grossman; M. A. Gold; Daniel C. Dey

    2003-01-01

    Increased planting of hard mast oak species in the Lower Missouri River floodplain is critical as natural regeneration of oak along the Upper Mississippi and Lower Missouri Rivers has been limited following major flood events in 1993 and 1995. Traditional planting methods have limited success due to frequent flood events, competition from faster growing vegetation and...

  7. Estimation of river and stream temperature trends under haphazard sampling

    Science.gov (United States)

    Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao

    2015-01-01

    Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.

  8. Bilateral uric acid nephrolithiasis and ureteral hypertrophy in a free-ranging river otter (Lontra canadensis)

    Science.gov (United States)

    Grove, Robert A.; Bildfell, Rob; Henny, Charles J.; Buhler, D.R.

    2003-01-01

    We report the first case of uric acid nephrolithiasis in a free-ranging river otter (Lontra canadensis). A 7 yr old male river otter collected from the Skagit River of western Washington (USA) had bilateral nephrolithiasis and severely enlarged ureters (one of 305 examined [0.33%]). The uroliths were 97% uric acid and 3% protein. Microscopic changes in the kidney were confined to expansion of renal calyces, minor loss of medullary tissue, and multifocal atrophy of the cortical tubules. No inflammation was observed in either kidney or the ureters. The ureters were enlarged due to marked hypertrophy of smooth muscle plus dilation of the lumen. Fusion of the major calyces into a single ureteral lumen was several cm distal to that of two adult male otters used as histopathologic control specimens. This case report is part of a large contaminant study of river otters collected from Oregon and Washington. It is important to understand diseases and lesions of the otter as part of our overall evaluation of this population.

  9. Challenges in merging fisheries research and management: The Upper Mississippi River experience

    Science.gov (United States)

    Garvey, J.; Ickes, B.; Zigler, S.

    2010-01-01

    The Upper Mississippi River System (UMRS) is a geographically diverse basin extending 10?? north temperate latitude that has produced fishes for humans for millennia. During European colonization through the present, the UMRS has been modified to meet multiple demands such as navigation and flood control. Invasive species, notably the common carp, have dominated fisheries in both positive and negative ways. Through time, environmental decline plus reduced economic incentives have degraded opportunities for fishery production. A renewed focus on fisheries in the UMRS may be dawning. Commercial harvest and corresponding economic value of native and non-native species along the river corridor fluctuates but appears to be increasing. Recreational use will depend on access and societal perceptions of the river. Interactions (e. g., disease and invasive species transmission) among fish assemblages within the UMRS, the Great Lakes, and other lakes and rivers are rising. Data collection for fisheries has varied in intensity and contiguousness through time, although resources for research and management may be growing. As fisheries production likely relies on the interconnectivity of fish populations and associated ecosystem processes among river reaches (e. g., between the pooled and unpooled UMRS), species-level processes such as genetics, life-history interactions, and migratory behavior need to be placed in the context of broad ecosystem- and landscape-scale restoration. Formal communication among a diverse group of researchers, managers, and public stakeholders crossing geographic and disciplinary boundaries is necessary through peer-reviewed publications, moderated interactions, and the embrace of emerging information technologies. ?? Springer Science+Business Media B.V. 2010.

  10. Wastewater discharge impact on drinking water sources along the Yangtze River (China).

    Science.gov (United States)

    Wang, Zhuomin; Shao, Dongguo; Westerhoff, Paul

    2017-12-01

    Unplanned indirect (de facto) wastewater reuse occurs when wastewater is discharged into surface waters upstream of potable drinking water treatment plant intakes. This paper aims to predict percentages and trends of de facto reuse throughout the Yangtze River watershed in order to understand the relative contribution of wastewater discharges into the river and its tributaries towards averting water scarcity concerns. The Yangtze River is the third longest in the world and supports more than 1/15 of the world's population, yet the importance of wastewater on the river remains ill-defined. Municipal wastewater produced in the Yangtze River Basin increased by 41% between 1998 and 2014, from 2580m 3 /s to 3646m 3 /s. Under low flow conditions in the Yangtze River near Shanghai, treated wastewater contributions to river flows increased from 8% in 1998 to 14% in 2014. The highest levels of de facto reuse appeared along a major tributary (Han River) of the Yangtze River, where de facto reuse can exceed 20%. While this initial analysis of de facto reuse used water supply and wastewater data from 110 cities in the basin and 11 gauging stations with >50years of historic streamflow data, the outcome was limited by the lack of gauging stations at more locations (i.e., data had to be predicted using digital elevation mapping) and lack of precise geospatial location of drinking water intakes or wastewater discharges. This limited the predictive capability of the model relative to larger datasets available in other countries (e.g., USA). This assessment is the first analysis of de facto wastewater reuse in the Yangtze River Basin. It will help identify sections of the river at higher risk for wastewater-related pollutants due to presence of-and reliance on-wastewater discharge that could be the focus of field studies and model predictions of higher spatial and temporal resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. USA toetus Eestile

    Index Scriptorium Estoniae

    2007-01-01

    Ameerika Ühendriikide riigisekretär Condoleezza Rice kinnitas 3. mail 2007 telefonikõnes president Toomas Hendrik Ilvesele USA toetust Eestile ning tõsist muret Venemaa käitumise üle oma naaberriigi suhtes. Ilmunud ka: Meie Kodu 9. mai 2007, lk. 2, pealk.: USA riigisekretär Vabariigi Presidendile: Ühendriigid toetavad Eestit

  12. 77 FR 6587 - Startek USA, Inc. Alexandria, LA; Startek USA, Inc., Collinsville, VA; Amended Certification...

    Science.gov (United States)

    2012-02-08

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,089; TA-W-75,089A] Startek USA, Inc. Alexandria, LA; Startek USA, Inc., Collinsville, VA; Amended Certification Regarding Eligibility... for Worker Adjustment Assistance on January 26, 2011, applicable to workers of StarTek USA, Inc...

  13. Large floods and climatic change during the Holocene on the Ara River, Central Japan

    Science.gov (United States)

    Grossman, Michael J.

    2001-07-01

    A reconstruction of part of the Holocene large flood record for the Ara River in central Japan is presented. Maximum intermediate gravel-size dimensions of terrace and modern floodplain gravels were measured along an 18-km reach of the river and were used in tractive force equations to estimate minimum competent flood depths. Results suggest that the magnitudes of large floods on the Ara River have varied in a non-random fashion since the end of the last glacial period. Large floods with greater magnitudes occurred during the warming period of the post-glacial and the warmer early to middle Holocene (to ˜5500 years BP). A shift in the magnitudes of large floods occurred ˜5500-5000 years BP. From this time, during the cooler middle to late Holocene, large floods generally had lower magnitudes. In the modern period, large flood magnitudes are the largest in the data set. As typhoons are the main cause of large floods on the Ara River in the modern record, the variation in large flood magnitudes suggests that the incidence of typhoon visits to the central Japan changed as the climate changed during the Holocene. Further, significant dates in the large flood record on the Ara River correspond to significant dates in Europe and the USA.

  14. Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species.

    Science.gov (United States)

    Ahmad, Habib; Yousafzai, Ali Muhammad; Siraj, Muhammad; Ahmad, Rashid; Ahmad, Israr; Nadeem, Muhammad Shahid; Ahmad, Waqar; Akbar, Nazia; Muhammad, Khushi

    2015-01-01

    The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals including chromium, nickel, copper, zinc, cadmium, and lead were determined through atomic absorption spectrophotometer after tissue digestion by adopting standard procedures. Concentrations of these metals were recorded in muscles and liver of five native fish species, namely, Wallago attu, Aorichthys seenghala, Cyprinus carpio, Labeo dyocheilus, and Ompok bimaculatus. The concentrations of chromium, nickel, copper, zinc, and lead were higher in both of the tissues, whereas the concentration of cadmium was comparatively low. However, the concentration of metals was exceeding the RDA (Recommended Dietary Allowance of USA) limits. Hence, continuous fish consumption may create health problems for the consumers. The results of the present study are alarming and suggest implementing environmental laws and initiation of a biomonitoring program of the river.

  15. Dynamics of Plains Cottonwood ( Populus deltoides) Forests and Historical Landscape Change along Unchannelized Segments of the Missouri River, USA

    Science.gov (United States)

    Dixon, Mark D.; Johnson, W. Carter; Scott, Michael L.; Bowen, Daniel E.; Rabbe, Lisa A.

    2012-05-01

    Construction of six large dams and reservoirs on the Missouri River over the last 50-75 years has resulted in major landscape changes and alterations in flow patterns, with implications for riparian forests dominated by plains cottonwood ( Populus deltoides). We quantified changes in land cover from 1892-1950s and the 1950s-2006 and the current extent and age structure of cottonwood forests on seven segments (two reservoir and five remnant floodplain) comprising 1127 km (53 %) of the unchannelized upper two-thirds of the Missouri River. Riparian forest area declined by 49 %; grassland 61 %; shrubland 52 %; and sandbar habitat 96 %; while agricultural cropland increased six-fold and river/reservoir surface area doubled from 1892 to 2006. Net rates of erosion and accretion declined between the 1892-1950s and 1950s-2006 periods. Accretion exceeded erosion on remnant floodplain segments, resulting in declines in active channel width, particularly in 1950s-2006. Across all study segments in 2006, most cottonwood stands (67 %) were >50 years old, 22 % were 25-50 years old, and only 10 % were <25 years old. Among stands <50 years old, the higher proportion of 25-50 year old stands represents recruitment that accompanied initial post-dam channel narrowing; while declines in sandbar and shrubland area and the low proportion of stands <25 years old suggest declines in geomorphic dynamism and limited recruitment under recent river management. Future conservation and restoration efforts should focus both on limiting further loss of remnant cottonwood stands and developing approaches to restore river dynamics and cottonwood recruitment processes.

  16. Optimum swimming pathways of fish spawning migrations in rivers

    Science.gov (United States)

    McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert

    2012-01-01

    Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.

  17. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively

  18. Thomas Gold's Intense Solar Wind; It's evidence in prehistoric petroglyphs recorded along rivers in North and South America

    Science.gov (United States)

    Peratt, A. L.

    2008-11-01

    A past intense solar outburst and its effect on Earth circa 8,000 BCE was proposed by Gold who based his hypotheses on astronomical and geophysical evidence [1]. The discovery of high-current Z-pinch patterns in Neolithic petroglyphs provides evidence for this occurrence and insight into the origin and meaning of these ancient symbols produced by mankind. These correspond to mankind's visual observations of ancient aurora if the solar wind had increased between one and two orders of magnitude millennia ago [2]. Our data show identical MHD patterns from surveys along 300 km of the Orinoco River (Venezuela), the Chuluut River (Mongolia), the Columbia River (USA), Red Gorge (South Australia) and the Urubamba River (Peru). Three-dimensional, high-fidelity PIC simulations of intense Z-pinches replicate the carved data [3]. 1. T. Gold, Pontificiae Academiae Scientiarvm Scripta Varia, 25, 159, 1962. 2. A. L. Peratt. Trans. Plasma Sci. 35. 778. 2007. 3. A. L. Peratt and W. F. Yao, Physica Scripta, T130, August 2008.

  19. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA)

    Science.gov (United States)

    Paerl, Hans W.; Wetz, Michael S.

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  20. River export of triclosan from land to sea: A global modelling approach.

    Science.gov (United States)

    van Wijnen, Jikke; Ragas, Ad M J; Kroeze, Carolien

    2018-04-15

    Triclosan (TCS) is an antibacterial agent that is added to commonly used personal care products. Emitted to the aquatic environment in large quantities, it poses a potential threat to aquatic organisms. Triclosan enters the aquatic environment mainly through sewage effluent. We developed a global, spatially explicit model, the Global TCS model, to simulate triclosan transport by rivers to coastal areas. With this model we analysed annual, basin-wide triclosan export for the year 2000 and two future scenarios for the year 2050. Our analyses for 2000 indicate that triclosan export to coastal areas in Western Europe, Southeast Asia and the East Coast of the USA is higher than in the rest of the world. For future scenarios, the Global TCS model predicts an increase in river export of triclosan in Southeast Asia and a small decrease in Europe. The number of rivers with an annual average triclosan concentration at the river mouth that exceeds a PNEC of 26.2ng/L is projected to double between 2000 and 2050. This increase is most prominent in Southeast Asia, as a result of fast population growth, increasing urbanisation and increasing numbers of people connected to sewerage systems with poor wastewater treatment. Predicted triclosan loads correspond reasonably well with measured values. However, basin-specific predictions have considerable uncertainty due to lacking knowledge and location-specific data on the processes determining the fate of triclosan in river water, e.g. sorption, degradation and sedimentation. Additional research on the fate of triclosan in river systems is therefore recommended. We developed a global spatially explicit model to simulate triclosan export by rivers to coastal seas. For two future scenarios this Global TCS model projects an increase in river export of triclosan to several seas around the world. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Full-scale operating experience of deep bed denitrification filter achieving phosphorus.

    Science.gov (United States)

    Husband, Joseph A; Slattery, Larry; Garrett, John; Corsoro, Frank; Smithers, Carol; Phipps, Scott

    2012-01-01

    The Arlington County Wastewater Pollution Control Plant (ACWPCP) is located in the southern part of Arlington County, Virginia, USA and discharges to the Potomac River via the Four Mile Run. The ACWPCP was originally constructed in 1937. In 2001, Arlington County, Virginia (USA) committed to expanding their 113,500 m³/d, (300,000 pe) secondary treatment plant to a 151,400 m³/d (400,000 pe) to achieve effluent total nitrogen (TN) to phosphorus (TP) phosphorus, to very low concentrations. This paper will review the steps from concept to the first year of operation, including pilot and full-scale operating data and the capital cost for the denitrification filters.

  2. Temporal and spatial distributions of sediment total organic carbon in an estuary river.

    Science.gov (United States)

    Ouyang, Y; Zhang, J E; Ou, L-T

    2006-01-01

    Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.

  3. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries: Distribution, transport and fate

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; ,

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products

  4. Population demographics of American eels Anguilla rostrata in two Arkansas, U.S.A., catchments that drain into the Gulf of Mexico.

    Science.gov (United States)

    Cox, C A; Quinn, J W; Lewis, L C; Adams, S R; Adams, G L

    2016-03-01

    The goal of this study was to compare American eel Anguilla rostrata life history in two inland river systems in Arkansas, U.S.A., that ultimately discharge into the Gulf of Mexico via the Mississippi River and the Red-Atchafalaya catchments. From 21 June 2011 to 24 April 2014, 238 yellow-phase A. rostrata were captured in the middle Ouachita River and tributaries using boat electrofishing and 39 in the lower White River using multiple sampling gears. Most of them were caught downstream of dams in both basins (61%). Medium-sized A. rostrata ranging from 225 to 350 mm total length (LT ) were the most abundant size group in the Ouachita River basin, but they were absent from the White River. Mean LT at age 4 years (i.e. youngest shared age) was 150 mm greater for the White River than the Ouachita River basin. Anguilla rostrata appeared to have a greater initial LT (i.e. minimum size upon arrival) in the White River that allowed them to reach a gonado-somatic index (IG ) of 1·5 up to 4 years earlier, and downstream migration appeared to occur 5 years earlier at 100 mm greater LT ; these differences may be related to increased river fragmentation by dams in the Ouachita River basin. Growth and maturation of A. rostrata in this study were more similar to southern populations along the Atlantic coast than other inland populations. Adult swimbladder nematodes Anguillicoloides crassus were not present in any of the 214 swimbladders inspected. Gulf of Mexico catchments may be valuable production areas for A. rostrata and data from these systems should be considered as range-wide protection and management plans are being developed. © 2016 The Fisheries Society of the British Isles.

  5. Surface-water and groundwater interactions in an extensively mined watershed, upper Schuylkill River, Pennsylvania, USA

    Science.gov (United States)

    Cravotta,, Charles A.; Goode, Daniel J.; Bartles, Michael D.; Risser, Dennis W.; Galeone, Daniel G.

    2014-01-01

    Streams crossing underground coal mines may lose flow, while abandoned mine drainage (AMD) restores flow downstream. During 2005-12, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near-neutral pH and elevated concentrations of iron, manganese, and sulfate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared to nearby streams, consistent with rapid infiltration and slow release of groundwater from the mine. Downstream of the AMD, dissolved iron was attenuated by oxidation and precipitation while dissolved CO2 degassed and pH increased. During high-flow conditions, the AMD and downstream waters exhibited decreased pH, iron, and sulfate with increased acidity that were modeled by mixing net-alkaline AMD with recharge or runoff having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high-flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and the West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality in streams.

  6. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    Science.gov (United States)

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  7. A Casting Form from the Muranka Unfortified Site on the Usa River

    Directory of Open Access Journals (Sweden)

    Stashenkov Dmitry A.

    2012-03-01

    Full Text Available A new find from Muranka unfortified settlement, one of major Golden Horde period sites in the Middle Volga river region is published. It is a double-sided stone mould intended for casting jewelry. Each side of the form was used for casting individual jewelry items: women's hair, head and costume decorations. The head ornaments include two temple rings and earrings shaped as question marks. One more decorative element, styled as a bird’s figure could be either part of some complex piece or an individual product. The other side of the form was used for casting two product varieties: belt buckles and pendants. The mould is of high-quality workmanship. The exact analogy of this rare find is not yet known.

  8. River runoff influences on the Central Mediterranean overturning circulation

    Science.gov (United States)

    Verri, Giorgia; Pinardi, N.; Oddo, P.; Ciliberti, S. A.; Coppini, G.

    2018-03-01

    The role of riverine freshwater inflow on the Central Mediterranean Overturning Circulation (CMOC) was studied using a high-resolution ocean model with a complete distribution of rivers in the Adriatic and Ionian catchment areas. The impact of river runoff on the Adriatic and Ionian Sea basins was assessed by a twin experiment, with and without runoff, from 1999 to 2012. This study tries to show the connection between the Adriatic as a marginal sea containing the downwelling branch of the anti-estuarine CMOC and the large runoff occurring there. It is found that the multiannual CMOC is a persistent anti-estuarine structure with secondary estuarine cells that strengthen in years of large realistic river runoff. The CMOC is demonstrated to be controlled by wind forcing at least as much as by buoyancy fluxes. It is found that river runoff affects the CMOC strength, enhancing the amplitude of the secondary estuarine cells and reducing the intensity of the dominant anti-estuarine cell. A large river runoff can produce a positive buoyancy flux without switching off the antiestuarine CMOC cell, but a particularly low heat flux and wind work with normal river runoff can reverse it. Overall by comparing experiments with, without and with unrealistically augmented runoff we demonstrate that rivers affect the CMOC strength but they can never represent its dominant forcing mechanism and the potential role of river runoff has to be considered jointly with wind work and heat flux, as they largely contribute to the energy budget of the basin. Looking at the downwelling branch of the CMOC in the Adriatic basin, rivers are demonstrated to locally reduce the volume of Adriatic dense water formed in the Southern Adriatic Sea as a result of increased water stratification. The spreading of the Adriatic dense water into the Ionian abyss is affected as well: dense waters overflowing the Otranto Strait are less dense in a realistic runoff regime, with respect to no runoff experiment, and

  9. Molecular Hysteresis of Dissolved Organic Matter in the Connecticut River Watershed

    Science.gov (United States)

    Wagner, S.; Hoyle, J. B.; Matt, S.; Raymond, P. A.; Saiers, J. E.; Dittmar, T.; Stubbins, A.

    2017-12-01

    Rainfall-runoff processes have emerged as key controllers of the quantity and quality of terrestrial dissolved organic matter (DOM) exported from the landscape to inland waters. Hydrological events result in increased river discharge and a concomitant release of large amounts of DOM into fluvial networks. This study is part of a Macrosystems project which aims to test the Pulse-Shunt Concept: where rivers are converted from active to passive pipes during high discharge events ("pulse"), transporting labile, terrestrial DOM downstream ("shunt"), and relocating biogeochemical hotspots for DOM from the upper to the lower reaches of the watershed. The primary objective of our study was to track hysteretic changes in riverine DOM molecular composition over the course of a storm event. Samples were collected from nested watersheds in the Passumpsic River catchment, a tributary of the Connecticut River (USA). High resolution monitoring (via in-situ sondes) and high frequency collection of discreet samples (for FT-ICR/MS and other analyses) was necessary to capture short-term, hydrologically-driven variations in DOM concentration and composition. At the onset of the discharge event, we observed a unique DOM signature, enriched in aliphatic, and potentially biolabile, DOM. During peak discharge, and along the falling limb of the hydrograph, an aromatic, terrestrial-type DOM signature was more prevalent. These initial findings support the pulse-shunt hypothesis, providing evidence for the release of labile forms of DOM into rivers during the onset of a storm event, which apparently persists across low-to-high stream orders. Insights into the molecular hysteresis of fluvial DOM spotlights the impact of watershed hydrology on biogeochemical cycling in river networks.

  10. Spatial distribution of impacts to channel bed mobility due to flow regulation, Kootenai River, USA

    Science.gov (United States)

    Michael Burke; Klaus Jorde; John M. Buffington; Jeffrey H. Braatne; Rohan Benjakar

    2006-01-01

    The regulated hydrograph of the Kootenai River between Libby Dam and Kootenay Lake has altered the natural flow regime, resulting in a significant decrease in maximum flows (60% net reduction in median 1-day annual maximum, and 77%-84% net reductions in median monthly flows for the historic peak flow months of May and June, respectively). Other key hydrologic...

  11. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    Science.gov (United States)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  12. Effects of historical lead–zinc mining on riffle-dwelling benthic fish and crayfish in the Big River of southeastern Missouri, USA

    Science.gov (United States)

    Allert, A.L.; DiStefano, R.J.; Fairchild, J.F.; Schmitt, C.J.; McKee, M.J.; Girondo, J.A.; Brumbaugh, W.G.; May, T.W.

    2013-01-01

    The Big River (BGR) drains much of the Old Lead Belt mining district (OLB) in southeastern Missouri, USA, which was historically among the largest producers of lead–zinc (Pb–Zn) ore in the world. We sampled benthic fish and crayfish in riffle habitats at eight sites in the BGR and conducted 56-day in situ exposures to the woodland crayfish (Orconectes hylas) and golden crayfish (Orconectes luteus) in cages at four sites affected to differing degrees by mining. Densities of fish and crayfish, physical habitat and water quality, and the survival and growth of caged crayfish were examined at sites with no known upstream mining activities (i.e., reference sites) and at sites downstream of mining areas (i.e., mining and downstream sites). Lead, zinc, and cadmium were analyzed in surface and pore water, sediment, detritus, fish, crayfish, and other benthic macro-invertebrates. Metals concentrations in all materials analyzed were greater at mining and downstream sites than at reference sites. Ten species of fish and four species of crayfish were collected. Fish and crayfish densities were significantly greater at reference than mining or downstream sites, and densities were greater at downstream than mining sites. Survival of caged crayfish was significantly lower at mining sites than reference sites; downstream sites were not tested. Chronic toxic-unit scores and sediment probable effects quotients indicated significant risk of toxicity to fish and crayfish, and metals concentrations in crayfish were sufficiently high to represent a risk to wildlife at mining and downstream sites. Collectively, the results provided direct evidence that metals associated with historical mining activities in the OLB continue to affect aquatic life in the BGR.

  13. TOXICITY TRENDS DURING AN OIL SPILL BIOREMEDIATION EXPERIMENT ON A SANDY SHORELINE IN DELAWARE, USA

    Science.gov (United States)

    A 13-week, refereed, inter-agency toxicity testing program involving five bioassay methods was used to document the effectiveness of shoreline bioremediation to accelerate toxicity reduction of an oiled sandy shoreline at Fowler Beach, Delaware, USA. The study was part of an inte...

  14. Do Karst Rivers “deserve” their own biotic index? A ten years study on macrozoobenthos in Croatia

    Directory of Open Access Journals (Sweden)

    Rađa Biljana

    2010-07-01

    Full Text Available In this study we present the results of a ten year survey of the aquatic macroinvertebrate fauna along four karst rivers: Jadro, Žrnovnica, Grab and Ruda, all of them situated in the Middle Dalmatia region of Croatia, in an attempt to construct the Iliric Biotic Index, which will be more applicable for the water quality analysis than the most frequently applied biotic index in Croatia, the Italian Modification of Extended Biotic Index. The rivers geologically belong to the Dinaric karst, unique geological phenomena in Europe. Benthic macroinvertebrates were collected along each river at 15 sites by standard methods of sampling along with several physicochemical parameters, including: temperature, dissolved oxygen, carbon dioxide, alkalinity, hardness and pH. Univariate and multivariate techniques revealed differences in the macroinvertebrate community structure as well as in physicochemical parameters between the Karst rivers and continental rivers. Based on those differences, the Iliric Biotic Index was proposed as the standard of karst river water quality in Croatia in accordance with the EU Water Framework Directive. Differences between the Iliric Biotic Index and the most commonly used biotic indices in the European Community and the USA (The Biological Monitoring Working Party (B.M.W.P. scores, i.e. Extended Biotic Index, Indice Biotique, Family Biotic Index suggest that karst rivers need a new biotic index.

  15. USA võtab hoogu maha / Tarvo Vaarmets

    Index Scriptorium Estoniae

    Vaarmets, Tarvo

    2010-01-01

    Pärast riiklike soodustuste lõppu koduostjatele on USA-s vähenenud kinnisvara soetamine, jaemüüjate käive langes juunis võrreldes maiga 0,5%. USA keskpanga presidendi Ben Bernanke hinnangul on USA majandus ebatavaliselt ebamäärane

  16. USA suursaadikuga Tallinna lahel / Katrin Kruss

    Index Scriptorium Estoniae

    Kruss, Katrin

    2007-01-01

    USA suursaadik Stanley Davis Phillips oma haridusteest, perekonnast, armastusest mere vastu, panusest isa Earl Phillipsi mööbliäri laiendamisse, golfiharrastusest, suursaadikute ettevalmistusest USA-s, suursaadiku residentsist Pirital ning uue saatkonnahoone otsingutest Tallinnas. Lisa: Stanley Davis Phillips

  17. Reconstructions of Columbia River streamflow from tree-ring chronologies in the Pacific Northwest, USA

    Science.gov (United States)

    Littell, Jeremy; Pederson, Gregory T.; Gray, Stephen T.; Tjoelker, Michael; Hamlet, Alan F.; Woodhouse, Connie A.

    2016-01-01

    We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree-ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree-ring chronologies where high snowpack limits growth, which better represent the contribution of cool-season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high-intensity, long-duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s-1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm-season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late-19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands

  18. Radiation monitoring of Syr-Darya river (II)

    International Nuclear Information System (INIS)

    Salikhbaev, U.S.; Yuldashev, B.S.; Radyuk, R.I.; Vdovina, E.D.; Artemov, S.V.; Radyuk, G.A.; Zaparov, E.A.; Barber, D.S.; Betsill, J.D.; Howard, H.D.; Matthews, R.; Solodukhin, V.P.; Poznyak, V.L.; Vasiliev, I.A.; Alekhina, V.M.; Juraev, A.A.; Juraev, An.A.

    2004-01-01

    Full text: The article contains the results obtained during the radiation monitoring of Syr-Darya River, which was conducted within the frames of international collaboration of Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and USA. The data on the radionuclides of water, bottom, water plants and soil was obtained. Dependence of the obtained results on distance form the source is discussed. The results of investigations of radio-ecological situation in river Syr-Darya have been presented. Total 15 control points have been chosen in each of the 4 countries of Central Asia. Sampling of soil, bottom sediment, water and vegetation was made during expeditions. Radionuclide of all environmental objects have been studied. The quantity of the radionuclides Ra-226, K-40, Th-232, and U-238 in all samples was investigated. The amount of radionuclides changes for K-40: from 90 to 920 Bq/kg; Ra-226: from 30 to 150 Bq/kg; Th-232 from 7 to 70 Bq/kg; and U-238: from 5 to 180 Bq/kg. Uranium mines influence the process of formation of natural radioactivity in these rivers. Note that the amount of natural radionuclides uranium and thorium, decay products is highest in stations near uranium mines. We had an opportunity to get only few samples from each site, that's why we had to analyze just average seasonal values. A few samples determined great average deviations. These circumstances did not allow us to determine seasonal changes of characteristics of the investigated samples and trace technological and industrial activities by radionuclides. We saw results of general character and suggested formation models of these changes. However, these results, in our opinion, are interesting and give a general idea about radiation background along Syr-Darya and Narin Rivers. Detailed changes of background (because of seasons and technological changes) can be obtained with systematic and longer monitoring

  19. Quebec-USA electricity export contracts

    International Nuclear Information System (INIS)

    Labbe, J.-F.

    1993-06-01

    Electricity exports from Hydro-Quebec to utilities in the USA significantly affects the economy and environment of Quebec. These exports may be arranged under interconnection agreements to sell excess capacity and production during off-peak periods or under firm sales contracts. Hydro-Quebec exports could also replace power plants that would otherwise be needed in the USA. The economic environment for Hydro-Quebec exports to the USA is reviewed along with the regulatory environment applicable to international trade (General Agreement on Tariffs and Trade, Canada-USA Free Trade Agreement, North American Free Trade Agreement), Quebec (Canadian federal and provincial law), and the USA (federal and state law). A jurisdictional analysis of power export contracts is then presented, citing examples of contracts already signed by Hydro-Quebec with utilities in New York and New England. Contract law and contract provisions are discussed, including common clauses and particular clauses. Suggestions are made for new clauses that would improve the electricity trade. 215 refs., 13 figs., 3 tabs

  20. A summary of the test procedures and operational details of a Delaware River and an ocean dumping pollution monitoring experiment conducted 28 August 1975

    Science.gov (United States)

    Hypes, W. D.; Ohlhorst, C. W.

    1977-01-01

    Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.

  1. Methylmercury bioaccumulation in an urban estuary: Delaware River USA.

    Science.gov (United States)

    Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia

    2017-09-01

    Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.

  2. Coupled hydrogeomorphic and woody-seedling responses to controlled flood releases in a dryland river

    Science.gov (United States)

    Wilcox, Andrew C.; Shafroth, Patrick B.

    2013-01-01

    Interactions among flow, geomorphic processes, and riparian vegetation can strongly influence both channel form and vegetation communities. To investigate such interactions, we took advantage of a series of dam-managed flood releases that were designed in part to maintain a native riparian woodland system on a sand-bed, dryland river, the Bill Williams River, Arizona, USA. Our resulting multiyear flow experiment examined differential mortality among native and nonnative riparian seedlings, associated flood hydraulics and geomorphic changes, and the temporal evolution of feedbacks among vegetation, channel form, and hydraulics. We found that floods produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach. We also observed significantly greater mortality among nonnative tamarisk (Tamarix) seedlings than among native willow (Salix gooddingii) seedlings, reflecting the greater first-year growth of willow relative to tamarisk. When vegetation was small early in our study period, the effects of vegetation on flood hydraulics and on mediating flood-induced channel change were minimal. Vegetation growth in subsequent years resulted in stronger feedbacks, such that vegetation's stabilizing effect on bars and its drag effect on flow progressively increased, muting the geomorphic effects of a larger flood release. These observations suggest that the effectiveness of floods in producing geomorphic and ecological changes varies not only as a function of flood magnitude and duration, but also of antecedent vegetation density and size.

  3. Nordkorea kan endelig ramme USA

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo

    2017-01-01

    Nordkoreas evne til at nå USA baner vej for en forhandlet løsning, fordi præsident Trump ikke har andre alternativer. Krig vil koste over en million døde, og Kina er imod effektive sanktioner. Det nødvendige pres for at få USA til forhandlingsbordet er nu på plads.......Nordkoreas evne til at nå USA baner vej for en forhandlet løsning, fordi præsident Trump ikke har andre alternativer. Krig vil koste over en million døde, og Kina er imod effektive sanktioner. Det nødvendige pres for at få USA til forhandlingsbordet er nu på plads....

  4. Mercury concentrations in fillets of fish collected in the U.S. EPA National Rivers and Streams Assessment of the continental USA

    Science.gov (United States)

    The National Rivers and Streams Assessment (NRSA) is a statistical survey of flowing waters of the U.S. The purpose of this survey was to assess the condition of the nation's rivers and streams, establish a baseline to evaluate progress of pollution control activities in flowing...

  5. Pepeljajev eesti näitlejatega USA-s

    Index Scriptorium Estoniae

    2008-01-01

    Sasha Pepeljajevi tantsulavastust "Uksed" etendati USA rahvusvahelisel teatrifestivalil "Arts & Ideas". Vene-Eesti trupi Apparatus lavastus on pühendatud Daniil Harmsi 100. sünniaastapäevale ning põhineb tema töödel

  6. Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA

    Science.gov (United States)

    Godfrey, Andrew E.; Everitt, Benjamin L.; Duque, José F. Martín

    2008-12-01

    The Fremont River drains about 1000 km 2 of Mancos Shale badlands, which provide a large percentage of the total sediment load of its middle and lower reaches. Factors controlling sediment movement include: weathering that produces thin paralithic soils, mass movement events that move the soil onto locations susceptible to fluvial transport, intense precipitation events that move the sediment along rills and across local pediments, and finally Fremont River floods that move the sediment to the main-stem Colorado River. A forty-year erosion-pin study has shown that down-slope creep moves the weathered shale crust an average of 5.9 cm/yr. Weather records and our monitoring show that wet winters add large slab failures and mudflows. Recent sediment-trap studies show that about 95% of sediment movement across pediments is accomplished by high-intensity summer convective storms. Between 1890 and 1910, a series of large autumn floods swept down the Fremont River, eroding its floodplain and transforming it from a narrow and meandering channel to a broad, braided one. Beginning about 1940, the Fremont's channel began to narrow. Sequential aerial photos and cross-sections suggest that floodplain construction since about 1966 has stored about 4000 to 8000 m 3 of sediment per kilometer per year. These data suggest that it will take two centuries to restore the floodplain to its pre-1890 condition, which is in line with geologic studies elsewhere on the Colorado Plateau. The various landscape elements of slope, pediment, and floodplain are semi-independent actors in sediment delivery, each with its own style. Accelerated mass movement on the slopes has an approximate 20-year recurrence. Sediment movement from slope across pediments to master stream is episodic and recurs more frequently. The slope-to-pediment portion of the system appears well connected. However, sediment transport through the floodplain is not well connected in the decadal time scale, but increases in the

  7. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    Science.gov (United States)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  8. Potential for water salvage by removal of non-native woody vegetation from dryland river systems

    Science.gov (United States)

    Doody, T.M.; Nagler, P.L.; Glenn, E.P.; Moore, G.W.; Morino, K.; Hultine, K.R.; Benyon, R.G.

    2011-01-01

    Globally, expansion of non-native woody vegetation across floodplains has raised concern of increased evapotranspiration (ET) water loss with consequent reduced river flows and groundwater supplies. Water salvage programs, established to meet water supply demands by removing introduced species, show little documented evidence of program effectiveness. We use two case studies in the USA and Australia to illustrate factors that contribute to water salvage feasibility for a given ecological setting. In the USA, saltcedar (Tamarix spp.) has become widespread on western rivers, with water salvage programs attempted over a 50-year period. Some studies document riparian transpiration or ET reduction after saltcedar removal, but detectable increases in river base flow are not conclusively shown. Furthermore, measurements of riparian vegetation ET in natural settings show saltcedar ET overlaps the range measured for native riparian species, thereby constraining the possibility of water salvage by replacing saltcedar with native vegetation. In Australia, introduced willows (Salix spp.) have become widespread in riparian systems in the Murray-Darling Basin. Although large-scale removal projects have been undertaken, no attempts have been made to quantify increases in base flows. Recent studies of ET indicate that willows growing in permanently inundated stream beds have high transpiration rates, indicating water savings could be achieved from removal. In contrast, native Eucalyptus trees and willows growing on stream banks show similar ET rates with no net water salvage from replacing willows with native trees. We conclude that water salvage feasibility is highly dependent on the ecohydrological setting in which the non-native trees occur. We provide an overview of conditions favorable to water salvage. Copyright ?? 2011 John Wiley & Sons, Ltd.

  9. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers.

    Science.gov (United States)

    Rank, Dieter; Wyhlidal, Stefan; Schott, Katharina; Weigand, Silvia; Oblin, Armin

    2018-05-01

    The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3 H values were around 8 TU in 2015, short-term 3 H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006-2015 supplement adding to the Danube isotope set published earlier.

  10. Glemmer USA Afghanistan nu?

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo

    2015-01-01

    Hvis Obamas efterfølger kan skrue den rigtige strategiske fortælling sammen så vil USA ikke forlade Afghanistan med udgangen af 2016.......Hvis Obamas efterfølger kan skrue den rigtige strategiske fortælling sammen så vil USA ikke forlade Afghanistan med udgangen af 2016....

  11. A field reciprocal transplant experiment reveals asymmetric costs of migration between lake and river ecotypes of three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Kaufmann, J; Lenz, T L; Kalbe, M; Milinski, M; Eizaguirre, C

    2017-05-01

    Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three-spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three-spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. Status of the Majorana Demonstrator experiment

    Science.gov (United States)

    Martin, R. D.; Abgrall, N.; Aguayo, E.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Mertens, S.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G., II; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Soin, A.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    2014-06-01

    The Majorana Demonstrator neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  13. Sõda, mille USA on juba kaotanud / Mart Helme

    Index Scriptorium Estoniae

    Helme, Mart, 1949-

    2003-01-01

    USA pole suutnud Iraagi-vastase sõja vajalikkust põhjendada, arvavad paljud USA poliitikavaatlejad. Rängaks diplomaatiliseks eksimuseks peetakse USA kaitseministri Donald Rumsfeldi avaldust, et USA ei vaja kellegi abi sõjas

  14. Using large-scale flow experiments to rehabilitate Colorado River ecosystem function in Grand Canyon: Basis for an adaptive climate-resilient strategy: Chapter 17

    Science.gov (United States)

    Melis, Theodore S.; Pine, William E.; Korman, Josh; Yard, Michael D.; Jain, Shaleen; Pulwarty, Roger S.; Miller, Kathleen; Hamlet, Alan F.; Kenney, Douglas S.; Redmond, Kelly T.

    2016-01-01

    Adaptive management of Glen Canyon Dam is improving downstream resources of the Colorado River in Glen Canyon National Recreation Area and Grand Canyon National Park. The Glen Canyon Dam Adaptive Management Program (AMP), a federal advisory committee of 25 members with diverse special interests tasked to advise the U.S. Department of the Interior), was established in 1997 in response to the 1992 Grand Canyon Protection Act. Adaptive management assumes that ecosystem responses to management policies are inherently complex and unpredictable, but that understanding and management can be improved through monitoring. Best known for its high-flow experiments intended to benefit physical and biological resources by simulating one aspect of pre-dam conditions—floods, the AMP promotes collaboration among tribal, recreation, hydropower, environmental, water and other natural resource management interests. Monitoring has shown that high flow experiments move limited new tributary sand inputs below the dam from the bottom of the Colorado River to shorelines; rebuilding eroded sandbars that support camping areas and other natural and cultural resources. Spring-timed high flows have also been shown to stimulate aquatic productivity by disturbing the river bed below the dam in Glen Canyon. Understanding about how nonnative tailwater rainbow trout (Oncorhynchus mykiss), and downstream endangered humpback chub (Gila cypha) respond to dam operations has also increased, but this learning has mostly posed “surprise” adaptation opportunities to managers. Since reoperation of the dam to Modified Low Fluctuating Flows in 1996, rainbow trout now benefit from more stable daily flows and high spring releases, but possibly at a risk to humpback chub and other native fishes downstream. In contrast, humpback chub have so far proven robust to all flows, and native fish have increased under the combination of warmer river temperatures associated with reduced storage in Lake Powell, and a

  15. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada.

    Science.gov (United States)

    Boyd, Glen R; Reemtsma, Helge; Grimm, Deborah A; Mitra, Siddhartha

    2003-07-20

    A newly developed analytical method was used to measure concentrations of nine pharmaceuticals and personal care products (PPCPs) in samples from two surface water bodies, a sewage treatment plant effluent and various stages of a drinking water treatment plant in Louisiana, USA, and from one surface water body, a drinking water treatment plant and a pilot plant in Ontario, Canada. The analytical method provides for simultaneous extraction and quantification of the following broad range of PPCPs and endocrine-disrupting chemicals: naproxen; ibuprofen; estrone; 17beta-estradiol; bisphenol A; clorophene; triclosan; fluoxetine; and clofibric acid. Naproxen was detected in Louisiana sewage treatment plant effluent at 81-106 ng/l and Louisiana and Ontario surface waters at 22-107 ng/l. Triclosan was detected in Louisiana sewage treatment plant effluent at 10-21 ng/l. Of the three surface waters sampled, clofibric acid was detected in Detroit River water at 103 ng/l, but not in Mississippi River or Lake Pontchartrain waters. None of the other target analytes were detected above their method detection limits. Based on results at various stages of treatment, conventional drinking-water treatment processes (coagulation, flocculation and sedimentation) plus continuous addition of powdered activated carbon at a dosage of 2 mg/l did not remove naproxen from Mississippi River waters. However, chlorination, ozonation and dual media filtration processes reduced the concentration of naproxen below detection in Mississippi River and Detroit River waters and reduced clofibric acid in Detroit River waters. Results of this study demonstrate that existing water treatment technologies can effectively remove certain PPCPs. In addition, our study demonstrates the importance of obtaining data on removal mechanisms and byproducts associated with PPCPs and other endocrine-disrupting chemicals in drinking water and sewage treatment processes.

  16. Fight or flight : experiences with river flooding in the Netherlands.

    NARCIS (Netherlands)

    Zaalberg, R.; Midden, C.J.H.; Meijnders, A.L.; McCalley, L.T.

    2007-01-01

    Abstract: The earth's climate has changed rapidly in recent decades. This will have far-reaching consequences for low-lying countries such as the Netherlands. Sensitivity to warnings about river flooding is crucial in order to deal with climate change risks adequately and to motivate people to cope

  17. In Situ Stoichiometry in a Large River: Continuous Measurement of Doc, NO3 and PO4 in the Sacramento River

    Science.gov (United States)

    Downing, B. D.; Pellerin, B. A.; Bergamaschi, B. A.; Saraceno, J.

    2011-12-01

    Studying controls on geochemical processes in rivers and streams is difficult because concentration and composition often changes rapidly in response to physical and biological forcings. Understanding biogeochemical dynamics in rivers will improve current understanding of the role of watershed sources to carbon cycling, river and stream ecology, and loads to estuaries and oceans. Continuous measurements of dissolved organic carbon (DOC), nitrate (NO3-) and soluble reactive phosphate (SRP) concentrations are now possible, along with some information about DOC composition. In situ sensors designed to measure these constituents provide high frequency, real-time data that can elucidate hydrologic and biogeochemical controls which are difficult to detect using more traditional sampling approaches. Here we present a coupled approach, using in situ optical instrumentation with discharge measurements to provide quantitative estimates of constituent loads to investigate C, NO3- and SRP sources and processing in the Sacramento River, CA, USA. Continuous measurement of DOC concentration was conducted by use of a miniature in situ fluorometer (Turner Designs Cyclops) designed to measure chromophoric dissolved organic matter fluorescence (FDOM) over the course of an entire year. Nitrate was measured concurrently using a Satlantic SUNA and phosphate was measured using a WETLabs model Cycle-P instrument for a two week period in July 2011. Continuous measurement from these instruments paired with continuous measurement of physical water quality variables such as temperature, pH, specific conductance, dissolved oxygen, and turbidity, were used to investigate physical and chemical dynamics of DOC, NO3-, SRP over varying time scales. Deploying these instruments at pre-existing USGS discharge gages allowed for calculation of instantaneous and integrated constituent fluxes, as well as filling in gaps in our understanding biogeochemical processes and transport. Results from the study

  18. The influence of logjams on largemouth bass (Micropterus salmoides) concentrations on the lower Roanoke River, a large sand-bed river

    Science.gov (United States)

    Schenk, Edward R.; McCargo, Jeremy W.; Moulin, Bertrand; Hupp, Cliff R.; Richter, Jean M.

    2015-01-01

    This study examines the relation between logjams and largemouth bass (Micropterus salmoides) on the alluvial sand-bed lower Roanoke River. Disparate data sets from previous bank erosion, fisheries, and large wood studies were used to compare the distribution of largemouth bass with logjam frequency. Logjams are related to the frequency of bank mass wasting increasing from near an upstream dam to the middle reach of the study segment and then decreasing as the river approaches sea level. The highest concentration of largemouth bass and logjams was in the middle reach (110 fish per hour and 21 jams per km). Another measure of largemouth bass distribution, fish biomass density (g h1 ), had a similar trend with logjams and was a better predictor of fish distribution versus logjams (R2= 0.6 and 0.8 and p = 0.08 and 0.02 for fish per hour and g h1 versus logjam, respectively). We theorize that the preference for adult bass to congregate near logjams indicates the use of the jams as feeding areas. The results of a principal component analysis indicate that fish biomass concentration is much more related to logjam frequency than channel geometry (width, depth, and bank height), bed grain size, bank erosion, or turbidity. The results of this research support recent studies on in-channel wood and fisheries: Logjams appear to be important for maintaining, or increasing, both largemouth bass numbers and total biomass of fish in large eastern North American rivers. Persistent logjams, important as habitat, exist where relatively undisturbed river reaches allow for bank erosion inputs of wood and available anchoring locations. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. TTÜ ja TÜ osalevad USA armee miljoniprojektides

    Index Scriptorium Estoniae

    2016-01-01

    TTÜ ja TÜ liitusid USA-s tegutseva meditsiinitehnoloogia ettevõtete konsortsiumiga. Nii jõuavad juhtivate Eesti kõrgkoolide teadmised USA armeesse, kes konsortsiumi kaudu innovaatilisi tooteid ja teenuseid sisse ostab

  20. Projected risk of population declines for native fish species in the Upper Mississippi River

    Science.gov (United States)

    Crimmins, S.M.; Boma, P.; Thogmartin, W.E.

    2015-01-01

    Conservationists are in need of objective metrics for prioritizing the management of habitats. For individual species, the threat of extinction is often used to prioritize what species are in need of conservation action. Using long-term monitoring data, we applied a Bayesian diffusion approximation to estimate quasi-extinction risk for 54 native fish species within six commercial navigation reaches along a 1350-km gradient of the upper Mississippi River system. We found a strong negative linear relationship between quasi-extinction risk and distance upstream. For some species, quasi-extinction estimates ranged from nearly zero in some reaches to one in others, suggesting substantial variability in threats facing individual river reaches. We found no evidence that species traits affected quasi-extinction risk across the entire system. Our results indicate that fishes within the upper Mississippi River system face localized threats that vary across river impact gradients. This suggests that conservation actions should be focused on local habitat scales but should also consider the additive effects on downstream conditions. We also emphasize the need for identification of proximate mechanisms behind observed and predicted population declines, as conservation actions will require mitigation of such mechanisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  1. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington

    Science.gov (United States)

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen

    2017-06-22

    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  2. Tsunami-generated sediment wave channels at Lake Tahoe, California-Nevada, USA

    Science.gov (United States)

    Moore, James G.; Schweickert, Richard A.; Kitts, Christopher A.

    2014-01-01

    A gigantic ∼12 km3 landslide detached from the west wall of Lake Tahoe (California-Nevada, USA), and slid 15 km east across the lake. The splash, or tsunami, from this landslide eroded Tioga-age moraines dated as 21 ka. Lake-bottom short piston cores recovered sediment as old as 12 ka that did not reach landslide deposits, thereby constraining the landslide age as 21–12 ka.Movement of the landslide splashed copious water onto the countryside and lowered the lake level ∼10 m. The sheets of water that washed back into the lake dumped their sediment load at the lowered shoreline, producing deltas that merged into delta terraces. During rapid growth, these unstable delta terraces collapsed, disaggregated, and fed turbidity currents that generated 15 subaqueous sediment wave channel systems that ring the lake and descend to the lake floor at 500 m depth. Sheets of water commonly more than 2 km wide at the shoreline fed these systems. Channels of the systems contain sediment waves (giant ripple marks) with maximum wavelengths of 400 m. The lower depositional aprons of the system are surfaced by sediment waves with maximum wavelengths of 300 m.A remarkably similar, though smaller, contemporary sediment wave channel system operates at the mouth of the Squamish River in British Columbia. The system is generated by turbidity currents that are fed by repeated growth and collapse of the active river delta. The Tahoe splash-induced backwash was briefly equivalent to more than 15 Squamish Rivers in full flood and would have decimated life in low-lying areas of the Tahoe region.

  3. A River Summer on the Hudson

    Science.gov (United States)

    Kenna, T. C.; Pfirman, S.; Selleck, B.; Son, L.; Land, M.; Cronin, J.

    2006-12-01

    River Summer is a month-long faculty development program extending from the continental shelf off New York City to the headwaters of the Hudson in the Adirondack Mountains. During the program, faculty from the Environmental Consortium of Hudson Valley Colleges and Universities teach each other about the Hudson environment, using innovative methods of teaching and learning, with a focus on incorporation of hands-on approaches from the perspective of multiple disciplines. Over four weeks, faculty from research universities, community colleges, liberal arts institutions, and middle and high schools work and live together, on board a research vessel or in a remote tent campsite, for several days at a time. Using the geology, hydrology, and landscape of the River as a foundation, River Summer focuses on understanding development of the Hudson within the context of its natural resources and cultural history. Participants conduct field sampling and analyses and consider issues through approaches that are common to many disciplines: scaling for problem solving; sampling and assessing bias and representation; observing and documenting; representing and depicting; interpretation and assessing relationships and causality; and evaluation. They also get a chance to experience, first-hand, the complexity and often open-ended nature of doing science. By allowing individuals, many of whom come from non-science disciplines, to experience these methods and processes in a safe learning environment, science is made more meaningful and accessible. The program's pedagogy is based on the principles of cognitive psychology and immersive field-, place- and inquiry-based learning. Field programs have been found to provide memorable, transformative experiences for undergraduate students, and our experience with River Summer 2005 and 2006 suggests they are equally effective with faculty. Evaluation shows that River Summer has a significant impact on its participants. Participants develop new

  4. Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA

    Science.gov (United States)

    Schroeder, Anthony L.; Martinovic-Weigelt, Dalma; Ankley, Gerald T.; Lee, Kathy E.; Garcia-Reyero, Natalia; Perkins, Edward J.; Schoenfuss, Heiko L.; Villeneuve, Daniel L.

    2017-01-01

    Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.

  5. Geochemical Tracing of Potential Hydraulic Connections between Groundwater and Run-Off Water in Northeastern Kansas, USA

    Directory of Open Access Journals (Sweden)

    Norbert Clauer

    2017-11-01

    Full Text Available This study is focused on establishing the extent of potential hydraulic connections of local lowland aquifers with the run-off waters of a nearby creek and two major rivers in and around Fort Riley in northeastern Kansas, USA. It is based on collective evidence by combining the contents of several major and trace elements of the waters with their oxygen, hydrogen and Sr isotopic compositions. The area of investigation is located a few miles to the west of the Kansas Konza Prairie, which is a United States designated site for regular monitoring of ecological and environmental configurations. The δ18O and δD of the run-off waters from the two rivers and the creek, and of the ground waters from local aquifers are almost identical. Relative to the General Meteoric Water Line, the δ18O-δD data have a tendency to deviate towards relatively lower δ18O values, as do generally the sub-surface waters of intra-continental basins. The observed stable isotope compositions for these waters preclude any significant impact by either an evapo-transpiration process by the vegetation, or an interaction with immediate mineral-rock matrices. The 87Sr/86Sr ratios of the aquifer waters collected from wells close to the Kansas River were markedly different from those of the river waters, confirming a lack of hydraulic interactions between the aquifers and the river. On the contrary, ground waters from wells at a relative distance from the Kansas River have 87Sr/86Sr ratios, Sr contents and Sr/Ca ratios that are similar to those of the river water, suggesting a hydraulic connection between these aquifers and the river, as well as a lack of any impact of the vegetation. An underground water supply from nearby Summer Hill located to the north of the study area has also been detected, except for its western border where no interactions occurred apparently between the aquifer waters and the reservoir rocks, or with the creek and river waters. The 87Sr/86Sr signatures

  6. Ensemble modeling of E. coli in the Charles River, Boston, Massachusetts, USA.

    Science.gov (United States)

    Hellweger, F L

    2007-01-01

    A case study of ensemble modeling of Escherichia coli (E. coli) densities in surface waters in the context of public health risk prediction is presented. The output of two different models, mechanistic and empirical, are combined and compared to data. The mechanistic model is a high-resolution, time-variable, three-dimensional coupled hydrodynamic and water quality model. It generally reproduces the mechanisms of E. coli fate and transport in the river, including the presence and absence of a plume in the study area under similar input, but different hydrodynamic conditions caused by the operation of a downstream dam and wind. At the time series station, the model has a root mean square error (RMSE) of 370 CFU/100mL, a total error rate (with respect to the EPA-recommended single sample criteria value of 235 CFU/100mL) (TER) of 15% and negative error rate (NER) of 30%. The empirical model is based on multiple linear regression using the forcing functions of the mechanistic model as independent variables. It has better overall performance (at the time series station), due to a strong correlation of E. coli density with upstream inflow for this time period (RMSE =200 CFU/100mL, TER =13%, NER =1.6%). However, the model is mechanistically incorrect in that it predicts decreasing densities with increasing Combined Sewer Overflow (CSO) input. The two models are fundamentally different and their errors are uncorrelated (R(2) =0.02), which motivates their combination in an ensemble. Two combination approaches, a geometric mean ensemble (GME) and an "either exceeds" ensemble (EEE), are explored. The GME model outperforms the mechanistic and empirical models in terms of RMSE (190 CFU/100mL) and TER (11%), but has a higher NER (23%). The EEE has relatively high TER (16%), but low NER (0.8%) and may be the best method for a conservative prediction. The study demonstrates the potential utility of ensemble modeling for pathogen indicators, but significant further research is

  7. Anatomy and dynamics of a floodplain, Powder River, Montana, U.S.A.

    Science.gov (United States)

    Pizzuto, J.E.; Moody, J.A.; Meade, R.H.

    2008-01-01

    Centimeter-scale measurements on several Powder River floodplains provide insights into the nature of overbank depositional processes that created the floodplains; during a 20-year period after a major flood in 1978. Rising stages initially entered across a sill at the downriver end of the floodplains. Later, as stages continued to rise, water entered the floodplains through distinct low saddles along natural levees. The annual maximum depth of water over the levee crest averaged 0.19 in from 1983 through 1996, and the estimated flow velocities were approximately 0.15 m s-1. Water ponded in the floodplain trough, a topographic low between the natural levee and the pre-flood riverbank, and mud settled as thin layers of nearly constant thickness. Mud layers alternated with sand layers, which were relatively thick near the channel. Together, these beds created a distinctive natural levee. In some locations, individual flood deposits began as a thin mud layer that gradually coarsened upwards to medium-grained sand. Coarsening-upwards sequences form initially as mud because only the uppermost layers of water in the channel supply the first overbank flows, which are rich in mud but starved of sand. At successively higher stages, fine sands and then medium sands increase in concentration in the floodwater and are deposited as fine- and medium-sand layers overlying the initial mud layer. Theoretical predictions from mathematical models of sediment transport by advection and diffusion indicate that these processes acting alone are unlikely to create the observed sand layers of nearly uniform thickness that extend across much of the floodplain. We infer that other transport processes, notably bedload transport, must be important along Powder River. Even with the centimeter-scale measurements of floodplain deposits, daily hydraulic data, and precise annual surface topographic surveys, we were unable to determine any clear correspondence between the gauged flow record of

  8. Det sorte USA

    DEFF Research Database (Denmark)

    Brøndal, Jørn

    Bogen gennemgår det sorte USAs historie fra 1776 til 2016, idet grundtemaet er spændingsforholdet mellem USAs grundlæggelsesidealer og den racemæssige praksis, et spændingsforhold som Gunnar Myrdal kaldte "det amerikanske dilemma." Bogen, der er opbygget som politisk, social og racemæssig histori......, er opdelt i 13 kapitler og består af fire dele: Første del: Slaveriet; anden del: Jim Crow; tredje del. King-årene; fjerde del: Frem mod Obama....

  9. USA suursaadik : hirmud on alistanud lootuse / Toomas Sildam

    Index Scriptorium Estoniae

    Sildam, Toomas, 1961-

    2004-01-01

    Eestist lahkuv USA suursaadik Joseph de Thomas andis USA iseseisvuspäeva kõnes hinnangu Eesti toetusele Iraagis ja USA Iraagi-poliitikale. Parlamendiliige Eiki Berg USA suursaadiku kõnest. Vt. ka: Suursaadiku sõnum lk. 10

  10. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  11. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    International Nuclear Information System (INIS)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-01-01

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a γ-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured γ-ray data acquired in an unusual configuration

  12. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-03-23

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a {gamma}-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured {gamma}-ray data acquired in an unusual configuration.

  13. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    Science.gov (United States)

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  14. European River Cruises On the Rise Among American Tourists

    Directory of Open Access Journals (Sweden)

    Melinda Jászberényi, Ph.D.

    2014-10-01

    Full Text Available River cruising is one of the most attractive and rapidly developing areas of international tourism. Beyond the beautiful natural environment of the rivers, architectural attractions along the riverside enrich the experience, providing historical and cultural background that deepens tourists’ connections to the city. This article provides an overview of Danube river cruise tourism among American tourist experts. It also showcases Budapest, an increasingly important and internationally recognized port of the Danube and capital of Hungary, as a popular tourist destination.

  15. Recent increases in sediment and nutrient accumulation in Bear Lake, Utah/Idaho, USA

    Science.gov (United States)

    Smoak, J.M.; Swarzenski, P.W.

    2004-01-01

    This study examines historical changes in sediment and nutrient accumulation rates in Bear Lake along the northeastern Utah/Idaho border, USA. Two sediment cores were dated by measuring excess 210Pb activities and applying the constant rate of supply (CRS) dating model. Historical rates of bulk sediment accumulation were calculated based on the ages within the sediment cores. Bulk sediment accumulation rates increased throughout the last 100 years. According to the CRS model, bulk sediment accumulation rates were TOC) were calculated by multiplying bulk sediment accumulation rates times the concentrations of these nutrients in the sediment. Accumulation rates of TP, TN, TIC, and TOC increased as a consequence of increased bulk sediment accumulation rates after the re-connection of Bear River with Bear Lake.

  16. Phenology of the adult angel lichen moth (Cisthene angelus) in Grand Canyon, USA

    Science.gov (United States)

    Metcalfe, Anya; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2016-01-01

    We investigated the phenology of adult angel lichen moths (Cisthene angelus) along a 364-km long segment of the Colorado River in Grand Canyon, Arizona, USA, using a unique data set of 2,437 light-trap samples collected by citizen scientists. We found that adults of C. angelus were bivoltine from 2012 to 2014. We quantified plasticity in wing lengths and sex ratios among the two generations and across a 545-m elevation gradient. We found that abundance, but not wing length, increased at lower elevations and that the two generations differed in size and sex distributions. Our results shed light on the life history and morphology of a common, but poorly known, species of moth endemic to the southwestern United States and Mexico.

  17. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess

  18. [Total pollution features of urban runoff outlet for urban river].

    Science.gov (United States)

    Luo, Hong-Bing; Luo, Lin; Huang, Gu; He, Qiang; Liu, Ping

    2009-11-01

    The urban stormwater runoff discharged to urban river, especially to rainfall source river, cannot be ignored. In this study, the Futian River watershed in Shenzhen city in a typical southern city of China is taken as the research object. In order to guide the pollution control for urban river, the eighteen rainfall events were monitored, and the total pollution features of the urban runoff outlet for this urban river were analyzed and discussed by using the process of pollutographs, the identifying to first flush, event mean concentration (EMC), etc. Results show that the concentrations of COD, SS, TN, TP and BOD5 are ten times more than the grade V of the environmental quality standards for surface water during the runoff time; the pollution caused by heavy metals (Cr, Ge, Cu, Hg and As) in runoff at a typical rainfall event is serious; the average and range of pollutant concentration at this runoff outlet in study area are evidently higher than at Shapingba in Chongqing city of China and at Silerwood in Canada, but are lower than at Shilipu in Wuhan city of China. The first flushes of COD, SS, BOD5, especially COD and SS, are evident, but the TN and TP are not. The average EMC of COD, TN, TP and BOD5 are 224.14, 571.15, 5.223, 2.04, 143.5 mg/L, respectively. To some extent, the EMC of COD is about two times of the value of the near cities, Macao and Zhuhai. The EMC of TN and TP are obviously higher than Beijing, Guangzhou and Shanghai. To compared with foreign counties, the EMC of the study area in Shenzhen is obviously much higher than the cities of Korean, USA and Canada. So the total pollution caused by the urban surface runoff in study area is serious and necessary to be treated.

  19. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    Science.gov (United States)

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-01-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for six weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, to estimate the sediment?s toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets but none of 22 organochlorine compounds included in the analyses were detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies, but these elements did not accumulate in the livers of the treated swans and probably were not readily available in the sediment. Although ingestion of the Anacostia River sediment caused subtle toxicological effects in swans, we concluded from pathological examinations and weight data that the treated swans remained basically healthy.

  20. National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting LHCb experiment on 23rd May 2007 with Spokesperson T. Nakada, Advisor to CERN Director-General J. Ellis and I. Belyaev of Syracuse

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting LHCb experiment on 23rd May 2007 with Spokesperson T. Nakada, Advisor to CERN Director-General J. Ellis and I. Belyaev of Syracuse

  1. Electronic tags and genetics explore variation in migrating steelhead kelts (oncorhynchus mykiss), Ninilchik river, Alaska

    Science.gov (United States)

    Nielsen, J.L.; Turner, S.M.; Zimmerman, C.E.

    2011-01-01

    Acoustic and archival tags examined freshwater and marine migrations of postspawn steelhead kelts (Oncorhynchus mykiss) in the Ninilchik River, Alaska, USA. Postspawn steelhead were captured at a weir in 2002-2005. Scale analysis indicated multiple migratory life histories and spawning behaviors. Acoustic tags were implanted in 99 kelts (2002-2003), and an array of acoustic receivers calculated the average speed of outmigration, timing of saltwater entry, and duration of residency in the vicinity of the river mouth. Ocean migration data were recovered from two archival tags implanted in kelts in 2004 (one male and one female). Archival tags documented seasonal differences in maximum depth and behavior with both fish spending 97% of time at sea <6 m depth (day and night). All study fish were double tagged with passive integrated transponder (PIT) tags implanted in the body cavity. Less than 4% of PIT tags were retained in postspawn steelhead. Molecular genetics demonstrated no significant differences in genetic population structure across years or among spawning life history types, suggesting a genetically panmictic population with highly diverse life history characteristics in the Ninilchik River.

  2. USA tankid jõudsid Tapale

    Index Scriptorium Estoniae

    2017-01-01

    Tapale saabus poolsada USA sõjamasinat, nende seas neli tanki Abrams M1A2 ja 15 jalaväe lahingumasinat Bradley. Tehnikat hakkab kasutama USA maaväe 4. jalaväediviisi 68. soomusrügemendi esimese pataljoni C-kompanii

  3. Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA

    Science.gov (United States)

    Richter, Holly E.; Gungle, Bruce; Lacher, Laurel J.; Turner, Dale S.; Bushman, Brooke M.

    2014-01-01

    Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  4. Development of a Shared Vision for Groundwater Management to Protect and Sustain Baseflows of the Upper San Pedro River, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Holly E. Richter

    2014-08-01

    Full Text Available Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  5. The extent of tidal influence in the Waccamaw River, South Carolina

    Science.gov (United States)

    Benjamin Thepaut; John Shelton; Susan Libes; Paul Conrads; Robert Sheehan

    2016-01-01

    The Waccamaw River Basin is located in the coastal plain and meanders from North Carolina to South Carolina. This tidal black-water river flows parallel to the coast past the cities of Conway and Georgetown, terminating in Winyah Bay. The river is hydrologically connected to the Atlantic Intracoastal Waterway (AIW) and experiences semi-diurnal tides with a range ...

  6. Estuarine Response to River Flow and Sea-Level Rise under Future Climate Change and Human Development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie; Copping, Andrea E.

    2015-04-01

    Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of the inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.

  7. USA NCAP - a glance at harmonization

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, R.M.; Park, B.T.; Beuse, N.M.; Lowrie, J.C. [National Highway Traffic Safety Administration, Washington, DC (United States); Swanson, J.L.; Rockwell, T.E. [ACE Systems Technologies, Inc. (United States)

    2001-07-01

    This paper is separated roughly into four parts. First, the authors discuss the frontal tests of the USA New Car Assessment Program (NCAP) and then consider similarities and differences in the two different types of frontal tests worldwide. Second, the focus is placed on the side crash of the USA NCAP and comparisons are made between the results of the two different types of lateral tests worldwide. Third, the paper explains the Congressional requirements to establish a child safety rating system (in the USA) by model year 2003 and looks at the approach taken by NCAPs worldwide. Finally, the growth in requests for consumer information (in the USA) is measured. (orig.)

  8. Pre- and post-impoundment nitrogen in the lower Missouri River

    Science.gov (United States)

    Blevins, Dale W.; Wilkison, Donald H.; Niesen, Shelley L.

    2013-01-01

    of wetlands along the Missouri River could be part of such a nitrate-reduction strategy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  9. River crossing: combining basic hydraulics with pipe protection

    Energy Technology Data Exchange (ETDEWEB)

    Carnicero, Martin [TGN Transportadora de Gas del Norte, Buenos Aires (Argentina). Integrity Dept.], e-mail: Martin.Carnicero@tgn.com.ar

    2009-07-01

    As a complement to the paper presented in 2003 (IBP505-03 River crossings: a decision making scheme for the execution of protection works), this paper is about sharing the experience collected during the following 6 years, regarding the performance of remediation works. At that time, alternatives were presented for erosion control in river beds (free spanning, unburied and buried pipe), river banks (curves and meanders), flood plains, river diversions through the right of way, and rivers subject to debris flow. While developing a solution, basic hydraulic principles must be taken into consideration, keeping in mind that the primary objective is to protect a pipeline. For each of the typical solutions discussed in the 2003 paper, there will be an example with a brief theoretical explanation, a conceptual justification of the solution adopted, and recommendations for construction details which become critical for the success of the projects implemented. (author)

  10. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries

    International Nuclear Information System (INIS)

    Elsinger, R.J.; Moore, W.S.

    1984-01-01

    226 Ra and 228 Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226 Ra to increase with increasing salinities up to 20 per mille. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228 Ra measured in the Yangtze River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228 Ra is added to the water column by diffusion from bottom sediments, while 226 Ra concentrations decrease from dilution. Diffusion of 228 Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay ( 228 Ra of 0.33 dpm cm -2 year was determined for Delaware Bay. (author)

  11. Individual growth and reproductive behavior in a newly established population of northern snakehead (Channa argus), Potomac River, USA

    Science.gov (United States)

    Landis, Andrew M. Gascho; Lapointe, Nicolas W. R.; Angermeier, Paul L.

    2010-01-01

    Northern snakehead (Channa argus) were first found in the Potomac River in 2004. In 2007, we documented feeding and reproductive behavior to better understand how this species is performing in this novel environment. From April to October, we used electrofishing surveys to collect data on growth, condition, and gonad weight of adult fish. Growth rates of young were measured on a daily basis for several weeks. Mean length-at-age for Potomac River northern snakehead was lower than for fish from China, Russia, and Uzbekistan. Fish condition was above average during spring and fall, but below average in summer. Below-average condition corresponded to periods of high spawning activity. Gonadosomatic index indicated that females began spawning at the end of April and continued through August. Peak spawning occurred at the beginning of June when average temperatures reached 26°C. Larval fish growth rate, after the transition to exogenous feeding, was 2.3 (SD ± 0.7) mm (total length, TL) per day. Although Potomac River northern snakehead exhibited lower overall growth rates when compared to other populations, these fish demonstrated plasticity in timing of reproduction and rapid larval growth rates. Such life history characteristics likely contribute to the success of northern snakehead in its new environment and limit managers’ options for significant control of its invasion.

  12. THE IMPLEMENTATION OF TECHNOLOGY IN TNE CONTINUING TEACHER EDUCATION OF THE USA

    OpenAIRE

    N. M. Shchur

    2012-01-01

    The content of the National Educational Technology Standards has been analyzed, the experience of implementing technology in the system of the continuing teacher education of the USA has been explored, the advantages and disadvantages of using digital tools in the process of the professional teacher development have been defined.

  13. Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA

    Science.gov (United States)

    Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara

    2018-01-01

    Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.

  14. USA tahab Iraagilt täispuutumatust / Kaivo Kopli

    Index Scriptorium Estoniae

    Kopli, Kaivo

    2008-01-01

    USA ja Iraagi läbirääkimised USA vägede staatuse üle venivad, USA soovib oma sõduritele täielikku immuniteeti. Iraak olevat nõus nende USA üksuste immuniteediga, kes on sõjalistes rajatistes või missioonil, milles on varem kokku lepitud

  15. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  16. Mechanisms of vegetation-induced channel narrowing of an unregulated canyon river: Results from a natural field-scale experiment

    Science.gov (United States)

    Manners, Rebecca B.; Schmidt, John C.; Scott, Michael L.

    2014-04-01

    The lower Yampa River in Yampa Canyon, western Colorado serves as a natural, field-scale experiment, initiated when the invasive riparian plant, tamarisk (Tamarix spp.), colonized an unregulated river. In response to tamarisk's rapid invasion, the channel narrowed by 6% in the widest reaches since 1961. Taking advantage of this unique setting, we reconstructed the geomorphic and vegetation history in order to identify the key mechanisms for which, in the absence of other environmental perturbations, vegetation alters fluvial processes that result in a narrower channel. From our reconstruction, we identified a distinct similarity in the timing and magnitude of tamarisk encroachment and channel change, albeit with a lag in the channel response, thus suggesting tamarisk as the driving force. Within a decade of establishment, tamarisk effectively trapped sediment and, as a result, increased floodplain construction rates. Increasing tamarisk coverage over time also reduced the occurrence of floodplain stripping. Tamarisk recruitment was driven by both hydrologic and hydraulic variables, and the majority of tamarisk plants (84%) established below the stage of the 2-year flood. Thus, upon establishment nearly all plants regularly interact with the flow and sediment transport field. Our analyses were predicated on the hypothesis that the flow regime of the Yampa River was stationary, and that only the riparian vegetation community had changed. While not heavily impacted by water development, we determined that some aspects of the flow regime have shifted. However, this shift, which involved the clustering in time of extremely wet and dry years, did not influence fluvial processes directly. Instead these changes directly impacted riparian vegetation and changes in vegetation cover, in turn, altered fluvial processes. Today, the rate of channel change and new tamarisk recruitment is small. We believe that the rapid expansion of tamarisk and related floodplain construction

  17. Spatial and temporal trends in occurrence of emerging and legacy contaminants in the Lower Columbia River 2008-2010

    Science.gov (United States)

    Alvarez, David A.; Perkins, Stephanie D.; Nilsen, Elena B.; Morace, Jennifer L.

    2014-01-01

    The Lower Columbia River in Oregon and Washington, USA, is an important resource for aquatic and terrestrial organisms, agriculture, and commerce. An 86-mile stretch of the river was sampled over a 3 year period in order to determine the spatial and temporal trends in the occurrence and concentration of water-borne organic contaminants. Sampling occurred at 10 sites along this stretch and at 1 site on the Willamette River using the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) passive samplers. Contaminant profiles followed the predicted trends of lower numbers of detections and associated concentrations in the rural areas to higher numbers and concentrations at the more urbanized sites. Industrial chemicals, plasticizers, and PAHs were present at the highest concentrations. Differences in concentrations between sampling periods were related to the amount of rainfall during the sampling period. In general, water concentrations of wastewater-related contaminants decreased and concentrations of legacy contaminants slightly increased with increasing rainfall amounts.

  18. Biochemical effects of lead, zinc, and cadmium from mining on fish in the Tri-States district of northeastern Oklahoma, USA

    Science.gov (United States)

    Schmitt, Christopher J.; Whyte, Jeffrey J.; Brumbaugh, William G.; Tillitt, Donald E.

    2005-01-01

    We assessed the exposure of fish from the Spring and Neosho Rivers in northeast Oklahoma, USA, to lead, zinc, and cadmium from historical mining in the Tri-States Mining District (TSMD). Fish (n = 74) representing six species were collected in October 2001 from six sites on the Spring and Neosho Rivers influenced to differing degrees by mining. Additional samples were obtained from the Big River, a heavily contaminated stream in eastern Missouri, USA, and from reference sites. Blood from each fish was analyzed for Pb, Zn, Cd, Fe, and hemoglobin (Hb). Blood also was analyzed for ??-aminolevulinic acid dehydratase (ALA-D) activity. The activity of ALA-D, an enzyme involved in heme synthesis, is inhibited by Pb. Concentrations of Fe and Hb were highly correlated (r = 0.89, p < 0.01) across all species and locations and typically were greater in common carp (Cyprinus carpio) than in other taxa. Concentrations of Pb, Zn, and Cd typically were greatest in fish from sites most heavily affected by mining and lowest in reference samples. The activity of ALA-D, but not concentrations of Hb or Fe, also differed significantly (p < 0.01) among sites and species. Enzyme activity was lowest in fish from mining-contaminated sites and greatest in reference fish, and was correlated negatively with Pb in most species. Statistically significant (p < 0.01) linear regression models that included negative terms for blood Pb explained as much as 68% of the total variation in ALA-D activity, but differences among taxa were highly evident. Positive correlations with Zn were documented in the combined data for channel catfish (Ictalurus punctatus) and flathead catfish (Pylodictis olivaris), as has been reported for other taxa, but not in bass (Micropterus spp.) or carp. In channel catfish, ALA-D activity appeared to be more sensitive to blood Pb than in the other species investigated (i.e., threshold concentrations for inhibition were lower). Such among-species differences are consistent

  19. USA andis Gruusiale vastakaid signaale / Neeme Raud

    Index Scriptorium Estoniae

    Raud, Neeme, 1969-

    2008-01-01

    USA välisministri Condoleezza Riceþi saabumisest Thbilisisse, et avaldada Gruusiale toetust. USA poolt antud soovitustest Gruusia president Mihhail Saakashvilile mitte jõudu kasutada ega alluda Venemaa provokatsioonidele ning hoiatustest sõjalise konflikti tagajärgede eest. USA analüütikute arvamusi

  20. Hydrologic Responses to Projected Climate Change in Ecologically-Vulnerable Watersheds of the Gulf Coast, USA

    Science.gov (United States)

    Neupane, R. P.; Ficklin, D. L.; Knouft, J.

    2017-12-01

    Climate change is likely to have significant effects on the water cycle of the Gulf Coast watersheds in the United States, which contain some of the highest levels of biodiversity of all freshwater systems in North America. Understanding potential hydrologic responses to continued climate change in these watersheds is important for management of water resources and to sustain ecological diversity. We used the Soil and Water Assessment Tool (SWAT) to simulate hydrologic processes and estimate the potential hydrological changes for the mid-21st century (2050s) and the late-21st century (2080s) in the Mobile River, Apalachicola River, and Suwannee River watersheds located in the Gulf Coast, USA. These estimates were based on downscaled future climate projections from 20 Global Circulation Models (GCMs) under two Representative Concentration Pathways (RCPs 4.5 and 8.5). Models were calibrated and validated using observed data from 58, 19, and 14 streamflow gauges in the Mobile River, Apalachicola River, and Suwannee River watersheds, respectively. Evaluation indices including the Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), and refined index of agreement (dr) were used to assess model quality. The mean values derived during calibration (NSE=0.68, R2=0.77, and dr=0.73) and validation (NSE=0.70, R2=0.78, and dr=0.74) of all watersheds indicated that the models performed well at simulating monthly streamflow. Our simulation results indicated an overall increase in mean annual streamflow for all the watersheds with a maximum increase in discharge of 28.6% for the Suwannee River watershed for RCP 4.5 during the 2080s, which is associated with a 6.8% increase in precipitation during the same time period. We observed an overall warming (4.2oC) with an increase in future precipitation (3.8%) in all watersheds during the 2080s under the worst-case RCP 8.5 scenario compared to the historical time period. Despite an increase in future precipitation, surface

  1. Progress towards Continental River Dynamics modeling

    Science.gov (United States)

    Yu, Cheng-Wei; Zheng, Xing; Liu, Frank; Maidment, Daivd; Hodges, Ben

    2017-04-01

    The high-resolution National Water Model (NWM), launched by U.S. National Oceanic and Atmospheric Administration (NOAA) in August 2016, has shown it is possible to provide real-time flow prediction in rivers and streams across the entire continental United States. The next step for continental-scale modeling is moving from reduced physics (e.g. Muskingum-Cunge) to full dynamic modeling with the Saint-Venant equations. The Simulation Program for River Networks (SPRNT) provides a computational approach for the Saint-Venant equations, but obtaining sufficient channel bathymetric data and hydraulic roughness is seen as a critical challenge. However, recent work has shown the Height Above Nearest Drainage (HAND) method can be applied with the National Elevation Dataset (NED) to provide automated estimation of effective channel bathymetry suitable for large-scale hydraulic simulations. The present work examines the use of SPRNT with the National Hydrography Dataset (NHD) and HAND-derived bathymetry for automated generation of rating curves that can be compared to existing data. The approach can, in theory, be applied to every stream reach in the NHD and thus provide flood guidance where none is available. To test this idea we generated 2000+ rating curves in two catchments in Texas and Alabama (USA). Field data from the USGS and flood records from an Austin, Texas flood in May 2015 were used as validation. Large-scale implementation of this idea requires addressing several critical difficulties associated with numerical instabilities, including ill-posed boundary conditions generated in automated model linkages and inconsistencies in the river geometry. A key to future progress is identifying efficient approaches to isolate numerical instability contributors in a large time-space varying solution. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  2. Lahingustress ajab USA sõdurid jooma / Neeme Raud

    Index Scriptorium Estoniae

    Raud, Neeme, 1969-

    2007-01-01

    Ilmunud ka: Postimees : na russkom jazõke, 15. märts 2007, lk. 10. USA kaitseministeeriumi siseuurimuse kohaselt kasvas alkoholi kuritarvitamine tegevteenistuses olevate USA sõjaväelaste seas aastatel 2002-2005 enam kui 30%. Alkoholi ja uimastite tarvitamisest Iraagis ja Afganistanis teenivate USA sõdurite hulgas. Vt. samas: USA relvajõududes puhkes uus homoskandaal

  3. Experiences of the Use of Bio monitors for Heavy Metal Pollution Control in Almendares River

    International Nuclear Information System (INIS)

    Olivares- Rieumont, S.; Lima, L.; De la Rosa, D.; Martinez, F.; Borroto, J.; Columbie, I.; Sanchez, M.J.

    2003-01-01

    Full Text: This work is the first approach to establish a monitoring system for heavy metals in the Almendares Vento Basin. This basin is the most important watershed of Havana City, which main river is the Almendares River, that with 42 km of length goes through 5 municipalities, where live more than 500,000 inhabitants. The river receives a large pollution loads from more than 50 pollution sources of Havana City. Inputs of toxic substances like heavy metals come from the industries located along the river and tributaries, the urban discharges and from important speedways in both shores of the river. In the work, concentrations of Cd, Pb, Zn, Cu, Ni, Co and Cr in sediments, water, gastropod species Tarebia granifera Lamarck, macrophyte Eichhornia Crassipes and fish from the specie Gambusia were evaluated at 14 stations during the dry season of 2003. Concentrations of copper and lead in water samples exceeded applicable guidelines for many of the sites monitored in the river basin. Heavy metals in sediments were analysed using three-stage sequential extraction procedure. In sediments high contents of studied metals were found in the bioavailable fraction. Some stations were highly polluted with all elements. Two main sources of pollution with heavy metals could be identified in the basin due to the higher concentration of most of the studied metals in the analized sampling stations. Pb concentrations were high in almost all the stations. Similar behaviour was found for the metal concentration in Eichhornia Crassipes roots, that appear to have an interesting potential as bio monitor of the pollution with heavy metals. Tarebia granifera Lamarck only could be found in 5 of the 14 stations monitored, and it presence is related with the quality of the river water. The magnitude of contamination was estimated by the comparison between local backgrounds and concentration of metals measured. Only high concentration of Zn were found in the Gambusia tissue, and no

  4. The energy situation in the Usa

    International Nuclear Information System (INIS)

    2006-01-01

    This analyses discusses the energy supplying security, the natural gas demand increase and its consequences, the climatic change in the long-dated, the long dated perspectives of the Usa energy policy, the law on the energy and the consequences for the nuclear activity, the financial incentives in favor of the construction of new nuclear power plants in the Usa and the good nuclear energy industry situation in the Usa. (A.L.B.)

  5. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    . Climate change and river ice regime research should also take into account these anthropogenic impacts. Reference: Ashton, W.D. 1986. River and lake ice engineering. Water Resources Publication, USA 485 p. Starosolszky, Ö., 1990. Effect of river barrages on ice regime. Journal of Hydraulic Research 28/6, 711-718. Williams, G.P., 1970. A note on the break-up of lakes and rivers as indicators of climate change. Atmosphere 8 (1), 23-24.

  6. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries--Distribution, transport and fate

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2′,6′-diethylacetanilide 2-hydroxy-2′,6′-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987–1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.

  7. Distribution of oxygen-18 and deuteriun in river waters across the United States

    Science.gov (United States)

    Kendall, Carol; Coplen, Tyler B.

    2001-01-01

    Reconstruction of continental palaeoclimate and palaeohydrology is currently hampered by limited information about isotopic patterns in the modern hydrologic cycle. To remedy this situation and to provide baseline data for other isotope hydrology studies, more than 4800, depth- and width-integrated, stream samples from 391 selected sites within the USGS National Stream Quality Accounting Network (NASQAN) and Hydrologic Benchmark Network (HBN) were analysed for δ18O and δ2H (http://water.usgs.gov/pubs/ofr/ofr00-160/pdf/ofr00-160.pdf). Each site was sampled bimonthly or quarterly for 2·5 to 3 years between 1984 and 1987. The ability of this dataset to serve as a proxy for the isotopic composition of modern precipitation in the USA is supported by the excellent agreement between the river dataset and the isotopic compositions of adjacent precipitation monitoring sites, the strong spatial coherence of the distributions of δ18O and δ2H, the good correlations of the isotopic compositions with climatic parameters, and the good agreement between the ‘national’ meteoric water line (MWL) generated from unweighted analyses of samples from the 48 contiguous states of δ2H=8·11δ18O+8·99 (r2=0·98) and the unweighted global MWL of sites from the Global Network for Isotopes in Precipitation (GNIP) of the International Atomic Energy Agency and the World Meteorological Organization (WMO) of δ2H=8·17δ18O+10·35. The national MWL is composed of water samples that arise in diverse local conditions where the local meteoric water lines (LMWLs) usually have much lower slopes. Adjacent sites often have similar LMWLs, allowing the datasets to be combined into regional MWLs. The slopes of regional MWLs probably reflect the humidity of the local air mass, which imparts a distinctive evaporative isotopic signature to rainfall and hence to stream samples. Deuterium excess values range from 6 to 15‰ in the eastern half of the USA, along the northwest coast and on the Colorado

  8. Experimental application of the "total maximum daily load" approach as a tool for WFD implementation in temporary rivers

    Science.gov (United States)

    Lo Porto, A.; De Girolamo, A. M.; Santese, G.

    2012-04-01

    In this presentation, the experience gained in the first experimental use in the UE (as far as we know) of the concept and methodology of the "Total Maximum Daily Load" (TMDL) is reported. The TMDL is an instrument required in the Clean Water Act in U.S.A for the management of water bodies classified impaired. The TMDL calculates the maximum amount of a pollutant that a waterbody can receive and still safely meet water quality standards. It permits to establish a scientifically-based strategy on the regulation of the emission loads control according to the characteristic of the watershed/basin. The implementation of the TMDL is a process analogous to the Programmes of Measures required by the WFD, the main difference being the analysis of the linkage between loads of different sources and the water quality of water bodies. The TMDL calculation was used in this study for the Candelaro River, a temporary Italian river, classified impaired in the first steps of the implementation of the WFD. A specific approach based on the "Load Duration Curves" was adopted for the calculation of nutrient TMDLs due to the more robust approach specific for rivers featuring large changes in river flow compared to the classic approach based on average long term flow conditions. This methodology permits to establish the maximum allowable loads across to the different flow conditions of a river. This methodology enabled: to evaluate the allowable loading of a water body; to identify the sources and estimate their loads; to estimate the total loading that the water bodies can receives meeting the water quality standards established; to link the effects of point and diffuse sources on the water quality status and finally to individuate the reduction necessary for each type of sources. The loads reductions were calculated for nitrate, total phosphorus and ammonia. The simulated measures showed a remarkable ability to reduce the pollutants for the Candelaro River. The use of the Soil and

  9. An interesting new genus of Berothinae (Neuroptera: Berothidae) from the early Eocene Green River Formation, Colorado.

    Science.gov (United States)

    Makarkin, Vladimir N

    2017-01-30

    Xenoberotha angustialata gen. et sp. nov. (Neuroptera: Berothidae) is described from the early Eocene of the Parachute Creek Member of the Green River Formation (U.S.A., Colorado). It is assigned to Berothinae as an oldest known member of the subfamily based on the presence of scale-like setae on the foreleg coxae. Distal crossveins of the fourth (outer) gradate series which are located very close to the wing margin in Xenoberotha gen. nov. is a character state previously unknown in Berothinae.

  10. Invited series of talks and lectures at Yale University (USA) on Rolf Nordahl's research

    DEFF Research Database (Denmark)

    Nordahl, Rolf

    2010-01-01

    in several topics. The lectures will address his innovative experiments on using methods from Film and Filmsound to inform research in Computer Games and Virtual Reality applications with real-life examples from the Natural Interactive Walking (NIW) project - a EU-funded project headed at Aalborg University......Rolf Nordahl , Medialogy in Copenhagen, will be giving an invited series of lectures at Yale University, Connecticut, USA in the last week of March, 2010. Rolf has been invited to give talks to Professors, research fellows, Ph.D.'s and graduate students of Yale University (USA), on his research...

  11. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    Directory of Open Access Journals (Sweden)

    C. F. Castro-Bolinaga

    2015-03-01

    Full Text Available This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  12. Reconstructing Sediment Supply, Transport and Deposition Behind the Elwha River Dams

    Science.gov (United States)

    Beveridge, C.

    2017-12-01

    The Elwha River watershed in Olympic National Park of Washington State, USA is predominantly a steep, mountainous landscape where dominant geomorphic processes include landslides, debris flows and gullying. The river is characterized by substantial variability of channel morphology and fluvial processes, and alternates between narrow bedrock canyons and wider alluvial reaches for much of its length. Literature suggests that the Elwha watershed is topographically and tectonically in steady state. The removal of the two massive hydropower dams along the river in 2013 marked the largest dam removal in history. Over the century long lifespan of the dams, approximately 21 million cubic meters of sediment was impounded behind them. Long term erosion rates documented in this region and reservoir sedimentation data give unprecedented opportunities to test watershed sediment yield models and examine dominant processes that control sediment yield over human time scales. In this study, we aim to reconstruct sediment supply, transport and deposition behind the Glines Canyon Dam (most upstream dam) over its lifespan using a watershed modeling approach. We developed alternative models of varying complexity for sediment production and transport at the network scale driven by hydrologic forcing. We simulate sediment supply and transport in tributaries upstream of the dam. The modeled sediment supply and transport dynamics are based on calibrated formulae (e.g., bedload transport is simulated using Wilcock-Crowe 2003 with modification based on observed bedload transport in the Elwha River). Observational data that aid in our approach include DEM, channel morphology, meteorology, and streamflow and sediment (bedload and suspended load) discharge. We aim to demonstrate how the observed sediment yield behind the dams was influenced by upstream transport supply and capacity limitations, thereby demonstrating the scale effects of flow and sediment transport processes in the Elwha River

  13. Spatio-temporal variability in movement, age, and growth of mountain whitefish (Prosopium williamsoni) in a river network based upon PIT tagging and otolith chemistry

    Science.gov (United States)

    Benjamin, Joseph R.; Wetzel, Lisa A.; Martens, Kyle D.; Larsen, Kimberly; Connolly, Patrick J.

    2013-01-01

    Connectivity of river networks and the movements among habitats can be critical for the life history of many fish species, and understanding of the patterns of movement is central to managing populations, communities, and the landscapes they use. We combined passive integrated transponder tagging over 4 years and strontium isotopes in otoliths to demonstrate that 25% of the mountain whitefish (Prosopium williamsoni) sampled moved between the Methow and Columbia rivers, Washington, USA. Seasonal migrations downstream from the Methow River to the Columbia River to overwinter occurred in autumn and upstream movements in the spring. We observed migration was common during the first year of life, with migrants being larger than nonmigrants. However, growth between migrants and nonmigrants was similar. Water temperature was positively related to the proportion of migrants and negatively related to the timing of migration, but neither was related to discharge. The broad spatio-temporal movements we observed suggest mountain whitefish, and likely other nonanadromous fish, require distant habitats and also suggests that management and conservation strategies to keep connectivity of large river networks are imperative.

  14. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.

    Directory of Open Access Journals (Sweden)

    John W. Shervais

    2013-03-01

    Full Text Available HOTSPOT is an international collaborative effort to understand the volcanic history of the Snake River Plain (SRP. The SRP overlies a thermal anomaly, the Yellowstone-Snake River hotspot, that is thought to represent a deep-seated mantle plume under North America. Theprimary goal of this project is to document the volcanic and stratigraphic history of the SRP, which represents the surface expression of this hotspot, and to understand how it affected the evolution of continental crust and mantle. An additional goal is to evaluate the geothermal potential of southern Idaho.Project HOTSPOT has completed three drill holes. (1 The Kimama site is located along the central volcanic axis of the SRP; our goal here was to sample a long-term record of basaltic volcanism in the wake of the SRP hotspot. (2 The Kimberly site is located near the margin of the plain; our goal here was to sample a record of high-temperaturerhyolite volcanism associated with the underlying plume. This site was chosen to form a nominally continuous record of volcanism when paired with the Kimama site. (3 The Mountain Home site is located in the western plain; our goal here was to sample the Pliocene-Pleistocene transition in lake sediments at this site and to sample older basalts that underlie the sediments.We report here on our initial results for each site, and on some of the geophysical logging studies carried out as part of this project.

  15. Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA

    Science.gov (United States)

    Minear, J. T.; Wright, S. A.

    2015-12-01

    In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing

  16. On forecasting of rivers contamination as a result of Chernobyl NPP accident

    International Nuclear Information System (INIS)

    Novitskij, M.A.

    2016-01-01

    Contamination of rivers on the territory effected by the Chernobyl accident is under consideration. On the base of analysis field and laboratory experiments data understanding about formation of long-lived radionuclides concentration in rain and snow melt runoff was elaborated. The correctness of mathematical model used for forecasting radiation situation on rivers was confirmed by the data of rivers contamination levels in spring 1987 [ru

  17. A century's challenges. Historical overview of radiation sources in the USA

    International Nuclear Information System (INIS)

    Lubenau, J.O.

    1999-01-01

    A historical overview of radiation sources in the USA, including lost or abandoned ones is given in this paper. The important lesson to be learned from operational experience with radiation sources is that periodic contacts by regulators with the users serve as reminders to them of the need to maintain control and countability of the sources, to properly dispose the sources when not needed, and to provide for their safe application. The historical perspective induces another lesson, when dealing with radiological protection issues, the knowledge learned from the past experience should not be ignored

  18. The Portland Basin: A (big) river runs through it

    Science.gov (United States)

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  19. Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA rivers: the impact of molecular size distribution

    Directory of Open Access Journals (Sweden)

    Michelle McELVAINE

    2003-02-01

    Full Text Available Dissolved organic carbon (DOC was collected in six rivers that transect the coastal plain of Georgia in July 1999 and February 2000. DOC concentrations ranged from 4.9 to 40.7 g m-3 and from 7.1 to 40.5 g m-3, respectively. The absorption coefficient at 440 nm was highly correlated with DOC concentration, suggesting that the optical parameter may be utilized for rapid estimation of DOC in these waters. The isolated DOC was separated into fractions of operationally defined molecular size, using an ultrafiltration technique that yielded three fractions: 50 ("large" kilodalton. The smallest fraction was the most abundant (>50% in 4 rivers in July and in all rivers in February, and considerably more abundant than in previous years. The wavelength-dependent absorption of the total DOC and its fractions showed approximately uniform shape of a curve declining exponentially with the increase of wavelength. The average slope of logarithmically transformed curves was 0.0151 and 0.0159 nm-1, for the material collected in July and February, respectively and showed a dependence on DOC molecular size. In unfractionated DOC samples, the mass-specific light absorption determined at 440 nm was on average 0.33 m2 g-1 in July, and 0.26 m2 g-1 in February. The mass-specific absorption coefficient in all fractions ranged between 0.085 and 1.347 m2 g-1 in July and between 0.085 and 1.877 m2 g-1 in February, and was positively correlated with the molecular size of the measured samples. The results of the reported study clearly suggest that the specific absorption coefficient of the yellow substance is an outcome of the relative contribution of its different size fractions.

  20. Optimum Orientation of the Atmospheric River (AR) for Extreme Storms in Feather, Yuba, and American River Watersheds in the Pacific Coast of the US

    Science.gov (United States)

    Ohara, N.; Kavvas, M. L.; Anderson, M.; Chen, Z. Q.; Ishida, K.

    2016-12-01

    This study investigated physical maximum precipitation rates for the next generation of flood management strategies under evolving climate conditions using a regional atmospheric model. The model experiments using a non-hydrostatic atmospheric models, MM5, revealed the precipitation mechanism affected by topography and non-linear dynamics of the atmosphere in the Pacific Coast of the US during the Atmospheric River (AR) events. Significant historical storm events were identified based on the continuous weather simulations for the Feather, Yuba, and American river watersheds in California. For these historical storms, the basin precipitations were maximized by setting fully saturated atmospheric layers at the boundary of the outer nesting domain. It was found that maximizing the atmospheric moisture supply at the model boundary does not always increase the precipitation in Feather and Yuba River basins. The pattern of the precipitation increase and decrease by the maximization suggested the rain shadow effect of the Coast Range causing this unexpected precipitation reduction by the moisture maximization. The ground precipitation seems to be controlled by the AR orientation to the topography as well as the precipitable water. Finally, the steady-state precipitation experiments were performed to find an optimum AR orientation to yield the most significant continuous precipitation rate in the Feather, Yuba, and American River basins. This physically-based numerical experiment can potentially incorporate the climate change effects, explicitly.

  1. Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River Gorge, USA

    International Nuclear Information System (INIS)

    Fenn, M.E.; Geiser, L.; Bachman, R.; Blubaugh, T.J.; Bytnerowicz, A.

    2007-01-01

    Topographic and meteorological conditions make the Columbia River Gorge (CRG) an 'exhaust pipe' for air pollutants generated by the Portland-Vancouver metropolis and Columbia Basin. We sampled fog, bulk precipitation, throughfall, airborne particulates, lichen thalli, and nitrophytic lichen distribution. Throughfall N and S deposition were high, 11.5-25.4 and 3.4-6.7 kg ha -1 over 4.5 months at all 9 and 4/9 sites, respectively. Deposition and lichen thallus N were highest at eastern- and western-most sites, implicating both agricultural and urban sources. Fog and precipitation pH were frequently as low as 3.7-5.0. Peak NO x , NH 3 , and SO 2 concentrations in the eastern CRG were low, suggesting enhanced N and S inputs were largely from particulate deposition. Lichens indicating nitrogen-enriched environments were abundant and lichen N and S concentrations were 2x higher in the CRG than surrounding national forests. The atmospheric deposition levels detected likely threaten Gorge ecosystems and cultural resources. - Nitrogen, sulfur and acidic deposition threaten natural and cultural resources in the Columbia River Gorge National Scenic Area

  2. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Peace on the River? Social-Ecological Restoration and Large Dam Removal in the Klamath Basin, USA

    Directory of Open Access Journals (Sweden)

    Hannah Gosnell

    2010-06-01

    Full Text Available This paper aims to explain the multiple factors that contributed to a 2010 agreement to remove four large dams along the Klamath river in California and Oregon and initiate a comprehensive social-ecological restoration effort that will benefit Indian tribes, the endangered fish on which they depend, irrigated agriculture, and local economies in the river basin. We suggest that the legal framework, including the tribal trust responsibility, the Endangered Species Act, and the Federal Power Act, combined with an innovative approach to negotiation that allowed for collaboration and compromise, created a space for divergent interests to come together and forge a legally and politically viable solution to a suite of social and environmental problems. Improved social relations between formerly antagonistic Indian tribes and non-tribal farmers and ranchers, which came about due to a number of local collaborative processes during the early 2000s, were critical to the success of this effort. Overall, we suggest that recent events in the Klamath basin are indicative of a significant power shift taking place between tribal and non-tribal interests as tribes gain access to decision-making processes regarding tribal trust resources and develop capacity to participate in the development of complex restoration strategies.

  4. Eesti ja USA sõlmisid kokkuleppe

    Index Scriptorium Estoniae

    2017-01-01

    Kaitseminister Margus Tsahkna ja Ameerika Ühendriikide suursaadik Eestis James Melville allkirjastasid Eesti ja USA kaitsekoostöö kokkuleppe, mis hakkab reguleerima Eestis viibivate USA relvajõudude liikmete, nende pereliikmete ja lepinglaste õiguslikku staatust

  5. USA otsib Iraanist aktiivselt tuumainfot / Neeme Raud

    Index Scriptorium Estoniae

    Raud, Neeme, 1969-

    2005-01-01

    Iraan avaldas protesti USA luurelendude üle Iraani kohal. USA endine kaitseminister James Baker peab Iraani ja Põhja-Koreaga nende tuumaprogrammide hävitamiseks sõja alustamist suurimaks veaks. Kuigi Bushi meeskond rõhutab vajadust lahendada küsimus rahumeelselt, toovad Dick Cheney' ja Condoleezza Rice'i avaldused mitme USA kommentaatori arvates meelde Iraagi sõja eelse taktika

  6. Using river locks to teach hydrodynamic concepts

    Science.gov (United States)

    Carvalho-Santos, Vagson L.; Mendes, Thales C.; Silva, Enisvaldo C.; Rios, Márcio L.; Silva, Anderson A. P.

    2013-11-01

    In this work, the use of a river lock as a non-formal setting for teaching hydrodynamical concepts is proposed. In particular, we describe the operation of a river lock situated at the Sobradinho dam, on the São Francisco River (Brazil). A model to represent and to analyse the dynamics of river lock operation is presented and we derive the dynamical equations for the rising of the water column as an example to understand the Euler equation. Furthermore, with this activity, we enable the integration of content initially introduced in the classroom with practical applications, thereby allowing the association of physical themes to content relevant in disciplines such as history and geography. In addition, experiences of this kind enable teachers to talk about the environmental and social impacts caused by the construction of a dam and, consequently, a crossover of concepts has been made possible, leading to more meaningful learning for the students.

  7. Using river locks to teach hydrodynamic concepts

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L; Mendes, Thales C; Silva, Enisvaldo C; Rios, Márcio L; Silva, Anderson A P

    2013-01-01

    In this work, the use of a river lock as a non-formal setting for teaching hydrodynamical concepts is proposed. In particular, we describe the operation of a river lock situated at the Sobradinho dam, on the São Francisco River (Brazil). A model to represent and to analyse the dynamics of river lock operation is presented and we derive the dynamical equations for the rising of the water column as an example to understand the Euler equation. Furthermore, with this activity, we enable the integration of content initially introduced in the classroom with practical applications, thereby allowing the association of physical themes to content relevant in disciplines such as history and geography. In addition, experiences of this kind enable teachers to talk about the environmental and social impacts caused by the construction of a dam and, consequently, a crossover of concepts has been made possible, leading to more meaningful learning for the students. (paper)

  8. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    Science.gov (United States)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  9. USA-reis nõuab biomeetrilist passi / Tuuli Koch

    Index Scriptorium Estoniae

    Koch, Tuuli

    2004-01-01

    USA-s pikendati viisavabastusprogrammi biomeetrilise passi tähtaega 2005. aasta 26. oktoobrini. USA Eesti-saatkonna töötaja Christopher Smithi sõnul ei kehti viisavabadusprogrammi raames reisimise puhul passid, mida ei saa masinaga lugeda

  10. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    Science.gov (United States)

    McCluney, Kevin E; Sabo, John L

    2014-01-01

    Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively. In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying. Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles). However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long-term effects of drying

  11. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    Directory of Open Access Journals (Sweden)

    Kevin E McCluney

    Full Text Available Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively.In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying.Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles. However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long

  12. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    Science.gov (United States)

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  13. USA allveelaev uputas kalalaeva / Heiki Suurkask

    Index Scriptorium Estoniae

    Suurkask, Heiki, 1972-

    2001-01-01

    Hawaii lähistel õppustel kiiret pinnaletõusu harjutanud USA allveelaev USS Greeneville põrkas kokku Jaapani õppelaevaga Ehime Maru, õnnetuse tagajärjel hukkus tõenäoliselt 9 jaapanlast. Skeem: Õnnetused USA allveelaevadega

  14. Groundwater controls on river channel pattern

    Science.gov (United States)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a

  15. Use of tritium to predict soluble pollutants transport in Ebro River waters (Spain).

    Science.gov (United States)

    Pujol, L; Sanchez-Cabeza, J A

    2000-05-01

    The Ebro River, in Northeast Spain, discharges into the Mediterranean Sea after flowing through several large cities and agricultural, mining and industrial areas. The Ascó nuclear power plant (NPP) is located in its lower section and comprises two pressurised water reactor units, from which low-level liquid radioactive waste is released to river waters under authority control. Tritium routinely released by the NPP was used as a radiotracer to determine the longitudinal dispersion coefficient and velocity of the river waters. Several field experiments, in co-ordination with the NPP, were carried out during 1991 and 1992. During each field experiment, the flow rate was kept constant by dams located upstream from the NPP. After each tritium release, water was sampled downstream at periodic intervals over several hours and tritium was measured with a low-background liquid scintillation counter. Velocity and dispersion coefficient were determined in river waters for several river discharges using an analytical, box-type and numerical approach to solve the one-dimensional advection-diffusion equation. The set of calibrated parameters was used to predict the displacement and dispersion of soluble pollutants in river waters. Velocity was determined as a function of river discharge and river slope, and dispersion coefficient was determined as a function of distance. Finally, sensitivity of the model predictions was studied and uncertainties of the fitted parameters were estimated.

  16. Eesti on USA uus lemmik / Argo Ideon

    Index Scriptorium Estoniae

    Ideon, Argo, 1966-

    2007-01-01

    President Toomas Hendrik Ilvese visiidist Washingtoni, kohtumistest USA presidendi George W. Bushi, asepresident Dick Cheney, asevälisminister John Negroponte, kaitseminister Robert M. Gates'i, USA Kongressi esindajatekoja spiikri Nancy Pelosi ja kongresmenidega. Eestil õnnestus korraldada USA pealinnas kohtumised, mille järjekorras ootab hulk palju suuremaid riike. Vabariigi President töövisiidil Ameerika Ühendriikides 25.-26.06.2007

  17. A survey of valleys and basins of the Western USA for the capacity to produce winter ozone.

    Science.gov (United States)

    Mansfield, Marc L; Hall, Courtney F

    2018-04-18

    High winter ozone in the Uintah Basin, Utah, and the Upper Green River Basin, Wyoming, occurs because of the confluence of three separate factors: (1) extensive oil or natural gas production, (2) topography conducive to strong multi-day thermal inversions, and (3) snow cover. We surveyed 13 basins and valleys in the western USA for the existence and magnitude of these factors. Seven of the basins, because winter ozone measurements were available, were assigned to four different behavioral classes. Based on similarities among the basins, the remaining six were also given a tentative assignment. Two classes (1 and 2) correspond to basins with high ozone because all three factors listed above are present at sufficient magnitude. Class 3 corresponds to rural basins with ozone at background levels, and occurs because at least one of the three factors is weak or absent. Class 4 corresponds to ozone below background levels, and occurs, for example, in urban basins whose emissions scavenge ozone. All three factors are present in the Wind River Basin, Wyoming, but compared to the Uintah or the Upper Green Basins, it has only moderate oil and gas production, and is assigned to class 3. We predict that the Wind River Basin, as well as other class 3 basins that have inversions and snow cover, would transition from background (class 3) to high ozone behavior (class 1 or 2) if oil or gas production were to intensify, or to class 4 (low winter ozone) if they were to become urban. Implication Statement High ozone concentrations in winter only occur in basins or valleys that have an active oil and natural gas production industry, multi-day thermal inversions, and snow cover; and have only been documented in two basins worldwide. We have examined a number of other candidate basins in the Western USA and conclude that these factors are either absent or too weak to produce high winter ozone. This study illustrates how strong each factor needs to be before winter ozone can be expected

  18. Optimum Pathways of Fish Spawning Migrations in Rivers

    Science.gov (United States)

    McElroy, B. J.; Jacobson, R. B.; Delonay, A.

    2010-12-01

    Many fish species migrate large distances upstream in rivers to spawn. These migrations require energetic expenditures that are inversely related to fecundity of spawners. Here we present the theory necessary to quantify relative energetic requirements of upstream migration pathways and then test the hypothesis that least-cost paths are taken by the federally endangered pallid sturgeon (Scaphyrhyncus Albus), a benthic rheophile, in the lower Missouri River, USA. Total work done by a fish through a migratory path is proportional to the size of the fish, the total drag on the fish, and the distance traversed. Normalizing by the work required to remain stationary at the beginning of a path, relative work expenditure at each point of the path is found to be the cube of the ratio of the velocity along the path to the velocity at the start of the path. This is the velocity of the fish relative to the river flow. A least-cost migratory pathway can be determined from the velocity field in a reach as the path that minimizes a fish's relative work expenditure. We combine location data from pallid sturgeon implanted with telemetric tags and pressure-sensitive data storage tags with depth and velocity data collected with an acoustic Doppler profiler. During spring 2010 individual sturgeon were closely followed as they migrated up the Missouri River to spawn. These show that, within a small margin, pallid sturgeon in the lower Missouri River select least-cost paths as they swim upstream (typical velocities near 1.0 - 1.2 m/s). Within the range of collected data, it is also seen that many alternative paths not selected for migration are two orders of magnitude more energetically expensive (typical velocities near 2.0 - 2.5 m/s). In general these sturgeon migrated along the inner banks of bends avoiding high velocities in the thalweg, crossing the channel where the thalweg crosses in the opposite direction in order to proceed up the inner bank of subsequent bends. Overall, these

  19. Hybrid modelling of bed-discordant river confluences

    Science.gov (United States)

    Franca, M. J.; Guillén-Ludeña, S.; Cheng, Z.; Cardoso, A. H.; Constantinescu, G.

    2016-12-01

    In fluvial networks, tributaries are the main providers of sediment and water to the main rivers. Furthermore, confluences are environmental hotspots since they provide ecological connectivity and flow and morphology diversity. Mountain confluences, in particular, are characterized by narrow and steep tributaries that provide important sediment load to the confluence, whereas the main channel supplies the dominant flow discharge. This results in a marked bed discordance between the tributary and main channel. This discordance has been observed to be a key feature that alters the dynamics of the confluence, when compared to concordant confluences. The processes of initiation and maintenance of the morphology of confluences is still unknown, and research linking morphodynamics and hydrodynamics of river confluences is required to understand this. Here, a hybrid approach combining laboratory experiments made in a live-bed model of a river confluence, with 3D numerical simulations using advanced turbulence models is presented. We use the laboratory experiments performed by Guillén-Ludeña et al. (2016) for a 70o channel confluence, which focused on sediment transport and morphology changes rather than on the structure of the flow. Highly eddy resolving simulations were performed for two extreme bathymetric conditions, at the start of the experiment and at equilibrium scour conditions. The first allows to understand the initiation mechanisms which will condition later the equilibrium morphology. The second allows to understand the hydrodynamics actions which keep the equilibrium morphology. The patterns of the mean flow, turbulence and dynamics of the large-scale coherent structures, show how the main sediment-entrainment mechanisms evolve during the scour process. The present results contribute to a better understanding of the interaction between bed morphology and flow dynamics at discordant mountain river confluences.

  20. Numerical Estimation of the Outer Bank Resistance Characteristics in AN Evolving Meandering River

    Science.gov (United States)

    Wang, D.; Konsoer, K. M.; Rhoads, B. L.; Garcia, M. H.; Best, J.

    2017-12-01

    Few studies have examined the three-dimensional flow structure and its interaction with bed morphology within elongate loops of large meandering rivers. The present study uses a numerical model to simulate the flow pattern and sediment transport, especially the flow close to the outer-bank, at two elongate meandering loops in Wabash River, USA. The numerical grid for the model is based on a combination of airborne LIDAR data on floodplains and the multibeam data within the river channel. A Finite Element Method (FEM) is used to solve the non-hydrostatic RANS equation using a K-epsilon turbulence closure scheme. High-resolution topographic data allows detailed numerical simulation of flow patterns along the outer bank and model calibration involves comparing simulated velocities to ADCP measurements at 41 cross sections near this bank. Results indicate that flow along the outer bank is strongly influenced by large resistance elements, including woody debris, large erosional scallops within the bank face, and outcropping bedrock. In general, patterns of bank migration conform with zones of high near-bank velocity and shear stress. Using the existing model, different virtual events can be simulated to explore the impacts of different resistance characteristics on patterns of flow, sediment transport, and bank erosion.

  1. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, F.S.

    1999-01-01

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials

  2. Issue of ecological impacts due to hydro-peaking management. Characterization of hydro-peaks - Operating experience on Maronne River; Impacts ecologiques des eclusees hydroelectriques. Caracterisaton des regimes d'eclusees et Retour d'experience sur la Maronne

    Energy Technology Data Exchange (ETDEWEB)

    Courret, Dominique; Larinier, Michel [Office National de l' Eau et des Milieux Aquatiques - ONEMA, Pole Ecohydraulique, IMFT, Cemagref, Avenue du Professeur Camille Soula, 31400 Toulouse (France); Chanseau, Matthieu [MIGADO, 18ter rue de la Garonne - 47520 Le Passage (France); Office National de l' Eau et des Milieux Aquatiques - ONEMA, Direction Interregionale de Toulouse, Avenue du Professeur Camille Soula, 31400 Toulouse (France); Lascaux, Jean-Marc [Etudes et COnseils en Gestion de l' Environnement Aquatique - ECOGEA, 10 avenue de Toulouse, 31860 Pins-Justaret (France)

    2012-01-15

    Hydro-peaking management can consistently alter fish populations, and particularly recruitment of diadromous species, like salmon. To progress in understanding the impacts and defining mitigation measures, it appears essential to combine long-term biological survey, hydrological analysis including hydro-peaks characterization, and hydro-morphologic approach. In a first time, a methodology for hydrological characterization of hydro-peaks is presented. Their diversity and high variability are illustrated. Then, we present operating experience on Maronne River, a tributary of the Dordogne River downstream Argentat affected by hydro-peaks of Hautefage scheme. Biological surveys and hydrologic and hydro-morphologic studies allowed a better understanding and a quantification of some biological impacts (redds dewatering, stranding-trapping of alevins), to support mitigation measures and to assess its effectiveness. The relevance of work on morphology, in addition to measures on flow management, is also illustrated. Some positive results have already been obtained. Studies on the Maronne River are pursued to achieve a really satisfactory situation. This example shows that the current knowledge does not allow, on a given stream, to pre-define mitigation measures and ensure their efficiency. This leads to advocate the setting up of similar approach on other river, to identify biological communities' responses depending on the characteristics of hydro-peaks and hydro-systems. (authors)

  3. Quo vadis, USA dollar? : finantsturgude viimastest arengutest / Robert Liljequist

    Index Scriptorium Estoniae

    Liljequist, Robert

    2013-01-01

    Swedbank AB Soome strateegiajuht vastab küsimustele, mis puudutavad USA majandust alanud aastal, dollari n.-ö turvalise valuuta staatuse kaotamise ohtu, võlakirjade ostmise vähendamist ja selle mõju USA dollarile, Euroopa Keskpanga poliitika mõju euro ja USA dollari suhtele. Swebanki prognoos USA dollari kohta

  4. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change

    Science.gov (United States)

    Fullerton, A.H.; Torgersen, Christian E.; Lawer, J.J.; Steel, E. A.; Ebersole, J.L.; Lee, S.Y.

    2018-01-01

    Climate-change driven increases in water temperature pose challenges for aquatic organisms. Predictions of impacts typically do not account for fine-grained spatiotemporal thermal patterns in rivers. Patches of cooler water could serve as refuges for anadromous species like salmon that migrate during summer. We used high-resolution remotely sensed water temperature data to characterize summer thermal heterogeneity patterns for 11,308 km of second–seventh-order rivers throughout the Pacific Northwest and northern California (USA). We evaluated (1) water temperature patterns at different spatial resolutions, (2) the frequency, size, and spacing of cool thermal patches suitable for Pacific salmon (i.e., contiguous stretches ≥ 0.25 km, ≤ 15 °C and ≥ 2 °C, aooler than adjacent water), and (3) potential influences of climate change on availability of cool patches. Thermal heterogeneity was nonlinearly related to the spatial resolution of water temperature data, and heterogeneity at fine resolution ( 2.7 and  5.7 and < 49.4 km. Thermal heterogeneity varied among rivers, some of which had long uninterrupted stretches of warm water ≥ 20 °C, and others had many smaller cool patches. Our models predicted little change in future thermal heterogeneity among rivers, but within-river patterns sometimes changed markedly compared to contemporary patterns. These results can inform long-term monitoring programs as well as near-term climate-adaptation strategies.

  5. The climate protection policy of the USA under president Obama; Die Klimaschutzpolitik der USA unter Praesident Obama

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Wolfgang; Schenk, Olga [Forschungszentrum Juelich (Germany). Inst. fuer Energieforschung - Systemforschung und Technologische Entwicklung; Holtrup-Mostert, Petra [Transatlantic Networks - Foreign Policy Analysis, Koenigswinter (Germany)

    2009-01-15

    Barack Obama's slogan 'Are you ready for a Change?' may become the motto fo the future climate protection policy of the USA. While the USA is slowly beginning to play a more active role in this area, there are many political and institutional obstacles to overcome before the USA can become one of the big global players here. The authors analyse the status quo of the US climate protection policy in an attempt to indicate national and international perspectives of climate protection. (orig.)

  6. Rates and probable causes of freshwater tidal marsh failure, Potomac River Estuary, Northern Virginia, USA

    Science.gov (United States)

    Litwin, Ronald J.; Smoot, Joseph P.; Pavich, Milan J.; Markewich, Helaine Walsh; Oberg, Erik T.; Steury, Brent W.; Helwig, Ben; Santucci, Vincent L.; Sanders, Geoffrey

    2013-01-01

    Dyke Marsh, a distal tidal marsh along the Potomac River estuary, is diminishing rapidly in areal extent. This study documents Dyke Marsh erosion rates from the early-1860s to the present during pre-mining, mining, and post-mining phases. From the late-1930s to the mid-1970s, Dyke Marsh and the adjacent shallow riverbottom were mined for gravel, resulting in a ~55 % initial loss of area. Marsh loss continued during the post-mining phase (1976–2012). Causes of post-mining loss were unknown, but were thought to include Potomac River flooding. Post-mining areal-erosion rates increased from 0.138 ha yr−1 (~0.37 ac yr−1) to 0.516 ha yr−1(~1.67 ac yr−1), and shoreline-erosion rates increased from 0.76 m yr−1 (~2.5 ft yr−1) to 2.60 m yr−1 (~8.5 ft yr−1). Results suggest the accelerating post-mining erosion reflects a process-driven feedback loop, enabled by the marsh's severely-altered geomorphic and hydrologic baseline system; the primary post-mining degradation process is wave-induced erosion from northbound cyclonic storms. Dyke Marsh erosion rates are now comparable to, or exceed, rates for proximal coastal marshes in the same region. Persistent and accelerated erosion of marshland long after cessation of mining illustrates the long-term, and potentially devastating, effects that temporally-restricted, anthropogenic destabilization can have on estuarine marsh systems.

  7. A System Dynamics Model to Improve Water Resources Allocation in the Conchos River

    Science.gov (United States)

    Gastelum, J. R.; Valdes, J. B.; Stewart, S.

    2005-12-01

    The Conchos river located in Chihuahua state on a semiarid region is the most important Mexican river contributing water deliveries to USA as established by the Water treaty of 1944 signed between Mexico and USA. Historically, Mexico has delivered to UNITED STATES 550 Hm3 (445,549.5 ACF) per year of water since the treaty was established, which is 25% above the yearly water volume Mexico is required to deliver. The Conchos river has contributed with 54% of the historic Mexican water treaty deliveries to the UNITED STATES, which represents the highest percentage of the 6 Mexican rivers considered on the water treaty. However, during drought situations the basin has proven to be vulnerable, for instance, because of the severe drought of the 90's, several cities in 1992 on Chihuahua state where declared disaster areas, and from 1992 to 2001 Mexico had accumulated a water treaty deficit of 2111.6 Hm3 (1,710,586 ACF). This has conduced to economic, social, and political difficulties in both countries. Because of the cited problematic and considering the poor understanding of the relationship between water supply and demand factors on the basin, a decision support system (DSS) has been developed aimed to improve the decision making process related with the water resources allocation process. This DSS has been created using System Dynamics (SD). It is a semi-distributed model and is running on monthly time step basis. For both the short and long term, three important water resources management strategies have been evaluated: several water allocation policies from reservoirs to water users; bulk water rights transfers inside and outside Irrigation Districts; and improvement of water distribution efficiencies. The model results have provided very useful regard to gain more quantitative understanding of the different strategies being implemented. They have also indicated that the different water resources alternatives change its degree of importance according to the

  8. Assessment of the significance of direct and indirect pollution inputs to a major salmon-producing river using polyethylene membrane devices.

    Science.gov (United States)

    Moles, Adam; Holland, Larry; Andersson, Ole

    2006-08-01

    Conventional passive sampling devices for monitoring pollution input often prove to be cost-prohibitive when assessing large spatial and temporal scales. The Kenai River, a major salmon-producing river in Alaska (USA), served as the perfect laboratory to test the utility of polyethylene membrane devices for assessing chronic nonpoint-source inputs to a large riverine watershed. Comparison of the relative levels of polycyclic aromatic hydrocarbons (PAHs) at a large number of locations over time allowed us to assess the significance and potential source of these compounds in the river. Concentrations of PAH were greatest near urban areas and peaked during the late winter, when streams flows and dilution were low. Vessel activity and PAH levels peaked in July and were heaviest in the lower 16 km of the river, where fishing activity was concentrated. Nearly one-third of the vessels observed on the river were powered by two-stroke engines, which release a higher proportion of unburned fuel into the water than the cleaner burning four-stroke engines. The low concentrations of hydrocarbons upriver of the boat traffic suggest very little remote delivery of these contaminants to the watershed. Polyethylene strips proved to be an excellent, low-cost tool for determining the PAH patterns in a large watershed.

  9. Seismic evaluation of a diesel generator system at the Savannah River Site using earthquake experience data

    International Nuclear Information System (INIS)

    Griffin, M.J.; Tong, Wen H.; Rawls, G.B.

    1990-01-01

    New equipment and systems have been seismically qualified traditionally by either two methods, testing or analysis. Testing programs are generally expensive and their input loadings are conservative. It is generally recognized that standard seismic analysis techniques produce conservative results. Seismic loads and response levels for equipment that are typically calculated exceed the values actually experienced in earthquakes. An alternate method for demonstrating the seismic adequacy of equipment has been developed which is based on conclusions derived from studying the performance of equipment that has been subjected to actual earthquake excitations. The conclusion reached from earthquake experience data is that damage or malfunction to most types of equipment subjected to earthquakes is less than that predicted by traditional testing and analysis techniques. The use of conclusions derived from experience data provides a realistic approach in assessing the seismic ruggedness of equipment. By recognizing the inherently higher capacity that exists in specific classes of equipment, commercial ''off-the-shelf'' equipment can be procured and qualified without the need to perform expensive modifications to meet requirements imposed by traditional conservative qualification analyses. This paper will present the seismic experience data methodology applied to demonstrate the seismic adequacy of several commercially supplied 800KW diesel powered engine driven generator sets with peripheral support components installed at the Savannah River Site (SRS)

  10. Storm-rhine -simulation Tool For River Management

    Science.gov (United States)

    Heun, J. C.; Schotanus, T. D.; de Groen, M. M.; Werner, M.

    The Simulation Tool for River Management (STORM), based on the River Rhine case, aims to provide insight into river and floodplain management, by (1) raising aware- ness of river functions, (2) exploring alternative strategies, (3) showing the links be- tween natural processes, spatial planning, engineering interventions, river functions and stakeholder interests, (4) facilitating the debate between different policy makers and stakeholders from across the basin and (5) enhancing co-operation and mutual un- derstanding. The simulation game is built around the new concepts of SRoom for the & cedil;RiverT, Flood Retention Areas, Resurrection of former River Channels and SLiving & cedil;with the FloodsT. The Game focuses on the Lower and Middle Rhine from the Dutch Delta to Maxau in Germany. Influences from outside the area are included as scenarios for boundary conditions. The heart of the tool is the hydraulic module, which calcu- lates representative high- and low water-levels for different hydrological scenarios and influenced by river engineering measures and physical planning in the floodplains. The water levels are translated in flood risks, navigation potential, nature development and land use opportunities in the floodplain. Players of the Game represent the institutions: National, Regional, Municipal Government and Interest Organisations, with interests in flood protection, navigation, agriculture, urban expansion, mining and nature. Play- ers take typical river and floodplain engineering, physical planning and administrative measures to pursue their interests in specific river functions. The players are linked by institutional arrangements and budgetary constraints. The game particularly aims at middle and higher level staff of local and regional government, water boards and members of interest groups from across the basin, who deal with particular stretches or functions of the river but who need (1) to be better aware of the integrated whole, (2) to

  11. Long-term controls of soil organic carbon with depth and time: a case study from the Cowlitz River Chronosequence, WA USA

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Xu, Xiaomei; Schulz, Marjorie S.; Trumbore, Susan E.

    2015-01-01

    Over timescales of soil development (millennia), the capacity of soils to stabilize soil organic carbon (SOC) is linked to soil development through changes in soil mineralogy and other soil properties. In this study, an extensive dataset of soil profile chemistry and mineralogy is compiled from the Cowlitz River Chronosequence (CRC), WA USA. The CRC soils range in age from 0.25 to 1200 kyr, spanning a developmental gradient encompassing clear changes in soil mineralogy, chemistry, and surface area. Comparison of these and other metrics of soil development with SOC properties reveal several relationships that may be diagnostic of the long-term coupling of soil development and C cycling. Specifically, SOC content was significantly correlated with sodium pyrophosphate extractable metals emphasizing the relevance of organo-metal complexes in volcanic soils. The depth distributions of organo-metals and other secondary weathering products, including the kaolin and short-range order (SRO) minerals, support the so-called “binary composition” of volcanic soils. The formation of organo-metal complexes limits the accumulation of secondary minerals in shallow soils, whereas in deep soils with lower SOC content, secondary minerals accumulate. In the CRC soils, secondary minerals formed in deep soils (below 50 cm) including smectite, allophane, Fe-oxides and dominated by the kaolin mineral halloysite. The abundance of halloysite was significantly correlated with bulk soil surface area and 14C content (a proxy for the mean age of SOC), implying enhanced stability of C in deep soils. Allophane, an SRO mineral commonly associated with SOC storage, was not correlated with SOC content or 14C values in CRC soils. We propose conceptual framework to describe these observations based on a general understanding of pedogenesis in volcanic soils, where SOC cycling is coupled with soil development through the formation of and fate of organo-metal or other mobile weathering products

  12. Tšehhid protestisid USA raketikilbi vastu / Igor Taro

    Index Scriptorium Estoniae

    Taro, Igor

    2007-01-01

    USA soovib rajada oma ballistiliste rakettide eest kaitsva süsteemi rajatisi Poola ja Tšehhi territooriumile, mille vastu on protestinud ka Venemaa. Tšehhi Trokaveci küla elanike korraldatud referendumist ja Prahas toimunud meeleavaldustest USA raketikilbi radarijaama vastu. Lisa: USA raketikilp

  13. Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W.F.; Ickes, Brian; Ryherd, Julia K.; Guida, Ross J.; Therrell, Matthew D.

    2018-01-01

    The impacts of dams and levees on the long-term (>130 years) discharge record was assessed along a ~1200 km segment of the Mississippi River between St. Louis, Missouri, and Vicksburg, Mississippi. To aid in our evaluation of dam impacts, we used data from the U.S. National Inventory of Dams to calculate the rate of reservoir expansion at five long-term hydrologic monitoring stations along the study segment. We divided the hydrologic record at each station into three periods: (1) a pre-rapid reservoir expansion period; (2) a rapid reservoir expansion period; and (3) a post-rapid reservoir expansion period. We then used three approaches to assess changes in the hydrologic record at each station. Indicators of hydrologic alteration (IHA) and flow duration hydrographs were used to quantify changes in flow conditions between the pre- and post-rapid reservoir expansion periods. Auto-regressive interrupted time series analysis (ARITS) was used to assess trends in maximum annual discharge, mean annual discharge, minimum annual discharge, and standard deviation of daily discharges within a given water year. A one-dimensional HEC-RAS hydraulic model was used to assess the impact of levees on flood flows. Our results revealed that minimum annual discharges and low-flow IHA parameters showed the most significant changes. Additionally, increasing trends in minimum annual discharge during the rapid reservoir expansion period were found at three out of the five hydrologic monitoring stations. These IHA and ARITS results support previous findings consistent with the observation that reservoirs generally have the greatest impacts on low-flow conditions. River segment scale hydraulic modeling revealed levees can modestly increase peak flood discharges, while basin-scale hydrologic modeling assessments by the U.S. Army Corps of Engineers showed that tributary reservoirs reduced peak discharges by a similar magnitude (2 to 30%). This finding suggests that the effects of dams and

  14. Flood effects provide evidence of an alternate stable state from dam management on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Hupp, Cliff R.; Schenk, Edward R.; Galloway, Joel M.; Nustad, Rochelle A.

    2017-01-01

    We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3 s−1. Channel cross-section data and aerial imagery before and after the flood were compared with historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the 2011 flood maintained trends in island area with the loss of islands in the reach just below the dam and an increase in island area downstream. Channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric, which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that the presence of dams has created an alternate geomorphic and related ecological stable state, which does not revert towards pre-dam conditions in response to the flood of record. This suggests that management of sediment transport dynamics as well as flow modification is necessary to restore the Garrison Segment of the Upper Missouri River towards pre-dam conditions and help create or maintain habitat for endangered species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska.

    Science.gov (United States)

    Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...

  16. Travel and tourism in the USA: industry development trends

    OpenAIRE

    Smal, Valentyna

    2016-01-01

    The travel and tourism industry has evolved over the past six decades into one of the world’s most significant economic sectors. Travel and tourism are critical to the American economy. This growing industry offers significant potential for job creation across all regions of the country. A considerable competitive advantage of the USA as a tourism destination lies in the variety of experiences the country offers, ranging from large cities and small-town to the many unique historic places and ...

  17. Changes in polychlorinated biphenyl (PCB) exposure in tree swallows (Tachycineta bicolor) nesting along the Sheboygan River, WI, USA

    Science.gov (United States)

    Custer, Christine M.; Custer, Thomas W.; Strom, Sean M.; Patnode, Kathleen A.; Franson, J. Christian

    2014-01-01

    Exposure to polychlorinated biphenyls (PCBs) in tree swallow (Tachycineta bicolor) eggs on the Sheboygan River, Wisconsin in the 1990s was higher at sites downstream (geometric means = 3.33–8.69 μg/g wet wt.) of the putative PCB source in Sheboygan Falls, Wisconsin than it was above the source (1.24 μg/g) with the exposure declining as the distance downstream of the source increased. A similar pattern of declining exposure was present in the 2010s as well. Although exposure to PCBs in eggs along the Sheboygan River at sites downstream of Sheboygan Falls has declined by ~60 % since the mid-1990s (8.69 down to 3.27 μg/g) there still seems to be residual pockets of contamination that are exposing some individuals (~25 %) to PCB contamination, similar to exposure found in the 1990s. The exposure patterns in eggs and nestlings among sites, and the changes between the two decades, are further validated by accumulation rate information.

  18. USA's litterære superstjerne

    DEFF Research Database (Denmark)

    Bjerre, Thomas Ærvold

    2010-01-01

    Jonathan Franzen er den mest omtalte forfatter i USA lige nu og ombejlet af alle fra Time Magazine til Oprah Winfrey. Hvad er det, han kan, manden bag ”Freedom”?......Jonathan Franzen er den mest omtalte forfatter i USA lige nu og ombejlet af alle fra Time Magazine til Oprah Winfrey. Hvad er det, han kan, manden bag ”Freedom”?...

  19. Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington

    Science.gov (United States)

    Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H

    2016-01-01

    Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.

  20. The cost of noncooperation in international river basins

    Science.gov (United States)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  1. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    Directory of Open Access Journals (Sweden)

    Gary E Stinchcomb

    2014-08-01

    Full Text Available Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 – 8.5 ka corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 – 4.3 ka corresponds with a transitional wet/dry phase and a previously documented incision

  2. Outline of developing projects of atomic bomb in Japan and USA

    International Nuclear Information System (INIS)

    Fukui, Shuji

    2007-01-01

    The content of the title connecting with the World War II is described hoping that younger researchers of nuclear physics could know some of the facts that scientists and the military of Japan and USA, respectively, had have developing projects of atomic bomb by fission reaction, although there are no official documents of those in Japan, even if there are some unofficial documents that are uncertain partly in Japan. Described are a chronological table, the content of research and development of atomic bombs, Japan's experiments by Kikuchi Laboratory of Osaka Imperial University and Nishina Laboratory of RIKEN, as well as the USA's action such as production of fissile nuclide, Pu-239 and U-235, selection of the site to fabricate atomic bomb, investigation the state of research and development of atomic bombs in Germany, Italy and Japan. (S.Y.)

  3. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  4. Variations in PCB concentrations between genders of six warmwater fish species in Lake Logan Martin, Alabama, USA.

    Science.gov (United States)

    Rypel, Andrew L; Findlay, Robert H; Mitchell, Justin B; Bayne, David R

    2007-08-01

    We collected and analyzed 955 individual fish (six species) for sexual differences in PCB bioaccumulations from a southeastern, USA reservoir. Using 2-way ANCOVAs, we found significant differences in fillet PCB concentrations between sexes for channel catfish (Ictalurus punctatus), largemouth bass (Micropterus salmoides) and spotted bass (Micropterus punctulatus). Striped bass (Morone saxatilus), black crappie (Pomoxis nigromaculatus) and freshwater drum (Aplodinotus grunniens) did not display differences between sexes in PCB concentrations. We suspect that sexual differences may be due to biological differences in reproduction, relative motility and lipid deposition. For one species (striped bass), sexual differences in PCB concentrations were inconsistent with a study in the Hudson River suggesting that sexual differences in bioaccumulations can change across ecosystems. Two species which did show sexual differences, largemouth bass and channel catfish, are often chosen as representative species (e.g., "piscivore" and "benthivore") in contaminant monitoring in many USA states indicating human consumption and risk management decisions would be improved if an equal number of male and female fish were included in composite PCBs analysis. This could reduce variability in fish PCBs data from which consumption advisories are based.

  5. EDUCATION AND NATIONAL SECURITY: SYSTEM DEFICIENCIES OF MATHEMATICAL EDUCATION IN RUSSIA AND THE USA

    Directory of Open Access Journals (Sweden)

    M. A. Choshanov

    2013-01-01

    Full Text Available The paper looks at the mathematical education in Russian schools regarded not long ago as fundamental and based on developing students' mental abilities. However, the analysis of the Trends in International Mathematics and Science Study (TIMSS 2011 demonstrates the non-consistent results in mathematical achievements of young Russians over the last fifteen years referring to the decreasing rate of successfully solved high level problems. The author disapproves of mechanical duplication of any foreign experience contradicting the Russian realities. Meanwhile, a lot of people in the USA and elsewhere abroad realize that national security is closely related to the human capital, which directly depends on education. The publication considers the limitations of mathematical education both in Russia and the USA from the national security stand point.The author gives the comparative analysis of the system errors in mathematical education of the USA, and singles out the ones to be avoided: the residual investment into the human capital, rising gap between the school mathematics and mathematical science, degrading fundamentality of mathematical education, test drills instead of in-depth training, non-consistency of school reorganization, reduced academic hours, etc. In the author’s opinion, the negative foreign experience should be considered in order to meet the time requirements and preserve a unique Russian brand of the high quality mathematical education. 

  6. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  7. Engage the Public in Phenology Monitoring: Lessons Learned from the USA National Phenology Network

    Science.gov (United States)

    Crimmins, T. M.; Lebuhn, G.; Miller-Rushing, A. J.

    2009-12-01

    The USA National Phenology Network (USA-NPN) is a recently established network that brings together citizen scientists, government agencies, non-profit groups, educators and students of all ages to monitor the impacts of climate change on plants and animals in the United States. Though a handful of observers participated in the USA-NPN monitoring program in 2008, 2009 was the first truly operational year for the program. With a goal of 100,000 observers for this nationwide effort, we are working to engage participants both directly and through established organizations and agencies. The first year of operational monitoring and program advertisement has yielded many insights that are shaping how we move forward. In this presentation, we will highlight some of our most prominent “lessons learned” from our experience engaging participants, mainly through partnerships with organizations and agencies. One successful partnership that the USA-NPN established in 2009 was with the Great Sunflower Project, a citizen science effort focused on tracking bee activity. By piggy-backing on this established program, we were able to invite tens of thousands of self-selected individuals to learn about plant phenology and to contribute to the program. A benefit to the Great Sunflower Project was that monitoring phenology of their sunflowers gave observers something to do while waiting for the plant to attract bees. Observers’ experiences, data, and comments from the 2009 season are yielding insights into how this partnership can be strengthened and USA-NPN and GSP goals can more effectively be met. A second partnership initiated in 2009 was with the US National Park Service (NPS). Partnering with federal and state agencies offers great opportunities for data collection and education. In return, agencies stand to gain information that can directly influence management decisions. However, such efforts necessitate careful planning and execution. Together the USA-NPN and NPS drafted

  8. Etteheide: USA okupeerib Haitit / Kaivo Kopli

    Index Scriptorium Estoniae

    Kopli, Kaivo

    2010-01-01

    Prantsusmaa ja Brasiilia on esitanud protesti, sest USA sõjalennukitele on antud eelisõigus Haiti pealinna Port-au-Prince'i lennujaama kasutamisel. Paljude kommentaatorite hinnangul on Prantsusmaa püüdnud haarata prominentset rolli Haiti abistamisel, kuid USA on tegutsenud kiiremini ja jõulisemalt. Kaart

  9. Evaluating the influence of road salt on water quality of Ohio rivers over time

    International Nuclear Information System (INIS)

    Dailey, Kelsey R.; Welch, Kathleen A.; Lyons, W. Berry

    2014-01-01

    Highlights: • Road salt impact on central Ohio rivers was investigated via Cl − and Na + data. • Rivers with consistent past data displayed increasing trends in concentration. • Cl − and Na + showed increased concentration and flux downstream near urban areas. • Cl − /Br − mass ratios in waters suggest the origin of Cl − is in part from road salt. • 36 Cl/Cl ratios indicate a substantial dissolved halite component in the rivers. - Abstract: Anthropogenic inputs have largely contributed to the increasing salinization of surface waters in central Ohio, USA. Major anthropogenic contributions to surface waters are chloride (Cl − ) and sodium (Na + ), derived primarily from inputs such as road salt. In 2012–2013, central Ohio rivers were sampled and waters analyzed for comparison with historical data. Higher Cl − and Na + concentrations and fluxes were observed in late winter as a result of increased road salt application during winter months. Increases in both chloride/bromide (Cl − /Br − ) ratios and nitrate (N-NO 3 − ) concentrations and fluxes were observed in March 2013 relative to June 2012, suggesting a mixture of road salt and fertilizer runoff influencing the rivers in late winter. For some rivers, increased Cl − and Na + concentrations and fluxes were observed at downstream sites near more urban areas of influence. Concentrations of Na + were slightly lower than respective Cl − concentrations (in equivalents). High Cl − /Br − mass ratios in the Ohio surface waters indicated the source of Cl − was likely halite, or road salt. In addition, analysis of 36 Cl/Cl ratios revealed low values suggestive of a substantial dissolved halite component, implying the addition of “old” Cl − into the water system. Temporal trend analysis via the Mann–Kendall test identified increasing trends in Cl − and Na + concentration beginning in the 1960s at river locations with more complete historical datasets. An increasing trend in

  10. Aspects of acculturation stress among international students attending a university in the USA.

    Science.gov (United States)

    Chavajay, Pablo; Skowronek, Jeffrey

    2008-12-01

    Acculturation stress reported by 130 international students attending a university in Utah for about 2 yr. was examined. On the Acculturative Stress Scale for International Students, few students reported experiencing acculturation stress, but responses to four open-ended questions indicated many students perceived experience of acculturation stresses related to discrimination, feelings of loneliness, and academic concerns. The contrast of findings for the scale scores and the open-ended questions indicate the complexity of assessing international students' acculturation experiences of living and studying in the USA and suggest the usefulness of complementary methodologies for assessing such experience.

  11. Radioecology of large rivers: site and experiment data for modelling (application to the Meuse and the Rhone)

    International Nuclear Information System (INIS)

    Kirchmann, R.; Vandecasteele, C.M.; Foulquier, L.; Lambinon, J.; Sombre, L.

    1992-06-01

    In this report, the environmental impact of nuclear installations on two rivers, the Meuse and the Rhone, is assessed. The main characteristics of both rivers (natural radioactivity, artificial activity before the Chernobyl accident, and the evolution of the radioactivity during the post-Chernobyl period) are summarized and assessed. Experimental data on in-situ radionuclide concentrations in the Meuse river are reported. In addition, the transfer of radionuclides within the trophic food-chain has been investigated by experimental laboratory studies. It is demonstrated that radionuclides are strongly concentrated in algae, which are at the base of the food-chain. This process is reversible. The experimental results have been compared with calculated values, obtained by a deterministic mathematical model that was developed and applied to the Meuse river. (A.S.)

  12. River recreation experience opportunities in two recreation opportunity spectrum (ROS) classes

    Science.gov (United States)

    Duane C. Wollmuth; John H. Schomaker; Lawrence C. Merriam

    1985-01-01

    The Recreation Opportunity Spectrum (ROS) system is used by the USDA Forest Service and USDI Bureau of Land Management for inventorying, classifying, and managing wildlands for recreation. Different ROS classes from the Colorado and Arkansas Rivers in Colorado were compared, using visitor survey data collected in 1979 and 1981, to see if the different classes offered...

  13. 76 FR 51887 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-08-19

    ...-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone during the ``NAS Patuxent River... held over certain waters of the Patuxent River adjacent to Patuxent River, Maryland from September 1...

  14. Possible ramifications of introducing the institute of personal bankruptcy: The USA experience

    Directory of Open Access Journals (Sweden)

    Mizdraković Vule

    2016-01-01

    Full Text Available In the past decade, the increase of household debt in Serbia as well as in the entire region has brought the issue of personal bankruptcy into the spotlight. The adoption of this procedure would enable individuals who are over-indebted and unable to settle out the credit and current payables to file for personal bankruptcy. The main objective of this procedure would be to ensure the maximum reimbursement of creditors' claims from the debtor's available assets and annual revenues. Such a procedure would also provide for the protection of the debtor's basic human rights and dignity. In order to provide a fresh start for the debtor and his financial standing, bankruptcy proceedings commonly include debt write-offs, to some extent. Obviously, personal bankruptcy has two sets of goals, which are mutually inconsistent, contradictory and often incompatible. In order to prevent possible abuses, bankruptcy reasons must be clearly defined and set out in more rigorous terms. This paper analyzes the impact of personal bankruptcy in generating the global economic crisis and the repercussion that personal bankruptcy has had on the global economy. The increase in the number of bankruptcy proceedings filed in the USA in 2005 was a warning about the forthcoming events. Mortgage loans were the major reason for filing a large number of personal bankruptcy claims. In fact, until 2006 the US real estate market had been booming but no one could have guessed then that the real estate values would fall sharply in the years to come. Credit deregulation caused higher demand for mortgage backed loans and the nation's household debt increased significantly. However, the negative selection of debtors, their insolvency and irregular payment of annuities caused turmoil, which generated major problems for financial institutions. At the end of2007, nearly 16 percent of all mortgage loans were uncollectible in full. The analysis of events that led to the onset of the global

  15. Tracking sediment through the Holocene: Determining anthropogenic contributions to a sediment-rich agricultural system, north-central USA

    Science.gov (United States)

    Gran, Karen; Belmont, Patrick; Finnegan, Noah

    2013-04-01

    Management and restoration of sediment-impaired streams requires quantification of sediment sources and pathways of transport. Addressing the role of humans in altering the magnitude and sources of sediment supplied to a catchment is notoriously challenging. Here, we explore how humans have amplified erosion in geomorphically-sensitive portions of the predominantly-agricultural Minnesota River basin in north-central USA. In the Minnesota River basin, the primary sources of sediment are classified generally as upland agricultural field vs. near-channel sources, with near-channel sources including stream banks, bluffs, and ravines. Using aerial lidar data, repeat terrestrial lidar scans of bluffs, ravine monitoring, historic air photo analyses, and sediment fingerprinting, we have developed a sediment budget to determine the relative importance of each source in a tributary to the Minnesota River, the Le Sueur River. We then investigate how these sources have changed through time, from changes evident over the past few decades to changes associated with valley evolution over the past 13,400 years. The Minnesota River valley was carved ~13,400 years ago through catastrophic drainage of glacial Lake Agassiz. As the Minnesota River valley incised, knickpoints have migrated upstream into tributaries, carving out deep valleys where the most actively eroding near-channel sediment sources occur. The modern sediment budget, closed for the time period 2000 to 2010, shows that the majority of the fine sediment load in the Le Sueur River comes from bluffs and other near-channel sources in the deeply-incised knick zone. Numerical modeling of valley evolution constrained by mapped and dated strath terraces cut into the glacial till presents an opportunity to compare the modern sediment budget to that of the river prior to anthropogenic modification. This comparison reveals a natural background or "pre-agriculture" rate of erosion from near-channel sources to be 3-5 times lower

  16. Ideaalne torm USA majanduses / Ken Goldstein ; interv. Neeme Raud

    Index Scriptorium Estoniae

    Goldstein, Ken

    2008-01-01

    USA majandusuuringute organisatsiooni The Conference Board analüütik USA majanduse olukorrast, mõjust maailmamajandusele, arenguvõimalustest ning uue presidendi vajalikest sammudest majanduses. Lisa: Enamuse arvates on USA valel teel

  17. Precision and relative effectiveness of a purse seine for sampling age-0 river herring in lakes

    Science.gov (United States)

    Devine, Matthew T.; Roy, Allison; Whiteley, Andrew R.; Gahagan, Benjamin I.; Armstrong, Michael P.; Jordaan, Adrian

    2018-01-01

    Stock assessments for anadromous river herring, collectively Alewife Alosa pseudoharengus and Blueback Herring A. aestivalis, lack adequate demographic information, particularly with respect to early life stages. Although sampling adult river herring is increasingly common throughout their range, currently no standardized, field‐based, analytical methods exist for estimating juvenile abundance in freshwater lakes. The objective of this research was to evaluate the relative effectiveness and sampling precision of a purse seine for estimating densities of age‐0 river herring in freshwater lakes. We used a purse seine to sample age‐0 river herring in June–September 2015 and June–July 2016 in 16 coastal freshwater lakes in the northeastern USA. Sampling effort varied from two seine hauls to more than 50 seine hauls per lake. Catch rates were highest in June and July, and sampling precision was maximized in July. Sampling at night (versus day) in open water (versus littoral areas) was most effective for capturing newly hatched larvae and juveniles up to ca. 100 mm TL. Bootstrap simulation results indicated that sampling precision of CPUE estimates increased with sampling effort, and there was a clear threshold beyond which increased effort resulted in negligible increases in precision. The effort required to produce precise CPUE estimates, as determined by the CV, was dependent on lake size; river herring densities could be estimated with up to 10 purse‐seine hauls (one‐two nights) in a small lake (50 ha). Fish collection techniques using a purse seine as described in this paper are likely to be effective for estimating recruit abundance of river herring in freshwater lakes across their range.

  18. Fish response to the annual flooding regime in the Kavango River ...

    African Journals Online (AJOL)

    The results of the first seasonal survey of the fish of the Kavango River floodplain along the Angola/Namibia border are reported. The river experiences peak flooding from February through June, with the 375-km long floodplain extending up to 5 km across. The floodplain was sampled five times in 1992 by seine, fish traps ...

  19. Savannah River Site TEP-SET tests uncertainty report

    International Nuclear Information System (INIS)

    Taylor, D.J.N.

    1993-09-01

    This document presents a measurement uncertainty analysis for the instruments used for the Phase I, II and III of the Savannah River One-Fourth Linear Scale, One-Sixth Sector, Tank/Muff/Pump (TMP) Separate Effects Tests (SET) Experiment Series. The Idaho National Engineering Laboratory conducted the tests for the Savannah River Site (SRS). The tests represented a range of hydraulic conditions and geometries that bound anticipated Large Break Loss of Coolant Accidents in the SRS reactors. Important hydraulic phenomena were identified from experiments. In addition, code calculations will be benchmarked from these experiments. The experimental system includes the following measurement groups: coolant density; absolute and differential pressures; turbine flowmeters (liquid phase); thermal flowmeters (gas phase); ultrasonic liquid level meters; temperatures; pump torque; pump speed; moderator tank liquid inventory via a load cells measurement; and relative humidity meters. This document also analyzes data acquisition system including the presampling filters as it relates to these measurements

  20. Impact of Ichthyophonus infection on spawning success of Yukon River Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Hamazaki, Toshihide; Kahler, Eryn; Borba, Bonnie M; Burton, Tamara

    2013-11-06

    We examined the impacts of Ichthyophonus infection on spawning success of Yukon River Chinook salmon Oncorhynchus tshawytscha at spawning grounds of the Chena and Salcha Rivers, Alaska, USA. During the period 2005 to 2006, 1281 salmon carcasses (628 male, 652 female) were collected throughout the spawning season and from the entire spawning reaches of the Chena and Salcha Rivers. For each fish, infection status was determined by culture method and visual inspection of lesions of heart tissue as uninfected (culture negative), infected without lesions (culture positive with no visible lesions), and infected with lesions (culture positive with visible lesions), and spawning status was determined by visually inspecting the percentage of gametes remaining as full-spawned (50%). Among the 3 groups, the proportion of full-spawned (i.e. spawning success) females was lower for those infected without lesions (69%) than those uninfected (87%) and infected with lesions (86%), but this did not apply to males (uninfected 42%, infected without lesions 38%, infected with lesions 41%). At the population level, the combined (infected and uninfected) proportion of female spawning success was 86%, compared to 87% when all females were assumed uninfected. These data suggest that while Ichthyophonus infection slightly reduces spawning success of infected females, its impact on the spawning population as a whole appears minimal.

  1. Ilves kritiseeris USA juhtidega Venemaad / Dagne Hanschmidt

    Index Scriptorium Estoniae

    Hanschmidt, Dagne

    2008-01-01

    Ilmunud ka: Postimees : na russkom jazõke 21. apr. lk. 4. President Toomas Hendrik Ilves kohtus töövisiidil Ameerika Ühendriikidesse USA asepresidendi Dick Cheney ja riigisekretär Condoleezza Rice'iga. Arutusel olid Euroopa Liidu suhted Venemaaga, Venemaa käitumine Gruusiaga, NATO viimase tippkohtumise tulemused. USA välisminister C. Rice avaldas Eesti presidendile tänu Eesti silmapaistva panuse eest Afganistanis. Kohtumisi kommenteerivad Riigikogu Euroopa Liidu asjade komisjoni esimees Marko Mihkelson ja Riigikogu väliskomisjoni esimees Sven Mikser. Vt. samas: Euroliit andis USA viisavabadusele rohelise tee. Euroopa Liidu sise- ja justiitsministrite kohtumisel kiideti heaks otsused, mis võimaldavad Eestil liituda USA viisavabadusprogrammiga. Vabariigi President töövisiidil Ameerika Ühendriikides 17.-23.04.2008

  2. Assessing dissolved carbon transport and transformation along an estuarine river with stable isotope analyses

    Science.gov (United States)

    He, Songjie; Xu, Y. Jun

    2017-10-01

    Estuaries play an important role in the dynamics of dissolved carbon from rivers to coastal oceans. However, our knowledge of dissolved carbon transport and transformation in mixing zones of the world's coastal rivers is still limited. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations and stable isotopes (δ13CDIC and δ13CDOC) change along an 88-km long estuarine river, the Calcasieu River in Louisiana, southern USA, with salinity ranging from 0.02 to 21.92. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary. Between May 2015 and February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during five field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico (NGOM). The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The average DIC concentration and δ13CDIC at the site closest to the NGOM (site 6) were 1.31 mM and -6.34‰, respectively, much higher than those at the site furthest upstream (site 1, 0.42 mM and -20.83‰). The DIC concentrations appeared to be largely influenced by conservative mixing, while high water temperature may have played a role in deviating DIC concentration from the conservative line due likely to increased respiration and decomposition. The δ13CDIC values were close to those suggested by the conservative mixing model for May, June and November, but lower than those for July and February, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration (P/R) aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum.

  3. Multimedia screening of contaminants of emerging concern (CECS) in coastal urban watersheds in southern California (USA).

    Science.gov (United States)

    Maruya, Keith A; Dodder, Nathan G; Sengupta, Ashmita; Smith, Deborah J; Lyons, J Michael; Heil, Ann T; Drewes, Jörg E

    2016-08-01

    To examine the occurrence and fate of contaminants of emerging concern (CECs) and inform future monitoring of CECs in coastal urban waterways, water, sediment, and fish tissue samples were collected and analyzed for a broad suite of pharmaceuticals and personal care products (PPCPs), commercial and/or household chemicals, current use pesticides, and hormones in an effluent-dominated river and multiple embayments in southern California (USA). In the Santa Clara River, which receives treated wastewater from several facilities, aqueous phase CECs were detectable at stations nearest discharges from municipal wastewater treatment plants but were attenuated downstream. Sucralose and the chlorinated phosphate flame retardants tris(1-chloro-2-propyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and tris(2-chloroethyl) phosphate (TCEP) were most abundant in water, with maximum concentrations of 35 μg/L, 3.3 μg/L, 1.4 μg/L, and 0.81 μg/L, respectively. Triclocarban, an antimicrobial agent in use for decades, was more prevalent in water than triclosan or nonylphenol. Maximum concentrations of bifenthrin, permethrin, polybrominated diphenyl ethers (PBDEs), and degradates of fipronil exceeded CEC-specific monitoring trigger levels recently established for freshwater and estuarine sediments by factors of 10 to 1000, respectively. Maximum fish tissue concentrations of PBDEs varied widely (370 ng/g and 7.0 ng/g for the Santa Clara River and coastal embayments, respectively), with most species exhibiting concentrations at the lower end of this range. These results suggest that continued monitoring of pyrethroids, PBDEs, and degradates of fipronil in sediment is warranted in these systems. In contrast, aqueous pharmaceutical concentrations in the Santa Clara River were not close to exceeding current monitoring trigger levels, suggesting a lower priority for targeted monitoring in this medium. Environ Toxicol Chem 2016;35:1986-1994. © 2016 SETAC

  4. 77 FR 27082 - StarTek USA, Inc., 244 Dundee Avenue, Greeley, CO; StarTek USA, Inc., 1250 H Street, Greeley, CO...

    Science.gov (United States)

    2012-05-08

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,850; TA-W-74,850A] StarTek USA, Inc., 244 Dundee Avenue, Greeley, CO; StarTek USA, Inc., 1250 H Street, Greeley, CO; Amended... workers and former workers of StarTek USA, Inc., Greeley, Colorado. The Department's notice of...

  5. Võidurelvastumise tagasitulek : USA kiiluvees Venemaa ja Hiina / Heiki Suurkask

    Index Scriptorium Estoniae

    Suurkask, Heiki, 1972-

    2007-01-01

    USA eelarvekavas on ette nähtud kaitsekulutuste jätkuv suurenemine, suureneda võib ka relvajõudude isikkoosseis. Relvajõududele kulub USA-s ligi 4% SKT-st. Globaalselt liidetuna tõusid kõikide riikide kulutused relvajõududele 1990. aasta tasemele. Hiina ja Venemaa kaitsekulutustest. Lisad: Aasia riigid kasvatavad sõjalisi kulutusi; 25 riigil pole oma sõjaväge. Graafik: USA sõjalised kulutused

  6. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA

    OpenAIRE

    Stanish, Lee F.; Hull, Natalie M.; Robertson, Charles E.; Harris, J. Kirk; Stevens, Mark J.; Spear, John R.; Pace, Norman R.

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amou...

  7. Interaction of the sea breeze with a river breeze in an area of complex coastal heating

    Science.gov (United States)

    Zhong, Shiyuan; Takle, Eugene S.; Leone, John M., Jr.

    1991-01-01

    The interaction of the sea-breeze circulation with a river-breeze circulation in an area of complex coastal heating (east coast of Florida) was studied using a 3D finite-element mesoscale model. The model simulations are compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment. The results from numerical experiments designed to isolate the effect of the river breeze indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.

  8. USA National Phenology Network observational data documentation

    Science.gov (United States)

    Rosemartin, Alyssa H.; Denny, Ellen G.; Gerst, Katharine L.; Marsh, R. Lee; Posthumus, Erin E.; Crimmins, Theresa M.; Weltzin, Jake F.

    2018-04-25

    The goals of the USA National Phenology Network (USA-NPN, www.usanpn.org) are to advance science, inform decisions, and communicate and connect with the public regarding phenology and species’ responses to environmental variation and climate change. The USA-NPN seeks to advance the science of phenology and facilitate ecosystem stewardship by providing phenological information freely and openly. To accomplish these goals, the USA-NPN National Coordinating Office (NCO) delivers observational data on plant and animal phenology in several formats, including minimally processed status and intensity datasets and derived phenometrics for individual plants, sites, and regions. This document describes the suite of observational data products delivered by the USA National Phenology Network, covering the period 2009–present for the United States and accessible via the Phenology Observation Portal (http://dx.doi.org/10.5066/F78S4N1V) and via an Application Programming Interface. The data described here have been used in diverse research and management applications, including over 30 publications in fields such as remote sensing, plant evolution, and resource management.

  9. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    Science.gov (United States)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy E.; Fairley, Helen C.

    2018-06-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  10. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    Science.gov (United States)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen C.

    2018-01-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  11. USA kunstidessant Venemaale

    Index Scriptorium Estoniae

    2007-01-01

    USA kunstnike näitus "Kolm sajandit ameerika kunsti" Moskvas Pushkini muuseumis. Eksponeeritakse Mark Rothko, Jean-Michel Basguiat', Roy Lichtensteini, Robert Rauschenbergi, Georgia O'Keefe'i, Willem de Kooningi töid

  12. Fecal Coliform Removal by River Networks

    Science.gov (United States)

    Huang, T.; Wollheim, W. M.; Stewart, R. J.

    2015-12-01

    Bacterial pathogens are a major cause of water quality impairment in the United States. Freshwater ecosystems provide the ecosystem service of reducing pathogen levels by diluting and removing pathogens as water flows from source areas through the river network. However, the integration of field-scale monitoring data and watershed-scale hydrologic models to estimate pathogen loads and removal in varied aquatic ecosystems is still limited. In this study we applied a biogeochemical river network model (the Framework for Aquatic Modeling in the Earth System or FrAMES) and utilized available field data the Oyster R. watershed, a small (51.7 km2) draining coastal New Hampshire (NH, USA), to quantify pathogen removal at the river network scale, using fecal coliform as an indicator. The Oyster R. Watershed is comprised of various land use types, and has had its water quality monitored for fecal coliform, dissolved oxygen, and turbidity since 2001. Water samples were also collected during storm events to account for storm responses. FrAMES was updated to incorporate the dominant processes controlling fecal coliform concentrations in aquatic ecosystems: spatially distributed terrestrial loading, in-stream removal, dilution, and downstream transport. We applied an empirical loading function to estimate the terrestrial loading of fecal coliform across flow conditions. Data was collected from various land use types across a range of hydrologic conditions. The loading relationship includes total daily precipitation, antecedent 24-hour rainfall, air temperature, and catchment impervious surface percentage. Attenuation is due to bacterial "die-off" and dilution processes. Results show that fecal coliform input loads varied among different land use types. At low flow, fecal coliform concentrations were similar among watersheds. However, at high flow the concentrations were significantly higher in urbanized watersheds than forested watersheds. The mainstem had lower fecal coliform

  13. Channelization and floodplain forests: impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA

    Science.gov (United States)

    Sonja N. Oswalt; Sammy L. King

    2005-01-01

    We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased...

  14. Managed flood effects on beaver pond habitat in a desert riverine ecosystem, bill williams river, Arizona USA

    Science.gov (United States)

    Andersen, D.C.; Shafroth, P.B.; Pritekel, C.M.; O'Neill, M. W.

    2011-01-01

    The ecological effects of beaver in warm-desert streams are poorly documented, but potentially significant. For example, stream water and sediment budgets may be affected by increased evaporative losses and sediment retention in beaver ponds. We measured physical attributes of beaver pond and adjacent lotic habitats on a regulated Sonoran Desert stream, the Bill Williams River, after ???11 flood-free months in Spring 2007 and Spring 2008. Neither a predicted warming of surface water as it passed through a pond nor a reduction in dissolved oxygen in ponds was consistently observed, but bed sediment sorted to finest in ponds as expected. We observed a river segment-scale downstream rise in daily minimum stream temperature that may have been influenced by the series of ??100 beaver ponds present. Channel cross-sections surveyed before and after an experimental flood (peak flow 65 m3/s) showed net aggradation on nine of 13 cross-sections through ponds and three of seven through lotic reaches. Our results indicate that beaver affect riverine processes in warm deserts much as they do in other biomes. However, effects may be magnified in deserts through the potential for beaver to alter the stream thermal regime and water budget. ?? Society of Wetland Scientists 2011.

  15. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    Directory of Open Access Journals (Sweden)

    John C. Lehrter

    2017-09-01

    Full Text Available Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011 in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS and used to calculate monthly and annual estuarine time-series of chlorophyll a (Chla, colored dissolved organic matter (CDOM, and total suspended sediments (TSS. Monthly MERIS Chla varied from 2.0 mg m−3 in the lower region of the bay to 17.2 mg m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of 0.51–2.67 (m−1 and 0.11–8.9 (g m−3. Variations in the MERIS-derived monthly and annual Chla, CDOM, and TSS time-series were significantly related to monthly and annual river discharge and loads of nitrogen, organic carbon, and suspended sediments from the Escambia and Yellow rivers. Multiple regression models based on river loads (independent variables and MERIS Chla, CDOM, or TSS (dependent variables explained significant fractions of the variability (up to 62% at monthly and annual scales. The most significant independent variables in the regressions were river nitrogen loads, which were associated with increased MERIS Chla, CDOM, and TSS concentrations, and river suspended sediment loads, which were associated with decreased concentrations. In contrast, MERIS water quality variations were not significantly related to river total phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the spatial extent of past field studies to reveal previously unseen system-wide responses to river discharge and loading variation. The results indicated that variations in Pensacola Bay Chla

  16. Technical descriptions of Hudson River electricity generating stations

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1988-01-01

    Six fossil-fueled and one nuclear electricity generating plants are sited along the Hudson River estuary between kilometers 8 and 228, measured from the river mouth. Their aggregate rated capacity is 5,798 MW of electricity; operating at that capacity they would withdraw cooling water from the river at the rate of 1.5 x 10 to the 9th power cu m/d and reject heat at the rate of 155 x 10 to the 9th power kcal/d. Three of these plants, the fossil-fueled Roseton and Bowline and the nuclear Indian Point facilities; account for 75% of total rated capacity, 62% of maximum water withdrawal, and 79% of potential heat rejection. These three plants and a proposed pumped-storage facility at Cornwall, all sited between km 60 and 106, were the focus of environmental litigation. The Indian Point plant normally operates at 100% generation capacity; the other plants may experience daily operating load changes that vary from approximately 50% to 100% of total generation capacity, depending on system electrical demand or economic considerations. All plants experience periodic unscheduled outages for repairs. 6 refs., 7 figs

  17. Health and Environmental Risk Assessment Project for bottlenose dolphins Tursiops truncatus from the southeastern USA. I. Infectious diseases.

    Science.gov (United States)

    Bossart, Gregory D; Fair, Patricia; Schaefer, Adam M; Reif, John S

    2017-07-24

    From 2003 to 2015, 360 free-ranging Atlantic bottlenose dolphins Tursiops truncatus inhabiting the Indian River Lagoon (IRL, n = 246), Florida, and coastal waters of Charleston (CHS, n = 114), South Carolina, USA, were captured, given comprehensive health examinations, and released as part of a multidisciplinary and multi-institutional study of individual and population health. The aim of this review is to summarize the substantial health data generated by this study and to examine morbidity between capture sites and over time. The IRL and CHS dolphin populations are affected by complex infectious and neoplastic diseases often associated with immunologic disturbances. We found evidence of infection with cetacean morbillivirus, dolphin papilloma and herpes viruses, Chlamydiaceae, a novel uncultivated strain of Paracoccidioides brasiliensis (recently identified as the causal agent of dolphin lobomycosis/lacaziasis), and other pathogens. This is the first long-term study documenting the various types, progression, seroprevalence, and pathologic interrelationships of infectious diseases in dolphins from the southeastern USA. Additionally, the study has demonstrated that the bottlenose dolphin is a valuable sentinel animal that may reflect environmental health concerns and parallel emerging public health issues.

  18. Evaluating the influence of feedbacks between erosion rate and weathering on the distribution of erodibility in bedrock river channels

    OpenAIRE

    Shobe, Charles; Hancock, Gregory; Eppes, Martha; Small, Eric

    2018-01-01

    This is a poster presented on November 3rd, 2015 at the Geological Society of America annual meeting in Baltimore, MD, USA. The poster presents rock strength and roughness data from tributaries to the Potomac River in Virginia. Our data support the idea that bedrock channel erodibility is greater on the channel margins than at the thalweg, which we hypothesize to be the result of weathering damage preferentially accumulated on the channel banks. This work was published in Shobe et al (2017; E...

  19. The Spatial Structure of Planform Migration - Curvature Relation of Meandering Rivers

    Science.gov (United States)

    Guneralp, I.; Rhoads, B. L.

    2005-12-01

    of previous studies. Continuous curvature series can be related to measured rates of lateral migration to explore empirically the relationship between spatially extended curvature and local bend migration. The methodology is applied to a study reach along a highly sinuous section of the Embarras River in Illinois, USA, which contains double-headed asymmetrical loops. To identify patterns of channel planform and rates of lateral migration for a study reach along Embarrass River in central Illinois, geographical information systems analysis of historical aerial photography over a period from 1936 to 1998 was conducted. Results indicate that parametric cubic spline interpolation provides excellent characterization of the complex planforms and planform curvatures of meandering rivers. The findings also indicate that the spatial structure of migration rate-curvature relation may be more complex than a simple exponential distance-decay function. The study represents a first step toward unraveling the spatial structure of planform evolution of meandering rivers and for developing models of planform dynamics that accurately relate spatially extended patterns of channel curvature to local rates of lateral migration. Such knowledge is vital for improving the capacity to accurately predict planform change of meandering rivers.

  20. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    Science.gov (United States)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear