WorldWideScience

Sample records for river subbasin final

  1. McKenzie River Subbasin Assessment, Technical Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Alsea Geospatial, Inc.

    2000-02-01

    This document details the findings of the McKenzie River Subbasin Assessment team. The goal of the subbasin assessment is to provide an ecological assessment of the McKenzie River Floodplain, identification of conservation and restoration opportunities, and discussion of the influence of some upstream actions and processes. This Technical Report can be viewed in conjunction with the McKenzie River Subbasin Summary or as a stand-alone document. The purpose of the technical report is to detail the methodology and findings of the consulting team that the observations and recommendations in the summary document are based on. This part, Part I, provides an introduction to the subbasin and a general overview. Part II details the specific findings of the science team. Part III provides an explanation and examples of how to use the data that has been developed through this assessment to aid in prioritizing restoration activities. Part III also includes the literature cited and appendices.

  2. Roseau River Subbasin, Red River of the North Reconnaissance Report.

    Science.gov (United States)

    1980-12-01

    because of inmigration . Increases in inmigration are occurring in the rural S-.. sector, which accounts for 67 percent of the population. The subbasin...County were offset primarily by inmigration and, to a lesser extent, by births. Beltrami County, which also encompasses part of the subbasin

  3. McKenzie River Subbasin Assessment, Summary Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Alsea Geospatial, Inc.

    2000-02-01

    This document summarizes the findings of the McKenzie River Subbasin Assessment: Technical Report. The subbasin assessment tells a story about the McKenzie River watershed. What is the McKenzie's ecological history, how is the McKenzie doing today, and where is the McKenzie watershed headed ecologically? Knowledge is a good foundation for action. The more we know, the better prepared we are to make decisions about the future. These decisions involve both protecting good remaining habitat and repairing some of the parts that are broken in the McKenzie River watershed. The subbasin assessment is the foundation for conservation strategy and actions. It provides a detailed ecological assessment of the lower McKenzie River and floodplain, identifies conservation and restoration opportunities, and discusses the influence of some upstream actions and processes on the study area. The assessment identifies restoration opportunities at the reach level. In this study, a reach is a river segment from 0.7 to 2.7 miles long and is defined by changes in land forms, land use, stream junctions, and/or cultural features. The assessment also provides flexible tools for setting priorities and planning projects. The goal of this summary is to clearly and concisely extract the key issues, findings, and recommendations from the full-length Technical Report. The high priority recommended action items highlight areas that the McKenzie Watershed Council can significantly influence, and that will likely yield the greatest ecological benefit. People are encouraged to read the full Technical Report if they are interested in the detailed methods, findings, and references used in this study.

  4. Maple River Subbasin, Red River of the North Reconnaissance Report.

    Science.gov (United States)

    1980-12-01

    was 6.7 percent. Ransom County experienced a slight increase due solely to inmigration (0.6 percent). Both Cass and Richland counties increased...increase (more births than deaths), but their increases in population were mainly the result of inmigration . Cass County’s inmigration rate was six percent...and Richland County had an inmigration rate of 2.5 percent. The population density of the subbasin increased from 10.8 persons per square mile in 1970

  5. Red River of the North Reconnaissance Report: Ottertail River Subbasin.

    Science.gov (United States)

    1980-12-01

    inmigration rate in the two counties that constitute the major portion of the subbasin (Becker and Ottertail). Between 1970 and 1977, Becker had an... inmigration rate of 8.9 percent, and Ottertail’s inmigration rate was 6.4 percent. Preliminary figures for 1978 indicate that these counties are still...experiencing inmigration . Telephone contacts with public officials indicate that the inmigration pattern results from: (1) the decline in the farm

  6. Red River of the North Reconnaissance Report: Park River Subbasin.

    Science.gov (United States)

    1980-12-01

    experienced a natural increase, and their inmigration rates were less than one percent. Cavalier County’s increase in population was the result of a...natural increase j and an inmigration rate of 5.4 percent. The two largest towns are Grafton and Park River, and they are both located on the Park River

  7. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  8. Physical characteristics of stream subbasins in the Pomme de Terre River Basin, west-central Minnesota

    Science.gov (United States)

    Lorenz, D.L.; Payne, G.A.

    1994-01-01

    Data describing the physical characteristics of stream subbasins upstream from selected points on streams in the Pomme de Terre River Basin, located in west-central Minnesota, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. The points on the stream include outlets of subbasins of at least 5 square miles, outfalls of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  9. Simulation of streamflow and water quality in the Christina River subbasin and overview of simulations in other subbasins of the Christina River Basin, Pennsylvania, Maryland, and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania and Delaware and includes the major subbasins of Brandywine Creek, Red Clay Creek, White Clay Creek, and Christina River. The Christina River subbasin (exclusive of the Brandywine, Red Clay, and White Clay Creek subbasins) drains an area of 76 mi2. Streams in the Christina River Basin are used for recreation, drinking water supply, and support of aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point- and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in nonpoint-source evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Waterquality data for model calibration were collected in each of the four main subbasins and in small subbasins predominantly covered by one land use following a nonpoint- source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at two sites in the Christina River subbasin and nine sites elsewhere in the Christina River Basin. The HSPF model for the Christina River subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 3.8 to 21.9 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Christina

  10. Calibration of hydrodynamic model MIKE 11 for the sub-basin of the Piauitinga river, Sergipe, Brazil

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Folegatti

    2010-12-01

    Full Text Available In Piauitinga river sub-basin the environment has been suffering from negative actions by humans such as deforestation around springs, inadequate use of the uptaken water, inappropriate use in domestic activities, siltation and sand exploitation, and contamination by domestic, industrial and agricultural residuals. The present study presents the one-dimensional hydrodynamic MIKE 11 model calibration that simulates the water flow in estuary, rivers, irrigation systems, channels and other water bodies. The aim of this work was to fit the MIKE 11 model to available discharge data for this sub-basin. Data from the period of 1994 to 1995 were used for calibration and data from 1996 to 2006 for validation, except the 1997 year, from which data were not available. Manning’s roughness coefficient was the main parameter used for the Piauitinga river sub-basin discharge calibration and other parameters were heat balance, water stratification and groundwater leakage. Results showed that the model had an excellent performance for the Piauitinga basin and had an efficiency coefficient of 0.9 for both periods. This demonstrates that this model can be used to estimate the water quantity in Piauitinga river sub-basin.

  11. Establishing Baseline Key Ecological Functions of Fish and Wildlife for Subbasin Planning, Final Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, Thomas A.

    2001-08-01

    prioritizing inventory, monitoring, and mitigation efforts with ecosystem-based management. This project uses the species distributions in conjunction with a set of wildlife-habitat relationship matrices to construct and assess a functional analysis for each of the 62 subbasins. The analysis compares functional changes from historic to current conditions across the Columbia River Basin and address community functional patterns, geographic functional patterns, and species functional roles. Products from this work include: (1) current distribution maps for fish and wildlife species (including winter range maps for birds); (2) historic distribution maps for native fish and wildlife species; (3) list of KEFs for each anadromous, resident fish, and wildlife species (species functional profiles); (4) KEF assessment of community and geographic functional patterns for each of the 62 subbasins in the Columbia River Basin; and (5) a set of functional profiles based on the species and wildlife-habitat occurrence within each subbasin.

  12. Concentrations and transport of suspended sediment, nutrients, and pesticides in the lower Mississippi-Atchafalaya River subbasin during the 2011 Mississippi River flood, April through July

    Science.gov (United States)

    Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.

    2014-01-01

    High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at

  13. Streamflow and Nutrient Fluxes of the Mississippi-Atchafalaya River Basin and Subbasins for the Period of Record Through 2005

    Science.gov (United States)

    Aulenbach, Brent T.; Buxton, Herbert T.; Battaglin, William A.; Coupe, Richard H.

    2007-01-01

    U.S. Geological Survey has monitored streamflow and water quality systematically in the Mississippi-Atchafalaya River Basin (MARB) for more than five decades. This report provides streamflow and estimates of nutrient delivery (flux) to the Gulf of Mexico from both the Atchafalaya River and the main stem of the Mississippi River. This report provides streamflow and nutrient flux estimates for nine major subbasins of the Mississippi River. This report also provides streamflow and flux estimates for 21 selected subbasins of various sizes, hydrology, land use, and geographic location within the Basin. The information is provided at each station for the period for which sufficient water-quality data are available to make statistically based flux estimates (starting as early as water year1 1960 and going through water year 2005). Nutrient fluxes are estimated using the adjusted maximum likelihood estimate, a type of regression-model method; nutrient fluxes to the Gulf of Mexico also are estimated using the composite method. Regression models were calibrated using a 5-year moving calibration period; the model was used to estimate the last year of the calibration period. Nutrient flux estimates are provided for six water-quality constituents: dissolved nitrite plus nitrate, total organic nitrogen plus ammonia nitrogen (total Kjeldahl nitrogen), dissolved ammonia, total phosphorous, dissolved orthophosphate, and dissolved silica. Additionally, the contribution of streamflow and net nutrient flux for five large subbasins comprising the MARB were determined from streamflow and nutrient fluxes from seven of the aforementioned major subbasins. These five large subbasins are: 1. Lower Mississippi, 2. Upper Mississippi, 3. Ohio/Tennessee, 4. Missouri, and 5. Arkansas/Red.

  14. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.

    Directory of Open Access Journals (Sweden)

    Darren L Ficklin

    Full Text Available In the Upper Colorado River Basin (UCRB, the principal source of water in the southwestern U.S., demand exceeds supply in most years, and will likely continue to rise. While General Circulation Models (GCMs project surface temperature warming by 3.5 to 5.6°C for the area, precipitation projections are variable, with no wetter or drier consensus. We assess the impacts of projected 21(st century climatic changes on subbasins in the UCRB using the Soil and Water Assessment Tool, for all hydrologic components (snowmelt, evapotranspiration, surface runoff, subsurface runoff, and streamflow, and for 16 GCMs under the A2 emission scenario. Over the GCM ensemble, our simulations project median Spring streamflow declines of 36% by the end of the 21(st century, with increases more likely at higher elevations, and an overall range of -100 to +68%. Additionally, our results indicated Summer streamflow declines with median decreases of 46%, and an overall range of -100 to +22%. Analysis of hydrologic components indicates large spatial and temporal changes throughout the UCRB, with large snowmelt declines and temporal shifts in most hydrologic components. Warmer temperatures increase average annual evapotranspiration by ∼23%, with shifting seasonal soil moisture availability driving these increases in late Winter and early Spring. For the high-elevation water-generating regions, modest precipitation decreases result in an even greater water yield decrease with less available snowmelt. Precipitation increases with modest warming do not translate into the same magnitude of water-yield increases due to slight decreases in snowmelt and increases in evapotranspiration. For these basins, whether modest warming is associated with precipitation decreases or increases, continued rising temperatures may make drier futures. Subsequently, many subbasins are projected to turn from semi-arid to arid conditions by the 2080 s. In conclusion, water availability in the UCRB

  15. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.

    Science.gov (United States)

    Ficklin, Darren L; Stewart, Iris T; Maurer, Edwin P

    2013-01-01

    In the Upper Colorado River Basin (UCRB), the principal source of water in the southwestern U.S., demand exceeds supply in most years, and will likely continue to rise. While General Circulation Models (GCMs) project surface temperature warming by 3.5 to 5.6°C for the area, precipitation projections are variable, with no wetter or drier consensus. We assess the impacts of projected 21(st) century climatic changes on subbasins in the UCRB using the Soil and Water Assessment Tool, for all hydrologic components (snowmelt, evapotranspiration, surface runoff, subsurface runoff, and streamflow), and for 16 GCMs under the A2 emission scenario. Over the GCM ensemble, our simulations project median Spring streamflow declines of 36% by the end of the 21(st) century, with increases more likely at higher elevations, and an overall range of -100 to +68%. Additionally, our results indicated Summer streamflow declines with median decreases of 46%, and an overall range of -100 to +22%. Analysis of hydrologic components indicates large spatial and temporal changes throughout the UCRB, with large snowmelt declines and temporal shifts in most hydrologic components. Warmer temperatures increase average annual evapotranspiration by ∼23%, with shifting seasonal soil moisture availability driving these increases in late Winter and early Spring. For the high-elevation water-generating regions, modest precipitation decreases result in an even greater water yield decrease with less available snowmelt. Precipitation increases with modest warming do not translate into the same magnitude of water-yield increases due to slight decreases in snowmelt and increases in evapotranspiration. For these basins, whether modest warming is associated with precipitation decreases or increases, continued rising temperatures may make drier futures. Subsequently, many subbasins are projected to turn from semi-arid to arid conditions by the 2080 s. In conclusion, water availability in the UCRB could

  16. Evaluation of environmental adjustment contract for pig production in Pinhal river sub-basin

    Directory of Open Access Journals (Sweden)

    Magda Regina Mulinari

    2011-12-01

    Full Text Available The objective of this study was to evaluate the efficiency of Environmental Adjustment Contract for pig production (EAC in improving the water quality in Pinhal River sub-basin, located in Concordia, west part of Santa Catarina State. The monitoring of water parameters occurred in eight sites of the river, during three years (2006-2009. To assess whether the EAC was efficient, Brazilian Water Law was used. The average annual concentrations of Total Dissolved Solids (TDS were: 130.2 mg/L, 137.0 mg/L, and 99.8 mg/L. Turbidity showed the same trend of TDS. Concentrations of nitrate and Total Phosphorus (TP decreased from 2006 to 2009; nitrate from 1.81 mg/L NO3-N to 1.54 mg NO3-N; TP from 0.29 mg/L to 0.10 mg/L, respectively. The same trends occurred for Fecal Coliforms and E. coli. These results show that obligations proposed by EAC had potentially improved water quality. These results can help the government, farmers, and society to establish environmentally sound and sustainable programs for pig production.

  17. John Day River Subbasin Fish Habitat Enhancement Project, 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Jeff A.; Jerome, James P.; Delano, Kenneth H.

    1993-05-01

    The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring chinook and summer steelhead within the subbasin through habitat enhancement and access improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in northeast Oregon. It is the goal of this program to preserve and enhance the unique genetic component of the stocks. By attaining this goal we will be able to rebuild fish runs in other Columbia River tributaries in the future, if desired. During 1991, 5 leases were signed adding 5.25 miles of stream to the program. Fence construction included 9.95 miles of riparian fence and 15 livestock water crossings. We constructed 3 log wiers for adult salmon holding, added 280 ft. of new channel, and placed 274 fish habitat boulders, 6 trees and 31 rootwads for juvenile rearing. We constructed 15 stream deflectors and 274 linear feet of bank riprap for streambank stabilization.

  18. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  19. Work Element B: 157. Sampling in Fish-Bearing Reaches [Variation in Productivity in Headwater Reaches of the Wenatchee Subbasin], Final Report for PNW Research Station.

    Energy Technology Data Exchange (ETDEWEB)

    Polivka, Karl; Bennett, Rita L. [USDA Forest Service, Pacific Northwest Research Station, Wenatchee, WA

    2009-03-31

    within a major sub-basin of the Columbia River and associations of density with ecoregion and individuals drainages within the sub-basin. We further examined habitat metrics that show positive associations with fish abundance to see if these relationships varied at larger spatial scales. We examined the extent to which headwater fish density and temporal variation in density were correlated between the headwaters and the main tributaries of the sub-basin, and the influence of ecoregion influence on density differences, particularly at wider temporal scales. Finally, we examined demographic parameters such as growth and emigration to determine whether density-dependence differs among ecoregions or whether responses were more strongly influenced by the demography of the local fish population.

  20. Helminth parasites of Girardinichthys multiradiatus (Pisces: Goodeidae) in the upper Lerma River sub-basin, Mexico.

    Science.gov (United States)

    Sánchez-Nava, Petra; Salgado-Maldonado, Guillermo; Soto-Galera, Eduardo; Cruz, Blanca Jaimes

    2004-08-01

    Thirteen helminth species were recorded during a helminthological examination of 754 Girardinichthys multiradiatus (Meek) (Pisces: Goodeidae) collected from 20 localities in the upper Lerma River sub-basin on the highland plateau of Mexico. The study constitutes a complete and extensive inventory of the helminth parasites of this freshwater fish species across its entire current geographic distribution. The collected species included one adult trematode, three metacercariae, one monogenean, one adult cestode, three metacestodes, three nematode larvae and one cystacanth. The records of the metacercariae of Tylodelphys sp. and Ochetosoma brevicaecum, the larvae of the nematodes Contracaecum sp. and Falcaustra sp. and the cystacanth of Polymorphus brevis are all new records for G. multiradiatus. The metacercariae of Tylodelphys sp. were the most widespread and prevalent species in the sample, being collected from 15 of the 20 sampling localities, with a prevalence of 3.2-72.2%. The data indicate the helminth parasite community of G. multiradiatus to be relatively poor when compared with the helminth communities of freshwater fish from other parts of Mexico. This community is subject to colonization by generalist helminth species, mostly transported by birds. A further component of this community consists of helminth species that have been introduced anthropogenically.

  1. [Validation of two indices of biological integrity (IBI) for the Angulo River subbasin in Central Mexico].

    Science.gov (United States)

    Ramírez-Herrejón, Juan Pablo; Mercado-Silva, Norman; Medina-Nava, Martina; Domínguez-Domínguez, Omar

    2012-12-01

    Efforts to halt freshwater ecosystem degradation in central Mexico can benefit from using bio-monitoring tools that reflect the condition of their biotic integrity. We analyzed the applicability of two fish-based indices of biotic integrity using data from lotic and lentic systems in the Angulo River subbasin (Lerma-Chapala basin). Both independent data from our own collections during two consecutive years, and existing information detailing the ecological attributes of each species, were used to calculate indices of biological integrity for 16 sites in lotic and lentic habitats. We assessed environmental quality by combining independent evaluations water and habitat quality for each site. We found sites with poor, regular and good biotic integrity. Our study did not find sites with good environmental quality. Fish-based IBI scores were strongly and significantly correlated with scores from independent environmental assessment techniques. IBI scores were adequate at representing environmental conditions in most study sites. These results expand the area where a lotic system fish-based IBI can be used, and constitute an initial validation of a lentic system fish-based IBI. Our results suggest that these bio-monitoring tools can be used in future conservation efforts in freshwater ecosystems in the Middle Lerma Basin.

  2. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.

  3. Concentrations and transport of suspended sediment, nutrients, and pesticides in the lower Mississippi-Atchafalaya River subbasin during the 2011 Mississippi River flood, April through July

    Science.gov (United States)

    Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.

    2014-01-01

    High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at

  4. Umatilla River Subbasin Fish Habitat Improvement Program, 1996-2003 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R.; Montgomery, Michael; Bailey, Timothy D. (Oregon Department of Fish and Wildlife, John Day, OR)

    2005-01-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The last Annual Program Report was submitted in 1997, and described projects undertaken in 1995. This report describes Program activities carried out in 2003, along with a summary of projects undertaken during the years 1996 through 2002. The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary table of past projects (1996-2002), along with a text description of more extensive habitat improvement projects, including: (1) Implementation of a four-phased project on the Lobato property (Birch Creek) beginning in 1996 and involving a demonstration bioengineering site and riparian improvements (fencing, planting), (2) Implementation of stable channel design/instream structure placement on the Houser property, East Birch Creek, beginning in 1998, an (3) Implementation of a joint, US Army Corps of Engineers/ODFW (cost share) project beginning in 2001 on the Brogoitti property, East Birch Creek, which involved implementation of stable channel design/construction and riparian improvement treatments.

  5. Study on Sequence Stratigraphy of Zhujiang and Zhuhai Formations, Zhu Ⅲ Subbasin, Pearl River Mouth Basin, South China Sea

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The early Miocene in the Zhu Ⅲ subbasin, the Pearl River Mouth basin, includes two formations—Zhujiang and Zhuhai. There are 8 third-order sequences, S1, S2, S3, S4, S5, S6, S7 and S8 from the bottom of Zhuhai to the top of Zhujiang in these two formations. There are only one transgressive systems tract (TST) and one highstand systems tract (HST) in each sequence because the whole Zhu Ⅲ subbasin was located updip the shelf break during sequence deposition. The boundaries and maximum flooding surfaces (mfs) are in good response to both gamma and acoustic log curves in the study area. In seismic profile 1249, sediments obviously onlap over the unconformity (SB0, the bottom of Zhuhai Fm), SB1 and SB2, but obviously over only SB2 in seismic profile 1283 since the well-developed faults in the subbasin. The sand bodies with high porosity and permeability for petroleum migration and accumulation had been reworked by tidal currents before their burial. Hence, the tidal influenced parasequence sets occur both in TST and HST. Through detailed analysis, the sand bodies in TST are more favorable for petroleum to migrate and accumulate than those in HST.

  6. Uncertainty of runoff projections under changing climate in Wami River sub-basin

    Directory of Open Access Journals (Sweden)

    Frank Joseph Wambura

    2015-09-01

    New Hydrological Insights for the Region: The results of projected streamflow shows that the baseline annual climatology flow (ACF is 98 m3/s and for the future, the median ACF is projected to be 81 m3/s. At 100% uncertainty of skilled projections, the ACF from the sub-basin is projected to range between −47% and +36% from the baseline ACF. However, the midstream of the sub-basin shows reliable water availability for foreseen water uses expansion up to the year 2039.

  7. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-08-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  8. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-12-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  9. Determing Lamprey Species Composition, Larval Distribution, and Adult Abundance in the Deschutes River, Oregon, Subbasin; 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Jennifer C.; Brun, Christopher V. (Confederated Tribes of the Warm Springs Reservation of Oregon, Department of Natural Resources, John Day, OR)

    2006-05-01

    Information about lamprey species composition, distribution, life history, abundance, habitat requirements, and exploitation in the lower Deschutes River Subbasin is extremely limited. During 2002, we began a multi-year study to assess the status of lamprey in the Deschutes River subbasin. The objectives of this project are to determine ammocoete (larval lamprey) distribution and associated habitats; Lampretra species composition; numbers of emigrants; adult escapement and harvest rates at Sherars Falls. This report describes the preliminary results of data collected during 2005. We continued documenting ammocoete (larval) habitat selection by surveying four perennial eastside tributaries to the Deschutes River (Warm Springs River, Badger, Beaver and Shitike creeks) within the known ammocoete distribution. The results of 2003-2005 sampling indicate that positive relationships exist between: presence of wood (P = < 0.001), depositional area (P = < 0.001), flow (P = < 0.001), and fine substrate (P = < 0.001). Out-migrants numbers were not estimated during 2005 due to our inability to recapture marked larvae. In Shitike Creek, ammocoete and microphthalmia out-migration peaked during November 2005. In the Warm Spring River, out-migration peaked for ammocoetes in April 2006 and December 2005 for microphthalmia. Samples of ammocoetes from each stream were retained in a permanent collection of future analysis. An escapement estimate was generated for adult Pacific lamprey in the lower Deschutes River using a two event mark-recapture experiment during run year 2005. A modified Peterson model was used to estimate the adult population of Pacific lamprey at 3,895 with an estimated escapement of 2,881 during 2005 (95% CI= 2,847; M = 143; C = 1,027 R = 37). A tribal creel was also conducted from mid-June through August. We estimated tribal harvest to be approximately 1,015 adult lamprey during 2005 (95% CI= +/- 74).

  10. Phosphorus and E. coli in the Fanno and Bronson Creek subbasins of the Tualatin River basin, Oregon, during summer low-flow conditions, 1996

    Science.gov (United States)

    McCarthy, Kathleen A.

    2000-01-01

    As part of an ongoing cooperative study between the Unified Sewerage Agency of Washington County, Oregon, and the U.S. Geological Survey, phosphorus and Escherichia coli (E. coli) concentrations were measured in the Fanno and Bronson Creek subbasins of the Tualatin River Basin during September 1996. Data were collected at 19 main-stem and 22 tributary sites in the Fanno Creek subbasin, and at 14 main-stem and 4 tributary sites in the Bronson Creek subbasin. These data provided the following information on summer base-flow conditions in the subbasins. Concentrations of total phosphorus at 70% of the sites sampled in the Fanno Creek subbasin were between 0.1 and 0.2 mg/L (milligrams per liter), very near the estimated background level of 0.14 mg/L attributed to ground-water base flow. These data indicate that ground-water discharge could account for the phosphorus measured at most sites in this subbasin.Concentrations of phosphorus at all but one of the sites sampled in the Bronson Creek subbasin were also between 0.1 and 0.2 mg/L, indicating that ground-water discharge could account for the phosphorus measured at most sites in this subbasin.A few sites in the Fanno Creek subbasin had phosphorus concentrations above background levels, indicating a source other than ground water. Some of these sites- Pendleton Creek and the tributary near Gemini, for example-were probably affected by the decomposition of avian waste materials and the release of phosphorus from bottom sediments in nearby ponds.Concentrations of E. coli--an indicator of fecal contamination and the potential presence of bacterial pathogens-exceeded the current single-sample criterion for recreational contact in freshwater (406 organisms/100 mL [organisms per 100 milliliters]) at 70% of the sites sampled in the Fanno Creek subbasin.Concentrations of E. coli in the Bronson Creek subbasin exceeded the single-sample criterion at one-third of the sites sampled.Most occurrences of elevated E. coli levels were

  11. Vertical Migration of Petroleum via Faults in Zhu Ⅲ Subbasin, Pearl River Mouth Basin, South China Sea

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The problem that faults act as a conduit for hydrocarbon-bearing fluid flow has been under debate for a long time. The southern boundary fault (FS) and No.2 fault belt in the Zhu Ⅲ subbasin in the Pearl River Mouth basin (PRMB) of South China Sea (SCS) are considered as the conduit of hydrocarbons for the oil and gas fields in the hydrocarbon-generating half grabens. Based upon the basin modeling and seismic velocity inversion simulation, there are abnormal-pressure compartments in the central part of half grabens. Wenchang, Enping and Zhuhai FormationⅡare seated within the abnormal-pressure zone, while the Zhuhai Formation Ⅰ is within the pressure-transition zone. The abnormal pressure was mainly caused by undercompaction due to the high rate of sedimentation for layers with an abnormal pressure. The increase of temperature of inclusions as the increase of depth supports vertical migration via faults in the study area.

  12. Aquifer Recharge and Watershed Response to Climate Change in the Upper Umatilla River Subbasin Using the Precipitation Runoff Modeling System

    Science.gov (United States)

    Yazzie, K.

    2014-12-01

    Groundwater recharge in the Columbia River Basalt Group (CRBG) in the Umatilla River Basin, OR, is poorly understood. The long-term decline of groundwater storage in the basalt aquifers, present a serious environmental challenge for the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). This study will provide a groundwater estimate to help CTUIR better understand the hydrologic budget and inform water management decisions for present and future needs. The study site is in the upper Umatilla River Subbasin in Northeastern Oregon with an area that is 2,365 km2. The Precipitation Runoff Modeling System (PRMS) developed by the U.S. Geological Survey (USGS) is a distributed-parameter, physical-process watershed model that will be used to calculate groundwater recharge and simulate the watershed response to different climate and land use scenarios (Markstrom, 2008). The response of the hydrologic regime to climate change in the 2050s and 2080s will be determined using three downscaled Global Climate Models (GCMs), including the Earth System model of the Hadley Centre Global Environment Model, Version 2 (HadGEM2-ES), Model for Interdisciplinary Research on Climate (MIROC5), and the Geophysical Fluid Dynamics Laboratory - Earth System Model, (GFDL-ESM2M). The relationships between hydrologic processes at the surface, soil-zone, subsurface and groundwater reservoirs will be studied and defined in a water budget analysis to characterize the hydrologic regime in response to climate change.

  13. Spatial variability in nutrient transport by HUC8, state, and subbasin based on Mississippi/Atchafalaya River Basin SPARROW models

    Science.gov (United States)

    Robertson, Dale M.; Saad, David A.; Schwarz, Gregory E.

    2014-01-01

    Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. With geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and monitored loads throughout the MARB, SPAtially Referenced Regression On Watershed attributes (SPARROW) watershed models were constructed specifically for the MARB, which reduced simulation errors from previous models. Based on these models, N loads/yields were highest from the central part (centered over Iowa and Indiana) of the MARB (Corn Belt), and the highest P yields were scattered throughout the MARB. Spatial differences in yields from previous studies resulted from different descriptions of the dominant sources (N yields are highest with crop-oriented agriculture and P yields are highest with crop and animal agriculture and major WWTPs) and different descriptions of downstream transport. Delivered loads/yields from the MARB SPARROW models are used to rank subbasins, states, and eight-digit Hydrologic Unit Code basins (HUC8s) by N and P contributions and then rankings are compared with those from other studies. Changes in delivered yields result in an average absolute change of 1.3 (N) and 1.9 (P) places in state ranking and 41 (N) and 69 (P) places in HUC8 ranking from those made with previous national-scale SPARROW models. This information may help managers decide where efforts could have the largest effects (highest ranked areas) and thus reduce hypoxia in the Gulf of Mexico.

  14. Water Quality Trends in the Entiat River Subbasin: 2007-2008

    Science.gov (United States)

    Andy Bookter; Richard D. Woodsmith; Frank H. McCormick; Karl M. Polivka

    2009-01-01

    Production of high-quality water is a vitally important ecosystem service in the largely semiarid interior Columbia River basin (ICRB). Communities, tribal governments, and various agencies are concerned about maintenance of this water supply for domestic, agricultural, industrial, recreational, and ecosystem uses. Water quantity and...

  15. Simulation of streamflow and water quality in the Red Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    (mi2) in Pennsylvania and Delaware and includes the major subbasins of Red Clay Creek, White Clay Creek, Brandywine Creek, and Christina River. The Red Clay Creek is the smallest of the subbasins and drains an area of 54 mi2. Streams in the Christina River Basin are used for recreation, drinking-water supply, and to support aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency, waterquality management strategy included a modeling component to evaluate the effects of point and nonpointsource contributions of nutrients and suspended sediment on stream water quality. To assist in nonpointsource evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at 1 site in the Red Clay Creek subbasin and at 10 sites elsewhere in the Christina River Basin. The HSPF model for the Red Clay Creek subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 1.7 to 10 mi2. One of the reaches contains a regulated reservoir. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Red Clay Creek subbasin are agricultural, forested, residential

  16. John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie [Oregon Department of Fish and Wildlife

    2009-07-15

    Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since the initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.

  17. Hydrogeologic Framework, Groundwater Movement, and Water Budget in Tributary Subbasins and Vicinity, Lower Skagit River Basin, Skagit and Snohomish Counties, Washington

    Science.gov (United States)

    Savoca, Mark E.; Johnson, Kenneth H.; Sumioka, Steven S.; Olsen, Theresa D.; Fasser, Elisabeth T.; Huffman, Raegan L.

    2009-01-01

    A study to characterize the groundwater-flow system in four tributary subbasins and vicinity of the lower Skagit River basin was conducted by the U.S. Geological Survey to assist Skagit County and the Washington State Department of Ecology in evaluating the effects of potential groundwater withdrawals and consumptive use on tributary streamflows. This report presents information used to characterize the groundwater and surface-water flow system in the subbasins, and includes descriptions of the geology and hydrogeologic framework of the subbasins; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater-level fluctuations; interactions between aquifers and the surface-water system; and a water budget for the subbasins. The study area covers about 247 mi2 along the Skagit River and its tributary subbasins (East Fork Nookachamps Creek, Nookachamps Creek, Carpenter Creek, and Fisher Creek) in southwestern Skagit County and northwestern Snohomish County, Washington. The geology of the area records a complex history of accretion along the continental margin, mountain building, deposition of terrestrial and marine sediments, igneous intrusion, and the repeated advance and retreat of continental glaciers. A simplified surficial geologic map was developed from previous mapping in the area, and geologic units were grouped into nine hydrogeologic units consisting of aquifers and confining units. A surficial hydrogeologic unit map was constructed and, with lithologic information from 296 drillers'logs, was used to produce unit extent and thickness maps and four hydrogeologic sections. Groundwater in unconsolidated aquifers generally flows towards the northwest and west in the direction of the Skagit River and Puget Sound. This generalized flow pattern is likely complicated by the presence of low-permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Groundwater

  18. John Day River Subbasin Fish Habitat Enhancement Project, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.; Jerome, James P.

    2002-07-01

    Work undertaken in 2001 included: (1) 3335 structure posts were pounded on six new projects thereby protecting 10 miles of stream (2) Completion of 1000 ft. of barbed wire fence and one watergap on the Middle Fork of the John Day River/ Forrest property. (3) Fence removal of 5010 ft. of barbed wire fence on the Meredith project. (4) Maintenance of all active project fences (66 miles), watergaps (76), spring developments (32) and plantings were checked and repairs performed. (5) Since the initiation of the Fish Habitat Project in 1984 we have 63.74 miles of stream protected using 106.78 miles of fence. With the addition of the Restoration and Enhancement Projects we have 180.64 miles of fence protecting 120.6 miles of stream.

  19. Determining Lamprey Species Composition, Larval Distribution and Adult Abundance in the Deschutes River Subbasin, Oregon ; 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Matt; Graham, Jennifer C. [Department of Natural Resources, Confederated Tribes of the Warm Springs Reservation, Oregon

    2009-06-26

    We will report results of an ongoing project in the Deschutes River Subbasin to describe Pacific lamprey (Lampetra tridentata) life history. Project objectives were to determine adult lamprey escapement from Sherars Falls located at Rkm 70.4 and determine lamprey focal spawning areas, spawn timing and habitat through radio telemetry. A mark-recapture study and tribal creel was conducted to determine adult escapement. Lamprey were radio tagged and are currently being mobile, aerial and fixed site tracked to describe spawning. Adult lamprey were collected at Sherars Falls using a long-handled dip net from June-September 2007. The fate of lamprey collected at Sherars Falls was determined based on girth measurements. Fish measuring less than 10.5 cm received two markings for the mark-recapture estimation while those measuring 10.5 cm or greater were implanted with radio transmitters. Two-hundred and nine lamprey were marked during first event sampling, 2,501 lamprey inspected for marks and 64 recaptured during second event sampling. We estimate lamprey abundance to be 8,083 (6,352-10,279) with a relative precision of 19.8. Tribal harvest was 2,303 +/- 88. Escapement was estimated at 5,780 adult lamprey. Thirty-six lamprey received radio transmitters. Lamprey were transported upstream 6.3 Rkm for surgery, held to recover from anesthesia and released. Mobile tracking efforts started mid-July 2007 and are on-going. To date 35 of the 36 lamprey have been detected. Upon release, extensive ground-based tracking was conducted until fish became dormant in mid-October. Since, fixed site downloading and tracking have occurred weekly on the mainstem Deschutes River. Majority of lamprey (88%) are holding in the mainstem Deschutes River. Three lamprey moved upstream more than 70 Rkms into westside tributaries from August-December. Three moved approximately 18 Rkms downstream of the release site. Tracking will continue through the spawning season when redd characteristics will be

  20. Hydrogeochemistry of the Paravanar River Sub-Basin, Cuddalore District, Tamilnadu, India

    Directory of Open Access Journals (Sweden)

    K. Shankar

    2011-01-01

    Full Text Available To assess the groundwater quality of the Paravanar river basin, groundwater data were collected by conventional methods. Hydrogeochemical facies of groundwater of study area reveals fresh to brackish and alkaline in nature. Piper plot shows that most of the groundwater samples fall in the mixed field of Ca-Mg-Cl type. Using GIS mapping technique, major element concentration of groundwater has been interpolated and studied. Groundwater thematic maps on electrical conductivity (EC, hydrogen ion concentration, bicarbonates, chlorides and nitrates were prepared from the groundwater quality data. Different classes in thematic maps were categorized as i good, ii moderate and iii poor with respect to groundwater quality. Northeast and southeast parts of the study area represent the doubtful water class regarding the concentration of EC to represent connate nature of water adjacent to the coast. NNE (North-North-East and southern parts of the study area have pH ranging from 7 to 8 indicating acidic nature as they were from the weathered Cuddalore sandstone. As northern part of the study area is irrigated, fertilizer used for agriculture may be the source for increase in concentration of nitrates. Chloride clusters in the south central part of the study area from coast up to NLC mines and reveals the chloridization of aquifer in 48 years either due to upwelling of connate water from the deeper aquifer as a result of depressurization of Neyveli aquifer for the safe mining of lignite.

  1. John Day River Subbasin Fish Habitat Enhancement Project, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Alley, Pamela D.; Delano, Kenneth H. (Oregon Department of Fish and Wildlife, John Day, OR)

    2006-03-01

    Work undertaken in 2005 included: (1) Four new fence projects were completed thereby protecting 7.55 miles of stream with 9.1 miles of new riparian fence (2) Fence removal 1.7 miles of barbed wire. (3) Completed three spring developments (repair work on two BLM springs on Cottonwood Creek (Dayville), 1 solar on Rock Creek/ Collins property). (4) Dredge tail leveling completed on 0.9 miles of the Middle Fork of the John Day River (5) Cut, hauled and placed 30 junipers on Indian Creek/Kuhl property for bank stability. (6) Collected and planted 1500 willow cuttings on Mountain Creek/Jones property. (7) Conducted steelhead redd counts on Lake Cr./Hoover property and Cottonwood Cr./Mascall properties (8) Seeded 200 lbs of native grass seed on projects where the sites were disturbed by fence construction activities. (9) Maintenance of all active project fences (72.74 miles), watergaps (60), spring developments (30) were checked and repairs performed. (10) Since the initiation of the Fish Habitat Program in 1984 we have installed 156.06 miles of riparian fence on leased property protecting 88.34 miles of anadromous fish bearing stream. With the addition of the Restoration and Enhancement Projects from 1996-2001, where the landowner received the materials, built and maintained the project we have a total of 230.92 miles of fence protecting 144.7 miles of stream and 3285 acres of riparian habitat.

  2. Simulation of streamflow and water quality in the Brandywine Creek subbasin of the Christina River basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 mi2 (square miles) in Pennsylvania and Delaware. Water from the basin is used for recreation, drinking-water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, Red Clay Creek, White Clay Creek, and Christina River. The Brandywine Creek is the largest of the subbasins and drains an area of 327 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on streamwater quality. To assist in nonpoint-source evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in small subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at six sites in the Brandywine Creek subbasin and five sites in the other subbasins. The HSPF model for the Brandywine Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 35 reaches draining areas that ranged from 0.6 to 18 mi2. Three of the reaches contain regulated reservoir. Eleven different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the basin are forested

  3. Simulation of streamflow and water quality in the White Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania, Maryland, and Delaware. Water from the basin is used for recreation, drinking water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, White Clay Creek, and Red Clay Creek. The White Clay Creek is the second largest of the subbasins and drains an area of 108 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in non point-source evaluation, four independent models, one for each of the three major subbasins and for the Christina River, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base- flow samples were collected during 1998 at two sites in the White Clay Creek subbasin and at nine sites in the other subbasins. The HSPF model for the White Clay Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 17 reaches draining areas that ranged from 1.37 to 13 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the White Clay Creek Basin are agricultural, forested, residential

  4. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  5. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  6. Integrated analysis of landscape management scenarios using state and transition models in the upper Grande Ronde River subbasin, Oregon, USA.

    Science.gov (United States)

    Miles A. Hemstrom; James Merzenich; Allison Reger; Barbara. Wales

    2007-01-01

    We modeled the integrated effects of natural disturbances and management activities for three disturbance scenarios on a 178 000-ha landscape in the upper Grande Ronde subbasin of northeast Oregon. The landscape included three forest environments (warm-dry, cool-moist, and cold) as well as a mixture of publicly and privately owned lands. Our models were state and...

  7. Modeling the annual soil erosion rate in the mouth of river Pineios' sub-basin in Thessaly County, Greece.

    Science.gov (United States)

    Ilia, Ioanna; Loupasakis, Constantinos; Tsangaratos, Paraskevas

    2015-04-01

    Erosion is a natural - geomorphological phenomenon, active through geological time that is considered as one of the main agents that forms the earth surface. Soil erosion models estimate the rates of soil erosion and provide useful information and guidance for the development of appropriate intervention and soil conservation practices and strategies. A significant number of soil erosion models can be found in literature; however, the most extensively applied model is the Revised Universal Soil Loss Equation (RUSLE) established in 1997 by Renard KG, Foster GR, Weesies GA, McCool DK and Yoder DC. RUSLE is an empirically based model that enables the estimation of the average annual rate of soil erosion for an area of interest providing several alternative scenarios involving cropping systems, management methods and erosion control strategies. According to RUSLE model's specifications five major factors (rainfall pattern, soil type, topography, crop system, and management practices) are utilized for estimating the average annual erosion through the following equation: A=RxKxLxSxCxP, PIC where A is the computed spatial average soil loss and temporal average soil loss per unit area (tons ha-1 year-1), R the rainfall-runoff erosivity factor (MJ mm ha-1h-1 year-1), K the soil erodibility factor (tons h MJ-1 mm-1), L the slope - length factor, S the slope steepness factor, C the cover management factor and P the conservation support practice factor. L, S, C and P factors are all dimensionless. The present study aims to utilize a GIS-based RUSLE model in order to estimate the average annual soil loss rate in the sub-basin extending at the mouth of Pineios river in Thessaly County, Greece. The area covers approximate 775.9 km2 with a mean slope angle of 7.8o. The rainfall data of 39 gauge station from 1980 to 2000 where used in order to predict the rainfall-runoff erosivity factor (R). The K-factor was estimated using soil maps available from the European Soil Portal with a

  8. Modeling of groundwater potential of the sub-basin of Siriri river, Sergipe state, Brazil, based on Geographic Information System and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Washington Franca Rocha

    2011-08-01

    Full Text Available The use of Geographic Information System (GIS and Remote Sensing for modeling groundwater potential give support for the analysis and decision-making processes about water resource management in watersheds. The objective of this work consisted in modeling the groundwater water potential of Siriri river sub-basin, Sergipe state, based on its natural environment (soil, land use, slope, drainage density, lineament density, rainfall and geology using Remote Sensing and Geographic Information System as an integration environment. The groundwater potential map was done using digital image processing procedures of ENVI 4.4 software and map algebra of ArcGIS 9.3®. The Analytical Hierarchy Method was used for modeling the weights definition of the different criteria (maps. Loads and weights of the different classes were assigned to each map according to their influence on the overall objective of the work. The integration of these maps in a GIS environment and the AHP technique application allowed the development of the groundwater potential map in five classes: very low, low, moderate, high, very high. The average flow rates of wells confirm the potential of aquifers Sapucari, Barriers and Maruim since they are the most exploited in this sub-basin, with average flows of 78,113 L/h, 19,332 L/h and 12,085 L/h, respectively.

  9. Identification and Evolution of Groundwater Chemistry in the Ejin Sub-Basin of the Heihe River, Northwest China

    Institute of Scientific and Technical Information of China (English)

    SU Yong-Hong; FENG Qi; ZHU Gao-Feng; SI Jian-Hua; ZHANG Yan-Wu

    2007-01-01

    Hydro-chemical characteristics of groundwater and their changes as affected by human activities were studied in the Ejin Sub-Basin of the Inner Mongolia Autonomous Region, China, to understand the groundwater evolution, to identify the predominant geochemical processes taking place along the horizontal groundwater flow path, and to characterize anthropogenic factors affecting the groundwater environment based on previous data. The concentrations of major ions and total dissolved solids (TDS) in the groundwater showed a great variation, with 62.5% of the samples being brackish (TDS ≥ 1000 mg L-1). The groundwater system showed a gradual hydro-chemical zonation composed of Na+-HCO-3, Na+-Mg2+-SO2-4Cl-, and Na+-Cl-. The relationships among the dissolved species allowed identification of the origin of solutes and the processes that generated the observed water compositions. The dissolution of halite, dolomite, and gypsum explained, in part, the presence of Na+, K+, Cl-, SO2-4, and Ca2+, but other processes, such as mixing, Na+ exchange for Ca2+ and Mg2+, and calcite precipitation also contributed to the composition of water. Human activity, in particular large-scale water resources development associated with dramatic population growth in the last 50 years, has led to tremendous changes in the groundwater regime, which reflected in surface water runoff change, decline of groundwater table and degeneration of surface water and groundwater quality. Solving these largely anthropogenic problems requires concerted, massive and long-term efforts.

  10. Water Governance Decentralisation and River Basin Management Reforms in Hierarchical Systems: Do They Work for Water Treatment Policy in Mexico’s Tlaxcala Atoyac Sub-Basin?

    Directory of Open Access Journals (Sweden)

    Cesar Casiano Flores

    2016-05-01

    Full Text Available In the last decades, policy reforms, new instruments development, and economic resources investment have taken place in water sanitation in Mexico; however, the intended goals have not been accomplished. The percentage of treated wastewater as intended in the last two federal water plans has not been achieved. The creation of River Basin Commissions and the decentralisation process have also faced challenges. In the case of Tlaxcala, the River Basin Commission exists only on paper and the municipalities do not have the resources to fulfil the water treatment responsibilities transferred to them. This lack of results poses the question whether the context was sufficiently considered when the reforms were enacted. In this research, we will study the Tlaxcala Atoyac sub-basin, where water treatment policy reforms have taken place recently with a more context sensitive approach. We will apply the Governance Assessment Tool in order to find out whether the last reforms are indeed apt for the context. The Governance Assessment Tool includes four qualities, namely extent, coherence, flexibility, and intensity. The assessment allows deeper understanding of the governance context. Data collection involved semi-structured in-depth interviews with stakeholders. The research concludes that the observed combination of qualities creates a governance context that partially supports the implementation of the policy. This has helped to increase the percentage of wastewater treated, but the water quality goals set by the River Classification have not been achieved. With the last reforms, in this hierarchical context, decreasing the participation of municipal government levels has been shown to be instrumental for improving water treatment plants implementation policy, although many challenges remain to be addressed.

  11. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W. [Oregon Department of Fish and Wildlife

    2009-07-31

    This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia River hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.

  12. Tectonic differences between eastern and western sub-basins of the Qiongdongnan Basin and their dynamics

    Science.gov (United States)

    Liu, Jianbao; Sun, Zhen; Wang, Zhenfeng; Sun, Zhipeng; Zhao, Zhongxian; Wang, Zhangwen; Zhang, Cuimei; Qiu, Ning; Zhang, Jiangyang

    2015-03-01

    The central depression of the Qiongdongnan Basin can be divided into the eastern and western sub-basins by the Lingshui-Songnan paleo-uplift. To the northwest, the orientation of the faults turns from NE, to EW, and later to NW; In the southwest, the orientation of the faults turns from NE, to NNE, and then to NW, making the central depression much wider towards the west. In the eastern sub-basin, the NE-striking faults and the EW-striking faults made up an echelon, making the central depression turn wider towards the east. Fault activity rates indicate that faulting spreads gradually from both the east and west sides to the middle of the basin. Hence, extensional stress in the eastern sub-basin may be related to the South China Sea spreading system, whereas the western sub-basin was more under the effect of the activity of the Red River Fault. The extreme crustal stretching in the eastern sub-basin was probably related to magmatic setting. It seems that there are three periods of magmatic events that occurred in the eastern sub-basin. In the eastern part of the southern depression, the deformed strata indicate that the magma may have intruded into the strata along faults around T60 (23.3 Ma). The second magmatic event occurred earlier than 10.5 Ma, which induced the accelerated subsidence. The final magmatic event commenced later than 10 Ma, which led to today's high heat flow. As for the western sub-basin, the crust thickened southward, and there seemed to be a southeastward lower crustal flow, which happened during continental breakup which was possibly superimposed by a later lower crustal flow induced by the isostatic compensation of massive sedimentation caused by the right lateral slipping of the Red River Fault. Under the huge thick sediment, super pressure developed in the western sub-basin. In summary, the eastern sub-basin was mainly affected by the South China Sea spreading system and a magma setting, whereas the western sub-basin had a closer

  13. Analysis of the gamma spectrometry {sup 210}Pb radioisotope in river bottom sediments of the hydrographic sub-basins around the UTM-Caldas

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Pedro H.; Carvalho Filho, Carlos A.; Moreira, Rubens M.; Menezes, Maria Angela B.C.; Oliveira, Aline F.G. de, E-mail: pedrohenrique.dutra@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Silva, Nivaldo C., E-mail: ncsilva@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Viana, Valquiria F.L., E-mail: valquiria.flviana@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Instituto de Ciencias Biologicas

    2015-07-01

    The uranium mine of Caldas, currently named Ore Treatment Unit (UTM-Caldas), is sited at the Pocos de Caldas Plateau (Minas Gerais State) and was the first uranium mineral-industrial complex in Brazil. It has been installed since 1982 and now it is under decommissioning process. Taking into account the potential sources of contamination and the assessment of the impact of the mine, based on the presence of radionuclides from the radioactive decay series of natural {sup 238}U, the aim of the article is to present the distribution of {sup 210}Pb in the stream bottom sediments of the study area that consists of the Taquari watershed, sub-divided by its three major sub-basins: Consulta stream, Soberbo stream and Taquari river. The radionuclide activity concentrations were measured in sediment samples that were collected in twelve collecting points, during four sampling campaigns, carried out in the dry and rainy seasons of 2010 and 2011. The results of the {sup 210}Pb concentration activity were obtained by gamma spectrometry performed in both high and low energy CANBERRA detectors. The results point out that the UTM-Caldas is influencing on the bottom sediment distribution of {sup 210}Pb activity in its neighborhood. However, a more detailed study should be done in order to identify if there is another source of {sup 210}Pb in the study area, such as a geogenic anomaly, that may contributing to the local increment of {sup 210}Pb activity. (author)

  14. Upper Minnesota River Subbasins Study (Public Law 87-639) (Draft) Reconnaissance Stage Report (Plan of Study).

    Science.gov (United States)

    1978-09-01

    in the Minnesota River basin. The Bonanza Valley Area Ground Water Study i- Pope County has been completed, and the Lake Emily (Pope County) and Pomme ...De Terre Sands (Big Stone, Chippewa, and Grant Counties) groundwater studies are in progress. Although ground- water supply is adequate, the projected

  15. Sub-basin scale characterization of climate change vulnerability, impacts and adaptation in an Indian River basin

    NARCIS (Netherlands)

    Bhave, A.; Mishra, A.; Groot, A.M.E.

    2013-01-01

    Knowledge of climate change vulnerability and impacts is a prerequisite for formulating locally relevant climate change adaptation policies. A participatory approach has been used in this study to determine climate change vulnerability, impacts and adaptation aspects for the Kangsabati River basin,

  16. Determining Adult Pacific Lamprey Abundance and Spawning Habitat in the Lower Deschutes River Sub-Basin, Oregon, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Matt; Graham, Jennifer C. [Confederated Tribes of the Warm Springs Reservation, Oregon

    2009-04-30

    An adult Pacific lamprey (Lampetra tridentata) escapement estimate was generated in the lower Deschutes River during run year 2008. This included a mark-recapture study to determine adult abundance and a tribal subsistence creel. Fish measuring less than 10.5 cm received two marks for the mark-recapture estimate while those measuring greater than 10.5 cm were surgically implanted with radio transmitters to monitor migration upstream of Sherars Falls (rkm 70.4). Radio telemetry was used to determine habitat, focal spawning areas and spawn timing. All fish were collected at the Sherars Falls fish ladder from July-October 2008 using a long handled dip-net. Escapement was generated using a two event mark-recapture experiment. Adult lamprey populations were estimated at 3,471 (95% CI = 2,384-5,041; M = 101; C = 885 R = 25) using Chapman's modification of the Peterson estimate. The relative precision around the estimate was 31.42. Tribal harvest was approximately 806 adult lamprey (95% CI = +/- 74) with a total escapement of 2,669. Fourteen lamprey received radio tags and were released at Lower Blue Hole recreation site (rkm 77.3). Movement was recorded by mobile, fixed site and aerial telemetry methods. Upstream movements of lamprey were documented from July through December 2008 with most lamprey over-wintering in the mainstem Deschutes River.

  17. Final Critical Habitat for the Devils River minnow (Dionda diaboli)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To provide the user with a general idea of areas where final critical habitat for Devils River minnow (Dionda diaboli) occur. This dataset originated with the...

  18. Final Critical Habitat for the Arkansas River Shiner (Notropis girardi)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To provide the user with a general idea of areas where final critical habitat for Arkansas River Shiner (Notropis girardi) occur. The geographic extent includes New...

  19. Influence of Geological and Geomorphological Characteristics on Groundwater Occurrence in Deccan Basalt Hard Rock Area of Tawarja river Sub-Basin Latur, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Babar

    2012-04-01

    Full Text Available The entire study area is covered by Deccan basalt formations comprising nearly horizontal lava flows of late Cretaceous to early Eocene. There are eight flows of lava found in the area and these flows have been considered to be a result of fissure type lava eruption. The types of basaltic flows occurring in the area are simple basalt (aa type and vesicular-amygdaloidal (Compound pahoehoe type basalt flow and also red bole beds (Tachylitic bands are observed in the exposures, quarries and well sections. The drainage pattern varies from dendritic to sub-dendritic and sub-parallel. The bifurcation ratio is moderate (3.00 to 4.67 and the lower values of drainage density (1.77 km/km2 and stream frequency (1.74 streams/km2 indicates the region is of permeable subsoil strata of the basin. Morphometric attributes like form factor (0.85, circularity ratio (0.37 and elongation ratio (0.63 reflects the early mature stage of erosional development. The groundwater occurrence with reference to hydrogeological and geomorphological characters of the sub-basin is discussed. The groundwater occurrence is good productive in the geomorphic surfaces like moderately dissected plateau and pediplains, moderate in highly dissected plateau and lateritic uplands and poor in denudational hills.

  20. Instability in eight sub-basins of the Chilliwack River Valley, British Columbia, Canada: A comparison of natural and logging-related landslides

    Science.gov (United States)

    Wolter, Andrea; Ward, Brent; Millard, Tom

    2010-08-01

    Logging causes increased landslide frequency in British Columbia. In this study, the slope, type, initiation location, aspect, rate, bedrock geology, and size of mass movements located in eight logged tributary valleys of the Chilliwack River Valley are investigated. A landslide inventory was created by digitizing landslides identified on aerial photographs dating from 1941 to 2002. This database was analysed using qualitative observations and simple statistical tests, and a comparison between natural and logging-related landslides was made. Slope tests displayed a significant difference between natural and logging-related events, indicating that, on average, logging-related landslides require lower slope gradients to initiate than natural events. Although aspect, initiation location, and landslide type did not show a significant relationship between natural and logging-related landslides, they do suggest subtle differences. Landslide rate was calculated and compared for natural and logging-related landslides. It was significantly higher for logging-related events, attaining a maximum of 31 times the natural rate in 1978 and an overall average increase of nine times the natural rate. Logging-related landslides were on average smaller than natural landslides but this nevertheless resulted in a 3.1 times increase in area affected by logging-related landslides compared to natural landslides. Geology may influence landslide frequency as well; it appears to be higher over the less resistive sedimentary rocks of the Cultus Formation and Chilliwack Group and lower in granodioritic areas. Finally, roads affected slope stability more than clearcuts in the early decades of the study, but this effect decreased over time, suggesting a correlation with improved road construction.

  1. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface‑water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals

  2. Cultural Resources Literature Search and Records Review of the Upper Minnesota River Subbasin, Southwestern Minnesota and Northeastern South Dakota. Volume 1.

    Science.gov (United States)

    1980-05-01

    Minnesota Historical Society/ State Historical Site Survey, 1976 Reports/References: Canby Ne z, April 10, 1976. Marquis, Albert Nelson, The Book of...merchandising) in the establish- mwnt of one of the county’s final camu -mities. ,bst initial townsite structures took the expedient form of wod fram structures...located on North Broadway in New Ulm. The building, designed by Mankato architect Albert Shippel in 1914, is on a sloping site which pernts three full

  3. Hood River Production Program Monitoring and Evaluation : Annual Reports for 1996.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Erik A.; French, Rod A.; Lambert, Michael B.

    1998-01-01

    The primary goals of the Hood River Production Program is to (1) increase subbasin production of wild summer and winter steelhead and (2) reintroduce spring chinook salmon into the Hood River subbasin.

  4. Natural Propagation and Habitat Improvement, Volume I, Oregon, 1984 Final and Annual Reports.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Rod

    1986-02-01

    This volume contains reports on habitat improvement and fisheries enhancement projects conducted in the following subbasins: (1) Clackamas River; (2) Hood River; :(3) Deschutes River; (4) John Day River; (5) Umatilla River; and (6) Grande Ronde River. (ACR)

  5. Identification of Most Probable Stressors to Aquatic Life in the Touchet River, Washington (Final)

    Science.gov (United States)

    EPA announced the availability of the final report, Identification of Most Probable Stressors to Aquatic Life in the Touchet River, Washington. This study includes the screening causal assessment of the Touchet River, a sub-watershed of the Walla Walla River in eastern ...

  6. Deschutes River Spawning Gravel Study, Volume I, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Charles W.

    1985-09-01

    Spawning habitat in the Deschutes River was inventoried, gravel permeability and composition were sampled at selected gravel bars, historical flow records for the Deschutes were analyzed, salmon and trout utilization of spawning habitat was examined, and potential methods of enhancing spawning habitat in the river were explored. Some changes in river conditions since the mid-1960's were identified, including a reduction in spawning habitat immediately downstream from the hydroelectric complex. The 1964 flood was identified as a factor which profoundly affected spawning habitat in the river, and which greatly complicated efforts to identify recent changes which could be attributed to the hydrocomplex. A baseline on present gravel quality at both chinook and steelhead spawning areas in the river was established using a freeze-core methodology. Recommendations are made for enhancing spawning habitat in the Deschutes River, if it is independently determined that spawning habitat is presently limiting populations of summer steelhead or fall chinook in the river. 53 refs., 40 figs., 21 tabs.

  7. San Joaquin River National Wildlife Refuge: Final Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on San Joaquin River NWR for the next 15 years. This plan outlines the Refuge vision and...

  8. Assabet River National Wildlife Refuge: Final Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Assabet River NWR for the next 15 years. This plan outlines the Refuge vision and...

  9. Hood River Production Program Review, Final Report 1991-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Keith; Chapman, Colin; Ackerman, Nicklaus

    2003-12-01

    This document provides a comprehensive review of Bonneville Power Administration (BPA) funded activities within the Hood River Basin from 1991 to 2001. These activities, known as the Hood River Production Program (HRPP), are intended to mitigate for fish losses related to operation of federal dams in the Columbia River Basin, and to contribute to recovery of endangered and/or threatened salmon and steelhead, as directed by Nation Oceanic and Atmospheric Administration - Fisheries (NOAA Fisheries). The Environmental Impact Statement (EIS) for the HRPP, which authorized BPA to fund salmon and steelhead enhancement activities in the Hood River Basin, was completed in 1996 (BPA 1996). The EIS specified seven years of monitoring and evaluation (1996-2002) after program implementation to determine if program actions needed modification to meet program objectives. The EIS also called for a program review after 2002, that review is reported here.

  10. Ohio River Islands National Wildlife Refuge: Final Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) has been prepared for Ohio River Islands National Wildlife Refuge. The CCP is a management tool to be used by the Refuge...

  11. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix J: Recreation.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts.

  12. Final Environmental Assessment for the Proposed Wallkill River National Wildlife Refuge 1990

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Final Environmental Assessment for the proposed acquisition and establishment of Wallkill River National Wildlife Refuge in Sussex Country, New Jersey. The...

  13. Final critical habitat for the Kootenai River Population of the White Sturgeon (Acipenser transmontanus)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To provide the user with a general idea of areas where final critical habitat for White Sturgeon (Acipenser transmontanus) concerning the Kootenai River Population...

  14. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  15. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  16. Survey of mollusks of the Niobrara River : Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We surveyed the mollusks of the Niobrara River in Nebraska from 1992–1996. We found two species of unionid clams and ten species of snails that either must live in...

  17. Lemhi River Habitat Improvement Study, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dorratcaque, Dennis E.

    1986-02-01

    The objective was to develop methods for improving anadromous fish passage in the Lemhi River in east central Idaho. Alternatives assessed include flow concentration, fish screen improvement, groundwater augmentation, groundwater irrigation, water withdrawal reduction, return flow improvement, sprinkler irrigation, storage, and trap and haul. (ACR)

  18. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  19. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  20. Lower Columbia River Terminal Fisheries Research Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-04-01

    This notice announces BPA`S`s decision to fund the Oregon Department of Fish and Wildlife (ODFW), the Washington Department of Fish and Wildlife (WDFW), and the Clatsop Economic Development Committee for the Lower Columbia River Terminal Fisheries Research Project (Project). The Project will continue the testing of various species/stocks, rearing regimes, and harvest options for terminal fisheries, as a means to increase lower river sport and commercial harvest of hatchery fish, while providing both greater protection of weaker wild stocks and increasing the return of upriver salmon runs to potential Zone 6 Treaty fisheries. The Project involves relocating hatchery smolts to new, additional pen locations in three bays/sloughs in the lower Columbia River along both the Oregon and Washington sides. The sites are Blind Slough and Tongue Point in Clatsop County, Oregon, and Grays Bay/Deep River, Wahkiakum County, Washington. The smolts will be acclimated for various lengths of time in the net pens and released from these sites. The Project will expand upon an existing terminal fisheries project in Youngs Bay, Oregon. The Project may be expanded to other sites in the future, depending on the results of this initial expansion. BPA`S has determined the project is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and BPA`S is issuing this FONSI.

  1. Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.

    1991-05-01

    This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.

  2. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

  3. 78 FR 27473 - Notice of Final Federal Agency Actions on the Tappan Zee Hudson River Crossing Project in New York

    Science.gov (United States)

    2013-05-10

    ... Federal Highway Administration Notice of Final Federal Agency Actions on the Tappan Zee Hudson River... within the meaning of 23 U.S.C. 139(l)(1). The actions relate to the Tappan Zee Hudson River Crossing... FHWA published a ``Notice of Final Federal Agency Actions'' on the Tappan Zee Hudson River...

  4. Final Environmental Assessment Ohio River Islands National Wildlife Refuge Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In this Final Environmental Assessment, the United States Fish and Wildlife Service describes various alternatives that could provide long-term protection to the...

  5. Final Critical Habitat for the Virgin river chub (Gila seminuda)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To provide the user with a general idea of areas where the final critical habitat for Sonora chub (Gila seminuda) occur based on the description provided in the...

  6. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  7. Hydroelectric modelling of the Paraiba do Sul and Jequitinhonha rivers sub-basins by using the VALORAGUA computer program; Modelagem hidreletrica das sub bacias dos rios Paraiba do Sul e Jequitinhonha utilizando o programa VALORAGUA

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Vinicius Verna Magalhaes; Aronne, Ivan Dionysio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mails: vvmf@urano.cdtn.br; aroneid@urano.cdtn.br; Martinez, Carlos Barreira; Versiani, Bruno Rabelo [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Hidraulica e Recursos Hidricos]. E-mail: martinez@cce.ufmg.br; versiani@ehr.ufmg.br

    2002-07-01

    This work presents a modelling of 50 hydroelectric power plants in the East Atlantica hydro graphic basin, operating, under construction or as basic projects. The simulations are performed by using the VALORAGUA computer code, developed by the EDP - Eletricidade de Portugal. The studies concentrate mostly on the sub basins of the Jequitinhonha and Paraiba do Sul rivers. The study includes the thermal power plants existent on the same geographical region. Some obtained results such as capacity factors and energy generation values are analysed. Some considerations are made on questions referring to the Brazilian energetic problems.

  8. Caracterización climática de la microcuenca del Río Monaicito, subcuenca del Río Motatán-Carache Climatic characterization of Monaicito River's micro-basin, sub-basin of Motatán-Carache River

    Directory of Open Access Journals (Sweden)

    Neida Pineda Contreras

    2011-10-01

    Full Text Available Se realizó un estudio climático de la microcuenca del Río Monaicito (11 960 ha, perteneciente a la subcuenca del Motatán-Carache, estado Trujillo, Venezuela; fue realizado a partir de diez años de registros (1985-1995 de precipitación media mensual (seis estaciones y de temperatura media mensual (una estación de referencia. Con la información de precipitación y la ayuda del interpolador Kriging (geoestadístico Surfer 8.0 se elaboró el mapa de isoyetas medias anuales. Porteriormente, se utilizó el método isoporcentual para obtener a escala 1:25 000, bajo el software Surfer, los mapas de líneas isoporcentuales mensuales, que fueron superpuestos para obtener el mapa de isoyetas medias mensuales y la precipitación media mensual de 85 puntos de referencia distribuidos en la microcuenca. La temperatura media mensual de los puntos de referencia se estimó utilizando el método del gradiente térmico vertical, a partir de los datos de la estación Santa Ana (1985-1995. Se elaboraron 85 balances hídricos usando el método Thornthwaite, los cuales sirvieron de base para la obtención de los mapas de índice hídrico anual, índice de humedad y evapotranspiración potencial anual. Luego, mediante la superposición de dichos mapas y la aplicación de los criterios de clasificación del método Thornthwaite, se realizó la regionalización climática de la microcuenca, determinándose que predomina un clima subhúmedo seco, con poco o ningún exceso de agua y cuatro regiones térmicas: mesotérmica templada-fría, mesotérmica templada-cálida, mesotérmica semicálida y megatérmica o cálida.A climatic study of the micro-basin of Monaicito River (11 960 ha, belonging to the sub-basin of Motatán-Carache, Trujillo State, Venezuela was performed; this was made from ten years records (1985-1995 of monthly mean precipitation (six stations and monthly average temperature (one station of reference. With rainfall information, and using a Kriging

  9. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Townley, L.R.; Trefry, M.G.; Barr, A.D. [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S. [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M. [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan)] [and others

    1992-12-31

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  10. 77 FR 65929 - Notice of Final Federal Agency Actions on the Tappan Zee Hudson River Crossing Project in New York

    Science.gov (United States)

    2012-10-31

    ... Federal Highway Administration Notice of Final Federal Agency Actions on the Tappan Zee Hudson River.... Sec. 139(l)(1). The actions relate to the Tappan Zee Hudson River Crossing Project located in Rockland... the following highway project in the State of New York: Tappan Zee Hudson River Crossing...

  11. Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin

    Science.gov (United States)

    Mukherjee, Abhijit; von Brömssen, Mattias; Scanlon, Bridget R.; Bhattacharya, Prosun; Fryar, Alan E.; Hasan, Md. Aziz; Ahmed, Kazi Matin; Chatterjee, Debashis; Jacks, Gunnar; Sracek, Ondra

    2008-07-01

    Although arsenic (As) contamination of groundwater in the Bengal Basin has received wide attention over the past decade, comparative studies of hydrogeochemistry in geologically different sub-basins within the basin have been lacking. Groundwater samples were collected from sub-basins in the western margin (River Bhagirathi sub-basin, Nadia, India; 90 samples) and eastern margin (River Meghna sub-basin; Brahmanbaria, Bangladesh; 35 samples) of the Bengal Basin. Groundwater in the western site (Nadia) has mostly Ca-HCO3 water while that in the eastern site (Brahmanbaria) is much more variable consisting of at least six different facies. The two sites show differences in major and minor solute trends indicating varying pathways of hydrogeochemical evolution However, both sites have similar reducing, postoxic environments (pe: + 5 to - 2) with high concentrations of dissolved organic carbon, indicating dominantly metal-reducing processes and similarity in As mobilization mechanism. The trends of various redox-sensitive solutes (e.g. As, CH4, Fe, Mn, NO3-, NH4+, SO42-) indicate overlapping redox zones, leading to partial redox equilibrium conditions where As, once liberated from source minerals, would tend to remain in solution because of the complex interplay among the electron acceptors.

  12. Helmintos gastrointestinales en aves acuáticas de la subcuenca alta del río Lerma, México Gastrointestinal helminth in waterfowl of the upper Lerma river sub-basin, Mexico

    Directory of Open Access Journals (Sweden)

    Marcela Martínez-Haro

    2012-03-01

    Full Text Available Se realizó un inventario y se calcularon los parámetros de infección de los helmintos gastrointestinales de 36 ejemplares de aves acuáticas pertenecientes a las familias Anatidae, Rallidae y Threskiornithidae, procedentes de la subcuenca alta del río Lerma, Estado de México, identificándose 20 especies: 9 tremátodos, 8 céstodos, 2 nemátodos y 1 acantocéfalo. De las 8 especies de céstodos, 6 son registros nuevos para el país y Pseudocorynosoma constrictum se registra por primera vez en Anas crecca, Anas discors, Oxyura jamaicensis y Fulica americana. Los helmintos que presentaron las prevalencias más altas fueron los céstodos Hymenolepis megalops y Sobolevicanthus krabbeella en Anas acuta, Anas clypeata, Anas cyanoptera y Anas crecca.A survey of helminth parasites in 36 waterfowl species from the upper Lerma River, in central Mexico was conducted. A total of 20 helminth species were recorded, including 9 trematodes, 8 cestodes, 2 nematodes and 1 acanthocephalan. Six of the cestode species are recorded for the fisrt time from Mexican birds; the acanthocephalan Pseudocorynosoma constrictum is reported for the first time in Anas crecca, A. discors, Oxyura jamaicensis and Fulica americana. The highest prevalences were recorded for the cestodes Hymenolepis megalops and Sobolevicanthus krabbeella in Anas acuta, A. clypeata, A. cyanoptera and A. crecca.

  13. Floods simulation in the Crişul Alb River Basin using hydrological model CONSUL

    Science.gov (United States)

    Mic, Rodica Paula; Corbus, Ciprian; Matreata, Marius

    2016-04-01

    For the simulation of floods, in the Crişul Alb River Basin, Romanian hydrological model CONSUL with lumped parameters was used. This deterministic mathematical rainfall-runoff model compute discharge hydrographs on configured river sub-basins, their channel routing and composition on the main river and tributaries and finally their routing and mitigation through reservoirs, according to the schematic representation (topological modelling) of how water flows and integrate in a river basin. After topological modelling 42 sub-basins and 19 river reaches resulted for the Crişul Alb River Basin model configuration, established according to the position of tributaries, hydrometric stations and reservoirs that influence flow. The CONSUL model used as input data, for each sub-basin, average values of precipitation and air temperature determined based on the measured values of weather stations in the basin. Calculation of average values was performed using a pre-processing program of meteorological data from rectangular grid nodes corresponding to Crişul Alb River Basin, averaging being achieved as weighted values based on the representativeness of these nodes for each analyzed sub-basin. Calibration of model parameters was performed by the simulation of 25 rainfall-runoff events from the period 1975 - 2010, chosen to cover a wide range of possible situations in the case of floods formation. By simulating floods from the hydrometric stations located in the closing sections of river sub-basins were determined the infiltration and unit hydrograph parameters and by simulating floods from the hydrometric stations located in the downstream sections of the river reaches hydrometrically controlled were determined the routing equation parameters. The parameters thus determined allow building some generalization relationships of these parameters according to the morphometric characteristics of the river sub-basins (surface, slope) or river reaches (length, slope). Based on these

  14. Final Review of Safety Assessment Issues at Savannah River Site, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-12-15

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.

  15. Analysis of Chinook Salmon in the Columbia River from an Ecosystem Perspective. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lichatowich, James A.; Mobrand, Lars E.

    1995-01-01

    Ecosystem Diagnosis and Treatment (EDT) methodology was applied to the analysis of chinook salmon in the mid-Columbia subbasins which flow through the steppe and steppe-shrub vegetation zones. The EDT examines historical changes in life history diversity related to changes in habitat. The emphasis on life history, habitat and historical context is consistent with and ecosystem perspective. This study is based on the working hypothesis that the decline in chinook salmon was at least in part due to a loss of biodiversity defined as the intrapopulation life history diversity. The mid Columbia subbasins included in the study are the Deschutes, John Day, Umatilla, Tucannon and Yakima.

  16. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  17. Streamflow characterization and summary of water-quality data collection during the Mississippi River flood, April through July 2011

    Science.gov (United States)

    Welch, Heather L.; Barnes, Kimberlee K.

    2013-01-01

    From April through July 2011, the U.S. Geological Survey collected surface-water samples from 69 water-quality stations and 3 flood-control structures in 4 major subbasins of the Mississippi River Basin to characterize the water quality during the 2011 Mississippi River flood. Most stations were sampled at least monthly for field parameters suspended sediment, nutrients, and selected pesticides. Samples were collected at daily to biweekly frequencies at selected sites in the case of suspended sediment. Hydro-carbon analysis was performed on samples collected at two sites in the Atchafalaya River Basin to assess the water-quality implications of opening the Morganza Floodway. Water-quality samples obtained during the flood period were collected at flows well above normal streamflow conditions at the majority of the stations throughout the Mississippi River Basin and its subbasins. Heavy rainfall and snowmelt resulted in high streamflow in the Mississippi River Basin from April through July 2011. The Ohio River Subbasin contributed to most of the flow in the lower Mississippi-Atchafalaya River Subbasin during the months of April and May because of widespread rainfall, whereas snowmelt and precipitation from the Missouri River Subbasin and the upper Mississippi River Subbasin contributed to most of the flow in the lower Mississippi-Atchafalaya River Subbasin during June and July. Peak streamflows from the 2011 flood were higher than peak streamflow during previous historic floods at most the selected streamgages in the Mississippi River Basin. In the Missouri River Subbasin, the volume of water moved during the 1952 flood was greater than the amount move during the 2011 flood. Median concentrations of suspended sediment and total phosphorus were higher in the Missouri River Subbasin during the flood when compared to the other three subbasins. Surface water in the upper Mississippi River Subbasin contained higher median concentrations of total nitrogen, nitrate

  18. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DuCharme, Lynn [Confederated Salish and Kootenai Tribes; Tohtz, Joel [Montana Fish, Wildlife & Parks

    2008-11-12

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and

  19. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report Exhibits.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Volume is a part of the Final Environmental Impact Statement (EIS) for the Columbia River System. This volume contains technical exhibits of cultural resources and commentary on the (System Operation Review) SOR process. The Confederated Tribes of the Umatilla Indian Reservation comment is the majority of the material in the volume, in the Consultation Plan, Identification of trust resources; Criteria for the selection of a System Operating Strategy; comment on rights protection and implementation of Federal Trust responsibility; analysis of the draft EIS. Comment by other Native American Tribes and groups is also included: Confederated Tribes of the Colville Reservation; Kootenai Tribe of Idaho; Spokane Tribe of Indians; Coeur d` Alene tribe.

  20. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix R: Pacific Northwest Coordination agreement (PNCA).

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    Currently, the Federal government coordinates the planning and operation of the Federal Columbia River Power System (FCRPS) with projects owned and operated by the region`s non-Federal hydrogenerating utilities pursuant to the Pacific North-west Coordination Agreement (PNCA). The Bureau of Reclamation (Reclamation), the Corps of Engineers (Corps), and the Bonneville Power Administration (BPA) are parties to the PNCA on behalf of the government of the United States. The PNCA is a complex agreement that provides an opportunity for the region`s power producers to maximize the power system`s reliability and economy while meeting their multiple-use objectives. The PNCA does not dictate the operation of the resources it coordinates. It is essentially an accounting mechanism that exchanges the power produced among the parties in order to improve the reliability of the system and reduce regional power costs. Project owners retain complete autonomy to operate as needed to meet their multiple-use requirements. The PNCA was executed in 1964 as an important component of regional plans to maximize the Northwest`s hydro resource capability. Maximization also included the development of storage projects on the Columbia River in Canada pursuant to the terms of the 1964 Columbia River Treaty. Because of the link between power coordination and Treaty issues, the current parties to the PNCA, currently are contemplating entering into a replacement or renewed power coordination agreement. Because the power coordination agreement is a consensual arrangement, its ultimate provisions must be acceptable to all of its signatories. This Appendix R to the Final Environmental Impact Statement of the Columbia River System is a presentation of the Pacific North-west Coordination Agreement.

  1. Validación de dos índices biológicos de integridad (IBI en la subcuenca del río Angulo en el centro de México Validation of two indices of biological integrity (IBI for the Angulo River subbasin in Central Mexico

    Directory of Open Access Journals (Sweden)

    Juan Pablo Ramírez-Herrejón

    2012-12-01

    Full Text Available Las acciones para detener el deterioro de los ecosistemas dulceacuícolas del centro del México requieren herramientas de biomonitoreo que permitan el análisis de su integridad biológica. En este trabajo se analizó la viabilidad del uso de dos índices biológicos de integridad (IBI con base en las comunidades de peces en ambientes lóticos y lénticos en la subcuenca del Río Angulo (Cuenca del Lerma-Chapala. Utilizando datos provenientes de recolectas independientes durante dos años consecutivos e información sobre los atributos ecológicos para cada una de las especies, se calcularon los valores de dos IBI en 16 sistemas lénticos y lóticos. Se estimó también la calidad ambiental a través de la evaluación de la calidad del agua y del hábitat en cada sitio. Se encontró integridad biótica pobre, regular y buena. El estudio no mostró sitios con buena calidad ambiental. Los valores de los IBI presentaron correlaciones altas y significativas con aquellos derivados de metodologías independientes de evaluación ambiental. Los IBI reflejaron de forma fehaciente las condiciones ambientales en la mayoría de los sitios de estudio. Con este análisis se logró la expansión de área de uso del IBI para ambientes lóticos y una validación inicial del IBI para ambientes lénticos. Estos resultados sugieren que las herramientas pueden ser utilizadas en futuros esfuerzos de conservación en cuerpos dulceacuícolas en la cuenca del Medio Lerma.Efforts to halt freshwater ecosystem degradation in central Mexico can benefit from using bio-monitoring tools that reflect the condition of their biotic integrity. We analyzed the applicability of two fish-based indices of biotic integrity using data from lotic and lentic systems in the Angulo River subbasin (Lerma-Chapala basin. Both independent data from our own collections during two consecutive years, and existing information detailing the ecological attributes of each species, were used to

  2. Hood River and Pelton Ladder Evaluation Studies, 2008 Annual Report : October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Robert E.; Olsen, Erik A. [Oregon Department of Fish and Wildlife

    2009-09-28

    This report summarizes the life history and production data collected in the Hood River subbasin during FY 2008. Included is a summary of jack and adult life history data collected at the Powerdale Dam trap on seventeen complete run years of winter steelhead, spring and fall chinook salmon, and coho salmon, and on fifteen complete run years of summer steelhead. Also included are summaries of (1) the hatchery winter steelhead broodstock collection program; (2) hatchery production releases in the Hood River subbasin; (3) subbasin wild summer and winter steelhead smolt production, (4) numbers of hatchery summer and winter steelhead smolts leaving the subbasin; (5) smolt migration timing past Bonneville Dam, (6) wild and hatchery steelhead smolt-to-adult survival rates; (7) wild summer and winter steelhead egg to smolt survival rates; and (8) streamflow at selected locations in the Hood River subbasin. Data will be used in part to (1) evaluate the HRPP relative to its impact on indigenous populations of resident and anadromous salmonids (see Ardren Draft), (2) evaluate the HRPP's progress towards achieving the biological fish objectives defined in the Hood River Subbasin Plan (Coccoli 2004) and the Revised Master Plan for the Hood River Production Program (HDR|FishPro, ODFW, and CTWSRO 2008), (3) refine spawner escapement objectives to more accurately reflect subbasin carrying capacity, and (4) refine estimates of subbasin smolt production capacity to more accurately reflect current and potential subbasin carrying capacity.

  3. Coal mine methane in the Sabinas Sub-Basin, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gentzis, T. [CDX Canada Co., Calgary, AB (Canada)

    2005-07-01

    The general geology and stratigraphy of Mexico's Sabinas sub-basin was described with reference to its coal properties and gas content. Field derived data regarding cleating and reservoir pressure was presented along with gas analysis, adsorption isotherms, coal mineralogy and coal maturity. Mine methane emission data was presented along with a description of the application of in-seam methane drainage and reservoir simulation. It was concluded that the Sabinas sub-basin contains gassy coals in the Upper Cretaceous Olmos Formation, based on both historical evidence and desorption testing. The coals are at shallow depth (less than 500 m), are well cleated and have high natural fracture permeability. The double seam coal is under-pressured, and most likely under-saturated but it has high diffusivity. Sabinas coals are reported to be dry, with free gas in the cleat/fracture system and absence of mineralization. In-seam horizontal drilling prior to longwall mining resulted in a significant reduction of gas content and an increase in coal production. The Sabinas sub-basin is suitable for full-scale coalbed methane development using in-seam horizontal drilling technology. A comparison with the Maverick Basin in Texas showed that there are both similarities and differences between the Sabinas sub-basin coals in Mexico and the Maverick Basin coals in Texas. figs.

  4. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume II Yakima (Overview, Report, Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  5. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume III (Overview and Tools).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  6. Final Report Ohio River Mussel Survey, River Mile 162.5 to 172.5 (Willow Island to Marietta)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Ecological Specialists, Inc. was contracted by the City of New Martinsville, West Virginia, to survey the Ohio River unionid molluscs downstream of the Willow Island...

  7. Fish Use of Several Tributaries to the Kenai River, Alaska : Final Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of three Kenai River tributaries and the trout and salmon species that use them. The three Kenai River tributaries studied during 1982 and 1983...

  8. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01

    The System Operation Review (SOR) Final EIS addresses four actions: (a) need to develop coordinated strategy for managing the multiple uses of the Federal Columbia River system (System Operating Strategy [SOS]); (b) need to provide interested parties other than management agencies with a long-term role in system planning (Forum); (c) need to renew or change current Canadian Entitlement Allocation Agreements (CEAA); and (d) need to renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA). SOS alternatives analyzed are: (1) operation prior to Endangered Species Act listings of salmon stocks; (2) current operations (no action); (3) stable storage project operation; (4) natural river operation; (5) fixed drawdown; (6) operating strategies proposed by the U.S. Fish and Wildlife Service, National Marine Fisheries Service, State fisheries agencies, Native American tribes, and Federal operating agencies; and (7) Preferred Alternative. The seven Forum alternatives analyzed are: (1) decisionmaking by the SOR lead agencies (preferred alternative); (2) decisionmaking by SOR lead agencies and recommendations by an existing regional entity; (3) decisionmaking by SOR lead agencies and recommendations by a new regional entity; (4) decisionmaking by a Federal consultation forum; (5) decisionmaking by a new entity; (6) decisionmaking by one Federal operating agency; (7) decisionmaking by a Federal agency other than an operating agency. PNCA alternatives analyzed are: (1) no replacement contract; (2) contract to maximize regional power benefits; (3) roll over existing PNCA; (4) current PNCA with modified operating procedures (preferred alternative); (5) current PNCA with nonpower modifications. CEAA alternatives include: (1) no action (no replacement of current allocation agreements); (2) entitlement allocation: 55 percent Federal; 45 percent non-Federal; (3) entitlement allocation: 70 percent Federal, 30 percent non-Federal (preferred alternative); (4) no agreement.

  9. 77 FR 66215 - Notice of Final Federal Agency Actions on the Tappan Zee Hudson River Crossing Project in New York

    Science.gov (United States)

    2012-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Highway Administration Notice of Final Federal Agency Actions on the Tappan Zee Hudson River Crossing Project in New York Correction In notice document 2012-26799, appearing on page 65929 in the...

  10. Channel centerline for the Nehalem River, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  11. Channel centerline for the Nehalem River, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  12. Channel centerline for the Nehalem River, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  13. Aerial photo mosaic of the Nehalem River, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  14. Channel centerline for the Nehalem River, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  15. Aerial photo mosaic of the Nehalem River, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  16. Study of Wild Spring Chinook Salmon in the John Day River System, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, Robert B.

    1986-02-01

    A study of wild spring chinook salmon was conducted in the John Day River, Oregon: (1) recommend harvest regulations to achieve escapement goals in the John Day River; (2) recommend adtustments in timing of fish passage operations at Columbia River dams that will increase survival of John Day migrants; (3) recommend habitat or environmental improvements that will increase production of spring chinook salmon; (4) determine escapement goals for wild spring chinook salmon in the John Day River; and (5) recommend procedures for hatchery supplementation in the John Day River in the event it becomes necessary to artificially maintain the run of spring chinook salmon. Juveniles were captured as smolts during migration and as fingerlings during summer rearing. Juveniles were coded-wire tagged, and recoveries of tagged adults were used to assess contribution to ocean and Columbia River fisheries, timing of adult migrations through the Columbia River in relation to fishing seasons, and age and size of fish in fisheries. Scoop traps and seines were used to determine timing of smolt migrations through the John Day River. In addition, recoveries of tagged smolts at John Day Dam, The Dalles Dam, and Jones Beach were used to determine migration timing through the Columbia River. We examined freshwater life history of spring chinook salmon in the John Day River and related it to environmental factors. We looked at adult holding areas, spawning, incubation and emergence, fingerling rearing distribution, size and growth of juveniles and scales. Escapement goals fo the John Day River as well as reasons for declines in John Day stocks were determiend by using stock-recruitment analyses. Recommendations for hatchery supplementation in the John Day were based on results from other study objectives.

  17. Temporal and spatial constraints on the evolution of a Rio Grande rift sub-basin, Guadalupe Mountain area, northern New Mexico

    Science.gov (United States)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Hudson, M. R.; Lee, J.

    2013-12-01

    The Taos Plateau volcanic field (TPVF) in the southern San Luis Valley of northern New Mexico is the most voluminous of the predominantly basaltic Neogene (6-1 Ma) volcanic fields of the Rio Grande rift. Volcanic deposits of the TPVF are intercalated with alluvial deposits of the Santa Fe Group and compose the N-S-trending San Luis Basin, the largest basin of the northern rift (13,500 km2 in area). Pliocene volcanic rocks of the Guadalupe Mountain area of northern New Mexico are underlain by the southern end of one of the larger sub-basins of the San Luis Valley, the Sunshine sub-basin (~ 450 km2 in area) juxtaposed against the down-to-west frontal fault of the Precambrian-cored Sangre de Cristo Range. The sub-basin plunges northward and extends to near the Colorado-New Mexico border. The western margin (~15 km west of the Sangre de Cristo fault) is constrained by outcrops of Oligocene to Miocene volcanic rocks of the Latir volcanic field, interpreted here as a broad pre-Pliocene intra-rift platform underlying much of the northern TPVF. The southern sub-basin border is derived, in part, from modeling of gravity and aeromagnetic data and is interpreted as a subsurface extension of this intra-rift platform that extends southeastward to nearly the Sangre de Cristo range front. Broadly coincident with this subsurface basement high is the northwest-trending, curvilinear terminus of the down-to-northeast Red River fault zone. South of the gravity high, basin-fill alluvium and ~3.84 Ma Servilleta basalt lava flows thicken along a poorly exposed, down-to-south, basin-bounding fault of the northern Taos graben, the largest of the San Luis Valley sub-basins. The uppermost, western sub-basin fill is exposed along steep canyon walls near the confluence of the Rio Grande and the Red River. Unconformity-bound, lava flow packages are intercalated with paleo Red River fan alluvium and define six eruptive sequences in the Guadalupe Mountain area: (1) Guadalupe Mtn. lavas (dacite ~5

  18. Waterfowl of the Savannah River Plant: Comprehensive cooling water study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J.J.; Kennamer, R.A.; Hoppe, R.T.

    1986-06-01

    Thirty-one species of waterfowl have been documented on the Savannah River Plant (SPR). The Savannah River Ecology Laboratory (SREL) has been conducting waterfowl research on the site for the past 15 years. This research has included work on waterfowl utilization of the SRP, wood duck reproductive biology, and waterfowl wintering ecology. Results are described.

  19. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix N: Wildlife.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This document is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included.

  20. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  1. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  2. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Directory of Open Access Journals (Sweden)

    Marisa Mazari-Hiriart

    Full Text Available The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010, along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012 in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  3. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.

  4. Comparison and evaluation of satellite- and reanalysis-based precipitation products for water resources management in the Brahmaputra River basin

    Science.gov (United States)

    Saleh Khan, Abu; Sohel Masud, Md.; Abdulla Hel Kafi, Md.; Sultana, Tashrifa; Lopez Lopez, Patricia

    2017-04-01

    The Brahmaputra River, with a transboundary basin area of approx. 554,500 km2, has its origin on the northern slope of the Himalayas in China, from where it flows through India, Bhutan and finally Bangladesh. Brahmaputra basin's climatology is heavily conditioned by precipitation during the monsoon months, concentrating about the 85 % of the rainfall in this period and originating severe and frequent floods that impact specially the Bangladeshi population in the delta region. Recent campaigns to increase the quality and to share ground-based hydro-meteorological data, in particular precipitation, within the basin have provided limited results. Global rainfall data from satellite and reanalysis may improve the temporal and spatial availability of in-situ observations for advanced water resources management. This study aims to evaluate the applicability of several global precipitation products from satellite and reanalysis in comparison with in-situ data to quantify their added value for hydrological modeling at a basin and sub-basin scale for the Brahmaputra River. Precipitation products from CMORPH, TRMM-3B42, GsMAP, WFDEI, MSWEP and various combinations with ground-based data were evaluated at basin and sub-basin level at a daily and monthly temporal resolution. The Brahmaputra was delineated into 54 sub-basins for a more detailed evaluation of the precipitation products. The data were analysed and inter-compared for the time period from 2002 to 2010. Precipitation performance assessment was conducted including several indicators, such as probability of detection (POD), false alarm ratio (FAR), Pearson's correlation coefficient (r), bias and root mean square error (RMSE). Preliminary results indicate high correlation and low bias and RMSE values between WFDEI, TRMM-3B42 and CMORPH precipitation and in-situ observations at a monthly time scale. Lower correlations and higher bias and RMSE values were found between GsMAP and MSWEP and ground-observed precipitation

  5. 76 FR 62442 - Final Environmental Impact Report/Environmental Impact Statement for Upper Truckee River...

    Science.gov (United States)

    2011-10-07

    ... Bureau of Reclamation Final Environmental Impact Report/Environmental Impact Statement for Upper Truckee.... ACTION: Notice of availability. SUMMARY: The final Environmental Impact Report/Environmental Impact... publication of the final Environmental Impact Report/Environmental Impact Statement. ADDRESSES: The...

  6. NWIL Final Report 1983-84 Lead Poisoning Monitoring Program White River National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Evidence of lead poisoning at White River National Wildlife Refuge was demonstrated by examination of tissues from hunter-killed and trapped waterfowl. Elevated...

  7. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  8. Parker River National Wildlife Refuge Waterfowl Management Evaluation: Final Report and Recommendations

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A review of Parker River NWR's waterfowl management program was conducted during April 4-6, 1989. Ongoing and planned waterfowl management activities were evaluated...

  9. Evaluation of endocrine disrupting effects in Potomac River fish : Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Potomac River estuary, the second largest tributary to Chesapeake Bay, is an important nursery and spawning area for both migratory and resident fish species of...

  10. Roanoke River National Wildlife Refuge: Comprehensive Conservation Plan & Final Environmental Impact Statement

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Roanoke River NWR for the next 15 years. This plan outlines the Refuge vision and...

  11. Final Environmental Assessment Hunt Program Proposal Ohio River Islands National Wildlife Refuge 1994

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this environmental assessment is to address the impacts of opening the Ohio River Islands National Wildlife Refuge to hunting. The ultimate purpose of...

  12. Insect Inventory at the Detroit River International Wildlife Refuge, Humbug Marsh Unit, 2008 Final report (amended)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes a follow-up inventory of Odonata (damselflies, suborder Zygoptera, and dragonflies, suborder Anisoptera) at the Detroit River International...

  13. The status of peregrine falcons and other raptors along the Porcupine River, Alaska, 1981: Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1979, the U.S. Fish and Wildlife Service initiated a banding project on the Yukon, Porcupine, and Colville rivers where high concentrations of peregrines are...

  14. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Exhibits.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930`s, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river uses. This volume, Appendix D: Cultural resources appendix, Technical imput includes the following: Development of geomorphology based framework for cultural resources management, Dworshak Reservoir, Idaho; Impact profiles for SOR reservoirs; comments from the following Native American tribes: Burns Paiute Tribe; Coville Confederated Tribes; Confederated Tribes of the Warm Springs Indian Reservation; Confederated Tribes and bands of the Yakama Indian Nation (comments); Nez Perce Tribe; Coeur D`Alene Tribe; Spokane Tribe of Indians; The confederated Tribes of the Umatilla Indian Reservation.

  15. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  16. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Umesh S Balpande

    2014-10-01

    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order subbasins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the subsurface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the

  17. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  18. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1986 Final and Annual Reports.

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Amy

    1987-01-01

    This report describes activities implemented for fisheries habitat improvement work on priority drainages in the Clackamas and Hood River sub-basins. Separate abstracts have been prepared for the reports on individual projects. (ACR)

  19. Final Report for the Intermountain Center for River Rehabilitation and Restoration (ICRRR)

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, John C. [Utah State Univ., Logan, UT (United States)

    2016-08-19

    The Intermountain Center for River Rehabilitation and Restoration (ICRRR) was created in 2006 by the Department of Watershed Sciences to help meet the challenge of reversing national trends in freshwater ecosystem degradation. The ICRRR was disbanded in 2015, and its activities were transferred to other research centers within the Department of Watershed Sciences. The mission of the ICRRR was to advance the science and practice of river restoration and environmental management and to transfer that knowledge to the public and private sectors by undertaking targeted research, teaching, and extension/outreach activities. The ICRRR had two foci: restoration practices of small streams and rehabilitation of intermediate and large rivers. The ICRRR focused its work in the western United States.

  20. Changes without changes: the Puebla's Alto Atoyac sub-basin case in Mexico

    NARCIS (Netherlands)

    Bressers, Johannes T.A.; Casiano Flores, Cesar Augusto

    2015-01-01

    Since the year 2000, actions at the three governmental levels have taken place to improve water quality in Mexico’s Puebla Alto Atoyac sub-basin. This paper reports a situation in which several policy actors have been striving for water quality improvement in that polluted sub-basin. However, when

  1. Changes without changes: the Puebla's Alto Atoyac sub-basin case in Mexico

    NARCIS (Netherlands)

    Bressers, Hans; Casiano, Cesar

    2015-01-01

    Since the year 2000, actions at the three governmental levels have taken place to improve water quality in Mexico’s Puebla Alto Atoyac sub-basin. This paper reports a situation in which several policy actors have been striving for water quality improvement in that polluted sub-basin. However, when t

  2. 78 FR 13692 - Clarks River National Wildlife Refuge, KY; Final Comprehensive Conservation Plan/Land Protection...

    Science.gov (United States)

    2013-02-28

    ... surrounding Clarks River watershed, and providing quality public use programs and wildlife-dependent... Federal responsibility. These species will be chosen based on the criteria that they are indicators of the... reflect best management practices determined after examination of historical regimes, soil types...

  3. 77 FR 61631 - Final Environmental Impact Statement for Stehekin River Corridor Implementation Plan, Lake Chelan...

    Science.gov (United States)

    2012-10-10

    ... prioritizing potential exchange/ acquisition lands, including scenic resources and threats within debris flow..., maintenance yard) in response to increased flooding and erosion issues in the lower Stehekin River watershed... erosion threats to NPS facilities and are impacting natural resources within Lake Chelan NRA. The...

  4. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  5. Biological Ocean Margins Program. Active Microbes Responding to Inputs from the Orinoco River Plume. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jorge E. Corredor

    2013-01-28

    The overall goal of the proposed work is to identify the active members of the heterotrophic community involved in C and N cycling in the perimeter of the Orinoco River Plume (ORP), assess their spatial distribution, quantify their metabolic activity, and correlate these parameters to plume properties such as salinity, organic matter content and phytoplankton biomass.

  6. Austin Youth River Watch Program: 1992-93 Final Report. Publication Number 92.33.

    Science.gov (United States)

    Turner, Jeannine

    The City of Austin (Texas) provides funds for an educational initiative to involve minority high school students in water quality issues and to reduce the dropout rate through positive role model interaction with academically successful students. Principal program activities were testing river water for pollutants and tutoring at-risk students by…

  7. 76 FR 61261 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Science.gov (United States)

    2011-10-04

    ... not be hindered by the safety zone. Recreational vessels will not be allowed to transit through the... vessels intending to transit or anchor in a portion of the lower Colorado River at Lake Havasu from... Captain of the Port will cease enforcement of this safety zone and will announce that fact via...

  8. Goose River, Maine, demonstration project, January 1978-October 1978. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-24

    The proposed Goose River Project is a commercial power development consisting of 4 power dams and one storage dam. All available energy is to be wholesaled to the Central Maine Power Company, the utility holding the franchise for the area. A description of the economic feasibility of the proposed project is presented.

  9. Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; McKinstry, C.; Mueller, R.

    2004-01-01

    Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine

  10. Wetted channel and bar features for the Nehalem River, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  11. Aerial photo mosaic of the Wilson and Kilchis Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  12. Channel centerline for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  13. Wetted channel and bar features for the Nehalem River, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  14. Channel centerline for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  15. Aerial photo mosaic of the Miami River, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  16. Channel centerline for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  17. Aerial photo mosaic of the Tillamook and Trask Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  18. Channel centerline for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  19. Wetted channel and bar features for the Nehalem River, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  20. Wetted channel and bar features for the Nehalem River, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  1. Okanogan Subbasin Water Quality and Quantity Report for Anadromous Fish in 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Colville Tribes, Department of Fish & Wildlife

    2007-12-01

    Fish need water of sufficient quality and quantity in order to survive and reproduce. The list of primary water quality indicators appropriate for monitoring of anadromous fish, as identified by the Upper Columbia Monitoring Strategy, includes: discharge, temperature, dissolved oxygen, pH, turbidity, conductivity, nitrogen, phosphorus and ammonia. The Colville Tribes Fish and Wildlife Department began evaluating these water quality indicators in 2005 and this report represents data collected from October 1, 2005 through September 30, 2006. We collected empirical status and trend data from various sources to evaluate each water quality indicator along the main stem Okanogan and Similkameen Rivers along with several tributary streams. Each water quality indicator was evaluated based upon potential impacts to salmonid survival or productivity. Specific conductance levels and all nutrient indicators remained at levels acceptable for growth, survival, and reproduction of salmon and steelhead. These indicators were also considered of marginal value for monitoring environmental conditions related to salmonids within the Okanogan subbasin. However, discharge, temperature, turbidity, dissolved oxygen and pH in that order represent the water quality indicators that are most useful for monitoring watershed health and habitat changes and will help to evaluate threats or changes related to salmon and steelhead restoration and recovery. On the Okanogan River minimum flows have decreased over the last 12 years at a rate of -28.3CFS/year as measured near the town of Malott, WA. This trend is not beneficial for salmonid production and efforts to reverse this trend should be strongly encouraged. Turbidity levels in Bonaparte and Omak Creek were a concern because they had the highest monthly average readings. Major upland disturbance in the Bonaparte Creek watershed has occurred for decades and agricultural practices within the riparian areas along this creek have lead to major

  2. Natural Propagation and Habitat improvement, Volume 2B, Washington, Similkameen River Habitat Inventory, 1983 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Unknown Author

    1984-04-01

    During the summer low flow period, a habitat assessment of the Similkameen, Tulameen, Ashnola and Pasayten rivers in British Columbia and Washington State was conducted between August 10 and October 10, 1983. The biophysical survey assessed 400 km (250 mi) of stream at 77 stations. Fish sampling was conducted at each station to assess the resident fish populations and standing crop. Rainbow trout populations and standing crops were found to be very low. Large populations of mountain whitefish and bridgelip suckers were present in the manstem Similkameen River below Similkameen Falls. High densities of sculpins and longnose dace were found throughout the system except for sculpins above the falls, where none were captured. Approximately 961,000 m/sup 2/ (1,150,000 yd/sup 2/) of spawnable area for steelhead trout were estimated for the entire system which could accommodate 98,000 spawners. Nearly 367,000 m/sup 2/ (439,000 yd/sup 2/) of chinook salmon spawnable area was also estimated, capable of accommodating 55,000 chinook. Rearing area for steelhead trout smolts was estimated for the whole system at 1.8 million m/sup 2/ (2.2 million yd/sup 2/). Chinook salmon smolt rearing area was estimated at 700,000 m/sup 2/ (837,000 yd/sup 2/). Rearing area was found to be a limiting factor to anadromous production in a Similkameen River system. Smolt production from the system was estimated 610,000 steelhead trout and between 1.6 million and 4.8 million chinook salmon. No water quality, temperature or flow problems for anadromous salmonids were evident from the available data and the habitat inventory. In addition to an impassable falls on the Tulameen River at river mile 32.5, only two other areas of difficult passage exist in the system, Similkameen Falls (a series of chutes) and the steep, narrow lower section of the Ashnola River. 51 references, 18 figures, 25 tables.

  3. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In

  4. Tucannon River Spring Chinook Captive Broodstock Program Final Environmental Assessment and Finding of No Significant Impact

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-05-24

    Bonneville Power Administration (BPA) is proposing to fund the Tucannon River Spring Chinook Captive Broodstock Program, a small-scale production initiative designed to increase numbers of a weak but potentially recoverable population of spring chinook salmon in the Tucannon River in the State of Washington. BPA has prepared an Environmental Assessment (EA) (DOE/EA-l326) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

  5. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In

  6. Flood Control Burlington Dam, Souris River, North Dakota. Final Environment Impact Statement.

    Science.gov (United States)

    1978-01-01

    Refuges (NWR’s), since the N4WR’s contain perhaps the key wildlife habitat along the Souris River, and since the NWR’s are of key environmental...are like Burlingtcr Dam in all the key characteristics. There are also no Puhlished res;icw articles which compare all these different conditions and...persisted for a few years since floodwater storage, is dominated by the thistles Sonchus and especially Cirsium, and appears rather stable and persistent

  7. Instream Flows Incremental Methodology :Kootenai River, Montana : Final Report 1990-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Greg; Skaar, Don; Dalbey, Steve (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2002-11-01

    Regulated rivers such as the Kootenai River below Libby Dam often exhibit hydrographs and water fluctuation levels that are atypical when compared to non-regulated rivers. These flow regimes are often different conditions than those which native fish species evolved with, and can be important limiting factors in some systems. Fluctuating discharge levels can change the quantity and quality of aquatic habitat for fish. The instream flow incremental methodology (IFIM) is a tool that can help water managers evaluate different discharges in terms of their effects on available habitat for a particular fish species. The U.S. Fish and Wildlife Service developed the IFIM (Bovee 1982) to quantify changes in aquatic habitat with changes in instream flow (Waite and Barnhart 1992; Baldridge and Amos 1981; Gore and Judy 1981; Irvine et al. 1987). IFIM modeling uses hydraulic computer models to relate changes in discharge to changes in the physical parameters such as water depth, current velocity and substrate particle size, within the aquatic environment. Habitat utilization curves are developed to describe the physical habitat most needed, preferred or tolerated for a selected species at various life stages (Bovee and Cochnauer 1977; Raleigh et al. 1984). Through the use of physical habitat simulation computer models, hydraulic and physical variables are simulated for differing flows, and the amount of usable habitat is predicted for the selected species and life stages. The Kootenai River IFIM project was first initiated in 1990, with the collection of habitat utilization and physical hydraulic data through 1996. The physical habitat simulation computer modeling was completed from 1996 through 2000 with the assistance from Thomas Payne and Associates. This report summarizes the results of these efforts.

  8. Transportation of Snake River Fall Chinook Salmon 2008: Final Report for the 2004 Juvenile Migration

    Science.gov (United States)

    2010-06-01

    East Seattle, Washington 98112-2097 for Walla Walla District Northwestern Division U.S. Army Corps of Engineers 201 North 3rd Walla Walla ...Clearwater Rivers. Annual report of research activities to the U.S. Army Corps of Engineers, Walla Walla , Washington. Connor, W. P., J. G. Sneva...Report of the National Marine Fisheries Service to the U.S. Army Corps of Engineers, Walla Walla , Washington. Marsh, D. M., J. R. Harmon, N. N

  9. Columbia River Channel Improvement Project: Final Supplemental Integrated Feasibility Report and Environmental Impact Statement

    Science.gov (United States)

    2003-01-01

    E ATTN: Robert Willis Attention: Judy Grigg P.O. Box 2946, Portland, OR 97208-2946 P.O. Box 1258, Longview, WA 98632-7739 Phone: (503) 808...the origin of many exotic species that could invade the Columbia River, the Chinese mitten crab, zebra mussel and Eurasian milfoil are known...found for their control. Transferred to the U.S. in ballast water and on the hulls of vessels, zebra mussels have caused great environmental and

  10. Habitat Evaluation and Monitoring in the Columbia River Basin, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everson, Larry B.; Campbell, Charles J.; Craven, Richard E.; Welsh, Thomas L.

    1986-12-01

    The law established the Northwest Power Planning Council to prepare and adopt a regional conservation and electric power plan, and a program to protect, mitigate, and enhance fish and wildlife. The objectives are the development of regional plans and programs related to energy conservation, renewable resources, other resources, and protecting mitigating, and enhancing fish and wildlife resources and to protect, mitigate, and enhance the fish and wildlife, including related spawning grounds and habitat, of the Columbia River and its tributaries. 4 refs.

  11. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.; Zimmerman, Shon A.; Thom, Ronald M.; Wright, Cynthia L.

    2012-03-22

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  12. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaufmann, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cullinan, Valerie I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thom, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wright, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-03-01

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  13. Herpetological monitoring and assessment on the Trinity River, Trinity County, California—Final report

    Science.gov (United States)

    Snover, Melissa L.; Adams, Michael J.

    2016-06-14

    The primary goal of the Trinity River Restoration Program is to rehabilitate the fisheries on the dam-controlled Trinity River. However, maintaining and enhancing other wildlife populations through the restoration initiative is also a key objective. Foothill yellow-legged frogs (Rana boylii) and western pond turtles (Actinemys marmorata) have been identified as important herpetological species on which to focus monitoring efforts due to their status as California state-listed species of concern and potential listing on the U.S. Endangered Species List. We developed and implemented a monitoring strategy for these species specific to the Trinity River with the objectives of establishing baseline values for probabilities of site occupancy, colonization, and local extinction; identifying site characteristics that correlate with the probability of extinction; and estimating overall trends in abundance. Our 3-year study suggests that foothill yellow-legged frogs declined in the probability of site occupancy. Conversely, our results suggest that western pond turtles increased in both abundance and the probability of site occupancy. The short length of our study period makes it difficult to draw firm conclusions, but these results provide much-needed baseline data. Further monitoring and directed studies are required to assess how habitat changes and management decisions relate to the status and trend of these species over the long term.

  14. Impact of impingement on the Hudson River white perch population. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Van Winkle, W.; Kirk, B.L.; Vaughan, D.S.

    1982-02-01

    This report summarizes a series of analyses of the magnitude and biological significance of the impingement of white perch at the Indian Point Nuclear Generating Station and other Hudson River power plants. Included in these analyses were evaluations of: (1) two independent lines of evidence relating to the magnitude of impingement impacts on the Hudson River white perch population; (2) the additional impact caused by entrainment of white perch; (3) data relating to density-dependent growth among young-of-the-year white perch; (4) the feasibility of performing population-level analyses of impingement impacts on the white perch populations of Chesapeake Bay and the Delaware River; and (5) the feasibility of using simple food chain and food web models to evaluate community-level effects of impingement and entrainment. Estimated reductions in the abundances of the 1974 and 1975 white perch year classes, caused by impingement and entrainment, were high enough that the possibility of adverse long-term effects cannot be excluded.

  15. Seasonal predictions of precipitation in the Aksu-Tarim River basin for improved water resources management

    Science.gov (United States)

    Hartmann, Heike; Snow, Julie A.; Su, Buda; Jiang, Tong

    2016-12-01

    Since the 1950s, the population in the arid to hyperarid Tarim River basin has grown rapidly concurrent with an expansion of irrigated agriculture. This threatens the Tarim River basin's natural ecosystems and causes water shortages, even though increased discharges in the headwaters have been observed more recently. These increases have mainly been attributed to receding glaciers and are projected to cease when the glaciers are unable to provide sufficient amounts of meltwater. Under these circumstances water management will face a serious challenge in adapting its strategies to changes in river discharge, which to a greater extent will depend on changes in precipitation. In this paper, we aim to develop accurate seasonal predictions of precipitation to improve water resources management. Possible predictors of precipitation for the Tarim River basin were either downloaded directly or calculated using NCEP/NCAR Reanalysis 1 and NOAA Extended Reconstructed Sea Surface Temperature (SST) V3b data in monthly resolution. To evaluate the significance of the predictors, they were then correlated with the monthly precipitation dataset GPCCv6 extracted for the Tarim River basin for the period 1961 to 2010. Prior to the Spearman rank correlation analyses, the precipitation data were averaged over the subbasins of the Tarim River. The strongest correlations were mainly detected with lead times of four and five months. Finally, an artificial neural network model, namely a multilayer perceptron (MLP), and a multiple linear regression (LR) model were developed each in two different configurations for the Aksu River subbasin, predicting precipitation five months in advance. Overall, the MLP using all predictors shows the best performance. The performance of both models drops only slightly when restricting the model input to the SST of the Black Sea and the Siberian High Intensity (SHI) pointing towards their importance as predictors.

  16. FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES

    Energy Technology Data Exchange (ETDEWEB)

    PAUL, JOHN H

    2013-06-21

    Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up to a thousand km into oligotrophic oceans. Upon entry into the oceans rivers are tremendous sources of CO2 and dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and plumes rapidly become sinks for CO2. Using state-of-the-art gene expression technology, we have examined the molecular biodiversity of CO2 fixation in the Mississippi River Plume (MRP; two research cruises) and the Orinoco River Plume (ORP; one cruise). When the MRP extends far into the Gulf because of entrainment with the Loop Current, MRP production (carbon fixation) can account for up to 41% of the surface production in the Gulf of Mexico. Nearer-shore plume stations (“high plume,” salinity< 32 ppt) had tremendous CO2 drawdown that was correlated to heterokont (principally diatom) carbon fixation gene expression. The principal form of nitrogen for this production based upon 15N studies was urea, believed to be from anthropogenic origin (fertilizer) from the MRP watershed. Intermediate plume environments (salinity 34 ppt) were characterized by high levels of Synechococcuus carbon fixation that was fueled by regenerated ammonium. Non-plume stations were characterized by high light Prochlorococcus carbon fixation gene expression that was positively correlated with dissolved CO2 concentrations. Although data from the ORP cruise is still being analyzed, some similarities and striking differences were found between the ORP and MRP. High levels of heterokont carbon fixation gene expression that correlated with CO2 drawdown were observed in the high plume, yet the magnitude of this phenomenon was far below that of the MRP, most likely due to the lower levels of anthropogenic

  17. 80 FR 21761 - Notice of Availability of the Final Owyhee Canyonlands Wilderness and Wild & Scenic Rivers...

    Science.gov (United States)

    2015-04-20

    ... LXSS020D0000 241A 4500075005] Notice of Availability of the Final Owyhee Canyonlands Wilderness and Wild..., the Bureau of Land Management (BLM) has signed a Decision Record implementing the Final Owyhee....gov/id/st/en/prog/nepa_register/Owyhee-wilderness-WSR_plan.html . Interested parties may also view...

  18. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.

    1999-05-01

    year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Chapter three describes the results from an investigation into the hyporheic characteristics of the two spawning areas studied in chapter two. This investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Finally, chapter four describes a unique method that was developed to install piezometers into the cobble bed of the Columbia River.

  19. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  20. Alligator rivers analogue project. Final report; volume 1; summary of findings

    Energy Technology Data Exchange (ETDEWEB)

    Duerden, P.; Lever, D.A.; Sverjensky, D.A.; Townley, L.R

    1992-07-01

    The Koongarra uranium ore deposit is located in the Alligator Rivers Region of the Northern Territory of Australia. Many of the processes that have controlled the development of this natural system are relevant to the performance assessment of radioactive waste repositories. An agreement was reached in 1987 by a number of agencies concerned with radioactive waste disposal to set up the International Alligator Rivers Analogue Project (ARAP) to study relevant aspects of the hydrological and geochemical evolution of the site. The Project ran for five years. The aims of the study were: to contribute to the production of reliable and realistic models for radionuclide migration within geological environments relevant to the assessment of the safety of radioactive waste repositories; to develop methods of validation of models using a combination of laboratory and field data associated with the Koongarra uranium deposit; and to encourage maximum interaction between modellers and experimentalists in achieving these objectives. It was anticipated that the substantial databases generated in the field and laboratory studies would then be used to develop and test geochemical and radionuclide transport models. The findings from the technical studies are discussed in the context of assessments of the long-term performance of geological repositories for radioactive wastes, which are being undertaken in many countries. They are also considered in an integrated 'Scenario Development' approach, aimed to understand the formation of the ore deposit. Despite their inherent uncertainties, the findings provide a basis for assessing the way in which radionuclides will migrate in environments with a variety of geologic settings and over a range of different geologic timescales. This summary report, which highlights the work and findings of the Alligator Rivers Analogue Project is one of a series of 16 volumes.

  1. Lower Columbia River Salmon Business Plan for Terminal Fisheries : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Salmon For All

    1996-07-01

    Salmon fishing in the Northwest requires a public-private partnership. The public through its decision-makers, agencies, and laws states it will do all that is necessary to protect and preserve the valuable salmon resource. Yet, the public side of the partnership is broken. The Columbia River salmon fishing industry, with over 140 years of documented history, is at a crossroads. This report explores a variety of issues, concerns, and ideas related to terminal fishery development. In some cases recommendations are made. In addition, options are explored with an understanding that those designated as decision-makers must make decisions following considerable discussion and reflection.

  2. Northeast Oregon Hatchery Project, Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  3. Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1978-03-01

    Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

  4. Incidence of human dental fluorosis in the Raft River geothermal area in southern Idaho. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shupe, J.L.; Olson, A.E.; Peterson, H.B.

    1978-09-01

    A total of 270 school aged individuals representing 151 families living in the vicinity of the Raft River Geothermal area of Idaho were examined for evidence of dental fluorosis. Of these 132 had some dental anomaly. Fifty-two individuals from 45 families had lesions classified as typical dental fluorosis. Eleven of these, some of which had severe dental fluorosis recently moved into the area from other locations. Samples of the drinking waters that were likely consumed by the individuals with dental fluorosis were collected for analyses. In most instances the fluoride content of the waters were low and would not account for the tooth lesions. Possible reasons for lack of correlation are changing of the composition of the water, other sources of fluoride in the diet, and possibly analytical errors.

  5. Final Report - Conservation & Renewable Energy Potential Study For Smith River Rancheria

    Energy Technology Data Exchange (ETDEWEB)

    Greg Retzlaff

    2007-07-01

    In January 2006 the Smith River Rancheria (SRR), located in Smith River, California, contracted with the team of Strategic Energy Solutions (SES) and Evergreen NRG to conduct a study for the community. The objective of the study was to identify renewable generation opportunities that would facilitate Rancheria energy independence through SRR owned and operated power projects. These generation facilities were to be located either on or near the reservation. Specifically, the Rancheria was interested in the viability of generating electric power using biomass and wind fuel resources. Initial research identified that a very small portion of the community's energy could be offset by renewable energy generation due to the low solar resource in this area, and the lack of significant wind or biomass resources on or near reservation land. Some larger projects were identified which offered little or no benefit to the Rancheria. As a result, the scope of this study was changed in October 2006 to focus on energy efficiency opportunities for key reservation facilities, with a continued analysis of smaller renewable energy opportunities within reservation boundaries. The consulting team initially performed a resource analysis for biomass and solar generation opportunities in the region of the Rancheria. It was quickly concluded that none of these options would yield renewable power for the Rancheria at costs competitive with current utility sources, and that any larger installations would require substantial funding that may not be available. Having made these conclusions early on, the study effort was redirected and the team investigated each of the major Rancheria buildings to look for solar, wind and conservation opportunities. The buildings were audited for energy use and the roof areas were examined for exposure of solar radiation. Wind resources were also investigated to determine if smaller wind turbines would offer power generation at a reasonable cost.

  6. Study of Sub-basin Scale Groundwater Variations in Asia Using GRACE, Satellite Altimetry and in-situ Data

    Science.gov (United States)

    Yamamoto, K.; Fukuda, Y.; Taniguchi, M.

    2008-12-01

    A project to assess the effects of human activities on the subsurface environment in Asian developing cities is now in progress (Research Institute for Humanity and Nature., 2008). In the project, precise in situ gravity and landwater observations combined with GRACE (Gravity Recovery and Climate Experiment) satellite gravity data is proposed to evaluate local groundwater level changes of the developing urban areas in Asia. It is necessary for precise and accurate estimation of the local groundwater variations to separate local groundwater level changes from regional or global scale landwater variations. GRACE data is useful to estimate large scale landwater variations. Using GRACE Level 2 monthly gravity field solutions, we previously recovered landwater mass variation around Bangkok, in Thailand, which is one of the test areas of the project and located on the downstream of Chao Phraya river basin in the Indochina Peninsula. However, it is difficult to distinguish landwater signal of Chao Phraya river basin itself with the neighboring 3 large river basins because of the limitation of the spatial resolution of the GRACE monthly solutions. In this study, we recovered mass variation of Chao Phraya river basin using GRACE"fs along track range rate data instead of the monthly solutions. We used the method developed by Chen et al (2007), which uses GRACE"fs line-of-sight range acceleration measurements. We also tested the recoveries of landwater mass variations in other small scale river basins including Jakarta, Seoul and Taipei, which are also study areas of the project. Using the sub-basin scale landwater mass variation recovered by GRACE, we estimated groundwater level change in the project study areas by combing with in situ landwater and gravity observations. Satellite altimetry data is also used to separate groundwater variation from other landwater components as a constraint of river water storage variations.

  7. Wetted channel and bar features for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  8. Wetted channel and bar features for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  9. Wetted channel and bar features for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  10. Wetted channel and bar features for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  11. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems.

  12. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in Idaho, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942.. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. The Idaho portion of the survey consisted of extensive surveys of the Clearwater, Salmon, Weiser, and Payette River Subbasins. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database

  13. Genetic Variation in DNA of Coho Salmon from the Lower Columbia River : Final Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Fobes, Stephen; Knudsen, Kathy; Allendorf, Fred

    1993-04-01

    The goal of this project was to develop techniques to provide the information needed to determine if Lower Columbia River coho salmon represent a 'species' under the Endangered Species Act. Our report features two new nuclear DNA approaches to the improved detection of genetic variation: (1) Studies of DNA-level genetic variation for two nuclear growth hormone genes; (2) Use of arbitrary DNA primers (randomly amplified polymorphic DNA, or 'RAPD' primers) to detect variation at large numbers of nuclear genes. We used the polymerase chain reaction (PCR) to amplify variable sections (introns) of two growth hormone genes (GH-I and G/f-Z) in several salmonid species. Coho salmon had three DNA length variants for G/-I intron C. Restriction analysis and sequencing provided valuable information about the mode of evolution of these DNA sequences. We tested segregation of the variants in captive broods of coho salmon, and demonstrated that they are alleles at a single Mendelian locus. Population studies using the GH-1 alleles showed highly significant frequency differences between Lower Columbia River and Oregon Coast coho salmon, and marginal differences among stocks within these regions. These new markers are adequately defined and tested to use in coho salmon population studies of any size. The nature of the variation at GH-1 (Variable Number Tandem Repeats, or 'VNTRs') suggests that more genetic variants will be found in coho salmon from other areas. GH-2 intron C also showed length variation in coho salmon, and this variation was found to be sex-linked. Because PCR methods require minute amounts of tissue, this discovery provides a technique to determine the gender of immature coho salmon without killing them. Chinook salmon had restriction patterns and sequence divergences similar to coho salmon. Thus, we expect that sex linkage of GH-2 alleles predates the evolutionary divergence of Pacific salmon species, and that gender testing with

  14. Louisiana State Penitentiary Levee, Mississippi River. Main Report and Final Environmental Impact Statement and Appendixes.

    Science.gov (United States)

    1982-01-01

    deep-water areas providing suitable breeding habitat for the American alligator . 12. Recommendations of the Reporting Officer. The District Comander...would provide suitable habitat for courtship and breeding for the American alligator . Audubon Society Blue List. Plan A would not significantly affect any...Suitable spawning areas B-14 • • | I .. . * FINAL EIWVIRO"NTAL IMPACT .STATEMENT LOUISMAN STATE PENI ~fTEARY LEVE 11111W E M fjRER LUIM WEST , k

  15. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Berkman, E. [Emerald Exploration Consultants, Inc., Austin, TX (United States)

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  16. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  17. Lower Columbia River and Estuary Ecosystem Restoration Program Reference Site Study: 2011 Restoration Analysis - FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B.; Cullinan, Valerie I.; Diefenderfer, Heida L.; Thom, Ronald M.; Kaufmann, Ronald M.; Zimmerman, Shon A.; Sagar, Jina; Buenau, Kate E.; Corbett, C.

    2012-05-31

    The Reference Site (RS) study is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers, Portland District [USACE], and U.S. Bureau of Reclamation) in response to Federal Columbia River Power System (FCRPS) Biological Opinions (BiOp). While the RS study was initiated in 2007, data have been collected at relatively undisturbed reference wetland sites in the LCRE by PNNL and collaborators since 2005. These data on habitat structural metrics were previously summarized to provide baseline characterization of 51 wetlands throughout the estuarine and tidal freshwater portions of the 235-km LCRE; however, further analysis of these data has been limited. Therefore, in 2011, we conducted additional analyses of existing field data previously collected for the Columbia Estuary Ecosystem Restoration Program (CEERP) - including data collected by PNNL and others - to help inform the multi-agency restoration planning and ecosystem management work underway in the LCRE.

  18. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  19. Columbia River White Sturgeon (Acipenser Transmontanus) Enhancement, May 1-December 31, 1983 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, E.L.

    1984-12-01

    Studies were undertaken to examine and define the early life history characteristics of Columbia River white sturgeon as a working base from which enhancement measures could be developed. Adult sturgeon were captured and held for spawning at Covert's Landing, the site of the hatchery facilities below Bonneville Dam. Pituitary hormones stimulated ovulation; ripe females were live spawned surgically and the eggs incubated in hatching jars. Larvae were either reared at the hatchery site after incubation to advanced fingerling stages or transferred to the University laboratory for more detailed study. Displacement downstream occurs as a means of distribution and can last several days before a strong substrate preference is manifested. Once bottom contact is sought by the larvae, displacement is abated, and a general preference for sandy surface appears to predominate. Since potentially extensive displacement downstream could result in the distribution of larvae in saltwater, the tolerance of young sturgeon to saltwater was examined. The responsiveness of young sturgeon to artificial feed was positive. With these results, the original concern for identifying an adequate diet and food source that would be readily accepted by fry was greatly attenuated. The readiness of young fry to initiate feeding on the artificial diet made further study on feeding stimulants unnecessary. Examination of the feeding response suggested that as long as the diet used in the present study was initiated at the proper time and with adequate frequency, the fry would feed quite well and survive. 6 refs., 10 figs., 5 tabs.

  20. Study of a conceptual nuclear energy center at Green River, Utah. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.T. (ed.)

    1982-09-01

    This document summarizes a conceptual study on the feasibility and practicality of developing a nuclear energy center (NEC) at a representative Western site. The site selected for this conceptual study, an area of about 50 square miles, is located 15 miles south of Green River, Utah. The conceptual NEC would consist of nine nuclear electric generating units, arranged on the site in three clusters of three reactors each (triads), separated by about 2 1/2 miles. Of the total electric output of 11,250 MWe that the NEC could produce, about 82% is assumed to be transmitted out of Utah to Colorado, New Mexico, Arizona, Nevada, and California. The technical engineering issues studied included geology and seismology, plant design, low-level radioactive waste disposal, transmission, and construction schedules and costs. Socioeconomic issues included were demographics, land use, community service needs, and fiscal impacts. Environmental considerations included terrestrial and aquatic ecology, visual impact, and secondary population impacts. Radiological issues were concerned with the safety and risks of an NEC and an on-site low-level waste facility. Institutional issues included methods of ownership, taxation, implications of energy export, and water allocation. The basic finding was that an NEC would be technically feasible, but a number of socioeconomic and institutional issues would require resolution before a Western regional NEC could be considered a viable power plant siting option.

  1. Toxicity Identification Evaluation (TIE) of Belford Roxo industrial plant effluent and its contribution in water quality of downstream of Sarapui River, Iguacu River sub-basin, Baia da Guanabara Basin, RJ, Brazil; Avaliacao e identificacao da toxicidade (Toxity Identification Evaluation - TIE) do efluente liquido do polo industrial de Belford Roxo, RJ, e sua contribuicao na qualidade das aguas do corso inferior do Rio Sarapui, sub-bacia do Rio Iguacu, Bacia da Baia da Guanabara, RJ, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Luiz Eduardo Botelho

    2006-07-01

    The quality of Belford Roxo Industrial Plant effluent and water from Sarapui River were evaluated with Daphnia similis, Ceriodaphnia dubia and Danio rerio acute and chronic toxicity tests. In association with the ecotoxicological monitoring, the Toxicity Identification Evaluation procedure were performed and the identification of the toxic compounds was possible. The Chloride ion was identified as the major toxic compound in the effluent with additional effects of Metals, Ammonium and Sulfide. For the Sarapui River, the compounds of Phosphorus and Nitrogen were identified as the major toxic compounds with addictive effects of Metals, Ammonium and Sulfide. Although the environmental impact estimation based on the effluent toxicity suggests a minor impact on the water quality of Sarapui River, this was already sufficiently contaminated to make impracticable the establishment of an aquatic community. The constant discharge of untreated sludge promotes the eutrophication of this water body and makes impossible the equilibrium of this ecosystem. (author)

  2. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    Science.gov (United States)

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley–Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin. Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  3. A sampling plan for riparian birds of the Lower Colorado River-Final Report

    Science.gov (United States)

    Bart, Jonathan; Dunn, Leah; Leist, Amy

    2010-01-01

    A sampling plan was designed for the Bureau of Reclamation for selected riparian birds occurring along the Colorado River from Lake Mead to the southerly International Boundary with Mexico. The goals of the sampling plan were to estimate long-term trends in abundance and investigate habitat relationships especially in new habitat being created by the Bureau of Reclamation. The initial objective was to design a plan for the Gila Woodpecker (Melanerpes uropygialis), Arizona Bell's Vireo (Vireo bellii arizonae), Sonoran Yellow Warbler (Dendroica petechia sonorana), Summer Tanager (Piranga rubra), Gilded Flicker (Colaptes chrysoides), and Vermilion Flycatcher (Pyrocephalus rubinus); however, too little data were obtained for the last two species. Recommendations were therefore based on results for the first four species. The study area was partitioned into plots of 7 to 23 hectares. Plot borders were drawn to place the best habitat for the focal species in the smallest number of plots so that survey efforts could be concentrated on these habitats. Double sampling was used in the survey. In this design, a large sample of plots is surveyed a single time, yielding estimates of unknown accuracy, and a subsample is surveyed intensively to obtain accurate estimates. The subsample is used to estimate detection ratios, which are then applied to the results from the extensive survey to obtain unbiased estimates of density and population size. These estimates are then used to estimate long-term trends in abundance. Four sampling plans for selecting plots were evaluated based on a simulation using data from the Breeding Bird Survey. The design with the highest power involved selecting new plots every year. Power with 80 plots surveyed per year was more than 80 percent for three of the four species. Results from the surveys were used to provide recommendations to the Bureau of Reclamation for their surveys of new habitat being created in the study area.

  4. Application of fuzzy logic approach for landslide susceptibility mapping in Garuwa sub-basin, East Nepal

    Institute of Scientific and Technical Information of China (English)

    Prabin KAYASTHA

    2012-01-01

    Landslide is one of the major natural disasters which cause extensive loss of life and property.During the last three decades,different researchers have developed different methodologies to prepare landslide susceptibility mapping and hazard assessment in the world.The main goal of this paper is to apply a fuzzy logic approach to landslide susceptibility mapping in the Garuwa sub-basin area,East Nepal.Eight different causative factors are considered:slope angle,slope aspect,slope shape,relative relief,distance from drainage,land use,geology,and distance from active faults.Likelihood ratios are obtained for each class of causative factors by comparison with past landslide occurrences.Then,the likelihood ratios are normalized between zero and one to obtain fuzzy membership values.Next,different fuzzy operators are applied to generate landslide susceptibility maps.Comparison with the landslide inventory map reveals that the fuzzy gamma (γ) operator with a γ-value of 0.70 yields the best prediction accuracy which is then used to produce the final landslide susceptibility zonation map.

  5. Alligator Rivers Analogue project. Hydrogeological field studies. Final Report - Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.N. [Univ of Arizona, Tucson, Arizona (United States). Dept of Hydrology and Water Resources; Marley, R.D. [D.B. Stephens and Associates Inc., Albuquerque, NM (United States); Norris, J.R. [Hydro Geo Chem Inc., Tucson, Arizona (United States)

    1992-12-31

    The hydrogeology of the Koongarra site was interpreted primarily from long-term hydrographs, water-level maps, water injection tests, aquifer pumping tests, logs of boreholes, and chemical analyses of groundwater samples. Data have been collected over a 21-year period starting with test-drilling in 1970. The first intensive period of hydrogeologic investigations was from 1978 through 1981 and was related to anticipated exploitation of uranium ore at Koongarra. The second period was from 1986 through 1991 and was related to the international Alligator Rivers Analogue Project under the direction of the Australian Nuclear Science and Technology Organisation. The conclusion which can be drawn from the chemical data is that water moving out of the No. 1 ore deposit is diluted rapidly with recharge from the surface as it migrates down the hydraulic gradient. Most of the groundwater outside of the ore deposit does not originate from the ore deposit, and flow models which assume unmodified stream tubes extending out of the ore deposit in a downgradient direction do not reflect the true system. Water in the ore deposit itself, must come from slow upward seepage through the fault zone. Owing to the fact that this water must be at least hundreds of years old, observed fluctuations of water levels in the deposit must reflect pressure head variations induced by seasonal recharge to the overlying surficial materials. Water level fluctuations do not signify a yearly displacement of water deep in the system. Water in the deeper part of the ore must be almost static compared to obvious rapid groundwater circulation in the area around PH88. Small changes in pH, temperature and specific electrical conductivity during aquifer tests indicate a complex hydraulic system which has a variable response to pumping as a function of time. Low concentration in tritium and Carbon-14 together with high concentrations of dissolved helium in the groundwaters all suggested strongly that semi static

  6. Wind River Watershed Restoration, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie [U.S. Geological Survey

    2008-11-10

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  7. Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances

    Directory of Open Access Journals (Sweden)

    T. Conradt

    2013-01-01

    Full Text Available A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in Central Europe (148 268 km2 with the semi-distributed eco-hydrological model SWIM. While global parameter optimisation led to Nash–Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different stategies for deriving sub-basin evapotranspiration: (1 modelled by SWIM without any spatial calibration, (2 derived from remotely sensed surface temperatures, and (3 calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. Further probable causes for epistemic uncertainties could be pinpointed. The results encourage careful utilisation of different data sources for calibration and validation procedures in distributed hydrological modelling.

  8. Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; McKinstry, C.; Mueller, R.

    2004-01-01

    Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine

  9. Hood River and Pelton Ladder Evaluation Studies, 1998-1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Erik

    2000-09-01

    This report summarizes the life history and production data collected in the Hood River subbasin during FY 1998 and 1999. Included is a summary of jack and adult life history data collected at the Powerdale Dam trap on eight complete run years of winter steelhead, spring and fall chinook salmon, and coho salmon, and on seven complete run years of summer steelhead. Also included are summaries of (1) the hatchery winter steelhead broodstock collection program; (2) hatchery production releases in the Hood River subbasin; (3) the number of outmigrant wild rainbow-steelhead and hatchery summer and winter steelhead smolts; and (4) streamflow at selected locations in the Hood River subbasin. Data will be used in part to (1) evaluate the HRPP with respect to its impact on indigenous populations of resident and anadromous salmonids, (2) refine spawner escapement objectives to more accurately reflect subbasin carrying capacity, and (3) refine estimates of subbasin smolt production capacity to more accurately reflect current and potential subbasin carrying capacity. Baseline information on indigenous populations of resident and anadromous salmonids will continue to be collected for several years prior to full implementation of the Hood River Production Program.

  10. Genetic Inventory of Bull Trout and Westslope Cutthroat Trout in the Pend Oreille Subbasin, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maroney, Joseph R. (Kalispel Tribe of Indians, Usk, WA); Shaklee, James B.; Young, Sewall F. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-10-01

    In 2002, the Kalispel Natural Resource Department (KNRD) collected tissue samples for genetic analysis from 280 bull trout and 940 westslope cutthroat. The Washington Department of Fish and Wildlife developed and applied microsatellite DNA screening protocols for the analysis of bull trout at 13 loci and 24 loci for cutthroat trout. This project will continue collection and analysis of additional samples for the next 2 years. At that time, a final annual report will be compiled for the three-year study that will describe the genetic characteristics for bull trout and westslope cutthroat trout. The extent of hybridization of bull trout (with brook trout) and westslope cutthroat trout (with Yellowstone cutthroat trout and rainbow trout) in the Priest Lake and Lower Pend Oreille subbasins will also be examined.

  11. Genetic Inventory of Bull Trout and Westslope Cutthroat Trout in Pend Oreille Subbasin, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Jason; Maroney, Joseph R.; Andersen, Todd (Kalispel Department of Natural Resources, Usk, WA)

    2004-11-01

    In 2003, the Kalispel Natural Resource Department (KNRD) collected tissue samples for genetic analysis from 209 bull trout and 1,276 westslope cutthroat. The Washington Department of Fish and Wildlife developed and applied microsatellite DNA screening protocols for the analysis of bull trout at 13 loci and 24 loci for cutthroat trout. This project will continue collection and analysis of additional samples next year. At that time, a final annual report will be compiled for the three-year study that will describe the genetic characteristics for bull trout and westslope cutthroat trout. The extent of hybridization of bull trout (with brook trout) and westslope cutthroat trout (with Yellowstone cutthroat trout and rainbow trout) in the Priest Lake and Lower Pend Oreille subbasins will also be examined.

  12. Reviving the Ganges Water Machine: Accelerating surface water and groundwater interactions in the Ramganga sub-basin

    Science.gov (United States)

    Surinaidu, L.; Muthuwatta, L.; Amarasinghe, U. A.; Jain, S. K.; Ghosh, N. C.; Kumar, Sudhir; Singh, Surjeet

    2016-09-01

    Reviving the Ganges Water Machine (GWM), coined 40 years ago, is the most opportune solution for mitigating the impacts of recurrent droughts and floods in the Ganges River Basin in South Asia. GWM create subsurface storage (SSS) by pumping more groundwater from the aquifers before the monsoon for irrigation and other uses and recharge it during the monsoon. The present study uses fully processed and physically based numerical models, MODFLOW and SWAT, in a semi-coupled modelling framework to examine the technical feasibility of recharging the SSS. The aquifer was simulated as a two-layer system using hydrogeological and groundwater data, model was calibrated from 1999 to 2005 and validated from 2006 to 2010. It assesses the impacts of gradual increase of SSS in 10 years from the base year 2010 under two scenarios (increased rainfall or controlled pumping and recharge) to meet a potential unmet demand of 1.68 billion cubic meters (Bm3) in the Ramganga sub-basin with an area of 18,668 km2. The results show that 3-4 m of subsurface storage can be created by groundwater pumping of 0.25 Bm3/year by 2020. Under the controlled pumping and recharge scenario, groundwater recharge and river seepage could increase by 14% (4.21-4.80 Bm3) and 31% (1.10-1.44 Bm3), respectively. However, baseflow will decrease by 30% (0.18-0.12 Bm3) over the same time period. The results also show that recharge increased 44% (4.21-6.05 Bm3) under an increased rainfall scenario. Simultaneously, river seepage and baseflows would increase 36% (1.10-1.14 Bm3) and 11% (0.18-0.20 Bm3), respectively. A well-designed managed aquifer recharge program is required to eliminate the negative impact of river flows in the low flow season.

  13. Transforming River Basin Management In South Africa: Lessons from the Lower Komati River

    NARCIS (Netherlands)

    Waalewijn, P.; Wester, P.; Straaten, van K.

    2005-01-01

    This paper analyzes the transformation of river basin management in South Africa by focusing on the political processes involved in the creation of new water management bodies and irrigation infrastructure in the Lower Komati sub-basin. Institutional reform is described and analyzed in terms of the

  14. Summary of Stock Identification Research on White Sturgeon of the Columbia River, 1985-1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Setter, Ann L.; Brannon, E.L.

    1992-01-01

    White sturgeon (Acipenser transmontanus) are a long-lived, primitive fish species which forage primarily along the river bottom of large river systems in the Pacific Northwest. Historically, as an anadromous species, they could distribute downstream to feed in the rich estuary or marine areas and then migrate back up the river to spawn. With the historic river becoming a series of flooded impoundments, sturgeon were denied open river access, but they appear to have been able to adapt to the altered environment. White sturgeon are found throughout the Columbia River and are thought to be successfully reproducing in some of the impoundments. In those reservoirs where little or no reproduction takes place, enhancement hatcheries may be an option for use in rebuilding isolated populations. However, the degree of stock specificity that exists in the Columbia River was unknown and precluded the use of the more abundant lower river fish as a common egg source to repropagate the upper river unless genetic similarity could be demonstrated among sturgeon throughout the river system. To resolve the issue, research was conducted to determine what level of genetic differentiation exists among sturgeon in the Columbia River system, using starch gel electrophoresis to enable a baseline of population genetic structure data to be assembled. A greater diversity in electrophoretic pattern was observed in the lower portions of the river. The bulk of the qualitative variability we noted was consistent throughout all sections of the river. Some specific quantitative differences were apparent between the areas we examined. Interpretation of the results was complicated by the fact that dam construction would tend to isolate and mix stocks by preventing the migration of fish returning upstream.

  15. Summary of Stock Identification Research on White Sturgeon of the Columbia River, 1985-1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Setter, Ann L.; Brannon, E.L.

    1992-01-01

    White sturgeon (Acipenser transmontanus) are a long-lived, primitive fish species which forage primarily along the river bottom of large river systems in the Pacific Northwest. Historically, as an anadromous species, they could distribute downstream to feed in the rich estuary or marine areas and then migrate back up the river to spawn. With the historic river becoming a series of flooded impoundments, sturgeon were denied open river access, but they appear to have been able to adapt to the altered environment. White sturgeon are found throughout the Columbia River and are thought to be successfully reproducing in some of the impoundments. In those reservoirs where little or no reproduction takes place, enhancement hatcheries may be an option for use in rebuilding isolated populations. However, the degree of stock specificity that exists in the Columbia River was unknown and precluded the use of the more abundant lower river fish as a common egg source to repropagate the upper river unless genetic similarity could be demonstrated among sturgeon throughout the river system. To resolve the issue, research was conducted to determine what level of genetic differentiation exists among sturgeon in the Columbia River system, using starch gel electrophoresis to enable a baseline of population genetic structure data to be assembled. A greater diversity in electrophoretic pattern was observed in the lower portions of the river. The bulk of the qualitative variability we noted was consistent throughout all sections of the river. Some specific quantitative differences were apparent between the areas we examined. Interpretation of the results was complicated by the fact that dam construction would tend to isolate and mix stocks by preventing the migration of fish returning upstream.

  16. River

    Directory of Open Access Journals (Sweden)

    Morel Mathieu

    2016-01-01

    Full Text Available The OECD report “Boosting Resilience through Innovative Risk Governance” examines the efforts of OECD countries to prevent or reduce future disaster impacts, and highlights several key areas where improvements can be made. International collaboration is insufficiently utilised to address shocks that have increasingly global consequences. Institutional design plays a significant role in facilitating or hampering the engagement and investments of governmental and non-governmental stakeholders in disaster risk prevention and mitigation. To inform the design of “better” institutions, the OECD proposes the application of a diagnostic framework that helps governments identify institutional shortcomings and take actions to improve them. The goal of the case study on the Rhone River is to conduct an analysis of the progress, achievements and existing challenges in designing and implementing disaster risk reduction strategies through the Rhone Plan from a comparative perspective across a set of selected countries of this study, like Austria and Switzerland, will inform how to improve institutional frameworks governing risk prevention and mitigation. The case study will be used to identify examples of successful practice taking into account their specific country contexts, and analyse their potential for policy transfer.

  17. Assessment of spatial and temporal patterns of green and blue water flows in inland river basins in Northwest China

    Directory of Open Access Journals (Sweden)

    C. F. Zang

    2012-03-01

    Full Text Available In arid and semi-arid regions freshwater resources have become scarcer with increasing demands from socio-economic development and population growth. Until recently, water research and management in these has mainly focused on blue water but ignored green water. Here we report on spatial and temporal patterns of both blue and green water flows simulated by the Soil and Water Assessment Tool (SWAT for the Heihe river basin, the second largest inland river basin in Northwest China. Calibration and validation at two hydrological stations show good performance of the SWAT model in modelling hydrological processes. The total green and blue water flows were 22.09 billion m3 in the 2000s for the Heihe river basin. Blue water flows are larger in upstream sub-basins than in downstream sub-basins mainly due to high precipitation and large areas of glaciers in upstream. Green water flows are distributed more homogeneously among different sub-basins. The green water coefficient was 88.0% in the 2000s for the entire river basin, varying from around 80–90% in up- and mid-stream sub-basins to above 95% in downstream sub-basins. This is much higher than reported green water coefficient in many other river basins. The spatial patterns of green water coefficient were closely linked to dominant land covers (e.g. glaciers in upstream and desert in downstream and climate conditions (e.g. high precipitation in upstream and low precipitation in downstream. There are no clear consistent historical trends of change in green and blue water flows and green water coefficient at both the river basin and sub-basin levels. This study provides insights into green and blue water endowments for the entire Heihe river basin at sub-basin level. The results are helpful for formulating reasonable water policies to improve water resources management in the inland river basins of China.

  18. Columbia River White Sturgeon Genetics and Early Life History: Population Segregation and Juvenile Feeding Behavior, 1987 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Ernest L.

    1988-06-01

    The geographic area of the genetics study broadly covered the distribution range of sturgeon in the Columbia from below Bonneville Dam at Ilwaco at Lake Roosevelt, the Upper Snake River, and the Kootenai River. The two remote river sections provided data important for enhancement considerations. There was little electrophoretic variation seen among individuals from the Kootenai River. Upper Snake river sturgeon showed a higher percentage of polymorphic loci than the Kootenai fish, but lower than the other areas in the Columbia River we sampled. Sample size was increased in both Lake Roosevelt and at Electrophoretic variation was specific to an individual sampling area in several cases and this shaped our conclusions. The 1987 early life history studies concentrated on the feeding behavior of juvenile sturgeon. The chemostimulant components in prey attractive to sturgeon were examined, and the sensory systems utilized by foraging sturgeon were determined under different environmental conditions. These results were discussed with regard to the environmental changes that have occurred in the Columbia River. Under present river conditions, the feeding mechanism of sturgeon is more restricted to certain prey types, and their feeding range may be limited. In these situations, enhancement measures cannot be undertaken without consideration given to the introduction of food resources that will be readily available under present conditions. 89 refs., 7 figs., 11 tabs.

  19. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery (Montgomery Watson, Bellevue, WA)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  20. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery (Montgomery Watson, Bellevue, WA)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  1. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T. [Pacific Northwest National Laboratory

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile

  2. Hood River and Pelton Ladder Evaluation Studies and Hood River Fish Habitat Project, 1998 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    1999-12-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin.

  3. Relationship between Formation of Zhongyebei Basin and Spreading of Southwest Subbasin, South China Sea

    Institute of Scientific and Technical Information of China (English)

    Gao Hongfang; Zhou Di; Qiu Yan

    2009-01-01

    The Zhongyebei (中业北) basin (ZYBB) is an NE-striking,narrow and small sedimentary basin superimposing the southern 1/2 segment of the proposed spreading axes of the SW subbasin of the South China Sea (SCS).More than 4 500 m strata were identified in the Zhongyebei basin,including the Paleogene lower structure layer and the Neogene upper structure layer.The SW subbasin of the South China Sea has been regarded as an oceanic basin opened by seafloor spreading,as evidenced by the fiat and deep (> 4 000 m mostly) seafloor with linear magnetic anomalies,and by the shallow Moho depth of < 12 km as estimated from gravity modeling.The classic model of seafloor spreading predicts that sediments on the oceanic crust are younger and thinner towards the spreading axes.But in the southwestern segment of the SW subbasin,contradictions appear.Firstly,the thick sedimentation in the ZYBB is along the proposed spreading axes.Secondly,the sediments are thinner (500-1 500 m) and younger away from the proposed spreading axes.Thirdly,geological elements of the two sides of spreading axes develop asymmetrically in the southwestern SW subbasin.Two models,the early opening model and the limited modeling model,are suggested for resolving this paradox.The former suggests that the opening of the SW subbasin was in Late Eocene and earlier than the oldest sediment in the ZYBB.The latter proposes that the opening of the SW subbasin was limited to its northeastern portion,and did not extend to the southwest portion.The ZYBB is a rift basin survived from the spreading but subjected to severe syn-spreading magmatic disturbance.The SW subbasin and the ZYBB of the SCS provide a unique opportunity for studying the structural evolution and dynamic mechanism at the tip of a propagating seafloor spreading.Both models have unresolved questions,and further studies are needed.

  4. Gully development in Pavon Creeks: Downstream sediment supply and sub-basin restoration

    Science.gov (United States)

    Pearce, S.; McKee, L. J.

    2011-12-01

    Sediment supply in watersheds is a function of geology, climate, and land use. Small watersheds in the Coast Ranges of California can provide large volumes of sediment to downstream waterbodies due to the active tectonic setting, the Mediterranean climate, and the history of intense land use. The Pavon Creeks sub-basin, a 1.1 km2 tributary to Pinole Creek which drains to San Francisco Bay, California, currently provides a large supply of fine-grained sediment to the detriment of creek function and native species habitat. The sub-basin is situated near the active Hayward Fault Zone, is underlain by highly erosive shales and siltstones, and has experienced over 100 years of cattle grazing. Despite only comprising 3% of the total watershed area, the Pavon Creeks sub-basin has been identified as one of the largest sources of fine sediment within the Pinole Creek watershed. To protect creek function and habitat, watershed stakeholders have prioritized preventing excess fine sediment delivery to Pinole Creek. The sub-basin includes four small ephemeral gully channels that are primarily actively eroding, downcutting, and extending over their length, and secondarily aggrading over a shorter localized reach. Field-based geomorphic data including channel cross-sections, longitudinal profiles, bank pins, and headcut monitoring have documented channel incision, erosion, and lengthening of the channel network over six years. During Water Year 2006, the first and wettest year of measurements, we observed maximum rates of incision of 0.75 m, lateral bank erosion of 2.5 m, and gully extension of 16.3 m. Annual repeat surveys show continued gully evolution, and allowed for quantitative assessment of incision, aggradation, and extension rates over this time period, as well as eroded sediment volume. We found that the largest storm events of a season cause the greatest instantaneous amount of change in the sub-basin, but cumulative seasonal rainfall determines the total amount and

  5. Population structure and genetic characteristics of summer steelhead (Onchorhynchus mykiss) in the Deschutes River Basin, Oregon: Final report: January 2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Deschutes River Basin represents a region of substantial diversity among anadromous and resident forms of Oncorhynchus mykiss. However, the current distribution...

  6. Replenishment of the Reference Suwannee River Natural Organic Matter (NOM): Final Report on a Proposal to International Humic Substances Society

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report on International Humic Substances Society findings of natural organic matter content along the Suwannee River sill in Southeastern Georgia.

  7. Final Environmental Assessment of aerial application of glyphosate for control of phragmites on Bear River Migratory Bird Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Environmental Assessment (EA) addresses the aerial application of glyphosate to control Phragmites (Phragmites australis) on Bear River Migratory Bird Refuge....

  8. Southwestern Alaska archeological survey, Kagati Lake, Kisarilik-Kwethluk Rivers: A final research report to the National Geographic Society

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Discusses archeological survey of the east of Kagati Lake to Nenevok Lake, north to Trail Creek and Kwethluk River valleys, west along the Kwethluk and Kisaralik...

  9. Final Environmental Assessment for Aerial Application of Glyphosate for Control of Phragmites on Bear River Migratory Bird Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Environmental Assessment (EA) addresses the aerial application of glyphosate to control Phragmites (Phragmites australis) on Bear River Migratory Bird Refuge....

  10. Stock Summary Reports for Columbia River Anadromous Salmonids, Volume V; Idaho Subbasins, 1992 CIS Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Keifer, Sharon (Idaho Department of Fish and Game, Boise, ID); Rowe, Mike (Shoshone-Bannock Tribes, Fort Hall, ID); Hatch, Keith (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    1993-05-01

    An essential component of the effort to rebuild the Columbia Basin's anadromous fish resources is that available information and experience be organized and shared among numerous organizations and individuals. Past experience and knowledge must form the basis for actions into the future. Much of this knowledge exists only in unpublished form in agency and individual files. Even that information which is published in the form of technical and contract reports receives only limited distribution and is often out of print and unavailable after a few years. Only a small fraction of the basin's collective knowledge is captured in permanent and readily available databases (such as the Northwest Environmental Database) or in recognized journals. State, tribal, and federal fishery managers have recognized these information management problems and have committed to a program, the Coordinated Information System Project, to capture and share more easily the core data and other information upon which management decisions are based. That project has completed scoping and identification of key information needs and development of a project plan. Work performed under the CIS project will be coordinated with and extend information contained in the Northwest Environmental Database. Construction of prototype systems will begin in Phase 3. This report is one in a series of seven describing the results of the Coordinated Information System scoping and needs identification phase. A brief description of each of these reports is given.

  11. Monitoring and modeling nitrate fate in subbasins within the Choptank River Watershed, Maryland, USA

    Science.gov (United States)

    Conservation practices, such as post harvest planting of winter cover crops, are important for water quality improvement in agricultural watersheds. Throughout the Chesapeake Bay watershed (CBW), winter cover crop use has been emphasized and federal and state cost-share programs are available for fa...

  12. John Day River Subbasin Fish Habitat Enhancement Project, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Jeff A.; Jerome, James P.; Delano, Kenneth H.

    2001-01-01

    During 2000, 3 new projects were completed thereby adding 4.6 miles of stream to the program. Protection for these reaches required the construction of 3.2 miles of riparian fence and 1 livestock watering sites. 5,750 pounds of grass and shrub seed were planted for revegetating ground disturbed during construction. Stream temperatures were monitored on the Middle Fork of the John Day. All project fences, watergaps, spring developments and plantings were checked and repairs performed where needed. We now have 70 miles of stream protected using 111 miles of fence.

  13. John Day River Sub-Basin Fish Habitat Enhancement Project; 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Jeff A.; Jerome, James P.; Delano, Kenneth H.

    1999-02-01

    During 1998, three new projects were completed improving 1.8 miles of stream and riparian habitat. Protection for these reaches required the construction of 3.2 miles of riparian fence and 7 livestock water gaps. A previously leased property on the Mainstream was converted from apriarian pasture to a corridor fence after no significant recovery had occurred.

  14. John Day River Subbasin Fish Habitat Enhancement Project, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Jerome, James P.; Delano, Kenneth H.

    2003-03-01

    Work undertaken in 2002 included: (1) Seven new fence projects were completed thereby protecting 6.0 miles of stream (2) Completion of 0.7 miles of dredge tail leveling on Granite Creek. (3) New fence construction (300ft) plus one watergap on Indian Creek/ Kuhl property. (4) Maintenance of all active project fences (58.76 miles), watergaps (56), spring developments (32) and plantings were checked and repairs performed. (5) Restoration and Enhancement projects protected 3 miles of stream within the basin. (6) Since the initiation of the Fish Habitat Project in 1984 we have 67.21 miles of stream protected using 124.2 miles of fence. With the addition of the Restoration and Enhancement Projects we have 199.06 miles of fence protecting 124.57 miles of stream.

  15. Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin

    Directory of Open Access Journals (Sweden)

    Rafael Splendore de Borba

    Full Text Available In this study, phylogenetic and phylogeographic analyses of populations identified as Hypostomus strigaticeps from the upper Paraná River basin were conducted in order to test whether these different populations comprises cryptic species or structured populations and to assess their genetic variability. The sequences of the mitochondrial DNA ATP sintetase (subunits 6/8 of 27 specimens from 10 populations (one from Mogi-Guaçu River, five from Paranapanema River, three from Tietê River and one from Peixe River were analyzed. The phylogeographic analysis showed the existence of eight haplotypes (A-H, and despite the ancestral haplotype includes only individuals from the Tietê River basin, the distribution of H. strigaticeps was not restricted to this basin. Haplotypes A, B and F were the most frequent. Haplotypes D, E, F, G, and H were present in the sub-basin of Paranapanema, two (A and B were present in the sub-basin of the Tietê River, one (C was exclusively distributed in the sub-basin of the Peixe River, and one (B was also present in the sub-basin of the Grande River. The phylogenetic analysis showed that the populations of H. strigaticeps indeed form a monophyletic unit comprising two lineages: TG, with representatives from the Tietê, Mogi-Guaçu and Peixe Rivers; and PP, with specimens from the Paranapanema River. The observed degree of genetic divergence within the TG and PP lineages was 0.1% and 0.2%, respectively, whereas the genetic divergence between the two lineages themselves was approximately 1%. The results of the phylogenetic analysis do not support the hypothesis of existence of crypt species and the phylogeographic analysis confirm the presence of H. strigaticeps in other sub-basins of the upper Paraná River: Grande, Peixe, and Paranapanema sub-basins.

  16. Hydrologic and land-cover features of the Caloosahatchee River Basin, Lake Okeechobee to Franklin Lock, Florida

    Science.gov (United States)

    LaRose, Henry R.; McPherson, Benjamin F.

    1980-01-01

    The freshwater part of the Caloosahatchee River basin, Fla., from Franklin Lock to Lake Okeechobee, is shown at a scale of 1 inch equals 1 mile on an aerial photomosaic, dated January 1979. The basin is divided into 16 subbasins, and the land cover and land use in each subbasin are given. The basin is predominantly rangeland and agricultural land. Surface-water flow in the basin is largely controlled. Some selected data on water quality are given. (USGS)

  17. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L. (University of Montana, Flathead Lake Biological Station, Poison, MT)

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  18. Identifying groundwater recharge connections in the Moscow (USA) sub-basin using isotopic tracers and a soil moisture routing model

    Science.gov (United States)

    Candel, Jasper; Brooks, Erin; Sánchez-Murillo, Ricardo; Grader, George; Dijksma, Roel

    2016-06-01

    Globally, aquifers are suffering from large abstractions resulting in groundwater level declines. These declines can be caused by excessive abstraction for drinking water, irrigation purposes or industrial use. Basaltic aquifers also face these conflicts. A large flood basalt area (1.1 × 105 km2) can be found in the Northwest of the USA. This Columbia River Basalt Group (CRBG) consists of a thick series of basalt flows of Miocene age. The two major hydrogeological units (Wanapum and Grand Ronde formations) are widely used for water abstraction. The mean decline over recent decades has been 0.6 m year-1. At present day, abstraction wells are drying up, and base flow of rivers is reduced. At the eastern part of CRBG, the Moscow sub-basin on the Idaho/Washington State border can be found. Although a thick poorly permeable clay layer exists on top of the basalt aquifer, groundwater level dynamics suggest that groundwater recharge occurs at certain locations. A set of wells and springs has been monitored bi-weekly for 9 months for δ18O and δ2H. Large isotopic fluctuations and d-excess values close to the meteoric water line in some wells are indicating that recharge occurs at the granite/basalt interface through lateral flow paths in and below the clay. A soil moisture routing (SMR) model showed that most recharge occurs on the granitic mountains. The basaltic aquifer receives recharge from these sedimentary zones around the granite/basalt interface. The identification of these types of areas is of major importance for future managed-aquifer recharge solutions to solve problems of groundwater depletion.

  19. Identifying groundwater recharge connections in the Moscow (USA) sub-basin using isotopic tracers and a soil moisture routing model

    Science.gov (United States)

    Candel, Jasper; Brooks, Erin; Sánchez-Murillo, Ricardo; Grader, George; Dijksma, Roel

    2016-11-01

    Globally, aquifers are suffering from large abstractions resulting in groundwater level declines. These declines can be caused by excessive abstraction for drinking water, irrigation purposes or industrial use. Basaltic aquifers also face these conflicts. A large flood basalt area (1.1 × 105 km2) can be found in the Northwest of the USA. This Columbia River Basalt Group (CRBG) consists of a thick series of basalt flows of Miocene age. The two major hydrogeological units (Wanapum and Grand Ronde formations) are widely used for water abstraction. The mean decline over recent decades has been 0.6 m year-1. At present day, abstraction wells are drying up, and base flow of rivers is reduced. At the eastern part of CRBG, the Moscow sub-basin on the Idaho/Washington State border can be found. Although a thick poorly permeable clay layer exists on top of the basalt aquifer, groundwater level dynamics suggest that groundwater recharge occurs at certain locations. A set of wells and springs has been monitored bi-weekly for 9 months for δ18O and δ2H. Large isotopic fluctuations and d-excess values close to the meteoric water line in some wells are indicating that recharge occurs at the granite/basalt interface through lateral flow paths in and below the clay. A soil moisture routing (SMR) model showed that most recharge occurs on the granitic mountains. The basaltic aquifer receives recharge from these sedimentary zones around the granite/basalt interface. The identification of these types of areas is of major importance for future managed-aquifer recharge solutions to solve problems of groundwater depletion.

  20. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix F: Irrigation, Municipal and Industrial/Water Supply.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operations Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01

    Since the 1930`s, the Columbia River has been harnessed for the benefit of the Northwest and the nation. Federal agencies have built 30 major dams on the river and its tributaries. Dozens of non-Federal projects have been developed as well. The dams provide flood control, irrigation, navigation, hydro-electric power generation, recreation, fish and wildlife, and streamflows for wildlife, anadromous fish, resident fish, and water quality. This is Appendix F of the Environmental Impact Statement for the Columbia River System, focusing on irrigation issues and concerns arrising from the Irrigation and Mitigation of impacts (M&I) working Group of the SOR process. Major subheadings include the following: Scope and process of irrigation/M&I studies; Irrigation/M&I in the Columbia Basin Today including overview, irrigated acreage and water rights, Irrigation and M&I issues basin-wide and at specific locations; and the analysis of impacts and alternative for the Environmental Impact Statement.

  1. Methodologies for Assessing the Cumulative Environmental Effects of Hydroelectric Development of Fish and Wildlife in the Columbia River Basin, Volume 1, Recommendations, 1987 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stull, Elizabeth Ann

    1987-07-01

    This volume is the first of a two-part set addressing methods for assessing the cumulative effects of hydropower development on fish and wildlife in the Columbia River Basin. Species and habitats potentially affected by cumulative impacts are identified for the basin, and the most significant effects of hydropower development are presented. Then, current methods for measuring and assessing single-project effects are reviewed, followed by a review of methodologies with potential for use in assessing the cumulative effects associated with multiple projects. Finally, two new approaches for cumulative effects assessment are discussed in detail. Overall, this report identifies and reviews the concepts, factors, and methods necessary for understanding and conducting a cumulative effects assessment in the Columbia River Basin. Volume 2 will present a detailed procedural handbook for performing a cumulative assessment using the integrated tabular methodology introduced in this volume. 308 refs., 18 figs., 10 tabs.

  2. Evaluation of Management of Water Releases for Painted Rocks Reservoir, Bitterroot River, Montana, 1983-1986, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Spoon, Ronald L. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1987-06-01

    This study was initiated in July, 1983 to develop a water management plan for the release of water purchased from Painted Rocks Reservoir. Releases were designed to provide optimum benefits to the Bitterroot River fishery. Fisheries, habitat, and stream flow information was gathered to evaluate the effectiveness of these supplemental releases in improving trout populations in the Bitterroot River. The study was part of the Northwest Power Planning Council's Fish and Wildlife Program and was funded by the Bonneville Power Administration. This report presents data collected from 1983 through 1986.

  3. Stock Assessment of Columbia River Anadromous Salmonids : Final Report, Volume I, Chinook, Coho, Chum and Sockeye Salmon Summaries.

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Philip J.

    1986-07-01

    The purpose was to identify and characterize the wild and hatchery stocks of salmon and steelhead in the Columbia River Basin on the basis of currently available information. This report provides a comprehensive compilation of data on the status and life histories of Columbia Basin salmonid stocks.

  4. Survey of Artificial Production of Anadromous Salmonids in the Columbia River Basin, 1981-1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Washington, Percy M.

    1985-11-25

    The overall objective of this project is to collect, organize, and summarize data concerning anadromous fish culture stations of the Columbia River system for 1981, 1982, and 1983 and to create a data archive system with a means of making this information available to the public.

  5. Subsurface stratigraphy and structure of A/M area at the Savannah River Site, Aiken County, South Carolina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fallaw, W.C.; Sims, W.R.; Haselow, J.S.

    1991-08-01

    This report is a study of the stratigraphy and structure of the A/M Area Hazardous Waste Management Facility Post-Closure Care Permit process on the Savannah River Site. The data from the lithologic and geophysical logs of 93 wells is the basis of this analysis.

  6. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River: Recommendations for Fisheries Enhancement: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashe, Becky L.; Scholz, Allan T.

    1992-03-01

    This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. The Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch

  7. Hood River Steelhead Genetics Study; Relative Reproductive Success of Hatchery and Wild Steelhead in the Hood River, Final Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Blouin, Michael

    2003-05-01

    There is a considerable interest in using hatcheries to speed the recovery of wild populations. The Bonneville Power Administration (BPA), under the authority of the Northwest Power Planning Act, is currently funding several hatchery programs in the Columbia Basin as off-site mitigation for impacts to salmon and steelhead caused by the Columbia River federal hydropower system. One such project is located on the Hood River, an Oregon tributary of the Columbia. These hatchery programs cost the region millions of dollars. However, whether such programs actually improve the status of wild fish remains untested. The goal of this project was to evaluate the effectiveness of the Hood River hatchery program as required by the Northwest Power Planning Council Fish and Wildlife Program, by the Oregon Plan for Coastal Salmonids, by NMFS ESA Section 4(d) rulings, and by the Oregon Department of Fish and Wildlife (ODFW) Wild Fish Management Policy (OAR 635-07-525 through 529) and the ODFW Hatchery Fish Gene Resource Management Policy (OAR 635-07-540 through 541). The Hood River supports two populations of steelhead, a summer run and a winter run. They spawn only above the Powerdale Dam, which is a complete barrier to all salmonids. Since 1991 every adult passed above the dam has been measured, cataloged and sampled for scales. Therefore, we have a DNA sample from every adult steelhead that went over the dam to potentially spawn in the Hood River from 1991 to the present. Similar numbers of hatchery and wild fish have been passed above the dam during the last decade. During the 1990's 'old' domesticated hatchery stocks of each run (multiple generations in the hatchery, out-of-basin origin; hereafter H{sub old}) were phased out, and conservation hatchery programs were started for the purpose of supplementing the two wild populations (hereafter 'new' hatchery stocks, H{sub new}). These samples gave us the unprecedented ability to estimate, via

  8. Simulated Effects of Year 2030 Water-Use and Land-Use Changes on Streamflow near the Interstate-495 Corridor, Assabet and Upper Charles River Basins, Eastern Massachusetts

    Science.gov (United States)

    Carlson, Carl S.; DeSimone, Leslie A.; Weiskel, Peter K.

    2008-01-01

    Continued population growth and land development for commercial, industrial, and residential uses have created concerns regarding the future supply of potable water and the quantity of ground water discharging to streams in the area of Interstate 495 in eastern Massachusetts. Two ground-water models developed in 2002-2004 for the Assabet and Upper Charles River Basins were used to simulate water supply and land-use scenarios relevant for the entire Interstate-495 corridor. Future population growth, water demands, and commercial and residential growth were projected for year 2030 by the Metropolitan Area Planning Council. To assess the effects of future development on subbasin streamflows, seven scenarios were simulated by using existing computer-based ground-water-flow models with the data projected for year 2030. The scenarios incorporate three categories of projected 2030 water- and land-use data: (1) 2030 water use, (2) 2030 land use, and (3) a combination of 2030 water use and 2030 land use. Hydrologic, land-use, and water-use data from 1997 through 2001 for the Assabet River Basin study and 1989 through 1998 for the Upper Charles River Basin study were used to represent current conditions - referred to as 'basecase' conditions - in each basin to which each 2030 scenario was compared. The effects of projected 2030 land- and water-use change on streamflows in the Assabet River Basin depended upon the time of year, the hydrologic position of the subbasin in the larger basin, and the relative areas of new commercial and residential development projected for a subbasin. Effects of water use and land use on streamflow were evaluated by comparing average monthly nonstorm streamflow (base flow) for March and September simulated by using the models. The greatest decreases in streamflow (up to 76 percent in one subbasin), compared to the basecase, occurred in September, when streamflows are naturally at their lowest level. By contrast, simulated March streamflows

  9. Monitoring Land Use/Land Cover Changes in a River Basin due to Urbanization using Remote Sensing and GIS Approach

    Science.gov (United States)

    Shukla, S.; Khire, M. V.; Gedam, S. S.

    2014-11-01

    Faster pace of urbanization, industrialization, unplanned infrastructure developments and extensive agriculture result in the rapid changes in the Land Use/Land Cover (LU/LC) of the sub-tropical river basins. Study of LU/LC transformations in a river basin is crucial for vulnerability assessment and proper management of the natural resources of a river basin. Remote sensing technology is very promising in mapping the LU/LC distribution of a large region on different spatio-temporal scales. The present study is intended to understand the LU/LC changes in the Upper Bhima river basin due to urbanization using modern geospatial techniques such as remote sensing and GIS. In this study, the Upper Bhima river basin is divided into three adjacent sub-basins: Mula-Mutha sub-basin (ubanized), Bhima sub-basin (semi-urbanized) and Ghod sub-basin (unurbanized). Time series LU/LC maps were prepared for the study area for a period of 1980, 2002 and 2009 using satellite datasets viz. Landsat MSS (October, 1980), Landsat ETM+ (October, 2002) and IRS LISS III (October 2008 and November 2009). All the satellite images were classified into five LU/LC classes viz. built-up lands, agricultural lands, waterbodies, forests and wastelands using supervised classification approach. Post classification change detection method was used to understand the LU/LC changes in the study area. Results reveal that built up lands, waterbodies and agricultural lands are increasing in all the three sub-basins of the study area at the cost of decreasing forests and wastelands. But the change is more drastic in urbanized Mula-Mutha sub-basin compared to the other two sub-basins.

  10. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Zhonglong [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat, and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was

  11. Breeding Plan to Preserve the Genetic Variability of the Kootenai River White Sturgeon, Final Report, December 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Harold L.

    1993-11-01

    Natural reproduction in the Kootenai River white sturgeon population has not produced a successful year class since 1974, resulting in a declining broodstock and 20 consecutive year classes missing from the age-class structure. This report describes a captive breeding plan designed to preserve the remaining genetic variability and to begin rebuilding the natural age class structure. The captive breeding program will use 3--9 females and an equal number of males captured from the Kootenai River each spring. Fish will be spawned in pairs or in diallel mating designs to produce individual families that will be reared separately to maintain family identity. Fish will be marked to identify family and year class before return to the river. Fish should be returned to the river as fall fingerlings to minimize potential adaptation to the hatchery environment Initially, while tagging methods are tested to ensure positive identification after return to the river, it may be necessary to plant fish as spring yearlings. Number of fish planted will be equalized at 5,000 per family if fall fingerlings or 1,000 per family if spring yearlings. Assuming annual survival rates of 20% during the first winter for fall fingerling plants and 50% for years 1--3, and 85% for years 4--20 of all fish planted, the target numbers would yield 7.9 progeny per family or about 4 breeding pairs at age 20. Natural survival in the river environment during the 19+ years from planting to maturity would result in variability in genetic contribution of families to the next broodstock generation. Fish planted per family would be adjusted in future years when actual survival rate information is known. Broodfish will be tagged when captured to minimize multiple spawning of the same fish. implementation of this breeding plan each year for the 20-year generation interval, using 5 different mating pairs each year, will yield an effective population size of 200, or 22.5% of the estimated 1990 population.

  12. Hood River and Pelton Ladder Evaluation Studies : Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Erik A.; French, Rod A.; Ritchey, Alan D.

    1995-09-01

    In 1992, the Northwest Power Planning Council approved the Hood River and Pelton ladder master plans within the framework of the Columbia River Basin Fish and Wildlife Program. The master plans define an approach for implementing a hatchery supplementation program in the Hood River subbasin. The hatchery program as defined in the master plans is called the Hood River Hatchery Production Program (HRPP). The HRPP will be phased in over several years and will be jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Warm Springs (CTWS) Reservation. In December 1991, a monitoring and evaluation program was implemented in the Hood River subbasin to collect life history and production information on stocks of anadromous salmonids returning to the Hood River subbasin. The program was implemented to provide the baseline information needed to: (1) evaluate various management options for implementing the HRPP and (2) determine any post-project impacts the HRPP has on indigenous populations of resident fish. Information collected during the 1992-94 fiscal years will also be used to prepare an environmental impact statement (EIS) evaluating the program`s impact on the human environment. To begin construction on project facilities, it was proposed that the HRPP be implemented in two phases. Phase I would include work that would fall under a {open_quotes}categorical exclusion{close_quotes} from NEPA, and Phase II would include work requiring an EIS prior to implementation. This report summarizes the life history and escapement data collected in the Hood River subbasin and the status work of implemented under Phase I of the HR Life history and escapement data will be used to: (1) test the assumptions on which harvest and escapement goals for the Hood River and Pelton ladder master plans are based and (2) develop biologically based management recommendations for implementing the HRPP.

  13. Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2011 - FINAL ANNUAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Sather, Nichole K.; Storch, Adam; Johnson, Gary E.; Teel, D. J.; Skalski, J. R.; Bryson, Amanda J.; Kaufmann, Ronald M.; Woodruff, Dana L.; Blaine, Jennifer; Kuligowski, D. R.; Kropp, Roy K.; Dawley, Earl M.

    2012-05-31

    The study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL), the Oregon Department of Fish and Wildlife (ODFW), the University of Washington (UW), and the National Marine Fisheries Service (NMFS) for the U.S. Army Corps of Engineers, Portland District (USACE). This research project was initiated in 2007 by the Bonneville Power Administration to investigate critical uncertainties regarding juvenile salmon ecology in shallow tidal freshwater habitats of the lower Columbia River. However, as part of the Washington Memorandum of Agreement, the project was transferred to the USACE in 2010. In transferring from BPA to the USACE, the focus of the tidal freshwater research project shifted from fundamental ecology toward the effectiveness of restoration in the Lower Columbia River and estuary (LCRE). The research is conducted within the Action Agencies Columbia Estuary Ecosystem Restoration Program (CEERP). Data reported herein spans the time period May 2010 to September 2011.

  14. Wildlife and Wildlife Habitat Loss Assessment at Green Peter-Foster Project; Middle Fork Santiam River, Oregon, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1986-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Green Peter-Foster Dam and Reservoir Project on the Middle Fork Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1955, 1972, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Eleven wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Green Peter-Foster Project extensively altered or affected 7873 acres of land and river in the Santiam River drainage. Impacts to wildlife centered around the loss of 1429 acres of grass-forb vegetation, 768 acres of shrubland, and 717 acres of open conifer forest cover types. Impacts resulting from the Green Peter-Foster Project included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, river otter, beaver, pileated woodpecker, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Green Peter-Foster Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  15. A Wildlife Habitat Protection, Mitigation and Enhancement Plan for Eight Federal Hydroelectric Facilities in the Willamette River Basin: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, S.K.

    1987-05-01

    The development and operation of eight federal hydroelectric projects in the Willamette River Basin impacted 30,776 acres of prime wildlife habitat. This study proposes mitigative measures for the losses to wildlife and wildlife habitat resulting from these projects, under the direction of the Columbia River Basin (CRB) Fish and Wildlife Program. The CRB Fish and Wildlife Program was adopted in 1982 by the Northwest Power Planning Council, pursuant to the Northwest Power Planning Act of 1980. The proposed mitigation plan is based on the findings of loss assessments completed in 1985, that used a modified Habitat Evaluation Procedure (HEP) to assess the extent of impact to wildlife and wildlife habitat, with 24 evaluation species. The vegetative structure of the impacted habitat was broken down into three components: big game winter range, riparian habitat and old-growth forest. The mitigation plan proposes implementation of the following, over a period of 20 years: (1) purchase of cut-over timber lands to mitigate, in the long-term, for big game winter range, and portions of the riparian habitat and old-growth forest (approx. 20,000 acres); (2) purchase approximately 4,400 acres of riparian habitat along the Willamette River Greenway; and (3) three options to mitigate for the outstanding old-growth forest losses. Monitoring would be required in the early stages of the 100-year plan. The timber lands would be actively managed for elk and timber revenue could provide O and M costs over the long-term.

  16. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  17. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  18. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1996-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Yakima River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration

  19. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power

  20. Prioritizing Restoration in the Hangman Creek Watershed: Predicting Baseflow through Sub-basin Modeling

    Science.gov (United States)

    Navickis-Brasch, A. S.; Fiedler, F. R.

    2013-12-01

    Land use changes since European settlement have significantly impaired the beneficial uses of Coeur d'Alene (CDA) Tribe water bodies in the Hangman Creek watershed. The cumulative impacts have resulted in a 303 (d) designation by the Environmental Protection Agency (EPA), extirpated the only salmon run on the reservation, and reduced tributary connectivity by isolating many native fish populations. Considering salmon were an essential part of tribal identity and cultural activities, the tribe initiated a 100-year management plan to restore the 155,000-acre portion of the Hangman Creek watershed located on the CDA reservation. The restoration management plan focuses on sustaining subsistence and cultural activities by reestablishing stream connectivity and providing sustainable aquatic habitats as well as restoring watershed processes and improving water quality. Ultimately, the restoration goal is to improve the habitat suitability of Hangman Creek for the eventual return of salmon. To accomplish these goals, it is essential to prioritize and sequence activities that most effectively support restoration. While watershed modeling provides a commonly accepted holistic approach to simulating watershed responses, it appears the effectiveness of models in predicting restoration success, particularly with respect to the effects of restoration on baseflow, have not been well documented. In addition, creating a representative watershed model capable of accounting for a watershed scale spatial and temporal variability generally requires extensive field measurements. This presents a challenge for developing a model of Hangman Creek, since the watershed is mostly ungauged with only limited data available at a few monitoring sites. Our approach to developing a restoration prioritization plan is to first model a subbasin in the watershed with similar characteristics and restoration goals, then utilize the subbasin model to project future baseflow responses in the larger

  1. Hydrological long-term dry and wet periods in the Xijiang River basin, South China

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2013-01-01

    Full Text Available In this study, hydrological long-term dry and wet periods are analyzed for the Xijiang River basin in South China. Daily precipitation data of 118 stations and data on daily discharge at Gaoyao hydrological station at the mouth of the Xijiang River for the period 1961–2007 are used. At a 24-month timescale, the standardized precipitation index (SPI-24 for the six sub-basins of the Xijiang River and the standardized discharge index (SDI-24 for Gaoyao station are applied. The monthly values of the SPI-24 averaged for the Xijiang River basin correlate highly with the monthly values of the SDI-24. Distinct long-term dry and wet sequences can be detected.

    The principal component analysis is applied and shows spatial disparities in dry and wet periods for the six sub-basins. The correlation between the SPI-24 of the six sub-basins and the first principal component score shows that 67% of the variability within the sub-basins can be explained by dry and wet periods in the east of the Xijiang River basin. The spatial dipole conditions (second and third principal component explain spatiotemporal disparities in the variability of dry and wet periods. All sub-basins contribute to hydrological dry periods, while mainly the northeastern sub-basins cause wet periods in the Xijiang River. We can also conclude that long-term dry events are larger in spatial extent and cover all sub-basins while long-term wet events are regional phenomena.

    A spectral analysis is applied for the SPI-24 and the SDI-24. The results show significant peaks in periodicities of 11–14.7 yr, 2.8 yr, 3.4–3.7 yr, and 6.3–7.3 yr. The same periodic cycles can be found in the SPI-24 of the six sub-basins but with some variability in the mean magnitude. A wavelet analysis shows that significant periodicities have been stable over time since the 1980s. Extrapolations of the reconstructed SPI-24 and SDI-24 represent the continuation of observed significant periodicities

  2. Wildlife and Wildlife Habitat Loss Assessment Summary at Federal Hydroelectric Facilities; Willamette River Basin, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1986-02-01

    Habitat based assessments were conducted of the US Army Corps of Engineers' hydroelectric projects in the Willamette River Basin, Oregon, to determine losses or gains to wildlife and/or wildlife habitat resulting from the development and operation of the hydroelectric-related components of the facilities. Preconstruction, postconstruction, and recent vegetation cover types at the project sites were mapped based on aerial photographs. Vegetation cover types were identified within the affected areas and acreages of each type at each period were determined. Wildlife target species were selected to represent a cross-section of species groups affected by the projects. An interagency team evaluated the suitability of the habitat to support the target species at each project for each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the projects. The Willamette projects extensively altered or affected 33,407 acres of land and river in the McKenzie, Middle Fork Willamette, and Santiam river drainages. Impacts to wildlife centered around the loss of 5184 acres of old-growth conifer forest, and 2850 acres of riparian hardwood and shrub cover types. Impacts resulting from the Willamette projects included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, furbearers, spotted owls, pileated woodpeckers, and many other wildlife species. Bald eagles and ospreys were benefited by an increase in foraging habitat. The potential of the affected areas to support wildlife was greatly altered as a result of the Willamette projects. Losses or gains in the potential of the habitat to support wildlife will exist over the lives of the projects. Cumulative or system-wide impacts of the Willamette projects were not quantitatively assessed.

  3. Wildlife and Wildlife Habitat Loss Assessment at Dexter Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Dexter Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the project. Preconstruction, post-construction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Dexter Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 445 acres of riparian habitat. Impacts resulting from the Dexter Project included the loss of year-round habitat for black-tailed deer, red fox, mink, beaver, western gray squirrel, ruffed grouse, ring-necked pheasant, California quail, wood duck and nongame species. Bald eagle, osprey, and greater scaup were benefitted by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Dexter Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  4. Wind River Watershed Restoration 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

    2008-11-10

    During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder

  5. Ecological studies on the American alligator (Alligator mississippiensis) on the Savannah River Plant. Comprehensive Cooling Water Study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Seigel, R.A.; Brandt, L.A.; Knight, J.L.; Novak, S.S.

    1986-06-01

    The American alligator (Alligator mississippiensis) is the largest vertebrate of the Savannah River Plant (SRP), reaching a maximum length of 3.7 meters (12 feet) and weighing up to 175 kg (385 pounds). Currently, populations in coastal South Carolina are considered Threatened, whereas populations in inland areas (such as the SRP) are still Endangered. Because of their legal status and economic and ecological importance, it is important to determine the environmental impacts of SRP operations on the local alligator population. The major objectives under the Endangered Species Program of the Comprehensive Cooling Water Study (CCWS) were as follows: (1) document and compare the present status and distribution of alligators on the SRP to previous surveys, in order to determine long-term changes in population abundance; (2) establish baseline population and ecological parameters of the Steel Creek population so that the ecological effects of L-Reactor operations can be determined, and (3) conduct ecological research on the immediate impacts of thermal effluents on American alligators. Gladden et al., (1985) summarized data on previous population surveys, temporal changes in the Par Pond population, preliminary results of the Steel Creek surveys and Savannah River Ecology Laboratory (SREL) research on the effects of thermal effluents. This report summarizes the current status of the SRP population, presents data on the abundance, movement patterns and activity cycles of the Steel Creek population, and presents additional data on the effect of cooling water releases on alligator ecology and behavior.

  6. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume II, Appendix A, Fisheries Habitat Inventory.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

    1985-06-01

    Stream habitat inventories on 155 stream miles in the White River drainage on the Mt. Hood National Forest are summarized in this report. Inventory, data evaluation, and reporting work were accomplished within the framework of the budgetary agreements established between the USDA Forest Service, Mt. Hood National Forest, and the Bonneville Power Administration, in the first 2 years of a multiyear program. One hundred forty-two stream miles of those inventoried on the Forest appear suitable for anadromous production. The surveyed area appears to contain most or all of the high quality fish habitat which would be potentially available for anadromous production if access is provided above the White River Falls below the Forest boundary. About 34 stream miles would be immediately accessible without further work on the Forest with passage at the Falls. Seventy-two additional miles could be made available with only minor (requiring low investment of money and planning) passage work further up the basin. Thirty-six miles of potential upstream habitat would likely require major investment to provide access.

  7. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Washington Department of Wildlife Hatcheries, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs., 25 tabs.

  8. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, US Fish and Wildlife Hatcheries, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs., 25 tabs.

  9. Clinch River - Environmental Restoration Program (CR-ERP) Study, ambient water toxicity. Final report, October 21, 1993--October 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Simbeck, D.J.

    1997-06-01

    Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of October 21-28, 1993, as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Due to serious reproduction/embryo abortion problems with the TVA daphnid cultures, TVA conducted tests during this study period using only fathead minnows. A split sample test using daphnids only will be scheduled during 1994 as a substitute for this study period. Surface water samples were collected by TVA Field Engineering personnel from Poplar Creek Mile 2.9, Mile 4.3, and Mile 5.1 on October 20, 22, and 25. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival or growth) in testing conducted by TVA.

  10. Modelling potential landscape sediment delivery due to projected soybean expansion: a scenario study of the Balsas sub-basin, Cerrado, Maranhão state, Brazil.

    Science.gov (United States)

    Barreto, Larissa; Schoorl, Jeroen M; Kok, Kasper; Veldkamp, Tom; Hass, Adriani

    2013-01-30

    In Brazil, agriculture expansion is taking place primarily in the Cerrado ecosystems. With the aim of supporting policy development and protecting the natural environment at relevant hotspots, a scenario study was conducted that concerned not only land-use change, but also the resulting effects on erosion and deposition. This coupled approach helped to evaluate potential landscape impacts of the land-use scenarios. In the study area, the Balsas sub-basin in Maranhão State, a model chain was used to model plausible future soybean expansion locations (CLUE-S model) and resulting sediment mobilization patterns (LAPSUS model) for a business-as-usual scenario. In the scenario, more erosion occurred in areas where the conversion of natural vegetation into soybean cultivation is likely to take place, but the generated sediments tended to accumulate mainly within the conversion areas, thus limiting the offsite effects of the increased erosion. These results indicated that when agricultural expansion is kept away from rivers, Cerrado conversion will have only a limited impact on the sediment loads of local rivers. Where land-use changes are most concentrated are coincident with areas where more new sediments are generated (higher erosion) and where more sediments are re-deposited.

  11. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project Final Report 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Jeremy; Baxter, James S.

    2002-12-01

    This report summarizes the third and final year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. The fence and traps were operated from September 6th to October 11th 2002 in order to enumerate post-spawning bull trout. During the study period a total of 309 bull trout were captured at the fence. In total, 16 fish of undetermined sex, 114 males and 179 females were processed at the fence. Length and weight data, as well as recapture information, were collected for these fish. An additional 41 bull trout were enumerated upstream of the fence by snorkeling prior to fence removal. Coupled with the fence count, the total bull trout enumerated during the project was 350 individuals. Several fish that were tagged in the lower Bull River were recaptured in 2002, as were repeat and alternate year spawners previously enumerated in past years at the fence. A total of 149 bull trout redds were enumerated on the ground in 2002, of which 143 were in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past six years. The results of the three year project are summarized, and population characteristics are discussed.

  12. Hood River Production Program : Hood River Fish Habitat Protection, Restoration, and Monitoring Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Coccoli, Holly; Lambert, Michael

    2000-02-01

    Effective habitat protection and rehabilitation are essential to the long-term recovery of anadromous fish populations in the Hood River subbasin. This Habitat Protection, Restoration, and Monitoring Plan was prepared to advance the goals of the Hood River Production Program (HRRP) which include restoring self-sustaining runs of spring chinook salmon and winter and summer steelhead. The HRPP is a fish supplementation and monitoring and evaluation program initiated in 1991 and funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council Fish and Wildlife Program. The HRPP is a joint effort of the Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO) and Oregon Department of Fish and Wildlife (ODFW). Using recent watershed assessment and federal watershed analysis reports, this Plan reviews the historic and current condition of riparian, instream and upland habitats; natural watershed processes; anadromous and resident fish populations; identifies limiting factors, and indicates those subbasin areas that need protection or are likely to respond to restoration. Primary habitat restoration needs were identified as (1) improved fish screening and upstream adult passage at water diversions; (2) improved spawning gravel availability, instream habitat structure and diversity; and (3) improved water quality and riparian conditions. While several early action projects have been initiated in the Hood River subbasin since the mid 1990s, this Plan outlines additional projects and strategies needed to protect existing high quality habitat, correct known fish survival problems, and improve the habitat capacity for natural production to meet HRPP goals.

  13. Changes in water quality of the River Frome (UK) from 1965 to 2009: is phosphorus mitigation finally working?

    Science.gov (United States)

    Bowes, M J; Smith, J T; Neal, C; Leach, D V; Scarlett, P M; Wickham, H D; Harman, S A; Armstrong, L K; Davy-Bowker, J; Haft, M; Davies, C E

    2011-08-15

    The water quality of the River Frome, Dorset, southern England, was monitored at weekly intervals from 1965 until 2009. Determinands included phosphorus, nitrogen, silicon, potassium, calcium, sodium, magnesium, pH, alkalinity and temperature. Nitrate-N concentrations increased from an annual average of 2.4 mg l⁻¹ in the mid to late 1960s to 6.0 mg l⁻¹ in 2008-2009, but the rate of increase was beginning to slow. Annual soluble reactive phosphorus (SRP) concentrations increased from 101 μg l⁻¹ in the mid 1960s to a maximum of 190 μg l⁻¹ in 1989. In 2002, there was a step reduction in SRP concentration (average=88 μg l⁻¹ in 2002-2005), with further improvement in 2007-2009 (average=49 μg l⁻¹), due to the introduction of phosphorus stripping at sewage treatment works. Phosphorus and nitrate concentrations showed clear annual cycles, related to the timing of inputs from the catchment, and within-stream bioaccumulation and release. Annual depressions in silicon concentration each spring (due to diatom proliferation) reached a maximum between 1980 and 1991, (the period of maximum SRP concentration) indicating that algal biomass had increased within the river. The timing of these silicon depressions was closely related to temperature. Excess carbon dioxide partial pressures (EpCO₂) of 60 times atmospheric CO₂ were also observed through the winter periods from 1980 to 1992, when phosphorus concentration was greatest, indicating very high respiration rates due to microbial decomposition of this enhanced biomass. Declining phosphorus concentrations since 2002 reduced productivity and algal biomass in the summer, and EpCO₂ through the winter, indicating that sewage treatment improvements had improved riverine ecology. Algal blooms were limited by phosphorus, rather than silicon concentration. The value of long-term water quality data sets is discussed. The data from this monitoring programme are made freely available to the wider science community

  14. Revision of the biostratigraphy of the Chatham Group (Upper Triassic), Deep River basin, North Carolina, USA

    Science.gov (United States)

    Litwin, R.J.; Ash, S.R.

    1993-01-01

    Paleontological evidence from the Upper Triassic Chatham Group in the three subbasins of the Deep River basin (North Carolina, USA) supports a significant revision of the ages assigned to most of this non-marine continental sedimentary sequence. This study confirms an early(?) or mid-Carnian age in the Sanford subbasin for the base of the Pekin Formation, the lowest unit of the Chatham Group. However, diagnostic late Carnian palynomorphs have been recovered from coals in the lower part of the Cumnock Formation in the Sanford subbasin, and from a sample of the Cumnock Formation equivalent in the Wadesboro subbasin. Plant megafossils and fossil verebrates from rocks in the Sanford subbasin also support a late Carnian age for the Cumnock Formation and its equivalents. The overlying Sanford Formation, which has not yet been dated paleontologically, probably includes beds of Norian age, as over 1000 m of strata may be present between the Cumnock Formation coals (dated here as late Carnian) and the top of the Sanford Formation. This chronostratigraphic interval appears similar to, but slightly longer than, that preserved in the Dan River-Danville and Davie County basins 100 km to the northwest. Our evidence, therefore, indicates that the Chatham Group was deposited over a much longer time interval [early(?) to mid-Carnian through early Norian] than previously was believed. ?? 1993.

  15. Presence of pesticides in surface water from four sub-basins in Argentina.

    Science.gov (United States)

    De Gerónimo, Eduardo; Aparicio, Virginia C; Bárbaro, Sebastián; Portocarrero, Rocío; Jaime, Sebastián; Costa, José L

    2014-07-01

    Argentina has 31 million hectares given over to agriculture comprising 2.2% of the world's total area under cultivation (Stock Exchange of Rosario, Argentina). Despite the intensity of this agricultural activity, data on pesticide pollution in surface water are rather scarce. In this sense, the aim of this work is to determine the presence of pesticides in surface water of four agricultural sub-basins of Argentine. An environmental monitoring was carried out to determine the impact of twenty-nine pesticides used in agricultural activities on the surface water quality of agricultural areas within the San Vicente, Azul, Buenos Aires southeast and Mista stream sub-basins. The samples were analyzed by solid-phase extraction (SPE) using OASIS HLB 60 mg cartridges and ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC/MSMS) that provided good analytical quality parameters. The southeast of Buenos Aires was the site with the highest frequency of pesticides detection, followed by Azul and San Vicente microbasins. The most detected pesticides, considering all surface water samples, were atrazine, tebuconazole and diethyltoluamide with maximum concentration levels of 1.4, 0.035, and 0.701 μg L(-1), respectively. The results obtained for all basins studied show the presence of residual pesticides in surface waters according the different agricultural activities developed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Biodiversity and community structure of zooplankton in the Sub-basin of Rio Poxim, Sergipe, Brazil

    Directory of Open Access Journals (Sweden)

    Eliane Maria de Souza Nogueira

    2011-08-01

    Full Text Available The zooplankton of aquatic environments is composed mostly of protozoans, rotifers, cladocerans and copepods, which play an important role in the food chain, transferring mass and energy from primary producers to higher trophic levels. This work was prepared with the objective of contributing to the knowledge of zooplankton biodiversity that occurs in the Sub-basin of Rio Poxim. Water samples were taken at monthly intervals at four sampling stations located along the sub-basin in the period August 2009 to July 2010. To obtain the zooplankton community, 100 L of water were filtered on nylon net with an aperture of 50 mm. Were identified 72 taxa distributed in the following taxonomic categories Rotifera, Protozoa, Porifera, Nematoda, Anellida, Cladocera, Copepoda, Ostracoda, Isopoda and Insecta. In terms of species richness, the phylum Rotifera followed by the Protoctista were the most relevant with forty and fifteen taxa, respectively. The most representative taxa in numerical terms were Arcella vulgaris, Notholca sp. Rotary sp. and nematodes. Regarding the community diversity index, the community was characterized as low diversity, but the taxa were distributed evenly in all monitoring points.

  17. Techniques for Monitoring Razorback Sucker in the Lower Colorado River, Hoover to Parker Dams, 2006-2007, Final Report

    Science.gov (United States)

    Mueller, Gordon A.; Wydoski, Richard; Best, Eric; Hiebert, Steve; Lantow, Jeff; Santee, Mark; Goettlicher, Bill; Millosovich, Joe

    2008-01-01

    Trammel netting is generally the accepted method of monitoring razorback sucker in reservoirs, but this method is ineffective for monitoring this fish in rivers. Trammel nets set in the current become fouled with debris, and nets set in backwaters capture high numbers of nontarget species. Nontargeted fish composed 97 percent of fish captured in previous studies (1999-2005). In 2005, discovery of a large spawning aggregation of razorback sucker in midchannel near Needles, Calif., prompted the development of more effective methods to monitor this and possibly other riverine fish populations. This study examined the effectiveness of four methods of monitoring razorback sucker in a riverine environment. Hoop netting, electrofishing, boat surveys, and aerial photography were evaluated in terms of data accuracy, costs, stress on targeted fish, and effect on nontargeted fish as compared with trammel netting. Trammel netting in the riverine portion of the Colorado River downstream of Davis Dam, Arizona-Nevada yielded an average of 43 razorback suckers a year (1999 to 2005). Capture rates averaged 0.5 razorback suckers per staff day effort, at a cost exceeding $1,100 per fish. Population estimates calculated for 2003-2005 were 3,570 (95 percent confidence limits [CL] = 1,306i??i??i??-8,925), 1,768 (CL = 878-3,867) and 1,652 (CL = 706-5,164); wide confidence ranges reflect the small sample size. By-catch associated with trammel netting included common carp, game fish and, occasionally, shorebirds, waterfowl, and muskrats. Hoop nets were prone to downstream drift owing to design and anchoring problems aggravated by hydropower ramping. Tests were dropped after the 2006 field season and replaced with electrofishing. Electrofishing at night during low flow and when spawning razorback suckers moved to the shoreline proved extremely effective. In 2006 and 2007, 263 and 299 (respectively) razorback suckers were taken. Capture rates averaged 8.3 razorback suckers per staff day at a

  18. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leads to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.

  19. Quantifying nitrogen inputs to the Choptank River estuary

    Science.gov (United States)

    Mccarty, G.; Hapeman, C. J.; Sadeghi, A. M.; Hively, W. D.; Denver, J. M.; Lang, M. W.; Downey, P. M.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay is the largest estuary in the US, and over 50% of its streams have been rated as poor or very poor, based on the biological integrity yearly index. The Choptank River, a Bay tributary on the Delmarva Peninsula, is dominated by intensive corn and soybean farming associated with poultry and some dairy production. The Choptank River is under Environmental Protection Agency (USEPA) total maximum daily load restrictions. However, reducing nonpoint source pollution contributions from agriculture requires that source predictions be improved and that mitigation and conservation measures be properly targeted. Therefore, new measurement strategies have been implemented. In-situ sensors have been deployed adjacent to US Geological Survey gauging stations in the Tuckahoe and Greensboro sub-basins of the Choptank River watershed. These sensors measure stream water concentrations of nitrate along and water quality parameters every 30 min. Initial results indicate that ~40% less nitrate is exported from the Greensboro sub-basin, even though the total amount of agricultural land use is similar to that in the Tuckahoe sub-basin. This is most likely due to more efficient nitrate processing in the Greensboro sub-basin where the amount of cropland on poorly-drained soils is much larger. Another potential nitrogen source to the Choptank River estuary is atmospheric deposition of ammonia. Over 550 million broilers are produced yearly on the Delmarva Peninsula potentially leading to the release of 20,000 Mtons of ammonia. USEPA recently estimated that as much as 22% of nitrogen in the Bay is due to ammonia deposition. We have initiated a collaborative effort within the LTAR network to increase coverage of ammonia sampling and to explore the spatial and temporal variability of ammonia, particularly in the Choptank River watershed. All these measurements will be useful in improving the handling of nitrogen sources and its fate and transport in the Chesapeake Bay model.

  20. Integrating TDEM and MT methods for characterization and delineation of the Santa Catarina aquifer (Chalco Sub-Basin, Mexico)

    Science.gov (United States)

    Krivochieva, Stefi; Chouteau, Michel

    2003-01-01

    Magnetotelluric (MT) and time domain electromagnetic (TDEM) surveys were undertaken in the region of Santa Catarina, located in the Chalco Sub-Basin of the Mexico Basin. The objective was to constrain the geometry of the fresh water aquifer and confirm the continuity of the basaltic flows between the volcano and the sedimentary basin. In order to define the stratification at depth with an emphasis on the geometry of the main aquifer, 11 MT and 5 TDEM soundings were recorded along a north-south profile. Interpretation of MT soundings show that the bedrock is located at a depth of at least 800-1000 m. Using TDEM apparent resistivity curves to constrain the high frequency MT data, three main layers were defined overlying the bedrock. These layers are, from the surface to bottom, a 20- to 40-m-thick layer of sands, ash and clay, followed by a very conductive 200-m-thick layer of sand and ash, saturated with highly mineralized water and, finally, a zone with gradually increasing resistivities, corresponding to the main aquifer. The TDEM data, the magnetic transfer functions and the 2D MT model also indicate that a shallow resistive structure is dipping, from the northwest, into the lacustrine deposits of the basin. This feature is likely to be highly permeable fractured basaltic flows, evidenced also in one of the water wells. To verify the presence of fractured basalts below the volcano ranges, 38 TDEM soundings were collected on the flanks of the Santa Catarina range. Layered models obtained from the TDEM soundings enabled an assessment of a major conductive zone (1-10 Ω m) at depth. Two hypothesis are envisaged and the nature of this zone is attributed either to a clayey layer or to fractured basaltic flows. If the latter possibility is confirmed, this continuous zone could provide a channel by which the water contaminated by the Santa Catarina landfill may leak into the basin.

  1. Bull Trout Population Assessment in the Columbia River Gorge : Annual Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Jim; McPeak, Ron

    2001-02-01

    We summarized existing knowledge regarding the known distribution of bull trout (Salvelinus confluentus) across four sub-basins in the Columbia River Gorge in Washington. The Wind River, Little White Salmon River, White Salmon River, and the Klickitat River sub-basins were analyzed. Cold water is essential to the survival, spawning, and rearing of bull trout. We analyzed existing temperature data, installed Onset temperature loggers in the areas of the four sub-basins where data was not available, and determined that mean daily water temperatures were <15 C and appropriate for spawning and rearing of bull trout. We snorkel surveyed more than 74 km (46.25 mi.) of rivers and streams in the four sub-basins (13.8 km at night and 60.2 km during the day) and found that night snorkeling was superior to day snorkeling for locating bull trout. Surveys incorporated the Draft Interim Protocol for Determining Bull Trout Presence (Peterson et al. In Press). However, due to access and safety issues, we were unable to randomly select sample sites nor use block nets as recommended. Additionally, we also implemented the Bull Trout/Dolly Varden sampling methodology described in Bonar et al. (1997). No bull trout were found in the Wind River, Little White Salmon, or White Salmon River sub-basins. We found bull trout in the West Fork Klickitat drainage of the Klickitat River Sub-basin. Bull trout averaged 6.7 fish/100m{sup 2} in Trappers Creek, 2.6 fish/100m{sup 2} on Clearwater Creek, and 0.4 fish/100m{sup 2} in Little Muddy Creek. Bull trout was the only species of salmonid encountered in Trappers Creek and dominated in Clearwater Creek. Little Muddy Creek was the only creek where bull trout and introduced brook trout occurred together. We found bull trout only at night and typically in low flow regimes. A single fish, believed to be a bull trout x brook trout hybrid, was observed in the Little Muddy Creek. Additional surveys are needed in the West Fork Klickitat and mainstem

  2. Subsurface circulation and mesoscale variability in the Algerian subbasin from altimeter-derived eddy trajectories

    Science.gov (United States)

    Escudier, Romain; Mourre, Baptiste; Juza, Mélanie; Tintoré, Joaquín.

    2016-08-01

    Algerian eddies are the strongest and largest propagating mesoscale structures in the Western Mediterranean Sea. They have a large influence on the mean circulation, water masses and biological processes. Over 20 years of satellite altimeter data have been analyzed to characterize the propagation of these eddies using automatic detection methods and cross-correlation analysis. We found that, on average, Algerian eddy trajectories form two subbasin scale anticlockwise gyres that coincide with the two Algerian gyres which were described in the literature as the barotropic circulation in the area. This result suggests that altimetry sea surface observations can provide information on subsurface currents and their variability through the study of the propagation of deep mesoscale eddies in semienclosed seas. The analysis of eddy sea level anomalies along the mean pathways reveals three preferred areas of formation. Eddies are usually formed at a specific time of the year in these areas, with a strong interannual variability over the last 20 years.

  3. Multistage late Cenozoic evolution of the Amargosa River drainage, southwestern Nevada and eastern California Society of America. All rights reserved

    Science.gov (United States)

    Menges, C.M.

    2008-01-01

    Stratigraphic and geomorphic analyses reveal that the regional drainage basin of the modern Amargosa River formed via multistage linkage of formerly isolated basins in a diachronous series of integration events between late Miocene and latest Pleistocene-Holocene time. The 275-km-long Amargosa River system drains generally southward across a large (15,540 km 2) watershed in southwestern Nevada and eastern California to its terminus in central Death Valley. This drainage basin is divided into four major subbasins along the main channel and several minor subbasins on tributaries; these subbasins contain features, including central valley lowlands surrounded by highlands that form external divides or internal paleodivides, which suggest relict individual physiographic-hydrologic basins. From north to south, the main subbasins along the main channel are: (1) an upper headwaters subbasin, which is deeply incised into mostly Tertiary sediments and volcanic rocks; (2) an unincised low-gradient section within the Amargosa Desert; (3) a mostly incised section centered on Tecopa Valley and tributary drainages; and (4) a west- to northwest-oriented mostly aggrading lower section along the axis of southern Death Valley. Adjoining subbasins are hydro-logically linked by interconnecting narrows or canyon reaches that are variably incised into formerly continuous paleodivides. The most important linkages along the main channel include: (1) the Beatty narrows, which developed across a Tertiary bedrock paleodivide between the upper and Amargosa Desert subbasins during a latest Miocene-early Pliocene to middle Pleistocene interval (ca. 4-0.5 Ma); (2) the Eagle Mountain narrows, which cut into a mostly alluvial paleodivide between the Amar-gosa Desert and Tecopa subbasins in middle to late Pleistocene (ca. 150-100 ka) time; and (3) the Amargosa Canyon, which formed in late middle Pleistocene (ca. 200140 ka) time through a breached, actively uplifting paleodivide between the Tecopa

  4. Formation mechanism and model for sand lens reservoirs in the Jiyang Sub-basin, East China

    Institute of Scientific and Technical Information of China (English)

    LI; Pilong; PANG; Xiongqi; CHEN; Dongxia; ZHANG; Shanwen

    2004-01-01

    The Bohai Bay basin comprises some very important and well documented subtle traps known in China, which have been the major exploration focus and have become a major petroleum play since the 1990s. However, recent exploration showed that the oil-bearing properties of some sand lens reservoirs may vary significantly and the accumulation mechanisms for these lithological subtle traps are not well understood. Based on statistical analysis of oil-bearing properties for 123 sand lens reservoirs in the Jiyang Sub-basin and combined with detailed anatomy of typical sand lens reservoirs and NMR experiments, it has been shown that the structural and sedimentary factors, hydrocarbon generation and expulsion conditions of the surrounding source rocks, as well as the petrophysical properties of sand lens reservoirs are the main controlling factors for the formation of sand lens reservoirs. The formation of a sand lens reservoir depends on the interaction between the hydrocarbon accumulation driving force and the resistance force. The driving force is made up of the differential capillary pressure between sandstones and sources rocks and the hydrocarbon diffusion force, and as well as the hydrocarbon expansion force. The resistance force is the friction resistance force for hydrocarbons and water to move through the pore throats of the sand lens. The sedimentary environment, source rock condition and sand reservoir properties can change from unfavorable to favorable depending on the combination of these factors. When these three factors all reach certain thresholds, the sand lens reservoirs may begin to be filled by hydrocarbons. When all of these conditions become favorable for the formation of sand lens reservoirs, the reservoir would have high oil saturation. This approach has been applied to evaluating the potential of petroleum accumulation in the sand lens reservoirs in the third member of the Neogene Shahejie Formation in the Jiyang Sub-basin.

  5. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Erik

    2009-09-01

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood

  6. An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Gary E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thom, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weitkamp, Laurie A. [Marine Sciences lab., Sequim, WA (United States); Buenau, Kate E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kropp, Roy K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    measurements, data analyses, modeling, meta-analysis, and reanalysis of previously collected data sets. We identified a set of 12 ancillary hypotheses regarding habitat and salmon response. Each ancillary hypothesis states that the response metric will trend toward conditions at relatively undisturbed reference sites. We synthesized the evidence for and against the two necessary conditions by using eleven causal criteria: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, analogy, complete exposure pathway, and predictive performance. Our final evaluation included cumulative effects assessment because restoration is occurring at multiple sites and the collective effect is important to salmon recovery. We concluded that all five lines of evidence from the LCRE indicated positive habitat-based and fish-based responses to the restoration performed under the CEERP, although tide gate replacements on small sloughs were an exception. Our analyses suggested that hydrologic reconnections restore access for fish to move into a site to find prey produced there. Reconnections also restore the potential for the flux of prey from the site to the main stem river, where our data show that they are consumed by salmon. We infer that LCRE ecosystem restoration supports increased juvenile salmon growth and enhanced fitness (condition), thereby potentially improving survival rates during the early ocean stage.

  7. Long-term meteorological and hydrological dryness and wetness conditions in the Zhujiang River Basin, South China

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2012-09-01

    Full Text Available Floods and droughts are frequently causing large economic losses in China. These conditions vary in space, time, and magnitude. In this study, long-term meteorological and hydrological dryness and wetness conditions are analyzed for the Xijiang River Basin which is the largest tributary of the Zhujiang (Pearl River. A very similar inter-annual course of precipitation and discharge can be observed. The standardized precipitation index (SPI is used to show dryness and wetness pattern in the six sub-basins of the Xijiang River. The SPI-24 correlates high with the standardized discharge index (SDI-24 for Gaoyao hydrological station at the mouth of Xijiang River. Distinct long-term dryness and wetness sequences are found in the time series for the SPI-24 and SDI-24. The principal component analysis reveals many spatial interdependencies in dryness and wetness conditions for the sub-basins and explains some spatio-temporal disparities. Moderate dryness conditions have a larger spatial impact than moderate wetness conditions in the sub-basins. The loading pattern of the first principal component shows that the correlation with the entire Xijiang River Basin is highest in the eastern and lowest in the western sub-basins. Further spatial dipole conditions explain the spatio-temporal heterogeneity of dryness and wetness conditions. Accordingly, the precipitation in the eastern sub-basins contributes more to the hydrological wetness conditions than in the western sub-basins, which mainly contribute to dryness patterns.

    The spectral analysis for the SPI-24 (entire Xijiang River Basin and SDI-24 shows similar peaks for periods of 11–14.7 yr, 2.8 yr, 3.4–3.7 yr, and 6.3–7.3 yr. The same periods can be found for the SPI-24 of Xijiang River's six sub-basins with some variability in the magnitude. The wavelet analysis shows that the most significant periods are stable over time since the 1980s. The extrapolations of the reconstructed time series

  8. Wind River Watershed Restoration, 2006-2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S. [U.S. Geological Survey

    2008-11-04

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  9. Use of Landsat Digital Data for Snow Cover Mapping in the Upper Saint John River Basin, Maine,

    Science.gov (United States)

    1987-06-01

    Opera- River subbasins ( Wiegman et al. 1975). The tech- tional application of Landsat imagery was limited nique was supplemented by an editing...Steppuhn, H. and G.E. Dyck (1974) Estimating 18-20 August. NASA SP-391, pp. 29-37. true basin snowcover. In Advanced Concepts and Wiegman , E.J., W.E

  10. U.S. Department of Energy electric and hybrid vehicle Site Operator Program at Platte River Power Authority. Final report, July 3, 1991--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Emmert, R.A.

    1996-12-31

    The Platte River Power Authority (Platte River) is a political subdivision of the state of Colorado, owned by the four municipalities of Fort Collins, Loveland, Longmont and Estes Park, Colorado. Platte River is a non-profit, publicly owned, joint-action agency formed to construct, operate and maintain generating plants, transmission systems and related facilities for the purpose of delivering to the four municipalities electric energy for distribution and resale. Platte River, as a participant in the US Department of Energy (DOE) Site Operator Program, worked to accomplish the Site Operator Program goals and objectives to field test and evaluate electric and electric-hybrid vehicles and electric vehicle systems in a real world application/environment. This report presents results of Platte River`s program (Program) during the five-years Platte River participated in the DOE Site Operator Program. Platte River participated in DOE Site Operator Program from July 3, 1991 through August 31, 1996. During its Program, Platte River conducted vehicle tests and evaluations, and electric vehicle demonstrations in the Front Range region of Northern Colorado. Platte River also investigated electric vehicle infrastructure issues and tested infrastructure components. Platte River`s Program objectives were as follows: evaluate the year round performance, operational costs, reliability, and life cycle costs of electric vehicles in the Front Range region of Northern Colorado; evaluate an electric vehicle`s usability and acceptability as a pool vehicle; test any design improvements or technological improvements on a component level that may be made available to PRPA and which can be retrofit into vehicles; and develop, test and evaluate, and demonstrate components to be used in charging electric vehicles.

  11. 40Ar/39Ar ages of seamount trachytes from the South China Sea and implications for the evolution of the northwestern sub-basin

    Institute of Scientific and Technical Information of China (English)

    Xiaohu Li; Jiabiao Li; Xing Yu; Chunsheng Wang; Fred Jourdan

    2015-01-01

    A chronological study of seamount rocks in the South China Sea basin provides a great opportunity to understand the expansion and evolution history of the sea basin. In this paper, we analyzed the 40Ar/39Ar age of trachytic samples collected from the Shuangfeng seamounts in the northwestern sub-basin of the South China Sea. The two samples yielded plateau ages of 23.80 ? 0.18 and 23.29 ? 0.22 Ma, respectively, which indicate magmatic activity in late Oligocene which helpful constraints the expansion time of the northwest sub-basin. Previous studies suggested that the northwestern sub-basin and southwestern sub-basin have experienced a relatively consistent expansion in the NWeSE direction followed by a late expansion of the eastern sub-basin. We concluded that the expansion of the northwestern sub-basin began prior to ca. 24 Ma, which also implicated magmatic events of a late or stop expansion of the northwestern sub-basin combined with our results of 40Ar/39Ar age data and previous geophysical data.

  12. 40Ar/39Ar ages of seamount trachytes from the South China Sea and implications for the evolution of the northwestern sub-basin

    Directory of Open Access Journals (Sweden)

    Xiaohu Li

    2015-07-01

    Full Text Available A chronological study of seamount rocks in the South China Sea basin provides a great opportunity to understand the expansion and evolution history of the sea basin. In this paper, we analyzed the 40Ar/39Ar age of trachytic samples collected from the Shuangfeng seamounts in the northwestern sub-basin of the South China Sea. The two samples yielded plateau ages of 23.80 ± 0.18 and 23.29 ± 0.22 Ma, respectively, which indicate magmatic activity in late Oligocene which helpful constraints the expansion time of the northwest sub-basin. Previous studies suggested that the northwestern sub-basin and southwestern sub-basin have experienced a relatively consistent expansion in the NW–SE direction followed by a late expansion of the eastern sub-basin. We concluded that the expansion of the northwestern sub-basin began prior to ca. 24 Ma, which also implicated magmatic events of a late or stop expansion of the northwestern sub-basin combined with our results of 40Ar/39Ar age data and previous geophysical data.

  13. 75 FR 51938 - Drawbridge Operation Regulation; Taunton River, Fall River and Somerset, MA

    Science.gov (United States)

    2010-08-24

    ... River and Somerset, MA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard has...) Bridge at mile 1.8, across the Taunton River between Fall River and Somerset, Massachusetts. This final..., across the Taunton River between Fall River and Somerset, Massachusetts, has a vertical clearance in...

  14. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2012-11-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  15. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2013-04-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  16. Morphometric analysis of sub-basins Fojo and Perdizes in the city of Campos do Jordão, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Nelson Wellausen Dias

    2012-12-01

    Full Text Available The State of São Paulo Water Resources Policy established, in 1991, the Integrated Water Resources Management System (SIGRHI and defined the basic principles for water management, adopting the watershed as the basic unit for studies, integrated planning for sustainable development. This study characterized the morphology of sub-basins Fojo and Perdizes in the city of Campos do Jordão, SP. Morphometric analysis involved the characterization of geometric parameters, topography and drainage network, and the analysis of land use and land cover of the sub-basins. The morphometric characterization revealed that Perdizes sub-basin has an area of 12.70 km², a perimeter of 19.85 km, and a main channel length of 6.86 km, while Fojo sub-basin has a drainage area of 13.97 km ², a perimeter of 19.74 km, and a main channel length of 6.94 km. These results indicate similarities between the two sub-basins. The compactness coefficient (Kc for Perdizes was 1.56 and for Fojo 1.41. These values associated with the respective form factors, F = 0.27 and F = 0.29, indicate that these sub-basins, under a normal precipitation regime are not susceptible to flooding. The results of these indices are consisted with the circularity index (CI found: CI = 0.41 for Perdizes and CI = 0.45 for Fojo, respectively. As CI values found are far from one, they indicate that these sub-basins tend to have a more elongated shape and, therefore, lower flow concentration tendency. The results obtained for the maintenance coefficient indicate that in order to maintain the flow of each channel meter, Perdizes sub-basin needs 286.5 m² and Fojo sub-basin needs 243.9 m². Land cover and land use analysis revealed that among the four existing vegetation cover types, Forest is dominant in both sub-basins with 649 ha (51.1% in Perdizes, and 608.8 ha (43.6% in Fojo; Reforestation cover ranks second with similar areas in both sub-basins, Perdizes with 218 ha (17.2% and Fojo with approximately

  17. Program GICC - AQUABIO. Possible consequences of the climatic change on the aquatic and river french biocenoses. Final report; Programme GICC - AQUABIO. Consequences potentielles du changement climatique sur les biocenoses aquatiques et riveraines francaises. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Pont, D. [Lyon-1 Univ., CNRS UMR 5023, Ecologie des Hydrosystemes Fluviaux, 69 - Villeurbanne (France)

    2003-11-15

    The consequences of the climatic change can modify the ecosystems. The aim of this research program is to analyze the impacts of the climatic change on the propagation of the exotic species in France in aquatic and river environment, the population of macro invertebrates and fishes in the french rivers and the socio economic challenges. The methodology is based on the simulation from the exploitation of great data bases and the combination of many approaches at different scales. (A.L.B.)

  18. Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin.

    Science.gov (United States)

    Donley, Erin E; Naiman, Robert J; Marineau, Mathieu D

    2012-10-01

    We provide a case study prioritizing instream flow restoration activities by sub-basin according to the habitat needs of Endangered Species Act (ESA)-listed salmonids relative to climate change in the central Columbia River basin in Washington State (USA). The objective is to employ scenario analysis to inform and improve existing instream flow restoration projects. We assess the sensitivity of late summer (July, August, and September) flows to the following scenario simulations - singly or in combination: climate change, changes in the quantity of water used for irrigation and possible changes to existing water resource policy. Flows for four sub-basins were modeled using the Water Evaluation and Planning system (WEAP) under historical and projected conditions of 2020 and 2040 for each scenario. Results indicate that Yakima will be the most flow-limited sub-basin with average reductions in streamflow of 41% under climate conditions of 2020 and 56% under 2040 conditions; 1.3-2.5 times greater than those of other sub-basins. In addition, irrigation plays a key role in the hydrology of the Yakima sub-basin - with flow reductions ranging from 78% to 90% under severe to extreme (i.e., 20-40%) increases in agricultural water use (2.0-4.4 times the reductions in the other sub-basins). The Yakima and Okanogan sub-basins are the most responsive to simulations of flow-bolstering policy change (providing salmon with first priority water allocation and at biologically relevant flows), as demonstrated by 91-100% target flows attained. The Wenatchee and Methow sub-basins do not exhibit similar responsiveness to simulated policy changes. Considering climate change only, we conclude that flow restoration should be prioritized first in the Yakima and Wenatchee sub-basins, and second in the Okanogan and Methow. Considering both climate change and possible policy changes, we recommend that the Yakima sub-basin receive the highest priority for flow restoration activities to sustain

  19. Formation of post-spreading volcanic ridges in the East sub-basin of the South China Sea

    Science.gov (United States)

    He, E.; Zhao, M.; Sibuet, J. C.; Tan, P.; Wang, J.; Qiu, X.

    2016-12-01

    In the South China Sea (SCS), the post-spreading magmatism ( 3-13 Ma) largely masks the initial seafloor spreading fabric. The resulting post-spreading seamounts are more numerous in the northern part than in the southern part of the East sub-basin. In the eastern part of the East sub-basin, the post-spreading volcanic ridge (PSVR) is approximately N055° oriented and follows the extinct spreading ridge (ESR). In the western part of the East sub-basin, the PSVR, called the Zhenbei-Huangyan seamounts chain, is E-W oriented and hides the ESR (Sibuet et al., 2016). We conducted a seismic refraction survey covering both the Zhenbei-Huangyan seamount chain and the location of the adjacent ESR. Three E-W oriented profiles and one N-S oriented profile are parallel and perpendicular to the Zhenbei-Huangyan seamounts chain, respectively. Our research is focused on the understanding of the relationship between the crustal thicknesses and crustal seismic velocities. The detailed velocity structure shows that the Zhenbei-Huangyan seamount chain was emplaced through a typical oceanic crust. Crustal thicknesses and seismic velocities suggest an asymmetric generation of seamounts in the East sub-basin, where active upwelling mantle (Holbrook et al., 2001) or buoyancy-driven decompression melting happened (Castillo et al., 2010). The Zhenbei and Huangyan seamounts were probably formed 3-5 Ma and 7-9 Ma, after seafloor spreading cessation; their thickened lower crusts were probably due to magmatic intrusions associated with a high-velocity layer (7.4-7.6 km/s),and their large thickness of upper crust were mainly due to volcanic extrusions. These two seamounts presents a different structural orientation and their crustal thicknesses are different, suggesting an independent origin for their magmatic feeding. This research was granted by the Natural Science Foundation of China (91428204, 91028002, 41176053).

  20. Killer Whale (Orcinus orca) Predation on Beaked Whales (Mesoplodon spp.) in the Bremer Sub-Basin, Western Australia.

    Science.gov (United States)

    Wellard, Rebecca; Lightbody, Keith; Fouda, Leila; Blewitt, Michelle; Riggs, David; Erbe, Christine

    2016-01-01

    Observations of killer whales (Orcinus orca) feeding on the remains of beaked whales have been previously documented; however, to date, there has been no published account of killer whales actively preying upon beaked whales. This article describes the first field observations of killer whales interacting with, hunting and preying upon beaked whales (Mesoplodon spp.) on four separate occasions during 2014, 2015 and 2016 in the Bremer Sub-Basin, off the south coast of Western Australia.

  1. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2004-01-01

    proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

  2. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cochnauer, Tim; Claire, Christopher

    2003-10-01

    In 2002 Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River, Lochsa River, Selway River, and Middle Fork Clearwater River subbasins. Five-hundred forty-one ammocoetes were captured electroshocking 70 sites in the South Fork Clearwater River, Lochsa River, Selway River, Middle Fork Clearwater River, Clearwater River, and their tributaries in 2002. Habitat utilization surveys in Red River support previous work indicating Pacific lamprey ammocoete densities are greater in lateral scour pool habitats compared to riffles and rapids. Presence-absence survey findings in 2002 augmented 2000 and 2001 indicating Pacific lamprey macrothalmia and ammocoetes are not numerous or widely distributed. Pacific lamprey distribution was confined to the lower reaches of Red River below rkm 8.0, the South Fork Clearwater River, Lochsa River (Ginger Creek to mouth), Selway River (Race Creek to mouth), Middle Fork Clearwater River, and the Clearwater River (downstream to Potlatch River).

  3. Hydrocarbon-Derived Carbonate Cements of Subsurface Origin in the Vulcan Sub-Basin, Timor Sea

    Directory of Open Access Journals (Sweden)

    Shou-Yeh Gong

    2010-01-01

    Full Text Available Localized carbonate cementation occurs in the Eocene Grebe Sandstone of the Vulcan Sub-basin, Timor Sea, Australia. The cements have been previously interpreted as originating from microbial methane oxidation and sulfate reduction in a shallow subsurface environment and were related to hydrocarbon leakage. Here we reassess these localized carbonate cements in the Grebe Sandstone, and reported new findings. Petrography shows that there are two facies of sands in the Grebe Sandstone: (1 cemented, mostly fine-grained sands; and (2 loose, often coarse-grained sands. In addition, two types of carbonate matrix occur in the Grebe Sandstone: (1 spars to microspars in calcareous, fine-grained sandstones; and (2 micritic to microsparry matrix associated with limestone grains. Stable carbon isotopic values reveal that only the cements associated with sandstones were probably hydrocarbon-derived, and the resultant mineral is mainly calcite. Petrographic attributes and Mn+2 and Co+2 compositions of these cements differ significantly from those of modern cold-seep carbonates at or near the sea floor. Moreover, the hydrocarbon-derived carbonate mineralization only occurs in the fine-grained sands, not in the coarse-grained sands. In other word, the cementation was not only dependent on hydrocarbon leakage but also on the lithofacies of the host rock. We propose that the extent of hydrocarbon-related cementation alone cannot be used to evaluate the trap integrity as has been previously suggested.

  4. Socio-Ecological Regionalization of the Urban Sub-Basins in Mexico

    Directory of Open Access Journals (Sweden)

    Mónica Cervantes-Jiménez

    2017-01-01

    Full Text Available Mexico is a diverse country in terms of culture and natural environments. For this reason, the delimitation of homogeneous basins with similar environmental, social, and economic attributes is important in order to facilitate the elaboration of high-impact regional development strategies. However, this represents an ongoing challenge due to the complexity of the interactions that occur within socio-ecological systems at a regional scale. In the present study, the main objective was to identify the interrelationships among different aspects of the socio-ecological system located within basins, with the goal of utilizing this information to promote the region-specific sustainable development of an Integrated Water Resources Management (IWRM. Therefore, in this study, environmental, social, economic, and institutional variables, relevant to water management and with the capacity to be expressed spatially, were utilized to identify regions with similar characteristics and to regionalize the urban sub-basins of Mexico based on a principal component analysis (PCA and the k-medoids clustering algorithm. The identification of the most adequate number of regions at the national level was determined by the silhouette method. As a result, five distinct regions for Mexico were generated, which forms the first step in the design of integrated water resources management strategies for these regions.

  5. Propagated rifting in the Southwest Sub-basin, South China Sea: Insights from analogue modelling

    Science.gov (United States)

    Ding, Weiwei; Li, Jiabiao

    2016-10-01

    How the South China Sea rifted has long been a puzzling question that is still debated, particularly with reference to the Southwest Sub-basin (SWSB). Analogue modelling remains one of the most useful tools for testing rift models and processes. Here, we present and discuss a series of analogue modelling experiments designed to investigate the rifting process of the SWSB. Convincing geophysical results were compiled to provide realistic constraints to test the experimental results and interpretations. A heterogeneous lithosphere model with a varied lithospheric structure showed tectono-morphological features similar to the natural case of the SWSB, indicating that the initial thermal condition and rheological stratification of the lithosphere should have a dominant effect on the rifting process of the SWSB. Rigid tectonic blocks existed in the continental margin, such as the Macclesfield Bank and the Reed Bank, and they played important roles in both the shaping of the continent-ocean boundary and the coupling between the crust and mantle. The initial thermal condition and rheological stratification of the lithosphere under the South China Sea controlled the propagated rifting process of the SWSB. Extension was centred on the deep troughs between the rigid blocks, and the break-up occurred in these areas between them. The westward rifting propagation is best explained with a heterogeneous lithosphere model characterized by varied lithospheric structure, and it was responsible for producing the V-shaped configuration of the SWSB.

  6. South Fork Tolt River Hydroelectric Project : Adopted Portions of a 1987 Federal Energy Regulatory Commission`s Final Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-07-01

    The South Fork Tolt River Hydroelectric Project that world produce 6.55 average megawatts of firm energy per year and would be sited in the Snohomish River Basin, Washington, was evaluated by the Federal Energy Regulatory commission (FERC) along with six other proposed projects for environmental effects and economic feasibility Based on its economic analysis and environmental evaluation of the project, the FERC staff found that the South Fork Tolt River Project would be economically feasible and would result in insignificant Impacts if sedimentation issues could be resolved. Upon review, the BPA is adopting portions of the 1987 FERC FEIS that concern the South Fork Tolt River Hydroelectric Project and updating specific sections in an Attachment.

  7. Baseline Inventory of Odonata at the Detroit River International Wildlife Refuge, Humbug Marsh Unit Final Report, Challenge Cost Share MOA #2007CCS-98

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes a baseline inventory of Odonata (damselflies, suborder Zygoptera, and dragonflies, suborder Anisoptera) at the Detroit River International...

  8. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China

    Directory of Open Access Journals (Sweden)

    C. F. Zang

    2012-08-01

    Full Text Available In arid and semi-arid regions freshwater resources have become scarcer with increasing demands from socio-economic development and population growth. Until recently, water research and management has mainly focused on blue water but ignored green water. Furthermore, in data poor regions hydrological flows under natural conditions are poorly characterised but are a prerequisite to inform future water resources management. Here we report on spatial and temporal patterns of both blue and green water flows that can be expected under natural conditions as simulated by the Soil and Water Assessment Tool (SWAT for the Heihe river basin, the second largest inland river basin in Northwest China. Calibration and validation at two hydrological stations show good performance of the SWAT model in modelling hydrological processes. The total green and blue water flows were 22.05–25.51 billion m3 in the 2000s for the Heihe river basin. Blue water flows are larger in upstream sub-basins than in downstream sub-basins mainly due to high precipitation and a large amount of snow and melting water in upstream. Green water flows are distributed more homogeneously among different sub-basins. The green water coefficient was 87%–89% in the 2000s for the entire river basin, varying from around 80%–90% in up- and mid-stream sub-basins to above 90% in downstream sub-basins. This is much higher than reported green water coefficients in many other river basins. The spatial patterns of green water coefficients were closely linked to dominant land covers (e.g. snow cover upstream and desert downstream and climate conditions (e.g. high precipitation upstream and low precipitation downstream. There are no clear consistent historical trends of change in green and blue water flows and the green water coefficient at both the river basin and sub-basin levels. This study provides insights into green and blue water endowments under natural conditions for the entire

  9. Stock Summary Reports for Columbia River Anadromous Salmonids, Volume II; Oregon Subbasins Above Bonneville Dam, 1992 CIS Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Eric; Pierce, Paige (Oregon Department of Fish and Wildlife, Clackamas, OR); Hatch, Keith (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    1993-05-01

    An essential component of the effort to rebuild the Columbia Basin's anadromous fish resources is that available information and experience be organized and shared among numerous organizations and individuals. Past experience and knowledge must form the basis for actions into the future. Much of this knowledge exists only in unpublished form in agency and individual files. Even that information which is published in the form of technical and contract reports receives only limited distribution and is often out of print and unavailable after a few years. Only a small fixtion of the basin's collective knowledge is captured in permanent and readily available databases (such as the Northwest Environmental Database) or in recognized journals. State, tribal, and fedend fishery managers have recognized these information management problems and have committed to a program, the Coordinated Information System Project, to capture and share more easily the core data and other information upon which management decisions am based. That project has completed scoping and identification of key information needs and development of a project plan. Work performed under the CM project will be coordinated with and extend information contained in the Northwest Environmental Database. Construction of prototype systems will begin in Phase 3. This report is one in a series of seven describing the results of the Coordinated Information System scoping and needs identification phase. A brief description of each of these reports follows. This report (Roger 1992) summarizes and integrates the results of the next five reports and relates them to deliverables identified in the Phase II cooperative agreement. Broader issues of organization and operation which are not appropriate for the more focused reports are also discussed. This report should be viewed as an executive summary for the CM project to date. If one wants a quick overview of the CIS project, this report and the project plan will provide that perspective.

  10. Real time monitoring of nitrogen, carbon, and suspended sediment flux in two subbasins of the Choptank River Watershed

    Science.gov (United States)

    Intensive water quality monitoring of agricultural watersheds can provide important information on the effects of land cover and effectiveness of conservation practices designed to mitigate water quality concerns associated with agricultural production. For this study, robust water quality monitori...

  11. Stock Summary Reports for Columbia River Anadromous Salmonids, Volume 1; Oregon Subbasins Below Bonneville Dam, 1992 CIS Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Eric; Pierce, Paige (Oregon Department of Fish and Wildlife, Clackamas, OR); Hatch, Keith (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    1993-05-01

    An essential component of the effort to rebuild the Columbia Basin's anadromous fish resources is that available information and experience be organized and shared among numerous organizations and individuals. Past experience and knowledge must form the basis for actions into the future. Much of this knowledge exists only in unpublished form in agency and individual files. Even that information which is published in the form of technical and contract reports receives only limited distribution and is often out of print and unavailable after a few years. Only a small fraction of the basin's collective knowledge is captured in permanent and readily available databases (such as the Northwest Environmental Database) or in recognized journals. State, tribal, and federal fishery managers have recognized these information management problems and have committed to a program, the Coordinated Information System Project, to capture and share more easily the core data and other information upon which management decisions are based. That project has completed scoping and identification of key information needs and development of a project plan. Work performed under the CIS project will be coordinated with and extend information contained in the Northwest Environmental Database. Construction of prototype systems will begin in Phase 3. This report is one in a series of seven describing the results of the Coordinated Information System scoping and needs identification phase. A brief description of each of these reports follows. This report (Roger 1992) summarizes and integrates the results of the next five reports and relates them to deliverables identified in the Phase II cooperative agreement. Broader issues of organization and operation which are not appropriate for the more focused reports are also discussed. This report should be viewed as an executive summary for the CIS project to date. If one wants a quick overview of the CIS project, this report and the project plan will provide that perspective.

  12. Composition and structure of fish assemblage from Passa Cinco stream, Corumbataí river sub-basin, SP, Brazil

    Directory of Open Access Journals (Sweden)

    AL Carmassi

    Full Text Available The aim of this work was to determine the composition of the fish assemblage of Passa Cinco stream and verify changes in their structure on the altitudinal gradient. Six samples were performed at five different sites in Passa Cinco stream (from the headwater, at order two, to its mouth, at order six, using an electric fishery equipment and gill nets in May, July, September and November of 2005 and January and March of 2006. The indices of Shannon's diversity, Pielou's evenness and Margalef's richness were quantified separately considering the different fishery equipment (nets versus electric fishery equipment. An ANOVA was used to compare samples collected in relation to values of abundance, diversity, evenness and richness. The representativeness of the species was summarised by their average values of abundance and weight. We captured 5082 individuals distributed into 61 species. We observed a trend of increasing diversity, richness and evenness of species from site 1 to 3, with further decrease in sites 4 and 5. The values found for habitat diversity also followed this pattern. Significant differences were found for all three indices considering the electric fishery samples. For individuals caught with nets, only the richness index showed a significant difference. Characidium aff. zebra was an important species in the headwater and transition sites and Hypostomus strigaticeps in middle-lower course sites. Despite the small extension of the Passa Cinco stream, environments structurally well defined were evidenced by the species distribution and assemblage composition along the gradient.

  13. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    the most effective site-specific habitat restoration plan, taking into consideration the unique characteristics of each project site, and conducted in cooperation with landowners and project partners, was of paramount importance to ensure each project's success. An Aquatic Habitat Inventory was conducted from river mile 0-8 on Isquulktpe Creek and the data collected was compared with data collected in 1994. Monitoring plans will continue throughout the duration of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety of fisheries monitoring techniques and habitat assessments used to determine existing conditions and identify factors limiting anadromous salmonid abundance in accordance with the Umatilla River Subbasin Salmon and Steelhead Production Plan (NPPC 1990) and the Final Umatilla Willow Subbasin Plan (Umatilla/Willow Subbasin Planning Team 2005).

  14. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  15. The Three Colorado Rivers: Comparing the Physical, Legal, and Economic Allocation of a Shared River

    Science.gov (United States)

    Rushforth, R.; Ruddell, B. L.

    2015-12-01

    : For many rivers, the legal allocation of surface water was settled decades ago. The process of apportioning surface water between multiple stakeholders is an arduous process with opposing interests competing for scarce resources. The political capital spent initially allocating a river often cannot be regained, stymieing future attempts for re-allocation. The Colorado River Compact (Compact), signed in 1922, has been "the law of the river" for over 90 years. Since its signing, the Colorado River Basin (CRB) population has increased tenfold, while average river flows have decreased due to threats unforeseeable to Compact signers, such as global climate change. Water sharing agreements, like the Compact, legally re-allocate physical river flows; however, water is increasingly shared through trade rather than aqueducts. Virtual water, or the water embodied by a good or service, is a trade adaption to resource scarcity, namely water and land. This study presents findings of a virtual water complement to the Compact. The goal of this study is to determine how the legal allocation of physical water resources are re-allocated as virtual water via economic trade in a shared river basin. Results are presented by at the sub-basin, state, and county-level, showing the geographic origin and destination of virtual water from CRB states and the Upper and Lower basins. A water stress index is calculated to show the indirect water stress of Colorado River water resources and network statistics are employed to rank the importance of virtual water sources in the CRB.

  16. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Erik

    2009-09-01

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood

  17. Modeling change in potential landscape vulnerability to forest insect and pathogen disturbances: methods for forested subwatersheds sampled in the midscale interior Columbia River basin assessment.

    Science.gov (United States)

    Paul F. Hessburg; Bradley G. Smith; Craig A. Miller; Scott D. Kreiter; R. Brion. Salter

    1999-01-01

    In the interior Columbia River basin midscale ecological assessment, including portions of the Klamath and Great Basins, we mapped and characterized historical and current vegetation composition and structure of 337 randomly sampled subwatersheds (9500 ha average size) in 43 subbasins (404 000 ha average size). We compared landscape patterns, vegetation structure and...

  18. Columbia River White Sturgeon (Acipenser Transmontanus) Population Genetics and Early Life History Study, January 1, 1986 to December 31, 1986, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Ernest L.

    1986-12-01

    The 1986 Columbia River white sturgeon investigations continued to assess genetic variability of sturgeon populations isolated in various areas of the Columbia River, and to examine environmental factors in the habitat that may affect early life history success. Baseline data have been collected for three character sets. Twenty-eight loci have been analyzed for differences using electrophoresis, snout shapes were assessed for multivariate distinction, and scute counts have been examined as an index of variability. Fish that reside in the mid-Columbia and lower river have been sufficiently characterized by electrophoresis to compare with up-river areas. To date, few electrophoretic differences have been identified. However, Lake Roosevelt sturgeon sample size will be increased to determine if some of the observed differences from lower river fish are significant. Snout shape has been shown to be easily quantifiable using the digitizing technique. Scute count data initially indicate that variability exists within as well as between areas. Patterns of differentiation of one or more of these data sets may be used to formulate stock transplant guidelines essential for proper management or enhancement of this species. The historical habitat available to sturgeon in the Columbia River has changed through the development of hydroelectric projects. Dams have reduced the velocity and turbulence, and increased light penetration in the water column from less silt. These changes have affected the ability of sturgeon to feed and have made them more vulnerable to predation, which appear to have altered the ability of populations isolated in the reservoirs to sustain themselves. Present studies support the theory that both the biological and physical habitat characteristics of the Columbia River are responsible for reduced sturgeon survival, and justify consideration of enhancement initiatives above Bonneville to improve sturgeon reproductive success.

  19. Effects of the Operation of Kerr and Hungry Horse Dams on the Kokanee Fishery in the Flathead River System, 1979-1985 Final Research Report.

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, Patrick

    1986-05-01

    This study was undertaken to assess the effects of the operation of Hungry Horse Dam on the kokanee fishery in the Flathead River system. Studies concerning operation of the dam on the Flathead River aquatic biota began in 1979 and continued to 1982 under Bureau of Reclamation funding. These studies resulted in flow recommendations for the aquatic biota in the main stem Flathead River, below the influence of Hungry Horse Dam on the South Fork. Studies concerned specifically with kokanee salmon have continued under Bonneville Power Administration funding since 1982. This completion report covers the entire study period (September 1979 to June 1985). Major results of this study were: (1) development and refinement of methods to assess hydropower impacts on spawning and incubation success of kokanee; (2) development of a model to predict kokanee year class strength from Flathead River flows; and (3) implementation of flows favorable for successful kokanee reproduction. A monitoring program has been developed which will assess the recovery of the kokanee population as it proceeds, and to recommend management strategies to maintain management goals for the kokanee fishery in the river system.

  20. Geophysical Studies of Seismic Hazard in the Tahoe City Sub-basin, Lake Tahoe, California

    Science.gov (United States)

    Muehlberg, J. M.; Schweickert, R. A.; McHugh, J.; Rasmussen, T.; Louie, J. N.

    2003-12-01

    The Lake Tahoe basin has the potential for serious earthquakes and earthquake-related tsunamis. The history of lake level fluctuations should be recorded in sediments beneath the Lake's outlet at Tahoe City. Borehole data show the sediments consist primarily of a thick sequence of lacustrine silts and clays with interbedded sands. Beneath this unit is an older Q-T (?) sand and gravel sequence of unknown origin. The lacustrine deposits locally rest upon 2.0 Ma latites, which in turn rest upon the older sand and gravel sequence. Near the outlet, several fault scarps displace units less than 2.0 m.y. old. These scarps may influence the stability of the dam across the outlet and the sequence and extent of lake level high stands. Our project is integrating geophysical and stratigraphic data to further define and describe the Tahoe City sub-basin. We collected new gravity data to provide an estimate of basin depths across the outlet and help define subsurface faults. Preliminary data suggest the maximum basin depth is 180 m, near the outlet. Refraction microtremor surveys yielded information about stratigraphy and shear velocities of the Quaternary deposits. The average shear wave velocity to 30-m depth obtained for this area is 334 m/s. These values correspond to a NEHRP soil hazard class of D, similar to that found in other lacustrine basins of the region. Soils in this NEHRP class tend to show a significant amplification of shaking, posing increased hazard to structures. We are combining stratigraphic with gravity and seismic data to produce geologic cross sections having information on basin depths and Quaternary faults.

  1. Chronology of the Early Toarcian environmental crisis in the Lorraine Sub-Basin (NE Paris Basin)

    Science.gov (United States)

    Ruebsam, Wolfgang; Münzberger, Petra; Schwark, Lorenz

    2014-10-01

    Early Toarcian (Jurassic; ∼183 Ma) sediments recorded profound environmental changes, including mass extinction, global warming, marine transgression as well as widespread bottom water anoxia and organic matter accumulation on the Western Tethyan shelf. Enhanced organic matter accumulation was accompanied by a positive carbon isotope excursion (CIE) in pelagic carbonate, which marks the Toarcian Oceanic Anoxic Event. These environmental changes were accompanied by a major perturbation of the global carbon cycle, expressed by negative CIE, interrupting the positive trend. The duration of the carbon cycle perturbation is still debated, with estimates for the negative CIE range from ∼200 to ∼600 kyr. Here we present ultra high-resolution (place within the uppermost tenuicostatum zone resulted in a strong condensation of the basal Schistes Carton formation. Strong condensation can explain the discrepancy between durations previously calculated for the CIE placed at this stratigraphic interval. Our data support durations of ∼900 kyr and ∼600 kyr for the positive and negative CIE, respectively. The cyclostratigraphy-based timescale further proposes a duration of >555 kyr for the tenuicostatum zone and 1310 kyr for the serpentinum zone. The durations of the elegantulum and falciferum subzones can be estimated to ∼790 kyr and ∼520 kyr, respectively. A change in the orbital response from eccentricity- to obliquity-forcing, evident from other locations, is well-expressed in the Lorraine Sub-Basin and occurred within the CIE interval. The strong impact of the obliquity component in post-event deposits hints to processes most effective at high latitudes, such as the waxing and waning of polar ice. Paleogeographic features of the Western Tethyan shelf supported the tele-connection of higher to lower latitude processes via water exchange through the Viking Corridor.

  2. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.

    Science.gov (United States)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-08-15

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients to seAs (MARINA) for China. The MARINA Nutrient Model quantifies river export of nutrients by source at the sub-basin scale as a function of human activities on land. MARINA is a downscaled version for China of the Global NEWS-2 (Nutrient Export from WaterSheds) model with an improved approach for nutrient losses from animal production and population. We use the model to quantify dissolved inorganic and organic nitrogen (N) and phosphorus (P) export by six large rivers draining into the Bohai Gulf (Yellow, Hai, Liao), Yellow Sea (Yangtze, Huai) and South China Sea (Pearl) in 1970, 2000 and 2050. We addressed uncertainties in the MARINA Nutrient model. Between 1970 and 2000 river export of dissolved N and P increased by a factor of 2-8 depending on sea and nutrient form. Thus, the risk for coastal eutrophication increased. Direct losses of manure to rivers contribute to 60-78% of nutrient inputs to the Bohai Gulf and 20-74% of nutrient inputs to the other seas in 2000. Sewage is an important source of dissolved inorganic P, and synthetic fertilizers of dissolved inorganic N. Over half of the nutrients exported by the Yangtze and Pearl rivers originated from human activities in downstream and middlestream sub-basins. The Yellow River exported up to 70% of dissolved inorganic N and P from downstream sub-basins and of dissolved organic N and P from middlestream sub-basins. Rivers draining into the Bohai Gulf are drier, and thus transport fewer nutrients. For the future we calculate further increases in river export of nutrients. The MARINA Nutrient model quantifies the main sources of coastal water pollution for sub-basins. This information can contribute to formulation of

  3. PATRONES DE CONSUMO FINAL DE CÉRVIDOS EN EL PARANÁ MEDIO: EL CASO DEL SITIO CERRO AGUARÁ / Cervids final consumption patterns in middle Paraná River: the case of Cerro Aguará archaeological site

    Directory of Open Access Journals (Sweden)

    Leonardo Mucciolo

    2015-06-01

    Full Text Available Los cérvidos fueron amplia y regularmente explotados por los cazadores-recolectores que habitaron la macroregión del Paraná-Plata durante el Holoceno tardío. En la cuenca media del Paraná, sin embargo, muy pocos estudios han enfocado sobre las estrategias empleadas para su obtención, procesamiento y consumo. Teniendo en cuenta esto, el objetivo de este trabajo es explorar dichos aspectos a partir del análisis de los conjuntos de cérvidos provenientes del sitio arqueológico Cerro Aguará, localizado en el departamento General Obligado (provincia de Santa Fe. La perspectiva seleccionada propone al consumo como factor preponderante en la configuración del registro zooarqueológico dentro del continuum de actividades que componen la explotación faunística. Desde esta perspectiva, y tomando en consideración que las carcasas de los cérvidos proveen distintos tipos de recursos alimenticios con diferentes costos de extracción (carne, médula y grasa ósea, se evalúan diferentes indicadores para establecer si existió diferente intensidad en su procesamiento. Los resultados indican que las dos especies de cérvidos identificadas en el sitio, Blastocerus dichotomus y Ozotoceros bezoarticus, ocuparon un rol preponderante en la dieta, aunque las carcasas del primero fueron empleadas más intensivamente probablemente en correlación con su mayor disponibilidad de nutrientes internos, tales como la médula y posiblemente la grasa ósea.  Abstract  Cervids were wide and regularly exploited by several Late Holocene hunter-gatherers inhabiting Paraná Plata macroregion. In the middle Paraná river, however, few research has been made on strategies involving their procurement, processing and consumption. The purpose of this article is to explore those aspects from the analysis of cervid assemblages of Cerro Aguará archaeological site (General Obligado, Santa Fe province. The selected perspective proposes final consumption as one of the most

  4. Columbia River White Sturgeon (Acipenser Transmontanus) Early Life History and Genertics Study, August 1, 1984 to December 31, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Ernest L.

    1985-12-01

    Research on Columbia River white sturgeon has been directed at their early life history as it may apply to production and enhancement strategies for management of the species. The river environment in which sturgeon historically migrated, spawned, and reared has changed through development. Habitat changes are expected to precipitate genetic changes in the fish, as well as reduce the fitness in populations. Genetic analysis of samples taken from various locations over the length of the Columbia River have indicated that observed gene frequencies in all areas sampled were not in Hardy-Weinburg equilibrium, which could suggest that the general population is experiencing perturbation in the system. Analysis thus far has exposed few differences between samples from the lower, middle, and upper portions of the system. Allelic differences were identified in fish from the Roosevelt Lake, which may be evidence of unique characteristics among fish from that general area.

  5. Columbia River White Sturgeon (Acipenser Transmontanus) Early Life History and Genertics Study, August 1, 1984 to December 31, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Ernest L.

    1985-12-01

    Research on Columbia River white sturgeon has been directed at their early life history as it may apply to production and enhancement strategies for management of the species. The river environment in which sturgeon historically migrated, spawned, and reared has changed through development. Habitat changes are expected to precipitate genetic changes in the fish, as well as reduce the fitness in populations. Genetic analysis of samples taken from various locations over the length of the Columbia River have indicated that observed gene frequencies in all areas sampled were not in Hardy-Weinburg equilibrium, which could suggest that the general population is experiencing perturbation in the system. Analysis thus far has exposed few differences between samples from the lower, middle, and upper portions of the system. Allelic differences were identified in fish from the Roosevelt Lake, which may be evidence of unique characteristics among fish from that general area.

  6. Instream Flows Needed for Successful Migration Spawning and Rearing of Rainbow and Westslope Cutthroat Trout in Selected Tributaries of the Kootenai River: Final Report 1986.

    Energy Technology Data Exchange (ETDEWEB)

    Marotz, Brian

    1986-12-01

    This study was conducted by Montana Department of Fish, Wildlife and Parks in contractual agreement with Bonneville Power Administration and addresses measure 804(a)(9) of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. Objectives were to determine instream flow needs in Kootenai River tributaries to maintain successful fish migration, spawning and rearing habitat of game fish, evaluate existing resident and rearing fish populations, and compile hydrologic and fishery information required to secure legal reservation of water for the fishery resource.

  7. FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, F.

    2013-04-01

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

  8. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  9. Evaluating the influence of source basins on downstream water quality in the Mississippi River

    Science.gov (United States)

    Clark, G.M.; Broshears, R.E.; Hooper, R.P.; Goolsby, D.A.

    2002-01-01

    Chemical variability in the Mississippi River during water years 1989 to 1998 was evaluated using stream discharge and water-quality data in conjunction with the DAFLOW/BLTM hydraulic model. Model simulations were used to identify subbasin contributions of water and chemical constituents to the Mississippi River upstream from its confluence with the Ohio and the Mississippi River and at the Atchafalaya Diversion in Louisiana. Concentrations of dissolved solids, sodium, and sulfate at the Thebes site showed a general decreasing trend, and concentrations of silica and nitrate showed a general increasing trend as the percentage of discharge from the Mississippi River upstream from Grafton increased. Concentrations of most chemical constituents in the Mississippi River at the Atchafalaya Diversion exhibited a decreasing trend as the percentage of water from the Ohio River increased. Regression models were used to evaluate the importance of the source of water to the water chemistry in the Mississippi River at Thebes and the Atchafalaya Diversion. The addition of terms in regression equations to account for the percent of water from subbasins improved coefficients of determination for predicting chemical concentrations by as much as nine percent at the Thebes site and by as much as 48 percent at the Atchafalaya Diversion site. The addition of source-water terms to regression equations increased the estimated annual loads of nitrate and silica delivered from the Mississippi River Basin to the Gulf of Mexico by as much as 14 and 13 percent, respectively.

  10. 78 FR 49918 - Drawbridge Operation Regulation; Taunton River, Fall River and Somerset, MA

    Science.gov (United States)

    2013-08-16

    ... River and Somerset, MA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard has... across the Taunton River, mile 2.1, between Fall River and Somerset, Massachusetts. The bridge owner...) entitled, ``Drawbridge Operation Regulation: Taunton River, Fall River and Somerset, MA'' in the...

  11. Juvenile Salmonid Pit-Tag Studies at Prosser Dam and the Chandler Canal Fish Collection Facility, Yakima River, 1991 and 1992 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, Thomas E.; Sandford, Benjamin P.

    1996-01-01

    In 1991 and 1992, the National Marine Fisheries Service completed the second and third years of a 3-year study to estimate juvenile salmonid (Oncorhynchus spp.) timing and survival characteristics related to passage through the Prosser Dam complex, including the Chandler Canal and the Chandler fish collection facility, on the Yakima River. Yearling chinook (O. tshawyacha) and coho salmon (O. kisutch) were collected at the Chandler facility, PIT tagged, and released at various locations in the Yakima River, Chandler Canal, and the Chandler facility. Individual fish were subsequently detected at PIT-tag detection monitors at the Chandler facility and/or McNary Dam on the Columbia River. Survival through various reaches, PIT-tag detection efficiency, and Chandler Canal fish entrainment proportion parameters were estimated using maximum likelihood techniques. The research objectives in 1991 and 1992 were to: (1) assess the effects of passage through the Chandler Canal and the Chandler facility on the survival of juvenile salmonids, (2) determine the entrainment rate of juvenile salmonids into the Chandler Canal as a function of river flow, and (3) determine the efficiency and reliability of the PIT-tag monitoring system at the Chandler facility. The initial 1990 research plan was expanded in 1991 and 1992 to include several more release locations and many more release days.

  12. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

  13. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  14. From Sub-basin to Grid Scale Soil Moisture Disaggregation in SMART, A Semi-distributed Hydrologic Modeling Framework

    Science.gov (United States)

    Ajami, H.; Sharma, A.

    2016-12-01

    A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.

  15. Assessment of runoff response to landscape changes in the San Pedro subbasin (Nayarit, Mexico) using remote sensing data and GIS.

    Science.gov (United States)

    Hernández-Guzmán, Rafael; Ruiz-Luna, Arturo; Berlanga-Robles, César Alejandro

    2008-10-01

    Results on runoff estimates as a response to land-use and land-cover changes are presented. We used remote sensing and GIS techniques with rainfall time-series data, spatial ancillary information, and the curve-number method (NRCS-CN) to assess the runoff response in the San Pedro subbasin. Thematic maps with eight land-cover classes derived from satellite imagery classification (1973, 1990, and 2000) and hydrologic soil-group maps were used as the input for the runoff calculation. About 20% to 25% of the subbasin landscape has changed since 1973, mainly as consequence of the growth of agriculture. Forest is the main cover, although further analyses indicate that forest is degrading from good to poor conditions when evaluated as a function of the spectral response. Soils with low infiltration rates, classified as the hydrological soil-group "C", were dominant in the area (52%). The overlaying of all the hydrological soil groups with the land-use map produced a total of 43 hydro-group and land-use categories for which runoff was calculated using the curve-number method. Estimates of total runoff volumes (26 x 10(6) m3) were similar for the three dates analyzed in spite of landscape changes, but there were temporal variations among the hydro-group and land-use categories as a consequence. Changes are causing the rise of covers with high runoff potential and the increase of runoff depth is expected, but it can be reversed by different management of subbasin hydro-groups and land-use units.

  16. The Stratigraphy of the Aquitanian-Burdigalian Asmari Formation of Lorestan Sub-Basin, Iran: an Inclusive Study

    Science.gov (United States)

    Lankarani, M.; Amini, A.; Swennen, R.

    2012-04-01

    The Asmari Formation is the most important hydrocarbon reservoir in the oilfields of the Zagros pro-foreland basin. The shallow carbonates of this formation have been producing oil for nearly one century. However, detailed stratigraphic aspects of this significant rock unit in some parts of the basin, especially Lorestan sub-basin, are poorly studied. So, because of the necessity, several outcrops of the Asmari Formation in this region were inclusively studied in the framework of this project. The Lorestan sub-basin is a narrow, northwest-southeast trending intrashelf depression in the Zagros basin which is created during the Mesozoic. By the end of Mesozoic, continental collision between Iran and Arabian plates resulted in the formation of the Zagros fold-thrust belt and its associated pro-foreland basin, in which the Asmari Formation was deposited. Detailed paleontological investigations done by this study (based on the distribution of the index fossils) showed that age range of the Asmari Formation in this region is Aquitanian-Burdigalian. The main grain associations forming the facies of the formation were found rhodoliths, large benthic foraminifera (rotaliids), green algae, bivalves (mostly oysters), bryozoans, and echinoderms. The biotic associations suggest that carbonate sedimentation took place in tropical waters under oligotrophic conditions. This Aquitanian-Burdigalian carbonate deposits, which were deposited on an oligotrophic tropical carbonate ramp developed in a foredeep tectonic setting, have unconformable boundaries with the overlying and underlying formations. Comprehensive sequence stratigraphic investigations proved that deposition of the Asmari Formation in the studied region has been generally coincident with a transgressive event during the time of global second order sea-level highstand. So, the whole Asmari rock unit in the Lorestan sub-basin comprises a supersequence formed as a result of the second-order eustatic sea-level changes

  17. Paleodrainage Networks Recharging the Nubian Aquifer Dakhla and Kufra Sub-Basins Revealed From SIR-C and SRTM Data

    Science.gov (United States)

    Sultan, M.; Manocha, N.; Becker, R.; Sturchio, N.

    2004-05-01

    The Nubian Aquifer system of northeast Africa is one of the world's largest potable groundwater reserves. Because it occurs in one of the world's driest climates, understanding its history and behavior has both scientific and practical importance. The sparse settlement of the huge (2x106 km2) area underlain by this aquifer, and the limited resources of the nations in which it occurs, result in a situation where knowledge of its origin and history is incomplete. We defined the paleodrainage channels across the entire aquifer using Shuttle Radar Topography Mission data (SRTM) and ARC/INFO watershed delineation routines. The SRTM-based streams, which are now partially covered by sand sheets and dunes, were validated by comparison to stream distribution inferred from co-registered Space-borne Imaging Radar-C/Synthetic Aperture Radar (SIR-C) data. A good correspondence between the SRTM-derived channels and the SIR-C derived channels is evident. Results indicate that there are two major paleodrainage patterns: the first extends in a NE direction from the highlands of NW Sudan towards the Kharga oasis in Egypt and feeds the underlying Nubian Aquifer Dakhla sub-basin. The second trends N-S from the highlands of northern Chad along the eastern borders of Lybia and feeds the underlying Nubian Aquifer Kufra sub-basin. We postulate that extensive recharge of the underlying Nubian aquifer must have occurred beneath the paleodrainage networks during previous wet climatic periods since the Nubian sandstone crops out across major sectors of the entire area covered by the delineated watersheds. The autochtonous recharge is supported by the presence of surrounding highlands that are largely formed of basement uplifts suggesting that these sub-basins are probably largely disconnected. This suggestion is further corroborated by the progressive increase in ages of Nubian Aquifer groundwater in the Dakhla sub-basin along the hydraulic gradient (from SW to NE). For example, the youngest

  18. Sediment balances in the Blue Nile River Basin

    Institute of Scientific and Technical Information of China (English)

    Yasir SAALI; Alessandra CROSATO; Yasir AMOHAMED; Seifeldin HABDALLA; Nigel GWRIGHT

    2014-01-01

    Rapid population growth in the upper Blue Nile basin has led to fast land-use changes from natural forest to agricultural land. This resulted in speeding up the soil erosion process in the highlands and increasing sedimentation further downstream in reservoirs and irrigation canals. At present, several dams are planned across the Blue Nile River in Ethiopia and the Grand Ethiopian Renaissance Dam is currently under construction near the border with Sudan. This will be the largest hydroelectric power plant in Africa. The objective of this paper is to quantify the river flows and sediment loads along the Blue Nile River network. The Soil and Water Assessment Tool was used to estimate the water flows from un-gauged sub-basins. To assess model performance, the estimated sediment loads were compared to the measured ones at selected locations. For the gauged sub-basins, water flows and sediment loads were derived from the available flow and sediment data. To fill in knowledge gaps, this study included a field survey in which new data on suspended solids and flow discharge were collected along the Blue Nile and on a number of tributaries. The comparison between the results of this study and previous estimates of the sediment load of the Blue Nile River at El Deim, near the Ethiopian Sudanese border, show that the sediment budgets have the right order of magnitude, although some uncertainties remain. This gives confidence in the results of this study providing the first sediment balance of the entire Blue Nile catchment at the sub-basin scale.

  19. Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China.

    Science.gov (United States)

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca(2+)-HCO3(-) water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na(+)-Cl(-) water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B(3+), F(-), and SO4(2-) and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future.

  20. Assessment of the Flow-Survival Relationship Obtained by Sims and Ossiander (1981) for Snake River Spring/Summer Chinook Salmon Smolts, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R. (Cleveland R.)

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic`s chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts.

  1. Wildlife and Wildlife Habitat Loss Assessment at Cougar Dam and Reservoir Project, South Fork McKenzie River, Oregon; 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Cougar Dam and Reservoir Project on the South Fork McKenzie River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1953, 1965, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Cougar Project extensively altered or affected 3096 acres of land and river in the McKenzie River drainage. Impacts to wildlife centered around the loss of 1587 acres of old-growth conifer forest and 195 acres of riparian hardwoods. Impacts resulting from the Cougar Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the effected area to support wildlife was greatly altered as a result of the Cougar Project. Loses or grains in the potential of the habitat to support wildlife will exist over the life of the project.

  2. Wildlife and Wildlife Habitat Loss Assessment at Hills Creek Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Hills Creek Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1964, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Hills Creek Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 2694 acres of old-growth forest and 207 acres of riparian habitat. Impacts resulting from the Hills Creek Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, ruffed grouse, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Hills Creek Project, losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  3. Wildlife and Wildlife Habitat Loss Assessment at Detroit Big Cliff Dam and Reservoir Project, North Santiam River, Oregon, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1985-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Detroit/Big Cliff Dam and Reservoir Project (Detroit Project) on the North Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric-related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1939, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each time period were determined. Ten wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Detroit Project extensively altered or affected 6324 acres of land and river in the North Santiam River drainage. Impacts to wildlife centered around the loss of 1,608 acres of conifer forest and 620 acres of riparian habitat. Impacts resulting from the Detroit Project included the loss of winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, river otter, beaver, ruffed grouse, pileated woodpecker, spotted owl, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Detroit Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  4. Distribution and condition of young-of-year Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon, 2008-10--Final Report

    Science.gov (United States)

    Burdick, Summer M.; Hewitt, David A.

    2012-01-01

    The Nature Conservancy undertook restoration of the Williamson River Delta Preserve with a primary goal "to restore and maintain the diversity of habitats that are essential to the endangered [Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris)] while, at the same time, minimizing disturbance and adverse impacts" (David Evans and Associates, 2005). The Western Fisheries Research Center of the U.S. Geological Survey was asked by the Bureau of Reclamation to assist The Nature Conservancy in assessing the use of the restoration by larval and juvenile suckers. We identified five obtainable objectives to gauge the habitat suitability for young-of-year suckers in the permanently flooded portions of the two most recently restored sections (Goose Bay and Tulana) of the Williamson River Delta Preserve (hereafter referred to as the Preserve) and its effects on the distribution and health of larval and juvenile suckers. Several of these objectives were met through collaborations with The Nature Conservancy, Oregon State University, Oregon Water Science Center, and Leetown Science Center.

  5. Migrational Characteristics, Biological Observations, and Relative Survival of Juvenile Salmonids Entering the Columbia River Estuary, 1966-1983, 1985 Final Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Dawley, Earl M.

    1986-04-01

    Natural runs of salmonids in the Columbia River basin have decreased as a result of hydroelectric-dam development, poor land- and forest-management, and over-fishing. This has necessitated increased salmon culture to assure adequate numbers of returning adults. Hatchery procedures and facilities are continually being modified to improve both the efficiency of production and the quality of juveniles produced. Initial efforts to evaluate changes in hatchery procedures were dependent upon adult contributions to the fishery and returns to the hatchery. Procedures were developed for sampling juvenile salmon and steelhead entering the Columbia River estuary and ocean plume. The sampling of hatchery fish at the terminus of their freshwater migration assisted in evaluating hatchery production techniques and identifying migrational or behavioral characteristics that influence survival to and through the estuary. The sampling program attempted to estimate survival of different stocks and define various aspects of migratory behavior in a large river, with flows during the spring freshet from 4 to 17 thousand cubic meters per second (m/sup 3//second).

  6. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  7. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Umatilla, Tucannon, Asotin, and Grande Ronde River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Umatilla and Grande Ronde River basins, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the

  8. Research, Monitoring, and Evaluation of Avian Predation on Salmonid Smolts in the Lower and Mid-Columbia River, 2006 Final Season Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Roby, Daniel D. [USGS - Oregon Cooperative Fish and Wildlife Research Unit, Oregon State University; Collis, Ken [Real Time Research, Inc.; Lyons, Donald E. [USGS - Oregon Cooperative Fish and Wildlife Research Unit, Oregon State University

    2009-06-18

    This study investigates predation by piscivorous waterbirds on juvenile salmonids (Oncorhynchus spp.) from throughout the Columbia River Basin. During 2006, study objectives in the Columbia River estuary, work funded by the Bonneville Power Administration, were to (1) monitor and evaluate previous management initiatives to reduce Caspian tern (Hydroprogne caspia) predation on juvenile salmonids (smolts); (2) measure the impact of double-crested cormorant (Phalacrocorax auritus) predation on smolt survival, and assess potential management options to reduce cormorant predation; and (3) monitor large colonies of other piscivorous waterbirds in the estuary (i.e., glaucous-winged/western gulls [Larus glaucescens/occidentalis]) to determine the potential impacts on smolt survival. Study objectives on the mid-Columbia River, work funded by the Walla Walla District of the U.S. Army Corps of Engineers, were to (1) measure the impact of predation by Caspian terns and double-crested cormorants on smolt survival; and (2) monitor large nesting colonies of other piscivorous waterbirds (i.e., California gulls [L. californicus], ring-billed gulls [L. delawarensis], American white pelicans [Pelecanus erythrorhynchos]) on the mid-Columbia River to determine the potential for significant impacts on smolt survival. Our efforts to evaluate system-wide losses of juvenile salmonids to avian predation indicated that Caspian terns and double-crested cormorants were responsible for the vast majority of smolt losses to avian predators in the Columbia Basin, with most losses occurring in the Columbia River estuary. In 2006, East Sand Island in the Columbia River estuary supported the largest known breeding colonies of Caspian terns and double-crested cormorants in the world. The Caspian tern colony on East Sand Island consisted of about 9,200 breeding pairs in 2006, up slightly (but not significantly so) from the estimate of colony size in 2005 (8,820 pairs). There has not been a

  9. C, O, Sr and Nd isotope systematics of carbonates of Papaghni sub-basin, Andhra Pradesh, India: Implications for genesis of carbonate-hosted stratiform uranium mineralisation and geodynamic evolution of the Cuddapah basin

    Science.gov (United States)

    Absar, Nurul; Nizamudheen, B. M.; Augustine, Sminto; Managave, Shreyas; Balakrishnan, S.

    2016-10-01

    The Cuddapah basin (CB) is one of a series of Proterozoic basins that overlie the Archaean cratons of India, and contains a unique stratiform carbonate-hosted uranium mineralisation. In the present work, we discuss stable (C, O) and radiogenic (Nd, Sr) isotope systematics of carbonates of the Papaghni sub-basin in order to understand uranium ore forming processes and geodynamic evolution of the CB. Uranium mineralised dolomites (UMDs) of the basal Vempalle Formation show a significantly lighter (~ 1.5‰) C-isotope signature compared to that of open-marine stromatolitic sub-tidal facies, suggesting input of isotopically lighter carbon through in situ remineralisation of organic matter (OM). This implies deposition in a hydrologically-restricted, redox-stratified lagoonal basin wherein exchange with open oceanic dissolved inorganic carbon (DIC) was limited. Persistent bottom water anoxia was created and maintained through consumption of dissolved oxygen (DO) by decaying OM produced in oxidised surface water zone. Significantly more radiogenic εNd(t) of UMD (- 6.31 ± 0.54) compared to that of Dharwar upper crust (- 8.64 ± 3.11) indicates that dissolved constituents did not originate from the Dharwar craton, rather were derived from more juvenile exotic sources - possibly from a continental arc. Dissolved uranyl ions (U+ 6) were introduced to the basin through fluvial run-off and were reduced to immobile uranous ions (U+ 4) at the redox interface resulting in precipitation of pitchblende and coffinite. Carbonate horizons of upper Vempalle Formation and Tadpatri Formation show progressively more radiogenic Nd isotope compositions signifying increased juvenile arc contribution to the Papaghni sub-basin through time, which is also corroborated by the presence of younger zircons (1923 ± 22 Ma) in Pulivendla quartzites. We propose that the Papaghni sub-basin opened as a back-arc extensional basin at ~ 2 Ga as a result of westerly-directed subduction of oceanic crust

  10. Morphometric characterization of sub-basins in the municipality of Xapuri: subsidies to land management in the Western Amazon

    Directory of Open Access Journals (Sweden)

    Éllen Albuquerque Abud

    2015-04-01

    Full Text Available This work morphometrically characterized watersheds that occur in the municipality of Xapuri and constructed a model that explains the extent of watershed impact and resilience. Emphasis was given to provide a decision-making tool for non-specialists. The study area is located in the State of Acre and has four sub-basins: Alto Acre, Rio Xapuri, Xipamanu and Riozinho do Rola. A cartographic survey was conducted, to include the morphometric characteristics of the area and land use and cover features that resulted in the soil-hydrographic zoning of the municipality. Sub-basins Xapuri, Xipamanu and Riozinho do Rôla revealed drainage densities and orders that indicate low drainage efficiency, while Alto Acre presented high drainage orders (ninth order and densities, contrary the geometric indices and drainage densities, and is considered to have efficient drainage. Considerable alterations in permanent preservation areas occur in the municipality of Xapuri, with conversion to less resilient areas highly sensitive to impacts. The soil-hydrographic zoning assists in visualizing the municipality in a land management context through an ecosystem approach and a qualitative view of the possibilities and weaknesses.

  11. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    Science.gov (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  12. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  13. Dispersion of Metals from Abandoned Mines and their Effect on Biota in the Methow River, Okanogan County, Washington: Final Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Dan; Edmonds, Robert

    2003-05-15

    A study of mine-waste contamination effects on Methow River habitat on the eastern slopes of the north Cascade Mountains in Washington state, U.S.A., revealed impacts at ecosystem, community, population, individual, tissue, and cellular levels. Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's, but the mines are now inactive. An above-and-below-mine approach was used to compare potentially impacted to control sites. The concentrations of eleven trace elements (i.e., Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se, and Zn) in Methow River sediments downstream from the abandoned mine sites were higher than background levels. Exposed trout and caddisfly larvae in the Methow River showed reduced growth compared to controls. Samples of liver from juvenile trout and small intestine from exposed caddisfly larvae were examined for evidence of metal accumulation, cytopathological change, and chemical toxicity. Morphological changes that are characteristic of nuclear apoptosis were observed in caddisfly small intestine columnar epithelial and trout liver nuclei where extensive chromatin condensation and margination was observed. Histopathological studies revealed glycogen bodies were present in the cytosol and nuclei, which are indicators of Type IV Glycogen Storage Disease (GSD IV). This suggests food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body resulting in poor growth. Examination of trout hepatocytes by transmission electron microscopy revealed the accumulation of electron dense granules in the mitochondrial matrix. Matrix granules contain mixtures of Cd, Cu, Au, Pb, Ni, and Ti. Contaminated sediments caused adverse biological effects at different levels of biological organization, from the cellular to ecosystem-level responses, even where dissolved metal concentrations in the corresponding surface water met

  14. Wildlife and Wildlife Habitat Loss Assessment Summary at Lookout Point Dam and Reservoir Project, Middle Fork Willamette River, Oregon; 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bedrossian, K.L.; Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Lookout Point Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Seventeen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Lookout Point Project extensively altered or affected 6790 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 724 acres of old-growth conifer forest and 118 acres of riparian habitat. Impacts resulting from the Lookout Point Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, western gray squirrel, red fox, mink, beaver, ruffed grouse, ring-necked pheasant, California quail, spotted owl, and other nongame species. Bald eagle and osprey were benefitted by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Lookout Point Project. Loses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  15. StreamNet; Northwest Aquatic Resource Information Network - Status of Salmon and Steelhead in the Columbia River Basin, 1995 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Duane A.; Beamesderfer, Raymond C. [Oregon Dept. of Fish and Wildlife, Enterprise, OR (United States); Woodard, Bob [Washington Dept. of Fish and Wildlife, Olympia, WA (United States)

    1996-04-01

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project`s objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies.

  16. Effects of the Cabinet Gorge Kokanee Hatchery on Wintering Bald Eagles in the Lower Clark Fork River and Lake Pend, Oreille, Idaho: 1986 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Crenshaw, John G.

    1987-12-01

    The abundance and distribution of bald eagles (Haliaeetus leucocephalus) on the lower Clark Fork River, Lake Pend Oreille, and the upper Pend Oreille River, Idaho, were documented during the winters of 1985--86 and 1986--87. Peak counts of bald eagles in weekly aerial censuses were higher in 1985--86 (274) and 1986--87 (429) than previously recorded in mid-winter surveys. Differences in eagle distribution within and between years were apparently responses to changes in prey availability. Eight bald eagles were captured and equipped with radio transmitters in the winter and spring of 1986. Residencies within the study area averaged 13.9 days in 1985--86 and 58.3 days for the four eagles that returned in 1986-87. The eagles exhibited considerable daily movement throughout the study area. After departing the area, one eagle was later sighted approximately 1185 km to the southwest in northern California. Eagle behavioral activity was recorded at time budget sessions at areas of heavy use. Perching in live trees was the most common behavior observed. 34 refs., 39 figs., 17 tabs.

  17. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Oregon Department of Fish and Wildlife Hatcheries, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs, 25 figs.

  18. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Idaho Department of Fish and Game Hatcheries, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighting 4,853,306 pounds. 2 refs., 25 figs.

  19. Hood River and Pelton Ladder Monitoring and Evaluation Project and Hood River Fish Habitat Project : Annual Progress Report 1999-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-02-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat [contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000.

  20. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  1. The UN System for Environmental-Economic Accounts for Water (SEEA-W and groundwater management: the experience of the Arno River Basin Authority within the PAWA project

    Directory of Open Access Journals (Sweden)

    Bernardo Mazzanti

    2014-09-01

    Full Text Available The Pilot Arno Water Accounts (PAWA project was recently funded under the Call “Preparatory Action on Development of Prevention Activities to Halt Desertification in Europe” of the Directorate- General for the Environment of the European Commission to promote preventive actions to manage water scarcity and drought phenomena and to meet one of the main goals under European environmental legislation: the effective and sustainable management of water resources. The partners involved in the implementation of the PAWA project (ISPRA, Arno River Basin Authority, SEMIDE/EMWIS will carry out a pilot initiative in the Arno River Basin, an area severely affected by water scarcity and droughts phenomena and characterized by water withdrawals and land use changes. In the area a large experience about water balance application was already performed, for example in the context of the Water Framework Directive Common Implementation Strategy. Moving from this knowledge, the objective of the project is the definition of water accounting processing based on the UN System of Environmental Economic Accounts for Water, with the final goal to optimize a list of effective measures to face water scarcity phenomena. By the end of project (March 2015 the PAWA partnership aims at preparing physical water stock accounts, using the best available data resulting from field measurements or models, on a monthly step for the period 1999–201. The quality of each dataset will be assessed; tables, maps and graphs will be produced as outputs of the projects in cooperation with local stakeholders and players of the water sector. Furthermore, water accounts will be used to assess the potential impact of various measures related to water resource efficient exploitation in the most vulnerable sub-basins; their tolerability will be tested during workshops with stakeholders. Finally, water efficiency targets for potential future integration into Arno River Basin Management Plan

  2. Status and Habitat Requirements of the White Sturgeon Populations in the Columbia River Downstream from McNary Dam Volume II; Supplemental Papers and Data Documentation, 1986-1992 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beamesderfer, Raymond C.; Nigro, Anthony A. [Oregon Dept. of Fish and Wildlife, Clackamas, OR (US)

    1995-01-01

    This is the final report for research on white sturgeon Acipenser transmontanus from 1986--92 and conducted by the National Marine Fisheries Service (NMFS), Oregon Department of Fish and Wildlife (ODFW), US Fish and Wildlife Service (USFWS), and Washington Department of Fisheries (WDF). Findings are presented as a series of papers, each detailing objectives, methods, results, and conclusions for a portion of this research. This volume includes supplemental papers which provide background information needed to support results of the primary investigations addressed in Volume 1. This study addresses measure 903(e)(1) of the Northwest Power Planning Council's 1987 Fish and Wildlife Program that calls for ''research to determine the impact of development and operation of the hydropower system on sturgeon in the Columbia River Basin.'' Study objectives correspond to those of the ''White Sturgeon Research Program Implementation Plan'' developed by BPA and approved by the Northwest Power Planning Council in 1985. Work was conducted on the Columbia River from McNary Dam to the estuary.

  3. On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data

    Science.gov (United States)

    Menna, Milena; Poulain, Pierre-Marie; Zodiatis, George; Gertman, Isaac

    The surface currents of the Levantine sub-basin (Mediterranean Sea) are described using 18 years (1992-2010) of drifter data and satellite-derived sea level anomalies. The combination of drifter and satellite data allowed to estimate maps of surface geostrophic circulation and to obtain more accurate pseudo-Eulerian velocity statistics for different time periods. Seasonal and interannual variability of surface currents are investigated with particular focus on the main sub-basin eddies of the eastern Levantine. The mean velocity field depicts the typical patterns of the along-slope and offshore currents and outlines the sub-regions where eddies are generated recurrently (west Egyptian coast, Ierapetra, Mersa-Matruh, south-west of Cyprus, Israel-Lebanon coast, Latakia) or persist steadily (Rhodes Gyre). Highly variable and energetic currents are observed between the Ierapetra and Mersa-Matruh regions, as the result of the interaction of the Mid-Mediterranean Jet meandering in between, and interacting with, the eddies generated by the instability of the coastal current. Seasonal pseudo-Eulerian maps show the current field stronger in summer and weaker in winter, mainly in the western Levantine and in the Cyprus-Syria Passage. The Shikmona Eddy displays a periodic nature with higher intensities during the cold months and an enhanced activity in the period 1998-2005. The Cyprus Eddy has a less periodic nature, characterised by events of high activity and periods in which it dominates as a single enlarged eddy in the southeast Levantine, eventually including the Shikmona Eddy. The Latakia Eddy is mainly cyclonic with higher intensities in summer and fall; occasional weekly or monthly inversions of circulation from cyclonic to anticyclonic are triggered by the interaction between the MMJ and the northward coastal meandering current.

  4. Horizontal degasification and characterization of coals in the Sabinas Sub-basin, Mexico: implications for CBM production

    Energy Technology Data Exchange (ETDEWEB)

    Gentzis, T.; Murray, K.; Klinger, R.; Santillan, M. [CDX Canada Co., Calgary, AB (Canada)

    2006-09-15

    The Sabinas sub-basin in northern Mexico contains gassy coals in the Upper Cretaceous Los Olmos Formation, based on both historical evidence and current desorption testing. The 'Double Seam' coal is present at shallow depth (< 500 m), has high vitrinite content (> 86 vol%), is well-cleated, shows high diffusivity (average tau) value is 56 hours) and has high natural fracture permeability (> 30 mD) in the minesites. The coal averages 2.2 m in thickness but has a high ash content (32 wt%). A tonstein band is present in the middle of the Double Seam, consisting of vitrinite and inertinite embedded in a matrix of fine clays and quartz. Average desorbed gas content of this medium-volatile bituminous coal (Ro{sub max} = 1.30%) is highest in Mine V (Esmeralda Mine at > 9.0 cm{sup 3}/g). Maximum methane adsorption at an equivalent depth of 300 m is 15 cm{sup 3}/g (as-received basisarb). Coal bed methane is mainly methane (98%) with heating value of 38.21 MJ/m{sup 3} (1026 Btu/ft{sup 3}). The coal is under-pressured and reported to be dry, with possibly free gas in the cleat/fracture system and absence of discrete mineralization. In-seam horizontal drilling prior to longwall mining has resulted in the significant reduction of in-situ gas contents and in an increase of mined coal production per shift. The Sabinas sub-basin coals are suitable for a full-scale coal bed methane (CBM) development using in-seam single horizontal and multi-lateral horizontal drilling. Similarities, but also differences, exist between the Sabinas coals in Mexico and the same coals in the Maverick Basin, Texas.

  5. Organic geochemical characterisation of shallow marine Cretaceous formations from Yola Sub-basin, Northern Benue Trough, NE Nigeria

    Science.gov (United States)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Hakimi, Mohammed Hail; Jauro, Aliyu; Adegoke, Adebanji Kayode

    2016-05-01

    The shallow marine shales of the Cretaceous formations namely Yolde, Dukul, Jessu, Sekuliye and Numanha ranging in age from Cenomanian to Coniacian within the Yola Sub-basin in the Northern Benue Trough, northeastern Nigeria were analysed to provide an overview on their hydrocarbon generation potential. This study is based on pyrolysis analysis, total organic carbon content (TOC), extractable organic matter (EOM), biomarker distributions and measured vitrinite reflectance. The present-day TOC contents range between 0.24 and 0.71 wt. % and Hydrogen Index (HI) values between 8.7 and 113 mg HC/g TOC with Type III/IV kerogens. Based on the present-day kerogen typing, the shale sediments are expected to generate mainly gas. Biomarker compositions indicates deposition in a marine environment under suboxic conditions with prevalent contribution of aquatic organic matter and a significant amount of terrigenous organic matter input. Organic matter that is dominated by marine components contains kerogens of Type II and Type II-III. This study shows that the organic matter has been affected by volcanic intrusion and consequently, have reached post-mature stage of oil generation. These higher thermal maturities levels are consistent with the vitrinite reflectance ranging from 0.85 to 2.35 Ro % and high Tmax (440-508 °C) values as supported by biomarker maturity ratios. Based on this study, a high prospect for major gas and minor oil generation potential is anticipated from the shallow marine Cretaceous formations from Yola Sub-basin.

  6. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina. Final report on macroinvertebrate stream assessments for F/H area ETF effluent discharge, July 1987--February 1990

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1991-10-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  7. White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe Resources Management Staff, (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-09-01

    White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of white sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates

  8. 78 FR 21839 - Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA

    Science.gov (United States)

    2013-04-12

    ... River, mile 79.6, Small- house, KY and Black River, mile 41.0, Jonesboro, LA. The Green River bridge was... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY:...

  9. Spatial analysis of plant detritus processing in a Mediterranean River type: the case of the River Tirso Basin, Sardinia, Italy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The river continuum concept represents the most general framework addressing the spatial variation of both structure and function inriver ecosystems.In the Mediterranean ecoregion, summer drought events and dams constitute the main sources of local disturbance to thestructure and functioning of river ecosystems occurring in the river basin.In this study, we analysed patterns of spatial variation of detritusprocessing in a 7th order river of the Mediterranean ecoregion( River Tirso, Sardinia-Italy) and in three 4th order sub-basins which wereexposed to different summer drought pressures.The study was carried out on Phragmites australis and Alnas glutinosa leaf detritus at 31 fieldsites in seasonal field experiment Detritus processing rates were higher for Alnus glutinosa than for Phragmites australis plant detritus.Processing rates of Alnus glutinosa leaves varied among seasons and study sites from 0.006d-1 to 0.189 d- 1 and those of Phragmites australisleaves ranged from 0.0008 d- 1 to 0.102 d- 1 , with the lowest values occurring at sites exposed to summer drought.Seasons and sites accountedfor a significant proportion of such variability.Alder detritus decay rates generally decreased with increasing stream order, while reed detritusdecay rates generally increased on the same spatial gradient.Summer drought events affected these spatial patterns of variation by influencingsignificantly the decay rates of both plant detritus.The comparisons among and within sub-basins showed strong negative influence of summerdrought on detritus processing rates.Similarly, in the entire River Tirso basin decay rates were always lower at disturbed than at undisturbedsites for each stream order; decay rates of reed detritus remained lower at those sites even after the end of the disturbance events, while alderdecay rates recovered rapidly from the summer drought perturbations.The different recovery of the processing rates of the two leaves could alsoexplain the different patterns of

  10. Development of an Effective Transport Media for Juvenile Spring Chinook Salmon to Mitigate Stress and Improve Smolt Survival During Columbia River Fish Hauling Operations, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wedemeyer, Gary A.

    1985-02-01

    Selected transport media consisting of mineral salt additions (Na/sup +/, Cl/sup -/, Ca/sup + +/, PO/sub 4//sup -3/, HCO/sub 3//sup -/, and Mg/sup + +/), mineral salts plus tranquilizing concentrations of tricaine methane sulfonate (MS-222), or MS-222 alone were tested for their ability to mitigate stress and increase smolt survival during single and mixed species hauling of Columbia River spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri). Successful stress mitigation was afforded by several formulations as indicated by protection against life-threatening osmoregulatory and other physiological dysfunctions, and against immediate and delayed hauling mortality. Effects on the seawater survival and growth of smolts hauled in transport media were used as the overall criterion of success. Of the fourteen chemical formulations tested, 10 ppM MS-222 emerged as top-rated in terms of ability to mitigate physiological stress during single and mixed species transport of juvenile spring chinook salmon at hauling densities of 0.5 or 1.0 lb/gallon. Immediate and delayed mortalities from hauling stress were also reduced, but benefits to early marine growth and survival were limited to about the first month in seawater. The two physical factors tested (reduced light intensity and water temperature) were generally less effective than mineral salt additions in mitigating hauling stress, but the degree of protection afforded by reduced light intensity was nevertheless judged to be physiologically beneficial. 36 refs., 1 fig., 19 tabs.

  11. From the Mountains of the Moon to the Grand Renaissance: misinformation, disinformation and, finally, information for cooperation in the Nile River basin

    Science.gov (United States)

    Zaitchik, B. F.; Habib, S.; Anderson, M. C.; Ozdogan, M.

    2012-12-01

    The Nile River basin is shared by 11 nations and approximately 200 million people. Eight of the riparian States are defined as Least Developed Countries by the United Nations, and about 50% of the total basin population lives below the international poverty line. In addition, eight of the eleven countries have experienced internal or external wars in the past 20 years, six are predicted to be water scarce by 2025, and, at present, major water resource development projects are moving forward in the absence of a fully recognized basin-wide water sharing agreement. Nevertheless, the Nile basin presents remarkable opportunities for transboundary water cooperation, and today—notwithstanding significant substantive and perceived disagreements between stakeholders in the basin—this cooperation is beginning to be realized in topics ranging from flood early warning to hydropower optimization to regional food security. This presentation will provide an overview of historic and present challenges and opportunities for transboundary water management in the Nile basin and will present several case studies in which improved hydroclimatic information and communication systems are currently laying the groundwork for advanced cooperation. In this context climate change acts as both stress and motivator. On one hand, non-stationary hydrology is expected to tax water resources in the basin, and it undermines confidence in conventionally formulated water sharing agreements. On the other, non-stationarity is increasingly understood to be an exogenous threat to regional food and water security that will require informed, flexible cooperation between riparian states.

  12. An evaluation of the effect of future climate on runoff in the Dongjiang River basin, South China

    Science.gov (United States)

    Lin, K.; Zhai, W.; Huang, S.; Liu, Z.

    2015-05-01

    The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970-1975, and validated for the period of 1976-1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011-2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966-2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were -6.87%, -6.54%, and -18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966-2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.

  13. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  14. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  15. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  16. Wind River Watershed Restoration : 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2003-02-01

    This report focuses on work conducted in 2000 and 2001 by the U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) as part of the Wind River Watershed Restoration Project. The project started in the early 1990s, and has been funded through the Bonneville Power Administration (BPA) since 1998. The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the Wind River subbasin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. In addition to USGS-CRRL, other BPA-funded entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), and Washington Department of Fish and Wildlife (WDFW). To describe the activities and accomplishments of the USGS-CRRL portion of the project, we partitioned the 2000-2001 annual report into two pieces: Report A and Report B. In Report A, we provide information on flow, temperature, and habitat conditions in the Wind River subbasin. Personnel from CRRL monitored flows at 12 sites in 2000 and 17 sites in 2001. Flow measurements were generally taken every two weeks during June through October, which allowed tracking of the descending limb of the hydrograph in late spring, through the base low flow period in summer, and the start of the ascending limb of the hydrograph in fall. We maintained a large array of water-temperature sites in the Wind River subbasin, including data from 25 thermographs in 2000 and 27 thermographs in 2001. We completed stream reach surveys on 14.0 km in 2000 and 6.1 km in 2001. Our focus for these reach surveys has been on the upper Trout Creek and upper Wind River watersheds, though some reach surveys have occurred in the Panther Creek watershed. Data generated by these reach surveys include stream width, stream gradient, large woody debris frequency, pool frequency, canopy

  17. Color Infrared Orthorectified Photomosaic Leaf-off for New River Gorge National River Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — Orthorectified color infrared ERDAS IMAGINE and MrSID image of New River Gorge National River (final_neri_mosaic.img). Produced from 471 color infrared photos taken...

  18. Impacts of climate change on ecologically relevant river flow characteristics in the Danube river catchment

    Science.gov (United States)

    Stagl, Judith; Hattermann, Fred F.

    2014-05-01

    River flow characteristics reflecting flow seasonality and variability such as low and high flow durations play an important role for aquatic, wetland and riparian ecosystems. Climate change might not only alter long term average flows, but also affect the hydrologic regime on smaller scales. The Indicators of Hydrological Alteration (IHA) statistics (Richter et al. 1996) characterize changes in hydrologic regime by using a suite of ecologically relevant indicators given a daily discharge time series. Eco-hydrological indicators are applied to bridge the communication gap that exists between professionals in the fields of hydrology and ecology. Such indicators can help to synthesize complex hydrological variables into ecologically-meaningful information. For this study the eco-hydrological watershed model SWIM was applied for the whole Danube river catchment using 1224 subbasins. The SWIM model (Soil and Water Integrated Model) is a continuous-time semi-distributed watershed model, which combines hydrological processes, vegetation, erosion and nutrient dynamics at the meso- to macroscale (Krysanova et al. 1998, 2000). As the Danube river basin is climatically heterogeneous, it is characterized by a changing-complex river runoff regime varying from nival regimes in the alpine parts to mainly rain feed regimes in the lowlands. To account for these different river regimes of the Danubian tributaries, the SWIM model was calibrated separately for the major river subbasins. After calibration and validation of the model, this study uses a set of 14 high-resolution climate change projections performed by several state-of-art GCMs and RCMs, all based on the IPCC-SRES-A1B emission scenario, from the ENSEMBLES project (EU FP6). They serve as meteorological drivers for the SWIM model to simulate future daily time series of river discharge under different scenario conditions. The derived hydrologic data series then were statistically analyzed by using selected eco

  19. Tectonic history and structural development of the Zallah-Dur al Abd Sub-basin, western Sirt Basin, Libya

    Science.gov (United States)

    Abdunaser, Khalifa M.; McCaffrey, Ken J. W.

    2015-04-01

    The Zallah-Dur al Abd Sub-basin area lies in the western part of the Sirt Basin of Libya. 2D seismic data covering an area of about 32,000 km² were studied along with the formation tops from 240 wells. We mapped a complex network of normal and probable strike-slip faults, generally striking NNW-SSE that control the asymmetry of the basin. Subordinate NE-SW structures acted as transverse faults controlling local depocentres that segment the Zallah-Dur al Abd Sub-basin. A number of active faults in the intra-basin area have been identified in seismic sections with generally moderate to high dip angles, and displaying evidence for positive and negative flower structures. The bordering extensional fault (the Gedari fault) passes at depth into a moderately SW-dipping structure crossing most of the Upper Mesozoic to Cenozoic stratigraphic section. Thickness variations adjacent to other major faults suggest also an original extensional system where inherited high-angle faults were reactivated throughout this time. A detailed analysis of the available seismic reflection and drill hole data shows that an obliquely rifted, multi-cyclic, NNW-SSE trending basin developed during the complex Upper Mesozoic Cenozoic rearrangement of Mediterranean tectonics. Multiple phases of rifting can be observed in the study area affecting a number of different horizons from Upper Cretaceous to Eocene. In the study area, the basin was initiated as a result of a Tethyan oblique extensional rift system that began in the Early Cretaceous and peaked in the Late Cretaceous. The basin reached its rift maturation phase during the Upper Cretaceous as a result of the continuing extensional tectonics on the marginal bounding NNW-SSE trending normal growth faults. During the Alpine-related tectonic pulses of Middle-Late Eocene the Sirt Basin underwent compression resulted in northward tilting of the basin, causing abrupt subsidence in the north and uplift on the basin southern shoulders, possibly

  20. The velocity structure of a post-spreading volcanic seamount in the Southwest Sub-basin, South China Sea

    Science.gov (United States)

    Zhang, Jie; Li, Jiabiao; Ruan, Aiguo; Yu, Zhiteng; Niu, Xiongwei

    2017-04-01

    Post-spreading magmatism is extremely strong in the South China Sea and it is common feature for the pacific area (e.g. Castillo et al., 2010). Such seamounts formed by the post-spreading magmatism may provide key insights into a unique mechanism of strong magmatism without mantle convection as well as the crustal emplacement (e.g. Baloga et al., 1995; Kipf et al., 2013). We conducted a seismic refraction survey over an axial seamount (Longnan Seamount) in the Southwest Sub-basin, South China Sea in 2010. Results show that the post-spreading axial seamount is mainly formed by an extrusive process. Low upper-crustal velocities observed under the seamount are attributed to volcaniclastic rocks and high-porosity basalts. Velocity models reveal the lack of a large root and a relative high-velocity layer 3 underlying the seamount. The origin of axial seamounts is supposed to be buoyant decompression melting mechanism (Castillo et al., 2010; Meng and Zhang, 2014). This research was granted by the Natural Science Foundation of China (91028006, 91228205), the Scientific Research Fund of the Second Institute of Oceanography, SOA (JG1602) and the National Programme on Global Change and Air-Sea Interaction, SOA (GASI-GEOGE-01). References Castillo, P. R., Clague, D. A., Davis, A. S., et al., 2010. Petrogenesis of Davidson Seamount lavas and its implications for fossil spreading center and intraplate magmatism in the eastern Pacific. Geochemistry, Geophysics, Geosystems, 11, Q02005, doi:10.1029/2009GC002992 Baloga, S., Spudis, P. D. and Guest, J. E., 1995. The dynamics of rapidly emplaced terrestrial lava flows and implications for planetary volcanism. J. Geophys. Res., 100 (B12), 24509-24519. Kipf, A, Hauff, F., Werner, R., et al., 2014. Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism. Gondwana Res., 25 (4), 1660-1679. Meng, L., Zhang, J., 2014. The magmatic activity mechanism of the fossil spreading center in the Southwest sub-basin

  1. Predicting the Hydrologic Response of the Columbia River System to Climate Change

    Science.gov (United States)

    Chegwidden, O.; Hamman, J.; Xiao, M.; Ishottama, F.; Lee, S. Y.; Stumbaugh, M. R.; Mote, P.; Lettenmaier, D. P.; Nijssen, B.

    2014-12-01

    The Columbia River, located in the northwestern United States with headwaters in Canada (Pacific Northwest), is intensely managed for hydropower generation, irrigation, flood control, ecosystem services (particularly salmonids), navigation, and recreation. Effects of anthropogenic climate change already manifest themselves in the Pacific Northwest through reduced winter snow accumulation at lower elevations and earlier spring melt. As the climate warms, the Columbia River, whose flow regime is heavily dependent on seasonal snow melt, is likely to experience significant changes in the timing of its seasonal hydrograph and possibly in total flow volume. We report on a new study co-funded by the Bonneville Power Administration to update and enhance an existing climate change streamflow data set developed by the University of Washington Climate Impacts Group in 2009-2010. Our new study is based on the RCP4.5 and RCP8.5 climate projections from the Coupled Model Intercomparison Project Version 5 (CMIP5). In contrast to earlier studies, we are using a suite of three hydrologic models, the Variable Infiltration Capacity (VIC) model, the Unified Land Model and the Precipitation Runoff Modeling System, each implemented at 1/16 degree (~6 km) over the Pacific Northwest. In addition, we will use multiple statistical downscaling methods based on the output from a subset of 10 CMIP5 global climate models (GCMs). The use of multiple hydrologic models, downscaling methods and GCMs is motivated by the need to assess the impact of methodological choices in the modeling process on projected changes in Columbia River flows. We discuss the implementation of the three hydrologic models as well as our development of a glacier model for VIC, which is intended to better represent the effects of climate change on streamflows from the Columbia River headwaters region. Finally, we report on our application of a new auto-calibration method that uses an inverse routing scheme to develop

  2. Valuing the salmon resource: Columbia River stocks under climate change and fishery enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.M.; Scott, M.J.

    1993-04-01

    This paper represents an update to ongoing multidisciplinary research in the area of climate change and associated regional impacts to fisheries and economies. This work particularly deals with the total value of Columbia River salmon and the idea that fish have capital value, articulated here as spawning value. Earlier work dealt solely with the Yakima River spring chinook fishery`s response to climate change and fishery enhancement programs and the associated direct economic effects (Anderson et al. 1992). We have expanded our modeling attempts to examine similar impacts in the Grande Ronde River subbasin of the Columbia River basin, and added the summer steelhead stock to the analysis. Relatively recent developments and improvements in climate change modeling and fishery modeling enabled us to attempt such an endeavor.

  3. Dams, floodplain land use, and riparian forest conservation in the semiarid Upper Colorado River Basin, USA.

    Science.gov (United States)

    Andersen, Douglas C; Cooper, David J; Northcott, Krista

    2007-09-01

    Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests.

  4. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  5. Seasonal study of contamination by metal in water and sediment in a sub-basin in the southeast of Brazil

    Directory of Open Access Journals (Sweden)

    WAC. Chiba

    Full Text Available The spatial and temporal occurrence of heavy metals (Al, Cd, Pb, Zn, Cr, Co, Cu, Fe, Mn and Ni in water and sediment samples was investigated in a sub-basin in the southeast of Brazil (São Carlos, SP. All samples were analysed using the USEPA adapted metal method and processed in an atomic absorption spectrophotometer. The discriminant analysis demonstrated that there are significant seasonal differences of metal distribution in the water data, but there are no differences to sediment. The basin studied has high levels of contamination by toxic metals in superficial water and sediment. The superficial water, in the rainy season, presented high levels of Cr, Ni, Pb and Cd, while in the dry season it presented high levels of Zn and Ni. The Principal Component Analysis demonstrated that the season has a huge influence on the levels, types and distribution of metals found in water. The source of contamination was probably diffuse, due to products such as batteries and fluorescent lamps, whose dump discharge can contaminate the bodies of water in the region in the rainy season. Due to fires from the harvest of sugar cane, high levels of Zn were found into the environment, in the dry season.

  6. Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate

    Science.gov (United States)

    Nsubuga, F. W. N.; Botai, Joel O.; Olwoch, Jane M.; Rautenbach, C. J. deW; Kalumba, Ahmed M.; Tsela, Philemon; Adeola, Abiodun M.; Sentongo, Ausi A.; Mearns, Kevin F.

    2017-01-01

    Detection of changes in Earth surface features, for example lakes, is important for understanding the relationships between human and natural phenomena in order to manage better the increasingly scarce natural resources. This work presents a procedure of using modified normalised difference water index (MNDWI) to detect fluctuations of lake surface water area and relate it to a changing climate. The study used radiometrically and geometrically rectified Landsat images for 1986, 1995 and 2010 encompassing the Kyoga Basin lakes of Uganda, in order to investigate the changes in surface water area between the respective years. The standard precipitation index (SPI) and drought severity index (DSI) are applied to show the relationship between variability of surface water area and climate parameters. The present analysis reveals that surface water area fluctuation is linked to rainfall variability. In particular, Lake Kyoga sub-basin lakes experienced an increase in surface water area in 2010 compared to 1986. This work has important implications to water resources management for Lake Kyoga and could be vital to water resource managers across Ugandan lakes.

  7. An evaluation of the effect of future climate on runoff in the Dongjiang River basin, South China

    OpenAIRE

    K. Lin; Zhai, W; Huang, S.; Liu, Z.

    2015-01-01

    The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated ...

  8. Multi-Criteria Assessment of Spatial Robust Water Resource Vulnerability Using the TOPSIS Method Coupled with Objective and Subjective Weights in the Han River Basin

    Directory of Open Access Journals (Sweden)

    Eun-Sung Chung

    2016-12-01

    Full Text Available This study developed a multi-criteria approach to spatially assess the robust water resource vulnerability in sub-basins and applied it to the Han River basin. The Intergovernmental Panel on Climate Change (IPCC suggested three factors of vulnerability; namely, exposure, sensitivity and adaptive capacity were used in this study with respect to water quantity and quality. In this study, 16 water quantity indicators and 13 water quality indicators were selected to identify the vulnerability using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS method. Environmental and socioeconomic data were obtained from the national statistics database, and hydrological data were simulated using the calibrated Soil and Water Assessment Tool (SWAT model. Expert surveys and Shannon entropy method were used to determine subjective and objective weights for all indicators, individually. As a result, water quantity-vulnerable sub-basins were associated with high water use and water leakage ratios. Water quality-vulnerable sub-basins were associated with relatively high values of maximum consecutive dry days and heatwave days. The water quantity indices of both weighting methods showed relatively similar spatial distributions, while the distribution of water quality indices was distinct. These results suggest that considering different weighting methods is important for assessing the robust water resource vulnerability of sub-basins.

  9. Using SWAT to Assess the Critical Areas and Nonpoint Source Pollution Reduction Best Management Practices in Lam Takong River Basin, Thailand

    Directory of Open Access Journals (Sweden)

    Netnapa Pongpetch

    2015-01-01

    Full Text Available Hydrological models are essential tools for water resource and nonpoint source pollution management. This study aimed to evaluate critical areas and best management practices (BMPs of sediment and nutrient loads in Lam Takong River basin, Northeastern Thailand, using SWAT (Soil and Water Assessment Tool model. The model was calibrated and validated using daily data of streamflow, sediment, NO3-N and TP in Lam Takong River from 2007-2008 and 2009, respectively. In general, the simulated streamflow and sediment were in reasonable agreement with the measured values with coefficient of determination (R2 and Nash-Sutcliffe model efficiency coefficient (NSE greater than 0.50 and the percent bias (PBIAS less than 25%. Additionally, nutrient loads showed a fair relationship between observation and simulation with R2 values more than 0.6 and PBIAS values less than 25%. From simulation, September was the month with the highest sediment, NO3-N and TP yields while January and December were the lowest months. From the model, SWAT identified 1 severe and 1 high soil erosion subbasins. Two subbasins were classified into medium loading for NO3-N. However, 9 subbasins were classified into high loading rate of TP. For BMPs, the 30-mwide filter strip was the best scenario reducing 100% of both sediment and TP, and 97.27% of NO3-N. These results could be a useful tool for water resources managements and soil conservation planning in Lam Takong River basin.

  10. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...

  11. Ground-Water Quality Data in the Kern County Subbasin Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,000 square-mile Kern County Subbasin study unit (KERN) was investigated from January to March, 2006, as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The Kern County Subbasin study was designed to provide a spatially unbiased assessment of raw (untreated) ground-water quality within KERN, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 50 wells within the San Joaquin Valley portion of Kern County. Forty-seven of the wells were selected using a randomized grid-based method to provide a statistical representation of the ground-water resources within the study unit. Three additional wells were sampled to aid in the evaluation of changes in water chemistry along regional ground-water flow paths. The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon) and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and laboratory matrix spikes) were collected and analyzed at approximately 10 percent of

  12. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    Science.gov (United States)

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data

  13. Hydrochemical evaluation and identification of geochemical processes in the shallow and deep wells in the Ramganga Sub-Basin, India.

    Science.gov (United States)

    Rajmohan, Natarajan; Patel, Neelam; Singh, Gaurav; Amarasinghe, Upali A

    2017-07-26

    Groundwater samples were collected from 44 wells in the Ramganga Sub-Basin (RSB), India, and analysed for major ions, nutrients and trace metals. The primary goal of this study is to evaluate the hydrochemistry and to identify the geochemical processes that govern the water chemistry in the shallow and deep tube wells in the study area using geochemical methods. The knowledge of changes in hydrochemistry of the aquifers is important for both groundwater recharge and use in the region. This study found that there are substantial differences of water chemistry between shallow and deep wells. In the shallow wells, the average concentrations of total dissolved solid (TDS), Na, K, Ca, Mg, HCO3, Cl, SO4, NO3, PO4, F, Cu, Mn, Fe and Cr are twofold higher than the deep wells. The concentrations of dissolved silica in the groundwater do not vary with the depth, which implies that the variation in the water chemistry is not due to mineral dissolution alone. Major ion ratios and saturation indices suggest that the water chemistry is predominantly controlled by dissolution of carbonate minerals, silicate weathering and ion exchange reactions. Thermodynamic evaluation (ion activity ratios and stability filed diagrams) indicates that the kaolinite and gibbsite controlled the water chemistry in the both shallow and deep wells. In addition, the groundwater chemistry in the shallow wells is affected by the vertical infiltration of contaminated water from surface contamination sources and nitrification process. In the deep wells, absence of NO3 and low concentrations of Cl, SO4, PO4 and F imply the role of regional flow and denitrification in the groundwater. Results concluded that proper management plan is necessary to protect the shallow aquifer in the RSB since shallow aquifer pumping is less expensive than the deeper one.

  14. Assessing and managing water scarcity within the Nile River Transboundary Basin

    Science.gov (United States)

    Butts, M. B.; Wendi, D.; Jessen, O. Z.; Riegels, N. D.

    2012-04-01

    The Nile Basin is the main source of water in the North Eastern Region of Africa and is perhaps one of the most critical river basins in Africa as the riparian countries constitute 40% of the population on the continent but only 10% of the area. This resource is under considerable stress with rising levels of water scarcity, high population growth, watershed degradation, and loss of environmental services. The potential impacts of climate change may significantly exacerbate this situation as the water resources in the Nile Basin are critically sensitive to climate change (Conway, Hanson, Doherty, & Persechino, 2007). The motivation for this study is an assessment of climate change impacts and adaptation potential for floods and droughts within the UNEP project "Adapting to climate change induced water stress in the Nile River Basin", supported by SIDA. This project is being carried out as collaboration between DHI, the UK Met Office, and the Nile Basin Initiative (NBI). The Nile Basin exhibits highly diverse climatological and hydrological characteristics. Thus climate change impacts and adaptive capacity must be addressed at both regional and sub-basin scales. While the main focus of the project is the regional scale, sub-basin scale modelling is required to reflect variability within the basin. One of the major challenges in addressing this variability is the scarcity of data. This paper presents an initial screening modelling study of the water balance of the Nile Basin along with estimates of expected future impacts of climate change on the water balance. This initial study is focussed on the Ethiopian Highlands and the Lake Victoria regions, where the impact of climate change on rainfall is important. A robust sub-basin based monthly water balance model is developed and applied to selected sub-basins. The models were developed and calibrated using publicly available data. One of the major challenges in addressing this variability within the basin is the

  15. Final Environmental Assessment of Red River Establishment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — No adverse biological impacts are anticipated and the public level of sportfishing, hunting, and wildlife observation is compatible with the scope and purpose of the...

  16. Geometry of River Networks; 1, Scaling, Fluctuations, and Deviations

    CERN Document Server

    Dodds, P S; Dodds, Peter Sheridan; Rothman, Daniel H.

    2000-01-01

    This article is the first in a series of three papers investigating the detailed geometry of river networks. Large-scale river networks mark an important class of two-dimensional branching networks, being not only of intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling laws are uniformly observed. Reported values of scaling exponents vary suggesting that no unique set of scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a fuller description of branching network structure, we report here a theoretical and empirical study of fluctuations about and deviations from scaling. We examine data for continent-scale river networks such as the Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We center our investigations on the scaling of the length of sub-basin's dominant stream with its area, a characterization of basin shape known as Hack's law. We gene...

  17. Hydrologic Simulations Driven by Satellite Rainfall to Study the Hydroelectric Development Impacts on River Flow

    Directory of Open Access Journals (Sweden)

    Tuan B. Le

    2014-11-01

    Full Text Available This study assesses the impact of hydroelectric dams on the discharge and total suspended solids (TSS concentration in the Huong River basin in Vietnam. The analysis is based on hydrologic and sediment transport simulations by the Soil and Water Assessment Tool (SWAT model driven by the Tropical Rainfall Measuring Mission (TRMM 3B42V6 rainfall data, from January 2003 through December 2010. An upstream sub-basin not affected by the hydroelectric dams was used for model calibration. The calibration results indicate good agreement between simulated and observed daily data (0.67 Nash-Sutcliffe efficiency, 0.82 Pearson correlation coefficient. The calibrated model for discharge and TSS simulation is then applied on another major sub-basin and then the whole Huong River basin. The simulation results indicate that dam operation in 2010 decreased downstream discharge during the rainy season by about 35% and augmented it during the dry season by about 226%. The downstream TSS concentration has decreased due to the dam operation but the total sediment loading increased during the dry season and decreased during the rainy season. On average, the dam construction and operation affected the pattern of discharge more than that of the sediment loading. Results indicate that SWAT, driven by remotely sensed inputs, can reasonably simulate discharge and water quality in ungauged or poorly gauged river basins and can be very useful for water resources assessment and climate change impact studies in such basins.

  18. Dams, floodplain land use, and riparian forest conservation in the semiarid Upper Colorado River Basin, USA

    Science.gov (United States)

    Andersen, D.C.; Cooper, D.J.; Northcott, K.

    2007-01-01

    Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (???5% cover), and stands with >50% canopy cover occupied Springer Science+Business Media, LLC.

  19. Reducing the basin vulnerability by land management practices under past and future climate: a case study of the Nam Ou River Basin, Lao PDR

    Science.gov (United States)

    Maharjan, M.; Babel, M. S.; Maskey, S.

    2014-08-01

    This research evaluates different land management practices for the Nam Ou River Basin in Northern Laos for reducing vulnerability of the basin due to erosion and sediment yield under existing and future climate conditions. We use climate projection data (precipitation and temperature) from three general circulation models (GCMs) for three greenhouse gas emission scenarios (GHGES), namely B1, A1B and A2 and three future periods, namely 2011-2030, 2046-2065 and 2080-2099. These large resolution GCM data are downscaled using the Long Ashton Research Station-Weather Generator (LARS-WG). The Soil and Water Assessment Tool (SWAT), which is a process based hydrological model, is used to simulate discharge and sediment yield and a threshold value of annual sediment yield is applied to identify vulnerable sub-basins. Results show that the change in the annual precipitation is expected to be between -7.60 to 2.64% in 2011-2030, -8.98 to 11.85% in 2046-2065, and -11.04 to 25.84% in 2080-2099. In the meantime, the changes in mean monthly temperature vary from 0.3 to 1.3 °C in the 2011-2030, 1.3 to 2.9 °C in the 2046-2065 and 1.9 to 4.9 °C in the 2080-2099. Five sub-basins are identified vulnerable (critical) under the current climate. Our results show that terracing is the most effective land management practice to reduce sediment yield in these sub-basins followed by strip-cropping and filter strip. Appropriate land management practices applied under future climate scenarios show significant reduction in sediment yield (i.e. up to the tolerance limit) except for some sub-basins. In these exceptional sub-basins, designing an optimum combination of management practices is essential to reduce the vulnerability of the basin.

  20. Soil and water losses in eucalyptus plantation and natural forest and determination of the USLE factors at a pilot sub-basin in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Bárbara Pereira Christofaro Silva

    Full Text Available ABSTRACT Monitoring water erosion and the factors that control soil and water loss are essential for soil conservation planning. The objective of this study was to evaluate soil and water losses by water erosion under natural rainfall in eucalyptus plantations established in 2001 (EF2, and 2004 (EF1, native forest (NF and bare soil (BS, during the period of 2007 to 2012; and to determine the USLE factors: rain erosivity (R, erodibility (K of a Red Argisol and the cover-management factor (C for EF1, EF2 and NF at a pilot sub-basin, in Eldorado do Sul, RS, Brazil. The R factor was estimated by the EI30 index, using rainfall data from a gauging station located at the sub-basin. The soil and water losses were monitored in erosion plots, providing consistent data for the estimation of the K and C factors. The sub-basin presented an average erosivity of 4,228.52 MJ mm ha-1 h-1 yr-1. The average annual soil losses em EF1 and EF2 (0.81 e 0.12 Mg ha-1 year-1, respectively were below of the limit of tolerance, 12.9 Mg ha-1 year-1. The percentage values of water loss relating to the total rainfall decreased annually, approaching the values observed at the NF. From the 5th year on after the implantation of the eucalyptus systems, soil losses values were similar to the ones from NF. The erodibility of the Red Argisol was of 0.0026 Mg ha h ha-1 MJ-1mm-1 and the C factor presented values of 0.121, 0.016 and 0.015 for EF1, EF2 and NF, respectively.

  1. Meso-Cenozoic thermal-rheological evolution in Jiyang sub-basin, Bohai Bay Basin and its implication for basin extension revealed by numerical modelling

    Science.gov (United States)

    Li, Lu; Qiu, Nansheng; Xu, Wei

    2016-04-01

    Jiyang sub-basin is an oil-rich depression located in the southeast of Bohai Bay Basin, which is one of the most important hydrocarbon area in east of China. The thermal-rheological structure of the lithosphere can explain the dynamics evolution processes of basins, continental margins and orogenic belts, which directly reflects the characteristics of the lithosphere geodynamics. Nevertheless it is poorly to understand the evolution of lithospheric thermal-rheological structure in Jiyang sub-basin and its implication for basin extension. In this study, two dimensional numerical modelling is applied to calculate the paleo-temperature field and the thermo-lithospheric structure, which are used to estimate the evolution of lithospheric thermal-rheological structure. The results of study show that in Mesozoic the lithosphere was of relative rigidity and stable, as featured by large thickness and strength whereas after late Cretaceous the lithospheric strength decreased rapidly. The analysis of thermal-rheological properties shows that the lithospheric thermo-lithospheric structure is sandwiched-like with two ductile layers and two brittle layers. The upper crust is usually brittle. The brittle layers appear at outer 20km of the crust, below 20km ductile deformation predominates. There is also a 10km brittle layer on the top of the upper mantle. The integrated lithospheric yield strength is about 1.3-4.5×1012N/m, showing a weak lithosphere which may support the idea that the extension achieved by the ductile flow below the brittle layers. Keywords: lithospheric thermal-rheological structure; Jiyang sub-basin; Numerical modeling

  2. Petroleum geology of the Zhu-1 depression, Pearl River Mouth Basin, People's Republic of China

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, C.L.; Huizinga, B.J.; Lomando, A.J. (Chevron Overseas Petroleum Inc., San Ramon, CA (USA))

    1990-05-01

    The Pearl River Mouth basin, located in the South China Sea between Hainan Island and Taiwan has been the focus of an intense exploration effort during the l980s. In 1979 the international oil industry, acquired over 60,000 km of seismic, gravity, and magnetic data covering an area of approximately 240,000 km{sup 2}. Three major subbasins, Zhu-1, Zhu-2, and Zhu-3 were defined. Chevron in partnership with Texaco and AGIP (ACT group), concentrated their effort on the Zhu-1 depression which was interpreted to contain as much as 7,800 m of sedimentary section. This subbasin, bounded by the Wansha and Donsha massifs to the north and south, is the most inboard of the three depressions, thereby possibly prolonging anoxic lacustrine conditions prior to the Neogene marine incursion. Additionally, the Zhu- 1 depression should have directly received Miocene sediment potentially supplying the subbasin with high-quality reservoirs. Within the Zhu-1 depression, the ACT group focused in on Block 16/08, which covered the deepest part of the Zhu-1 depression. The block was awarded to the consortium in January 1983. Structuring within the block ranges from Paleogene tensional block faulting created during the early formation of the overall Pearl River Mouth basin to draping over basement highs and carbonate buildups during the Neogene. The Pearl River Mouth basin exhibits classic rift basin geometry with early nonmarine continental fluvial/lacustrine deposition (Zhuhai Formation) during the Oligocene and capped by a lower Miocene marine incursion (Zhu Jiang Formation). Integrated interpretations, exploration drilling, and constant refinement of the geological model led to the discovery of two oil fields, Huizhou/21-1 and Huizhou/26-1, both of which are currently under development and will represent the first commercial oil production from the entire Pearl River Mouth basin.

  3. Tackling Complexity: Understanding the Food-Energy-Environment Nexus in Ethiopia’s Lake Tana Sub-basin

    Directory of Open Access Journals (Sweden)

    Louise Karlberg

    2015-02-01

    Full Text Available Ethiopia has embarked upon a rapid growth and development trajectory aiming to become a middle-income country by 2025. To achieve this goal, an agricultural development led industrialization strategy is being implemented which aims to intensify and transform agriculture, thereby boosting yields and, subsequently, economic returns. At the same time, the energy use which currently consists of more than 90% traditional biomass use is shifting towards increasing electricity production predominantly from large-scale hydropower plants, with the aim to improve access to modern energy sources. While the targets are commendable it is not clear that either all direct impacts or potential conflicts between goals have been considered. In this paper we evaluate and compare the impacts of alternative development trajectories pertaining to agriculture, energy and environment for a case-study location, the Lake Tana Subbasin, with a focus on current national plans and accounting for cross-sector interlinkages and competing resource use: the food-energy-environment nexus. Applying a nexus toolkit (WEAP and LEAP in participatory scenario development we compare and evaluate three different future scenarios. We conclude that the two processes – agricultural transformation and energy transition – are interdependent and could be partly competitive. As agriculture becomes increasingly intensified, it relies on more energy. At the same time, the energy system will, at least in the foreseeable future, continue to be largely supported by biomass, partly originating from croplands. Two outstanding dilemmas pertaining to resources scarcity were identified. Water needed for energy and agricultural production, and to sustain ecosystem services, sometimes exceeds water availability. Moreover, the region seems to be hitting a biomass ceiling where the annual increments in biomass from all terrestrial ecosystems are in the same order of magnitude as biomass needs for food

  4. Hydrogeology and geochemistry of low-permeability oil-shales - Case study from HaShfela sub-basin, Israel

    Science.gov (United States)

    Burg, Avihu; Gersman, Ronen

    2016-09-01

    Low permeability rocks are of great importance given their potential role in protecting underlying aquifers from surface and buried contaminants. Nevertheless, only limited data for these rocks is available. New appraisal wells drilled into the oil shale unit (OSU) of the Mt. Scopus Group in the HaShfela sub-basin, Central Israel, provided a one-time opportunity for detailed study of the hydrogeology and geochemistry of this very low permeability unit. Methods used include: slug tests, electrical logs, televiewer imaging, porosity and permeability measurements on core samples, chemical analyses of the rock column and groundwater analyses. Slug tests yielded primary indication to the low permeability of the OSU despite its high porosity (30-40%). Hydraulic conductivities as low as 10-10-10-12 m/s were calculated, using both the Hvorslev and Cooper-Bredehoeft-Papadopulos decoding methods. These low conductivities were confirmed by direct measurements of permeability in cores, and from calculations based on the Kozeny-Carman approach. Storativity was found to be 1 · 10-6 and specific storage - 3.8 · 10-9 m-1. Nevertheless, the very limited water flow in the OSU is argued to be driven gravitationally. The extremely slow recovery rates as well as the independent recovery of two adjacent wells, despite their initial large head difference of 214 m, indicate that the natural fractures are tight and are impermeable due to the confining stress at depth. Laboratory measured permeability is similar or even higher than the field-measured values, thereby confirming that fractures and bedding planes do not form continuous flow paths. The vertical permeability along the OSU is highly variable, implying hydraulic stratification and extremely low vertical hydraulic conductivity. The high salinity of the groundwater (6300-8000 mgCl/L) within the OSU and its chemical and isotopic compositions are explained by the limited water flow, suggesting long residence time of the water

  5. Massachusetts Nested Subbasins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Impervious surfaces such as paved roads, parking lots, and building roofs can affect the natural streamflow patterns and ecosystems of nearby streams. This data set...

  6. Bayesian Maximum Entropy space/time estimation of surface water chloride in Maryland using river distances.

    Science.gov (United States)

    Jat, Prahlad; Serre, Marc L

    2016-12-01

    Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R(2) by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles.

  7. Hydrogeology and numerical simulation of the unconsolidated glacial aquifer in the Pootatuck River Basin, Newtown, Connecticut

    Science.gov (United States)

    Carlson, Carl S.; Mondazzi, Remo A.; Bjerklie, David M.; Brown, Craig J.

    2010-01-01

    A study of the groundwater and stream-aquifer interaction in the Pootatuck River Basin, Newtown, Connecticut, was conducted to analyze the effect of production wells on the groundwater levels and streamflow in the Pootatuck River as part of a cooperative program between the U.S. Geological Survey and Newtown, Connecticut. This study will help address concerns about the increasing competition for water for human uses and protection of aquatic habitat. The groundwater-flow model developed in the study was designed for use as a tool to assist planners in assessing the effects of potential future development, which will change the amount and distribution of recharge available to the groundwater system. Several different techniques were used to investigate the interconnection between the stream and the aquifer. Temperature, groundwater levels, stream stage, and stable-isotope data collected during aquifer tests at the principal production wells in the Pootatuck River Basin, as well as groundwater-flow simulations of the system, indicate that more than half of the water pumped from the wells comes from the Pootatuck River. This finding potentially has a large effect on approaches for protecting the water quality of the pumped water. Increases in the amount of impervious surface from future development will reduce and redistribute recharge to the groundwater system. The simulation of future development scenarios showed a decrease in the simulated base flow in the main stem of the Pootatuck River and in all of the 26 simulated subbasins, with some of the subbasins showing a decrease of more than 20 percent when new development had 85 percent impervious area. The groundwater-flow model and particle tracking were used to determine areas that contribute recharge to the five production wells available for use in the Pootatuck River Basin. These areas included narrow portions of the aquifer that extended beyond the immediate upgradient areas, probably because of deeper

  8. Carbon dioxide and methane emissions from the Yukon River system

    Science.gov (United States)

    Striegl, Rob; Dornblaser, Mark M.; McDonald, Cory P.; Rover, Jennifer R.; Stets, Edward G.

    2012-01-01

    Carbon dioxide (CO2) and methane (CH4) emissions are important, but poorly quantified, components of riverine carbon (C) budgets. This is largely because the data needed for gas flux calculations are sparse and are spatially and temporally variable. Additionally, the importance of C gas emissions relative to lateral C exports is not well known because gaseous and aqueous fluxes are not commonly measured on the same rivers. We couple measurements of aqueous CO2 and CH4 partial pressures (pCO2, pCH4) and flux across the water-air interface with gas transfer models to calculate subbasin distributions of gas flux density. We then combine those flux densities with remote and direct observations of stream and river water surface area and ice duration, to calculate C gas emissions from flowing waters throughout the Yukon River basin. CO2emissions were 7.68 Tg C yr−1 (95% CI: 5.84 −10.46), averaging 750 g C m−2 yr−1 normalized to water surface area, and 9.0 g C m−2 yr−1 normalized to river basin area. River CH4 emissions totaled 55 Gg C yr−1 or 0.7% of the total mass of C emitted as CO2 plus CH4 and ∼6.4% of their combined radiative forcing. When combined with lateral inorganic plus organic C exports to below head of tide, C gas emissions comprised 50% of total C exported by the Yukon River and its tributaries. River CO2 and CH4 derive from multiple sources, including groundwater, surface water runoff, carbonate equilibrium reactions, and benthic and water column microbial processing of organic C. The exact role of each of these processes is not yet quantified in the overall river C budget.

  9. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    River nomads is a movie about people on the move. The documentary film explores the lifestyle of a group of nomadic fishermen whose mobility has been the recipe of success and troubles. Engaged in trade and travel, twice a year the river nomads form impressive convoys of majestic pirogues and set...... and liberated lifestyle and the breath-taking landscapes and vistas offered by the Niger River. River Nomads is also a personal account of the Kebbawa’s way of life and their current struggles as nomadic folk living in a world divided by borders and ruled by bureaucrats....

  10. Reproduction of the fish community of Passa Cinco stream, Corumbataí River sub-basin, São Paulo State, southeastern Brazil.

    Science.gov (United States)

    Rondineli, G R; Braga, F M S

    2010-02-01

    The aim of this work was to evaluate the reproduction (verifying if there was reproductive activity and, if so, with what intensity) of the most abundant species of the fish community in Passa Cinco stream, in relation to the dry and wet season periods and to the longitudinal gradient, through the application of the reproductive intensity index (RII). The sample collection was carried out during one year with six samplings (May, July, September and November 2005, and January and March 2006) in five different points of Passa Cinco stream, contemplating sites of orders two to six. The following fishery equipment was used: a sieve, electric fishery equipment, gill nets and fish-traps. The values of the reproductive intensity index for the dry period were 2.86 and for the wet season 3.17, which indicates the wet season (November to March) as the period when most of the species reproduced. The values of the index for collection point were: 0.78 for site 1, 3.56 for site 2 and 2.89 for site 3. Site 2, which presented the highest value, was the main reproduction place for most of the species. The adults' prevalence in the analysed species suggests, in an isolated way, that those species use the system as a reproduction area. However, when that information was crossed with the values of RII, when intermediate values were considered, it is possible to state that the system is used by the species as much as a reproduction area as a feeding area.

  11. Population biology of Trichomycterus sp. (Siluriformes, Trichomycteridae in Passa Cinco stream, Corumbataí River sub-basin, São Paulo State, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    GR. Rondineli

    Full Text Available The aim of this work was to characterise the population of Trichomycterus sp. in Passa Cinco stream, regarding length structure, sex ratio, diet and reproductive aspects, in accordance with drought and rainy season periods and longitudinal gradient, as well as to analyse its corporal condition in a temporal dimension. Six samplings were accomplished with the use of electric fishing equipment in three different sites in Passa Cinco stream, contemplating sites of order two, three and four, during the months of May, July, September and November of 2005; and January and March of 2006. Three hundred and forty one individuals were captured, composed of 203 males, 99 females and 39 immatures. The smallest captured individual, an immature, presented 28 mm of standard length and the largest, a male, 85 mm. There was not significant variation in repletion degree and accumulated fat in the visceral cavity of the individuals analysed during the considered periods. Eleven different food items were found in the stomach contents. Considering the whole sampling period, immature Diptera was a preferential item and other items were found as occasionally ingested. Spearman and Friedman tests did not find significant differences in the diet of Trichomycterus sp. in the periods and sampling sites, respectively. The average of absolute fecundity was of 73 oocytes, and the parceled type of spawning was performed. Both males and females of Trichomycterus sp. presented significant differences in their corporal conditions in the considered periods, and in the rainy season, these fishes were in better condition.

  12. Water Governance Decentralisation and River Basin Management Reforms in Hierarchical Systems: Do They Work for Water Treatment Policy in Mexico’s Tlaxcala Atoyac Sub-Basin?

    NARCIS (Netherlands)

    Casiano Flores, Cesar Augusto; Vikolainen, Vera; Bressers, Johannes T.A.

    2016-01-01

    In the last decades, policy reforms, new instruments development, and economic resources investment have taken place in water sanitation in Mexico; however, the intended goals have not been accomplished. The percentage of treated wastewater as intended in the last two federal water plans has not bee

  13. Water Governance Decentralisation and River Basin Management Reforms in Hierarchical Systems: Do They Work for Water Treatment Policy in Mexico’s Tlaxcala Atoyac Sub-Basin?

    NARCIS (Netherlands)

    Casiano Flores, Cesar Augusto; Vikolainen, Vera; Bressers, Johannes T.A.

    2016-01-01

    In the last decades, policy reforms, new instruments development, and economic resources investment have taken place in water sanitation in Mexico; however, the intended goals have not been accomplished. The percentage of treated wastewater as intended in the last two federal water plans has not

  14. Water Governance Decentralisation and River Basin Management Reforms in Hierarchical Systems: Do They Work for Water Treatment Policy in Mexico’s Tlaxcala Atoyac Sub-Basin?

    NARCIS (Netherlands)

    Casano Flores, Cesar; Vikolainen, Vera; Bressers, Hans

    2016-01-01

    In the last decades, policy reforms, new instruments development, and economic resources investment have taken place in water sanitation in Mexico; however, the intended goals have not been accomplished. The percentage of treated wastewater as intended in the last two federal water plans has not bee

  15. Stock Summary Reports for Columbia River Anadromous Salmonids, Volume IV; Washington Subbasin Above McNary Dam, 1992 CIS Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hymer, Joe (Washington Department of Fishereis, Battleground, WA); Wastel, Mike (Washington Department of Wildlife, Olympia, WA); Hatch, Keith (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    1993-05-01

    An essential component of the effort to rebuild the Columbia Basin's anadromous fish resources is that available information and experience be organized and shared among numerous organizations and individuals. Past experience and knowledge must form the basis for actions into the future. Much of this knowledge exists only in unpublished form in agency and individual files. Even that information which is published in the form of technical and contract reports receives only limited distribution and is often out of print and unavailable after a few years. Only a small fraction of the basin's collective knowledge is captured in permanent and readily available databases (such as the Northwest Environmental Database) or in recognized journals. State, tribal, and federal fishery managers have recognized these information management problems and have committed to a program, the Coordinated Information System Project, to capture and share more easily the core data and other information upon which management decisions are based. That project has completed scoping and identification of key information needs and development of a project plan. Work performed under the CIS project will be coordinated with and extend information contained in the Northwest Environmental Database. Construction of prototype systems will begin in Phase 3. This report is one in a series of seven describing the results of the Coordinated Information System scoping and needs identification phase. A brief description of each of these reports is given.

  16. Stock Summary Reports for Columbia River Anadromous Salmonids, Volume III; Washington Subbasin Below McNary Dam, 1992 CIS Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, Keith (Columbia River Inter-Tribal Fish Commission, Portland, OR); Hymer, Joe (Washington Department of Fisheries, Battleground, WA); Wastel, Mike (Washington Department of Wildlife, Olympia, WA)

    1993-05-01

    An essential component of the effort to rebuild the Columbia Basin's anadromous fish resources is that available information and experience be organized and shared among numerous organizations and individuals. Past experience and knowledge must form the basis for actions into the future. Much of this knowledge exists only in unpublished form in agency and individual files. Even that information which is published in the form of technical and contract reports receives only limited distribution and is often out of print and unavailable after a few years. Only a small fraction of the basin's collective knowledge is captured in permanent and readily available databases (such as the Northwest Environmental Database) or in recognized journals. State, tribal, and federal fishery managers have recognized these information management problems and have committed to a program, the Coordinated Information System Project, to capture and share more easily the core data and other information upon which management decisions are based. That project has completed scoping and identification of key information needs and development of a project plan. Work performed under the CIS project will be coordinated with and extend information contained in the Northwest Environmental Database. Construction of prototype systems will begin in Phase 3. This report is one in a series of seven describing the results of the Coordinated Information System scoping and needs identification phase. A brief description of each of these reports is given.

  17. The role of rifting in the development of the continental margins of the southwest subbasin, South China Sea: Insights from an OBS experiment

    Science.gov (United States)

    Lü, Chuanchuan; Hao, Tianyao; Lin, Jian; Qiu, Xuelin

    2017-06-01

    The continental margins of the southwest subbasin in the South China Sea mark a unique transition from multi-stages magma-poor continental rifting to seafloor spreading. We used reflection and refraction profiles across the margins to investigate the rifting process of the crust. Combining with the other seismic profiles acquired earlier, we focused on the comparative geological interpretation from the result of multichannel seismic analysis and wide-angle seismic tomography. Our result provides the evidence of upper crustal layer with abundant fractures below the acoustic basement with a P-wave velocity from 4.0 to 5.5 km s-1. It indicates extensive deformation of the brittle crust during the continental rifting and can make a good explanation for the observed extension discrepancy in the rift margins of the South China Sea. The seismic chronostratigraphic result shows the possibility of the intra-continental extension center stayed focused for quite a long time in Eocene. Additionally, our evidence suggested that continental margin of the southwest subbasin had experienced at least three rifting stages and the existence of the rigid blocks is an appropriate explanation to the asymmetric rifting of the South China Sea.

  18. MACROSCOPIC RIVERS

    NARCIS (Netherlands)

    VANDENBERG, IP

    1991-01-01

    We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the

  19. Updated streamflow reconstructions for the Upper Colorado River Basin

    Science.gov (United States)

    Woodhouse, C.A.; Gray, S.T.; Meko, D.M.

    2006-01-01

    Updated proxy reconstructions of water year (October-September) streamflow for four key gauges in the Upper Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in previous efforts. Reconstructed gauges include the Green River at Green River, Utah; Colorado near Cisco, Utah; San Juan near Bluff, Utah; and Colorado at Lees Ferry, Arizona. The reconstructions explain 72-81% of the variance in the gauge records, and results are robust across several reconstruction approaches. Time series plots as well as results of cross-spectral analysis indicate strong spatial coherence in runoff variations across the subbasins. The Lees Ferry reconstruction suggests a higher long-term mean than previous reconstructions but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in the past 5 centuries and that droughts more severe than any 20th to 21st century event occurred in the past. Copyright 2006 by the American Geophysical Union.

  20. Revised Master Plan for the Hood River Production Program, Technical Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon Department of Fish and Wildlife; Confederated Tribes of the Warm Springs Reservation

    2008-04-28

    The Hood River Production Program (HRPP) is a Bonneville Power Administration (BPA) funded program initiated as a mitigation measure for Columbia River hydrosystem effects on anadromous fish. The HRPP began in the early 1990s with the release of spring Chinook and winter steelhead smolts into the basin. Prior to implementation, co-managers, including the Confederated Tribes of the Warm Springs Reservation and the Oregon Department of Fish and Wildlife drafted the Hood River Production Master Plan (O'Toole and ODFW 1991a; O'Toole and ODFW 1991b) and the Pelton Ladder Master Plan (Smith and CTWSR 1991). Both documents were completed in 1991 and subsequently approved by the Council in 1992 and authorized through a BPA-led Environmental Impact Statement in 1996. In 2003, a 10-year programmatic review was conducted for BPA-funded programs in the Hood River (Underwood et al. 2003). The primary objective of the HRPP Review (Review) was to determine if program goals were being met, and if modifications to program activities would be necessary in order to meet or revise program goals. In 2003, an agreement was signed between PacifiCorp and resource managers to remove the Powerdale Dam (RM 10) and associated adult trapping facility by 2010. The HRPP program has been dependant on the adult trap to collect broodstock for the hatchery programs; therefore, upon the dam's removal, some sort of replacement for the trap would be needed to continue the HRPP. At the same time the Hood River Subbasin Plan (Coccoli 2004) was being written and prompted the co-managers to considered future direction of the program. This included revising the numerical adult fish objectives based on the assimilated data and output from several models run on the Hood River system. In response to the Review as well as the Subbasin Plan, and intensive monitoring and evaluation of the current program, the HRPP co-managers determined the spring Chinook program was not achieving the HRPP

  1. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  2. Research on the river function regionalization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objectives, principles, classification system, zoning method and procedure of river function region-alization were investigated systematically based on the present status of modern river regulation and function requirement. Considering the ecosystem continuity and river function integrality, a river is suggested to be divided into five function zones: ecological protection zone, habitat restoration zone, exploitation and utilization zone, buffer zone,and transition zone, based on the developed intensity and the function characteristics of the river. In this paper, not only the five function zones were described qualitatively, but also the quantitative examination method on how to identify their function zone types was given. A double-criterion partitioning scheme was proposed according to the functional zoning diagram constructed by the evaluation of the social and ecological function of rivers. Finally, the procedures of river function regionalization were shown.

  3. Clackamas/Hood River Habitat Enhancement Project; Implementation Plan, 1988-1992 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Medel, Ron; Hohler, David B. (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR); MacDonald, Ken (Mount Hood National Forest, Hood River Ranger District, Parkdale, OR)

    1988-01-01

    An Implementation Plan and Statement of Work is provided for high priority work in the Clackamas. Hood River and Fifteenmile sub-basins. These documents describe fish habitat improvement opportunities that can be implemented by the 1991 deadline established by the Northwest Power Planning Council. The Clackamas/Hood River Enhancement Program is an on-going project initiated in 1984. It is being cooperatively funded by the Bonneville Power Administration and the Wt. Hood National Forest. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Improvement activities are designed to improve access at passage barriers and increase the quality and quantity of available rearing habitat. Project work will result in improved access to about 12.5 miles of high quality habitat, creation of nearly 70,000 square feet of off-channel habitat, and the addition of structure to approximately 32 miles of stream. At completion of the project, annual production capability from these two sub-basins will be increased by 85-100,000 smolts. Details of a monitoring and evaluation effort consistent with measure 200(d)(l) of the Council's Fish and Wildlife Program are also provided.

  4. Sedimentology and Reservoir Characteristics of Early Cretaceous Fluvio-Deltaic and Lacustrine Deposits, Upper Abu Gabra Formation, Sufyan Sub-basin, Muglad Rift Basin, Sudan

    Science.gov (United States)

    Yassin, Mohamed; Abdullatif, Osman; Hariri, Mustafa

    2017-04-01

    Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The Early Cretaceous Abu Gabra Formation considered as the main source rock in the Muglad Basin. In Sufyan Sub-basin the Early Cretaceous Upper Abu Gabra Formation is the main oil-producing reservoir. It is dominated by sandstone and shales deposited in fluvio-deltaic and lacustrine environment during the first rift cycle in the basin. Depositional and post-depositional processes highly influenced the reservoir quality and architecture. This study investigates different scales of reservoir heterogeneities from macro to micro scale. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Approaches include well log analysis, thin sections and scanning electron microscope (SEM) investigations, grain-size, and X-ray diffraction (XRD) analysis of the Abu Gabra sandstone. The cores and well logs analyses revealed six lithofacies representing fluvio-deltaic and lacustrine depositional environment. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to subrounded, Sub-feldspathic arenite to quartz arenite. On macro-scale, reservoir quality varies within Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir showed well connected and amalgamated sandstone bodies, the middle to lower parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenesis.The XRD and SEM analyses show that kaolinite and chlorite clay are the common clay minerals in the studied samples. Clay matrix and quartz overgrowth have significantly reduced the reservoir porosity and permeability, while the dissolution of feldspars

  5. Estimating the Effect of Urban Growth on Annual Runoff Volume Using GIS in the Erbil Sub-Basin of the Kurdistan Region of Iraq

    Directory of Open Access Journals (Sweden)

    Hasan Mohammed Hameed

    2017-02-01

    Full Text Available The growth and spread of impervious surfaces within urbanizing catchment areas pose signiificant threats to the quality of natural and built-up environments. Impervious surfaces prevent water infiltration into the soil, resulting in increased runoff generation. The Erbil Sub-basin was selected because the impervious cover is increasing rapidly and is affecting the hydrological condition of the watershed. The overall aim of this study is to examine the impact of urban growth and other changes in land use on runoff response during the study period of 1984 to 2014. The study describes long-term hydrologic responses within the rapidly developing catchment area of Erbil city, in the Kurdistan Region of Iraq. Data from six rainfall stations in and around the Erbil Sub-basin were used. A Digital Elevation Model (DEM was also used to extract the distribution of the drainage network. Historical levels of urban growth and the corresponding impervious areas, as well as land use/land cover changes were mapped from 1984 to 2014 using a temporal satellite image (Landsat to determine land use/land cover changes. Land use/land cover was combined with a hydrological model (SCS-CN to estimate the volume of runoff from the watershed. The study indicates that the urbanization of the watershed has increased the impervious land cover by 71% for the period from 1984 to 2004 and by 51% from 2004 to 2014. The volume of runoff was 85% higher in 2014 as compared to 1984 due to the increase in the impervious surface area; this is attributed to urban growth. The study also points out that the slope of the watershed in the Erbil sub-basin should be taken into account in surface runoff estimation as the upstream part of the watershed has a high gradient and the land is almost barren with very little vegetation cover; this causes an increase in the velocity of the flow and increases the risk of flooding in Erbil city.

  6. From detachment to transtensional faulting: A model for the Lake Mead extensional domain based on new ages and correlation of subbasins

    Science.gov (United States)

    Beard, L.; Umhoefer, P. J.; Martin, K. L.; Blythe, N.

    2007-12-01

    New studies of selected basins in the Miocene extensional belt of the northern Lake Mead domain suggest a new model for the early extensional history of the region (lower Horse Spring Formation and correlative strata). Critical data are from (i) Longwell Ridges area west of Overton Arm and within the Lake Mead fault system, (ii) Salt Spring Wash basin in the hanging wall of the South Virgin-White Hills detachment (SVWHD) fault, and (iii) previously studied subbasins of the south Virgin Mountains in the Gold Butte step-over region. The basins and faulting patterns suggest two stages of basin development related to two distinct faulting episodes, an early period of detachment faulting followed by a switch to faulting mainly along the Lake Mead transtensional fault system while detachment faulting waned. Apatite fission track ages suggest the footwall block of the SVWHD was cooling at 18-17 Ma, but the only evidence for basin deposition at that time is in the Gold Butte step-over where slow rates of sedimentation and facies patterns make faulting on the north side of the Gold Butte block ambiguous. The first basin stage was ca. 16.5 to 15.5 Ma, during which there was slow to moderate faulting and subsidence in a basin along the SVWHD and north of Gold Butte block in the Gold Butte step-over basin; the step- over basin had complex fluvial and lacustrine facies and was synchronous with landslides and debris flows in front of the SVWHD. At ca. 15.5-14.5 Ma, there was a [dramatic] increase in sedimentation rate related to formation of the Gold Butte fault, a change from lacustrine to widespread fluvial, playa, and local landslide facies in the step-over basin, and the peak of exhumation and faulting rates on the SVWHD. The simple step-over basin broke up into numerous subbasins [at[ as initial faults of the Lake Mead fault system formed. From 14.5 to 14.0 Ma, there was completion of a major change from dominantly detachment faulting to dominantly transtensional faulting

  7. Hydrocarbon potential of Early Cretaceous lacustrine sediments from Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Insight from organic geochemistry and petrology

    Science.gov (United States)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Adegoke, Adebanji Kayode; Maigari, A. S.; Haruna, A. I.; Yaro, Usman Y.

    2017-05-01

    The Early Cretaceous lacustrine sediments from Bima Formation in the Yola Sub-basin, Northern Benue Trough, northeastern Nigeria were studied based on organic geochemistry and petrology. This is in other to provide information on hydrocarbon generation potential; organic matter type (quality), richness (quantity), origin/source inputs, redox conditions (preservation) and thermal maturation in relation to thermal effect of Tertiary volcanics. The total organic carbon (TOC) contents ranges from 0.38 to 0.86 wt % with extractable organic matter (EOM) below 1000 ppm and pyrolysis S2 yield values from 0.16 to 0.68 mg/g, suggesting poor to fair source rock richness. Based on kerogen pyrolysis and microscopy coupled with biomarker parameters, the organic matters contain Type I (lacustrine algae), Type III (terrestrially derived land-plants) and Type IV kerogens deposited in a mixed lacustrine-terrestrial environment under suboxic to relatively anoxic conditions. This suggest potential occurrence of Early Cretaceous lacustrine sediments (perhaps Lower Cretaceous petroleum system) in Yola Sub-basin of the Northern Benue Trough as present in the neighbouring basins of Chad, Niger and Sudan Republics that have both oil and gas generation potential within the same rift trend (WCARS). Vitrinite reflectance (%Ro) and Tmax values of the lacustrine shales ranges from 1.12 to 2.32 VRo% and 448-501 °C, respectively, indicating peak-late to post-maturity stage. This is supported by the presence of dark brown palynomorphs, amorphous organic matter and phytoclasts as well as inertinite macerals. Consequently, the organic matters in the lacustrine shales of Bima Formation in the Yola Sub-basin appeared as a source of oil (most likely even waxy) and gas prone at a relatively deeper part of the basin. However, the high thermal maturity enhanced the organic matters and most of the hydrocarbons that formed in the course of thermal maturation were likely expelled to the reservoir rock units

  8. Future projection of radiocesium flux to the ocean from the largest river impacted by Fukushima Daiichi Nuclear Power Plant

    Science.gov (United States)

    Adhiraga Pratama, Mochamad; Yoneda, Minoru; Shimada, Yoko; Matsui, Yasuto; Yamashiki, Yosuke

    2015-02-01

    Following the initial fall out from Fukushima Dai-ichi Nuclear Power Plant (FDNPP), a significant amount of radiocesium has been discharged from Abukuma River into the Pacific Ocean. This study attempted to numerically simulate the flux of radiocesium into Abukuma River by developing the multiple compartment model which incorporate the transport process of the radionuclide from the ground surface of the catchment area into the river, a process called wash off. The results from the model show that the sub-basins with a high percentage of forest area release the radionuclides at lower rate compared to the other sub-basins. In addition the results show that the model could predict the seasonal pattern of the observed data. Despite the overestimation observed between the modeled data and the observed data, the values of R2 obtained from 137Cs and 134Cs of 0.98 and 0.97 respectively demonstrate the accuracy of the model. Prediction of the discharge from the basin area for 100 years after the accident shows that, the flux of radiocesium into the Pacific Ocean is still relatively high with an order of magnitude of 109 bq.month-1 while the total accumulation of the discharge is 111 TBq for 137Cs and 44 TBq for 134Cs.

  9. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume III, Appendix B, Fisheries Report; Appendix C, Engineering Alternative Evaluation; Appendix D, Benefit/Cost Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

    1985-06-01

    Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developd to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. This volume contains appendices of habitat survey data, potential production, resident fish population data, upstream passage designs, and benefit/cost calculations. (ACR)

  10. Identifying groundwater recharge connections in the Moscow (USA) sub-basin using isotopic tracers and a soil moisture routing model

    OpenAIRE

    2016-01-01

    Globally, aquifers are suffering from large abstractions resulting in groundwater level declines. These declines can be caused by excessive abstraction for drinking water, irrigation purposes or industrial use. Basaltic aquifers also face these conflicts. A large flood basalt area (1.1 × 105 km2) can be found in the Northwest of the USA. This Columbia River Basalt Group (CRBG) consists of a thick series of basalt flows of Miocene age. The two major hydrogeological units (Wanapum and Grand Ron...

  11. Syn-Rift Stratigraphic Architecture Reveals the Growth History of a Sub-basinal Fault Population in the Outer Moray Firth, North Sea

    Science.gov (United States)

    Kane, K.; Gupta, S.; Trudgill, B.; Johnson, H.

    2003-12-01

    Processes of normal fault propagation and linkage are recorded in the stratigraphic record by syn-rift sedimentary deposits that fill the generated accommodation volume. Using 3D seismic stratigraphic analysis, supported by well log and core interpretation, we investigate how the growth of an intrabasinal fault population led to the progressive development of an extensional sub-basin in the Moray Firth rift arm of the North Sea. The North Halibut Graben sub-basin has an E-W to WNW-ESE orientation and formed through the interaction of two main structural trends during late Jurassic rifting. E-W trending structural barriers bound the sub-basin to the north (Tartan and Petronella Ridges) and south (Halibut Horst Spur) whilst major NE-SW trending structures occur at the eastern margin. Spatial and temporal changes in syn-rift stratigraphic architecture reflect the history of faulting within the North Halibut Graben sub-basin. Fault parallel seismic profiles and intra-syn rift isochron maps demonstrate how faults initially developed as separate segments and subsequently linked to form longer strands through progressive growth and propagation. They also provide clear evidence that a major change in the structural framework occurred during rifting, supporting earlier studies advocating sequential rather than synchronous normal fault activity. The syn-rift sequence can be divided into at least two phases based on shifts in sedimentary packages and reorganistation of sequence thicknesses. Isochron maps illustrate that from late Oxfordian times (syn-rift phase I), early syn-rift sedimentation was controlled solely by NE-SW trending faults at the eastern margin of the basin. Strain was initially accommodated across several distributed, highly segmented faults but, with progressive linkage, stress became localised on one or two major through-going fault strands whilst shorter surrounding segments were switched off. From early-mid Volgian times we observe a progressive switch

  12. Sequence stratigraphy and U/b shrimp geochronology of the active margin deposits of the Cacheuta sub-basin, Cuyo Basin, Northwestern Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Janaina Nunes [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Geociencias]. E-mail: janaina.avila@ufrgs.br; Chemale Junior, Farid [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Geociencias; Borba, Andre Weissheimer de [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Geociencias; Cingolani, Carlos [La Plata Univ. Nacional (Argentina)

    2003-07-01

    This study focuses on the stratigraphic and geochronologic analysis of the deposits related to the faulted active margin of the Cacheuta sub-basin, Cuyo Basin (Triassic), in NW-Argentina. This basin was mainly controlled by extensional tectonics along NW-trending structures inherited from Paleozoic sutures. The whole stratigraphic package of this basin is interpreted as a second order depositional sequence. Low stand deposits comprise coarse-grained alluvial fans (sheet flood and debris-flow deposits). Fluvial and minor lacustrine deposits with expressive volcaniclastic contribution make up the transgressive systems tract. The maximum flooding surface was traced on lacustrine black shales of the Cacheuta Formation (source rock for petroleum accumulations). The high stand system tract comprises fluvial meandering facies and more sparse volcanic contribution. U/Pb SHRIMP dating of a pyroclastic rock inter layered with basal alluvial fans yielded a magmatic age of 243 {+-} 4.7 Ma positioned in the Early to Middle Triassic. (author)

  13. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  14. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    DeTar, Carleton [P.I.

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  15. Late Cretaceous stratigraphy of the Upper Magdalena Basin in the Payandé-Chaparral segment (western Girardot Sub-Basin), Colombia

    Science.gov (United States)

    Barrio, C. A.; Coffield, D. Q.

    1992-02-01

    The Cretaceous section on the western margin of the Girardot Sub-Basin, Upper Magdalena Valley, is composed of the Lower Sandstone (Hauterivian-Barremian?), Tetuán Limestone (pre-Aptian?), and Bambuca Shale (pre-Aptian?), and the following formations: Caballos (Aptian-Albian), Villeta (Albian-Campanian), Monserrate (Campanian-Maastrichtian), and Guaduas (Maastrichtian-Paleocene). The Lower Sandstone is composed of quartz arenites with abundant calcareous cement; the Tetuúan Limestone is a succession of fossiliferous limestones and calcareous shales; the the Bambuca Shale is composed of black shales that grade upward to micritic limestones and calcarenites. The Caballos Formation comprises three members: a lower member of quartz arenites, a middle member of black shales and limestones, and an upper member of crossbedded, coarsening-upward quartz arenites. The Villeta Formation is a sequence of shales intercalated with micritic limestones and calcarenites. Two levels of chert (Upper and Lower Chert) are differentiated within the Villeta Formation throughout the study area, with a sandstone unit (El Cobre Sandstone) to the north. The Monserrate Formation is composed of quartz arenites, with abundant crossbedding, and locally of limestone breccias and coarse-grained fossiliferous packstones. The Guaduas Formation is a monotonous succession of red shales and lithic sandstones. Our data suggest three major transgressive-regressive cycles in the Girardot Sub-Basin. The first cycle (Hauterivian?-lower Aptian) is represented by the Lower Sandstone-Tetuán-Bambuca-lower Caballos succession, the second cycle (Aptian-Albian) by the middle-upper Caballos members, and the third cycle (Albian-Paleocene) by the lower Villeta-Monserrate-Guaduas succession. Previous studies proposed a eustatic control during deposition of the Upper Cretaceous in the Upper Magdalena Valley. The lowermost transgressive-regressive cycle was not previously differentiated in the study area, and this

  16. Origin of banded structure and coal lithotype cycles in Kargali coal seam of East Bokaro sub-basin, Jharkhand, India: Environmental implications

    Indian Academy of Sciences (India)

    Ram Chandra Tewari; Zahid A Khan

    2015-04-01

    The Kargali seam of Early Permian Barakar cyclothems of East Bokaro sub-basin of Jharkhand, India is 12–30 m thick, splits into two parts, and extends throughout the length of the basin. It is made up of interbedded sequences and variable proportions of Vitrain, Clarain, Durain and Fusain. Application of embedded Markov chain model rejects the phenomenon of randomness in the repetition of coal lithotypes. The preferential upward transition path for coal lithotypes that can be derived for the Kargali top coal seam is: Vitrain → Clarain → Durain ↔ Fusain → Vitrain, and for the Kargali bottom coal seam is: Clarain ↔ Vitrain → Fusain → Durain → Clarain. By and large, the cyclic repetition of coal lithotypes is similar in the Kargali bottom and top seams. Among the noteworthy features are two-way transitions between Durain and Fusian in Kargali top and between Clarain and Vitrain in the case of Kargali bottom coal seam. Entropy analysis corroborates Markov chain and indicates the presence of type A-4 asymmetrical cycles of coal lithotypes. It is suggested that the banded structure of a coal seam is not a random feature and follows a definite cyclic pattern in the occurrence of coal lithotypes in vertical order and is similar to that described in Australian and European coal seams. Asymmetrical cyclic sequences are a normal, rather than an unusual condition, within coal seams. It is visualized that a gradual decline of toxic environment and ground water level resulted in the coal lithotype cycles in the Kargali seam of East Bokaro sub-basin. The close interbedding of Vitrain and Clarain is suggestive of seasonal fluctuation in anaerobic and aerobic conditions during peat formation.

  17. Hood River Monitoring and Evaluation Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Vaivoda, Alexis

    2004-02-01

    The Hood River Production Program Monitoring and Evaluation Project is co-managed by the Confederated Tribes of Warm Springs (CTWSRO) and the Oregon Department of Fish and Wildlife. The program is divided up to share responsibilities, provide efficiency, and avoid duplication. From October 2002 to September 2003 (FY 03) project strategies were implemented to monitor, protect, and restore anadromous fish and fish habitat in the Hood River subbasin. A description of the progress during FY 03 is reported here. Additionally an independent review of the entire program was completed in 2003. The purpose of the review was to determine if project goals and actions were achieved, look at critical uncertainties for present and future actions, determine cost effectiveness, and choose remedies that would increase program success. There were some immediate changes to the implementation of the project, but the bulk of the recommendations will be realized in coming years.

  18. Spawning Success of Hatchery Spring Chinook Salmon Outplanted as Adults in the Clearwater River Basin, Idaho, 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Steven P.; Ackerman, Nichlaus; Witty, Kenneth L.

    2002-04-16

    The study described in this report evaluated spawning distribution, overlap with naturally-arriving spawners, and pre-spawning mortality of spring chinook salmon, Oncorhynchus tshawytscha, outplanted as adults in the Clearwater River Subbasin in 2001. Returns of spring chinook salmon to Snake River Basin hatcheries and acclimation facilities in 2001 exceeded needs for hatchery production goals in Idaho. Consequently, management agencies including the U.S. Fish and Wildlife Service (FWS), Idaho Department of Fish and Game (IDFG) and Nez Perce Tribe (NPT) agreed to outplant chinook salmon adults as an adaptive management strategy for using hatchery adults. Adult outplants were made in streams or stream sections that have been typically underseeded with spawners. This strategy anticipated that outplanted hatchery chinook salmon would spawn successfully near the areas where they were planted, and would increase natural production. Outplanting of adult spring chinook salmon from hatcheries is likely to be proposed in years when run sizes are similar to those of the 2001 run. Careful monitoring of results from this year's outplanting can be used to guide decisions and methods for future adult outplanting. Numbers of spring chinook salmon outplanted was based on hatchery run size, hatchery needs, and available spawning habitat. Hatcheries involved in outplanting in the Clearwater Basin included Dworshak National Fish Hatchery, Kooskia National Fish Hatchery, Clearwater Anadromous Fish Hatchery, and Rapid River Fish Hatchery. The NPT, IDFG, FWS, and the National Marine Fisheries Service (NMFS) agreed upon outplant locations and a range of numbers of spring chinook salmon to be outplanted (Table 1). Outplanting occurred mainly in the Selway River Subbasin, but additional outplants were made in tributaries to the South Fork Clearwater River and the Lochsa River (Table 1). Actual outplanting activities were carried out primarily by the NPT with supplemental outplanting

  19. Comparison of Methylmercury Ecology in Adjacent Coastal Plain Rivers in South Carolina

    Science.gov (United States)

    Bradley, P. M.; Journey, C. A.; Chapelle, F. H.; Lowery, M. A.; Conrads, P. A.

    2010-12-01

    Fish-tissue mercury concentrations (approximately 2 micrograms per gram) in the Edisto River basin of South Carolina are among the highest recorded in the United States. Substantially lower mercury concentrations (approximately 0.2 microgram per gram) are reported in fish from the adjacent Congaree River sub-basin and the Congaree National Park. Concentrations of total mercury were statistically higher in sediments from the Congaree River compared with those in sediments from the Edisto River. No statistically significant differences were observed in concentrations of methylmercury or in the range of net methylation potentials in sediments collected from various Edisto and Congaree hydrologic settings. In both systems, net methylation potentials were an order of magnitude or more lower in stream-channel sediments than in wetland sediments. These results are not consistent with the hypothesis that differences in fish-tissue mercury between the Edisto and Congaree basins reflect fundamental differences in the potential for each system to methylate mercury. The marked differences in net methylation potential observed between the wetland and in-stream settings suggested an alternative hypothesis: differences in the efficiency of methylmercury transport from zones of production (wetlands) to points of entry into the food chain (channels) contribute to the observed differences in fish-tissue mercury concen¬trations between the two river systems. An assessment of the flood hydrodynamics of these two rivers is consistent with the alternative hypothesis.

  20. Watershed modelling in the Iguazú river basin

    Science.gov (United States)

    Venencio, M.; Garcia, N. O.

    2006-12-01

    This paper tries to associate the temporal and spatial climatic variability to the variability of streamflow. Therefore, the objective is to obtain tools in order to forsee the hydrologic variability in the context of the climatic variability from Iguazú river flows. The data at the gauging stations are supposed to be affected only by natural causes (climatic variability), because all flow data series were naturalised. A monthly water balance model used by Arnell [1] was applied to the whole Iguazu river basin, which extends approximately over 65000 km2. The area was not divided in subbasins because a homogeneous monthly mean precipitation was used as input to the model over this region. Monthly average temperature series for evapotranspiration (ET) calculations were generated by averaging recorded temperatures at several climatological gauging stations. Streamflows data at Capanema gauging station, upstream of the Iguazú falls, were used to analyse model results. Calculated and observed streamflows were compared. It can be said that the fitting is good, and the model reproduces the monthly flow pattern adequately. The correlation coefficient between the simulated and the observed monthly mean flows can be considered satisfactory in the Iguazú river basin.

  1. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2003-06-01

    We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0 C or higher on a regular basis. Six radio-tags were recovered shortly after tagging, and as a result, 35 remained in the river through November 30, 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon Subbasin. We began to observe some downstream movements of radio-tagged bull trout in mid to late September and throughout October. These movements appeared to be associated with post spawning migrations. As of November 30, radio tagged bull trout were relatively stationary, and distributed from the headwaters downstream to river mile 11.3, near Pataha Creek. None of the radio-tagged bull trout left the Tucannon Subbasin and entered the federal hydropower system on the mainstem Snake River. We conducted some initial transmission tests of submerged radio tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Equipment used included Lotek model MCFT-3A transmitters, an SRX 400 receiver, a 4 element Yagi antenna, and a Lotek ''H'' antenna. Test results indicated that depth transmission of these tags was poor; only the transmitter placed at 25 ft. was audibly detectable.

  2. Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment

    Indian Academy of Sciences (India)

    Chinmaya Maharana; Sandeep Kumar Gautam; Abhay Kumar Singh; Jayanth K Tripathi

    2015-08-01

    River Son, draining diverse lithologies in the subtropical climate of the peninsular sub-basin of the Ganga basin, is one of the major tributaries of the Ganga River. The chemistry of major ions in the surface water of the Son River was studied in detail to determine various source(s) and processes controlling its water chemistry, seasonal and spatial variations in water chemistry, dissolved fluxes and chemical denudation rate (CDR). The study shows that Ca2+, Mg2+ and HCO$^{-}_{3}$ are major ionic species in the river water. Most of the measured parameters exhibit a relatively lower concentration in the post-monsoon as compared to pre-monsoon season. The water chemistry highlights the influence of continental weathering aided by secondary contributions from ground water, saline/alkaline soils and anthropogenic activities in the catchment. Results also reflect the dominance of carbonate weathering over silicate weathering in controlling water composition. The Son River delivers about 4.2 million tons of dissolved loads annually to the Ganga River, which accounts for ∼6% of the total annual load carried by the Ganga River to the Bay of Bengal. The average CDR of the Son River is 59.5 tons km−2 yr−1, which is less than the reported 72 tons km−2 yr−1 of the Ganga River and higher than the global average of 36 tons km−2 yr−1. The water chemistry for the pre-monsoon and post-monsoon periods shows a strong seasonal control on solute flux and CDR values. The water chemistry indicates that the Son River water is good to excellent in quality for irrigation and also suitable for drinking purposes.

  3. Increased Levels of Harvest and Habitat Law Enforcement and Public Awareness for Anadromous Salmonids and Resident Fish in the Columbia River Basin -- Demonstration Period, 1992--1994, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    NeSmith, Frank (Idaho Department of Fish and Game, Boise, ID); Long, Mack (Montana Department of Fish, Wildlife and Paks, Kalispell, MT); Matthews, Dayne (Washington Department of Fish and Wildlife, Olympia, WA)

    1995-06-01

    This report was funded by the Bonneville Power Administration (BPA), US Department of Energy, as part of BPA`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Illegal harvest and violation of habitat protection regulations are factors affecting the survival of many native species of anadromous and resident fish in the Columbia Basin.

  4. Performance Evaluation of Linear (ARMA and Threshold Nonlinear (TAR Time Series Models in Daily River Flow Modeling (Case Study: Upstream Basin Rivers of Zarrineh Roud Dam

    Directory of Open Access Journals (Sweden)

    Farshad Fathian

    2017-01-01

    Full Text Available Introduction: Time series models are generally categorized as a data-driven method or mathematically-based method. These models are known as one of the most important tools in modeling and forecasting of hydrological processes, which are used to design and scientific management of water resources projects. On the other hand, a better understanding of the river flow process is vital for appropriate streamflow modeling and forecasting. One of the main concerns of hydrological time series modeling is whether the hydrologic variable is governed by the linear or nonlinear models through time. Although the linear time series models have been widely applied in hydrology research, there has been some recent increasing interest in the application of nonlinear time series approaches. The threshold autoregressive (TAR method is frequently applied in modeling the mean (first order moment of financial and economic time series. Thise type of the model has not received considerable attention yet from the hydrological community. The main purposes of this paper are to analyze and to discuss stochastic modeling of daily river flow time series of the study area using linear (such as ARMA: autoregressive integrated moving average and non-linear (such as two- and three- regime TAR models. Material and Methods: The study area has constituted itself of four sub-basins namely, Saghez Chai, Jighato Chai, Khorkhoreh Chai and Sarogh Chai from west to east, respectively, which discharge water into the Zarrineh Roud dam reservoir. River flow time series of 6 hydro-gauge stations located on upstream basin rivers of Zarrineh Roud dam (located in the southern part of Urmia Lake basin were considered to model purposes. All the data series used here to start from January 1, 1997, and ends until December 31, 2011. In this study, the daily river flow data from January 01 1997 to December 31 2009 (13 years were chosen for calibration and data for January 01 2010 to December 31 2011

  5. Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: A case study in the Wei River Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong; Zhao, Menglong; Meng, Erhao

    2017-03-01

    It is of importance to investigate watershed water-energy balance variations and to explore their correlations with vegetation and soil moisture dynamics, which helps better understand the interplays between underlying surface dynamics and the terrestrial water cycle. The heuristic segmentation method was adopted to identify change points in the parameter to series in Fu's equation belonging to the Budyko framework in the Wei River Basin (WRB) and its sub-basins aiming to examine the validity of stationary assumptions. Additionally, the cross wavelet analysis was applied to explore the correlations between vegetation and soil moisture dynamics and to variations. Results indicated that (1) the omega variations in the WRB are significant, with some change points identified except for the sub-basin above Zhangjiashan, implying that the stationarity of omega series in the WRB is invalid except for the sub-basin above Zhangjiashan; (2) the correlations between soil moisture series and to series are weaker than those between Normalized Difference Vegetation Index (NDVI) series and omega series; (3) vegetation dynamics show significantly negative correlations with omega variations in 1983-2003 with a 4-8 year signal in the whole WRB, and both vegetation and soil moisture dynamics exert strong impacts on the parameter omega changes. This study helps understanding the interactions between underlying land surface dynamics and watershed water-energy balance. (C) 2017 Elsevier B.V. All rights reserved.

  6. Final Report

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Nielsen, Peter V.

    This final report for the Hybrid Ventilation Centre at Aalborg University describes the activities and research achievement in the project period from August 2001 to August 2006. The report summarises the work performed and the results achieved with reference to articles and reports published...

  7. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  8. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  9. Concentrations, loads, and yields of nutrients and suspended sediment in the South Pacolet, North Pacolet, and Pacolet Rivers, northern South Carolina and southwestern North Carolina, October 2005 to September 2009

    Science.gov (United States)

    Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year

  10. 75 FR 33690 - Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA

    Science.gov (United States)

    2010-06-15

    ..., Delaware River, New Hope, PA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the Delaware River in New Hope, PA. The safety zone... downriver of the bridge in New Hope, PA. DATES: This rule is effective from June 15, 2010 through July...

  11. Changes in the characteristics of hydrological droughts over a semi-arid watershed within Yellow River basin

    Science.gov (United States)

    Jiao, Yang; Yuan, Xing; Yang, Dawen

    2017-04-01

    Due to climate change and human interventions, significant decreases in river discharges have been observed in many large river basins over China during the past five decades, especially in the Yellow River basin, the second longest river in China. This suggests an intensified water resources shortage and an increasing hydrological drought risk. In this study, we aimed at analyzing the changes in the characteristics of hydrological droughts over a semi-arid watershed located in the middle reach of Yellow River basin from 1960s to the end of the 21st century. Firstly, historical climate forcing and river discharge data during 1961 2005 were collected from meteorological and hydrological stations, and climate forcing data from 2006 to 2099 were collected from several CMIP5 simulations under different representative concentration pathways (RCPs). Secondly, the frequency and severity of historical hydrological droughts were calculated based on the observed streamflow data and simulated streamflow by using the VIC land surface model and a newly developed eco-hydrological model CLM-GBHM. CLM-GBHM introduced detailed description of river network and sub-basin topological relationships into CLM, and performed quite well in streamflow simulations. The responses of hydrological droughts to historical and future climate change are being analyzed, causes of the changes in terms of natural and anthropogenic influences will be investigated, and the uncertainty for future projections will be estimated. This study will facilitate the implementation of adaptation strategies for hydrological drought over the semiarid watershed in a changing environment.

  12. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 in order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  13. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    White, Tara

    2007-02-01

    This report summarizes activities conducted by the Oregon Department of Fish and Wildlife's Juvenile Outmigration and Survival M&E project in the Umatilla River subbasin between 2004-2006. Information is used to make informed decisions on hatchery effectiveness, natural production success, passage improvement and flow enhancement strategies. Data collected includes annual estimates of smolt abundance, migration timing, and survival, life history characteristics and productivity status and trends for spring and fall Chinook salmon, coho salmon and summer steelhead. Productivity data provided is the key subbasin scale measure of the effectiveness of salmon and steelhead restoration actions in the Umatilla River. Information is also used for regional planning and recovery efforts of Mid-Columbia River (MCR) ESA-listed summer steelhead. Monitoring is conducted via smolt trapping and PIT-tag interrogation at Three Mile Falls Dam. The Umatilla Juvenile Outmigration and Survival Project was established in 1994 to evaluate the success of management actions and fisheries restoration efforts in the Umatilla River Basin. Project objectives for the 2004-2006 period were to: (1) operate the PIT tag detection system at Three Mile Falls Dam (TMFD), (2) enhance provisional PIT-tag interrogation equipment at the east bank adult fish ladder, (3) monitor the migration timing, abundance and survival of naturally-produced juvenile salmonids and trends in natural production, (4) determine migration parameters and survival of hatchery-produced fish representing various rearing, acclimation and release strategies, (5) evaluate the relative survival between transported and non-transported fish, (6) monitor juvenile life history characteristics and evaluate trends over time, (7) investigate the effects of river, canal, fishway operations and environmental conditions on smolt migration and survival, (8) document the temporal distribution and diversity of resident fish species, and (9

  14. Real-time flood forecast and flood alert map over the Huaihe River Basin in China using a coupled hydro-meteorological modeling system

    Institute of Scientific and Technical Information of China (English)

    LIN; Charles; A.

    2008-01-01

    A coupled hydro-meteorological modeling system is established for real-time flood forecast and flood alert over the Huaihe River Basin in China. The system consists of the mesoscale atmospheric model MC2 (Canadian Mesoscale Compressible Community) that is one-way coupled to the Chinese Xinanjiang distributed hydrological model, a grid-based flow routing model, and a module for acquiring real-time gauge precipitation. The system had been successfully tested in a hindcast mode using 1998 and 2003 flood cases in the basin, and has been running daily in a real-time mode for the summers of 2005 and 2006 over the Wangjiaba sub-basin of the Huaihe River Basin. The MC2 precipitation combined with gauge values is used to drive the Xinanjiang model for hydrograph prediction and production of flood alert map. The performance of the system is illustrated through an examination of real-time flood forecasts for the severe flood case of July 4―15, 2005 over the sub-basin, which was the first and largest flood event encountered to date. The 96-h forecasts of MC2 precipitation are first evaluated using observations from 41 rain gauges over the sub-basin. The forecast hydrograph is then validated with observations at the Wangjiaba outlet of the sub-basin. MC2 precipitation generally compares well with gauge values. The flood peak was predicted well in both timing and intensity in the 96-hour forecast using the combined gauge-MC2 precipitation. The real-time flood alert map can spatially display the propagation of forecast floods over the sub-basin. Our forecast hydrograph was used as opera-tional guidance by the Bureau of Hydrograph, Ministry of Water Resources. Such guidance has been proven very useful for the Office of State Flood Control and Drought Relief Headquarters in operational decision making for flood management. The encouraging results demonstrate the potential of using mesoscale atmospheric model precipitation for real-time flood forecast, which can result in a longer

  15. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  16. Numerical model simulating water flow and contaminant and sediment transport in watershed systems of 1-d stream-river network, 2-d overland regime, and 3-d subsurface media (WASH123d: version 1.0). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.; Cheng, H.; Cheng, J.; Lin, H.C.; Martin, W.D.

    1998-07-01

    This report presents the development of a numerical model simulating water flow and contaminant and sediment transport in watershed systems of one-dimensional river/stream network, two-dimensional overland regime, and three-dimensional subsurface media. The model is composed of two modules: flow and transport. Three options are provided in modeling the flow module in river/ stream network and overland regime: the kinematic wave approach, diffusion wave approach, and dynamic wave approach. The kinematic and diffusion wave approaches are known to be numerically robust in terms of numerical convergency and stability; i.e., they can generate convergent and stable simulations over a wide range of ground surface slopes in the entire watershed. The question is the accuracy of these simulations. The kinematic wave approach usually produces accurate solutions only over the region of steep slopes. The diffusion wave approach normally gives accurate solutions over the region of mild to steep slopes. However, neither approach has the ability to yield accurate solutions over the region of small slopes, in which the inertial forces are no longer negligible compared to the gravitational forces. The kinematic wave approach cannot address the problems of backwater effects. On the other hand, a dynamic wave approach, having included all forces, can theoretically have the potential to generate accurate simulations over all ranges of slopes in a watershed. The subsurface flow is described by Richard`s equation where water flow through saturated-unsaturated porous media is accounted for.

  17. Ecotoxicological evaluation of water of the hydrographic Basin of the Una River using the bioindicator Ceriodaphnia dubia

    Directory of Open Access Journals (Sweden)

    Tatiane Alves

    2013-12-01

    Full Text Available The majority of the Una River Basin is located in Taubaté County and contributes significantly to its water supply. The main goal of this research was to evaluate the water quality of the Una River using the microcrustacean C. dubia as bioindicator for tests of chronic and acute toxicity. Bimonthly water samples were obtained from each of six localities throughout the Una Basin, from March to October, 2011. Physical-chemical water parameters such as pH, electrical conductivity, hardness, dissolved oxygen and precipitation were measured and correlated to the C. dubia reproductive rates. No significant relationships were found between the water’s electrical conductivity and precipitation with respect to bioindicator reproductive rates. However, at the Sete Voltas, Antas and Rocinha Sub-Basins, significant interactions were detected between some water parameters and reproductive rates, suggesting that water may constrain the reproduction of C. dubia. Acute toxicity was not detected in any of the six sites, while chronic toxicity was recorded at Rocinha, Sete Voltas, Antas, Médio and Baixo Una Sub-Basins. In general, the water quality of the Una Basin, as indicated by the absence of acute toxicity, still remains in an acceptable conservation condition. Caution is needed, however, since slight pollution sources are causing chronic toxicity in some localities. In addition, as the microcrustacean C. dubia, appeared to be a reliable bioindicator in this investigation, we suggest that it be used for continuous water quality monitoring programs.

  18. The role of river drainages in shaping the genetic structure of capybara populations.

    Science.gov (United States)

    Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio

    2015-12-01

    The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

  19. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Thomas; Sprague, Sherman; Bretz, Justin [Nez Perce Tribe

    2009-06-10

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and production areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24

  20. Estimating Low-Flow Frequency Statistics and Hydrologic Analysis of Selected Streamflow-Gaging Stations, Nooksack River Basin, Northwestern Washington and Canada

    Science.gov (United States)

    Curran, Christopher A.; Olsen, Theresa D.

    2009-01-01

    Low-flow frequency statistics were computed at 17 continuous-record streamflow-gaging stations and 8 miscellaneous measurement sites in and near the Nooksack River basin in northwestern Washington and Canada, including the 1, 3, 7, 15, 30, and 60 consecutive-day low flows with recurrence intervals of 2 and 10 years. Using these low-flow statistics, 12 regional regression equations were developed for estimating the same low-flow statistics at ungaged sites in the Nooksack River basin using a weighted-least-squares method. Adjusted R2 (coefficient of determination) values for the equations ranged from 0.79 to 0.93 and the root-mean-squared error (RMSE) expressed as a percentage ranged from 77 to 560 percent. Streamflow records from six gaging stations located in mountain-stream or lowland-stream subbasins of the Nooksack River basin were analyzed to determine if any of the gaging stations could be removed from the network without significant loss of information. Using methods of hydrograph comparison, daily-value correlation, variable space, and flow-duration ratios, and other factors relating to individual subbasins, the six gaging stations were prioritized from most to least important as follows: Skookum Creek (12209490), Anderson Creek (12210900), Warm Creek (12207750), Fishtrap Creek (12212050), Racehorse Creek (12206900), and Clearwater Creek (12207850). The optimum streamflow-gaging station network would contain all gaging stations except Clearwater Creek, and the minimum network would include Skookum Creek and Anderson Creek.

  1. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jarillo-Herrero, Pablo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-07

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TIbased electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulk carriers in most TI compounds as well as degradation during device fabrication.

  3. Simulation of streamflow and the effects of brush management on water yields in the upper Guadalupe River watershed, south-central Texas, 1995-2010

    Science.gov (United States)

    Bumgarner, Johnathan R.; Thompson, Florence E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board and the Upper Guadalupe River Authority, developed and calibrated a Soil and Water Assessment Tool watershed model of the upper Guadalupe River watershed in south-central Texas to simulate streamflow and the effects of brush management on water yields in the watershed and to Canyon Lake for 1995–2010. Model simulations were done to quantify the possible change in water yield of individual subbasins in the upper Guadalupe River watershed as a result of the replacement of ashe juniper (Juniperus ashei) with grasslands. The simulation results will serve as a tool for resource managers to guide their brush-management efforts.

  4. Detection and assessment of micropollutants in the river Elbe. Part project 3: Relevant organic substances for drinking water. Final report; Erfassung und Beurteilung der Belastung der Elbe mit Schadstoffen. Teilprojekt 3: Trinkwasserrelevante Organika. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Brauch, H.J.; Bethmann, D.; Fichtner, S.; Klinger, J.; Mueller, U.; Pietsch, J.; Sacher, F.; Schmidt, W.

    1996-12-01

    The objective of this research program was the detection and the assessment of micropollutants in the river Elbe, which are recalcitrant and weak adsorbable. Moreover, studies were conducted to determine the recalcitrant and weak adsorbable fraction of substances, measured as sum parameters such as DOC, AOX or IOS, continuing experiments of another research project of the German Research Ministry, registered under WT 9148/5. Sampling of river water was carried out at several places from Monday to Friday over a period of 2 years. Before analysis, samples taken over a period of one month were mixed to avoid short term variations which are typical for surface waters. The analytical program combines measurements with GC and HPLC and technological experiments such as biological degradation and adsorption. The study includes the determination of aromatic sulfonates, chelating agents, chloroacetic acids and pesticides such as phenoxyalkanoic acids and nitrophenol herbicides, which are thought to be recalcitrant and weak adsorbable. Chealting agents such as EDTA, NTA and DTPA were detected in every sample of river Elbe. EDTA and DTPA were considered as substances passing the treatment steps in a waterworks easily. Nineteen different aromatic sulfonates, mostly naphthalene sulfonates, were identified in Elbe water samples. Five of them were insufficient removed in a waterworks. A dependence was found between the structure of the micropollutant and the biological degradability. A new analytical method, based on HPLC/FLD and GC/MS-measurements after pre-enrichment derivatization by FMOC-Cl and TCECF, was developed to determine the occurrence of aliphatic amines in the river Elbe. (orig./SR) [Deutsch] Das Forschungsvorhaben befasste sich mit der Erfassung und Bewertung von biologisch resistenten und zudem schlecht adsorbierbaren Einzelsubstanzen im Elbewasser. Ausserdem wurden Untersuchungen aus dem Forschungsprogramm WT 9148/5 weitergefuehrt, bei denen die Ermittlung der

  5. Biological and Physical Inventory of the Streams within the Nez Perce Reservation; Juvenile Steelhead Survey and Factors that Affect Abundance in Selected Streams in the Lower Clearwater River Basin, Idaho, 1983-1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A.; Johnson, David B. (Nez Perce Tribe, Lapwai, ID)

    1986-08-01

    A biological and physical inventory of selected tributaries in the lower Clearwater River basin was conducted to collect information for the development of alternatives and recommendations for the enhancement of the anadromous fish resources in streams on the Nez Perce Reservation. Five streams within the Reservation were selected for study: Bedrock and Cottonwood Creeks were investigated over a two year period (1983 to 1984) and Big Canyon, Jacks and Mission Creeks were studied for one year (1983). Biological information was collected and analyzed on the density, biomass, production and outmigration of juvenile summer steelhead trout. Physical habitat information was collected on available instream cover, stream discharge, stream velocity, water temperature, bottom substrate, embeddedness and stream width and depth. The report focuses on the relationships between physical stream habitat and juvenile steelhead trout abundance.

  6. Sensitivity of SWAT simulated streamflow to climatic changes within the Eastern Nile River basin

    Directory of Open Access Journals (Sweden)

    D. T. Mengistu

    2012-02-01

    Full Text Available The hydrological model SWAT was run with daily station based precipitation and temperature data for the whole Eastern Nile basin including the three subbasins: the Abbay (Blue Nile, BaroAkobo and Tekeze. The daily and monthly streamflows were calibrated and validated at six outlets with station-based streamflow data in the three different subbasins. The model performed very well in simulating the monthly variability while the validation against daily data revealed a more diverse performance. The simulations indicated that around 60% of the average annual rainfalls of the subbasins were lost through evaporation while the estimated runoff coefficients were 0.24, 0.30 and 0.18 for Abbay, BaroAkobo and Tekeze subbasins, respectively. About half to two-thirds of the runoff could be attributed to surface runoff while the other contributions came from groundwater.

    Twenty hypothetical climate change scenarios (perturbed temperatures and precipitation were conducted to test the sensitivity of SWAT simulated annual streamflow. The result revealed that the annual streamflow sensitivity to changes in precipitation and temperature differed among the basins and the dependence of the response on the strength of the changes was not linear. On average the annual streamflow responses to a change in precipitation with no temperature change were 19%, 17%, and 26% per 10% change in precipitation while the average annual streamflow responses to a change in temperature and no precipitation change were −4.4% K−1, −6.4% K−1, and −1.3% K−1 for Abbay, BaroAkobo and Tekeze river basins, respectively.

    47 temperature and precipitation scenarios from 19 AOGCMs participating inCMIP3 were used to estimate future changes in streamflow due to climate changes. The climate models disagreed on both the strength and the direction of future precipitation changes. Thus, no clear conclusions could be made about future

  7. S-wave velocity structure and tectonic implications of the northwestern sub-basin and Macclesfield of the South China Sea

    Science.gov (United States)

    Wei, Xiaodong; Ruan, Aiguo; Li, Jiabiao; Niu, Xiongwei; Wu, Zhenli; Ding, Weiwei

    2016-10-01

    Based on the optimum P-wave model, the S-wave velocity structure of a wide angle seismic profile (OBS2006-1), across the northwestern sub-basin (NWSB) and the Macclesfield, is simulated by a 2-D ray-tracing method. The results indicate the S-wave velocities in the upper and lower crust of the NWSB are 3.2-3.6 km/s and 3.6-4.0 km/s, with Vp/Vs ratios of 1.82-1.88 and 1.74-1.82, respectively, which reflect typical oceanic crust characteristics. The S-wave velocity in the upper crust of the NWSB is a little higher in the NNW segment than that in the SSE segment, while the lateral variation of Vp/Vs ratio is in the opposite. We suggest that the NWSB might have experienced asymmetrical magma flows during sea floor spreading, which may have blurred the magnetic anomaly lineation. The comparison of S-wave velocities along the northern margin of the SCS shows that the west section is different from the east section, and the northwestern margin has a non-volcanic crust structure. The S-wave structures and P-wave velocity models along the northern margin, Macclesfield and Reed Bank show that the Macclesfield might have a conjugate relationship with the Reed Bank.

  8. Characterization of low contrast shale-sand reservoir using Poisson impedance inversion: Case study of Gumai formation, Jambas field Jambi Sub-basin

    Science.gov (United States)

    Haris, A.; Nenggala, Y.; Suparno, S.; Raguwanti, R.; Riyanto, A.

    2017-07-01

    Low impedance contrast between the shale-sand layer, which can be found in the situation where shale layer wrapped in the sand reservoir, is a challenging case for explorationist in characterizing sand distribution from shale layer. In this paper, we present the implementation of Poisson impedance in mapping sand distribution in Gumai formation, Jambas Field, Jambi Sub-basin. Gumai formation has become a prospective zone, which contains sandstone with strong laterally change. The characteristic of facies at Gumai formation, which is laterally changing, has been properly mapped based on the Acoustic impedance (AI) and Shear impedance (SI). These two impedances, which is yielded by performing seismic simultaneous inversion, is then combined to generate Poisson impedance. The Poisson impedance is conceptually formulated as a contrast between AI and a scaled SI with the scale is estimated from the gradient of the relationship between AI and SI. Our experiment shows that the Poisson impedance map is able to separate the sand distribution from the shale layer. Therefore the sand facies has been clearly delineated from the contrast of Poisson impedance.

  9. Sedimentology and palaeontology of the Upper Jurassic Puesto Almada Member (Cañadón Asfalto Formation, Fossati sub-basin), Patagonia Argentina: Palaeoenvironmental and climatic significance

    Science.gov (United States)

    Cabaleri, Nora G.; Benavente, Cecilia A.; Monferran, Mateo D.; Narváez, Paula L.; Volkheimer, Wolfgang; Gallego, Oscar F.; Do Campo, Margarita D.

    2013-10-01

    Six facies associations are described for the Puesto Almada Member at the Cerro Bandera locality (Fossati sub-basin). They correspond to lacustrine, palustrine, and pedogenic deposits (limestones); and subordinated alluvial fan, fluvial, aeolian, and pyroclastic deposits. The lacustrine-palustrine depositional setting consisted of carbonate alkaline shallow lakes surrounded by flooded areas in a low-lying topography. The facies associations constitute four shallowing upward successions defined by local exposure surfaces: 1) a Lacustrine-Palustrine-pedogenic facies association with a 'conchostracan'-ostracod association; 2) a Palustrine facies association representing a wetland subenvironment, and yielding 'conchostracans', body remains of insects, fish scales, ichnofossils, and palynomorphs (cheirolepidiacean species and ferns growing around water bodies, and other gymnosperms in more elevated areas); 3) an Alluvial fan facies association indicating the source of sediment supply; and 4) a Lacustrine facies association representing a second wetland episode, and yielding 'conchostracans', insect ichnofossils, and a palynoflora mainly consisting of planktonic green algae associated with hygrophile elements. The invertebrate fossil assemblage found contains the first record of fossil insect bodies (Insecta-Hemiptera and Coleoptera) for the Cañadón Asfalto Formation. The succession reflects a mainly climatic control over sedimentation. The sedimentary features of the Puesto Almada Member are in accordance with an arid climatic scenario across the Upper Jurassic, and they reflect a strong seasonality with periods of higher humidity represented by wetlands and lacustrine sediments.

  10. New Geological and Geophysical Data for the Geometric and Stratigraphic Characterization of the Alhandra Sub-basin (Southeast of Paraíba

    Directory of Open Access Journals (Sweden)

    Benjamim Bley de Brito Neves

    2009-06-01

    Full Text Available Some recent geological and geophysical reconnaissance studies carried out in the Alhandra Sub-basin (southern segmentof the Paraíba Basin have revealed very interesting structural and stratigraphic behaviors that have not yet been described.Four different structural compartments with NNE-SSW trends were identifi ed, each characterized by a particularstratigraphic pile, as a result of vertical tectonic displacements, probably post-Pliocene in age: the Alto Rio MumbabaHigh (with widespread basement outcrops, the Rio Mamuaba Graben (the well-exposed Beberibe Formation with thicknessesfrom 100 m up to 300 m, the Rio Gramame High (a horst zone, with some basement outcrops, underlying the BeberibeFormation and the Alhandra-Guruji- Conde-Caaporã monoclinal zone, east of the BR-101, limited to the west bya fault line. The stratigraphic sequence of the Paraiba basin represented by the Paraíba Group is complete only along theeastern monoclinal zone, where the Barreiras Group is also preserved. Along the Rio Mamuaba graben, occurrences of theBarreiras Group were not found as would be expected, and this seems to be an indication that more than one phase of verticalmovement occurred, the second of which had probably removed the Barreiras Group. All these observations are preliminaryand demand further geological and geophysical studies, especially at scales greater than 1/50.000.

  11. Geological study of sedimentary clayey materials of the Bomkoul area in the Douala region (Douala sub-basin, Cameroon) for the ceramic industry

    Science.gov (United States)

    Ngon Ngon, Gilbert François; Etame, Jacques; Ntamak-Nida, Marie Joseph; Mbog, Michel Bertrand; Mpondo, Anne Maureen Maliengoue; Gérard, Martine; Yongue-Fouateu, Rose; Bilong, Paul

    2012-06-01

    A geological study carried out in the Bomkoul area (Douala sub-basin, Cameroon) has revealed the presence of heterogeneous clayey materials on hills (80-120 m altitude). The clay deposits are thick at the upper slope where sandstones and sandy-clay overlying clay layers, and thin at the middle and lower slopes where weathered clays overlying clay layers. Clayey materials identified are grey, dark-grey and mottled in color, with sandy-clay, clayey-silt, silty-clay and clay textures. Raw materials are mostly made up of fine particles ranging from 52 to 82% clay and silt in the mottled clayey material, 50 to 82% clay and silt in the dark-grey clayey material and 70 to 85% in the grey clayey material. Their chemical composition is characterized by silica (clay minerals are disorganized and poorly crystallized kaolinite and few smectite. The physical, mineralogical and geochemical properties of these materials presented and discussed in this work show that the clayey raw materials of the Bomkoul area have a good potential for pottery as well as brick, tile and soil sandstone manufacture.

  12. Constructing river stage-discharge rating curves using remotely sensed river cross-sectional inundation areas and river bathymetry

    Science.gov (United States)

    Pan, Feifei; Wang, Cheng; Xi, Xiaohuan

    2016-09-01

    Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning

  13. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2002 Data Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.S. [Westslope Fisheries, Cranbrook, BC, Canada

    2003-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Water, Land, and Air Protection (MWLAP), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenay they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MWLAP applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that were undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  14. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2000 Data Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.S.; Morris, K.J.

    2001-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  15. Variation of monthly inventories of {sup 7}Be fallout in the soils of the sub-basins 3 and 4 in Mato Frio river, a tributary of Serra Azul river

    Energy Technology Data Exchange (ETDEWEB)

    E