WorldWideScience

Sample records for river study assessment

  1. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future

  2. Fish Health Study Ashtabula River Natural Resource Damage Assessment

    Science.gov (United States)

    Blazer, V.S.; Iwanowicz, L.R.; Baumann, P.C.

    2006-01-01

    INTRODUCTION The Ashtabula River is located in northeast Ohio, flowing into Lake Erie at Ashtabula, Ohio. Tributaries include Fields Brook, Hubbard Run, Strong Brook, and Ashtabula Creek. The bottom sediments, bank soils and biota of Fields Brook have been severely contaminated by unregulated discharges of hazardous substances. Hazardous substances have migrated downstream from Fields Brook to the Ashtabula River and Harbor, contaminating bottom sediments, fish and wildlife. There are presently more than 1,000,000 cubic yards of contaminated sediment in the Ashtabula River and Harbor, much of which originated from Fields Brook. Contaminants include polychlorinated biphenyls (PCBs), chlorinated benzenes, chlorinated ethenes, hexachlorobutadiene, polyaromatic hydrocarbons (PAHs), other organic chemicals, heavy metals and low level radionuclides. A Preassessment Screen, using existing data, was completed for the Ashtabula River and Harbor on May 18, 2001. Among the findings was that the fish community at Ashtabula contained approximately 45 percent fewer species and 52 percent fewer individuals than the Ohio EPA designated reference area, Conneaut Creek. The Ashtabula River and Conneaut Creek are similar in many respects, with the exception of the presence of contamination at Ashtabula. The difference in the fish communities between the two sites is believed to be at least partially a result of the hazardous substance contamination at Ashtabula. In order to investigate this matter further, the Trustees elected to conduct a study of the status and health of the aquatic biological communities of the Ashtabula River and Conneaut Creek in 2002-2004. The following document contains brief method descriptions (more detail available in attached Appendix A) and a summary of the data used to evaluate the health status of brown bullheads (Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) collected from the above sites.

  3. Assessing flow regime alterations in a temporary river – the River Celone case study

    Directory of Open Access Journals (Sweden)

    De Girolamo Anna Maria

    2015-09-01

    Full Text Available In this paper, we present an approach to evaluate the hydrological alterations of a temporary river. In these rivers, it is expected that anthropogenic pressures largely modify low-flow components of the flow regime with consequences for aquatic habitat and diversity in invertebrate species. First, by using a simple hydrological index (IARI river segments of the Celone stream (southern Italy whose hydrological regime is significantly influenced by anthropogenic activities have been identified. Hydrological alteration has been further classified through the analysis of two metrics: the degree (Mf and the predictability of dry flow conditions (Sd6. Measured streamflow data were used to calculate the metrics in present conditions (impacted. Given the lack of data from pristine conditions, simulated streamflow time series were used to calculate the metrics in reference conditions. The Soil and Water Assessment Tool (SWAT model was used to estimate daily natural streamflow. Hydrological alterations associated with water abstractions, point discharges and the presence of a reservoir were assessed by comparing the metrics (Mf, Sd6 before and after the impacts. The results show that the hydrological regime of the river segment located in the upper part of the basin is slightly altered, while the regime of the river segment downstream of the reservoir is heavily altered. This approach is intended for use with ecological metrics in defining the water quality status and in planning streamflow management activities.

  4. Mississippi River Hydrodynamic and Delta Management Study (MRHDM) - Geomorphic Assessment

    Science.gov (United States)

    2014-07-01

    Mississippi River @ Venice Daily stage 1960–present MVN Grand Pass Measured Q 1960–present MVN West Bay Diversion Measured Q 2004–present MVN...frequency during the study time period. The dredge history for the crossing locations was used to qualitatively inform the interpretation of the...pattern of deposition downstream of Venice , Louisiana, that was similarly identified by Sharp et al (2013) as part of the West Bay Sediment Diversion

  5. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  6. Using Pressure and Alteration Indicators to Assess River Morphological Quality: Case Study of the Prahova River (Romania

    Directory of Open Access Journals (Sweden)

    Gabriela Ioana-Toroimac

    2015-06-01

    Full Text Available River morphological quality assessment, derived from quantification of human pressures as well as river channel alteration, is a demand of the Water Framework Directive (WFD in terms of integrating hydromorphological elements in defining ecological status. Our study’s aim is to contribute to the hydromorphological evaluation by proposing indicators and separating classes, based on a revisited Morphological Quality Index (rMQI protocol. The rMQI is based on 12 indicators of human pressures, 10 indicators of channel form adjustments, and 11 indicators of functionality. The rMQI scoring system allows for the quantification of changes when compared to reference conditions, be they undisturbed or nearly undisturbed by human interventions, with absent channel adjustments and a functioning natural river style. We used the lower, meandering sector of the Prahova River to demonstrate our assessment methodology. The Lower Prahova River suffers from a minor local intervention and a diminishing intensity of fluvial processes specific to a meandering style. Meanders geometry was affected by significant changes that included a decrease in the radius of curvature, width and width–to–mean–depth ratio. We concluded that the Lower Prahova River has a good morphological quality, which is rated as second class on a scale of five levels, from natural to severely modified. We recommend an improvement in the hydromorphological evaluation protocol in Romania by additional indicators for morphological alterations specific to each channel pattern.

  7. Adaptive assessment and management of riverine ecosystems: the Crocodile/Elands River case study

    CSIR Research Space (South Africa)

    Roux, DJ

    1999-10-01

    Full Text Available to assess the collected data relative to a reference state, homogeneous river segments were identified. Each segment was classified in terms of its relative ecological integrity, based on three biological indicators (fish, benthic invertebrates, riparian...

  8. Science, law, and Hudson River power plants: A case study in environmental impact assessment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Klauda, R.J.; Vaughan, D.S.; Kendall, R.L.

    1988-01-01

    Between 1963 and 1980, the Hudson River estuary was the focus of one of the most ambitious environmental research and assessment programs ever performed. The studies supported a series of US federal proceedings involving licenses and discharge permits for two controversial electric power generating facilities: the Cornwall pumped storage facility, and units 2 and 3 of the Indian Point nuclear generating station. Both facilities were to draw large volumes of water from a region of the Hudson used as spawning and nursery habitat by several fish species, including the striped bass. Fishermen and conservationists feared that a major fraction of the striped bass eggs and larvae in the Hudson would be entrained with the pumped water and killed. Additional fish would be killed on trash screens at the intakes. Scientists were asked to aid the utility companies and regulatory agencies in determining the biological importance of entrainment and impingement. This monograph contains both technical papers that present research results and synthesis papers that summarize and interpret the results. The intent was to: (1) summarize the scientific issues and approaches; (2) present the significant results of the Hudson River biological studies; (3) describe the role of the studies in the decision-making process; (4) evaluate the successes and failures of the studies; and (5) present recommendations for future estuarine impact assessments. Separate abstracts are processed for 22 papers for inclusion in the appropriate data bases

  9. Environmental Impact Assessment of Sand Mining from the Small Catchment Rivers in the Southwestern Coast of India: A Case Study

    Science.gov (United States)

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from instream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the instream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty-1 of sand (8.764 million ty-1 of instream sand and 2.763 million ty-1 of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its

  10. Importance of background values in assessing the impact of heavy metals in river ecosystems: case study of Tisza River, Serbia.

    Science.gov (United States)

    Štrbac, Snežana; Kašanin Grubin, Milica; Vasić, Nebojša

    2017-11-30

    The main objective of this paper is to evaluate how a choice of different background values may affect assessing the anthropogenic heavy metal pollution in sediments from Tisza River (Serbia). The second objective of this paper is to underline significance of using geochemical background values when establishing quality criteria for sediment. Enrichment factor (EF), geoaccumulation index (I geo ), pollution load index (PLI), and potential ecological risk index (PERI) were calculated using different background values. Three geochemical (average metal concentrations in continental crust, average metal concentrations in shale, and average metal concentrations in non-contaminated core sediment samples) and two statistical methods (delineation method and principal component analyses) were used for calculating background values. It can be concluded that obtained information of pollution status can be more dependent on the use of background values than the index/factor chosen. The best option to assess the potential river sediment contamination is to compare obtained concentrations of analyzed elements with concentrations of mineralogically and texturally comparable, uncontaminated core sediment samples. Geochemical background values should be taken into account when establishing quality criteria for soils, sediments, and waters. Due to complexity of the local lithology, it is recommended that environmental monitoring and assessment include selection of an appropriate background values to gain understanding of the geochemistry and potential source of pollution in a given environment.

  11. Species for the screening assessment. Columbia River Comprehensive Impact Assessment

    International Nuclear Information System (INIS)

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O'Neil, T.K.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area

  12. Species for the screening assessment. Columbia River Comprehensive Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O`Neil, T.K.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area.

  13. Pilot study risk assessment for selected problems at the Savannah River Site (SRS)

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.; Morris, S.C.; Pardi, R.; Sun, C.; Daniels, J.I.; Layton, D.; McKone, T.E.; Straume, T.; Anspaugh, L.

    1993-03-01

    An assessment of the health risks was made for releases of tritium and 137 Cs from the Savannah River Site (SRS) at water-receptor locations downriver. Although reactor operations were shut down at the SRS in 1989, liquid wastes continue to be released to the Savannah River either by direct discharges into onsite surface waters or by groundwater transport into surface waters from waste facilities. Existing state mandates will cause the liquid waste streams from future operations to go directly into surface waters. Two drinking water processing plants take water from the river approximately 129 km downriver from the SRS. Potential incremental risks of cancer fatality to individuals and each population were analyzed for either no further reactor operations or resumption of operation of one specific reactor

  14. Pilot study risk assessment for selected problems at the Savannah River Site (SRS)

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.; Morris, S.C.; Pardi, R.; Sun, C. [Brookhaven National Lab., Upton, NY (United States); Daniels, J.I.; Layton, D.; McKone, T.E.; Straume, T.; Anspaugh, L. [Lawrence Livermore National Lab., CA (United States)

    1993-03-01

    An assessment of the health risks was made for releases of tritium and {sup 137}Cs from the Savannah River Site (SRS) at water-receptor locations downriver. Although reactor operations were shut down at the SRS in 1989, liquid wastes continue to be released to the Savannah River either by direct discharges into onsite surface waters or by groundwater transport into surface waters from waste facilities. Existing state mandates will cause the liquid waste streams from future operations to go directly into surface waters. Two drinking water processing plants take water from the river approximately 129 km downriver from the SRS. Potential incremental risks of cancer fatality to individuals and each population were analyzed for either no further reactor operations or resumption of operation of one specific reactor.

  15. Pilot study risk assessment for selected problems at the Savannah River Site (SRS)

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.; Morris, S.C.; Pardi, R.; Sun, C. (Brookhaven National Lab., Upton, NY (United States)); Daniels, J.I.; Layton, D.; McKone, T.E.; Straume, T.; Anspaugh, L. (Lawrence Livermore National Lab., CA (United States))

    1993-03-01

    An assessment of the health risks was made for releases of tritium and [sup 137]Cs from the Savannah River Site (SRS) at water-receptor locations downriver. Although reactor operations were shut down at the SRS in 1989, liquid wastes continue to be released to the Savannah River either by direct discharges into onsite surface waters or by groundwater transport into surface waters from waste facilities. Existing state mandates will cause the liquid waste streams from future operations to go directly into surface waters. Two drinking water processing plants take water from the river approximately 129 km downriver from the SRS. Potential incremental risks of cancer fatality to individuals and each population were analyzed for either no further reactor operations or resumption of operation of one specific reactor.

  16. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities.

    Science.gov (United States)

    Peng, Guyu; Xu, Pei; Zhu, Bangshang; Bai, Mengyu; Li, Daoji

    2018-03-01

    Microplastics, which are plastic debris with a particle diameter of less than 5 mm, have attracted growing attention in recent years. Its widespread distributions in a variety of habitats have urged scientists to understand deeper regarding their potential impact on the marine living resources. Most studies on microplastics hitherto are focused on the marine environment, and research on risk assessment methodology is still limited. To understand the distribution of microplastics in urban rivers, this study investigated river sediments in Shanghai, the largest urban area in China. Seven sites were sampled to ensure maximum coverage of the city's central districts, and a tidal flat was also included to compare with river samples. Density separation, microscopic inspection and μ-FT-IR analysis were conducted to analyze the characteristics of microplastics and the type of polymers. The average abundance of microplastics in six river sediment samples was 802 items per kilogram of dry weight. The abundance in rivers was one to two orders of magnitude higher than in the tidal flat. White microplastic spheres were most commonly distributed in river sediments. Seven types of microplastics were identified, of which polypropylene was the most prevailing polymers presented. The study then conducted risk assessment of microplastics in sediments based on the observed results, and proposed a framework of environmental risk assessment. After reviewing waste disposal related legislation and regulations in China, this study conclude that in situ data and legitimate estimations should be incorporated as part of the practice when developing environmental policies aiming to tackle microplastic pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: a case study.

    Science.gov (United States)

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from in-stream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the in-stream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty(-1) of sand (8.764 million ty(-1) of in-stream sand and 2.763 million ty(-1) of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its

  19. SOCIAL PARTICIPATION IN THE ENVIRONMENTAL FLOW ASSESSMENT: THE SÃO FRANCISCO RIVER CASE STUDY

    Directory of Open Access Journals (Sweden)

    Yvonilde Dantas Pinto Medeiros

    2013-03-01

    Full Text Available Traditionally, water resource management has been developed using an essentially technical approach. Currently, public opinion on water resource management is formed as a result of growing environmental concerns and social conflicts arising from poorly planned actions. Environmental problems are complex and have multiple dimensions, including social and economic. Therefore, the inclusion of a human dimension in integrated assessment methodologies is required for the introduction of new elements to the water management planning process. Environmental water allocation (EWA is understood as the quantity, quality and distribution of water required for the maintenance of the functions and processes of aquatic ecosystems on which people depend. Within the various holistic assessment methodologies, the Building Block Methodology (BBM was found to be the most suitable, in the Brazilian context, for maintaining and restoring essential elements of the natural flow regime. This article describes the process of social participation in the environmental flow assessment (EFA for the Sao Francisco River, and compares it with some of the lessons learned from EFA in other parts of the world. The process involved multiple stakeholders who have conflicting interests. BBM was used to guide the field interviews, to incorporate the empirical observations by the local population and to guide the methodological procedures of the multidisciplinary team. The results of the study indicate the effectiveness of this holistic approach in organizing the elements to be evaluated. It also facilitated important contributions to the establishment of a dialogue between the actors to achieve a better understanding of the multiple aspects involved in the decisions associated with the EWA.

  20. Microplastics in Freshwater River Sediments in Shanghai, China: A Case Study of Risk Assessment in Mega Cities

    Science.gov (United States)

    Peng, G.; Xu, P.

    2017-12-01

    Microplastics are plastics that measure less than 5 mm, which attracted exponential interest in recent years. Microplastics are widely distributed in water, sediments, and biotas. Most of distribution studies focus on the marine environment, yet methods to conduct risk assessment are limited. Widespread of microplastics has raised alarm for the well-being of marine living resources because of its negative ecological effects that has been proved. To understand the distribution of microplastics in urban rivers and source of marine microplastics, we investigated into river sediments in Shanghai, the biggest city in China. Seven sampling sites covered most of city central districts including one sampling site from a tidal flat. Density separation, microscopic inspection and identification were conducted to analyze microplastic abundance, shape and color. It is found that pellets were the most prevalent shape, followed by fiber and fragment. White microplastics were the most common type in terms of color. White foamed microplastic pellets were widely distributed in urban river sediments. Microplastic abundance from rivers was one to two orders of magnitude higher than that from the tidal flat. The significant difference between river and tidal flat samples lead to the conclusion that coastal rivers may be the source of microplastics, therefore in situ data and legitimate estimation should be considered by policy-makers. Seven types of microplastics were identified by μ-FT-IR analysis, indicating a secondary source. Comparison between two types of μ-FT-IR instruments was summarized. Framework for environmental risk assessment for microplastics in sediments was proposed. Indicators and ranks were select for the assessment of microplastic in sediments. It is recommended to select the index, integrate statistical data, follow expert opinions extensively and construct comprehensive evaluation method and ecological risk assessment system for the Chinese context.

  1. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China.

    Science.gov (United States)

    Peng, Feng-Jiao; Pan, Chang-Gui; Zhang, Min; Zhang, Nai-Sheng; Windfeld, Ronja; Salvito, Daniel; Selck, Henriette; Van den Brink, Paul J; Ying, Guang-Guo

    2017-07-01

    Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting compounds (EDCs), and 17 pharmaceuticals and personal care products (PPCPs)) in six urban rivers of a representative subtropical city, Guangzhou (southern China). Our results showed that EDCs and personal care products were frequently detected in the water phase and sediment phase. 4-nonylphenol (4-NP) was the most predominant compound with the highest concentration of 5050ng/L in the water phase and 14,400ng/g dry weight (dw) in the sediment. Generally, higher total concentrations of EDCs and PPCPs were detected in the four urban streams compared to the main stream Zhujiang River and the Liuxi River at the suburb area. A screening-level risk assessment showed that 4-nonylphenol and triclosan (TCS) pose potential risks to aquatic organisms in most sampling sites. For individual taxa, 4-NP may pose risks to various groups of aquatic organisms, while TCS only might pose high risks to algae. Higher contamination of EDCs and PPCPs was observed in rivers in urban area; 4-nonylphenol and triclosan showed RQs>1 in >70% of the reported area. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Canadian Environmental Assessment Act : A comprehensive study report on the partial diversion of the Portneuf River

    International Nuclear Information System (INIS)

    2002-04-01

    This report provides the results of an environmental assessment of Hydro-Quebec's proposed project to partially divert the Portneuf River toward the Bersimis Complex in Quebec's North Shore Region. The complex includes the Pipmuacan Reservoir and the Bersimis-1 and Bersimis-2 power plants. The project will involve the construction of a dam between Itomamo and Portneuf Lakes, plus the construction of a control structure at the outflow of Portneuf Lake. Rehabilitation and construction of access roads will also be required. The diverted average annual discharge will be 9.9 m3/s after the application of mitigative measures. Currently the water is turbined in three power stations of the Portneuf River, but it will be more productive when it is turbined in only two power stations of the Bersimis Complex. The annual power generation of the Bersimis Complex would increase to an average of 262 GWH. Average annual generation of the Portneuf River power plant would decrease by about 15 GWH, with a net gain for Hydro-Quebec of 247 GWH. The partial diversion will result in the decline in water levels and in exposure of the riverbed in some locations and will incur a loss of fish habitat productive capacity. Mitigative measures are in place to take corrective action when necessary. This report outlined the current use of lands and resources for traditional purposes by Aboriginals. It also discussed the effects of natural events such as flooding, waves and climate that may cause damage to the facilities. It was determined that the project is not likely to cause significant effects on the renewable resources of the forest and the fisheries. The Department of Fisheries and Oceans, after having taking into account proposed mitigation measures, has rendered a preliminary conclusion which states that the project is not likely to have significant negative environmental effects. This decision will be reconsidered after a public consultation period. 46 refs., 2 appendices

  3. Susceptibility assessment of debris flows using the analytic hierarchy process method − A case study in Subao river valley, China

    Directory of Open Access Journals (Sweden)

    Xingzhang Chen

    2015-08-01

    Full Text Available Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation. This paper studies one of the worst hit areas, the Subao river valley, and the susceptibility assessment of debris flows is performed based on field surveys and remote sensing interpretation. By investigating the formation conditions of debris flows in the valley, the following assessment factors are selected: mixture density of landslides and rock avalanches, distance to the seismogenic fault, stratum lithology, ground roughness, and hillside angle. The weights of the assessment factors are determined by the analytic hierarchy process (AHP method. Each of the assessment factors is further divided into five grades. Then, the assessment model is built using the multifactor superposition method to assess the debris flow susceptibility. Based on the assessment results, the Subao river valley is divided into three areas: high susceptibility areas, medium susceptibility areas, and low susceptibility areas. The high susceptibility areas are concentrated in the middle of the valley, accounting for 17.6% of the valley area. The medium susceptibility areas are in the middle and lower reaches, most of which are located on both sides of the high susceptibility areas and account for 45.3% of the valley area. The remainders are classified as low susceptibility areas. The results of the model are in accordance with the actual debris flow events that occurred after the earthquake in the valley, confirming that the proposed model is capable of assessing the debris flow susceptibility. The results can also provide guidance for reconstruction planning and debris flow prevention in the Subao river valley.

  4. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  5. Assessing river health in Europe and Switzerland

    Science.gov (United States)

    Milano, Marianne; Chèvre, Nathalie; Reynard, Emmanuel

    2017-04-01

    River conditions and welfare of aquatic ecosystems are threatened by anthropogenic and climatic changes. The release of personal-care products, pharmaceuticals and crop protection products is increasing and climate change is likely to cause significant changes in hydrological regimes affecting water resources' capacity to dissolve pollutants. Assessing river health, i.e. the ability of a river to support and maintain a balanced ecosystem close to the natural habitat, is thus of major concern to ensure the development of ecosystems and to provide enough clean useable water to users. Such studies involve physical, chemical and biological processes and characteristics. In Europe and Switzerland, standardized procedures have been developed to assess the hydromorphological, ecological and toxicological status of rivers. The European Water Framework Directive sets ecological requirements and chemical guidelines while the Swiss Modular Stepwise Procedure suggests methods to apprehend ecological deficits and promote water management plans. In this study, both procedures were applied and compared in order (i) to address their capacity to follow-up the spatial and temporal variability of the river's water quality and (ii) to identify challenges that still need to be addressed to assess river's health. Applied on the Boiron River (canton of Vaud, Switzerland) for a 11-year period (2005-2015), both frameworks highlight that no section of the river currently meets a good environmental state. This river flows through a diversified agricultural area causing a progressive deterioration of its chemical and biological quality. The two methods also identify two periods of time with significant changes of the river's water quality. The 2009-2011 period is characterized by a significant deterioration of the river's ecological and toxicological state due to severe low flows and an increased use of pesticides. However, since 2013, an improvement in water quality is identified in

  6. Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam – A case study of the Nhue-Day River Basin

    Directory of Open Access Journals (Sweden)

    Phan Cao Duong

    2016-09-01

    Full Text Available Global warming has caused dramatic changes in regional climate variability, particularly regarding fluctuations in temperature and rainfall. Thus, it is predicted that river flow regimes will be altered accordingly. The purpose of this paper is to present the results of modeling such changes by simulating discharge using the HEC-HMS model. The precipitation was projected using super-high resolution multiple climate models (20 km resolution with newly updated emission scenarios as the input for the HEC-HMS model for flow analysis at the Red River Basin in the northern area of Vietnam. The findings showed that climate change impact on the river flow regimes tend towards a decrease in the dry season and a longer duration of flood flow. A slight runoff reduction is simulated for November while a considerable runoff increase is modeled for July and August amounting to 30% and 25%, respectively. The discharge scenarios serve as a basis for water managers to develop suitable adaptation methods and responses on the river basin scale.

  7. Watershed planning, implementation and assessment: the May River Watershed Action Plan case study

    Science.gov (United States)

    Kimberly W. Jones; Christopher L. Ellis; Jeremy S. Ritchie

    2016-01-01

    Prior to exponential growth in the early to mid-2000s, the Town of Bluffton, SC was one square mile; as of 2015, it is approximately 55 square miles. Associated with this growth was a shellfish harvesting closure for nearly onethird of the May River in 2009. The Town and its partners developed and began to implement the May River Watershed Action Plan in 2011. The plan...

  8. Comparison Between Water Quality Index (WQI) and Biological Water Quality Index (BWQI) for Water Quality Assessment: Case Study of Melana River, Johor

    International Nuclear Information System (INIS)

    Nor Zaiha Arman; Mohd Ismid Mohd Said; Shamila Azman; Muhammad Hazim Mat Hussin

    2013-01-01

    A study of water quality in Melana River, Johor was carried out in three consecutive months (March - May 2012). This study aims to determine the comparative results through biological monitoring as well as conventional method (physical and chemical analysis). Assessment is carried out through collection and identification of the biological indicator which comprises of macro benthos based on Biological Water Quality Index (BWQI). Comparison was done based on two methods namely invertebrate analysis and also laboratory analysis. For invertebrate analysis, Melana River consist of three types of Family groups namely Nymphs, Larvae and Molluscs. The result for Water Quality Index (WQI) and also Biological Water Quality Index (BWQI) analysis showed that the level of Melana River is polluted and classified in Class III. This study shows that even though different methods were used, the similar results were obtained for both rivers and can be applied to any river to identify their level of cleanliness. (author)

  9. Natural Resource Damage Assessment in highly impacted systems: A case study of the Anacostia River oil spill

    International Nuclear Information System (INIS)

    Pinkney, A.E.; Frithsen, J.B.; Burton, W.H.; Scott, L.C.; Siciliano, J.

    1993-01-01

    An approach and case study are presented to assessing natural resource damages due to additional perturbations in highly disturbed systems. The approach involves: (1) defining chemical characteristics unique to the additional perturbation, (2) identifying specific natural resources that may be sensitive to the additional perturbation and the most appropriate sampling period for each, and (3) using existing data to characterize previous conditions. This approach was used to assess the residual effects of a January 1992 spill of 3,400 gallons of number-sign 4 fuel oil in the Anacostia River, Washington, DC. Water quality is poor due to continuing inputs from urban runoff; one upstream tributary (Hickey Run) has a fifty year history of chronic oil spills and stormwater runoff of oil and grease. The challenge was to isolate possible spill impacts from those due to chronic pollutant inputs. GC/FID fingerprinting analyses were used to characterize spill material and hydrocarbons found in the spill area and two adjacent reference areas. Fish larvae (ichthyoplankton) and benthic invertebrates were identified as biological resources most likely to demonstrate residual effects. Results indicated that there were insignificant amounts of the hydrocarbons from the spill in the water, sediments, and biota of the river, and no residual impacts on biological resources could be identified

  10. Assessment of dam construction impact on hydrological regime changes in lowland river – A case of study: the Stare Miasto reservoir located on the Powa River

    Directory of Open Access Journals (Sweden)

    Sojka Mariusz

    2016-09-01

    Full Text Available The purpose of the presented research is analysis and assessment of the Stare Miasto reservoir impact on the hydrological regime changes of the Powa River. The reservoir was built in 2006 and is located in the central part of Poland. The total area of inundation in normal conditions is 90.68 ha and its capacity is 2.159 mln m3. Hydrological regime alteration of the Powa River is analysed on the basis of daily flows from the Posoka gauge station observed during period 1974–2014. Assessment of hydrological regime changes is carried out on the basis of Range of Variability Approach (RVA method. All calculations are made by means of Indicators of Hydrologic Alteration (IHA software version 7.1.0.10. The analysis shows that the Stare Miasto reservoir has a moderate impact on hydrological regime of the Powa River. Construction of the reservoir has positive effect on stability of minimal flows, which are important for protection of river ecosystems. The results obtained indicate that the Stare Miasto reservoir reduces a spring peak flow and enables to moderate control of floods.

  11. River Courses Affected by Landslides and Implications for Hazard Assessment: A High Resolution Remote Sensing Case Study in NE Iraq–W Iran

    Directory of Open Access Journals (Sweden)

    Arsalan A. Othman

    2013-03-01

    Full Text Available The objective of this study is to understand the effect of landslides on the drainage network within the area of interest. We thus test the potential of rivers to record the intensity of landslides that affected their courses. The study area is located within the Zagros orogenic belt along the border between Iraq and Iran. We identified 280 landslides through nine QuickBird scenes using visual photo-interpretation. The total landslide area of 40.05 km2 and their distribution follows a NW–SE trend due to the tectonic control of main thrust faults. We observe a strong control of the landslides on the river course. We quantify the relationship between riverbed displacement and mass wasting occurrences using landslide sizes versus river offset and hypsometric integrals. Many valleys and river channels are curved around the toe of landslides, thus producing an offset of the stream which increases with the landslide area. The river offsets were quantified using two geomorphic indices: the river with respect to the basin midline (Fb; and the offset from the main river direction (Fd. Hypsometry and stream offset seem to be correlated. In addition; the analysis of selected river courses may give some information on the sizes of the past landslide events and therefore contribute to the hazard assessment.

  12. ASSESSMENT OF RIVER WATER QUALITY USING MACRO-INVERTEBRATES AS INDICATORS: A CASE STUDY OF BHALU KHOLA TRIBUTARY, BUDHIGANDAKI RIVER, GORKHA, NEPAL

    Directory of Open Access Journals (Sweden)

    Anju Rana

    2015-08-01

    Full Text Available  Macroinvertebrates are widely considered as indicators of water quality. The present research work was conducted in Bhalu khola, a tributary of Budhigandaki River, Nepal, to identify water quality using macro invertebrates with Nepalese Biotic Score (NEPBIOS, and examine its applicability by comparing with Water Quality Index (WQI.The diversity of macro invertebrates in the studied river was high as depicted by Shannon Wiener Diversity Index. Altogether, 103 macro invertebrates were identified from 11 families and five orders. There were no dominant species, and most of the species were in clumped distribution. According to NEPBIOS index, river water was found to comply with the characteristics of WQ class I-II that means water quality of the river was good. Other indices such as Hilsenhoff and Lincoln quality index (LQI index also supported this result. Similarly, water quality index (WQI also showed similarity with NEPBIOS index, indicating water appropriate for drinking purpose. Thus, it is concluded that the macro invertebrates can be used as economic tools for determining water quality of streams and rivers as efficient water quality indicators.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 55-68

  13. Development and validation of a bacteria-based index of biotic integrity for assessing the ecological status of urban rivers: A case study of Qinhuai River basin in Nanjing, China.

    Science.gov (United States)

    Li, Jie; Li, Yi; Qian, Bao; Niu, Lihua; Zhang, Wenlong; Cai, Wei; Wu, Hainan; Wang, Peifang; Wang, Chao

    2017-07-01

    With the increasing human disturbance to urban rivers, the extinction and biodiversity losses of some macroorganism species decreased the accuracy of bioassessment. In this study, a novel index of biotic integrity based on bacteria (Ba-IBI) was first developed for Qinhuai River in Nanjing city, China. Thirty-two biofilm samples were collected along the river bank and the bacterial communities were identified by high-throughput sequencing. By the range, responsive, and redundancy tests, four core metrics were selected from the dataset of 78 candidate metrics, including Pielou's evenness index, proportion of Paenibacillus, proportion of OTUs tolerant to organic pollution and proportion of Nitrosomonas. The results showed that the Ba-IBI was able to effectively discriminate different impaired site groups, and had a good correlation with the index of water quality (r = 0.79, p river. Our study revealed that the Ba-IBI is an effective and reliable approach for assessing the ecological status of Qinhuai River basin, which can complement the existing ecological assessment approaches for urban rivers. Meanwhile, repeted surveys and field validations are still needed to further improve the applicability of the index in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2016-02-01

    Full Text Available Trace metals contamination of rivers and sediments remains a global threat to biodiversity and humans. This study was carried out to assess the variation pattern in trace metals contamination in Mvudi River water and sediments for the period of January–June 2014. Metal concentrations were analyzed using an inductively-coupled plasma optical emission spectrometer after nitric acid digestion. A compliance study for the water samples was performed using the guidelines of the Department of Water Affairs and Forestry (DWAF of South Africa and the World Health Organization (WHO. The National Oceanic and Atmospheric Administration (NOAA sediment quality guidelines for marine and estuarine sediments and the Canadian Council of Ministers of the Environment sediment guidelines (CCME for freshwater sediments were used to determine the possible toxic effects of the metals on aquatic organisms. pH (7.2–7.7 and conductivity (10.5–16.1 mS/m values complied with DWAF and WHO standards for domestic water use. Turbidity values in nephelometric turbidity units (NTU were in the range of 1.9–429 and exceeded the guideline values. The monthly average levels of trace metals in the water and sediments of Mvudi River were in the range of: Al (1.01–9.644 mg/L and 4296–5557 mg/kg, Cd (0.0003–0.002 mg/L and from below the detection limit to 2.19 mg/kg, Cr (0.015–0.357 mg/L and 44.23–149.52 mg/kg, Cu (0.024–0.185 mg/L and 13.22–1027 mg/kg, Fe (0.702–2.645 mg/L and 3840–6982 mg/kg, Mn (0.081–0.521 mg/L and 279–1638 mg/kg, Pb (0.002–0.042 mg/L and 1.775-4.157 mg/kg and Zn (0.031–0.261 mg/L and 14.481–39.88 mg/kg. The average concentrations of Al, Cr, Fe, Mn and Pb in the water samples exceeded the recommended guidelines of DWAF and WHO for domestic water use. High concentrations of Al and Fe were determined in the sediment samples. Generally, the concentrations of Cd, Cr and Cu in the sediments exceeded the corresponding effect range low

  15. Assessing the Habitat Suitability of Dam Reservoirs: A Quantitative Model and Case Study of the Hantan River Dam, South Korea

    Directory of Open Access Journals (Sweden)

    Hyeongsik Kang

    2016-11-01

    Full Text Available The main objective of this study was to investigate ecologically healthy regions near a dam reservoir. This study developed a model for assessing habitat suitability as a proxy for the ecological value of reservoirs. Three main factors comprising nine assessment variables were selected and classified as having a habitat suitability (HS between 0 and 1: (1 geomorphic factors of altitude, slope steepness, and slope aspect; (2 vegetation factors of forest physiognomy, vegetation type, and tree age; and (3 ecological factors of land cover, ecological quality index, and environmental conservation value assessment. The spatial distribution of the nine HS indices was determined using geographic information systems and combined into one HS index value to determine ecologically healthy regions. The assessment model was applied to areas surrounding the Hantan River Dam, South Korea. To verify the model, wildlife location data from the national ecosystem survey of the Ministry of Environment were used. Areas with an HS index between 0.73 and 1 were found to contain 72% of observed wildlife locations. Ecologically healthy areas were identified by adding the indices of each variable. The methods shown here will be useful for establishing ecological restoration plans for dam reservoirs in South Korea.

  16. Assessing Local Communities’ Willingness to Pay for River Network Protection: A Contingent Valuation Study of Shanghai, China

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2012-10-01

    Full Text Available River networks have experienced serious degradation because of rapid urbanization and population growth in developing countries such as China, and the protection of these networks requires the integration of evaluation with ecology and economics. In this study, a structured questionnaire survey of local residents in Shanghai (China was conducted in urban and suburban areas. The study examined residents’ awareness of the value of the river network, sought their attitude toward the current status, and employed a logistic regression analysis based on the contingent valuation method (CVM to calculate the total benefit and explain the socioeconomic factors influencing the residents’ willingness to pay (WTP. The results suggested that residents in Shanghai had a high degree of recognition of river network value but a low degree of satisfaction with the government’s actions and the current situation. The study also illustrated that the majority of respondents were willing to pay for river network protection. The mean WTP was 226.44 RMB per household per year. The number of years lived in Shanghai, the distance from the home to the nearest river, and the amount of the bid were important factors that influenced the respondents’ WTP. Suggestions for comprehensive management were proposed for the use of policy makers in river network conservation.

  17. Canadian Environmental Assessment Act : A comprehensive study report on the partial diversion of the Sault aux Cochons River

    International Nuclear Information System (INIS)

    2002-04-01

    This report presents the results of an environmental assessment of Hydro-Quebec's proposed project to partially divert the waters of the Sault aux Cochons River to the Pipmuacan Reservoir through the Lionnet River. It also includes the results of public consultations conducted by Hydro-Quebec and of those held by the Bureau d'audience publiques sur l'environnement. The main environmental effects were summarized, including the cumulative effects and the effects caused by accidents and malfunctions that may occur. In addition, the terms and conditions of mitigation measures and follow-up programs were described and the significance of any environmental impacts were assessed. This project will increase the inflow of the Pipmuacan Reservoir, the main reservoir of the Bersimis complex on the Betsiamites River. The diverted water will produce more electricity when it is generated in the two power stations at the Bersimis complex than it does it does currently in the three power stations of the Sault aux Cochons River. Following mitigative measures, an average annual discharge of 6.5 m 3 /s will be diverted from the Sault aux Cochons River to the Lionnet River. A minimum flow of 1 m / s is anticipated. The proposal allows for more water to be diverted to the Pipmuacan reservoir to optimize the operation of existing power generating stations. This report outlined the current use of lands and resources for traditional purposes by Aboriginals. It also discussed the effects of natural events such as flooding, waves and climate that may cause damage to the facilities. It was determined that the project is not likely to cause significant effects on the renewable resources of the forest and the fisheries. The Department of Fisheries and Oceans, after having taking into account proposed mitigation measures, has rendered a preliminary conclusion which states that the project is not likely to have significant negative environmental effects. This decision will be reconsidered after

  18. Interdisciplinary Approach for Assessment of Continental River Flood Risk: A Case Study of the Czech Republic

    Science.gov (United States)

    Ushiyama, Tomoki; Kwak, Youngjoo; Ledvinka, Ondřej; Iwami, Yoichi; Danhelka, Jan

    2017-04-01

    In this research, GIS-based hydrological model-driven approach produces the distribution of continent-level flood risk based on national-level GIS data. In order to reveal flood hazard, exposure, and vulnerability in a large river basin, the system employs the simplified model such as GFiD2M (Global Flood inundation Depth 2-dimension Model) to calculate the differential inundation depth and the economic loss by pixel-based statistical processing, considering climate and socioeconomic scenarios, the representative concentration pathways emissions and the shared socioeconomic pathways, despite current limitations of data collections and poor data availability. We need new approaches to seek the possibility of its national-scale application, so that the framework can bring (1) improved flood inundation map (i.e., discharge, depth, velocity) using rainfall runoff inundation model, based on the in-situ data (rain-gauge and water level), validated with Earth Observation data, i.e., MODIS, (2) advanced flood forecasting using radar and satellite observed rainfall for national-level operational hydrological observations, (3) potential economic impact with the effect of flood hazard and risk under climate and socioeconomic changes based on rainfall from general circulation model. The preliminary examinations showed the better possibility of a nation-wide application for integrated flood risk management. At the same time, the hazard and risk model were also validated against event-based flood inundation of a national-level flood in the Czech Republic. Within the Czech Republic, although radar rainfall data have been used in operational hydrology for some time, there are also other products capable of warning us about the potential risk of floods. For instance, images from Europe's Sentinel satellites have not been evaluated for their use in Czech hydrology. This research is at the very beginning of a validation and its evaluation, focusing mainly on heavy rainfall and

  19. Research on Nonpoint Source Pollution Assessment Method in Data Sparse Regions: A Case Study of Xichong River Basin, China

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-01-01

    Full Text Available The NPS pollution is difficult to manage and control due to its complicated generation and formation mechanism, especially in the data sparse area. Thus the ECM and BTOPMC were, respectively, adopted to develop an easy and practical assessment method, and a comparison between the outputs of them is then conducted in this paper. The literature survey and field data were acquired to confirm the export coefficients of the ECM, and the loads of TN and TP were statistically analyzed in the study area. Based on hydrological similarity, runoff data from nearby gauged sites were pooled to compensate for the lack of at-site data and the water quality submodel of BTOPMC was then applied to simulate the monthly pollutant fluxes in the two sections from 2010 to 2012. The results showed agricultural fertilizer, rural sewage, and livestock and poultry sewage were the main pollution sources, and under the consideration of self-purification capacity of river, the outputs of the two models were almost identical. The proposed method with a main thought of combining and comparing an empirical model and a mechanistic model can assess the water quality conditions in the study area scientifically, which indicated it has a good potential for popularization in other regions.

  20. Emergy Synthesis and Regional Sustainability Assessment: Case Study of Pan-Pearl River Delta in China

    Directory of Open Access Journals (Sweden)

    Guomin Li

    2014-08-01

    Full Text Available In this paper, emergy analysis is used in association with the ternary diagrams and geographic information system (GIS tools to improve the evaluation of sustainability for the Pan-Pearl River Delta (PPRD region. Emergy accounting of PPRD is estimated, and various emergy-based indicators are reported. Ternary diagrams are drawn to provide a graphical representation of the emergy accounting data. Finally, the GIS tools are employed to assist in the emergy-based spatial analysis, and emergy density based on flat land area is mapped to reflect the intensity of emergy use in human activity areas. Results show the following: (1 the current development path of the PPRD region, with the value of emergy sustainability index (ESI = 0.227 significantly lower than one, is unsustainable in the long run; (2 Guangdong has the lowest ESI value (0.071, and the ESI values of Fujian, Guangxi, Hunan and Jiangxi are lower than 0.5, indicating that the economy in these provinces overly relies on non-renewable and imported resources; (3 Guizhou has a high emergy yield rate and is thus the main energy supplier in PPRD; and (4 among the nine provinces in PPRD, only Hainan has an ESI value (2.145 higher than one.

  1. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River.

    Science.gov (United States)

    Haregeweyn, Nigussie; Tsunekawa, Atsushi; Poesen, Jean; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Fenta, Ayele Almaw; Nyssen, Jan; Adgo, Enyew

    2017-01-01

    In the drought-prone Upper Blue Nile River (UBNR) basin of Ethiopia, soil erosion by water results in significant consequences that also affect downstream countries. However, there have been limited comprehensive studies of this and other basins with diverse agroecologies. We analyzed the variability of gross soil loss and sediment yield rates under present and expected future conditions using a newly devised methodological framework. The results showed that the basin generates an average soil loss rate of 27.5tha -1 yr -1 and a gross soil loss of ca. 473Mtyr -1 , of which, at least 10% comes from gully erosion and 26.7% leaves Ethiopia. In a factor analysis, variation in agroecology (average factor score=1.32) and slope (1.28) were the two factors most responsible for this high spatial variability. About 39% of the basin area is experiencing severe to very severe (>30tha -1 yr -1 ) soil erosion risk, which is strongly linked to population density. Severe or very severe soil erosion affects the largest proportion of land in three subbasins of the UBNR basin: Blue Nile 4 (53.9%), Blue Nile 3 (45.1%), and Jema Shet (42.5%). If appropriate soil and water conservation practices targeted ca. 77.3% of the area with moderate to severe erosion (>15tha -1 yr -1 ), the total soil loss from the basin could be reduced by ca. 52%. Our methodological framework identified the potential risk for soil erosion in large-scale zones, and with a more sophisticated model and input data of higher spatial and temporal resolution, results could be specified locally within these risk zones. Accurate assessment of soil erosion in the UBNR basin would support sustainable use of the basin's land resources and possibly open up prospects for cooperation in the Eastern Nile region. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  2. Assessment of risk to aquatic biota from elevated salinity -- a case study from the Hunter River, Australia.

    Science.gov (United States)

    Muschal, Monika

    2006-05-01

    An ecological risk assessment was performed on salinity levels of the Hunter River and its tributaries to respond to concerns that high salinity may be damaging aquatic ecosystems. Probabilistic techniques were used to assess likelihood and consequence, and hence the risk to aquatic biota from salinity. Continuous electrical conductivity distributions were used to describe the likelihood that high salinity would occur (exposure dataset) and toxicity values were compiled from the limited literature sources available to describe the consequence of high salinity (effects dataset). The assessment was preliminary in the sense that it modelled risk on the basis of existing data and did not undertake site-specific toxicity testing. Some sections of the Hunter River catchment have geologies that are saline because of their marine origins. Catchment development has increased the liberation rates of salts into surface-waters. Such modifying activities include coal-mining, power generation and land clearing. The aquatic biota of tributaries had a greater risk of impairment from high salinity than that of the Hunter River. High salinities in the tributaries were attributed to the combined factors of naturally saline geologies, increased liberation of salts due to modification of the landscape, and reduced dilution by flushing flows. A salinity guideline trigger value of 1100 mg L(-1) was recommended.

  3. Savannah River Laboratory data banks for risk assessment

    International Nuclear Information System (INIS)

    Durant, W.S.

    1984-01-01

    The Savannah River Laboratory maintains a series of computerized data banks primarily as an aid in probabilistic risk assessment studies for the Savannah River Plant (SRP) facilities. These include component failure rates, generic incidents, and reports of specific deviations from normal operating conditions. In addition to providing data for probability studies, these banks have served as a valuable aid in trend analyses, equipment histories, process hazards analyses, consequence assessments, incident audits, process problem solving, and training

  4. Land use changes assessment using spatial data: Case study in Cong river basin - Thai Nguyen City - Viet Nam

    Science.gov (United States)

    Nguyen, Hieu

    Land use changes are being interested in most countries, especially in developing countries. Because land use changes always impacts on sustainable development not only in a region or a country but also in whole the world. Viet Nam is a developing country, in the last 10 years, land uses have rapidly changed in most provinces. Many of agriculture areas, forest areas have changed for various purposes as urban sprawl, establishing new industrial parks, public areas, mining and other land uses relate to human activities or economic function associated with a specific piece of land. Beside efficiencies of economic and society, then environment issues have been threatening serious pollution, are from land use changes. Remote sensing images application on studying land use changes, has been done in many countries around the world, and has brought high efficiencies. However, this application is still very new and limited in Viet Nam due to lacking of materials, tools, experts of remote sensing. This study used spatial data as Landsat TM images, SPOT5 images and land use planning maps to rapidly assess on happenings of land uses in the period 2000 -2010 in Cong river basin (Thai Nguyen City, Viet Nam), and to forecast the changes of land uses in the period 2010 - 2020. The results had a good accuracy and to be important references for authorities, policy makers in local land use.

  5. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    Science.gov (United States)

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  6. The Assessment of Green Water Based on the SWAT Model: A Case Study in the Hai River Basin, China

    Directory of Open Access Journals (Sweden)

    Kui Zhu

    2018-06-01

    Full Text Available Green water accounts for two-thirds of precipitation, and the proportion could be even higher in dry years. Conflicts between water supply and demand have gradually become severe in the Hai River Basin (HRB due to the socio-economic development. Thus, the exploitation and the utilization of green water have attracted increasing attention. By gathering the related hydrological, meteorological, and geographic data, the spatiotemporal distribution of green water in HRB and the impacts of land use types on green water are analyzed based on the SWAT (Soil and Water Assessment Tool model in this study. Furthermore, three new indices are proposed for evaluation, including the maximum possible storage of green water (MSGW, the consumed green water (CGW, and the utilizable green water (UGW. The results show that (1 the MSGW is relatively low in plain areas and its spatial distribution is significantly associated with the soil type; (2 according to the evaluation results of CGW and UGW in HRB, a further improvement of utilization efficiency of green water could be achieved; (3 in general, the utilization efficiency of precipitation in farmlands is higher than other land use types, which means that the planting of appropriate plants could be helpful to enhance the utilization efficiency of green water. Our results summarize the spatiotemporal distribution of green water resource and provide a reference for water resources management in other water-short agricultural areas.

  7. Flood risk index pattern assessment: case study in Langat River Basin

    African Journals Online (AJOL)

    This study focus on the creation of flood risk index in the study area based on secondary data derived from the Department of Drainage and Irrigation (DID) since 1982-2012. Based on the result, it shows that the water level is the best variable to be taken for the purposed of flood warning alert system as the result for ...

  8. Science, law, and Hudson River power plants: a case study in environmental impact assessment

    National Research Council Canada - National Science Library

    Barnthouse, L. W; Barnthouse, Lawrence W

    1988-01-01

    Scientists spent more than 15 years studying the physical and chemical characteristics and biological productivity of the estuary and documenting the abundance, distribution, and life histories of the major fish species...

  9. Large wood budget assessment along a gravel bed river affected by volcanic eruption: the Rio Blanco study case (Chile).

    Science.gov (United States)

    Oss-Cazzador, Daniele; Iroume, Andres; Lenzi, Mario; Picco, Lorenzo

    2016-04-01

    monitoring in March 2015 permitted to detect the changes and assess the LW budget. Floods flooded mainly the left bank of the active channel, because of the presence of a high bar on the right. The 47,5% of the tagged LW, 54,5 m 3 , was transported downstream by the water flux, but if considering only the surface between the left bank and the high bar on the right, the 91% of tagged LW was transported.. This study increases the ability to quantify wood storage and predict its mobility in a gravel-bed river affected by catastrophic events, improving the opportunity to understand wood transport and budget. This research was funded within the Department TeSAF, University of Padova (Italy) and, by the Chilean research Project FONDECYT 1141064 "Effects of vegetation on channel morphodynamics: a multiscale investigation in Chilean gravel-bed rivers".

  10. Comparative assessment of landslide susceptibility. Case study: the Niraj river basin (Transylvania depression, Romania

    Directory of Open Access Journals (Sweden)

    RoŞca Sanda

    2016-05-01

    Full Text Available This study represents a comparison between two independent models used to evaluate landslide susceptibility in Romania: first, the model derived from the Romanian Governmental Decision no. 447/2003 (H.G. 447 and second, the bivariate statistical analysis. Considering the numerous objections to the first approach, which is also imposed by law, the accuracy of the results was analyzed using an alternative method which takes into consideration the reality from the field to a greater extent (the inventory of the existing landslides. The case study is focused on the Niraj catchment area (658 km2, a representative area for frequent landslide occurrence. The H.G. 447 model implies the estimation of the importance of eight factors involved in landslide occurrence: lithology, geomorphology, structure, hydro-climatic factors, hydrogeology, seismicity, forest cover and the anthropogenic factor. A thematic map was generated and analyzed for each one of the eight factors influencing slope instability and a specific coefficient was assigned. The statistical model, based on the bivariate probability analysis, was applied in order to predict the spatial distribution of the susceptibility classes. The probability of landslide occurrence was estimated based on the assumption that the prediction of the spatial distributions of landslides starts from the existing ones. In order to validate the model, the resulting maps were compared with the existing landslide maps: the relative landslide density index (R and the relative operation curve (ROC value were calculated, which indicate that the statistical model emphasizes a better correlation between the susceptibility classes and the active landslides (ROC value 0.972, the causative factors selected being relevant for the applied models.

  11. Assessment of contamination and origin of metals in mining affected river sediments: A case study of the Aries catchment, Romania

    Directory of Open Access Journals (Sweden)

    Levei Erika

    2014-01-01

    Full Text Available The study presents the current status of contamination with metals (Cu, Cr, Cd, Pb, Ni, Zn, As and their anthropogenic or natural origin in the sediments of the Aries river basin, Romania, affected by mining activities. The results indicated an enrichment of metals in sediments. Different contamination levels were identified on the Aries river and its tributaries. According to sediment quality guidelines and contamination indices, sediments from the Aries river were found to be highly contaminated with Cd, Cu, As, considerably with Zn and moderately with Pb and Ni. The right-bank tributaries were found to be more contaminated than the left-bank affluents, where only a contamination with As of geogenic origin was identified. The Principal Component Analysis allowed to identify five latent factors (86 % total variability reflecting the anthropogenic and natural origins of metals. Arsenic, Cd and partially Pb were found to have a common anthropogenic origin, different from that of Cu. The statistical approach indicated also the geogenic origin of Pb due to its association with Ca, K, Na, Sr. Chromium and Ni were attributed to natural source following their association with Mn, Fe, Al and Mg, respectively.

  12. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques--a case study

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Malik, Amrita; Sinha, Sarita

    2005-01-01

    Multivariate statistical techniques, such as cluster analysis (CA), factor analysis (FA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the data set on water quality of the Gomti river (India), generated during three years (1999-2001) monitoring at eight different sites for 34 parameters (9792 observations). This study presents usefulness of multivariate statistical techniques for evaluation and interpretation of large complex water quality data sets and apportionment of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Three significant groups, upper catchments (UC), middle catchments (MC) and lower catchments (LC) of sampling sites were obtained through CA on the basis of similarity between them. FA/PCA applied to the data sets pertaining to three catchments regions of the river resulted in seven, seven and six latent factors, respectively responsible for the data structure, explaining 74.3, 73.6 and 81.4% of the total variance of the respective data sets. These included the trace metals group (leaching from soil and industrial waste disposal sites), organic pollution group (municipal and industrial effluents), nutrients group (agricultural runoff), alkalinity, hardness, EC and solids (soil leaching and runoff process). DA showed the best results for data reduction and pattern recognition during both temporal and spatial analysis. It rendered five parameters (temperature, total alkalinity, Cl, Na and K) affording more than 94% right assignations in temporal analysis, while 10 parameters (river discharge, pH, BOD, Cl, F, PO 4 , NH 4 -N, NO 3 -N, TKN and Zn) to afford 97% right assignations in spatial analysis of three different regions in the basin. Thus, DA allowed reduction in dimensionality of the large data set, delineating a few indicator parameters responsible for large variations in water quality. Further

  13. Identification of contaminants of concern Columbia River Comprehensive Impact Assessment

    International Nuclear Information System (INIS)

    Napier, B.A.; Batishko, N.C.; Heise-Craff, D.A.; Jarvis, M.F.; Snyder, S.F.

    1995-01-01

    The Columbia River Comprehensive Impact Assessment (CRCIA) Project at the Pacific Northwest Laboratory (PNL) is evaluating the current human and ecological risks from contaminants in the Columbia River. The risks to be studied are those attributable to past and present activities on the Hanford Site. The Hanford Site is located in southcentral Washington State near the town of Richland. Human risk from exposure to radioactive and hazardous materials will be addressed for a range of river use options. Ecological risk will be evaluated relative to the health of the current river ecosystem. The overall purpose of the project is to determine if enough contamination exists in the Columbia River to warrant cleanup actions under applicable environmental regulations. This report documents an initial review, from a risk perspective, of the wealth of historical data concerning current or potential contamination in the Columbia River. Sampling data were examined for over 600 contaminants. A screening analysis was performed to identify those substances present in such quantities that they may pose a significant human or ecological risk. These substances will require a more detailed analysis to assess their impact on humans or the river ecosystem

  14. Independent University Study to Assess the Performance of a Humate Amendment for Copper Detoxification at the H-12 Outfall at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harmon, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-06

    The overarching objective of this study was to evaluate the effectiveness of the copper detoxification process that is in place at the Savannah River Site H-12 Outfall. The testing was performed in two phases; Phase 1 assessed the safety and potential for intrinsic toxicity of the humate amendment being used at the H-12 Outfall, Borregro HA-1, as well as an alternative amendment sodium humic acid. The second phase assessed the effectiveness of Borregro HA-1 in mitigating and reducing toxic effects of copper.

  15. An environmental streamflow assessment for the Santiam River basin, Oregon

    Science.gov (United States)

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    framework for assessing possible geomorphic and ecological changes in response to river-flow modifications. Suggestions for future biomonitoring and investigations are also provided. This study was one in a series of similar tributary streamflow and geomorphic studies conducted for the Willamette Sustainable Rivers Project. The Sustainable Rivers Project is a national effort by the USACE and The Nature Conservancy to develop environmental flow requirements in regulated river systems.

  16. Screening assessment and requirements for a comprehensive assessment: Volume 1, Draft. Columbia River comprehensive impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    To evaluate the impact to the Columbia River from the Hanford Site-derived contaminants, the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology initiated a study referred to as the Columbia River Comprehensive Impact Assessment (CRCIA). To address concerns about the scope and direction of CRCIA as well as enhance regulator, tribal, stockholder, and public involvement, the CRCIA Management Team was formed in August 1995. The Team agreed to conduct CRCIA using a phased approach. The initial phase, includes two components: 1) a screening assessment to evaluate the potential impact to the river, resulting from current levels of Hanford-derived contaminants in order to support decisions on Interim Remedial Measures, and 2) a definition of the essential work remaining to provide an acceptable comprehensive river impact assessment. The screening assessment is described in Part I of this report. The essential work remaining is Part II of this report. The objective of the screening assessment is to identify areas where the greatest potential exists for adverse effects on humans or the environment. Part I of this report discusses the scope, technical approach, and results of the screening assessment. Part II defines a new paradigm for predecisional participation by those affected by Hanford cleanup decisions.

  17. Screening assessment and requirements for a comprehensive assessment: Volume 1, Draft. Columbia River comprehensive impact assessment

    International Nuclear Information System (INIS)

    1997-04-01

    To evaluate the impact to the Columbia River from the Hanford Site-derived contaminants, the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology initiated a study referred to as the Columbia River Comprehensive Impact Assessment (CRCIA). To address concerns about the scope and direction of CRCIA as well as enhance regulator, tribal, stockholder, and public involvement, the CRCIA Management Team was formed in August 1995. The Team agreed to conduct CRCIA using a phased approach. The initial phase, includes two components: 1) a screening assessment to evaluate the potential impact to the river, resulting from current levels of Hanford-derived contaminants in order to support decisions on Interim Remedial Measures, and 2) a definition of the essential work remaining to provide an acceptable comprehensive river impact assessment. The screening assessment is described in Part I of this report. The essential work remaining is Part II of this report. The objective of the screening assessment is to identify areas where the greatest potential exists for adverse effects on humans or the environment. Part I of this report discusses the scope, technical approach, and results of the screening assessment. Part II defines a new paradigm for predecisional participation by those affected by Hanford cleanup decisions

  18. Water quality assessment in the "German River of the years 2014/2015": how a case study on the impact of a storm water sedimentation basin displayed impairment of fish health in the Argen River (Southern Germany).

    Science.gov (United States)

    Thellmann, Paul; Kuch, Bertram; Wurm, Karl; Köhler, Heinz-R; Triebskorn, Rita

    2017-01-01

    The present work investigates the impact of discharges from a storm water sedimentation basin (SSB) receiving runoff from a connected motorway in southern Germany. The study lasted for almost two years and was aimed at assessing the impact of the SSB on the fauna of the Argen River, which is a tributary of Lake Constance. Two sampling sites were examined up- and downstream of the SSB effluent. A combination of different diagnostic methods (fish embryo test with the zebrafish, histopathology, micronucleus test) was applied to investigate health impairment and genotoxic effects in indigenous fish as well as embryotoxic potentials in surface water and sediment samples of the Argen River, respectively, in samples of the SSB effluent. In addition, sediment samples from the Argen River and tissues of indigenous fish were used for chemical analyses of 33 frequently occurring pollutants by means of gas chromatography. Furthermore, the integrity of the macrozoobenthos community and the fish population were examined at both investigated sampling sites. The chemical analyses revealed a toxic burden with trace substances (originating from traffic and waste water) in fish and sediments from both sampling sites. Fish embryo tests with native sediment and surface water samples resulted in various embryotoxic effects in exposed zebrafish embryos (Fig. 1). In addition, the health condition of the investigated fish species (e.g., severe alterations in the liver and kidney) provided clear evidence of water contamination at both Argen River sites (Fig. 2). At distinct points in time, some parameters (fish development, kidney and liver histopathology) indicated stronger effects at the sampling site downstream of the SSB effluent than at the upstream site. Our results clearly showed that the SSB cannot be assigned as the main source of pollutants that are released into the investigated Argen River section. Moreover, we showed that there is moderate background pollution with substances

  19. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  20. A new framework for assessing river ecosystem health with consideration of human service demand.

    Science.gov (United States)

    Luo, Zengliang; Zuo, Qiting; Shao, Quanxi

    2018-06-01

    In order to study river health status from harmonic relationship between human and natural environment, a river health evaluation method was proposed from the aspects of ecosystem integrity and human service demand, and the understanding of river health connotation. The proposed method is based on the harmony theory and two types of river health assessment methods (the forecasting model and index evaluation). A new framework for assessing river water health was then formed from the perspective of harmony and dynamic evolution between human service demand and river ecosystem integrity. As a case study, the method and framework were applied to the Shaying River Basin, a tributary of the most polluted Huaihe River Basin in China. The health status of the river's ecosystem and its effect on the mainstream of Huaihe River were evaluated based on water ecological experiment. The results indicated that: (1) the water ecological environment in Shaying River was generally poor and showed a gradual changing pattern along the river. The river health levels were generally "medium" in the upstream but mostly "sub-disease" in the midstream and downstream, indicating that the water pollution in Shaying River were mainly concentrated in the midstream and downstream; (2) the water pollution of Shaying River had great influence on the ecosystem of Huaihe River, and the main influencing factors were TN, followed by TP and COD Mn ; (3) the natural attribute of river was transferring toward to the direction of socialization due to the increasing human activities. The stronger the human activity intervention is, the faster the transfer will be and the more river's attributes will match with human service demand. The proposed framework contributes to the research in water ecology and environment management, and the research results can serve as an important reference for basin management in Shaying River and Huaihe River. Copyright © 2018. Published by Elsevier B.V.

  1. Assessing spatial patterns of extreme droughts associated to return periods from observed dataset: Case study of Segura River Basin (Spain)

    Science.gov (United States)

    García Galiano, Sandra G.; Diego Giraldo Osorio, Juan

    2013-04-01

    In basins of South-eastern Spain, such as the Segura River Basin (SRB), a strong decrease in runoff from the end of the 1970s has been observed. In the SRB, due to intensive reforestation aimed at halting desertification and erosion, added to climate variability and change, the default assumption of stationarity in water resources systems cannot be guaranteed. Therefore there is an important need for improvement in the ability of monitoring and predicting the impacts associated with the change of hydrologic regime. It is thus necessary to apply non-stationary probabilistic models, which are able to reproduce probability density functions whose parameters vary with time. From a high-resolution daily gridded rainfall dataset of more than 50 years (1950-2007 time period), the spatial distribution of lengths of maximum dry spells for several thresholds are assessed, applying GAMLSS (Generalized Additive Models for Location Scale and Shape) models at grid site. Results reveal an intensification of extreme drought events in some headbasins of the SRB important for water supply. The identification of spatial patterns of drought hazards at basin scale, associated to return periods, contribute to designing strategies of drought contingency preparedness and recovery operations, which are the leading edge of adaptation strategies.

  2. A parsimonious dynamic model for river water quality assessment.

    Science.gov (United States)

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.

  3. Impact of wastewater on fish health: a case study at the Neckar River (Southern Germany) using biomarkers in caged brown trout as assessment tools.

    Science.gov (United States)

    Vincze, Krisztina; Scheil, Volker; Kuch, Bertram; Köhler, Heinz R; Triebskorn, Rita

    2015-08-01

    The present work describes a field survey aiming at assessing the impact of a sewage treatment plant (STP) effluent on fish health by means of biomarkers. Indigenous fish were absent downstream of the STP. To elucidate the reason behind this, brown trout (Salmo trutta f. fario) were exposed in floating steel cages up- and downstream of a STP located at the Neckar River near Tübingen (Southern Germany), for 10 and 30 days. A combination of biomarker methods (histopathological investigations, analysis of the stress protein Hsp70, micronucleus test, B-esterase assays) offered the possibility to investigate endocrine, geno-, proteo- and neurotoxic effects in fish organs. Biological results were complemented with chemical analyses on 20 accumulative substances in fish tissue. Even after short-term exposure, biomarkers revealed clear evidence of water contamination at both Neckar River sites; however, physiological responses of caged brown trout were more severe downstream of the STP. According to this, similar bioaccumulation levels (low μg/kg range) of DDE and 12 polycyclic aromatic hydrocarbons (PAHs) were detected at both sampling sites, while up to fourfold higher concentrations of four PAHs, methyl-triclosan and two synthetic musks occurred in the tissues of downstream-exposed fish. The results obtained in this study suggest a constitutive background pollution at both sites investigated at the Neckar River and provided evidence for the additional negative impact of the STP Tübingen on water quality and the health condition of fish.

  4. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China

    Directory of Open Access Journals (Sweden)

    Shuang Zhong

    2015-01-01

    Full Text Available The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI, Cd, As, and Pb analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I and Nemerow pollution index (NI. The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS. The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream.

  5. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China

    Science.gov (United States)

    Zhong, Shuang; Geng, Hui; Zhang, Fengjun; Liu, Zhaoying; Wang, Tianye; Song, Boyu

    2015-01-01

    The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI), Cd, As, and Pb) analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I) and Nemerow pollution index (NI). The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS). The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream. PMID:26366176

  6. McKenzie River Subbasin Assessment, Summary Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Alsea Geospatial, Inc.

    2000-02-01

    This document summarizes the findings of the McKenzie River Subbasin Assessment: Technical Report. The subbasin assessment tells a story about the McKenzie River watershed. What is the McKenzie's ecological history, how is the McKenzie doing today, and where is the McKenzie watershed headed ecologically? Knowledge is a good foundation for action. The more we know, the better prepared we are to make decisions about the future. These decisions involve both protecting good remaining habitat and repairing some of the parts that are broken in the McKenzie River watershed. The subbasin assessment is the foundation for conservation strategy and actions. It provides a detailed ecological assessment of the lower McKenzie River and floodplain, identifies conservation and restoration opportunities, and discusses the influence of some upstream actions and processes on the study area. The assessment identifies restoration opportunities at the reach level. In this study, a reach is a river segment from 0.7 to 2.7 miles long and is defined by changes in land forms, land use, stream junctions, and/or cultural features. The assessment also provides flexible tools for setting priorities and planning projects. The goal of this summary is to clearly and concisely extract the key issues, findings, and recommendations from the full-length Technical Report. The high priority recommended action items highlight areas that the McKenzie Watershed Council can significantly influence, and that will likely yield the greatest ecological benefit. People are encouraged to read the full Technical Report if they are interested in the detailed methods, findings, and references used in this study.

  7. Physical - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  8. Biological - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  9. HYDROLOGICAL ASSESSMENTS OF SOME RIVERS IN EDO ...

    African Journals Online (AJOL)

    Highest monthly hydropower yields were recorded in September for Ovia, Ikpoba and Edion Rivers and in August for Orlie River. On annual basis, Ovia River, recorded the highest power yield of 61.619MW (suggesting that Ovia river may be suitable for a Medium hydropower scheme, 10MW-100MW) with the highest ...

  10. Study of a conceptual nuclear energy center at Green River, Utah. Power demand, load center assessment and transmission

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.R.; Thaik, A.; Pingel, P.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramification of constructing a nuclear energy center in an arid western region. In this phase of the study. The projected power demands and load center locations were reviewed and assessed. Alternative transmission systems were analysed and a conceptual transmission for bulk power transportation is proposed with potential line routes. Environmental impacts of the proposed transmission were also identified.

  11. Study of a conceptual nuclear energy center at Green River, Utah. Power demand, load center assessment and transmission

    International Nuclear Information System (INIS)

    Smith, D.R.; Thaik, A.; Pingel, P.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramification of constructing a nuclear energy center in an arid western region. In this phase of the study. The projected power demands and load center locations were reviewed and assessed. Alternative transmission systems were analysed and a conceptual transmission for bulk power transportation is proposed with potential line routes. Environmental impacts of the proposed transmission were also identified

  12. River Protection Project information systems assessment

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, A.L.

    1999-07-28

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report.

  13. River Protection Project information systems assessment

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    1999-01-01

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report

  14. Assessment of river plan changes in Terengganu River using RS ...

    African Journals Online (AJOL)

    Journal of Fundamental and Applied Sciences ... The database can help in the appropriate understanding of river plan change and know ... The data collected from Geographic Information System (GIS) and Remote Sensing (RS) database.

  15. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion.

    Science.gov (United States)

    Yan, Zhenhua; Yang, Haohan; Dong, Huike; Ma, Binni; Sun, Hongwei; Pan, Ting; Jiang, Runren; Zhou, Ranran; Shen, Jie; Liu, Jianchao; Lu, Guanghua

    2018-08-01

    Water diversion has been increasingly applied to improve water quality in many water bodies. However, little is known regarding pollution by organic micropollutants (OMPs) in water diversion projects, especially at the supplier, and this pollution may threaten the quality of transferred water. In the present study, a total of 110 OMPs belonging to seven classes were investigated in water and sediment collected from a supplier of the Yangtze River within four water diversion projects. A total of 69 and 58 target OMPs were detected in water and sediment, respectively, at total concentrations reaching 1041.78 ng/L and 5942.24 ng/g dry weight (dw). Polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals were the predominant pollutants identified. When preliminarily compared with the pollution in the receiving water, the Yangtze River generally exhibited mild OMPs pollution and good water quality parameters, implying a clean water source in the water diversion project. However, in Zongyang and Fenghuangjing, PAHs pollution was more abundant than that in the corresponding receiving water in Chaohu Lake. Ammonia nitrogen pollution in the Wangyu River was comparable to that in Taihu Lake. These findings imply that water diversion may threaten receiving waters in some cases. In addition, the risks of all detected pollutants in both water and sediment were assessed. PAHs in water, especially phenanthrene and high-molecular-weight PAHs, posed high risks to invertebrates, followed by the risks to fish and algae. Pharmaceuticals, such as antibiotics and antidepressants, may also pose risks to algae and fish at a number of locations. To the best of our knowledge, this report is the first to describe OMPs pollution in water diversion projects, and the results provide a new perspective regarding the security of water diversion projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area

  17. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area

  18. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  19. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 3: Appendixes E and F -- Risk assessment information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  20. Hydrological River Drought Analysis (Case Study: Lake Urmia Basin Rivers

    Directory of Open Access Journals (Sweden)

    Mohammad Nazeri Tahrudi

    2017-02-01

    Full Text Available Introduction: Drought from the hydrological viewpoint is a continuation of the meteorological drought that cause of the lack of surface water such as rivers, lakes, reservoirs and groundwater resources. This analysis, which is generally on the surface streams, reservoirs, lakes and groundwater, takes place as hydrological drought considered and studied. So the data on the quantity of flow of the rivers in this study is of fundamental importance. This data are included, level, flow, river flow is no term (5. Overall the hydrological drought studies are focused on annual discharges, maximum annual discharge or minimum discharge period. The most importance of this analysis is periodically during the course of the analysis remains a certain threshold and subthresholdrunoff volume fraction has created. In situations where water for irrigation or water of a river without any reservoir, is not adequate, the minimum flow analysis, the most important factor to be considered (4. The aim of this study is evaluatingthe statistical distributions of drought volume rivers data from the Urmia Lake’s rivers and its return period. Materials and Methods: Urmia Lake is a biggest and saltiest continued lake in Iran. The Lake Urmia basin is one of the most important basins in Iran region which is located in the North West of Iran. With an extent of 52700 square kilometers and an area equivalent to 3.21% of the total area of the country, This basin is located between the circuit of 35 degrees 40 minutes to 38 degrees 29 minutes north latitude and the meridian of 44 degrees 13 minutes to 47 degrees 53 minutes east longitude. In this study used the daily discharge data (m3s-1 of Urmia Lake Rivers. Extraction of river drought volume The drought durations were extracted from the daily discharge of 13 studied stations. The first mean year was calculated for each 365 days using the Eq 1 (14. (1 (For i=1,2,3,…,365 That Ki is aith mean year, Yijis ith day discharge in jth

  1. Flood Mapping: Assessing the uncertainty associated with flood inundation modelling. A case study of the Mora River, Sweden

    OpenAIRE

    Åberg, Isabelle

    2017-01-01

    Expansion of cities and major infrastructure projects lead to changes in land use and river flows. The probability of flooding is expected to increase in the future as a result of these changes in combination with climate change. Hydraulic models can be used to obtain simulated water levels to investigate the risk of flooding and identify areas that might potentially be flooded due to climate change. Since a model is a simplification of the reality it is important to be aware of a model’s unc...

  2. Assessing sedimentation rates at Usumacinta and Grijalva river basin (Southern Mexico) using OSL and suspended sediment load analysis: A study from the Maya Classic Period

    Science.gov (United States)

    Munoz-Salinas, E.; Castillo, M.; Sanderson, D.; Kinnaird, T.; Cruz-Zaragoza, E.

    2013-12-01

    Studying sedimentation rates on floodplains is key to understanding environmental changes occurred through time in river basins. The Usumacinta and Grijalva rivers flow most of their travel through the southern part of Mexico, forming a large river basin, crossing the states of Chiapas and Tabasco. The Usumacinta-Grijalva River Basin is within the 10 major rivers of North America, having a basin area of ~112 550 km2. We use the OSL technique for dating two sediment profiles and for obtaining luminescence signals in several sediment profiles located in the streambanks of the main trunk of the Usumacinta and Grijalva rivers. We also use mean annual values of suspended sediment load spanning ~50 years to calculate the sedimentation rates. Our OSL dating results start from the 4th Century, when the Maya Civilization was at its peak during the Classic Period. Sedimentation rates show a notable increase at the end of the 19th Century. The increase of the sedimentation rates seems to be related to changes in land uses in the Sierra Madre de Chiapas and Altos de Chiapas, based on deforestation and land clearing for developing new agrarian and pastoral activities. We conclude that the major environmental change in the basin of the Usumacinta and Grijalva Rivers since the Maya Classic Period was generated since the last Century as a result of an intense anthropogenic disturbance of mountain rain forest in Chiapas.

  3. Assessing relationships between chemical exposure, parasite infection, fish health, and fish ecological status: a case study using chub (Leuciscus cephalus) in the Bílina River, Czech Republic.

    Science.gov (United States)

    Wenger, Michael; Ondracková, Markéta; Machala, Miroslav; Neca, Jirí; Hyrsl, Pavel; Simková, Andrea; Jurajda, Pavel; von der Ohe, Peter; Segner, Helmut

    2010-02-01

    Multiple stressor scenarios, as they are relevant in many watersheds, call for approaches extending beyond conventional chemical-focused approaches. The present study, investigated the fish population, represented by chub (Leuciscus cephalus), in the Bílina River (Czech Republic), which is impacted by various pollution sources and might pose a risk on the fish population. To confirm or reject this hypothesis it was examined whether there exists an association between abundance of chub and exposure to toxic chemicals as well as natural stressors, represented by parasites, and whether health-related suborganismal traits, namely, organ indices, tissue histopathology, and immune parameters, would help in revealing relationships between stressor impact and population status. Toxic pressure was assessed by the toxic unit approach, which gives an integrative estimate of toxic effect concentrations and by measuring the biomarkers cytochrome P4501A and vitellogenin, which indicate exposure to bioavailable arylhydrocarbon- or estrogen receptor ligands. Parasite pressure was estimated by determining abundance and species composition of ecto- and endoparasites of chub. Chub abundance was high upstream in the Bílina, low to zero in the middle stretches, and increased again downstream. Toxic pressure increased in the downstream direction, while parasite intensity decreased in this direction. Health status of chub did not differ clearly between up-, middle-, and downstream sites. Thus, it appears that neither toxic pressure nor parasite pressure nor their combination translates into a change of chub health status. By using varied assessment tools, this study provides evidence against a presumed causative role of toxicants impairing the fish ecological status of the Bílina River. Copyright 2009 SETAC.

  4. Hydrology and ecology of the Apalachicola River, Florida : a summary of the river quality assessment

    Science.gov (United States)

    Elder, John F.; Flagg, Sherron D.; Mattraw, Harold C.

    1988-01-01

    During 1979-81, the U.S. Geological Survey conducted a large-scale study of the Apalachicola River in northwest Florida, the largest and one of the most economically important rivers in the State. Termed the Apalachicola River Quality Assessment, the study emphasized interrelations among hydrodynamics, the flood-plain forest, and the nutrient-detritus flow through the river system to the estuary. This report summarizes major findings of the study. Data on accumulation of toxic substances in sediments and benthic organisms in the river were also collected. Because of the multiple uses of the Apalachicola River system, there are many difficult management decisions. The river is a waterway for shipping; hence there is an economic incentive for modification to facilitate movement of barge traffic. Such modifications include the proposed construction of dams, levees, bend easings, and training dikes; ditching and draining in the flood plain; and dredging and snagging in the river channel. The river is also recognized as an important supplier of detritus, nutrients, and freshwater to the Apalachicola Bay, which maintains an economically important shellfish industry. The importance of this input to the bay creates an incentive to keep the river basin in a natural state. Other values, such as timber harvesting, recreation, sport hunting, nature appreciation, and wildlife habitat, add even more to the difficulty of selecting management strategies. Water and nutrient budgets based on data collected during the river assessment study indicate the relative importance of various inputs and outflows in the system. Waterflow is controlled primarily by rainfall in upstream watersheds and is not greatly affected by local precipitation, ground-water exchanges, or evapotranspiration in the basin. On an annual basis, the total nutrient inflow to the system is nearly equal in quantity to total outflow, but there is a difference between inflow and outflow in the chemical and physical

  5. Data for the screening assessment. Volume 2: Appendices, Columbia River Comprehensive Impact Assessment

    International Nuclear Information System (INIS)

    Miley, T.B.; O'Neil, T.K.; Gilbert, R.O.; Klevgard, L.A.; Walters, T.B.

    1996-06-01

    The Columbia River is a critical resource for residents of the Pacific Northwest. This resource drew the Manhattan Project's planners to the site now called Hanford to produce nuclear weapon materials. Production of those materials has left behind a legacy of chemical and radioactive contamination and materials that have, are, and will continue to pose a threat to the Columbia river for the foreseeable future. To evaluate the impact to the river from this Hanford-derived contamination, the US Department of Energy, US Environmental Protection Agency, and State of Washington Department of Ecology (the Tri-Party agencies) initiated a study referred to as the Columbia River Comprehensive Impact Assessment (CRCIA). To address concerns about the scope and direction of CRCIA as well as enhance regulator, stakeholder, tribal, and public involvement, the CRCIA Management Team was formed in August 1995. A major CRCIA Team decision was to organize CRCIA into phases, with additional phases to be identified as warranted after completion of the initial phase. The initial phase is comprised of two parts: (1) a screening assessment to evaluate the current impact to the river resulting from Hanford-derived contamination and (2) identification of requirements considered necessary by the CRCIA Management Team for a comprehensive assessment of impact to the river. The purpose of the screening assessment is to support cleanup decisions. The scope of the screening assessment is to evaluate the current risk to humans and the environment resulting from Hanford-derived contaminants. The screening assessment has the primary components of: identifying contaminants to be assessed; identifying a variety of exposure scenarios to evaluate human contaminant exposure; identifying a variety of other species to evaluate ecological contaminant exposure; and assessing risks posed by exposure of humans and other species to the contaminants. This volume compiles the data from this study

  6. INDIRECT ASSESSMENT OF RIVER-TORRENTIAL EROSION BY MEASURING THE ERODED VOLUM CASE STUDY: THE REGHIU STREAM

    Directory of Open Access Journals (Sweden)

    NICULAE LUCICA

    2014-03-01

    Full Text Available The landform, as a whole, is the basic component of the environment and evolves as an open system controlled by two categories of components, in a close relationship of dynamic interconditioning. The endodynamic components are stable and they define the relief physiognomy: hypsometry, the gradient and length of the slope, lithologic conditions and the drainage density. The exodynamic components, with high spatial and temporal mobility, control the flow of matter and energy within the hydrographic basin, the solar energy, the rainfalls, the temperature, the plant cover, and the anthropic activity. The volume of eroded material of a hydrographic basin will set the relationship between the present physiognomy of the landform and the flow of materials carried and discharged. The quantitative evaluation of the erosion in a hydrographic basin, specific to a certain region, will deal with the parameters reflecting the intensity of the morphogenetic processes over a specified period of time. The Reghiu Stream, a left-side tributary of the River Milcov, drains varied landforms, developed on geological formations with different physical properties; moreover, it manifests a regressive erosion, weaker than the Zabala River (they used to have a common evolution during the geological past, and the interfluve is very narrow – there are few facts which lead to the conclusion that the erosion is differential, depending on the local conditions of shaping.

  7. Bonneville - Hood River Vegetation Management Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1998-08-01

    To maintain the reliability of its electrical system, BPA, in cooperation with the U.S. Forest Service, needs to expand the range of vegetation management options used to clear unwanted vegetation on about 20 miles of BPA transmission line right-of-way between Bonneville Dam and Hood River; Oregon, within the Columbia Gorge National Scenic Area (NSA). We propose to continue controlling undesirable vegetation using a program of Integrated Vegetation Management (IVM) which includes manual, biological and chemical treatment methods. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1257) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  8. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  9. Current Assessment and Future Outlook for Water Resources Considering Climate Change and a Population Burst: A Case Study of Ciliwung River, Jakarta City, Indonesia

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar

    2017-06-01

    Full Text Available Modeling insecurity under future climate change and socio-economic development is indispensable for adaptive planning and sustainable management of water resources. This case study strives to assess the water quality and quantity status for both the present and the near future in the Ciliwung River basin inside the Jakarta Province under different scenarios using population growth with planned additional wastewater management infrastructure by 2030 as mentioned in the local master plan, and comparing the above conditions with the addition of the effects of climate change. Biochemical oxygen demand (BOD, chemical oxygen demand (COD and nitrate (NO3, the three important indicators of aquatic ecosystem health, were simulated to assess river pollution. Simulation results suggest that water quality in year 2030 will further deteriorate compared to the base year 2000 due to population growth and climate change, even considering the planned wastewater management infrastructure. The magnitude of impact from population growth is far greater than that from climate change. Simulated values of NO3, BOD and COD ranged from 6.07 to 13.34 mg/L, 7.65 to 11.41 mg/L, and 20.16 to 51.01 mg/L, respectively. Almost all of the water quality parameters exceeded the safe limit suitable for a healthy aquatic system, especially for the year 2030. The situation of water quality is worse for the downstream sampling location because of the cumulative effect of transport of untreated pollutants coming from upstream, as well as local dumping. This result will be useful for local policy makers and stakeholders involved in the water sector to formulate strategic and adaptive policies and plan for the future. One of the potential policy interventions is to implement a national integrated sewerage and septage management program on a priority basis, considering various factors like population density and growth, and global changes for both short- and long-term measures.

  10. Rotating disk electrodes to assess river biofilm thickness and elasticity.

    Science.gov (United States)

    Boulêtreau, Stéphanie; Charcosset, Jean-Yves; Gamby, Jean; Lyautey, Emilie; Mastrorillo, Sylvain; Azémar, Frédéric; Moulin, Frédéric; Tribollet, Bernard; Garabetian, Frédéric

    2011-01-01

    The present study examined the relevance of an electrochemical method based on a rotating disk electrode (RDE) to assess river biofilm thickness and elasticity. An in situ colonisation experiment in the River Garonne (France) in August 2009 sought to obtain natural river biofilms exhibiting differentiated architecture. A constricted pipe providing two contrasted flow conditions (about 0.1 and 0.45 m s(-1) in inflow and constricted sections respectively) and containing 24 RDE was immersed in the river for 21 days. Biofilm thickness and elasticity were quantified using an electrochemical assay on 7 and 21 days old RDE-grown biofilms (t(7) and t(21), respectively). Biofilm thickness was affected by colonisation length and flow conditions and ranged from 36 ± 15 μm (mean ± standard deviation, n = 6) in the fast flow section at t(7) to 340 ± 140 μm (n = 3) in the slow flow section at t(21). Comparing the electrochemical signal to stereomicroscopic estimates of biofilms thickness indicated that the method consistently allowed (i) to detect early biofilm colonisation in the river and (ii) to measure biofilm thickness of up to a few hundred μm. Biofilm elasticity, i.e. biofilm squeeze by hydrodynamic constraint, was significantly higher in the slow (1300 ± 480 μm rpm(1/2), n = 8) than in the fast flow sections (790 ± 350 μm rpm(1/2), n = 11). Diatom and bacterial density, and biofilm-covered RDE surface analyses (i) confirmed that microbial accrual resulted in biofilm formation on the RDE surface, and (ii) indicated that thickness and elasticity represent useful integrative parameters of biofilm architecture that could be measured on natural river assemblages using the proposed electrochemical method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Data for the screening assessment. Volume 1: Text, Columbia River Comprehensive Impact Assessment

    International Nuclear Information System (INIS)

    Miley, T.B.; O'Neil, T.K.; Gilbert, R.O.; Klevgard, L.A.; Walters, T.B.

    1996-06-01

    The Columbia River is a critical resource for residents of the Pacific Northwest. This resource drew the Manhattan Project's planners to the site now called Hanford to produce nuclear weapon materials. Production of those materials has left behind a legacy of chemical and radioactive contamination and materials that have, are, and will continue to pose a threat to the Columbia river for the foreseeable future. To evaluate the impact to the river from this Hanford-derived contamination, the US Department of Energy, US Environmental Protection Agency, and State of Washington Department of Ecology (the Tri-Party agencies) initiated a study referred to as the Columbia River Comprehensive Impact Assessment (CRCIA). To address concerns about the scope and direction of CRCIA as well as enhance regulator, stakeholder, tribal, and public involvement, the CRCIA Management Team was formed in August 1995. A major CRCIA Team decision was to organize CRCIA into phases, with additional phases to be identified as warranted after completion of the initial phase. The initial phase is comprised of two parts: (1) a screening assessment to evaluate the current impact to the river resulting from Hanford-derived contamination and (2) identification of requirements considered necessary by the CRCIA Management Team for a comprehensive assessment of impact to the river. The purpose of the screening assessment is to support cleanup decisions. The scope of the screening assessment is to evaluate the current risk to humans and the environment resulting from Hanford-derived contaminants. The screening assessment has the primary components of: identifying contaminants to be assessed; identifying a variety of exposure scenarios to evaluate human contaminant exposure; identifying a variety of other species to evaluate ecological contaminant exposure; and assessing risks posed by exposure of humans and other species to the contaminants

  12. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  13. Tradeoff between assessment and control of aquatic invasive species: A case study of sea lamprey management in the St. Marys River

    Science.gov (United States)

    Robinson, Jason M.; Wilberg, Michael J.; Adams, Jean V.; Jones, Michael L.

    2016-01-01

    Allocating resources between the gathering of information to guide management actions and implementing those actions presents an inherent tradeoff. This tradeoff is evident for control of the Sea Lamprey Petromyzon marinus in the St. Marys River, connecting Lakes Huron and Superior and a major source of parasitic Sea Lampreys to Lake Huron and northern Lake Michigan. Larval Sea Lampreys in the St. Marys River are controlled through the application of Bayluscide, which is applied to areas of high larval density. Bayluscide applications are guided with an annual deepwater electrofishing survey to estimate larval Sea Lamprey density at relatively fine spatial scales. We took a resampling approach to describe the effect of sampling intensity on the success of the larval Sea Lamprey management program and explicitly incorporated the economic tradeoff between assessment and control efforts to maximize numbers of larvae killed in the St. Marys River. When no tradeoff between assessment and control was incorporated, increasing assessment always led to more larvae killed for the same treatment budget. When the tradeoff was incorporated, the sampling intensity that maximized the number of larvae killed depended on the overall budget available. Increased sampling intensities maximized effectiveness under medium to large budgets (US \\$0.4 to \\$2.0 million), and intermediate sampling intensities maximized effectiveness under low budgets. Sea Lamprey control actions based on assessment information outperformed those that were implemented with no assessment under all budget scenarios.

  14. Studies on Lyari river effluents

    International Nuclear Information System (INIS)

    Khan, M.A.; Hashmi, I.; Rashid, A.; Niaz, G.R.; Khan, F.

    1999-01-01

    The study was aimed to determining the physical (TS, TSS, TDS, TVS) and chemical (Cl, SO/sub 4/, NH/sub 3/, BOD/sub 5/ COD, DO) characteristics as well as heavy present in the Lyari river effluents so as to identify the extent of pollution. The average results of each parameter of twelve different sites were compared with that of National Environmental Quality Standards (NEQS), BOD/sub 5/ and COD levels were above the NEQS while the NH/sub 3/-N concentration was low. Concentrations of Cd and Zn were within the range while that of Pb, Cr, Ni and Cu were higher than the NEQS at times. This indicates that heavy pollution load is entering into the Arabian Sea creating tremendous harm especially to marine life. (author)

  15. Synergetic Development Assessment of Urban River System Landscapes

    Directory of Open Access Journals (Sweden)

    Jingya Qiao

    2017-11-01

    Full Text Available This paper presents Synergetic Development Assessment (SDA as a methodology to evaluate the environmental, economic, and social performance of an urban river system landscape from the perspective of sustainability. SDA is based on synergetics and its “order parameters” theory, proposed as a science to study the self-organization of complex systems. A case study of river system landscapes in China was carried out by, first, simplifying the composite system into three subsystems: environmental, economic, and social; then, going on to construct a hierarchical structure to explore the order parameters as the evaluation index. The Analytic Hierarchy Process was used to get the weight of the evaluation index to complete the assessment index system. At the same time, a Sequential Synergy Degree Model was built to accomplish the SDA. We find that from 2005 to 2015, the order degree of the environmental subsystem developed slowly, with fluctuations, and that river pattern is the key factor. Meanwhile, the order degree of the economic subsystem fluctuated widely, which significantly depended on the changing value of water resources, and the order degree of social subsystem improved continuously, with social culture lagging far behind. As a whole, the synergy degree of the composite system developed orderly at a corresponding low level, which was in low synergy from 2005 to 2009 and then in general synergy up to 2015.

  16. THE ASSESSMENT OF ECONOMICAL LOSS CAUSED BY FLOODS AND FLASH-FLOODS BY USING COMPUTER TECHNIQUES. CASE STUDY: LOPĂTARI VILLAGE, SLĂNIC RIVER

    Directory of Open Access Journals (Sweden)

    COSTACHE R.

    2015-03-01

    Full Text Available The present study aims to provide an example of the assessment of economical loss caused by floods and flash-floods, by integrating GIS techniques of hydraulic and hydrological modelling. The case study was performed in Lopătari village, which is located in the upper area of Slănic River, one of the most affected areas by floods and flash-floods. The flood event produced on 29.V.2012 was considered in order to perform this study. Thus, a flood hydrograph was simulated by using software HEC-HMS 3.5, based on hourly precipitation data from Bisoca meteorological station from 29.V.2012. The peak discharge resulting from the hydrological modelling software was used in HEC-RAS 4.1 hydraulic modelling software in order to determine the extent of flooding band, the number of the affected elements and the local economical loss. Finally, 21 flooded buildings were identified and 550 m of affected road, the estimated economical damage being about 800,000 RON.

  17. Assessing Human Impacts on the Greater Akaki River, Ethiopia ...

    African Journals Online (AJOL)

    We assessed the impacts of human activities on the Greater Akaki River using physicochemical parameters and macroinvertebrate metrics. Physicochemical samples and macroinvertebrates were collected bimonthly from eight sites established on the Greater Akaki River from February 2006 to April 2006. Eleven metrics ...

  18. Assessing Urban Sustainability Using a Multi-Scale, Theme-Based Indicator Framework: A Case Study of the Yangtze River Delta Region, China

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-11-01

    Full Text Available Urban sustainability is a great concern worldwide. However, how to evaluate urban sustainability is still a big challenge because sustainable development is multifaceted and scale dependent, which demands various assessment methods and indicators that often do not reach a consensus. In this study, we assessed urban sustainability of the Yangtze River Delta (YRD, China during 2000–2014 at two spatial scales (corresponding to the administrative levels of province and prefecture. A theme-based indicator framework, cluster analysis and Mann–Kendall test were used for urban sustainability assessment. Our results showed that the overall (OS, social (SS, and economic sustainability (EcS scores for two provinces and sixteen prefectural cities increased from 2000 to 2014 in general, but the environmental sustainability (EnS scores decreased over time. According to the performance of SS, EnS and EcS at the prefectural level, three distinct city clusters were identified: Cluster 1 with high SS and EcS but low EnS; Cluster 2 with low SS and EcS but high EnS; and Cluster 3 with moderate SS, EnS and EcS. The three sustainability dimensions—society, environment and economy—all changed over time and differed among cities at the two administrative levels. Our results implied that, according to the “strong sustainability” perspective, the cities of the YRD became less sustainable or unsustainable because the social and economic progresses were at the expense of the environment. The level of urban sustainability was lower at the provincial level than the prefectural level, implying that the problems of unsustainability are even greater at the provincial level than the prefectural level in the YRD region.

  19. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  20. A Case Study of the Karoon River

    Directory of Open Access Journals (Sweden)

    Rooholah Noori

    2007-09-01

    Full Text Available Assessment of monitoring networks of surface waters and determination of main and tributary stations is an important step in the development and improvement of these networks and in increasing their efficiency. In this study, Principal Components Analysis, PCA, and Factor Analysis, PFA, techniques were employed to evaluate water quality monitoring stations on theKaroonRiver. From among the monitoring stations available, eight were selected and the measured data from 2002 to 2004 were used to determine the main and tributary stations. Finally, results were validated employing the regression analysis technique. Based on the results obtained in this study, only one monitoring station (Bandemizan was identified as the main one among the eight stations selected. Also a similar study was conducted to determine main and tributary quality variables; however, the results of the KMO factor did not confirm using PFA and PCA for this part of study.

  1. Ecological Flow Assessment to Improve the Spawning Habitat for the Four Major Species of Carp of the Yangtze River: A Study on Habitat Suitability Based on Ultrasonic Telemetry

    Directory of Open Access Journals (Sweden)

    Lixiong Yu

    2018-05-01

    Full Text Available Four major species of Chinese carp, namely black carp (Mylopharyngodon piceus, grass carp (Ctenopharyngodon idellus, silver carp (Hypophthalmichthys molitrix and bighead carp (Hypophthalmichthys nobilis, are important economic freshwater fish varieties in China. They primarily inhabit and breed in the Yangtze River. Unfortunately, the construction and operation of the Gezhouba Dam and the Three Gorges Dam have dramatically changed the hydrodynamic conditions in the middle reaches of the Yangtze River, leading to a sharp decline in the reproduction rates of these carp. The egg abundance of the four species of carp downstream from the Three Gorges Dam reached 8.35 billion in 1965, but abundance during 2005–2012 was only 0.25 billion. One of the main reasons was that the hydrodynamic conditions of the spawning ground could not meet the four species’ breeding requirements. However, due to the limitations of traditional detection tools, the spawning characteristics of these four species of carp were still unclear. In this study, the ultrasonic telemetry and a three–dimensional hydrodynamic model were utilized to build the habitat suitability index (HSI curves for the four species of carp. The habitat suitability model was then built based on HSI curves to assess spawning habitat quantity under different flow conditions. Finally, the habitat suitability model in the Yidu spawning ground was validated using 32 groups of sampling data in 2015 and 2017. The statistical results showed that the most suitable velocity ranged from 0.78 m/s to 0.93 m/s. The most suitable water depth ranged from 14.56 m to 16.35 m, and the most suitable Froude number ranged from 0.049 to 0.129. The habitat suitability model simulation results indicated that when the discharge was between 15,000 m3/s and 21,300 m3/s, the weighted usable area (WUA values in both the Yidu and Zhicheng spawning grounds would remain at a high level. The validation results showed that most

  2. GEOCHEMICAL ASSESSMENT OF THE UNCONFINED AQUIFER IN A RECENTLY RECLAIMED WETLAND AREA: A CASE STUDY FROM THE PO RIVER DELTA

    Directory of Open Access Journals (Sweden)

    Dario Di Giuseppe

    2013-09-01

    Full Text Available This study focusses on the distribution of main anions and nitrogen species in the unconfined aquifer of a recently reclaimed land. In a 6 ha experimental field, 10 piezometers for water level measurement and groundwater sampling have been installed. After one year of monitoring, results show that the high chloride and ammonium concentrations are due to inherited from the previous brackish conditions and to organic matter mineralization, respectively. Seasonal variations and Cl/Br ratio show that the 1 m deep sub surface drainage system is the main factor conditioning the chemical characteristics and the piezometric depth of the aquifer. 

  3. Studies of Columbia River water quality

    International Nuclear Information System (INIS)

    Onishi, Y.; Johanson, P.A.; Baca, R.G.; Hilty, E.L.

    1976-01-01

    The program to study the water quality of the Columbia River consists of two separate segments: sediment and radionuclide transport and temperature analysis. Quasi-two dimensional (longitudinal and vertical directions) mathematical simulation models were developed for determining radionuclide inventories, their variations with time, and movements of sediments and individual radionuclides in the freshwater region of the Columbia River below Priest Rapids Dam. These codes are presently being applied to the river reach between Priest Rapids and McNary Dams for the initial sensitivity analysis. In addition, true two-dimensional (longitudinal and lateral directions) models were formulated and are presently being programmed to provide more detailed information on sediment and radionuclide behavior in the river. For the temperature analysis program, river water temperature data supplied by the U. S. Geological Survey for six ERDA-sponsored temperature recording stations have been analyzed and cataloged on storage devices associated with ERDA's CDC 6600 located at Richland, Washington

  4. Risk assessment data banks at the Savannah River Site

    International Nuclear Information System (INIS)

    Townsend, C.S.; Durant, W.S.; Baughman, D.F.

    1993-01-01

    In the risk assessment business, it is a well known fact that past mistakes will not be remembered if nothing is done to record them and make them available for future reference and review. The Savannah River Site maintains a computer database system for nonreactor facilities that contains a compilation of the incidents that have occurred since the start up of the Site in 1953. The nationally recognized data banks are highly valued across the US Department of Energy (DOE) complex for their use in risk-related analyses. They provide data for uses such as failure rate analyses, equipment reliability and breakdown studies, project justification, incident investigations, design studies, Safety Analysis Reports, Process Hazards Reviews, consequence analyses, quality assurance studies, trend analyses, management decision, administrative control effectiveness studies, and process problem solving. Five risk assessment data banks exist in the areas of reprocessing, fuel fabrication, waste management, tritium, and the Savannah River Technology Center. The data banks are comprised of approximately one-third million entries collectively and continue to grow at a rate of about two hundred entries per day

  5. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    Science.gov (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  6. Assessing the impacts of water abstractions on river ecosystem services: an eco-hydraulic modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Carolli, Mauro, E-mail: mauro.carolli@unitn.it; Geneletti, Davide, E-mail: davide.geneletti@unitn.it; Zolezzi, Guido, E-mail: guido.zolezzi@unitn.it

    2017-03-15

    The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatial and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.

  7. Assessing the impacts of water abstractions on river ecosystem services: an eco-hydraulic modelling approach

    International Nuclear Information System (INIS)

    Carolli, Mauro; Geneletti, Davide; Zolezzi, Guido

    2017-01-01

    The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatial and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.

  8. Data Compendium for the Columbia River comprehensive impact assessment

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Huesties, L.R.; Maughan, A.D.; Miley, T.B.; Walters, W.H.

    1994-04-01

    The Columbia River Comprehensive Impact Assessment (CRCIA). The CRCIA is conducted by the Pacific Northwest Laboratory (PNL). The purpose of the CRCIA is to evaluate the current human and ecological risk from the Columbia River attributable to past and present activities on the Hanford Site. Human risk will be addressed for radioactive and hazardous materials over a range of river use options. Ecological risk will be evaluated relative to the health of the current river ecosystem. The initial effort for the CRCIA is the development of a compendium of existing data on Columbia River contamination. This document provides the data compendium. It also includes a discussion of data sources, descriptions of the physical format of the data, and descriptions of the search process used to identify data

  9. Ecological risk assessment in a large river-reservoir. 8: Experimental study of the effects of polychlorinated biphenyls on reproductive success in mink

    International Nuclear Information System (INIS)

    Halbrook, R.S.; Aulerich, R.J.; Bursian, S.J.; Lewis, L.

    1999-01-01

    As a component of an ecological risk assessment of Poplar Creek (located on the Oak Ridge Reservation [ORR]) and the Clinch River (a large river-reservoir system), fish from Poplar Creek, the Clinch River, and Atlantic Ocean were fed to ranch mink to evaluate reproductive success. Five diets, each composed of 75% fish and 25% normal ranch mink chow, were prepared. Two diets served as reference diets and contained 75% Atlantic Ocean fish or 75% Clinch River fish collected above the ORR. The fish portion of the remaining three diets contained 25, 50, and 75% fish collected from Poplar Creek and 50, 25, and 0% ocean fish, respectively. Five mink groups (eight females and two males each) were each fed one of the prepared diets for 196 days. Polychlorinated biphenyl concentrations were determined in diets and various mink tissues, ethoxyresorufin-O-deethylase (EROD) activity was determined in liver tissue, and reproductive success was evaluated. Concentrations of PCB were greatest in the diet composed of 75% Poplar Creek fish and in tissues from mink fed this diet and their offspring. There was a trend toward decreased adult female and kit weights and reduced mean litter size in mink fed diets containing 75% Poplar Creek fish; however, at 6 weeks of age, kit survival was similar among diet groups. Liver EROD activity significantly increased in adult female mink fed 50 and 75% Poplar Creek fish diets. Estimated dietary concentrations of PCBs were similar to or slightly lower than concentrations associated with adverse effects in experimentally dosed mink. Mercury (Hg) concentrations previously reported in these same mink were below that associated with adverse effects, and there was no indication of additive or synergistic effects from exposure to PCBs plus Hg. It is unlikely that population-level reproductive effects would be observed in mink consuming fish from Poplar Creek on the ORR

  10. Hydro energetic inventory study from Chapecozinho river

    International Nuclear Information System (INIS)

    Pimenta, S.C.; Sureck, M.A.A.; Nascimento, P.R.; Kawasaki, M.; Silva Felipe, R. da.

    1990-01-01

    The Hydro energetic Inventory Study in Chapecozinho River Basin, Brazil is described, comparing the proposed results in 1979 with the actual review in 1989. An analysis for solution the socio-economic and environment problems is also presented. (author)

  11. Assessing geomorphic sensitivity in relation to river capacity for adjustment

    Science.gov (United States)

    Reid, H. E.; Brierley, G. J.

    2015-12-01

    River sensitivity describes the nature and rate of channel adjustments. An approach to analysis of geomorphic river sensitivity outlined in this paper relates potential sensitivity based on the expected capacity of adjustment for a river type to the recent history of channel adjustment. This approach was trialled to assess low, moderate and high geomorphic sensitivity for four different types of river (10 reaches in total) along the Lower Tongariro River, North Island, New Zealand. Building upon the River Styles framework, river types were differentiated based upon valley setting (width and confinement), channel planform, geomorphic unit assemblages and bed material size. From this, the behavioural regime and potential for adjustment (type and extent) were determined. Historical maps and aerial photographs were geo-rectified and the channel planform digitised to assess channel adjustments for each reach from 1928 to 2007. Floodplain width controlled by terraces, exerted a strong influence upon reach scale sensitivity for the partly-confined, wandering, cobble-bed river. Although forced boundaries occur infrequently, the width of the active channel zone is constrained. An unconfined braided river reach directly downstream of the terrace-confined section was the most geomorphically sensitive reach. The channel in this reach adjusted recurrently to sediment inputs that were flushed through more confined, better connected upstream reaches. A meandering, sand-bed river in downstream reaches has exhibited negligible rates of channel migration. However, channel narrowing in this reach and the associated delta indicate that the system is approaching a threshold condition, beyond which channel avulsion is likely to occur. As this would trigger more rapid migration, this reach is considered to be more geomorphically sensitive than analysis of its low migration rate alone would indicate. This demonstrates how sensitivity is fashioned both by the behavioural regime of a reach

  12. Water Quality Assessment of the Buffalo River, Arkansas, United States

    Science.gov (United States)

    Bolin, K. L.; Ruhl, L. S.

    2017-12-01

    The Buffalo River was established as a National River by the U.S. Congress in 1972, and runs approximately 150 miles from Newton County, Arkansas to Baxter County where it joins the White River. The Buffalo National River is the one of the last free flowing rivers in the continental U.S. with a rich cultural and political history surrounding it. The geology surrounding the river can be characterized by its karst environment, which has led to the many caves, depressions, and sinkholes found along the river. Karst environments are more susceptible to groundwater pollution so drainage from septic systems is a major concern for towns along the river. There are also numerous abandoned mines in the Buffalo River watershed, especially in the Rush area, which was mined for lead and zinc. Additionally, an increase in livestock production in the area is also a concern for increased nitrate and phosphate, along with fertilizer runoff from agricultural areas. The purpose of this study was to determine the water quality changes along the Buffalo River from human and environmental influences. Samples at six different locations along the river were collected along with parameters such as pH, conductivity, salinity, and temperature during several trips in the summer of 2017. Water samples were analyzed for cations and anions by IC, trace metals by ICPMS, and Escherichia coli with agar plate colony counts. The results were used to map geochemical changes in the Buffalo River watershed, and calculate enrichment factors of constituents (like nitrate, phosphate, and trace elements) as the water flowed downstream.

  13. Human scenarios for the screening assessment. Columbia River Comprehensive Impact Assessment

    International Nuclear Information System (INIS)

    Napier, B.A.; Harper, B.L.; Lane, N.K.; Strenge, D.L.; Spivey, R.B.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Impact Assessment (CRCIA) was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to humans. Because humans affected by the Columbia river are involved in a wide range of activities, various scenarios have been developed on which to base the risk assessments. The scenarios illustrate the range of activities possible by members of the public coming in contact with the Columbia River so that the impact of contaminants in the river on human health can be assessed. Each scenario illustrates particular activity patterns by a specific group. Risk will be assessed at the screening level for each scenario. This report defines the scenarios and the exposure factors that will be the basis for estimating the potential range of risk to human health from Hanford-derived radioactive as well as non-radioactive contaminants associated with the Columbia River

  14. Human scenarios for the screening assessment. Columbia River Comprehensive Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Harper, B.L.; Lane, N.K.; Strenge, D.L.; Spivey, R.B.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Impact Assessment (CRCIA) was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to humans. Because humans affected by the Columbia river are involved in a wide range of activities, various scenarios have been developed on which to base the risk assessments. The scenarios illustrate the range of activities possible by members of the public coming in contact with the Columbia River so that the impact of contaminants in the river on human health can be assessed. Each scenario illustrates particular activity patterns by a specific group. Risk will be assessed at the screening level for each scenario. This report defines the scenarios and the exposure factors that will be the basis for estimating the potential range of risk to human health from Hanford-derived radioactive as well as non-radioactive contaminants associated with the Columbia River.

  15. Monitoring and Assessment of Youshui River Water Quality in Youyang

    Science.gov (United States)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  16. Chester River Study. Volume I,

    Science.gov (United States)

    1972-11-01

    of the effects of agri- i6 IA -46 cultural activities on the aquatic system. This initial feet (24 meters). The soils of the basin area are suit...to the stocks themselves. The shell crystal struc- ture modification in oysters recalls to mind the eggshell thinning in birds mentioned earlier...with figures provided by Chestertown to the mouth of the River at Love the U.S. Soil Conservation Service as of 1967 (last Point (Table VII). year of

  17. Assessment of water quality of Obueyinomo River, Ovia North East ...

    African Journals Online (AJOL)

    The high WQI values in all the stations studied which exceeded the benchmark of 100 showed that the water from this river is unfit for drinking purposes and should be treated before consumption by inhabitants of the area. Keywords: Physicochemical parameters, River, Water quality index, Contamination ...

  18. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    Science.gov (United States)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  19. Savannah River Site peer evaluator standards: Operator assessment for restart

    International Nuclear Information System (INIS)

    1990-01-01

    Savannah River Site has implemented a Peer Evaluator program for the assessment of certified Central Control Room Operators, Central Control Room Supervisors and Shift Technical Engineers prior to restart. This program is modeled after the nuclear Regulatory Commission's (NRC's) Examiner Standard, ES-601, for the requalification of licensed operators in the commercial utility industry. It has been tailored to reflect the unique differences between Savannah River production reactors and commercial power reactors

  20. McKenzie River Subbasin Assessment, Technical Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Alsea Geospatial, Inc.

    2000-02-01

    This document details the findings of the McKenzie River Subbasin Assessment team. The goal of the subbasin assessment is to provide an ecological assessment of the McKenzie River Floodplain, identification of conservation and restoration opportunities, and discussion of the influence of some upstream actions and processes. This Technical Report can be viewed in conjunction with the McKenzie River Subbasin Summary or as a stand-alone document. The purpose of the technical report is to detail the methodology and findings of the consulting team that the observations and recommendations in the summary document are based on. This part, Part I, provides an introduction to the subbasin and a general overview. Part II details the specific findings of the science team. Part III provides an explanation and examples of how to use the data that has been developed through this assessment to aid in prioritizing restoration activities. Part III also includes the literature cited and appendices.

  1. A scheme to scientifically and accurately assess cadmium pollution of river sediments, through consideration of bioavailability when assessing ecological risk.

    Science.gov (United States)

    Song, Zhixin; Tang, Wenzhong; Shan, Baoqing

    2017-10-01

    Evaluating heavy metal pollution status and ecological risk in river sediments is a complex task, requiring consideration of contaminant pollution levels, as well as effects of biological processes within the river system. There are currently no simple or low-cost approaches to heavy metal assessment in river sediments. Here, we introduce a system of assessment for pollution status of heavy metals in river sediments, using measurements of Cd in the Shaocun River sediments as a case study. This system can be used to identify high-risk zones of the river that should be given more attention. First, we evaluated the pollution status of Cd in the river sediments based on their total Cd content, and calculated a risk assessment, using local geochemical background values at various sites along the river. Using both acetic acid and ethylenediaminetetraacetic acid to extracted the fractions of Cd in sediments, and used DGT to evaluate the bioavailability of Cd. Thus, DGT provided a measure of potentially bioavailable concentrations of Cd concentrations in the sediments. Last, we measured Cd contents in plant tissue collected at the same site to compare with our other measures. A Pearson's correlation analysis showed that Cd-Plant correlated significantly with Cd-HAc, (r = 0.788, P < 0.01), Cd-EDTA (r = 0.925, P < 0.01), Cd-DGT (r = 0.976, P < 0.01), and Cd-Total (r = 0.635, P < 0.05). We demonstrate that this system of assessment is a useful means of assessing heavy metal pollution status and ecological risk in river sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A framework for global river flood risk assessments

    NARCIS (Netherlands)

    Winsemius, H.C.; van Beek, L.P.H.|info:eu-repo/dai/nl/14749799X; Jongman, B.; Ward, P.J.; Bouwman, A.

    2013-01-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and

  3. Earthworms (Annelida: Oligochaeta) of the Columbia River basin assessment area.

    Science.gov (United States)

    Sam. James

    2000-01-01

    Earthworms are key components of many terrestrial ecosystems; however, little is known of their ecology, distribution, and taxonomy in the eastern interior Columbia River basin assessment area (hereafter referred to as the basin assessment area). This report summarizes the main issues about the ecology of earthworms and their impact on the physical and chemical status...

  4. Relating metal bioavailability to risk assessment for aquatic species: Daliao River watershed, China

    International Nuclear Information System (INIS)

    Han, Shuping; Zhang, Ying; Masunaga, Shigeki; Zhou, Siyun; Naito, Wataru

    2014-01-01

    The spatial distribution of metal bioavailability (Ni, Cu, Zn, and Pb) was first evaluated within the waters of Daliao River watershed, using the diffusive gradient in thin films (DGT) and chemical equilibrium models. To assess potential risks associated with metal bioavailability, site-specific 95% protection levels (HC5), risk characterizations ratios (RCR) and ratios of DGT-labile/HC5 were derived, using species sensitivity distribution (SSD). The highest bioavailability values for metals were recorded in the main channel of the Daliao River, followed by the Taizi River. Dynamic concentrations predicted by WHAM 7.0 and NICA-Donnan for Cu and Zn agreed well with DGT results. The estuary of the Daliao River was found to have the highest risks related to Ni, Cu, and Zn. The number of sites at risk increased when considering the total toxicity of Ni, Cu, and Zn. - Highlights: • Spatial variation in metal bioavailability within Daliao River watershed was studied. • WHAM 7.0 and NICA-Donnan examined the differences in predicting metal speciation. • Bioavailability values of metals were highest in main channel of the Daliao River. • Site-specific 95% protection levels (HC5)/risk variations were assessed using SSD. • Maximum risks from Ni, Cu, and Zn occurred in the estuary of the Daliao River. - The highest bioavailability values and the highest risks of metals were found in the estuary of the Daliao River

  5. Water quality assessment of the rivers in bauxite mining area at ...

    African Journals Online (AJOL)

    Water quality assessment of the rivers in bauxite mining area at Kuantan Pahang. ... mining area. Water samples were collected at Kuantan River, Riau River, Pinang River and Pandan Rivers. ... All these rivvers were classified into class II based on INWQS and required conventional treatment for water supply purposes.

  6. Water quality assessment of the Sinos River, Southern Brazil.

    Science.gov (United States)

    Blume, K K; Macedo, J C; Meneguzzi, A; Silva, L B; Quevedo, D M; Rodrigues, M A S

    2010-12-01

    The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W), Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD₅), turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA) regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI) used by the Sinos River Basin Management Committee (COMITESINOS). Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  7. Water quality assessment of the Sinos River, Southern Brazil

    Directory of Open Access Journals (Sweden)

    KK. Blume

    Full Text Available The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W, Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD5, turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI used by the Sinos River Basin Management Committee (COMITESINOS. Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  8. A Methology for Assessing the Regional Transportation Energy Demands of Different Spatial Residential Development Scenarios: a Case Study for the Upper Housatonic River Basin, Massachusetts

    Science.gov (United States)

    Oski, J. A.; Fabos, J. G.; Gross, M.

    1982-01-01

    A method is suggested whereby regional landscape planning efforts can be aided by the use of a geographic information system to determine sites for more energy efficient residential and mixed use developments within a study area. The location of land parcels suited for residential and mixed land use developments in the Upper Housatonic River Basin Study Area in Berkshire County, Massachusetts is described as well as the three development options. Significant steps in the procedure are discussed and the computation of the transportation energy requirement is elaborated.

  9. Integrated resource assessment of the Drina River Basin

    Science.gov (United States)

    Almulla, Youssef; Ramos, Eunice; Gardumi, Francesco; Howells, Mark

    2017-04-01

    The integrated assessment and management of resources: water, energy, food and environment is of fundamental importance, yet it is a very challenging task especially when it is carried out on the transboundary level. This study focuses on the Drina River Basin (DRB) which is a transboundary basin in South East Europe spreading across Bosnia and Herzegovina, Serbia and Montenegro with a total surface area of 19,982 km2. Water resources from the Drina River Basin are shared among many activities in the basin: domestic water supply, electricity generation, fishery, tourism and, to a lesser extent, irrigation, industry and mining. The region has recently experienced repeated events of floods and droughts causing significant damage to the economy, showing a high vulnerability of the area to the effects of climate change. The assessment of the Drina River Basin is carried out in the framework of the project "Water food energy ecosystems nexus in transboundary river basins" under the UNECE Water Convention. This study aims to: 1) Improve the cooperation in the operation of dams and hydropower plants in the DRB for optimized production; 2) Explore the opportunities generated by electricity trade between the DRB countries as a mechanism to enhance cooperation and as an enabler for the synchronised operation of hydropower plants; 3) Motivate the implementation of energy efficiency measures to reduce the electricity production requirement from hydro and thermal power. In order to achieve that, a multi-country electricity system model was developed for the three countries of Drina river basin using the Open Source energy MOdelling SYStem (OSeMOSYS). The model represents the whole electricity system of each country, with special cascade representation of hydropower plants along Drina river and its tributaries. The results show that, in a scenario of synchronised operation of all power plants along Drina and its tributaries, those downstream can significantly increase their

  10. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  11. Bank retreat study of a meandering river reach case study : River Irwell

    NARCIS (Netherlands)

    Duran, R.; Beevers, L.; Crosato, A.; Wright, N.

    2010-01-01

    Lack of data is often considered a limitation when undertaking morphological studies. This research deals with morphological studies of small rivers experiencing bank erosion processes when only limited data are available. A reach of the meandering gravel-bed river Irwell (United Kingdom) is taken

  12. Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor

    Directory of Open Access Journals (Sweden)

    P. Schneider

    2011-08-01

    Full Text Available River restoration projects have been launched over the last two decades to improve the ecological status and water quality of regulated rivers. As most restored rivers are not monitored at all, it is difficult to predict consequences of restoration projects or analyze why restorations fail or are successful. It is thus necessary to implement efficient field assessment strategies, for example by employing sensor networks that continuously measure physical parameters at high spatial and temporal resolution. This paper focuses on the design and implementation of an instrumentation strategy for monitoring changes in bank filtration, hydrological connectivity, groundwater travel time and quality due to river restoration. We specifically designed and instrumented a network of monitoring wells at the Thur River (NE Switzerland, which is partly restored and has been mainly channelized for more than 100 years. Our results show that bank filtration – especially in a restored section with alternating riverbed morphology – is variable in time and space. Consequently, our monitoring network has been adapted in response to that variability. Although not available at our test site, we consider long-term measurements – ideally initiated before and continued after restoration – as a fundamental step towards predicting consequences of river restoration for groundwater quality. As a result, process-based models could be adapted and evaluated using these types of high-resolution data sets.

  13. Tiger Team Assessment of the Savannah River Site: Appendices

    International Nuclear Information System (INIS)

    1990-06-01

    This draft document contains findings identified during the Tiger Team Compliance Assessment of the US Department of Energy Savannah River Site (SRS), located in three countries (Aiken, Barnwell and Allendale), South Carolina. The Assessment was directed by the Department's Office of the Assistant Secretary for Environment, Safety, and Health (ES ampersand H) and was conducted from January 29 to March 23, 1990. The Savannah River Site Tiger Team Compliance Assessment was broad in scope covering the Environment, Safety and Health, and Management areas and was designed to determine the site's compliance with applicable Federal (including DOE), state, and local regulations and requirements. The scope of the Environmental assessment was sitewide while the Safety and Health assessments included site operating facilities (except reactors), and the sitewide elements of Aviation Safety, Emergency Preparedness, Medical Services, and Packaging and Transportation. This report contains the appendices to the assessment

  14. assessing human impacts on the greater akaki river, ethiopia using

    African Journals Online (AJOL)

    Preferred Customer

    physicochemical parameters and macroinvertebrate metrics. Physicochemical ... invertebrates in river water quality studies. For example ..... Frydenborg, R., McCarron, E., White, J.S. and. Bastian, M.L. (1996). A framework for biological criteria ...

  15. Pesticides in the Ebro River basin: Occurrence and risk assessment

    International Nuclear Information System (INIS)

    Ccanccapa, Alexander; Masiá, Ana; Navarro-Ortega, Alícia; Picó, Yolanda; Barceló, Damià

    2016-01-01

    In this study, 50 pesticides were analyzed in the Ebro River basin in 2010 and 2011 to assess their impact in water, sediment and biota. A special emphasis was placed on the potential effects of both, individual pesticides and their mixtures, in three trophic levels (algae, daphnia and fish) using Risk Quotients (RQs) and Toxic Units (TUs) for water and sediments. Chlorpyrifos, diazinon and carbendazim were the most frequent in water (95, 95 and 70% of the samples, respectively). Imazalil (409.73 ng/L) and diuron (150 ng/L) were at the highest concentrations. Sediment and biota were less contaminated. Chlorpyrifos, diazinon and diclofenthion were the most frequent in sediments (82, 45 and 21% of the samples, respectively). The only pesticide detected in biota was chlorpyrifos (up to 840.2 ng g"−"1). Ecotoxicological risk assessment through RQs showed that organophosphorus and azol presented high risk for algae; organophosphorus, benzimidazoles, carbamates, juvenile hormone mimic and other pesticides for daphnia, and organophosphorus, azol and juvenile hormone mimics for fish. The sum TU_s_i_t_e for water and sediments showed values < 1 for the three bioassays. In both matrices, daphnia and fish were more sensitive to the mixture of pesticide residues present. - Highlights: • Wide occurrence of pesticides in water and in lesser extent in sediment and biota. • Ecotoxicological pesticide risk assessment in the Ebro river and its tributaries. • Sum TU_s_i_t_e pointed out daphnia as more sensitive to the pesticide residue mixture. • Chronic toxicity test (RQ) showed risk in three trophic level (algae, daphnia and fish). - Evidence of water, sediment and biota contamination by a cocktail of pesticide residues especially hazardous for Daphnia.

  16. Environmental characterization to assess potential impacts of thermal discharge to the Columbia River

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Dauble, D.D.; Page, T.L.; Greager, E.M.

    1990-01-01

    Laboratory and field studies were conducted to assess the potential impact of the N-Reactor thermal plume on fish from the Hanford Reach of the Columbia River. Discharge water temperatures were measured over a range of river flows and reactor operating conditions. Data were mathematically modeled to define spatial and thermal characteristics of the plume. Four species of Columbia River fish were exposed to thermal conditions expected in the plume. Exposed fish were subjected to predators and disease organisms to test for secondary effects from thermal stress. Spatial and temporal distribution of anadromous fish in the river near N-Reactor were also evaluated to define location relative to the plume. Potential thermal exposures were insufficient to kill or injure fish during operation of N-Reactor. These studies demonstrate that characterization of hydrological conditions and thermal tolerance can adequately assess potential impacts of a thermal discharge to fish

  17. Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp.

    Science.gov (United States)

    Barros, Ivaldete Tijolin; Ceccon, Juliana Parolin; Glinski, Andressa; Liebel, Samuel; Grötzner, Sonia Regina; Randi, Marco Antonio Ferreira; Benedito, Evanilde; Ortolani-Machado, Claudia Feijó; Filipak Neto, Francisco; de Oliveira Ribeiro, Ciro Alberto

    2017-07-01

    In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.

  18. Managing River Resources: A Case Study Of The Damodar River, India

    Science.gov (United States)

    Bhattacharyya, K.

    2008-12-01

    used in this study to track flow regime and sedimentation characteristics. Data from topographical maps, cadastral or mouza maps, and satellite images has been consolidated. Significant stress has been given on extensive and intensive field survey in order to assess human perception, adaptability and resource management in the sandbars or char lands. The Damodar River is located in West Bengal, India but the findings on the controlled Lower Damodar are not exclusive to this river. These findings may help in managing water resources in other regulated rivers in India or outside India. The primary objectives of this paper have been to trace the impact of control measures on discharge, sedimentation characteristics and consequent changes in the perception and adjustment of the riverbed occupiers to life with floods and dams. In this age of heightened environmental awareness, we all know that the survival of our civilization depends on rational and constructive maintenance and use of our river resources. The major challenge in the coming decade is to develop a holistic and sustainable river management system that will be environmentally accountable, socially acceptable and economically feasible. The primary issue to be addressed, therefore, is not whether dams are needed but how a river system is cared for in the presence of floods, dams and islanders. River resources should be treated as economic assets since ongoing economic development depends on a riverine regime that is ecologically sound. These worthwhile goals, however, will remain out of reach unless we have effective government policy and the legal structure to support it.

  19. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    International Nuclear Information System (INIS)

    Specht, W.L.

    2000-01-01

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams

  20. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    2000-02-28

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  1. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania.

    Science.gov (United States)

    Zobrist, Jürg; Sima, Mihaela; Dogaru, Diana; Senila, Marin; Yang, Hong; Popescu, Claudia; Roman, Cecilia; Bela, Abraham; Frei, Linda; Dold, Bernhard; Balteanu, Dan

    2009-08-01

    In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues. The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km(2). About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite. The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis

  2. Tiger Team Assessment of the Savannah River Site

    International Nuclear Information System (INIS)

    1990-06-01

    This draft document contains findings identified during the Tiger Team Compliance Assessment of the US Department of Energy Savannah River Site (SRS), located in three counties (Aiken, Barnwell and Allendale), South Carolina. The Assessment was directed by the Department's Office of the Assistant Secretary for Environment, Safety, and Health (ES ampersand H) and was conducted from January 29 to March 23, 1990. The Savannah River Site Tiger Team Compliance Assessment was broad in scope covering the Environment, Safety and Health, and Management areas and was designed to determine the site's compliance with applicable Federal (including DOE), state, and local regulations and requirements. The scope of the Environmental assessment was sitewide while the Safety and Health assessments included site operating facilities (except reactors), and the sitewide elements of Aviation Safety, Emergency Preparedness, Medical Services, and Packaging and Transportation

  3. THE ASSESSMENT OF HYDROMORPHOLOGICAL STATUS OF ROMANIAN RIVERS

    Directory of Open Access Journals (Sweden)

    TECUCI I.

    2014-03-01

    Full Text Available The quality protection and improvement of the aquatic ecosystems and achievement of "good status" for all water bodies until 2015, involved integration of key ecosystem principles into water policies and a series of new management elements. Thus, the "health" status of aquatic ecosystems is a new objective for European water policy which is reflected in the structure and functioning of aquatic ecosystems, being defined by the biological, morphological and physico-chemical quality components as well as the presence of specific pollutants (synthetic and non-synthetic. In order to achieve good ecological status / good ecological potential for all water bodies (rivers of Romania, the paper presents an innovative approach regarding monitoring of hydromorphological quality component and its integration in the assessment of ecological status of water bodies. In this approach the river system is seen in the context of stream corridor as a complex of ecosystems which includes not only the river, but also the riparian zone with the species of plants and animals that inhabit this space. The river corridor is responsible for shaping the river bad, retaining the water and sediments, and also constitutes the support for creating a variety of habitats / microhabitats for communities of aquatic organisms underlying the assessment of ecological status of rivers. In this context, the paper presents hydromorphological indicators set identified in accordance with the requirements of the WFD and a hydromorphological classification system of rivers in five quality classes which should represent a scientific basis for the water monitoring and evaluation system and assists in a judicious way the decision makers to improve water quality in Romania.

  4. Assessing Impacts of Hydropower Regulation on Salmonid Habitat Connectivity to Guide River Restoration

    Science.gov (United States)

    Buddendorf, Bas; Geris, Josie; Malcolm, Iain; Wilkinson, Mark; Soulsby, Chris

    2016-04-01

    Anthropogenic activity in riverine ecosystems has led to a substantial divergence from the natural state of many rivers globally. Many of Scotland's rivers have been regulated for hydropower with increasing intensity since the 1890s. At the same time they sustain substantial populations of Atlantic Salmon (Salmo salar L.), which have a range of requirements in terms of flow and access to habitat, depending on the different life-stages. River barriers for hydropower regulation can change the spatial and temporal connectivity within river networks, the impacts of which on salmon habitat are not fully understood. Insight into such changes in connectivity, and the link with the distribution and accessibility of suitable habitat and areas of high productivity, are essential to aid restoration and/or conservation efforts. This is because they indicate where such efforts might have a higher chance of being successful in terms of providing suitable habitat and increasing river productivity. In this study we applied a graph theory approach to assess historic (natural) and contemporary (regulated) in-stream habitat connectivity of the River Lyon, an important UK salmon river that is moderately regulated for hydropower. Historic maps and GIS techniques were used to construct the two contrasting river networks (i.e., natural vs. regulated). Subsequently, connectivity metrics were used to assess the impacts of hydropower infrastructure on upstream and downstream migration possibilities for adults and juveniles, respectively. A national juvenile salmon production model was used to weight the importance of reaches for juvenile salmon production. Results indicate that the impact of barriers in the Lyon on the connectivity indices depends on the type of barrier and its location within the network, but is generally low for both adults and juveniles, and that compared to the historic river network the reduction in the amount of suitable habitat and juvenile production is most marked

  5. Smoky River coal flood risk mapping study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Canada-Alberta Flood Damage Reduction Program (FDRP) is designed to reduce flood damage by identifying areas susceptible to flooding and by encouraging application of suitable land use planning, zoning, and flood preparedness and proofing. The purpose of this study is to define flood risk and floodway limits along the Smoky River near the former Smoky River Coal (SRC) plant. Alberta Energy has been responsible for the site since the mine and plant closed in 2000. The study describes flooding history, available data, features of the river and valley, calculation of flood levels, and floodway determination, and includes flood risk maps. The HEC-RAS program is used for the calculations. The flood risk area was calculated using the 1:100 year return period flood as the hydrological event. 7 refs., 11 figs., 7 tabs., 3 apps.

  6. Hydrological study of La Paz river basin

    International Nuclear Information System (INIS)

    Ramos, German F.; Garcia Agudo, Edmundo; Quiroga, F.; Tarquino, W.; Diaz, J.; Suxo, Cl.; Mansilla, A.; Rojas, M.

    1998-01-01

    This work aims to determine the hydrological parameters for the La Paz river, by using tracer techniques and also the determination of the water quality parameters for the study of the behavior along the stream. This study intends the prediction and control of the water contamination by using mathematical modelling

  7. Assessing the evolution of oases in arid regions by reconstructing their historic spatio-temporal distribution: a case study of the Heihe River Basin, China

    Science.gov (United States)

    Xie, Yaowen; Wang, Guisheng; Wang, Xueqiang; Fan, Peilei

    2017-12-01

    Oasis evolution, one of the most obvious surface processes in arid regions, affects various aspects of the regional environment, such as hydrological processes, ecological conditions, and microclimates. In this paper, the historical spatio-temporal evolution of the cultivated oases in the Heihe River Basin, the second largest inland watershed in the northwest of China, was assessed using multidisciplinary methods and data from multiple sources, including historical literature, ancient sites, maps and remotely sensed images. The findings show that cultivated oases were first developed on a large scale during the Han Dynasty (121 BC-220) and then gradually decreased in extent from the Six Dynasties period (220-581) to the Sui-Tang period (581-907), reaching a minimum in the Song-Yuan period (960-1368). An abrupt revival occurred during the Ming Dynasty (1368-1644) and continued through the Qing Dynasty (1644-1911), and during the period of the Republic of China (1912-1949), oasis development reached its greatest peak of the entire historical period. The oasis areas during seven major historical periods, i.e., Han, Six Dynasties, Sui-Tang, Song-Yuan, Ming, Qing, and Republic of China, are estimated to have been 1703 km2, 1115 km2, 629 km2, 614 km2, 964 km2, 1205 km2, and 1917 km2, respectively. The spatial distribution generally exhibited a continuous sprawl process, with the center of the oases moving gradually from the downstream region to the middle and even upstream regions. The oases along the main river remained stable during most periods, whereas those close to the terminal reaches were subject to frequent variations and even abandonment. Socio-economic factors were the main forces driving the evolution of cultivated oases in the area; among them, political and societal stability, national defense, agricultural policy, population, and technological progress were the most important.

  8. Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1981-08-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors

  9. Stakeholders' Perception on Teachers' Assessment Effectiveness in Secondary Schools in Port Harcourt Metropolis in Rivers State

    Science.gov (United States)

    Ogidi, Reuben C.; Udechukwu, Jonathan O.

    2017-01-01

    The study sought to investigate the perception of stakeholders on teachers' assessment effectiveness in secondary schools in Port Harcourt Metropolis in Rivers State. Three research questions and one hypothesis were formulated to guide the study. The study adopted survey research design. The sample of the study consisted of 20 principles, 30 vice…

  10. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  11. Centurial Changes in the Depth Conditions of a Regulated River: Case Study of the Lower Tisza River, Hungary

    OpenAIRE

    Amissah Gabriel Jonathan; Kiss Timea; Fiala Károly

    2017-01-01

    The Tisza River is the largest tributary of the Danube in Central Europe, and has been subjected to various human interventions including cutoffs to increase the slope, construction of levees to restrict the floodplain, and construction of groynes and revetments to stabilize the channel. These interventions have altered the natural morphological evolution of the river. The aim of the study is to assess the impacts of these engineering works, employing hydrological surveys of 36 cross sections...

  12. Assessment of denitrification process in lower Ishikari river system, Japan.

    Science.gov (United States)

    Jha, Pawan Kumar; Minagawa, Masao

    2013-11-01

    Sediment denitrification rate and its role in removal of dissolved nitrate load in lower Ishikari river system were examined. Denitrification rate were measured using acetylene inhibition technique on the sediment samples collected during August 2009-July 2010. The denitrification rate varied from 0.001 to 1.9 μg Ng(-1) DM h(-1) with an average value of 0.21 μg Ng(-1) DM h(-1) in lower Ishikari river system. Denitrification rate showed positive correlation with dissolved nitrate concentration in the river basin, indicating overlying water column supplied nitrate for the sediment denitrification processes. Nutrient enrichment experiments result showed that denitrification rate increased significantly with addition of nitrate in case of samples collected from Barato Lake however no such increase was observed in the samples collected from Ishikari river main channel and its major tributaries indicating that factors other than substrate concentration such as population of denitrifier and hydrological properties of stream channel including channel depth and flow velocity may affects the denitrification rate in lower Ishikari river system. Denitrification rate showed no significant increase with the addition of labile carbon (glucose), indicating that sediment samples had sufficient organic matter to sustain denitrification activity. The result of nutrient spiraling model indicates that in- stream denitrification process removes on an average 5%d(-1) of dissolve nitrate load in Ishikari river. This study was carried out to fill the gap present in the availability of riverine denitrification rate measurement and its role in nitrogen budget from Japanese rivers characterize by small river length and high flow rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Optimal river monitoring network using optimal partition analysis: a case study of Hun River, Northeast China.

    Science.gov (United States)

    Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao

    2018-01-09

    River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.

  14. Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran.

    Science.gov (United States)

    Rastmanesh, F; Safaie, S; Zarasvandi, A R; Edraki, M

    2018-04-11

    The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.

  15. assessing climate change impacts on river hydrology

    Indian Academy of Sciences (India)

    71

    model, Soil and Water Assessment Tool (SWAT), in order to evaluate the effect of climate. 24 change on rainfall ... to project future climate data based on the CO2 emission scenarios.The RCMs are of finer ..... Springer Science+Business. 2.

  16. Assessment of climate change impacts on streamflow dynamics in the headwaters of the Amazon River basin

    Science.gov (United States)

    Yoon, Y.; Beighley, E.

    2015-12-01

    The Amazon River basin is the largest watershed in the world containing thousands of tributaries. Although the mainstream and its larger tributaries have been the focus on much research, there has been few studies focused on the hydrodynamics of smaller rivers in the foothills of the Andes Mountains. These smaller rivers are of particular importance for the fishery industry because fish migrate up these headwater rivers to spawn. During the rainy season, fish wait for storm event to increase water depths to a sufficient level for their passage. Understanding how streamflow dynamics will change in response to future conditions is vital for the sustainable management of the fishery industry. In this paper, we focus on improving the accuracy of river discharge estimates on relatively small-scale sub-catchments (100 ~ 40,000 km2) in the headwaters of the Amazon River basin. The Hillslope River Routing (HRR) hydrologic model and remotely sensed datasets are used. We provide annual runoff, seasonal patterns, and daily discharge characteristics for 81 known migration reaches. The model is calibrated for the period 2000-2014 and climate forecasts for the period 2070-2100 are used to assess future changes in streamflow dynamics. The forecasts for the 2070 to 2100 period were obtained by selecting 5 climate models from IPCC's Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) based on their ability to represent the main aspects of recent (1970 to 2000) Amazon climate. The river network for the HRR model is developing using surface topography based on the SRTM digital elevation model. Key model forcings include precipitation (TRMM 3B42) and evapotranspiration (MODIS ET, MOD16). Model parameters for soil depth, hydraulic conductivity, runoff coefficients and lateral routing were initially approximated based on literature values and adjusted during calibration. Measurements from stream gauges located near the reaches of interest were used for

  17. Classification of Tropical River Using Chemometrics Technique: Case Study in Pahang River, Malaysia

    International Nuclear Information System (INIS)

    Mohd Khairul Amri Kamarudin; Mohd Ekhwan Toriman; Nur Hishaam Sulaiman

    2015-01-01

    River classification is very important to know the river characteristic in study areas, where this database can help to understand the behaviour of the river. This article discusses about river classification using Chemometrics techniques in mainstream of Pahang River. Based on river survey, GIS and Remote Sensing database, the chemometric analysis techniques have been used to identify the cluster on the Pahang River using Hierarchical Agglomerative Cluster Analysis (HACA). Calibration and validation process using Discriminant Analysis (DA) has been used to confirm the HACA result. Principal Component Analysis (PCA) study to see the strong coefficient where the Pahang River has been classed. The results indicated the main of Pahang River has been classed to three main clusters as upstream, middle stream and downstream. Base on DA analysis, the calibration and validation model shows 100 % convinced. While the PCA indicates there are three variables that have a significant correlation, domination slope with R"2 0.796, L/D ratio with R"2 -0868 and sinuosity with R"2 0.557. Map of the river classification with moving class also was produced. Where the green colour considered in valley erosion zone, yellow in a low terrace of land near the channels and red colour class in flood plain and valley deposition zone. From this result, the basic information can be produced to understand the characteristics of the main Pahang River. This result is important to local authorities to make decisions according to the cluster or guidelines for future study in Pahang River, Malaysia specifically and for Tropical River generally. The research findings are important to local authorities by providing basic data as a guidelines to the integrated river management at Pahang River, and Tropical River in general. (author)

  18. Habitat assessment of non-wadeable rivers in Michigan.

    Science.gov (United States)

    Wilhelm, Jennifer G O; Allan, J David; Wessell, Kelly J; Merritt, Richard W; Cummins, Kenneth W

    2005-10-01

    Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order >or=5, drainage area >or=1600 km2, mainstem lengths >or=100 km, and mean annual discharge >or=15 m3/s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km2. We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000-2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R2 = 0.62) and the catchment (adjusted R2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and

  19. Assessing the sublethal effects of in-river concentrations of parameters contributing to cumulative effects in the Athabasca river basin using a fathead minnow bioassay.

    Science.gov (United States)

    Squires, Allison J; Dubé, Monique G; Rozon-Ramilo, Lisa D

    2013-03-01

    The Athabasca River basin, located in Alberta, Canada, covers 157, 000 km(2) and holds significant cultural and economic importance. Recent research assessed changes in several water quality and quantity parameters that have changed both spatially (along the river continuum) and temporally (pre-development and present day) in the Athabasca River Basin. In particular, parameters such as salinity and dissolved sulphate have changed significantly across the Athabasca River mainstem over the past five decades. Further laboratory testing has linked concentrations of these parameters to changes in fathead minnow reproduction. Research is required to determine whether these changes observed in the laboratory can be applied to actual in-river conditions. The objectives of the present study were to twofold: assess changes in fathead minnow response metrics (i.e., condition, liver and gonad size, egg production, and gill histology) associated with increasing concentrations of salinity and dissolved sulphate and determine whether sublethal effect thresholds established in laboratory experiments correspond to actual in-river concentrations using water from the mouth and headwaters of the Athabasca River. Three dose-response experiments (NaCl, SO4, and water sampled from the mouth of the Athabasca River) were conducted at Jasper National Park, Alberta, Canada. Significant increases in mean eggs per female per day occurred at the 50% treatment for the mouth experiment and thresholds previously developed in the laboratory were verified. Copyright © 2012 SETAC.

  20. Assessment of Technetium in the Savannah River Site Environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Denham, M.; Evans, A.G.

    1993-07-01

    Assessment of Technetium in the Savannah River Site Environment is the last in a series of eight documents on individual radioisotopes released to the environment as a result of SRS operations. The earlier documents describe the environmental consequences of tritium cesium, iodine, uranium plutonium, strontium, and carbon. Technetium transport and metabolism have been studied by the nuclear industry because it is a fission product of uranium, and by the medical community because 99m Tc commonly is used as a diagnostic imaging agent in nuclear medicine. Technetium has been produced at SRS during the operation of five production reactors. The only isotope with environmental significance is 99 Tc. Because of the small activities of 99 Tc relative to other fission products, such as 90 Sr and 137 Cs, no measurements were made of releases to either the atmosphere or surface waters. Dose calculations were made in this document using conservative estimates of atmospheric releases and from a few measurements of 99 Tc concentrations in the Savannah River. Technetium in groundwater has been found principally in the vicinity of the separation areas seepage basins. Technetium is soluble in water and follows groundwater flow with little retardation. While most groundwater samples are negative or show little technetium a few samples have levels slightly above the limits set by the EPA for drinking water. The overall radiological impact of SRS 99 Tc releases on the offsite maximally exposed individual during 38 years of operations can be characterized by maximum individual doses of 0.1 mrem (atmospheric) and 0.8 mrem (liquid), compared with a dose of 13,680 mrem from non-SRS sources during the same time period. Technetium releases have resulted in a negligible risk to the environment and the population it supports

  1. Assessment of groundwater potential in Ankobra River Basin

    International Nuclear Information System (INIS)

    Nyarkoh, Charles Prince

    2011-08-01

    Ankobra river basin is endowed with many rich natural resources. The mining activities in the basin and the proposed hydropower generation on the Ankobra river as well as oil discovery in the Western Region would lead to the establishing of new industries in the basin. These would certainly lead to potential population growth. As a result of these developments, there would be stress on surface water resources and therefore there would be demand for ground water. A research was carried out to assess groundwater supply. Hydrogeological data was used to evaluate the ground water storage in the basement complex, regolith. The relevant aquifer characteristics/parameters (extent of the study area, thickness of the ground water zone in the regolith, the porosity and specific capacity of the aquifer zones) were used to compute total groundwater storage and recoverable storage. The groundwater contribution to stream flow was computed using mean monthly discharge data from the filled data and hydrograph drawn. The base flow was then determined from the hydrograph separation using the straight line method. The groundwater potential in the Ankobra basin is 45.82*10 9 m 3 while the recoverable groundwater storage is 29.39*10 9 m 3 . The base flow computed was 13.75m 3/ s. Investigations into groundwater chemistry with particular references to physico-chemical parameters (quality) was analysed. The constituents fall within the acceptable limits of the Ghana Standard Board (GSB) for drinking water standard and are satisfactory for human consumption. However, Tamso, Wantenem, Gyaman, Beyim communities exceeded the GSB'S recommended values of PH (6.5-8.5) and chloride ( 250 mg/I) respectively for drinking water standard.(author)

  2. Designing and Assessing Restored Meandering River Planform Using RVR Meander

    Science.gov (United States)

    Langendoen, E. J.; Abad, J. D.; Motta, D.; Frias, C. E.; Wong, M.; Barnes, B. J.; Anderson, C. D.; Garcia, M. H.; MacDonald, T. E.

    2013-12-01

    The ongoing modification and resulting reduction in water quality of U.S. rivers have led to a significant increase in river restoration projects over the last two decades. The increased interest in restoring degraded streams, however, has not necessarily led to improved stream function. Palmer and Allan (2005) found that many restoration projects fail to achieve their objectives due to the lack of policies to support restoration standards, to promote proven methods and to provide basic data needed for planning and implementation. Proven models of in-stream and riparian processes could be used not only to guide the design of restoration projects but also to assess both pre- and post-project indicators of ecological integrity. One of the most difficult types of river restoration projects concern reconstructing a new channel, often with an alignment and channel form different from those of the degraded pre-project channel. Recreating a meandering planform to provide longitudinal and lateral variability of flow and bed morphology to improve in-stream aquatic habitat is often desired. Channel meander planform is controlled by a multitude of variables, for example channel width to depth ratio, radius of curvature to channel width ratio, bankfull discharge, roughness, bed-material physical characteristics, bed material transport, resistance to erosion of the floodplain soils, riparian vegetation, etc. Therefore, current practices that use simple, empirically based relationships or reference reaches have led to failure in several instances, for example a washing out of meander bends or a highly unstable planform, because they fail to address the site-specific conditions. Recently, progress has been made to enhance a physically- and process-based model, RVR Meander, for rapid analysis of meandering river morphodynamics with reduced empiricism. For example, lateral migration is based on measurable physical properties of the floodplain soils and riparian vegetation versus

  3. Weight-of-evidence on environmental impact assessment of metal contaminated sediments in the São Francisco river (Três Marias - Minas Gerais - Brazil: a case study

    Directory of Open Access Journals (Sweden)

    DF. Almeida

    Full Text Available The weight-of-evidence - WOE approach was used to assess the environmental impact of sediments contaminated by metals in the São Francisco river and one of its tributaries, Consciência creek, both affected by anthropic activities, in the region of Três Marias (Minas Gerais/Brazil. The assessment provided support to a risk management decision. The WOE was based on bulk metal analysis, AVS-SEM assays, elutriate tests, ecotoxicity assays, benthic community assessment and a comparison for the reference area. Brazilian legislation and other available literature were used as criteria to evaluate the lines of evidence. All samples, except for the reference area, presented some contamination. However, geochemical testing for bioavailability studies showed that toxicity is unlikely as suggested by the chemical results. Ecotoxicity and benthic structure studies provided further information to support decision making. Metal acid volatile sulfide formation mechanisms were identified, which can eventually attenuate metal toxicity observed. The removal of active sources of contamination (for example, from tailings dumps associated with Monitoring Natural Recovery could be sufficient to eventually lessen the risk of the biota in São Francisco river sediments.

  4. Assessment of nematode community structure as a bioindicator in river monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.C.; Chen, P.C. [Department of Plant Pathology, National Chung Hsing University, 250 Kuo Kuan Rd, Taichung 402, Taiwan (China); Tsay, T.T., E-mail: tttsay@nchu.edu.t [Department of Plant Pathology, National Chung Hsing University, 250 Kuo Kuan Rd, Taichung 402, Taiwan (China)

    2010-05-15

    Nematode communities from river water and sediments were assessed for the abundance, feeding types, maturity indices and nematode channel ratio (NCR). The sampling sites studied included different levels of pollution and contamination from agricultural, industrial and sewage sources. The nematode abundance found in the sediment samples was more than that in the water samples. The lowest nematode abundance in sediment samples and the lowest NCR in water samples were both found at the industrial pollution site. Water samples showed positive correlation between the NCR and river pollution index (RPI). Mean maturity indices in sediment samples were inversely correlated with RPI. The pollutant source determined the relationship between NCR and pollution level, while maturity index always showed negative correlation with pollutant level regardless of the pollutant sources. The nematode abundance and its community structure were both reliable bioindicators for monitoring long-term river pollution in both qualitative and quantitative aspects. - Nematode community structure in rivers is related to the contamination source and level.

  5. Assessment of nematode community structure as a bioindicator in river monitoring

    International Nuclear Information System (INIS)

    Wu, H.C.; Chen, P.C.; Tsay, T.T.

    2010-01-01

    Nematode communities from river water and sediments were assessed for the abundance, feeding types, maturity indices and nematode channel ratio (NCR). The sampling sites studied included different levels of pollution and contamination from agricultural, industrial and sewage sources. The nematode abundance found in the sediment samples was more than that in the water samples. The lowest nematode abundance in sediment samples and the lowest NCR in water samples were both found at the industrial pollution site. Water samples showed positive correlation between the NCR and river pollution index (RPI). Mean maturity indices in sediment samples were inversely correlated with RPI. The pollutant source determined the relationship between NCR and pollution level, while maturity index always showed negative correlation with pollutant level regardless of the pollutant sources. The nematode abundance and its community structure were both reliable bioindicators for monitoring long-term river pollution in both qualitative and quantitative aspects. - Nematode community structure in rivers is related to the contamination source and level.

  6. Environmental quality assessment of Upper Birim River (Ghana)

    International Nuclear Information System (INIS)

    Asmah, M. H.; Hodgson, I. O. A.; Cobbina, S. J.; Ablordey, A. A.

    2013-01-01

    The communities along the Upper Birim River use the water resource for domestic and agricultural purposes, and the environmental quality of the river was assessed to determine the level of pollution and associated health risk from consumption and direct contact with the water. The water quality was assessed by the physico-chemical and bacteriological quality parameters. In addition, the impacts of land use activities along the river were also evaluated. Water samples were collected from 6 locations from November 2010 to January 2011 (dry season), and March to May 2011 (wet season). While the mean values of the physico-chemical parameters were within the Ghana Standards Authority (GSA) safety limits for drinking water, the levels of Fe (33.56 ± 31.94 mg/L), As (0.052± 0.088 mg/L) and Mn (4.01± 4.42 mg/L) were higher than the recommended GSA limits. The faecal contaminations were high, as the mean total coliforms, mean faecal coliforms and the level of faecal streptococci were respectively 1925± 708 cfu/100 ml, 1073±900 cfu/100 mL and 16±9 cfu/100 ml. The water quality index (WQI) of 71.79 for the Birim River indicated that most uses of the water were protected, but a few might be threatened or impaired. Hazard quotients determined for Hg, As and Ag were less than 1 at all sampling stations, implying low health risk. Provision of adequate sanitary facilities, enforcement of environmental regulations and introduction of livelihood diversification programmes would safeguard the integrity of the River from adverse anthropogenic activities. (au)

  7. Risk assessment data bank design at the Savannah River Site

    International Nuclear Information System (INIS)

    Townsend, C.S.; Johnson, K.B.

    1992-01-01

    The Savannah River Site has designed and implemented a database system containing a series of compilations of incidents used primarily for risk assessment. Four databases have been designed and implemented using advanced database management system computer software. These databases exist for reprocessing, fuel fabrication, waste management, and the Savannah River Technology Center. They are combined into one system caged the Risk Assessment Methodology (RAM) Fault Tree Data Banks. This paper will discuss the logical design of the data, the menus, and the operating platform. Built-in updating features, such as batch and on-line data entry; data validation methods; automatic update features; and expert system programs, will also be discussed. User functions, such as on-line search/view/report and statistical functions, will be presented. Security features and backup and recovery methods will also be covered

  8. ASSESSMENT OF HEAVY METALS CONTENTS IN BOTTOM SEDIMENTS OF BUG RIVER

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorbiłowicz

    2014-07-01

    Full Text Available The development of industry, agriculture, and transport contributes to an increased environmental pollution by heavy metals. The aim of the study was preliminary assessment of the contents of selected metals (lead, cobalt, copper, chromium, cadmium and nickel in the sediments of Bug river. The study comprised part of the river flowing through Poland. It was found that the Bug river sediments are not contaminated in respect to the content of tested metals. Based on the analysis of the study results, these metals can be lined up in the following order: Cr > Pb > Cu > Ni > Co > Cd. Statistical analysis showed that copper and chromium occur in Bug river sediments in forms bindings with organic matter in majority of cases. The granulometric analysis of sediments from Bug river revealed the largest percentage of two fractions: 1.0–0.2 mm with average of 47.7 ± 19.77% and 0.2–0.1 mm with average of 20.6 ± 7.7%. These are the dominant fractions with the accumulation of metals in river sediments, which has been confirmed by statistical analysis.

  9. River Wyre preliminary feasibility study

    International Nuclear Information System (INIS)

    1991-01-01

    A study undertaken in 1987 for the Department of Energy, of small estuaries and embayments around the coast of the United Kingdom, identified the Wyre as one of the most promising sites for the construction of a small tidal power barrage. Enquiries showed that Organisations with interests in and around the Wyre had carried out extensive surveys and investigations into the physical and environmental aspects of the estuary, many of which would be relevant to the development of a tidal power scheme. It was identified that a barrage constructed on the Wyre, in addition to generating clean renewable energy may also act as a road crossing between Fleetwood and Over Wyre, thereby avoiding the present diversion via the Shard Toll Bridge located some 8km upstream of the town of Fleetwood. (Author)

  10. Water quality assessment of the Shatt al-Arab River, Southern Iraq

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Moyel

    2015-06-01

    Full Text Available Objective: To assess suitability of the water quality of Shatt al-Arab River for protection of aquatic life, potable water supply and irrigation uses. Methods: The Shatt al-Arab River was monitored on a monthly basis from July 2009 to June 2010. A water quality index (WQI was calculated to assess the suitability of water for protection of aquatic life, potable water supply and irrigation uses during the dry season from July to December 2009 and the wet season from January until June 2010. Results: The results of the WQI showed that the lowest water quality values were scored during the dry season for all three uses of the river. Marginal water quality values were recorded for protection of aquatic life and fair (upstream to poor (downstream water quality values were recorded for irrigation uses. Moreover, the river water was not suitable for potable water supply without elaborate treatment. Conclusions: Deterioration of the Shatt al-Arab water quality has been attributed to reduced freshwater discharges from Tigris and Euphrates Rivers, low annual precipitations and an advancing salt wedge from the Arabian Gulf. However, a combination of those factors such as low riverine discharge and advancing salt wedge with a continuous discharge of agriculture, oil industry and urban point effluent has polluted the waters and fostered the decline of the Shatt al-Arab River water quality during the study period. The study indicated that application of WQIs was a useful tool to monitor and assess the overall water quality of the Shatt al-Arab River.

  11. ElwhaChemical - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  12. Developing a Model to Assess the Potential Impact of TUM Hydropower Turbines on Small River Ecology

    Directory of Open Access Journals (Sweden)

    Weiwei Yao

    2018-05-01

    Full Text Available Small hydropower is a renewable energy technology that is used for electricity generation worldwide, but still has potential for further development. However, during the installation of small hydropower, the ecological impacts of the power plants need to be thoroughly investigated. In addressing the challenges of energy production and minimizing the environmental impacts of small hydropower installation and operation, this study has applied an ecohydraulic model to investigate river hydrodynamics, hydromorphology, habitat, and the population impacts of small hydropower, and presented the Mum River as a case study. Two scenarios were implemented in this research to simulate the hydrodynamic, sedimentation, habitat, and population status in order to assess the potential effects caused by the TUM plant. At the Mum River, two scenarios were proposed: the TUM plant was not considered in scenario S1, but was considered in scenario S2. The model results for scenario S2 indicated that the habitat was suitable for fish species living in the Mum River, with fish population numbers between 4.6 × 103 and 6.6 × 103. The S2 results indicated that the impacts of the TUM plant were negligible when compared with S1. Although the impact of the TUM plant on the Mum River is relatively large when the discharge is high (19 m3/s, calculations based on stable flow shows that the TUM plant could function well on the river ecosystem when the discharge is low or at normal rates. Therefore, this study shows that the TUM plant would be a good option to meet the needs of energy generation whilst having a minimal impact on river habitats and changes in fish species population in similar small rivers and streams.

  13. Large Dam Effects on Flow Regime and Hydraulic Parameters of river (Case study: Karkheh River, Downstream of Reservoir Dam

    Directory of Open Access Journals (Sweden)

    Farhang Azarang

    2017-06-01

    Full Text Available Introduction: The critical role of the rivers in supplying water for various needs of life has led to engineering identification of the hydraulic regime and flow condition of the rivers. Hydraulic structures such dams have inevitable effects on their downstream that should be well investigated. The reservoir dams are the most important hydraulic structures which are the cause of great changes in river flow conditions. Materials and Methods: In this research, an accurate assessment was performed to study the flow regime of Karkheh river at downstream of Karkheh Reservoir Dam as the largest dam in Middle East. Karkheh River is the third waterful river of Iran after Karun and Dez and the third longest river after the Karun and Sefidrud. The Karkheh Dam is a large reservoir dam built in Iran on the Karkheh River in 2000. The Karkheh Reservoir Dam is on the Karkheh River in the Northwestern Khouzestan Province, the closest city being Andimeshk to the east. The part of Karkheh River, which was studied in this research is located at downstream of Karkheh Reservoir Dam. This interval is approximately 94 km, which is located between PayePol and Abdolkhan hydrometric stations. In this research, 138 cross sections were used along Karkheh River. Distance of cross sections from each other was 680m in average. The efficient model of HEC-RAS has been utilized to simulate the Karkheh flow conditions before and after the reservoir dam construction using of hydrometric stations data included annually and monthly mean discharges, instantaneous maximum discharges, water surface profiles and etc. Three defined discharges had been chosen to simulate the Karkheh River flow; maximum defined discharge, mean defined discharge and minimum defined discharge. For each of these discharges values, HEC-RAS model was implemented as a steady flow of the Karkheh River at river reach of study. Water surface profiles of flow, hydraulic parameters and other results of flow regime in

  14. Savannah River Site K-Reactor Probabilistic Safety Assessment

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O'Kula, K.R.; Wittman, R.S.; Woody, N.D.; Amos, C.N.; Weingardt, J.J.

    1992-12-01

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety

  15. Data banks for risk assessment at the Savannah River Site

    International Nuclear Information System (INIS)

    Durant, W.S.; Townsend, C.S.; Baughman, D.F.; Hang, P.

    1992-01-01

    One of the lessons learned from many years of risk assessment experience is that mistakes of the past are soon forgotten if no method is available to retrieve and review these events. Savannah River Site has maintained a computerized data bank system for recording, retrieving and reviewing its incident history. The system is based on a series of compilations developed primarily for risk assessment but has been found to be invaluable for many other uses such as equipment reliability, project justification, and incident investigations

  16. Land use change and soil loss risk assessment by using geographical information system (GIS): A case study of lower part of Perak River

    Science.gov (United States)

    Mohd Yusof, Fasihah; Rohaizah Jamil, Nor; Inthano a/p Cha Laew, Nyvee; Aini, Norfadilah; Abd Manaf, Latifah

    2016-06-01

    The developing mode of the nation enhance more land area being exploited to generate economy income. Objectives of this study were to analyse the land use changes from year 2010 to 2013 and soil erosion potential rate for year 2013 of lower part of Perak river basin. All of the spatial analysis work were carried out in the GIS environment using the ArcGIS version 9.3 software. Land use maps were obtained from Department of Agriculture and been digitized accordingly. The total area was 2914.91 km2 and land use categories were clustered into various classes. Based on land use change analysis, oil palm plantation recorded some increment from year 2010 to 2013. While, area of forest depleting from 95.54km2 to 86.01 km2 indicating that the forest area were being exploited and shifted to other land use type. In the other hand, the rubber plantation decrease due to land conversion into palm oil plantation. Urban area showed some increment in coverage proving the current blooming number of population occurs rapidly. In context of cleared land, 2013 recorded higher coverage of cleared land compared to the year 2010 which recorded a shifting from 8.89km2 in 2010 to 21.24 km2 in 2013. By adopting the RUSLE model, in 2013, the soil erosion potential was categorised as very low (0-1 tons/ha/year) with some soil erosion hotspot spotted within the study area. The soil erosion range from very low to extreme class. A very low soil erosion potential class (0-1 ton/ha/yr) recorded the majority of 61% (1765.60 km2) of total area. The extreme classes (>100 ton/ha/yr) recorded about 18% (536.19km2) of the total area. According to the result, it can be concluded that the middle part of study area experience low to severe classes of potential soil erosion.

  17. Savannah River Laboratory data banks for risk assessment of fuel reprocessing plants

    International Nuclear Information System (INIS)

    Durant, W.S.

    1981-10-01

    The Savannah River Laboratory maintains a series of computerized data banks primarily as an aid in probabilistic risk assessment studies in the fuel reprocessing facilities. These include component failure rates, generic incidents, and reports of specific deviations from normal operating conditions. In addition to providing data for probability studies, these banks, have served as a valuable aid in trend analysis, equipment histories, process hazards analysis, consequence assessments, incident audit, process problem solving, and training

  18. Water Quality Assessment of Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  19. Radiological/toxicological sabotage assessments at the Savannah River Site

    International Nuclear Information System (INIS)

    Johnson, H.D.; Pascal, M.D.; Richardson, D.L.

    1995-01-01

    This paper describes the methods being employed by Westinghouse Savannah River Company (WSRC) to perform graded assessments of radiological and toxicological sabotage vulnerability at Savannah River Site (SRS) facilities. These assessments are conducted to ensure that effective measures are in place to prevent, mitigate, and respond to a potential sabotage event which may cause an airborne release of radiological/toxicological material, causing an adverse effect on the health and safety of employees, the public, and the environment. Department of Energy (DOE) Notice 5630.3A, open-quotes Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,close quotes and the associated April 1993 DOE-Headquarters guidance provide the requirements and outline an eight-step process for hazardous material evaluation. The process requires the integration of information from a variety of disciplines, including safety, safeguards and security, and emergency preparedness. This paper summarizes WSRC's approach towards implementation of the DOE requirements, and explains the inter-relationships between the Radiological and Toxicological Assessments developed using this process, and facility Hazard Assessment Reports (HAs), Safety Analysis Reports (SARs), and Facility Vulnerability Assessments (VAs)

  20. Ecological risk assessment in a large river-reservoir. 1: Introduction and background

    International Nuclear Information System (INIS)

    Cook, R.B.; Suter, G.W. II; Sain, E.R.

    1999-01-01

    The US Department of Energy initiated a remedial investigation of the Clinch River/Poplar Creek system Superfund Site in 1989. This site, located in eastern Tennessee near Oak Ridge, consists of 70 river kilometers and 40 km 2 of surface area. The purpose of this study was to evaluate the nature and extent of contamination, perform an ecological and human health risk assessment, and evaluate possible remedial alternatives. This introductory article summarizes the environmental setting, the contamination history, and the study approach and provides some general results of the site characterization. Subsequent papers in this series describe the ecological risks to fish, piscivorous and insectivorous wildlife, and benthic invertebrates

  1. The Human Threat to River Ecosystems at the Watershed Scale: An Ecological Security Assessment of the Songhua River Basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2017-03-01

    Full Text Available Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study, China’s Songhua River Basin was divided into 204 assessment units by combining watershed and administrative boundaries. Ten human threat factors were identified based on their significant influence on the river ecosystem. A modified ecological threat index was used to synthetically evaluate the ecological security, where frequency was weighted by flow length from the grids to the main rivers, while severity was weighted by the potential hazard of the factors on variables of river ecosystem integrity. The results showed that individual factors related to urbanization, agricultural development and facility construction presented different spatial distribution characteristics. At the center of the plain area, the provincial capital cities posed the highest level of threat, as did the municipal districts of prefecture-level cities. The spatial relationships between hot spot locations of the ecological threat index and water quality, as well as the distribution areas of critically endangered species, were analyzed. The sensitivity analysis illustrated that alteration of agricultural development largely changed the ecological security level of the basin. By offering a reference for assessing ecological security, this study can enhance water environmental planning and management.

  2. A framework for global river flood risk assessments

    Science.gov (United States)

    Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.

    2013-05-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM

  3. A framework for global river flood risk assessments

    Directory of Open Access Journals (Sweden)

    H. C. Winsemius

    2013-05-01

    Full Text Available There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population. The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE. We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from

  4. Assessment of major ions and heavy metals in groundwater: a case study from Guangzhou and Zhuhai of the Pearl River Delta, China

    Science.gov (United States)

    Lu, Yintao; Tang, Changyuan; Chen, Jianyao; Yao, Hong

    2016-06-01

    Anthropogenic activities in the Pearl River Delta (PRD) have caused a deterioration of groundwater quality over the past twenty years as a result of rapid urbanization and industrial development. In this study, the hydrochemical characteristics, quality, and sources of heavy metals in the groundwater of the PRD were investigated. Twenty-five groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), δ18O, δ2H, major ions, and heavy metals. The groundwater was slightly acidic and presented TDS values that ranged from 35.5 to 8,779.3 mg·L-1. The concentrations of the major ions followed the order Cl->HCO 3 - >Na+>SO 4 2- >NO 3 - >NH 4 + >Ca2+>K+>Mg2+>Fe2+/3+>Al3+. Ca-Mg-HCO3 and Na-K-HCO3 were the predominant types of facies, and the chemical composition of the groundwater was primarily controlled by chemical weathering of the basement rocks, by mixing of freshwater and seawater and by anthropogenic activities. The heavy metal pollution index (HPI) indicated that 64% of the samples were in the low category, 16% were in the medium category and 20% were in the high category, providing further evidence that this groundwater is unsuitable for drinking. Lead, arsenic, and manganese were mainly sourced from landfill leachate; cadmium from landfill leachate and agricultural wastes; mercury from the discharge of leachate associated with mining activities and agricultural wastes; and chromium primarily from industrial wastes. According to the irrigation water quality indicators, the groundwater in the PRD can be used for irrigation in most farmland without strong negative impacts. However, approximately 9 million people in the Guangdong Province are at risk due to the consumption of untreated water. Therefore, we suggest that treating the groundwater to achieve safer levels is necessary.

  5. Evaluation and assessment of baseline metal contamination in surface sediments from the Bernam River, Malaysia.

    Science.gov (United States)

    Kadhum, Safaa A; Ishak, Mohd Yusoff; Zulkifli, Syaizwan Zahmir

    2016-04-01

    The Bernam River is one of the most important rivers in Malaysia in that it provides water for industries and agriculture located along its banks. The present study was conducted to assess the level of contamination of heavy metals (Cd, Ni, Cr, Sn, and Fe) in surface sediments in the Bernam River. Nine surface sediment samples were collected from the lower, middle, and upper courses of the river. The results indicated that the concentrations of the metals decreased in the order of Sn > Cr > Ni > Fe > Cd (56.35, 14.90, 5.3, 4.6, and 0.62 μg/g(1) dry weight). Bernam River sediments have moderate to severe enrichment for Sn, moderate for Cd, and no enrichment for Cr, Ni, and Fe. The contamination factor (CF) results demonstrated that Cd and Sn are responsible for the high contamination. The pollution load index (PLI), for all the sampling sites, suggests that the sampling stations were generally unpolluted with the exception of the Bagan Tepi Sungai, Sabak Bernam, and Tanjom Malim stations. Multivariate techniques including Pearson's correlation and hierarchical cluster analysis were used to apportion the various sources of the metals. The results suggested that the sediment samples collected from the upper course of the river had lower metal concentrations, while sediments in the middle and lower courses of the river had higher metal concentrations. Therefore, our results can be useful as a baseline data for government bodies to adopt corrective measure on the issues related to heavy metal pollution in the Bernam River in the future.

  6. Assessment of human impact on water quality along Manyame River

    Directory of Open Access Journals (Sweden)

    Tirivashe P. Masere

    2012-12-01

    Full Text Available Human activities such as urbanization, agriculture, sewage treatment and industrialization are affecting water resources both quantitatively and qualitatively. The impact of these activities were studied by measuring and determining the concentration and values of eight selected water quality parameters namely nitrates, phosphates, copper, iron, biochemical oxygen demand (BOD, dissolved oxygen (DO, pH and turbidity along Manyame River, in the Manyame Catchment. Thirty five sites were sampled from the source of the river which is at Seke Dam, along Manyame River and on the tributaries (Ruwa, Nyatsime, Mukuvisi and Marimba just before they join the river. The 35 sites were categorized into 5 groups (A, B, C, D and E with group A and E being the upstream and downstream of Manyame. The analysis of results was undertaken using a simple one-way ANOVA with group as the only source of variation. Turbidity values, nitrate and phosphate concentrations were found to be higher than the Zimbabwe National Water Authority (ZINWA maximum permissible standards for surface waters. DO saturation in the downstream groups was less than 75% (ZINWA standard. Agricultural and urban runoff and sewage effluent were responsible of the high nutrient levels and turbidity, which in turn, reduced the dissolved oxygen (DO.

  7. Flood Risk Index Assessment in Johor River Basin

    International Nuclear Information System (INIS)

    Ahmad Shakir Mohd Saudi; Hafizan Juahir; Azman Azid; Fazureen Azaman; Ahmad Shakir Mohd Saudi

    2015-01-01

    This study is focusing on constructing the flood risk index in the Johor river basin. The application of statistical methods such as factor analysis (FA), statistical process control (SPC) and artificial neural network (ANN) had revealed the most efficient flood risk index. The result in FA was water level has correlation coefficient of 0.738 and the most practicable variable to be used for the warning alert system. The upper control limits (UCL) for the water level in the river basin Johor is 4.423 m and the risk index for the water level has been set by this method consisting of 0-100.The accuracy of prediction has been evaluated by using ANN and the accuracy of the test result was R"2 = 0.96408 with RMSE= 2.5736. The future prediction for UCL in Johor river basin has been predicted and the value was 3.75 m. This model can shows the current and future prediction for flood risk index in the Johor river basin and can help local authorities for flood control and prevention of the state of Johor. (author)

  8. Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    None available

    1999-07-29

    On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

  9. FLOODPLAIN-CHANNEL COMPLEX OF SMALL RIVER: ASSESSMENT OF CURRENT STATE, OPTIMIZATION MEASURES

    Directory of Open Access Journals (Sweden)

    Kovalchuk I.

    2016-05-01

    Full Text Available The article describes main methodological principles of geoecological assessment of riverbed-floodplain complex condition of one of the small rivers in Ukrainian Carpathians. According to our long-term field, cartographic, laboratory and remote sensing research, division of riverbed into homogeneous geoecological segments was made, as well as their standardization in accordance to the trends of unfavorable processes. Main reasons for deterioration of quality characteristics of channel-floodplain river complex were outlined; the role of natural and anthropogenic factors in deterioration of geoecological condition of the river and its floodplain complex was analyzed. Based on the assessment results it is possible to state that the condition of study segments of the Berezhnytsya river flood-plain and stream-way complex was marked as “excellent”, “good” and “satisfactory”. “Unsatisfactory” and “catastrophic” river and flood-plain condition has not been detected yet, although within Dashava urban settlement the river area condition is close to the “satisfactory” grade. The best situation is at the river head as human impact is minimized here and natural vegetation is preserved. Downstream we trace the tendency of condition worsening as anthropogenic load on the basin system and flood-plain and stream-way complex increases. Its negative impact is balanced by large forests, thus in segments limited by Banya Lysovytska village and Lotatnyky village the river and flood-plain condition is rated as “good”. So, downstream from the named village the value of such an important natural barrier as forest is reducing and anthropogenic load on the river significantly increases. The latter manifests in an intensive agricultural reclamation and housing development of flood-plains. Since degradation processes are rapidly developing over a considerable part of the Berezhnytsya river, negative changes are visible and only the study area

  10. Bank retreat of a meandering river reach case study : River Irwell

    NARCIS (Netherlands)

    Duran, R.; Beevers, L.; Crosato, A.; Wright, N.G.

    2009-01-01

    Lack of data is often considered a limitation when undertaking morphological studies. This research deals with the morphological study of a small river experiencing bank erosion for which only limited data are available. A reach of the meandering gravel-bed river Irwell (United Kingdom) is taken as

  11. Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan.

    Science.gov (United States)

    Rabbani, Unaib; Mahar, Gohar; Siddique, Azhar; Fatmi, Zafar

    2017-02-01

    The study determined the risk zone and estimated the population at risk of adverse health effects for arsenic exposure along the bank of River Indus in Pakistan. A cross-sectional survey was conducted in 216 randomly selected villages of one of the districts along River Indus. Wells of ten households from each village were selected to measure arsenic levels. The location of wells was identified using global positioning system device, and spatial variations of the groundwater contamination were assessed using geographical information system tools. Using layers of contaminated drinking water wells according to arsenic levels and population with major landmarks, a risk zone and estimated population at risk were determined, which were exposed to arsenic level ≥10 µg/L. Drinking wells with arsenic levels of ≥10 µg/L were concentrated within 18 km near the river bank. Based on these estimates, a total of 13 million people were exposed to ≥10 µg/L arsenic concentration along the course of River Indus traversing through 27 districts in Pakistan. This information would help the researchers in designing health effect studies on arsenic and policy makers in allocating resources for designing focused interventions for arsenic mitigation in Pakistan. The study methods have implication on similar populations which are affected along rivers due to arsenic contamination.

  12. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  13. L-Reactor operation, Savannah River Plant: environmental assessment

    International Nuclear Information System (INIS)

    1982-08-01

    The purpose of this document is to assess the significance of the effects on the human environment of the proposed resumption of L-reactor operation at the Savannah River Plant, scheduled for October 1983. The discussion is presented under the following section headings: need for resumption of L-Reactor operations and purpose of this environmental assessment; proposed action and alternative; affected environment (including, site location and description, land use, historic and archeological resources, socioeconomic and community characteristics, geology and seismology, hydrology, meteorology and climatology, ecology, and radiation environment); environmental consequences; summary of projected L-Reactor releases and impacts; and Federal and State permits and approval. The three appendices are entitled: radiation dose calculation methods and assumptions; floodplain/wetlands assessment - L-Reactor operations; and, conversion table. A list of references is included at the end of each chapter

  14. Risk assessment for nuclear processes at the Savannah River Site

    International Nuclear Information System (INIS)

    Durant, W.S.

    1992-01-01

    The Savannah River Site, one of the US Department of Energy's nuclear materials processing facilities, has for many years conducted risk-based safety analyses for the nuclear processes conducted at the facilities. This approach has allowed comparisons of risks to established criteria for acceptability. When the risk-based program was begun, it was evident that its success would depend upon having a compilation of data that was site specific. The decision was made to create a data bank of undesirable events that had occurred at the site's nuclear fuel reprocessing facilities. From this modest beginning, five data banks have been created for nuclear fuel reprocessing, waste management, nuclear fuel fabrication, tritium operations, and the Savannah River Technology Center. In addition to the primary purpose of providing a sound basis for risk-based safety analyses, these highly versatile data banks are routinely used for equipment breakdown histories, incident investigations, design studies, project justifications, reliability studies, process problem solving, training, and audits

  15. An assessment of water quality of Angaw River in Southeastern ...

    African Journals Online (AJOL)

    Physico-chemical and bacteriological water quality of the Angaw river were investigated at three different locations on the river. A range of water quality variables were measured in the river over a period of 12 months. The river was characterized by high ionic content. Relatively higher levels of ionic constituents occurred at ...

  16. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  17. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota.

    Directory of Open Access Journals (Sweden)

    Jochem Kail

    Full Text Available River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability/ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact

  18. Assessing Methane Fluxes in a Small Run-of-River Reservoir: The Importance of Adjacent Marshland

    Science.gov (United States)

    McGinnis, D. F.; Flury, S.; Fietzek, P.; Bilsley, N. A.; Bodmer, P.; Premke, K.; Maeck, A.; Lorke, A.; Schmidt, M.

    2013-12-01

    We investigate methane (CH4) emissions from a small run-of-river impoundment, the Schwentine River in Kiel, Germany. Small dammed rivers, while important regions for carbon transformation, are presently not considered in the terrestrial carbon budget and are under-represented in CH4 emission studies. Using state-of-the-art monitoring techniques, we determine that 1) the CH4 emissions well-exceed those reported for temperate reservoirs and 2) the hydrodynamic linkage to bordering marshland (consisting of reed belts, sidebays and creeks) is an important CH4 source for Schwentine River CH4. During our study, the Schwentine River discharged into the Kieler Fjord at 3 - 12 m3/s. CH4 measurements included 1) a moored sensor near the dam discharge, 2) discrete water sampling, and 3) real time surface flux measurements with floating chambers. We observed that the CH4 concentration increased nearly linearly from 2.5 km upstream towards the dam. The CH4 concentration near the dam discharge was logged and reported every 30 minutes nearly continuously from 11 July - 28 Sept 2011, and varied from 500 μmol/L to 2,200 μmol/L. Surprisingly, the CH4 mass discharge from the dam - ranging from 4 to 20 kg/day - increased with both temperature and flowrate, suggesting a flow-dependent CH4 source. We found that the bordering and numerous inundated reed belts, sidebays and small creeks, had significantly elevated CH4 concentrations. These marshland regions are relatively productive and quiescent compared to the main river, and trap organic and particulate matter, leading to enhanced CH4 production. As the river flowrate increases, the lateral exchange with these adjacent areas also increases. Using the CH4 concentration time series, measured surface diffusive and ebullition fluxes, and sediment CH4 porewater profiles, we estimate the relative contributions of CH4 in the main branch due to 1) sediment diffusion, 2) dissolution from sediment CH4 bubble release, and 3) lateral fluxes from

  19. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients

  20. Assessing geomorphic change along the Trinity River downstream from Lewiston Dam, California, 1980-2011

    Science.gov (United States)

    Curtis, Jennifer A.; Wright, Scott A.; Minear, Justin T.; Flint, Lorraine E.

    2015-01-01

    The Trinity River Restoration Program, one of the nation’s largest adaptively managed river restoration programs, requires periodic assessment to determine the effectiveness of management actions in restoring channel dynamics and habitat features. This study documents riparian and channel changes along an intensively managed 65-kilometer reach of the Trinity River in California, downstream from Lewiston Dam. The two primary periods of interest, from 1980 to 2001 and from 2001 to 2011, are separated by a shift in restoration activities mandated by the U.S. Department of the Interior December 2000 Record of Decision. The post-2001 restoration strategy increased managed-flow releases, gravel augmentation, watershed restoration, and mechanical channel rehabilitation.

  1. Water Quality Assessment Using Benthic Macroinvertebrates in Saigon River and Its Tributaries, Vietnam

    Directory of Open Access Journals (Sweden)

    Duc Pham Anh

    2016-06-01

    Full Text Available This study to enhance the discussion about the usefulness of benthic macroinvertebrates for water quality assessment in Saigon River and its tributaries. Data from 16 sites were used as a representative example for Saigon River and its tributaries in the area of basin over 4,500 km2, the length through provinces of Tay Ninh, Binh Phuoc, Binh Duong, and Ho Chi Minh City of about 280 km. The data covered the period of dry and rainy seasons in 2015, the survey sampled 16 sites (32 events of the Saigon River and its tributaries selected. To implement this evaluation, the analyses were based on MRC methods and classifications these improved by the scientific group.

  2. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million

  3. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  4. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    International Nuclear Information System (INIS)

    2013-05-01

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  5. Assessing the Environmental Condition of Minor Rivers in Urban Areas

    Directory of Open Access Journals (Sweden)

    Vladimir Sergeevich Kuznetsov

    2017-11-01

    Full Text Available This article is devoted to the study of water and sediment pollution in the channel of the Neva delta. Spectrophotometry was used to determine the concentration of pollutants in water. In the chemical analysis of the precipitate, atomic absorption spectroscopy and infrared spectroscopy were used. Analysis of the hydrochemical composition and sediment of the Smolenka River showed high concentrations of heavy metals and petroleum products. At the same time, the hydrochemical composition of the Smolenka River is highly unstable, but the concentration of oil products and lead in the sediments indicates the presence of local pollution sources. Based on our findings, we are guided by the restoration of the aquatic environment.

  6. An assessment study in the determination of chemical elements in sediments and fish in the Zarka River and King Talal Dam, Jordan

    International Nuclear Information System (INIS)

    Alsabbagh, A.; Khalayleh, L.; Dbissi, M.; Landsberger, S.

    2017-01-01

    Concentrations of several trace elements were detected in the sediments at King Talal Dam and at different locations along the Zarka River, Jordan. Chemical elements were also detected in the edible part of common fish types existing at the dam. Elemental concentrations were determined using neutron activation analysis (NAA). The results showed that the concentration of chemical elements in the sediments decreases as one moves away from the Khirbet Al Samra waste water treatment plant. The results also revealed that most of the elements had higher concentrations in Tilapia fish compared to the Catfish. (author)

  7. Evaluation of Environmental Flows in Rivers Using Hydrological Methods (Case study: The Barandozchi River- Urmia Lake Basin

    Directory of Open Access Journals (Sweden)

    S. Mostafavi

    2017-01-01

    Full Text Available Introduction Development of water resources projects are accompanied by several environmental impacts, among them, the changes in the natural flow regime and the reduction of downstream water flows. With respect to the water shortages and non-uniform distribution of rainfall, sustainable management of water resources would be inevitable. In order to prevent negative effects on long-term river ecosystems, it is necessary to preserve the ecological requirements of the river systems. The assessment of environmental flow requirements in a river ecosystem is a challenging practice all over the world, and in particular, in developing countries such as Iran. Environmental requirements of rivers are often defined as a suite of flow discharges of certain magnitude, timing, frequency and duration. These flows ensure a flow regime capable of sustaining a complex set of aquatic habitats and ecosystem processes and are referred to as "environmental flows". There are several methods for determining environmental flows. The majority of these methods can be grouped into four reasonably distinct categories, namely as: hydrological, hydraulic rating, habitat simulation (or rating, and holistic methodologies. However, the current knowledge of river ecology and existing data on the needs of aquatic habitats for water quantity and quality is very limited. It is considered that there is no unique and universal method to adapt to different rivers and/or different reaches in a river. The main aim of the present study was to provide with a framework to determine environmental flow requirements of a typical perennial river using eco-hydrological methods. The Barandozchi River was selected as an important water body in the Urmia Lake Basin, Iran. The preservation of the river lives, the restoration of the internationally recognized Urmia Lake, and the elimination of negative impact from the construction of the Barandoz dam on this river were the main concerns in this

  8. Assessment of mercury contamination in the Bílina River (Czech Republic using indicator fish

    Directory of Open Access Journals (Sweden)

    Kamila Kružíková

    2012-01-01

    Full Text Available The aim of the study was to determine mercury content in the muscle of indicator fish and to assess mercury pollution along the Bílina River, which is one of the most important tributaries of the Elbe River. A total of eight sites were chosen on the Bílina River for sampling. Indicator fish chub (Leuciscus cephalus L, roach (Rutilus rutilus L. and brown trout (Salmo trutta m. fario L. in the total numbers of 24, 26 and 27, respectively, were sampled at four locations, since at the remaining sites fish were absent. Mercury concentrations in the muscle of sampled indicator fish were measured using cold vapour atomic absorption spectrometry on an AMA 254 analyser. The highest mercury content (0.12 ± 0.027 mg·kg-1 was found in the muscle of roach at the Ústí nad Labem site and the lowest mercury content (0.04 ± 0.008 mg·kg-1 in the muscle of brown trout from the Březenec (the first upstream site site. A significant difference (P -1 and brown trout (0.04 mg·kg-1 at the Březenec site. The priority of this study was to assess the mercury contamination of the Bílina River because this river flows through a heavy industrial activity in the region (especially production of petrochemicals, agrochemicals, sorbents, plasticizers and textile auxiliaries. Despite the fact that the Bílina is an extensively polluted river, the obtained mercury results were very low and did not exceed the limit of 0.5 mg·kg-1 set by Commission Regulation No. 1881/2006.

  9. Soil erosion assessment of a Himalayan river basin using TRMM data

    Science.gov (United States)

    Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.

    2015-04-01

    In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.

  10. Rivers rapid assessment protocols and insertion of society in monitoring of water resources

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2008-12-01

    Full Text Available The degradation of water resources has been detected and changes both institutional and in the legislation have been demanded. The careless use of rivers has ecological changes as direct consequence, causing serious modifications in the landscape and fluvial regime, besides altering the availability of habitats and the trophic composition of the aquatic environment. Pressed by this scenario, scientists have been developing assessment methods that are efficient both for the evaluation itself and for supporting decision taking in the environmental management processes. In this perspective, the objective of this study is to present the Rapid River Assessment Protocols (RAPs and to emphasize how these protocols can promote the community participation in water resources monitoring. The RAPs can used to evaluate in an integrated form the characteristics of a river section according to the conservation or degradation condition of the fluvial environment and it is characterized by its economic viability and easy applicability. In regions with poor financial resources and serious problems of water quality, the RAPs can be used in environmental management programs. By using these protocols, the integration of the community in water resources monitoring generates data which represent the quality of fluvial ecosystems throughout time, without requesting high costs or specialized professionals. The RAPs in a simplified but not simplistic tool, which can be used in activities that aim at promoting a quick and reliable assessment of the “health” of a river.

  11. Assessing summer and fall chinook salmon restoration in the Upper Clearwater River and principal tributaries. Annual report 1994

    International Nuclear Information System (INIS)

    Arnsberg, B.D.; Statler, D.P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  12. Long-term tritium monitoring to study river basin dynamics: case of the Danube River basin

    Science.gov (United States)

    Aggarwal, Pradeep; Araguas, Luis; Groening, Manfred; Newman, Brent; Kurttas, Turker; Papesch, Wolfgang; Rank, Dieter; Suckow, Axel; Vitvar, Tomas

    2010-05-01

    During the last five decades, isotope concentrations (O-18, D, tritium) have been extensively measured in precipitation, surface- and ground-waters to derive information on residence times of water in aquifers and rivers, recharge processes, and groundwater dynamics. The unique properties of the isotopes of the water molecule as tracers are especially useful for understanding the retention of water in river basins, which is a key parameter for assessing water resources availability, addressing quality issues, investigating interconnections between surface- and ground-waters, and for predicting possible hydrological shifts related to human activities and climate change. Detailed information of the spatial and temporal changes of isotope contents in precipitation at a global scale was one of the initial aims of the Global Network of Isotopes in Precipitation (GNIP), which has provided a detailed chronicle of tritium and stable isotope contents in precipitation since the 1960s. Accurate information of tritium contents resulting of the thermonuclear atmospheric tests in the 1950s and 1960s is available in GNIP for stations distributed world-wide. Use of this dataset for hydrological dating or as an indicator of recent recharge has been extensive in shallow groundwaters. However, its use has been more limited in surface waters, due to the absence of specific monitoring programmes of tritium and stable isotopes in rivers, lakes and other surface water bodies. The IAEA has recently been compiling new and archival isotope data measured in groundwaters, rivers, lakes and other water bodies as part of its web based Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Recent additions to the Global Network of Isotopes in Rivers (GNIR) contained within WISER now make detailed studies in rivers possible. For this study, we are re-examining residence time estimates for the Danube in central Europe. Tritium data are available in GNIR from 15

  13. Assessment of the Incidence of Enteric Adenovirus Species and Serotypes in Surface Waters in the Eastern Cape Province of South Africa: Tyume River as a Case Study

    Directory of Open Access Journals (Sweden)

    Timothy Sibanda

    2012-01-01

    Full Text Available TaqMan real-time PCR was used for the detection and quantitation of adenoviruses in Tyume River water samples over a 12-month period. A total of 72 samples were analysed, and 22 samples were positive for adenovirus. Of the positive samples, 18 were collected from downstream sampling points. Among the downstream sampling points, adenovirus detection rate increased with distance downstream, being 28%, 33%, and 39% for Alice, Drayini, and Manqulweni, respectively. The Alice sampling site had the highest concentrations of adenovirus ranging between 6.54×103 genome copies/L and 8.49×104 genome copies/L. The observed trend could have been expected considering the level of anthropogenic activities in areas along the lower stretch of Tyume River, with the major one being the effluent of treated and semi treated sewage from wastewater treatment facilities. Adenovirus detection was sporadic at most sampling sites. Multiplex conventional PCR was used for the detection of clinically important adenovirus species B, C, and F and their serotypes. Species C and F adenoviruses were detected in 77% and 18% of the samples, respectively. Most adenovirus positive samples were obtained from areas of increased population densities. The presence of adenoviruses may confirm the risk of its transmission to the human population.

  14. Assessment of floodplain vulnerability during extreme Mississippi River flood 2011.

    Science.gov (United States)

    Goodwell, Allison E; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A; Kumar, Praveen; Garcia, Marcelo H; Rhoads, Bruce L; Holmes, Robert R; Parker, Gary; Berretta, David P; Jacobson, Robert B

    2014-01-01

    Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km(2) agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.

  15. Assessment of Savannah River borosilicate glass in the repository environment

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wicks, G.G.; Bibler, N.E.

    1982-04-01

    Since 1973, borosilicate glass has been studied as a matrix for the immobilization of high-level radioactive waste generated at the Savannah River Plant (SRP). In 1977, efforts began to develop and test the large-scale equipment necessary to convert the alkaline waste slurries at SRP into a durable borosilicate glass. A process has now been developed for the proposed Defense Waste Processing Facility (DWPF) which will annually produce approximately 500 canisters of SRP waste glass which will be stored on an interim basis on the Savannah River site. Current national policy calls for the permanent disposal of high-level waste in deep geologic repositories. In the repository environment, SRP waste glass will eventually be exposed to such stresses as lithostatic or hydrostatic pressures, radiation fields, and self-heating due to radioactive decay. In addition, producing and handling each canister of glass will also expose the glass to thermal and mechanical stresses. An important objective of the extensive glass characterization and testing programs of the Savannah River Laboratory (SRL) has been to determine how these stresses affect the performance of SRP waste glass. The results of these programs indicate that: these stresses will not significantly affect the performance of borosilicate glass containing SRP waste; and SRP waste glass will effectively immobilize hazardous radionuclides in the repository environment

  16. Assessing Anthracene and Arsenic Contamination within Buffalo River Sediments

    Directory of Open Access Journals (Sweden)

    Adrian Gawedzki

    2012-01-01

    Full Text Available Anthracene and arsenic contamination concentrations at various depths in the Buffalo River were analyzed in this study. Anthracene is known to cause damage to human skin and arsenic has been linked to lung and liver cancer. The Buffalo River is labelled as an Area of Concern defined by the Great Lakes Water Quality Agreement between Canada and the United States. It has a long history of industrial activity located in its near vicinity that has contributed to its pollution. An ordinary kriging spatial interpolation technique was used to calculate estimates between sample locations for anthracene and arsenic at various depths. The results show that both anthracene and arsenic surface sediment (0–30 cm is less contaminated than all subsurface depths. There is variability of pollution within the different subsurface levels (30–60 cm, 60–90 cm, 90–120 cm, 120–150 cm and along the river course, but major clusters are identified throughout all depths for both anthracene and arsenic.

  17. Lead Pollution Remanence in an Urban River System: A multi-scale temporal and spatial study

    Directory of Open Access Journals (Sweden)

    Ayrault S.

    2013-04-01

    Full Text Available This work aims at studying the fate of sediments contaminated with tetraethyl Pb from leaded gasoline using a two-dimension upscaling approach, from a small urban subcatchment, the Orge River (900 km2 to the whole Seine River basin (64700 km2, in France. In France, the leaded gasoline reduction started in 1986 and leaded gasoline was completely banned after 2000. This work aims at assessing whether the ban of leaded gasoline is related to changes in Pb contamination sources of these river suspended sediment particles (SPM and bed sediment. Sediment cores and samples collected in the course of previous research projects of the Seine River contamination were used as temporal archives. The study of the isotopic lead ratio showed the fast decrease of the contamination of urban river suspended particulate matter due to the “gasoline” lead source from 2000 to 2011. This source mostly disappeared in the SPM from the Seine River basin that includes urban areas but also agricultural and industrial activities. Nevertheless, it is still present in the small urban catchment of the Orge River. The results on bed sediments showed a different pattern, where the “gasoline” source is still active in densely populated areas, either in the Seine River in the 20 km downstream Paris, or along the Orge River.

  18. Ecological risk assessment of radionuclides in the Columbia River System ''a historical assessment''

    International Nuclear Information System (INIS)

    Friant, S.L.; Brandt, C.A.; Probasco, K.M.

    1993-01-01

    The US Department of Energy's (DOE) Hanford Site in southcentral Washington State has been the location of nuclear production activities since 1943. Radioactive effluents were discharged to the Columbia River, which runs through the northern portion of the Site and borders it on the east (the Hanford Reach). The assessment was conducted using historical Hanford Site monitoring data for the aquatic environment of the Columbia River over the time period from 1963 to 1964. The time period was chosen because it was then that peak production of nuclear material was occurring and the maximum number of reactors were operational. Exposure characterization consisted of measured radioactivity in water, sediments, and biota. Two approaches were used in assessing ecological risk to Columbia River organisms. In the first approach, environmental exposure data were used to calculate internal dose to a variety of aquatic organisms, including the most sensitive receptors (fish). In the second approach, measured tissue concentrations were used for selected aquatic organisms to calculate organism internal dose directly. Organism dose was used to assess potential toxic effects and assess regulatory compliance. Risk characterization was developed by comparing dose levels in fish and other organisms found in the Columbia River to known concentrations through a hazard quotient for acute dose and developmental effects

  19. Assessment of Soil Erosion Methods for Sludge Recovery, Savannah River Site

    National Research Council Canada - National Science Library

    Smith, Lawson

    1997-01-01

    ...) from selected storage tanks at the Savannah River Site (SRS) was assessed conceptually. Soil erosion methods are defined as the processes of soil detachment, entrainment, transport, and deposition...

  20. Assessing basin heterogeneities for rainfall–runoff modelling of the Okavango River and its transboundary management

    Directory of Open Access Journals (Sweden)

    V. Baumberg

    2014-09-01

    Full Text Available The neighbouring river systems Cubango and Cuito drain the southeastern part of the Angolan Highlands and form the Okavango River after their confluence, thus providing 95% of the Okavango River discharge. Although they are characterised by similar environmental conditions, runoff records indicate remarkable differences regarding the hydrological dynamics. The Cubango River is known for rapid discharges with high peaks and low baseflow whereas the Cuito runoff appears more balanced. These differences are mainly caused by heterogeneous geological conditions or terrain features. The Cubango headwaters are dominated by crystalline bedrock and steeper, v-shaped valleys while the Cuito system is characterised by wide, swampy valleys and thick sand layers, thus attenuating runoff. This study presents model exercises which have been performed to assess and quantify these effects by applying the distributive model J2000g for each sub-basin. The models provide reasonable results representing the spatio-temporal runoff pattern, although some peaks are over- or underestimated, particularly in the Cuito catchment. This is explained by the scarce information on extent and structure of storages, such as aquifers or swamps, in the Cuito system. However, the model results aid understanding of the differences of both tributaries in runoff generation and underpin the importance of floodplains regarding the control of runoff peaks and low flows in the Cuito system. Model exercises reveal that basin heterogeneity needs to be taken into account and must be parameterised appropriately for reliable modelling and assessment of the entire Okavango River basin for managing the water resources of the transboundary Okavango River in a harmonious way.

  1. Connecicut River ecological study: a synopsis

    International Nuclear Information System (INIS)

    Merriman, D.

    1976-01-01

    This paper recounts some salient features of an extensive study of the thermal effects of the Connecticut Yankee Atomic Power Company's electric generating plant on biota of the lower Connecticut River. The work includes a description of the plume, an examination of the anadromous shad population, a discussion of the affected ichthvofauna and entrainment, and an account of alterations in benthic fauna. This study has several distinctive attributes, among them that it was begun before the Water Quality Act (1965) and that it had a long-term before-and-after character, beginning in 1965 before the plant began operating and continuing during operation (1968-1973). Ecological alterations observed to date appear to be well within the limits of acceptability, and in large measure, wrought by mechanical rather than thermal factors

  2. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China.

    Science.gov (United States)

    Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing

    2013-05-01

    The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.

  3. Urban rivers and multifunctional landscapes: case study – Dona Eugênia River

    Directory of Open Access Journals (Sweden)

    Ianic Bigate Lourenço

    2015-12-01

    Full Text Available It is often observed in the current cities the development of an urbanization model and proposals of intervention on rivers that ignore their environmental, cultural and social values, enhancing one of the main problems of the present days in Brazilian cities: the urban flooding. This work intends to contribute to the sustainable management of cities, presenting landscape solutions, aimed at urban and environmental improvement of water bodies, from the systemic recognition of physical, historical, social and environmental relations, leading to the design of multifunctional solutions, which is an essential practice to face the lack of free spaces that a city of consolidated urbanization usually offers. Considering this complexity, this study was structured in an interdisciplinary basis, mainly between landscaping and engineering. This approach allowed the evaluation of the impacts caused by urbanization and, subsequently, the assessment of the proposed landscape solutions, with indications that are able to represent the hydraulic and hydrological systemic behavior of the study watershed. The work is centered on the Dona Eugênia river in Mesquita, RJ, in theregion of Baixada Fluminense, where the problem of flooding is common.

  4. Assessment of mercury in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

    1994-09-01

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities' gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard

  5. Assessment of mercury in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

    1994-09-01

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.

  6. Yukon River King Salmon - Ichthyophonus Pilot Study

    Science.gov (United States)

    Kocan, R.M.; Hershberger, P.K.

    2001-01-01

    When king salmon enter the Yukon River on their spawning migration in mid June, over 25% of the population are infected with Ichthyophonus. The percent of infected fish remains relatively constant until the fish pass river mile 1,319 at Dawson, Y.T., then it drops to 13% when they reach river mile 1,745 at Whitehorse, Y.T. When the sexes are examined separately, slightly more females are infected than males (29% vs 22%). The percent of fish exhibiting clinical signs (diseased) is 2-3% when they enter the river, but increases to over 20% at river mile 715 near Tanana, AK. Disease prevalence within the population remains constant at >20% until fish pass Dawson, then the percent of diseased fish drops to <9% at Whitehorse. When the sexes are examined separately, male disease prevalence is highest at Tanana (22.6%) then gradually drops to just 12.9% at Whitehorse. Females however, continue to show an increase in disease prevalence peaking at river mile 1,081 near Circle, AK, at 36.4%, then dropping to just 5.3% at Whitehorse. Data on infection and disease collected from kings at Nenana on the Tanana River more closely resembles that seen at Whitehorse than the lower and middle Yukon River.

  7. Occurrence, Distribution, and Risk Assessment of Antibiotics in a Subtropical River-Reservoir System

    Directory of Open Access Journals (Sweden)

    Yihan Chen

    2018-01-01

    Full Text Available Antibiotic pollutions in the aquatic environment have attracted widespread attention due to their ubiquitous distribution and antibacterial properties. The occurrence, distribution, and ecological risk assessment of 17 common antibiotics in this study were preformed in a vital drinking water source represented as a river-reservoir system in South China. In general, 15 antibiotics were detected at least once in the watershed, with the total concentrations of antibiotics in the water samples ranging from 193.6 to 863.3 ng/L and 115.1 to 278.2 μg/kg in the sediment samples. For the water samples, higher rain runoff may contribute to the levels of total concentration in the river system, while perennial anthropic activity associated with the usage pattern of antibiotics may be an important factor determining similar sources and release mechanisms of antibiotics in the riparian environment. Meanwhile, the reservoir system could act as a stable reactor to influence the level and composition of antibiotics exported from the river system. For the sediment samples, hydrological factor in the reservoir may influence the antibiotic distributions along with seasonal variation. Ecological risk assessment revealed that tetracycline and ciprofloxacin could pose high risks in the aquatic environment. Taken together, further investigations should be performed to elaborate the environmental behaviors of antibiotics in the river-reservoir system, especially in drinking water sources.

  8. Lidar-based biomass assessment for the Yukon River Basin

    Science.gov (United States)

    Peterson, B.; Wylie, B. K.; Stoker, J.; Nossov, D.

    2010-12-01

    Climate change is expected to have a significant impact on high-latitude forests in terms of their ability to sequester carbon as expressed as pools of standing total biomass and soil organic matter. Above ground biomass is an important driver in ecosystem process models used to assess, predict, and understand climate change impacts. Therefore, it is of compelling interest to acquire accurate assessments of current biomass levels for these high-latitude forests, a particular challenge because of their vastness and remoteness. At this time, remote sensing is the only feasible method through which to acquire such assessments. In this study, the use of lidar data for estimating shrub and tree biomass for the Yukon Flats region of Alaska’s Yukon River Basin (YRB) is demonstrated. The lidar data were acquired in the late summer and fall of 2009 as were an initial set of field sampling data collected for training and validation purposes. The 2009 field campaigns were located near Canvasback Lake and Boot Lake in the YRB. Various tallies of biomass were calculated from the field data using allometric equations (Bond-Lamberty et al. 2002, Yarie et al. 2007, Mack et al. 2008). Additional field data were also collected during two 2010 field campaigns at different locations in the Yukon Flats. Linear regressions have been developed based on field-based shrub and tree biomass and various lidar metrics of canopy height calculated for the plots (900 m^2). A multiple linear regression performed at the plot level resulted in a strong relationship (R^2=0.88) between observed and predicted biomass at the plot level. The coefficients for this regression were used to generate a shrub and tree biomass map for the entire Yukon Flats study area covered by lidar. This biomass map will be evaluated using additional field data collected in 2010 as well as other remote sensing data sources. Furthermore, additional lidar metrics (e.g. height of median energy) are being derived from the raw

  9. A 2D hydrodynamic-sedimentological model for gravel bed rivers. Part II, Case study: the Brenta River in Italy

    Directory of Open Access Journals (Sweden)

    Gabriel Kaless

    2013-09-01

    Full Text Available A 2D depth average model has been used to simulate water and sediment flow in the Brenta River so as to interpret channel changes and to assess model predictive capabilities. The Brenta River is a gravel bed river located in Northern Italy. The study reach is 1400 long and has a mean slope of 0.0056. High resolution digital terrain models has been produced combining laser imaging detection and ranging data with colour bathymetry techniques. Extensive field sedimentological surveys have been also carried out for surface and subsurface material. The data were loaded in the model and the passage of a high intense flood (R.I. > 9 years was simulated. The model was run under the hypothesis of a substantial equilibrium between sediment input and transport capacity. In this way, the model results were considered as a reference condition, and the potential trend of the reach was assessed. Low-frequency floods (R.I. » 1.5 years are expected to produce negligible changes in the channel while high floods may focalize erosion on banks instead than on channel bed. Furthermore, the model predicts well the location of erosion and siltation areas and the results promote its application to other reaches of the Brenta River in order to assess their stability and medium-term evolution.

  10. Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration - the Thur River case study

    Science.gov (United States)

    Schirmer, M.; Luster, J.; Linde, N.; Perona, P.; Mitchell, E. A. D.; Barry, D. A.; Hollender, J.; Cirpka, O. A.; Schneider, P.; Vogt, T.; Radny, D.; Durisch-Kaiser, E.

    2014-06-01

    River restoration can enhance river dynamics, environmental heterogeneity and biodiversity, but the underlying processes governing the dynamic changes need to be understood to ensure that restoration projects meet their goals, and adverse effects are prevented. In particular, we need to comprehend how hydromorphological variability quantitatively relates to ecosystem functioning and services, biodiversity as well as ground- and surface water quality in restored river corridors. This involves (i) physical processes and structural properties, determining erosion and sedimentation, as well as solute and heat transport behavior in surface water and within the subsurface; (ii) biogeochemical processes and characteristics, including the turnover of nutrients and natural water constituents; and (iii) ecological processes and indicators related to biodiversity and ecological functioning. All these aspects are interlinked, requiring an interdisciplinary investigation approach. Here, we present an overview of the recently completed RECORD (REstored CORridor Dynamics) project in which we combined physical, chemical, and biological observations with modeling at a restored river corridor of the perialpine Thur River in Switzerland. Our results show that river restoration, beyond inducing morphologic changes that reshape the river bed and banks, triggered complex spatial patterns of bank infiltration, and affected habitat type, biotic communities and biogeochemical processes. We adopted an interdisciplinary approach of monitoring the continuing changes due to restoration measures to address the following questions: How stable is the morphological variability established by restoration? Does morphological variability guarantee an improvement in biodiversity? How does morphological variability affect biogeochemical transformations in the river corridor? What are some potential adverse effects of river restoration? How is river restoration influenced by catchment-scale hydraulics

  11. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

  12. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Chittoor Viswanathan, Vidhya [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); Molson, John [Université Laval, Département de Géologie et Génie Géologique, Québec City, Québec (Canada); Schirmer, Mario [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland)

    2015-11-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ{sup 18}O-H{sub 2}O) as well as those of nitrate (δ{sup 15}N-NO{sub 3}{sup −} and δ{sup 18}O-NO{sub 3}{sup −}) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological

  13. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    International Nuclear Information System (INIS)

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-01-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ 18 O-H 2 O) as well as those of nitrate (δ 15 N-NO 3 − and δ 18 O-NO 3 − ) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal

  14. Health risk assessment of hazardous metals for population via consumption of seafood from Ogoniland, Rivers State, Nigeria; a case study of Kaa, B-Dere, and Bodo City.

    Science.gov (United States)

    Nkpaa, K W; Patrick-Iwuanyanwu, K C; Wegwu, M O; Essien, E B

    2016-01-01

    This study was designed to investigate the human health risk through consumption of seafood from contaminated sites in Kaa, B-Dere, and Bodo City all in Ogoniland. The potential non-carcinogenic health risk for consumers were investigated by assessing the estimated daily intake and target hazard quotients for Cr, Cd, Zn, Pb, Mn, and Fe while carcinogenic health effect from Cr, Cd, and Pb was also estimated. The estimated daily intake from seafood consumption was below the threshold values for Cr, Mn, and Zn while they exceeded the threshold for Cd, Pb, and Fe. The target hazard quotients for Zn and Cr were below 1. Target hazard quotients values for Cd, Pb, Mn, and Fe were greater than 1 except for Fe level in Liza falcipinis from Kaa. Furthermore, estimation of carcinogenic risk for Cr in all samples under study exceeded the accepted risk level of 10E-4. Also, Cd carcinogenic risk level for L. falcipinis and Callinectes pallidus collected from B-Dere and C. pallidus collected from Bodo City was 1.1E-3 which also exceeded the accepted risk level of 10E-4 for Cd. Estimation of carcinogenic risk for Pb was within the acceptable range of 10E-4. Consumers of seafood from these sites in Ogoniland may be exposed to metal pollution.

  15. Dynamics and ecological risk assessment of chromophoric dissolved organic matter in the Yinma River Watershed: Rivers, reservoirs, and urban waters.

    Science.gov (United States)

    Li, Sijia; Zhang, Jiquan; Guo, Enliang; Zhang, Feng; Ma, Qiyun; Mu, Guangyi

    2017-10-01

    The extensive use of a geographic information system (GIS) and remote sensing in ecological risk assessment from a spatiotemporal perspective complements ecological environment management. Chromophoric dissolved organic matter (CDOM), which is a complex mixture of organic matter that can be estimated via remote sensing, carries and produces carcinogenic disinfection by-products and organic pollutants in various aquatic environments. This paper reports the first ecological risk assessment, which was conducted in 2016, of CDOM in the Yinma River watershed including riverine waters, reservoir waters, and urban waters. Referring to the risk formation theory of natural disaster, the entropy evaluation method and DPSIR (driving force-pressure-state-impact-response) framework were coupled to establish a hazard and vulnerability index with multisource data, i.e., meteorological, remote sensing, experimental, and socioeconomic data, of this watershed. This ecological vulnerability assessment indicator system contains 23 indicators with respect to ecological sensitivity, ecological pressure, and self-resilience. The characteristics of CDOM absorption parameters from different waters showed higher aromatic content and molecular weights in May because of increased terrestrial inputs. The assessment results indicated that the overall ecosystem risk in the study area was focused in the extremely, heavily, and moderately vulnerable regions. The ecological risk assessment results objectively reflect the regional ecological environment and demonstrate the potential of ecological risk assessment of pollutants over traditional chemical measurements. Copyright © 2017. Published by Elsevier Inc.

  16. A Dreissena Risk Assessment for the Colorado River Ecosystem

    Science.gov (United States)

    Kennedy, Theodore A.

    2007-01-01

    Executive Summary Nonnative zebra and quagga mussels (Dreissena polymorpha and Dreissena bugensis, respectively; see photo above) were accidentally introduced to the Great Lakes in the 1980s and subsequently spread to watersheds of the Eastern United States (Strayer and others, 1999). The introduction of Dreissena mussels has been economically costly and has had large and far-reaching ecological impacts on these systems. Quagga mussels were found in Lakes Mead and Havasu in January 2007. Given the likelihood that quagga mussels and, eventually, zebra mussels will be introduced to Lake Powell and the Colorado River at Lees Ferry, it is important to assess the risks that introduction of Dreissena mussels pose to the Colorado River ecosystem (here defined as the segment of river from just below Glen Canyon Dam to Diamond Creek; hereafter CRE). In this report, I assess three different types of risks associated with Dreissena and the CRE: (1) the risk that Dreissena will establish at high densities in the CRE, (2) the risk of ecological impacts should Dreissena establish at high densities in the CRE or in Lake Powell, and (3) the risk that Dreissena will be introduced to tributaries of the CRE. The risk of Dreissena establishing within the CRE is low, except for the Lees Ferry tailwater reach where the risk appears high. Dreissena are unlikely to establish at high densities within the CRE or its tributaries because of high suspended sediment, high ratios of suspended inorganic:organic material, and high water velocities, all of which interfere with the ability of Dreissena to effectively filter feed. The rapids of Grand Canyon may represent a large source of mortality to larval Dreissena, which would limit their ability to disperse and colonize downstream reaches of the CRE. In contrast, conditions within the Lees Ferry tailwater generally appear suitable for Dreissena establishment, with the exception of high average water velocity. If Dreissena establish within the

  17. An ecological economic assessment of flow regimes in a hydropower dominated river basin: the case of the lower Zambezi River, Mozambique.

    Science.gov (United States)

    Fanaian, Safa; Graas, Susan; Jiang, Yong; van der Zaag, Pieter

    2015-02-01

    The flow regime of rivers, being an integral part of aquatic ecosystems, provides many important services benefiting humans in catchments. Past water resource developments characterized by river embankments and dams, however, were often dominated by one (or few) economic use(s) of water. This results in a dramatically changed flow regime negatively affecting the provision of other ecosystem services sustained by the river flow. This study is intended to demonstrate the value of alternative flow regimes in a river that is highly modified by the presence of large hydropower dams and reservoirs, explicitly accounting for a broad range of flow-dependent ecosystem services. In this study, we propose a holistic approach for conducting an ecological economic assessment of a river's flow regime. This integrates recent advances in the conceptualization and classification of ecosystem services (UK NEA, 2011) with the flow regime evaluation technique developed by Korsgaard (2006). This integrated approach allows for a systematic comparison of the economic values of alternative flow regimes, including those that are considered beneficial for aquatic ecosystems. As an illustration, we applied this combined approach to the Lower Zambezi Basin, Mozambique. Empirical analysis shows that even though re-operating dams to create environmentally friendly flow regimes reduces hydropower benefits, the gains to goods derived from the aquatic ecosystem may offset the forgone hydropower benefits, thereby increasing the total economic value of river flow to society. The proposed integrated flow assessment approach can be a useful tool for welfare-improving decision-making in managing river basins. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Sanitary landfill groundwater quality assessment plan Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  19. Assessment of radiocarbon in the Savannah River Site Environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Evans, A.G.; Murphy, C.E. Jr.; Tuck, D.M.

    1993-03-01

    This report is a radiological assessment of 14 C releases from the Savannah River Site. During the operation of five production reactors 14 C has been produced at SRS. Approximately 3000 curies have been released to the atmosphere but there are no recorded releases to surface waters. Once released, the 14 C joins the carbon cycle and a portion enters the food chain. The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by a dose of 1.1 mrem, compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Releases of 14 C have resulted in a negligible risk to the environment and the population it supports

  20. A geomorphological characterisation of river systems in South Africa: A case study of the Sabie River

    Science.gov (United States)

    Eze, Peter N.; Knight, Jasper

    2018-06-01

    Fluvial geomorphology affects river character, behaviour, evolution, trajectory of change and recovery potential, and as such affects biophysical interactions within a catchment. Water bodies in South Africa, in common with many other water-stressed parts of the world, are generally under threat due to increasing natural and anthropogenic influences including aridity, siltation and pollution, as well as climate and environmental change. This study reports on a case study to characterise the geomorphology of different river systems in South Africa, with the aim of better understanding their properties, controls, and implications for biophysical interactions including water quality, biodiversity (aquatic and riparian), and human activity within the catchment. The approach adopted is based on the River Styles® framework (RSF), a geomorphology-based approach developed for rivers in New Zealand and Australia, but applied here for the first time to South Africa. Based on analysis of remote sensing imagery, SRTM-2 digital topographic data and field observations on sites through the entire river system, six geomorphic elements were identified along the Sabie River, northeast South Africa (gorge, bedrock-forced meander, low-moderate sinuosity planform controlled sand bed, meandering sand bed, low sinuosity fine grained sand bed, and floodouts), using the RSF classification scheme and based on the RSF procedural tree of Brierley and Fryirs (2005). Previous geomorphological studies along the Sabie River have shown that different reaches respond differently to episodic floods; we use these data to link river geomorphological character (as defined by the RSF) to the hydrodynamic conditions and processes giving rise to such character. This RSF approach can be used to develop a new management approach for river systems that considers their functional biophysical behaviour within individual reaches, rather than considering them as homogeneous and uniform systems.

  1. Assessment of physico-chemical parameters of Tsaeda Agam River in Mekelle City, Tigray, Ethiopia

    Directory of Open Access Journals (Sweden)

    K. Mezgebe

    2015-10-01

    Full Text Available The present work was conducted to assess the physico-chemical parameters of Tsada Agam River found in Mekelle, Tigray, Ethiopia and determine its suitability for domestic and irrigation purposes. Water samples were collected monthly for two consecutive months (February to March, 2013 at four sampling sites and analyzed for various physico-chemical parameters. The study indicated that the mean value of studied parameters, except electrical conductivity, total dissolved solids, turbidity, total alkalinity, calcium ion, sulphate ion, and total phosphorus of the river water samples were within the permissible limit of WHO for drinking water. The findings also showed the mean value of studied parameters, except sulphate ion concentration, were within the permissible limit of FAO for irrigation water. Therefore, the river water was found to be unfit for human consumption and was found to be safe and utilizable for irrigation purposes. If the quality management was properly maintained, the Tsaeda Agam River water could be utilized for a wide range of applications such as drinking and irrigation.DOI: http://dx.doi.org/10.4314/bcse.v29i3.5

  2. Assessing the Global Extent of Rivers Observable by SWOT

    Science.gov (United States)

    Pavelsky, T.; Durand, M. T.; Andreadis, K.; Beighley, E.; Allen, G. H.; Miller, Z.

    2013-12-01

    Flow of water through rivers is among the key fluxes in the global hydrologic cycle and its knowledge would advance the understanding of flood hazards, water resources management, ecology, and climate. However, gauges providing publicly accessible measurements of river stage or discharge remain sparse in many regions. The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and the French Centre National d'Etudes Spatiales (CNES) that would provide the first high-resolution images of simultaneous terrestrial water surface height, inundation extent, and ocean surface elevation. Among SWOT's primary goals is the direct observation of variations in river water surface elevation and, where possible, estimation of river discharge from SWOT measurements. The mission science requirements specify that rivers wider than 100 m would be observed globally, with a goal of observing rivers wider than 50m. However, the extent of anticipated SWOT river observations remains fundamentally unknown because no high-resolution, global dataset of river widths exists. Here, we estimate the global extent of rivers wider than 50 m-100 m thresholds using established relationships among river width, discharge, and drainage area. We combine a global digital elevation model with in situ river discharge data to estimate the global extent of SWOT-observable rivers, and validate these estimates against satellite-derived measurements of river width in two large river basins (the Yukon and the Ohio). We then compare the extent of SWOT-observed rivers with the current publicly-available, global gauge network included in the Global Runoff Data Centre (GRDC) database to examine the impact of SWOT on the availability of river observation over continental and global scales. Results suggest that if SWOT observes 100 m wide rivers, river basins with areas greater than 50,000 km2 will commonly be measured. If SWOT could observe 50 m wide rivers, then most 10,000 km2 basins

  3. Ecological and human exposure assessment to PBDEs in Adige River.

    Science.gov (United States)

    Giulivo, Monica; Suciu, Nicoleta Alina; Eljarrat, Ethel; Gatti, Marina; Capri, Ettore; Barcelo, Damia

    2018-07-01

    The interest for environmental issues and the concern resulting from the potential exposure to contaminants were the starting point to develop methodologies in order to evaluate the consequences that those might have over both the environment and human health. Considering the feature of POPs, including PBDEs, such as bioaccumulation, biomagnification, long-range transport and adverse effects even long time after exposure, risk assessment of POPs requires specific approaches and tools. In this particular context, the MERLIN-Expo tool was used to assess the aquatic environmental exposure of Adige River to PBDEs and the accumulation of PBDEs in humans through the consumption of possible contaminated local aquatic food. The aquatic food web models provided as output of the deterministic simulation the time trend of concentrations for twenty years of BDE-47 and total PBDEs, expressed using the physico-chemical properties of BDE-47, in aquatic organisms of the food web of Adige River. For BDE-47, the highest accumulated concentrations were detected for two benthic species: Thymallus thymallus and Squalius cephalus whereas the lowest concentrations were obtained for the pelagic specie Salmo trutta marmoratus. The trend obtained for the total PBDEs, calculated using the physico-chemical properties of BDE-47, follows the one of BDE-47. For human exposure, different BDE-47 and total PBDEs concentration trends between children, adolescent, adults and elderly were observed, probably correlated with the human intake of fish products in the daily diet and the ability to metabolize these contaminants. In detail, for the adolescents, adults and elderly a continuous accumulation of the target contaminants during the simulation's years was observed, whereas for children a plateau at the end of the simulation period was perceived. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million. Construction for the demonstration project was started in July 1993. Pre-operational tests were initiated in August 1995, and construction was completed in November 1995. Commercial operation began in November 1995, and the demonstration period was completed in December

  5. A comparative study of the flux and fate of the Mississippi and Yangtze river sediments

    Directory of Open Access Journals (Sweden)

    K. Xu

    2015-03-01

    Full Text Available Large rivers play a key role in delivering water and sediment into the global oceans. Large-river deltas and associated coastlines are important interfaces for material fluxes that have a global impact on marine processes. In this study, we compare water and sediment discharge from Mississippi and Yangtze rivers by assessing: (1 temporal variation under varying climatic and anthropogenic impacts, (2 delta response of the declining sediment discharge, and (3 deltaic lobe switching and Holocene sediment dispersal patterns on the adjacent continental shelves. Dam constructions have decreased both rivers’ sediment discharge significantly, leading to shoreline retreat along the coast. The sediment dispersal of the river-dominated Mississippi Delta is localized but for the tide-dominated Yangtze Delta is more diffuse and influenced by longshore currents. Sediment declines and relative sea level rises have led to coastal erosion, endangering the coasts of both rivers.

  6. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    Science.gov (United States)

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  7. Occurrence, bioaccumulation and risk assessment of dioxin-like PCBs along the Chenab river, Pakistan

    International Nuclear Information System (INIS)

    Eqani, Syed Ali Musstjab Akber Shah; Cincinelli, Alessandra; Mehmood, Adeel; Malik, Riffat Naseem; Zhang, Gan

    2015-01-01

    This study aimed to assess the occurrence, distribution and dietary risks of seven dl-PCBs (dioxin-like PCBs) in eleven collected fish species from Chenab river, Pakistan. ∑_7dl-PCBs (ng g"−"1, wet weight) burden was species-specific and the maximum average concentrations were found in Mastacembelus armatus (5.43), and Rita rita (5.1). Correlation of each dl-PCBs with δ"1"5N%, indicated a food chain accumulation process of these chemicals into Chenab river, Pakistan. Species-specific toxicity of each dl-PCBs (WHO–PCBs TEQ) was calculated and higher values were found in three carnivore fish species i.e., M. armatus (2.5 pg TEQ g"−"1), R. rita (2.47 pg TEQ g"−"1), Securicola gora (2.98 pg TEQ g"−"1) and herbivore fish species i.e., Cirrhinus mrigala (2.44 pg TEQ g"−"1). The EDI (Estimated Daily Intake) values in most cases exceeded the WHO benchmark (4 pg WHO–TEQ kg"−"1 bw d"−"1) evidencing a potential health risk for consumers via fish consumption from Chenab river. - Highlights: • Dioxin-like PCBs in eleven collected fish species from Chenab river. • ∑_7dl-PCBs (ng/g, ww) burdens were specie-specific. • dl-PCBs (WHO-pg TEQ g"−"1ww) ranged between 0.96 and 2.9 in fish samples. • PCB-126 contribution was predominant towards total WHO dl-PCB TEQs. • Potential human health risk of dl-PCBs via fish consumption from Chenab river. - ∑_7dl-PCBs (ng g"−"1, ww) burdens in collected fish species from Chenab river, Pakistan reflected the potential human health risk via fish consumption.

  8. Ecotoxicological assessment of water and sediment of the Corumbataí River, SP, Brazil

    Directory of Open Access Journals (Sweden)

    GM. Jardim

    Full Text Available The Corumbataí River drains an economically important area which is mainly represented by the municipalities of Piracicaba and Rio Claro. In view of the impacts caused by the discharge of industrial waste and domestic sewage into the Piracicaba River, the Corumbataí has become increasingly significant as a source of water for the municipality of Piracicaba. However, chemical, physical, and microbiological analyses carried out prior to the present study had already indicated a decline in the quality of the Corumbataí waters. This study aimed to assess, through water and sediment samples, both acute and chronic toxicity to Daphnia magna and Daphnia similis, and to analyze acid-volatile sulfide (AVS and simultaneously extracted metal (SEM in the sediment. Resulting data were intended to be a contribution to future projects for the management and recuperation of this system. To that aim, water and sediment were collected at seven Corumbataí sampling stations in November 2003 and March 2004. Acute toxicity to D. similis was detected in water and sediment samples from the Piracicaba station, located at the mouth of the Corumbataí River. Chronic toxicity was identified in the water or sediment samples of all stations, with the exception of Analândia Montante (upstream, at the head of the river. This was found to affect survival, growth, and fecundity of the test-organisms. The AVS and SEM analyses showed the bioavailability of the metals, thus explaining toxicity found in bioassaying samples of water and sediment. The use of two test-organism species made it possible to obtain a better assessment of the condition of both water and sediment samples of the Corumbataí River.

  9. Ecotoxicological assessment of sediments from Tiete river between Salesopolis and Suzano, SP (Brazil)

    International Nuclear Information System (INIS)

    Alegre, Gabriel Fonseca

    2009-01-01

    Once introduced into the aquatic environment, many substances can bind or be adsorbed by organic particles in suspension. Depending on the river morphology and hydrological conditions, these particles in suspension containing the contaminants can be deposited along its course, becoming part of the bottom sediments, making them actual sinks and often a source of contamination for the water column and benthic organisms. In the assessment of water, sediment has been one of the most important indicators of the contamination levels in aquatic ecosystems, representing the deposition of contaminants in the environment that occurred over the years and even decades. The Tiete River cross the Sao Paulo state, however, in the metropolitan region of Sao Paulo, the river shows the most severe degradation. In the region of Salesopolis, the waters of the Tiete River are used for public supply, but across the city of Mogi das Cruzes the water quality decreases significantly. Considering the importance of the Tiete river and the sediment for the aquatic biota, this study aimed to evaluate the toxicity of the sediment at five points along the Tiete river, between the cities of Salesopolis and Suzano, Sao Paulo. Four sampling were carried out: two in the summer (rainy season) and two in winter (dry season). The whole sediment was assessed by acute and chronic toxicity tests with Hyalella azteca and Ceriodaphnia dubia, respectively, the elutriate was assessed by chronic toxicity test using C. dubia, while the porewater was evaluated by acute toxicity test with Vibrio fischeri. Samples of river water were also evaluated for chronic toxicity tests with C. dubia. The quantification of metals and hydrocarbons in sediment samples was also carried out in order to correlate the biological effects with the chemical contamination. The obtained results with the whole sediment test indicate Mogi das Cruzes and Suzano cities as the most toxic sites and also as the sites with the highest

  10. Assessing the effects of urbanization on the environment with soil legacy and current-use insecticides: a case study in the Pearl River Delta, China.

    Science.gov (United States)

    Wei, Yan-Li; Bao, Lian-Jun; Wu, Chen-Chou; He, Zai-Cheng; Zeng, Eddy Y

    2015-05-01

    To evaluate the impacts of anthropogenic events on the rapid urbanized environment, the levels of legacy organochlorine pesticides (OCPs) and current-use insecticides (CUPs), i.e., dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), pyrethroids and organophosphates in soil of the Pearl River Delta (PRD) and surrounding areas were examined. Spatial concentration distributions of legacy OCPs and CUPs shared similar patterns, with higher concentrations occurred in the central PRD with more urbanization level than that in the PRD's surrounding areas. Furthermore, relatively higher concentrations of OCPs and CUPs were found in the residency land than in other land-use types, which may be attributed to land-use change under rapid urbanization. Moderate correlations between gross domestic production or population density and insecticide levels in fifteen administrative districts indicated that insecticide spatial distributions may be driven by economic prosperity. The soil-air diffusive exchanges of DDTs and HCHs demonstrated that soil was a sink of atmospheric o,p'-DDE, o,p'-DDD, p,p'-DDD and o,p'-DDT, and was a secondary source of HCHs and p,p'-DDT to atmosphere. The soil inventories of DDTs and HCHs (100 ± 134 and 83 ± 70 tons) were expected to decrease to half of their current values after 18 and 13 years, respectively, whereas the amounts of pyrethroids and organophosphates (39 and 6.2 tons) in soil were estimated to decrease after 4 and 2 years and then increase to 87 and 1.0 tons after 100 years. In this scenario, local residents in the PRD and surrounding areas will expose to the high health risk for pyrethroids by 2109. Strict ban on the use of technical DDTs and HCHs and proper training of famers to use insecticides may be the most effective ways to alleviate the health effect of soil contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Studies of mineralization in South African rivers

    CSIR Research Space (South Africa)

    Hall, GC

    1978-03-01

    Full Text Available Several South African rivers are polluted by mineral salts of diffuse source. This pollution can be related to geological phenomena and to irrigation practices. Mineralization is problematic in that it can render surface waters unsuitable...

  12. Susquehanna River Basin Flood Control Review Study

    Science.gov (United States)

    1980-08-01

    and made recommendations for an intergrated water plan for the Basin and included a specific Early Action Plan. Concerning flood damage reduction, the...transportation and by agriculture as a source of income and occupation. The river served as a source of transportation for trade and commerce and also as a... trade patterns, and labor market areas. The Susquehanna River Basin is largely comprised of BEA economic areas 011, 012, 013, and 016. Figure II shows the

  13. Calculation of Longitudinal Dispersion Coefficient and Modeling the Pollution Transmission in Rivers (Case studies: Severn and Narew Rivers

    Directory of Open Access Journals (Sweden)

    A. Parsaie

    2017-01-01

    empirical formulas and artificial intelligent techniques have been proposed. In this study LDC is calculated for the Severn River and Narew River and some selected empirical formulas have been assessed to calculate the LDC. Dispersion Routing Method: As mentioned previously, calculating the LDC is more important, so firstly, the longitudinal dispersion was calculated from the concentration profile by Dispersion Routing Method (DRM. Using the DRM included the four stage.1-considering of initial value for LDC .2-calculating the concentration profile at the downstream station by using the upstream concentration profile and LDC.3- Performing a comparison between the calculated profile and measured profile.4- if the calculating profile is not a suitable cover, the measured profile of the process will be repeated until the calculated profile shows a good covering on the measured profile. Numerical Method: The ADE includes two different parts advection and dispersion. The pure advection term is related to transmission modeling without any dispersing and the dispersion term is related to the dispersion without any transmission. To discrete the ADE the finite volume method was used. According to physical properties of these two terms and the recommendation of researchers a suitable scheme should be considered for numerical solution of ADE terms. Among the finite volume schemes, the quickest scheme was selected to discrete the advection term, because of this scheme has suitable ability to model the pure advection term. The quickest scheme is an explicit scheme and the stability condition should be considered. To discrete the dispersion term, the central implicit scheme was selected. This scheme is unconditionally stable. Results and Discussion: The results of longitudinal dispersion coefficient for the Severn River and Narew River were calculated using the DRM method and empirical formulas. The results of LDC calculation showed that the minimum and maximum values for the Severn River

  14. Assessment of Concentrations of Heavy Metals and Phthalates in Two Urban Rivers of the Northeast of Puerto Rico

    Science.gov (United States)

    Ortiz-Colón, Ana I; Piñero-Santiago, Luis E; Rivera, Nilsa M; Sosa, María A

    2016-01-01

    Urbanization adjacent to rivers has increased in recent years and is considered a source of environmental contamination. The resulting increase in number of urban rivers in highly populated areas, such as the Caribbean island of Puerto Rico, has led to the appearance of synthetic as well as naturally occurring chemicals not previously observed nor regularly monitored in freshwater habitats. Some of these chemicals, such as heavy metals and plasticizers, have been shown to affect endocrine, respiratory, and nervous system function in animals and humans, even at relatively low concentrations. The purpose of this study was to measure concentrations of such emergent contaminants on rivers of urbanized areas on the northeast of Puerto Rico, as one element in the assessment of the impact of urbanism on water quality in these communities. To accomplish this, we used Inductively Coupled Plasma and Gas Chromatography Mass Spectrometry to measure amounts of heavy metals and phthalates, respectively, in superficial water of three rivers of Puerto Rico: Mameyes (non-urban), Río Piedras (urban river without a dam), and La Plata (urban river with a dam). The urban rivers had significantly higher concentrations of heavy metals arsenic, barium, cadmium, manganese, and antimony, when compared with the reference non-urban river. Manganese was the only metal found in concentrations higher than limits established by the EPA for drinking water. Of eight phthalates amenable to measurement with the chosen protocol and instrumentation, only dibutyl phthalate was detected, only in the La Plata river, and at concentrations ranging from 3 to 8 parts-per-billion. These findings suggest that urbanism close to rivers of Puerto Rico is likely having an impact on water quality and thus further study to identify the potential sources, as well as the inclusion of these emergent contaminants on the list of chemicals regularly monitored by government agencies is justified. PMID:27148470

  15. Assessment of fluvial geomorphological change in the confluence of Chindwin and Ayeyarwady Rivers in Myanmar using remote sensing

    Science.gov (United States)

    Piman, T.; Vasconcelos, V. V.; Apirumanekul, C.; Krittasudthacheewa, C.

    2017-12-01

    Bank erosion along the braided stretches of Ayeyarwady and Chindwin Rivers has been one of the main concerns at Sagaing region, in Myanmar, because it threatens villages, infrastructure and farmland, while the consequent sedimentation hampers boat transportation. This study assesses the changes on these two river channels and its sandbanks, in their confluence area. A special focus is given to infer the risk of villages to bank erosion. Landsat images from 1973, 1989, and annual series from 1998 to 2015 were used to evaluate frequency and rates of erosion, deposition and vegetation restabilization. Maps showed where the channels maintained stable and which areas faced bank erosion more frequently. From 1973 to 2015, 30% of the river valley in the studied area faced bank erosion. Although the summed area of the river channel remained relatively stable throughout the period, the rates of bank erosion vs. bank restabilization were higher after 2004. Most of the village area in the in the river valley within the bluffs (89% - 71km2) have not faced bank erosion since 1973, while 8.9% (7 km2) are in vulnerable areas that faced erosion before 2012, and bank erosion destroyed 1.3% (1 km2) of the villages from 2012 to 2015. The average rate of village land loss from bank erosion within the river valley from 1973 to 2012 was 0.18 km2/year, but increased to 0.33km2/year during 2012-2015. The villages located just downstream from the confluence of Chindwin and Ayeyarwady River faced higher problems with bank erosion. Approximately half of the village area (51.5% - 87km2) adjacent to the bluffs (outside the river valley) were facing stable land since 1973 (lowest risk), while 5.8% (10 km2) were facing stable river channel (low risk) and 42.7% (73 km2) were facing areas of unstable river channel (possible risk). As for the biggest urban sites, Monywa and Pakokku face areas of unstable river channel, while Sagaing and Myingyan are safer, facing areas of stable land. A detailed

  16. Fracture assessment of Savannah River Reactor carbon steel piping

    International Nuclear Information System (INIS)

    Mertz, G.E.; Stoner, K.J.; Caskey, G.R.; Begley, J.A.

    1991-01-01

    The Savannah River Site (SRS) production reactors have been in operation since the mid-1950's. One postulated failure mechanism for the reactor piping is brittle fracture of the original A285 and A53 carbon steel piping. Material testing of archival piping determined (1) the static and dynamic tensile properties; (2) Charpy impact toughness; and (3) the static and dynamic compact tension fracture toughness properties. The nil-ductility transition temperature (NDTT), determined by Charpy impact test, is above the minimum operating temperature for some of the piping materials. A fracture assessment was performed to demonstrate that potential flaws are stable under upset loading conditions and minimum operating temperatures. A review of potential degradation mechanisms and plant operating history identified weld defects as the most likely crack initiation site for brittle fracture. Piping weld defects, as characterized by radiographic and metallographic examination, and low fracture toughness material properties were postulated at high stress locations in the piping. Normal operating loads, upset loads, and residual stresses were assumed to act on the postulated flaws. Calculated allowable flaw lengths exceed the size of observed weld defects, indicating adequate margins of safety against brittle fracture. Thus, a detailed fracture assessment was able to demonstrate that the piping systems will not fail by brittle fracture, even though the NDTT for some of the piping is above the minimum system operating temperature

  17. ENVIRONMENTAL ASSESSMENT OF CONTAMINATION OF THE TEREK RIVER IN THE TERRITORY OF THE CHECHEN REPUBLIC

    Directory of Open Access Journals (Sweden)

    Khasan N. Askhabova

    2018-01-01

    Full Text Available Abstract. Aim. The aim of this work was to study the content of poisonous substances in the aquatic environment of the river Terek during the year of 2016 in the territory of the Chechen Republic. Materials and methods. Water samples of the river Terek were analyzed in the Laboratory of Environmental Control of the Ministry of Natural Resources and Environmental Protection. Dry residue was determined by weight analysis; stiffness by acid-base titration; acid-base properties by potentiometric method; the ion content was determined spectrophotometrically; concentration of heavy metals was identified with voltammetric analyzer; concentration of calcium and magnesium ions was measured titrometrically with Trilon B in the presence of an appropriate indicator. Results. The intensity of contamination of the water body was assessed according to the following parameters: total hardness, dry residue, permanganate value, pH, chlorides, dissolved oxygen, sulfates, nitrates and heavy metals content. In the course of the study, sensory characteristics such as smell, taste, turbidity and color were also determined; indicator value - permanganate value, which characterizes the contamination of water bodies with industrial and household wastewater as well as atmospheric precipitation. Conclusion. Studies of the ecological state of Terek, the main river of the Chechen Republic, have shown that the quality of the water body corresponds to hygienic standards: the content of pollutants is much lower than the maximum permissible concentration. In terms of water quality, the Terek River belongs to the 2nd class of surface water bodies, the water quality characteristic is relatively clean and the river pollution index corresponds to II.

  18. Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand

    Directory of Open Access Journals (Sweden)

    Mayzonee Ligaray

    2015-12-01

    Full Text Available The Chao Phraya River in Thailand has been greatly affected by climate change and the occurrence of extreme flood events, hindering its economic development. This study assessed the hydrological responses of the Chao Phraya River basin under several climate sensitivity and greenhouse gas emission scenarios. The Soil and Water Assessment Tool (SWAT model was applied to simulate the streamflow using meteorological and observed data over a nine-year period from 2003 to 2011. The SWAT model produced an acceptable performance for calibration and validation, yielding Nash-Sutcliffe efficiency (NSE values greater than 0.5. Precipitation scenarios yielded streamflow variations that corresponded to the change of rainfall intensity and amount of rainfall, while scenarios with increased air temperatures predicted future water shortages. High CO2 concentration scenarios incorporated plant responses that led to a dramatic increase in streamflow. The greenhouse gas emission scenarios increased the streamflow variations to 6.8%, 41.9%, and 38.4% from the reference period (2003–2011. This study also provided a framework upon which the peak flow can be managed to control the nonpoint sources during wet season. We hope that the future climate scenarios presented in this study could provide predictive information for the river basin.

  19. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; project description

    Science.gov (United States)

    Stamer, J.K.; Jordan, P.R.; Engberg, R.A.; Dugan, J.T.

    1987-01-01

    In 1986 the U.S. Geological Survey began a National Water-Quality Assessment Program to: (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation 's surface water resources; (2) where possible, define trends in water quality; and (3) identify and describe the relation between water quality and natural and land use factors. This report describes the pilot study of the lower Kansas River basin, which is one of four surface water pilot studies that will be used to test, and modify as necessary, assessment concepts and approaches in preparation for future full implementation of the national program. Water quality issues in the lower Kansas River basin are dominated by possible nonpoint sources of contamination from agricultural land, with issues including: (1) large sediment discharge in the streams and sediment deposition in the reservoirs caused by intensive cultivation of row crops and subsequent erosion; (2) occurrence of pesticides in streams and reservoirs that could impair the suitability of water for aquatic life and has the potential for impairing the water 's suitability for public supply; (3) bacterial contamination caused by runoff from pastureland and feedlot operations and municipal wastewater discharges; and (4) nutrient enrichment of reservoirs. Data from fixed stations will be used to determine frequency distributions of constituent concentrations and mass balances of constituents between stations. Subbasin or river reach studies will provide a better understanding of the origin, movement, and fate of potential contaminants. (Lantz-PTT)

  20. Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco)

    Science.gov (United States)

    Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2014-03-01

    Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.

  1. Assessing relationships between chemical exposure, parasite infection, fish health, and fish ecological status: a case study using chub (Leuciscus cephalus) in the Bílina River, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Wenger, M.; Ondračková, Markéta; Machala, M.; Neča, J.; Hyršl, P.; Šimková, A.; Jurajda, Pavel; von der Ohe, P.; Segner, H.

    2010-01-01

    Roč. 29, č. 2 (2010), s. 453-466 ISSN 0730-7268 R&D Projects: GA MŠk LC522 Grant - others:6th Framework Programme EC(XE) MODELKEY (511237-GOCE) Institutional research plan: CEZ:AV0Z60930519 Keywords : multiple stressors * environmental risk assessment * exposure biomarkers * parasites * fish health Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.026, year: 2010

  2. An assessment of the influence of multiple stressors on the Vaal River, South Africa

    Science.gov (United States)

    Wepener, V.; van Dyk, C.; Bervoets, L.; O'Brien, G.; Covaci, A.; Cloete, Y.

    The Vaal River is situated in the mining and industrial heartland of South Africa. It is regarded as a “work horse” river in South Africa and as a consequence it receives treated waste water from the largest metropolitain area in South Africa. It is only with the more frequent occurance of fish kills in the Vaal Barrage area during the past few years that public attention has been drawn towards the decreasing water quality and subsequent deterioration in the aquatic health of the Vaal River system. The aim of this study was to apply a multi-metric approach to assessing the risk of the multiple stressors to fish populations of the Vaal River system. A relative risk assessment approach was applied to divide the Vaal River Barrage into four risk regions. Field sampling was undertaken to validate the predicted risks in each region. The sampling included abiotic (i.e. water and sediment quality) and biotic (fish components) assessment. General water quality parameters (pH, conductivity, dissolved oxygen) together with nutrient, bacteriological and metal concentrations were measured in the four regions. Sediment quality was determined through physical (particle size distribution) and chemical (metal and organic pollutant) analyses. The fish assessment was undertaken at different levels of biological organisation ranging from biomarkers at subcellular levels (cytochrome P450-EROD, metallothionein, acetycholine esterase, antioxidant enzymes, cellular energy), tissue (histopathology), whole organism (fish health index), population and community level. These biological responses were related to environmental exposure through bioaccumulation analyses of metals and organic pollutants in fish tissues. Multivariate statistical analyses were applied to integrate the environmental exposure and effects. The results indicated that those regions that were predicted to be at greatest risk to exposure of multiple stressors did indeed display the greatest disturbance in fish

  3. Methods to assess impacts on Hudson River white perch: report for the period October 1, 1978 to September 30, 1979

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Kirk, B.L.; Kumar, K.D.; Van Winkle, W.; Vaughan, D.S.

    1980-06-01

    This report is a brief description of the work done on the NRC project entitled 'Methods to Assess Impacts on Hudson River White Perch' October 1, 1978 to September 30, 1979. Accounts of special studies of white perch entrainment at Hudson River power plants, of density-dependent growth in the Hudson River white perch population, and of data on the white perch populations of the Delaware and Chesapeake systems were performed. Complete accounts of these special studies are included in this report. During this period, a final draft topical report entitled 'Evaluation of Impingement Losses of White Perch at the Indian Point Nuclear Station and Other Hudson River Power Plants' (NUREG/CR-1100) was completed

  4. Evaluating the Effects of Dam Construction on the Morphological Changes of Downstream Meandering Rivers (Case Study: Karkheh River

    Directory of Open Access Journals (Sweden)

    A. Liaghat

    2017-04-01

    Full Text Available The establishment of stability in rivers is dependent on a variety of factors, and yet the established stability can be interrupted at any moment or time. One factor that can strongly disrupt the stability of rivers is the construction of dams. For this study, the identification and evaluation of morphological changes occurring to the Karkheh River, before and after the construction of the Karkheh Dam, along with determining the degree of changes to the width and length of the downstream meanders of the river, have been performed with the assistance of satellite images and by applying the CCHE2D hydrodynamic model. Results show that under natural circumstances the width of the riverbed increases downstream parallel to the decrease in the slope angle of the river. The average width of the river was reduced from 273 meters to 60 meters after dam construction. This 78% decrease in river width has made available 21 hectares of land across the river bank per kilometer length of the river. In the studied area, the average thalweg migration of the river is approximately 340 meters, while the minimum and maximum of river migration measured 53 and 768 meters, respectively. Evaluations reveal that nearly 56% of the migrations pertain to the western side of the river, while over 59% of these migrations take place outside the previous riverbed. By average, each year, the lateral migration rate of the river is 34 meters in the studied area which signifies the relevant instability of the region.

  5. Species selection methodology for an ecological assessment of the Columbia River at the Hanford Site

    International Nuclear Information System (INIS)

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O'Neil, T.K.

    1995-01-01

    Pacific Northwest National Laboratory is conducting an ecological risk assessment of the Columbia River to evaluate the current hazards posed by residual contamination from past nuclear production operations at Hanford. Due to the complexity of the aquatic and riparian ecological communities, a three-step species selection process was developed. In step 1, a comprehensive species list was developed using natural resource agency databases that identified plant and animal species known to occur in the Columbia River study area. In step 2, a panel of regional biologists from federal and state resource additional criteria to derive a list of 181 species of concern. In step 3, the species of concern were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area. In this model, species were scored based on (1) potential dietary exposure to biomagnifying and non-biomagnifying contaminants, (2) potential dermal and inhalation exposure to contaminants, (3) exposure duration, and (4) sensitivity to contaminants. From this ranking the stakeholders selected 65 tentative species for further evaluation. By excluding species that seldom use the river and riparian areas, and selecting within the same foraging guild, this list was further reduced to 43 species for evaluation in the screening-level risk assessment

  6. Trace element assessment in water of river kassa system, jos ...

    African Journals Online (AJOL)

    The value of index of geoaccumulation (Igeo) is approximately 2; for Zn and Pb which indicates, moderate contamination. Areas of the river system with anomalous value of trace element concentrations are those where mine tailings have been deposited close to the river channel or places where run off from adjoining ...

  7. Colorado River cutthroat trout: a technical conservation assessment

    Science.gov (United States)

    Michael K. Young

    2008-01-01

    The Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus) was once distributed throughout the colder waters of the Colorado River basin above the Grand Canyon. About 8 percent of its historical range is occupied by unhybridized or ecologically significant populations. It has been petitioned for listing under the Endangered Species Act...

  8. Geomorphosite Assessment in the Proposed Geopark Vistula River Gap (E Poland

    Directory of Open Access Journals (Sweden)

    Warowna Justyna

    2014-09-01

    Full Text Available Geomorphosites are among major assets for the development of geotourism. An accurate assessment of spatial distribution of their scientific, educational and economic characteristics provides the basis for appropriate design and management of proposed geoparks. Although the problem of assessing their value for geotourism has been discussed by numerous authors, consistent methodology for the assessment of geomorphosites has not been devised so far. In the present study, we conducted a geotourist evaluation of geomorphosites located within the proposed geopark Vistula River Gap. We assessed a total of 76 sites using 18 assessment criteria. The results indicate not uniform spatial distribution of sites having the highest value. The application of cluster analysis to evaluation results enabled us to distinguish groups of sites with similar characteristics and thus to identify groups of geomorphosites in relation to which various measures should be taken in order to increase the possibilities of their tourist use.

  9. The Penobscot River and environmental contaminants: Assessment of tribal exposure through sustenance lifeways

    Science.gov (United States)

    Marshall, Valerie; Kusnierz, Daniel; Hillger, Robert; Ferrario, Joseph; Hughes, Thomas; Diliberto, Janet; Orazio, Carl E.; Dudley, Robert W.; Byrne, Christian; Sugatt, Richard; Warren, Sarah; DeMarini, David; Elskus, Adria; Stodola, Steve; Mierzykowski, Steve; Pugh, Katie; Culbertson, Charles W.

    2015-01-01

    EPA in collaboration with the Penobscot Indian Nation, U.S. Geological Survey (USGS), Agency for Toxic Substances and Disease Registry (ATSDR), and the U.S. Fish and Wildlife Service (USF&WS) collectively embarked on a four year research study to evaluate the environmental health of the riverine system by targeting specific cultural practices and using traditional science to conduct a preliminary contaminant screening of the flora and fauna of the Penobscot River ecosystem. This study was designed as a preliminary screening to determine if contaminant concentrations in fish, eel, snapping turtle, wood ducks, and plants in Regions of the Penobscot River relevant to where PIN tribal members hunt, fish and gather plants were high enough to be a health concern. This study was not designed to be a statistically validated assessment of contaminant differences among study sites or among species. The traditional methodology for health risk assessment used by the U. S. Environmental Protection Agency (EPA) is based on the use of exposure assumptions (e.g. exposure duration, food ingestion rate, body weight, etc.) that represent the entire American population, either as a central tendency exposure (e.g. average, median) or as a reasonable maximum exposure (e.g. 95% upper confidence limit). Unfortunately, EPA lacked exposure information for assessing health risks for New England regional tribes sustaining a tribal subsistence way of life. As a riverine tribe, the Penobscot culture and traditions are inextricably tied to the Penobscot River watershed. It is through hunting, fishing, trapping, gathering and making baskets, pottery, moccasins, birch-bark canoes and other traditional practices that the Penobscot culture and people are sustained. The Penobscot River receives a variety of pollutant discharges leaving the Penobscot Indian Nation (PIN) questioning the ecological health and water quality of the river and how this may affect the practices that sustain their way of life

  10. Assessment of air quality in Haora River basin using fuzzy multiple-attribute decision making techniques.

    Science.gov (United States)

    Singh, Ajit Pratap; Chakrabarti, Sumanta; Kumar, Sumit; Singh, Anjaney

    2017-08-01

    This paper deals with assessment of air quality in Haora River basin using two techniques. Initially, air quality indices were evaluated using a modified EPA method. The indices were also evaluated using a fuzzy comprehensive assessment (FCA) method. The results obtained from the fuzzy comprehensive assessment method were compared to that obtained from the modified EPA method. To illustrate the applicability of the methodology proposed herein, a case study has been presented. Air samples have been collected at 10 sampling sites located along Haora River. Six important air pollutants, namely, carbon monoxide, sulfur dioxide, nitrogen dioxide, suspended particulate matter (SPM), PM 10 , and lead, were monitored continuously, and air quality maps were generated on the GIS platform. Comparison of the methodologies has clearly highlighted superiority and robustness of the fuzzy comprehensive assessment method in determining air quality indices under study. It has effectively addressed the inherent uncertainties involved in the evaluation, modeling, and interpretation of sampling data, which was beyond the scope of the traditional weighted approaches employed otherwise. The FCA method is robust and prepares a credible platform of air quality evaluation and identification, in face of the uncertainties that remain eclipsed in the traditional approaches like the modified EPA method. The insights gained through the present study are believed to be of pivotal significance in guiding the development and implementation of effective environmental remedial action plans in the study area.

  11. Assessment of heavy metals in sediment in a heavily polluted urban river in the Chaohu Basin, China

    Science.gov (United States)

    Shao, Shiguang; Xue, Lianqing; Liu, Cheng; Shang, Jingge; Wang, Zhaode; He, Xiang; Fan, Chengxin

    2016-05-01

    The Nanfei River (Anhui Province, China) is a severely polluted urban river that flows into Chaohu Lake. In the present study, sediments were collected from the river and analyzed for their heavy metal contents. Multivariate statistics and the fuzzy comprehensive assessment method were used to determine the sources of pollution, the current pollution status, and spatial and temporal variations in heavy metal pollution in sediments. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in sediments ranged from 5.67-113, 0.08-40.2, 41.6-524, 15.5-460, 0.03-4.84, 13.5-180, 18.8-250, and 47.9-1 996 mg/kg, and the average concentrations of each metal were 1.7, 38.7, 1.8, 5.5, 18.8, 1.3, 2.5, and 11.1 times greater than the background values, respectively. Multivariate statistical analysis demonstrated that Hg, Cu, Cr, Cd, and Ni may have originated from industrial activities, whereas As and Pb came from agricultural activities. The fuzzy comprehensive assessment method, based on the fuzzy mathematics theory, was used to obtain a detailed assessment of the sediment quality in the Nanfei River watershed. The results indicated that the pollution was moderate in the downstream tributaries of the Nianbu and Dianbu Rivers, but was severe in the main channel of the Nanfei River and in the upstream tributaries of the Sili and Banqiao Rivers. Therefore, sediments in the Nanfei River watershed are heavily polluted and urgent measures should be taken to remedy the status.

  12. Assessment of strontium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Strom, R.N.

    1992-01-01

    This document on strontium is published as a part of the Radiological Assessment Program (RAP). It is the sixth in a series of eight documents on individual radioisotopes released to the environment as a result of SRS (Savannah River Site) operations. Strontium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Strontium has been produced at SRS during the operation of 5 production reactors. About 300 curies of radiostrontium were released into streams in the late 50s and 60s, primarily from leaking fuel elements in reactor storage basins. Smaller quantities were released from the fuel reprocessing operations. About 400 Ci were released to seepage basins. A much smaller quantity, about 2 Ci, was released to the atmosphere. The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 6.2 mrem (atmospheric) and 1.4 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Radiostrontium releases have resulted in a negligible risk to the environment and the population it supports

  13. Assessment of strontium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Strom, R.N.

    1992-12-31

    This document on strontium is published as a part of the Radiological Assessment Program (RAP). It is the sixth in a series of eight documents on individual radioisotopes released to the environment as a result of SRS (Savannah River Site) operations. Strontium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Strontium has been produced at SRS during the operation of 5 production reactors. About 300 curies of radiostrontium were released into streams in the late 50s and 60s, primarily from leaking fuel elements in reactor storage basins. Smaller quantities were released from the fuel reprocessing operations. About 400 Ci were released to seepage basins. A much smaller quantity, about 2 Ci, was released to the atmosphere. The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 6.2 mrem (atmospheric) and 1.4 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Radiostrontium releases have resulted in a negligible risk to the environment and the population it supports.

  14. Preliminary assessment of channel stability and bed-material transport in the Rogue River basin, southwestern Oregon

    Science.gov (United States)

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary assessment of bed-material transport, vertical and lateral channel changes, and existing datasets for the Rogue River basin, which encompasses 13,390 square kilometers (km2) along the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that: * The Rogue River in its lowermost 178.5 kilometers (km) alternates between confined and unconfined segments, and is predominately alluvial along its lowermost 44 km. The study area on the mainstem Rogue River can be divided into five reaches based on topography, hydrology, and tidal influence. The largely confined, active channel flows over bedrock and coarse bed material composed chiefly of boulders and cobbles in the Grants Pass (river kilometers [RKM] 178.5-152.8), Merlin (RKM 152.8-132.7), and Galice Reaches (RKM 132.7-43.9). Within these confined reaches, the channel contains few bars and has stable planforms except for locally wider segments such as the Brushy Chutes area in the Merlin Reach. Conversely, the active channel flows over predominately alluvial material and contains nearly continuous gravel bars in the Lobster Creek Reach (RKM 43.9-6.7). The channel in the Tidal Reach (RKM 6.7-0) is also alluvial, but tidally affected and unconfined until RKM 2. The Lobster Creek and Tidal Reaches contain some of the most extensive bar deposits within the Rogue River study area. * For the 56.6-km-long segment of the Applegate River included in this study, the river was divided into two reaches based on topography. In the Upper Applegate River Reach (RKM 56.6-41.6), the confined, active channel flows over alluvium and bedrock and has few bars. In the Lower Applegate River Reach (RKM 41.6-0), the active channel alternates between confined and unconfined segments, flows predominantly over alluvium, shifts laterally in unconfined sections, and contains more numerous and larger bars. * The 6.5-km segment of the lower

  15. Assessment of heavy metals, pH and EC in effluent run-off, river and ...

    African Journals Online (AJOL)

    Heavy metal contents from effluent run-off, neighboring Holeta River, and adjacent soils around floriculture greenhouses in Holeta town, Ethiopia were determined using Atomic Absorption Spectrophotometer (AAS) to assess their potentialities as pollutants. Samples were taken from four sites for the effluent, two river bank ...

  16. Kootenai River Resident Fish Assessment, FY2008 KTOI Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holderman, Charles

    2009-06-26

    The overarching goal of project 1994-049-00 is to recover a productive, healthy and biologically diverse Kootenai River ecosystem, with emphasis on native fish species rehabilitation. It is especially designed to aid the recovery of important fish stocks, i.e. white sturgeon, burbot, bull trout, kokanee and several other salmonids important to the Kootenai Tribe of Idaho and regional sport-fisheries. The objectives of the project have been to address factors limiting key fish species within an ecosystem perspective. Major objectives include: establishment of a comprehensive and thorough biomonitoring program, investigate ecosystem--level in-river productivity, test the feasibility of a large-scale Kootenai River nutrient addition experiment (completed), to evaluate and rehabilitate key Kootenai River tributaries important to the health of the lower Kootenai River ecosystem, to provide funding for Canadian implementation of nutrient addition and monitoring in the Kootenai River ecosystem (Kootenay Lake) due to lost system productivity created by construction and operation of Libby Dam, mitigate the cost of monitoring nutrient additions in Arrow Lakes due to lost system productivity created by the Libby-Arrow water swap, provide written summaries of all research and activities of the project, and, hold a yearly workshop to convene with other agencies and institutions to discuss management, research, and monitoring strategies for this project and to provide a forum to coordinate and disseminate data with other projects involved in the Kootenai River basin.

  17. Nutrients and heavy metals assessment in the Pampanga River Basin, Philippines

    International Nuclear Information System (INIS)

    Samar, Edna D.; Estabillo, Perla E.; Collado, Mario B.; Anida, Alan H.; Flores, Andrew B.

    2013-01-01

    This study aims to assess the surface water quality within the Pampanga River Basin and the pollution in terms of siting and the concentrations of nutrients and heavy metals that drain finally into the Manila Bay. Surface water samples from non-point sources along the Pampanga River were collected from within and nearby the watershed to serve as reference values representing forestry, croplands, fisheries, livestock and domestic uses. Nitrates value in water were determined using ion chromatography method and heavy metals such as lead, cadmium. chromium, arsenic, mercury and nickel were determined using inductively Coupled Plasma Atomic Emission Spectrometer method. Using the Atomic Absorption Spectroscopy, the following were analyzed namely: total phosphorous, calcium, magnesium, sodium, potassium, zinc, copper, iron and manganese. On surface water quality, laboratory analysis showed the presence of nitrate as NO 3 -1 in water throughout the 249.2 km stretch of Pampanga River. Nitrate loading was evident from the forestry areas down to the extensive agricultural areas although all concentrations for the two seasons are below the allowable limit of 10mg/L for class C (DAO 90-34). Almost all sampling sites failed to meet the ASEAN marine water quality criterion of 0.06 mg/L for nitrate. The Pampanga River contributed directly to the phosphorous loading into the Bay considering concentrations near the river mouth at 0.67 and 0.09 ppm during the wet and dry seasons, respectively. Small-scale mining has contributed to high concentrations of lead, arsenic, chromium and cadmium in the upstream of Pampanga River. Among point sources, dumpsite contributes the most to pollution considering high content of nitrate, total phosphorous, lead, arsenic, chromium and cadmium from its effluent. Waste management particularly near the river mouth is critical to reduce further levels of nitrate, total phosphorous and heavy metals. Periodic monitoring of local government units would be

  18. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River (NSW).

    Science.gov (United States)

    Mooney, C; Farrier, D

    2002-01-01

    Kangaroo Valley is a drinking water supply catchment for Kangaroo Valley village, parts of the Southern Highlands and Sydney. It is also a popular recreation area both for swimming and canoeing. Land use has traditionally been dominated by dairy farming but there has been significant and continuing development of land for hobby farms and rural residential subdivision. Dairy industry restructuring has affected the viability of some farms in the Valley and created additional pressure for subdivision. River health is a function of flows, water quality, riparian vegetation, geomorphology and aquatic habitat and riverine biota. River flows in the Kangaroo River are affected by water extraction and storage for urban water supply and extraction by commercial irrigators and riparian land holders which have a significant impact at low flows. Current water quality often does not meet ANZECC Guidelines for primary contact and recreation and the river is a poor source of raw drinking water. Key sources of contaminants are wastewater runoff from agriculture, and poorly performing on-site sewage management systems. Riparian vegetation, which is critical to the maintenance of in-stream ecosystems suffers from uncontrolled stock access and weed infestation. The management of land use and resulting diffuse pollution sources is critical to the long term health of the river. The Healthy Rivers Commission of New South Wales Independent Inquiry into the Shoalhaven River System Final Report July, 1999 found that the longer term protection of the health of the Kangaroo River is contingent upon achievement of patterns of land use that have regard to land capability and also to the capability of the river to withstand the impacts of inappropriate or poorly managed land uses. This micro case study of Kangaroo Valley examines the complex legal and administrative arrangements with particular reference to the management of diffuse pollution for river health. In the past, diffuse pollution has

  19. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    Science.gov (United States)

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Guadalupe River, California, Sedimentation Study. Numerical Model Investigation

    National Research Council Canada - National Science Library

    Copeland, Ronald

    2002-01-01

    A numerical model study was conducted to evaluate the potential impact that the Guadalupe River flood-control project would have on channel stability in terms of channel aggradation and degradation...

  1. Water quality study of Sunter River in Jakarta, Indonesia

    Science.gov (United States)

    Martinus, Y.; Astono, W.; Hendrawan, D.

    2018-01-01

    Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.

  2. Designing and assessing weather-based financial hedging contracts to mitigate water conflicts at the river basin scale. A case study in the Italian Alps

    Science.gov (United States)

    Bellagamba, Laura; Denaro, Simona; Kern, Jordan; Giuliani, Matteo; Castelletti, Andrea; Characklis, Gregory

    2016-04-01

    Growing water demands and more frequent and severe droughts are increasingly challenging water management in many regions worldwide, exacerbating water disputes and reducing the space for negotiated agreements at the catchment scale. In the lack of a centralized controller, the design and deployment of coordination and/or regulatory mechanisms is a way to improve system-wide efficiency while preserving the distributed nature of the decision making setting, and facilitating cooperation among institutionally independent decision-makers. Recent years have witnessed an increased interest in index-based insurance contracts as mechanisms for sharing hydro-meteorological risk in complex and heterogeneous decision making context (e.g. multiple stakeholders and institutionally independent decision makers). In this study, we explore the potential for index-based insurance contracts to mitigate the conflict in a water system characterized by (political) power asymmetry between hydropower companies upstream and farmers downstream. The Lake Como basin in the Italian Alps is considered as a case study. We generated alternative regulatory mechanisms in the form of minimum release constraints to the hydropower facilities, and designed an insurance contract for hedging against hydropower relative revenue losses. The fundamental step in designing this type of insurance contracts is the identification of a suitable index, which triggers the payouts as well as the payout function, defined by strike level and slope (e.g., euros/index unit). A portfolio of index-based contracts was designed for the case study and evaluated in terms of revenue floor, basis risk and revenue fluctuation around the mean, both with and without insurance. Over the long term, the insurance proved to be capable to keep the minimum revenue above a specified level while providing a greater certainty on the revenue trend. This result shows the possibility to augment farmer's supply with little loss for hydropower

  3. Collaborative Modeling to Assess Drought   Resiliency of Snow‐Fed River Dependent  Communities in the Western United States:   A Case Study in the Truckee‐Carson River System

    Directory of Open Access Journals (Sweden)

    Loretta Singletary

    2017-02-01

    Full Text Available Assessing the drought resilience of snow‐fed river dependent communities in the arid  Western United States has taken on critical importance in response to changing climatic conditions.  The process of assessing drought resiliency involves understanding the extent to which snow‐fed  dependent communities can absorb the effects of uncertain and variable water supplies while  acknowledging and encouraging their capacity for adaptation. Participatory research approaches  are particularly well suited to assess resiliency in this context because they rely upon local water  managers’ knowledge and perspectives. The research presented here provides measured insight  into local water managers’ perceptions of drought resiliency in the Truckee‐Carson River System in  northwestern Nevada. These findings are reported in the context of the collaborative modeling  research design developed for this case study. The objectives of this study are: (1 to define  resiliency and present a rationale for a participatory approach to assess drought resiliency in  snow‐fed arid river basins in the Western United States; (2 to outline collaborative modeling as a  participatory research design developed for the Truckee‐Carson River System case study area; (3  to  describe  the  development and implementation of a resiliency  assessment  undertaken  to  implement this research design; (4 to highlight selected results of the assessment, summarizing  interviews with 66 water managers in the case study area; (5 to discuss the use of assessment  findings to inform collaborative modeling toward adaptation strategies; and (6 to review lessons  learned  to  date  from  the  collaborative  modeling  case  study  and  note

  4. Assessment of Environmental Flows for the Rivers of Western Ganges Delta with Special Reference to Indian Sundarban

    Science.gov (United States)

    Bhadra, T.; Hazra, S.; Ghosh, S.; Barman, B. C.

    2016-12-01

    The Indian Sundarban, situated on the western tide-dominated part of the Ganges delta was formed by the sedimentation of the Ganges and its tributaries. Freshwater is a scarce resource in the Sundarban though it is traversed by rivers. Most of the rivers of Western Ganges Delta, which used to nourish the Sundarban, have become defunct with the passage of time. To ensure sustainable flow and to enhance the flow-dependent ecosystem services in this region, assessment of environmental flows within the system is required. A pilot assessment of environment flows, supported by IUCN has been carried out in some specific river reaches of Western Ganges Delta under the present study. The holistic Building Block Methodology (BBM) has been modified and used for the assessment of environmental flows. In the modified BBM, three distinctive blocks namely Hydro-Morphology, Ecology and Socio-Economy have been selected and indicators like Ganges Dolphin (Platanista gangetica), Sundari tree (Heritiera fomes) and Hilsa fish (Tenualosa ilisha) etc. have been determined to assess the environmental flows. As the discharge data of the selected rivers are restricted in the public domain, the SWAT model has been run to generate the discharge data of the classified rivers. The Hydraulic model, HEC-RAS has been calibrated in the selected River reaches to assess the habitat availability and its changes for indicator species under different flow condition. The study reveals that River Bhagirathi-Hugli requires 150-427 cumec additional water in monsoon and 850-1127 cumec additional water in post-monsoon months for Hilsa migration, whereas 327-486 cumec additional water in pre-monsoon and dry season and 227-386 cumec additional water in post-monsoon months are required for Dolphin movement. Flow requirement of river Ichhamati has also been estimated under the present study. The total required flow for the Sundarban ecosystem to reduce the salinity level from 30ppt to 14ppt during the dry and pre

  5. An assessment of flux of radionuclide contamination through the large Siberian rivers to the Kara sea

    International Nuclear Information System (INIS)

    Maderich, V.; Dziuba, N.; Koshebutsky, V.; Zheleznyak, M.; Volkov, V.

    2004-01-01

    The activities of several nuclear reprocessing plants (Siberian Chemical Combine (SCC) and Mining, Chemical Combine (MCC) and Mayak Production Association (Mayak)) that are placed in the watersheds of large Siberian rivers Ob' and Yenisey may potentially cause contamination of the Arctic Ocean. An assessment of the levels of radionuclide discharges into the Kara Sea from existing and potential sources of techno-genic radioactivity, located within the watershed of the Ob' and Yenisey rivers is presented. In frame of EU INCO-COPERNICUS project RADARC a linked chain of 1D river model RIVTOX and 3D estuary model THREETOX was used to simulate impact of the previous and potential releases from the nuclear installations in the basins of Ob' and Yenisey rivers on radioactive contamination of the rivers and the Kara Sea. The RIVTOX includes the one-dimensional model of river hydraulics, suspended sediment and radionuclide transport in river channels. THREETOX includes a set of submodels: a hydrodynamics sub-model, ice dynamics-thermodynamics sub-model, suspended sediment transport and radionuclide transport submodels. The radionuclide transport model simulate processes in water, suspended sediments and in bottom sediments. These models were adapted to the Ob' river path from Mayak and SCC and Yenisey River from MCC. The simulations of 90 Sr and 137 Cs contamination for the period 1949-1994 were carried out for the Ob' and period 1959-1994 for the Yenisey. The use of model chain allowed to reconstruct contamination of water and sediments along the river path to estimate fluxes into the Kara Sea. It was shown strong initial contamination in early 50's the sediments in the Ob' were sources for secondary contamination of river and estuary. Based on chosen realistic scenarios, simulations have been performed in order to assess the potential risk of contamination from existing and potential sources of radionuclides into the Kara Sea through the Ob' and Yenisey rivers. (author)

  6. A mixed-methods approach to assessing success in transitioning water management institutions: a case study of the Platte River Basin, Nebraska

    Directory of Open Access Journals (Sweden)

    Christina Hoffman Babbitt

    2015-03-01

    Full Text Available To address increasing conflicts between surface water and groundwater users, the state of Nebraska has adopted a more localized and integrated approach in managing water resources. Integrated approaches offer promise in better managing connected water resources within the state; however, little review of the potential benefits and/or challenges of these actions has been conducted. This case study uses both qualitative and quantitative data collection efforts to take an in-depth look at how this new and innovative management system is working through the eyes of stakeholders living and working in the basin. Data collection reveals that overall the current water management system is working relatively well, even though it is still in its infancy. However, the system could be further improved by ensuring all that stakeholder interests are represented, providing increased opportunities to participate, and continuing to work toward more holistic and proactive water management.

  7. Assessment of Heavy Metals Level of River Kaduna at Kaduna ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... status and the implications of the heavy metal pollution on human health and the environment. ... metals discharged into the river especially from the industries and municipal ...

  8. Assessment of Radionuclides in the Savannah River Site Environment Summary

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.

    1999-01-26

    This document summarizes the impact of radionuclide releases from Savannah River Site (SRS) facilities from 1954 through 1996. The radionuclides reported here are those whose release resulted in the highest dose to people living near SRS.

  9. St. Louis River water quality assessment 2012, 2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — St. Louis River Area of Concern surface water nutrient (TP, TN, NOx-N, NH4-N), dissolved oxygen, and particulate (TSS, chlorophyll a) concentration data from 2012...

  10. assessement of information resource of public libraries in rivers state

    African Journals Online (AJOL)

    Information Impact | Journal of Information and Knowledge Management

    users, awareness of resources provided by public libraries in Rivers State is low, ... decision making, and culture development of individuals and social groups. ..... programmes, current affairs, fish production, human right, business, oil spillage,.

  11. The association of C r y p t o s p o r i d i u m from three different points of Balok River and Kuantan River by using physico-chemical and heavy metal assessments

    Directory of Open Access Journals (Sweden)

    Fatin Khairunnisa Zainutdin

    2017-08-01

    Full Text Available Objective: To detect the occurrence of Cryptosporidium oocysts and to assess the physicochemical and heavy metal parameters in two main rivers in Kuantan. Methods: Water samples were collected at three sampling points per river (upstream, midstream, downstream from Kuantan River and Balok River. Samples were filtered using the continuous flow centrifugation machine followed by immunomagnetic separation technique to isolate Cryptosporidium oocysts and stained using fluorescein isothiocyanate staining. Cryptosporidium oocysts were examined using fluorescence microscope. Physical parameters were assessed in-situ using Cyber Scan PCD 650 multi-parameter instrument. Both chemical and heavy metal assessments were done in the laboratory following the American Public Health Association Standard Methods with slight modification. The parameters attained were compared with the Interim National Water Quality Standards (INWQS which is the standard vital parameters used to evaluate the safety level of surface water in Malaysia. Results: All samples were positive with Cryptosporidium oocysts. Results for physical parameters were within the range of INWQS in Malaysia. For chemical assessment, results for chemical oxygen demand and biological oxygen demand exceeded the INWQS range in most of the sampling points. Of 23 metal elements assessed, only 9 elements were found. Both Kuantan River and Balok River can be classified under Class III river following INWQS which requires extensive treatment. Conclusions: This study hoped to provide new and updated information on the occurrence of Cryptosporidium and its physico-chemical assessment in two main rivers in Kuantan. Future study on molecular identification of Cryptosporidium in rivers needs to be done in order to identify the source of transmission of this waterborne parasite.

  12. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment - case study: Bâsca Chiojdului River catchment (Romania)

    Science.gov (United States)

    Costache, Romulus; Zaharia, Liliana

    2017-06-01

    Given the significant worldwide human and economic losses caused due to floods annually, reducing the negative consequences of these hazards is a major concern in development strategies at different spatial scales. A basic step in flood risk management is identifying areas susceptible to flood occurrences. This paper proposes a methodology allowing the identification of areas with high potential of accelerated surface run-off and consequently, of flash-flood occurrences. The methodology involves assessment and mapping in GIS environment of flash flood potential index (FFPI), by integrating two statistical methods: frequency ratio and weights-of-evidence. The methodology was applied for Bâsca Chiojdului River catchment (340 km2), located in the Carpathians Curvature region (Romania). Firstly, the areas with torrential phenomena were identified and the main factors controlling the surface run-off were selected (in this study nine geographical factors were considered). Based on the features of the considered factors, many classes were set for each of them. In the next step, the weights of each class/category of the considered factors were determined, by identifying their spatial relationships with the presence or absence of torrential phenomena. Finally, the weights for each class/category of geographical factors were summarized in GIS, resulting the FFPI values for each of the two statistical methods. These values were divided into five classes of intensity and were mapped. The final results were used to estimate the flash-flood potential and also to identify the most susceptible areas to this phenomenon. Thus, the high and very high values of FFPI characterize more than one-third of the study catchment. The result validation was performed by (i) quantifying the rate of the number of pixels corresponding to the torrential phenomena considered for the study (training area) and for the results' testing (validating area) and (ii) plotting the ROC (receiver operating

  13. Raft river geoscience case study, volume 1

    Science.gov (United States)

    Dolenc, M. R.; Hull, L. C.; Mizell, S. A.; Russell, B. F.; Skiba, P. A.; Strawn, J. A.; Tullis, J. A.; Garber, R.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (1) produced from fractures found at the contact metamorphic zone apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (2) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (3) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (4) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  14. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river-reservoir system.

    Science.gov (United States)

    Jiang, Xiaoliang; Xiong, Ziqian; Liu, Hui; Liu, Guihua; Liu, Wenzhi

    2017-01-01

    The majority of rivers in the world have been dammed, and over 45,000 large reservoirs have been constructed for multiple purposes. Riparian and reservoir shorelines are the two most important wetland types in a dammed river. To date, few studies have concerned the heavy metal pollution in wetland soils of these river-reservoir systems. In this study, we measured the concentrations of ten heavy metals (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) in surface soils collected from riparian and reservoir shorelines along the Han River in different seasons. Our results found that the Co, Cu, and Ni concentrations in riparian wetlands were significantly lower than those in reservoir shorelines. In riparian wetlands, only soil Sr concentration significantly increased after summer and autumn submergence. Multivariate statistical analyses demonstrated that Ba and Cd might originate from industrial and mining sources, whereas Sr and Mn predominantly originated from natural rock weathering. The ecological risk assessment analysis indicated that both riparian and reservoir shorelines along the Han River in China exhibited a moderate ecological risk in soil heavy metals. The upper Han River basin is the water resource area of China's Middle Route of the South-to-North Water Transfer Project. Therefore, to control the contamination of heavy metals in wetland soils, more efforts should be focused on reducing the discharge of mining and industrial pollutants into the riparian and reservoir shorelines.

  15. 2008-09 National Rivers and Streams Assessment Fish Tissue Data Dictionary

    Science.gov (United States)

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2008-09 National Rivers and Streams Assessment (NRSA). This document includes the “data dictionary” for Mercury, Selenium, PBDEs, PCBs, Pesticides and PFCs.

  16. 2011 FEMA Risk Mapping, Assessment, and Planning (Risk MAP) Lidar: Nashua River Watershed (Massachusetts, New Hampshire)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are the lidar points collected for FEMA Risk Mapping, Assessment, and Planning (Risk MAP) for the Nashua River Watershed. This area falls in portions of...

  17. Demonstration of Airborne Wide Area Assessment Technologies at the Toussaint River, Ohio

    National Research Council Canada - National Science Library

    Foley, Jack; Wright, David

    2007-01-01

    ...) technology, a wide area assessment technology, to assist in the characterization of the shore and shallow areas in and around the Toussaint River relative to munitions contamination from historical...

  18. 78 FR 21906 - Six Rivers National Forest, California, Trinity Summit Range Assessment Environmental Impact...

    Science.gov (United States)

    2013-04-12

    ..., wilderness characteristics, water quality, soil productivity, and quality fish and wildlife habitat... DEPARTMENT OF AGRICULTURE Forest Service Six Rivers National Forest, California, Trinity Summit Range Assessment Environmental Impact Statement AGENCY: Forest Service, USDA. ACTION: Notice of Intent...

  19. Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment

    Science.gov (United States)

    A Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment was published in 2010, and a Strawman Proposal was developed in 2012 by the Coalition for Urban/Rural Environmental Stewardship, California Water Resources Board, EPA.

  20. Assessment of ecological quality of the Tajan river in Iran using a multimetric macroinvertebrate index and species traits

    NARCIS (Netherlands)

    Aazami, J.; Esmaili Sari, A.; Abdoli, A.; Sohrabi, H.; Brink, van den P.J.

    2015-01-01

    The objectives of this study were to assess the biological water of the Iranian Tajan River using different metrics, i.e., a Multimetric Macroinvertebrate Index (MMI) and a traits-based method. Twenty-eight physico-chemical parameters, 10 habitat factors, and abundance of macroinvertebrates were

  1. Impact of habitat diversity on the sampling effort required for the assessment of river fish communities and IBI

    NARCIS (Netherlands)

    Van Liefferinge, C.; Simoens, I.; Vogt, C.; Cox, T.J.S.; Breine, J.; Ercken, D.; Goethals, P.; Belpaire, C.; Meire, P.

    2010-01-01

    The spatial variation in the fish communities of four small Belgian rivers with variable habitat diversity was investigated by electric fishing to define the minimum sampling distance required for optimal fish stock assessment and determination of the Index of Biotic Integrity. This study shows that

  2. Future Climate Change Impact Assessment of River Flows at Two Watersheds of Peninsular Malaysia

    Science.gov (United States)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2016-12-01

    Impacts of climate change on the river flows under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate model and a physically-based hydrology model utilizing an ensemble of 15 different future climate realizations. Coarse resolution GCMs' future projections covering a wide range of emission scenarios were dynamically downscaled to 6 km resolution over the study area. Hydrologic simulations of the two selected watersheds were carried out at hillslope-scale and at hourly increments.

  3. Surface and groundwater quality assessment of Marikina river

    International Nuclear Information System (INIS)

    Dela Pena, Jowell P.; Pael, Limela G.

    2009-03-01

    The study used the physico-chemical characteristics to determine the degree of pollution in different surface and groundwater sources in Marikina. The hydrogen ion concentration in all the stations for surface water was generally basic ranging from 7.24 to 7.44, while conductivity was observed to be highest in Royal Ville station that has a value of 253 μ/cm. Among the four stations in groundwater which obtained an acidic pH, Brgy. Singkamas deep-well has a neutral value. The conductivity was observed to be highest in Brgy. Conception which has a value of 1026 μ/cm. The major ions result showed that the three stations from Marikina River have conformed to the water quality criteria for fresh waters set by the Department of Environment and Natural Resources, while results from different deep-well stations showed that among four stations, Brgy. Singkamas and Conception deep-well have exceeded the recommended value concentration for drinking water quality standards. The multi-element results were obtained from an Energy-Dispersive X-ray Fluorescence Spectroscopy. Results showed that significant concentrations of metals like Al, Cd, Cr, Fe, and Pb in both surface and groundwater stations have exceeded the maximum concentrations set by both DENR and PNSDW. The significant differences in the concentrations of physico-chemical components facilitate detection of contamination from domestic and industrial wastes. (author)

  4. Assessment of plutonium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  5. Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the Raritan River in New Jersey.

    Science.gov (United States)

    Money, Eric S; Carter, Gail P; Serre, Marc L

    2009-05-15

    Escherichia coli (E. coli) is a widely used indicator of fecal contamination in water bodies. External contact and subsequent ingestion of bacteria coming from fecal contamination can lead to harmful health effects. Since E. coli data are sometimes limited, the objective of this study is to use secondary information in the form of turbidity to improve the assessment of E. coli at unmonitored locations. We obtained all E. coli and turbidity monitoring data available from existing monitoring networks for the 2000-2006 time period for the Raritan River Basin, New Jersey. Using collocated measurements, we developed a predictive model of E. coli from turbidity data. Using this model, soft data are constructed for E. coli given turbidity measurements at 739 space/time locations where only turbidity was measured. Finally, the Bayesian Maximum Entropy (BME) method of modern space/time geostatistics was used for the data integration of monitored and predicted E. coli data to produce maps showing E. coli concentration estimated daily across the river basin. The addition of soft data in conjunction with the use of river distances reduced estimation error by about 30%. Furthermore, based on these maps, up to 35% of river miles in the Raritan Basin had a probability of E coli impairment greater than 90% on the most polluted day of the study period.

  6. Distribution, sources and ecological risk assessment of PAHs in surface sediments from the Luan River Estuary, China.

    Science.gov (United States)

    Zhang, Daolai; Liu, Jinqing; Jiang, Xuejun; Cao, Ke; Yin, Ping; Zhang, Xunhua

    2016-01-15

    The distribution, sources and risk assessment of 16 polycyclic aromatic hydrocarbons (PAHs) of surface sediments in the Luan River Estuary, China, have been investigated in the research. The results indicated that the total concentrations of 16 PAHs in surface sediments of the Luan River Estuary ranged from 5.1 to 545.1 ng g(-1)dw with a mean value of 120.8 ng g(-1)dw, which is relatively low in comparison with other estuaries around the world. The PAHs in the study area were mainly originated from pyrogenic sources. Besides, PAHs may be contaminated by petrogenic PAHs as indicated by the selected ratios of PAHs, the 2-tailed Pearson correlation analysis and principal components analysis at different sites. The result of the ecological risk assessment shows little negative effect for most individual PAHs in surface sediments of the Luan River Estuary, China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Water Pollution and Water Quality Assessment of Major Transboundary Rivers from Banat (Romania

    Directory of Open Access Journals (Sweden)

    Andreea-Mihaela Dunca

    2018-01-01

    Full Text Available This study focuses on water resources management and shows the need to enforce the existing international bilateral agreements and to implement the Water Framework Directive of the European Union in order to improve the water quantity and quality received by a downstream country of a common watershed, like Timiş-Bega hydrographical basin, shared by two countries (Romania and Serbia. The spatial trend of water quality index (WQI and its subindexes are important for determining the locations of major pollutant sources that contribute to water quality depletion in this basin. We compared the values of WQI obtained for 10 sections of the two most important rivers from Banat, which have a great importance for socioeconomic life in southwestern part of Romania and in northeastern part of Serbia. In order to assess the water quality, we calculated the WQI for a long period of time (2004–2014, taking into account the maximum, minimum, and the mean annual values of physical, chemical, and biological parameters (DO, pH, BOD5, temperature, total P, N-NO2−, and turbidity. This article highlights the importance of using the water quality index which has not been sufficiently explored in Romania and for transboundary rivers and which is very useful in improving rivers water quality.

  8. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    Science.gov (United States)

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  9. Hazard assessment for a pharmaceutical mixture detected in the upper Tennessee River using Daphnia magna

    Directory of Open Access Journals (Sweden)

    D. Wolfe

    2015-01-01

    Full Text Available Widespread use of pharmaceuticals has resulted in mixture concentrations ranging from mg/L in effluent to µg/L concentrations in surface water. In a 2008 study, 13 pharmaceuticals, ranging in amounts from 0.0028 to 0.1757 µg/l, were identified in the Tennessee River, USA and its tributaries. In order to address the need for risk assessment of environmentally relevant pharmaceutical mixtures, Daphnia magna 21-d life cycle tests were performed on a mixture of 11 of the 13 pharmaceuticals as well as on the individual components of the mixture. Mixture exposures were based on the same initial ratios of individual compounds, up to 1000x the initial mixture concentrations.  The endpoints of mortality, time to first brood, size, and fecundity were the assessed.  The LOEC of the 11- pharmaceutical mixture was determined to be 100x greater than the measured mixture concentration detected in the Tennessee River, with the NOEC being 75x that of the measured mixture.  Single concentrations of pharmaceuticals within the mixture up to the 100x LOEC were not statistically different from control for any of the assessed endpoints.  Thus, no single pharmaceutical was deemed predominately responsible for the mixture toxicity at the concentrations tested. While mixtures of pharmaceuticals are common in many systems, based on the findings of the present study, they may not pose a significant acute or chronic hazard to aquatic invertebrates at current concentrations.

  10. Study on the control of groundwater hazard at Gays river mine: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report outlines a study to assess and investigate sources of groundwater inflow to Westminer Canada Ltd.'s Gays River lead-zinc mine in Nova Scotia. The study consisted of a hydrochemical assessment, a review of drainhole well screens and an underground pressure point measurement program, preparation of a , an airphoto interpretation study of sinkhole features, and a major piezometer installation and overburden soil investigation program. This report provides an overview of the program.

  11. Preliminary feasibility study on storage of radioactive wastes in Columbia River basalts. Volume I

    International Nuclear Information System (INIS)

    1976-11-01

    Geologic, hydrologic, heat transfer and rock-waste compatibility studies conducted by the Atlantic Richfield Hanford Company to evaluate the feasibility of storing nuclear wastes in caverns mined out into the Columbia River basalts are discussed. The succession of Columbia River Plateau flood basalts was sampled at various outcrops and in core holes and the samples were analyzed to develop a stratigraphic correlation of the various basalt units and sedimentary interbeds. Hydrologic tests were made in one bore hole to assess the degree of isolation in the various deep aquifers separated by thick basalt accumulations. Earthquake and tectonic studies were conducted to assess the tectonic stability of the Columbia River Plateau. Studies were made to evaluate the extent of heat dissipation from stored radioactive wastes. Geochemical studies were aimed at evaluating the compatibility between the radioactive wastes and the basalt host rocks. Data obtained to-date have allowed development of a hydrostratigraphic framework for the Columbia River Plateau and a preliminary understanding of the deep aquifer systems. Finally, the compilation of this information has served as a basis for planning the studies necessary to define the effectiveness of the Columbia River basalts for permanently isolating nuclear wastes from the biosphere

  12. Focus on CSIR research in pollution waste: South African national spatial biodiversity assessment 2004 (Technical report volume 2: river component)

    CSIR Research Space (South Africa)

    Roux, D

    2007-08-01

    Full Text Available the first ever systematic assessment of river biodiversity in South Africa. The approach and results should therefore be seen as the first attempt towards deriving a systematic and scientifically defensible method for identifying river heterogeneity...

  13. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  14. Detrital zircon study along the Tsangpo River, SE Tibet

    Science.gov (United States)

    Liang, Y.; Chung, S.; Liu, D.; O'Reilly, S. Y.; Chu, M.; Ji, J.; Song, B.; Pearson, N. J.

    2004-12-01

    The interactions among tectonic uplift, river erosion and alluvial deposition are fundamental processes that shape the landscape of the Himalayan-Tibetan orogen since its creation from early Cenozoic time. To better understand these processes around the eastern Himalayan Syntaxis, we conducted a study by systematic sampling riverbank sediments along the Tsangpo River, SE Tibet. Detrital zircons separated from the sediments were subjected to U-Pb dating by the SHRIMP II at the Beijing SHRIMP Center and then in-situ measurements of Hf isotope ratios using LA-MC-ICPMS at GEMOC. These results, together with U-Pb ages and Hf isotope data that we recently obtained for the Transhimalayan plutonic and surrounding basement rocks, allow a more quantitative examination of the provenance or protosource areas for the river sediments. Consequently, the percentage inputs from these source areas can be estimated. Our study indicates that, before the Tsangpo River flows into the Namche Barwa Syntaxis of the eastern Himalayas where the River forms a 180° Big Bend gorge and crosscuts the Himalayan sequences, the Gangdese batholith that crops out just north of the River appear to be an overwhelming source accounting for ˜50 % of the bank sediments. The Tethyan Himalayan sequences south of the River are the second important source, with an input of ˜25 %. The proportion of sediment supply changes after the River enters the Big Bend gorge and turns to south: ˜25 % of detrital zircons are derived from the Greater Himalayas so that the input from the Tethyan Himalayas decreases (< 10 %) despite those from the Gangdese batholith remains high ( ˜40 %). Comparing with the sediment budget of the Brahmaputra River in the downstream based on literature Sr, Nd and Os isotope information, which suggests dominant ( ˜90-60 %) but subordinate ( ˜10-40 %) contributions by the (Greater and Lesser) Himalayan and Tibetan (including Tethyan Himalayan) rocks, respectively, the change is interpreted

  15. Centurial Changes in the Depth Conditions of a Regulated River: Case Study of the Lower Tisza River, Hungary

    Directory of Open Access Journals (Sweden)

    Amissah Gabriel Jonathan

    2017-04-01

    Full Text Available The Tisza River is the largest tributary of the Danube in Central Europe, and has been subjected to various human interventions including cutoffs to increase the slope, construction of levees to restrict the floodplain, and construction of groynes and revetments to stabilize the channel. These interventions have altered the natural morphological evolution of the river. The aim of the study is to assess the impacts of these engineering works, employing hydrological surveys of 36 cross sections (VO of the Lower Tisza River for the years of 1891, 1931, 1961, 1976 and 1999. The changes in mean depth and thalweg depth were studied in detail comparing three reaches of the studied section. In general, the thalweg incised during the studied period (1891-1931: 3 cm/y; 1931-1961: 1.3 cm/y and 1976-1999: 2.3 cm/y, except from 1961-1976 which was characterized by aggradation (2 cm/y. The mean depth increased, referring to an overall deepening of the river during the whole period (1891-1931: 1.4 cm/y; 1931-1961: 1.2 cm/y; 1961-1976: 0.6 cm/y and 1976-1999: 1.6 cm/y. The thalweg shifted more in the upper reach showing less stabile channel, while the middle and lower reaches had more stable thalweg. Although the cross-sections subjected to various human interventions experienced considerable incision in the short-term, the cross-sections free from direct human impact experienced the largest incision from 1891-1999, especially along the meandering sections.

  16. Floodplain sedimentology and sediment accumulation assessment – Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, Kevin M. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Earth and Environmental Sciences

    2016-01-03

    The primary goal of the larger research program, of which this work is one component, is to restore the hydrodynamics and energy gradients of targeted Savannah River Site (SRS) streams to a condition comparable to local natural streams or rivers of similar order, and to stabilize sediment transport (net degradation/aggregation) with the assumption that the faunal components of these systems will quickly recover on their own (e.g., Pen Branch; Lakly and McArthur, 2000). This work is specifically focused on the identification of near-stream floodplain areas that exhibit sediment deposition or erosion, and the quantification of these processes over a historical time scale (last ~100 years).

  17. WATER POLLUTION AND RIVER ALGAE: STUDY IN ZAYANDEH ROOD RIVER – ISFAHAN

    Directory of Open Access Journals (Sweden)

    H POUR MOGHADAS

    2001-06-01

    Full Text Available Introduction: Dischange of domestic, agricultural and industrial waste water into the rivers increase chemical substances such as nitrate and phosphate. These chemical changes increase algal population. High density of algae may cause changes in color, odor and taste of water. Some of the algae such as Oscillatoria, Microcystis and Anabeana produce toxins and in high concentrations may kill fishes. While Zayandehrud river is considered as one of the main water supply sources for drinking water and valuable water resources of Isfahan Province, water quality control of this river is important. The study of algae of the river in relation with the concentration of nitrate and phosphate is the purpose of this research project. Methods: To perform this projects, seven sampling stations from "Pole Vahid" to .Pole choom. were selected. Grab methods were used for sampling of the river water. 147 water samples were collected in one year of the study.The samples were analyzed for phosphate, nitrate and genera of the algae. Nitrate and phosphate of the water samples were determined using Phenol Disulfonic Acid and Stanous chloride methods, respectively. The genera of the algae were detennined using the keys. Results and Disccusion:The result of the study showed that the frequency of the algae increased with increasing nitrate and phosphate. Overall.35 genera of algae in the area of the study were observed, which six of them were indicators of water pollution. Minimum frequency of indicators of pollution was observed in the enterance of Isfahan city and maximum frequency was observed after the discharge of municipal water from waste water treatment plant (pole Choom.

  18. Compilation, evaluation and assessment of the existing data on the pollution load affecting the water quality of the central stretch of the river Elbe on the basis of uniform common criteria (preliminary study). Vol. 1

    International Nuclear Information System (INIS)

    Guhr, H.; Buettner, O.; Dreyer, U.; Krebs, D.; Spott, D.; Suhr, U.; Weber, E.

    1993-01-01

    The data (concentrations, pollution loads) measured for the 566 km flowing stretch of the river Elbe on the territory of the former GDR were compiled and evaluated according to primary statistical aspects. The longitudinal section was prepared for major variables with regard to the flow for Q50% and Q5%. The distribution of concentration in various measuring points was shown by means of box plots. Interdependencies between concentration and flow as well as water temperature were investigated and used for assessing diffuse matter input. In addition to determining the saprobic index, the biological control of water pollution comprised the assessment of the macrozoobenthos in the area of sewage discharge, chlorophyll measurements, and inventory of the fish population, analysis of pollutant accumulation in fish and in zoobenthos as well as virus detection. The water quality of the river Elbe was evaluated in compliance with the binding E.C. guidelines and national regulations/recommendations revealing an extreme pollution level which impairs or excludes various utilizations of the Elbe water. (orig.) [de

  19. Effects of an extreme flood on river morphology (case study: Karoon River, Iran)

    Science.gov (United States)

    Yousefi, Saleh; Mirzaee, Somayeh; Keesstra, Saskia; Surian, Nicola; Pourghasemi, Hamid Reza; Zakizadeh, Hamid Reza; Tabibian, Sahar

    2018-03-01

    An extreme flood occurred on 14 April 2016 in the Karoon River, Iran. The occurred flood discharge was the highest discharge recorded over the last 60 years in the Karoon River. Using the OLI Landsat images taken on 8 April 2016 (before the flood) and 24 April 2016 (after the flood) the geomorphic effects were detected in different land cover types within the 155-km-long study reach. The results show that the flood significantly affected the channel width and the main effect was high mobilization of channel sediments and severe bank erosion in the meandering reaches. According to field surveys, the flood occupied the channel corridor and even the floodplain parts. However, the channel pattern was not significantly altered, although the results show that the average channel width increased from 192 to 256 m. Statistical results indicate a significant change for active channel width and sinuosity index at 99% confidence level for both indexes. The flood-induced morphological changes varied significantly for different land cover types along the Karoon River. Specifically, the channel has widened less in residential areas than in other land cover types because of the occurrence of bank protection structures. However, the value of bank retreat in residential and protected sides of the Karoon River is more than what we expected during the study of extreme flood.

  20. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain).

    Science.gov (United States)

    Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco

    2011-05-01

    Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

  1. hydrological assessments of some rivers in edo state, nigeria

    African Journals Online (AJOL)

    user

    friction of flowing water with the rocks and the sediment in the river beds. Harnessing the kinetic energy from ... reported that the amount of achievable hydropower at any given site is a function of turbine head and the .... the discharge coefficient of each land use pattern, using GIS [52,2, 53,54,55], Discharge estimates based.

  2. Assessment of Heavy Metals Level of River Kaduna at Kaduna ...

    African Journals Online (AJOL)

    ADOWIE PERE

    1&2 Dept. of Environmental Management, Kaduna State University. ... mass education of people on the impact of indiscriminate waste discharge on the water quality, ... along the flood plain of the River and aquatic foods ... petroleum industry, the land-use pattern is fast .... cause ill health such as gastro intestinal irritation.

  3. Invertebrates of the Columbia River basin assessment area.

    Science.gov (United States)

    Christine G. Niwa; Roger E. Sandquist; Rod Crawford; et al.

    2001-01-01

    A general background on functional groups of invertebrates in the Columbia River basin and how they affect sustainability and productivity of their ecological communities is presented. The functional groups include detritivores, predators, pollinators, and grassland and forest herbivores. Invertebrate biodiversity and species of conservation interest are discussed....

  4. Ohio River Environmental Assessment: Cultural Resources Reconnaissance, Pennsylvania,

    Science.gov (United States)

    1977-10-01

    community was formerly known as Burgunda. The name Haysville is after one John Hays, a river pilot and innkeeper of the area. St. Mary’s German Catholic...creation of a town at Beaver was authorized by legislative act on September 28, 1791. By this act 200 acres of land in the Beaver reserve tract was to be

  5. Lower Columbia River Terminal Fisheries Research Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-04-01

    This notice announces BPA`S`s decision to fund the Oregon Department of Fish and Wildlife (ODFW), the Washington Department of Fish and Wildlife (WDFW), and the Clatsop Economic Development Committee for the Lower Columbia River Terminal Fisheries Research Project (Project). The Project will continue the testing of various species/stocks, rearing regimes, and harvest options for terminal fisheries, as a means to increase lower river sport and commercial harvest of hatchery fish, while providing both greater protection of weaker wild stocks and increasing the return of upriver salmon runs to potential Zone 6 Treaty fisheries. The Project involves relocating hatchery smolts to new, additional pen locations in three bays/sloughs in the lower Columbia River along both the Oregon and Washington sides. The sites are Blind Slough and Tongue Point in Clatsop County, Oregon, and Grays Bay/Deep River, Wahkiakum County, Washington. The smolts will be acclimated for various lengths of time in the net pens and released from these sites. The Project will expand upon an existing terminal fisheries project in Youngs Bay, Oregon. The Project may be expanded to other sites in the future, depending on the results of this initial expansion. BPA`S has determined the project is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and BPA`S is issuing this FONSI.

  6. [Health assessment of Qi'ao Island mangrove wetland ecosystem in Pearl River Estuary].

    Science.gov (United States)

    Wang, Shu-Gong; Zheng, Yao-Hui; Peng, Yi-Sheng; Chen, Gui-Zhu

    2010-02-01

    Based on the theories of wetland ecosystem health and by using "Pressure-State-Response" model, a health assessment indicator system for Qi' ao Island mangrove wetland ecosystem in Pearl River Estuary was built, and the assessment indices, assessment criteria, indices weighted values, assessment grades, and assessment methods were established to assess the health state of this ecosystem. In 2008, the overall health index of this ecosystem was 0.6580, health level was of grade II (healthy), and the pressure, state, and response indices were 0.3469, 0.8718, and 0.7754, respectively, suggesting that this ecosystem was good in state and response, but still had definite pressure. As a provincial nature reserve, this ecosystem was to be further improved in its health level. However, the research on the health assessment of mangrove wetland ecosystem was still young. Further studies should be made on the selection of assessment indices, long-term oriented monitoring of these indices, and quantification of the relations between ecosystem health level and ecosystem services.

  7. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    Science.gov (United States)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  8. Summary of the engineering assessment of inactive uranium mill tailings, Green River site, Green River, Utah

    International Nuclear Information System (INIS)

    1981-08-01

    Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the five options range from about $4,300,000 for stabilization in-place, to about $9,600,000 for disposal at a distance of about 30 miles. Three principal alternatives for the reprocessing of the Green River tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $1,800/lb by heap leach and $1,600/lb by conventional plant processes

  9. Study of pollution effect on water quality of Grogol River, DKI Jakarta

    Science.gov (United States)

    Amira, S.; Astono, W.; Hendrawan, D.

    2018-01-01

    A study has been conducted to identify the incoming pollutants and assess the water quality in Grogol River, DKI Jakarta, Indonesia, which has a length of 13.35 km and consists of two segments. The water quality assessment is determined by pollution index method, referring to Minister of Environment Decree No. 15/2013 on The Guidelines of Water Quality Status. The samples were taken both in rainy and dry seasons at 7 sampling points. Based on the analyses of 10 key parameters and the calculation of pollution index value, it can be concluded that Grogol River is low polluted in rainy season and moderate polluted in dry season. The information obtained from this research can be used for decision making to improve the water quality of Grogol River.

  10. Assessing Climate Change Impacts on Water Resources in the Songhua River Basin

    Directory of Open Access Journals (Sweden)

    Fengping Li

    2016-09-01

    Full Text Available The Songhua River Basin (SRB in Northeast China is one of the areas most sensitive to global climate change because of its high-latitude location. In this study, we conducted a modeling assessment on the potential change of water resources in this region for the coming three decades using the Soil and Water Assessment Tool (SWAT. First, we calibrated and validated the model with historical streamflow records in this basin. Then, we applied the calibrated model for the period from 2020 to 2049 with the projected and downscaled climatic data under two emission scenarios (RCP 4.5 and RCP 8.5. The study results show: (1 The SWAT model performed very well for both the calibration and validation periods in the SRB; (2 The projected temperatures showed a steady, significant increase across the SRB under both scenarios, especially in two sub-basins, the Nenjiang River Basin (NRB and the Lower SRB (LSRB. With regard to precipitation, both scenarios showed a decreasing trend in the NRB and LSRB but an increasing trend in the Upper Songhua River Basin (USRB; and (3, generally, the hydrologic modeling suggested a decreasing trend of streamflow for 2020–2049. Compared to baseline conditions (1980–2009, the streamflow in the NRB and LSRB would decrease by 20.3%–37.8%, while streamflow in the USRB would experience an increase of 9.68%–17.7%. These findings provide relevant insights into future surface water resources, and such information can be helpful for resource managers and policymakers to develop effective eco-environment management plans and strategies in the face of climate change.

  11. Biocides in the Yangtze River of China: Spatiotemporal distribution, mass load and risk assessment

    International Nuclear Information System (INIS)

    Liu, Wang-Rong; Zhao, Jian-Liang; Liu, You-Sheng; Chen, Zhi-Feng; Yang, Yuan-Yuan; Zhang, Qian-Qian; Ying, Guang-Guo

    2015-01-01

    Nineteen biocides were investigated in the Yangtze River to understand their spatiotemporal distribution, mass loads and ecological risks. Fourteen biocides were detected, with the highest concentrations up to 166 ng/L for DEET in surface water, and 54.3 ng/g dry weight (dw) for triclocarban in sediment. The dominant biocides were DEET and methylparaben, with their detection frequencies of 100% in both phases. An estimate of 152 t/y of 14 biocides was carried by the Yangtze River to the East China Sea. The distribution of biocides in the aquatic environments was significantly correlated to Gross Domestic Product (GDP), total phosphorus (TP) and total nitrogen (TN), suggesting dominant input sources from domestic wastewater of the cities along the river. Risk assessment showed high ecological risks posed by carbendazim in both phases and by triclosan in sediment. Therefore, proper measures should be taken to reduce the input of biocides into the river systems. - Highlights: • Biocides were ubiquitous in the surface water and sediment of the Yangtze River. • The dominant biocides in the Yangtze River were DEET and methylparaben. • Annual flux of biocides was 152 tons from the Yangtze River to the East China Sea. • Domestic wastewater was the main source of the biocides. • Carbendazim and triclosan posed high ecological risks. - Biocides showed wide presence in the Yangtze River and some of them could pose high ecological risks to aquatic organisms

  12. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  13. Impact of calcium and TOC on biological acidification assessment in Norwegian rivers.

    Science.gov (United States)

    Schneider, Susanne C

    2011-02-15

    Acidification continues to be a major impact in freshwaters of northern Europe, and the biotic response to chemical recovery from acidification is often not a straightforward process. The focus on biological recovery is relevant within the context of the EU Water Framework Directive, where a biological monitoring system is needed that detects differences in fauna and flora compared to undisturbed reference conditions. In order to verify true reference sites for biological analyses, expected river pH is modeled based on Ca and TOC, and 94% of variability in pH at reference sites is explained by Ca alone, while 98% is explained by a combination of Ca and TOC. Based on 59 samples from 28 reference sites, compared to 547 samples from 285 non-reference sites, the impact of calcium and total organic carbon (TOC) on benthic algae species composition, expressed as acidification index periphyton (AIP), is analyzed. Rivers with a high Ca concentration have a naturally higher AIP, and TOC affects reference AIP only at low Ca concentrations. Four biological river types are needed for assessment of river acidification in Norway based on benthic algae: very calcium-poor, humic rivers (CaTOC>2 mg/l); very calcium-poor, clear rivers (CaTOC4 mg/l). A biological assessment system for river acidification in Norway based on benthic algae is presented, following the demands of the Water Framework Directive. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Solid transport in mountain rivers: monitoring techniques and long term assessment as flood prevention tools

    Science.gov (United States)

    Longoni, Laura; Brambilla, Davide; Ivanov, Vladislav; Messa, Giacomo; Veronelli, Andrea; Radice, Alessio; Papini, Monica

    2017-04-01

    Floods are calamitous phenomena with an ever-increasing frequency around the globe, that often result in socio-economic damage and casualties. The role of the solid fraction in the river dynamic has been widely debated in the last decade and its importance is recognized as critical and not negligible in flood simulations as it has been evidenced that the severity of an event is often the result of the coupling of a flood wave with elevated solid transport rates. Nevertheless, assessing the quantity of sediment mobilized in a particular event is not feasible without a long term analysis of the river's dynamics and its morphological evolution since it is defined by past events. This work is focused on the techniques to improve knowledge about sediment production and transport through hydrological networks as a necessary component of a wise flood prevention planning. In particular, a multidisciplinary approach that combines hydraulic and geological knowledge is required in order to understand the evolution of the river sediment and how it will influence the following critical event. The methods are presented through a case study in Italy where a series of different approaches have been integrated to gain a comprehensive understanding of the problem: the sediment movement has been studied by a Eulerian as well as a Lagrangian approaches while hydraulic properties of the stream have been measured. The research started with an attempt to monitor sediment movements: in June 2016 300 sample pebbles, equipped with RFID (Radio Frequency IDentification) transponders, have been deployed in the river and tracked after every major rainfall event. The obtained data-set has been combined with a morphological analysis and a river flow discharge computed through PIV (Particle Image Velocimetry) method in order to identify the relation between a given rainfall event and sediment transport. Moreover, critical sediment size has been estimated from field data using three approaches: two

  15. Hydrological assessment of freshwater resource areas in the Zambezi River Basin

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2012-10-01

    Full Text Available characterisation of the degree of regulation of the river system, followed by an assessment of high water yielding areas (water towers), groundwater recharge and base flow index. To understand the environmental patterns and processes that occur in the river... to hydrogeology, IAH Publ. 8, Verlag Heinz Heisse. Xu, Y. and Beekman, H.E. (Eds). 2003. Groundwater recharge estimation in southern Africa. UNESCO IHP Series No. 64. UNESCO Paris. Figure 1: The Zambezi River Basin and its 13 sub basins Figure 3: High water...

  16. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.

    2015-01-01

    in Africa. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic-hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations......Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically based and distributed modeling schemes employing data...... assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. The objective of this study is to develop open-source software tools to support hydrologic forecasting and integrated water resources management...

  17. Risk assessment of river-type hydropower plants using fuzzy logic approach

    Energy Technology Data Exchange (ETDEWEB)

    Kucukali, Serhat, E-mail: kucukali@cankaya.edu.tr [Civil Engineering Department, Cankaya University, Balgat 06530, Ankara (Turkey)

    2011-10-15

    In this paper, a fuzzy rating tool was developed for river-type hydropower plant projects, and risk assessment and expert judgments were utilized instead of probabilistic reasoning. The methodology is a multi-criteria decision analysis, which provides a flexible and easily understood way to analyze project risks. The external risks, which are partly under the control of companies, were considered in the model. A total of eleven classes of risk factors were determined based on the expert interviews, field studies and literature review as follows: site geology, land use, environmental issues, grid connection, social acceptance, macroeconomic, natural hazards, change of laws and regulations, terrorism, access to infrastructure and revenue. The relative importance of risk factors was determined from the survey results. The survey was conducted with the experts that have experience in the construction of river-type hydropower schemes. The survey results revealed that the site geology and environmental issues were considered as the most important risks. The new risk assessment method enabled a Risk Index (R) value to be calculated, establishing a 4-grade evaluation system. The proposed risk analysis will give investors a more rational basis to make decisions and it can prevent cost and schedule overruns. - Highlights: > A new methodology is proposed for risk rating of river-type hydropower plant projects. > The relative importance of the risk factors was determined from the expert judgments. > The most concerned risks have been found as environmental issues and site geology. > The proposed methodology was tested on a real case. > The proposed risk analysis will give investors a more rational basis.

  18. Participatory scenario development for integrated assessment of nutrient flows in a Catalan river catchment

    Directory of Open Access Journals (Sweden)

    F. Caille

    2007-11-01

    Full Text Available Rivers in developed regions are under significant stress due to nutrient enrichment generated mainly by human activities. Excess nitrogen and phosphorus emissions are the product of complex dynamic systems influenced by various factors such as demographic, socio-economic and technological development. Using a Catalan river catchment, La Tordera (North-East of Spain, as a case study of an integrated and interdisciplinary environmental assessment of nutrient flows, we present and discuss the development of narrative socio-economic scenarios through a participatory process for the sustainable management of the anthropogenic sources of nutrients, nitrogen and phosphorus. In this context, scenarios are an appropriate tool to assist nutrient emissions modelling, and to assess impacts, possible pathways for socio-economic development and associated uncertainties. Evaluated against the 1993–2003 baseline period, scenarios target the 2030 horizon, i.e. through the implementation process of the Water Framework Directive (Directive 2000/60/EC. After a critical examination of the methodology used in the participatory development of socio-economic scenarios, we present four possible futures (or perspectives for the Catalan river catchment conceived by stakeholders invited to a workshop. Keys to the success of such a participatory process were trust, which enhanced openness, and disagreements, which fostered the group's creativity for scenario development. The translation of narrative socio-economic scenarios into meaningful nutrient emission scenarios is also discussed. By integrating findings of natural sciences and socio-economic analysis, we aim to assist decision makers and stakeholders in evaluating optimal management strategies for the anthropogenic sources of nitrogen and phosphorus.

  19. Risk assessment of river-type hydropower plants using fuzzy logic approach

    International Nuclear Information System (INIS)

    Kucukali, Serhat

    2011-01-01

    In this paper, a fuzzy rating tool was developed for river-type hydropower plant projects, and risk assessment and expert judgments were utilized instead of probabilistic reasoning. The methodology is a multi-criteria decision analysis, which provides a flexible and easily understood way to analyze project risks. The external risks, which are partly under the control of companies, were considered in the model. A total of eleven classes of risk factors were determined based on the expert interviews, field studies and literature review as follows: site geology, land use, environmental issues, grid connection, social acceptance, macroeconomic, natural hazards, change of laws and regulations, terrorism, access to infrastructure and revenue. The relative importance of risk factors was determined from the survey results. The survey was conducted with the experts that have experience in the construction of river-type hydropower schemes. The survey results revealed that the site geology and environmental issues were considered as the most important risks. The new risk assessment method enabled a Risk Index (R) value to be calculated, establishing a 4-grade evaluation system. The proposed risk analysis will give investors a more rational basis to make decisions and it can prevent cost and schedule overruns. - Highlights: → A new methodology is proposed for risk rating of river-type hydropower plant projects. → The relative importance of the risk factors was determined from the expert judgments. → The most concerned risks have been found as environmental issues and site geology. → The proposed methodology was tested on a real case. → The proposed risk analysis will give investors a more rational basis.

  20. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    2014-06-01

    Full Text Available River plumes are one of the most important mechanisms that transport the terrestrial materials to the coast and the ocean. Some examples of those materials are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing modifications on the bathymetry affecting the navigation channels. The mixing between the riverine and the oceanic waters can induce instabilities, which might generate bulges, filaments, and buoyant currents over the continental shelf. Offshore, the buoyant riverine water could form a front with the oceanic waters often related with the occurrence of current-jets, eddies and strong mixing. The study and modelling of the river plumes is a key factor for the complete understanding of sediment transport mechanisms and patterns, and of coastal physics and dynamic processes. On this study the Douro River plume will be simulated. The Douro River is located on the north-west Iberian coast and its daily averaged freshwater discharge can range values from 0 to 13000 m3/s. This variability impacts the formation of the river plumes and its dispersion along the continental shelf. This study builds on the long-term objective of generate a Douro River plume forecasting system as part of the RAIA and RAIA.co projects. Satellite imagery was analyzed showing that the river Douro is one of the main sources of suspended particles, dissolved material and chlorophyll in the NW Iberian Shelf. The Regional Oceanic Modeling System (ROMS model was selected to reproduce scenarios of plume generation, retention and dispersion. Whit this model, three types of simulations were performed: (i schematic winds simulations with prescribed river flow, wind speed and direction; (ii multi-year climatological simulation, with river flow and temperature change for each month; (iii extreme case simulation, based on the Entre-os-Rios accident situation. The schematic wind case-studies suggest that the

  1. POLLUTION LOAD ASSESSMENT OF TAPI RIVER DURING GANESH FESTIVAL, INDIA

    OpenAIRE

    Gadhia Mohini; Ansari Ekhalak; Surana Ranjana

    2014-01-01

    Present work was conducted to evaluate the physico-chemical properties of water samples Tapi River during Ganesh festival at Umara Ovara immersion site. Water samples were collected and analyzed for temperature, turbidity, total solids, total dissolved solids, total suspended solids, pH, total alkalinity, total hardness, calcium hardness, DO, BOD, COD, and Oil and Grease etc. during pre-immersion, immersion and post-immersion periods of festival. It was noted that the values of most of the pa...

  2. Studies on heavy metal contamination in Godavari river basin

    Science.gov (United States)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-12-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  3. FLOOD RISK ASSESSMENT IN RIVER TIMIS BASIN - THE CARANSEBES - LUGOJ SECTOR- USING GIS TECHNIQUE

    Directory of Open Access Journals (Sweden)

    MIHAI VALENTIN HERBEI

    2012-11-01

    Full Text Available Flood risk assessment in Timis River basin - the Caransebes -Lugoj sector- using GIS technique. Over time freshets, thus floods constituted and constitute a particularly important issue that requires attention. In many cases, flood damages are extensive to the environment, to the economy and also socially. The purpose of this paper is to identify flood-prone areas between Caransebes and Lugoj, land that is part of the Timis river basin. This paper is based on a theoretical model in which we considered the building elements of the flood produced on the Timis river in April 2005 (levels and flows. to represent the zones flood – prone, we used the numerical model of the terrain, created for the abovementioned area. On this model , according to levels measured at hydrometric stations, were defined those flood prone areas. The Timis river hydrographic basin includes a varied terrain (mountains, hills and plains, with pronounced differences in altitude and massiveness, resulting from tectonic movements that have affected the region, this fact has affected water flow processes, both directly through fragmentation and slope, and indirectly, by creating the vertical climate, vegetation and soils zones. Using GIS technology to study hydrological phenomena and their impact on the geographic area are of particular importance due to the complexity of these techniques, which enables detailed analysis and analytical precision as well as an increased speed of the analysis. Creating theoretical models that give scale to the hydrological phenomena, in this case representing the flood areas, is of great practical importance because based on these models the areas can be defined and viewed, having the possibility of taking measures to prevent environmental effects on the natural and / or anthropogenic environment. In the studied area review of the flood of 2005, were represented flood areas, therefore, according with the researches, several villages, located in

  4. Environmental assessment of PBDEs contamination in the Svitava River, Czech Republic.

    Science.gov (United States)

    Jarova, Katerina; Koleckarova, Alice; Kralova, Zuzana; Vavrova, Milada

    2016-12-18

    The aim of this study was to assess the contamination level of aquatic ecosystems of the Svitava River, situated in the South Moravian Region (Czech Republic), by residues of selected brominated flame retardants. We isolated and determined seven indicator PBDE congeners in samples of surface water and bottom sediments using optimized analytical methods. Samples were collected from eight locations along the river basin, particularly near the larger cities in order to assess their possible impact on the aquatic ecosystems. Isolation of selected analytes was performed using the methods of liquid-liquid extraction and cold extraction. Column chromatography and rotary vacuum evaporation were used for the purification and pre-concentration of extracts. Final identification and quantification were carried out by gas chromatography coupled with electron capture detector (GC/ECD). The sum of PBDEs was calculated for individual BDE congeners. Average concentrations of the sum of PBDEs ranged from 56.35 to 614.0 µg.kg-1 of the dry matter in sediment, and concentrations under the detection limits (contamination in the most polluted locations, but also confirmed the lasting presence and accumulation of PBDEs in the environment.

  5. Organic Pollutant Contamination of the River Tichá Orlice as Assessed by Biochemical Markers

    Directory of Open Access Journals (Sweden)

    M. Havelková

    2008-01-01

    Full Text Available This study used biochemical markers to assess contamination at two contaminated sites (Králíky and Lichkov and one control site (Červená Voda on the River Tichá Orlice, a left-side tributary of the River Elbe. The brown trout (Salmo trutta fario was selected as an indicator species. Enzymes of the first stage of xenobiotic conversion, namely cytochrome P450 (CYP 450 and ethoxyresorufin-O-deethylase (EROD in the liver were selected as biochemical markers. Blood plasma vitellogenin concentrations were used to evaluate xenoestrogenic effects of contamination. Results were compared with the most important inductors of these markers, i.e. with organic pollutants (PCB, HCH, HCB, OCS and DDT and their metabolites in fish muscle and with PAH concentrations in bottom sediments. The highest contamination with organic pollutants was at Králíky, and this was reflected in increased cytochrome P450, EROD activity and vitellogenin concentrations. Significant differences were demonstrated in EROD activity and vitellogenin concentrations between Králíky and Červená Voda (P s = -0.964 between EROD activity and vitellogenin concentrations was demonstrated. This relationship was discussed from the point of view of a possible induction or inhibition of the assessed biomarkers at persistently highly contaminated sites.

  6. Water quality assessment of the Sinos River – RS, Brazil

    Directory of Open Access Journals (Sweden)

    C. Steffens

    Full Text Available Worldwide environmental pollution is increasing at the same rate as social and economic development. This growth, however, is disorganized and leads to increased degradation of water resources. Water, which was once considered inexhaustible, has become the focus of environmental concerns because it is essential for life and for many production processes. This article describes monitoring of the water quality at three points along the Sinos River (RS, Brazil, one in each of the upper, middle and lower stretches. The points were sampled in 2013 and again in 2014. The water samples were analyzed to determine the following physical and chemical parameters plus genotoxicity to fish: metals (Cr, Fe, Al, chemical oxygen demand, biochemical oxygen demand, chlorides, conductivity, total suspended solids, total phosphorous, total and fecal coliforms, pH, dissolved oxygen, turbidity, total Kjeldahl nitrogen nitrate and ammoniacal nitrogen. Genotoxicity was tested by exposing individuals of the species Astyanax jacuhiensis to water samples and then comparing them with a control group exposed to water from the public water supply. The results confirmed the presence of substances with genotoxic potential at the sample points located in the middle and lower stretches of the river. The results for samples from the upper stretch, at P1, did not exhibit differences in relation to the control group. The physical and chemical analyses did not detect reductions in water quality in the lower stretch, as had been expected in view of the large volumes of domestic and industrial effluents discharged into this part of the river.

  7. Assessment of water quality for the determination of extent of pollution in Malir river

    International Nuclear Information System (INIS)

    Bano, F.; Rizvi, S.N.; Farooq, S.

    2009-01-01

    Karachi is the most industrially developed and populous city of Pakistan. A big part of its basin is occupied by alluvial of Malir River which is basically a seasonal river but becomes perennial within the limits of Karachi due to the continuous flow of untreated sewage and industrial effluents through its basin into the Arabian Sea. The data obtained during this study shows that the most down stream parts of the river are grossly polluted due to the inclusion of sewage and industrial wastes. Present data shows that pollution has not only deteriorated the pristine conditions of this river but it is also causing pollution in Arabian Sea where river finally falls. The data shows increasing trend of nutrients concentration and turbidity from 1994 to 1996. This study provides the base line data and reflects the quality of water in Malir River in middle 1990's. This data can be used to study the extent of pollution in Malir river by comparing it to the recent data (if available) on Malir river. (author)

  8. Standardization of natural phenomena risk assessment methodology at the Savannah River Plant

    International Nuclear Information System (INIS)

    Huang, J.C.; Hsu, Y.S.

    1985-01-01

    Safety analyses at the Savannah River Plant (SRP) normally require consideration of the risks of incidents caused by natural events such as high-velocity straight winds, tornadic winds, and earthquakes. The probabilities for these events to occur at SRP had been studied independently by several investigators, but the results of their studies were never systematically evaluated. As part of the endeavor to standardize our environmental risk assessment methodology, these independent studies have been thoroughly reviewed and critiqued, and appropriate probability models for these natural events have been selected. The selected probability models for natural phenomena, high-velocity straight winds and tornadic winds in particular, are in agreement with those being used at other DOE sites, and have been adopted as a guide for all safety studies conducted for SRP operations and facilities. 7 references, 3 figures

  9. Metal and trace element sediment assessment from Ribeira do Iguape river, Sao Paulo state, Brazil, by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Francisco J.V. de; Quinaglia, Gilson A., E-mail: franciscovc@cetesbnet.sp.gov.br, E-mail: gilsonn@cetesbnet.sp.gov.br [CETESB - Companhia Ambiental do Estado de Sao Paulo, SP (Brazil). ELTA - Setor de Analises Toxicologicas; Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (LAN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Laboratorio de Analise por Ativacao Neutronica; Franklin, Robson L.; Ferreira, Francisco J., E-mail: robsonf@cetesbnet.sp.gov.br, E-mail: franciscoj@cetesbnet.sp.gov.br [CETESB - Companhia Ambiental do Estado de Sao Paulo, SP (Brazil). ELAI - Setor de Quimica Inorganica

    2011-07-01

    The watershed region of the Ribeira do Iguape River and the estuarine complex of the Paranagua-Iguape- Cananeia and the various river basins located between this region and the Atlantic Ocean, is known as the Ribeira Valley. The Ribeira do Iguape River runs a total length of approximately 470 km, being the main source of fresh water in the Estuarine Complex of the Iguape-Cananeia-Paranagua (Lagamar). The Ribeira do Iguape River is the last major river in the State of Sao Paulo that has not been altered by dams. During virtually the entire 20th century, the region of the Ribeira Valley was the scene of constant environmental degradation resulting from the intense exploration and refining of lead, zinc and silver ores that were processed in the mines of the region, in a rudimentary way and without any control over environmental impacts. Since 1996, all such activities ceased, however, leaving behind a huge amount of environmental liabilities. This study aims to investigate the presence and concentration levels of metals and semi-metals arsenic (As), cadmium (Cd) and lead (Pb) in the sediment and water of aquatic systems of Ribeira do Iguape River and its tributaries, for an environmental assessment and monitoring of the region. The determination of these elements was carried out by GF AAS technique for water samples and ICP OES for the sediment samples. This study also assessed the occurrence of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cs, Hf, Rb, Sb, Sc, Se, Ta, Th, U, Zn) and rare earth elements (La, Ce, Eu, Nd, Sm, Lu, Tb and Yb) by Neutron Activation Analysis (NAA). Validation of both methodologies, according to precision and accuracy, was done by reference material analyses. The results obtained for As, Cd and Pb were compared to the Canadian Environmental oriented values (TEL and PEL). The results obtained for multielemental analyses in the sediment samples were compared to UCC values (Upper Continental Crust). (author)

  10. Metal and trace element sediment assessment from Ribeira do Iguape river, Sao Paulo state, Brazil, by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Castro, Francisco J.V. de; Quinaglia, Gilson A.; Favaro, Deborah I.T.; Franklin, Robson L.; Ferreira, Francisco J.

    2011-01-01

    The watershed region of the Ribeira do Iguape River and the estuarine complex of the Paranagua-Iguape- Cananeia and the various river basins located between this region and the Atlantic Ocean, is known as the Ribeira Valley. The Ribeira do Iguape River runs a total length of approximately 470 km, being the main source of fresh water in the Estuarine Complex of the Iguape-Cananeia-Paranagua (Lagamar). The Ribeira do Iguape River is the last major river in the State of Sao Paulo that has not been altered by dams. During virtually the entire 20th century, the region of the Ribeira Valley was the scene of constant environmental degradation resulting from the intense exploration and refining of lead, zinc and silver ores that were processed in the mines of the region, in a rudimentary way and without any control over environmental impacts. Since 1996, all such activities ceased, however, leaving behind a huge amount of environmental liabilities. This study aims to investigate the presence and concentration levels of metals and semi-metals arsenic (As), cadmium (Cd) and lead (Pb) in the sediment and water of aquatic systems of Ribeira do Iguape River and its tributaries, for an environmental assessment and monitoring of the region. The determination of these elements was carried out by GF AAS technique for water samples and ICP OES for the sediment samples. This study also assessed the occurrence of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cs, Hf, Rb, Sb, Sc, Se, Ta, Th, U, Zn) and rare earth elements (La, Ce, Eu, Nd, Sm, Lu, Tb and Yb) by Neutron Activation Analysis (NAA). Validation of both methodologies, according to precision and accuracy, was done by reference material analyses. The results obtained for As, Cd and Pb were compared to the Canadian Environmental oriented values (TEL and PEL). The results obtained for multielemental analyses in the sediment samples were compared to UCC values (Upper Continental Crust). (author)

  11. Remedial action at the Green River uranium mill tailings site, Green River, Utah: Environmental assessment

    International Nuclear Information System (INIS)

    1988-07-01

    The inactive Green River uranium mill tailings site is one mile southeast of Green River, Utah. The existing tailings pile is within the floodplain boundaries of the 100-year and 500-year flood events. The 48-acre designated site contains eight acres of tailings, the mill yard and ore storage area, four main buildings, a water tower, and several small buildings. Dispersion of the tailings has contaminated an additional 24 acres surrounding the designated site. Elevated concentrations of molybdenum, nitrate, selenium, uranium, and gross alpha activity exceed background levels and the proposed US Environmental Protection Agency (EPA) maximum concentration limits in the groundwater in the unconsolidated alluvium and in the shallow shales and limestones beneath the alluvium at the mill tailings site. The contamination is localized beneath, and slightly downgradient of, the tailings pile. The proposed action is to relocate the tailings and associated contaminated materials to an area 600 feet south of the existing tailings pile where they would be consolidated into one, below-grade disposal cell. A radon/infiltration barrier would be constructed to cover the stabilized pile and various erosion control measures would be taken to ensure the long-term stability of the stabilized pile. 88 refs., 12 figs., 20 tabs

  12. Water-quality assessment of the Smith River drainage basin, California and Oregon

    Science.gov (United States)

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  13. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Andrew C., E-mail: ajo@ceh.ac.uk [Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Keller, Virginie; Dumont, Egon [Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Sumpter, John P. [Institute for the Environment, Brunel University, Uxbridge UB8 (United Kingdom)

    2015-04-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6 × 9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2–3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1–1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. - Highlights: • Antibiotic consumption varied up to 200-fold between European nations. • Antibiotic concentrations predicted to be 10 ng/L or less for most European rivers. • These antibiotic

  14. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers

    International Nuclear Information System (INIS)

    Johnson, Andrew C.; Keller, Virginie; Dumont, Egon; Sumpter, John P.

    2015-01-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6 × 9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2–3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1–1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. - Highlights: • Antibiotic consumption varied up to 200-fold between European nations. • Antibiotic concentrations predicted to be 10 ng/L or less for most European rivers. • These antibiotic

  15. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India

    Science.gov (United States)

    Singh, Harendra; Pandey, Ruby; Singh, Sudhir Kumar; Shukla, D. N.

    2017-11-01

    The present study includes a systematic analysis of sediment contamination by heavy metals of the River Ghaghara flowing through the Uttar Pradesh and Bihar in Indian Territory. To estimate the geochemical environment of the river, seven heavy metals, namely Co, Cu, Cr, Ni, Cd, Zn, and Pb were examined from the freshly deposited river bed sediment. All the sediment samples were collected on a seasonal basis for the assessment of fluctuation in 2014-2015 and after preparation samples were analyzed using standard procedure. Result showed that heavy metal concentration ranged between 11.37 and 18.42 mg/kg for Co, 2.76 and 11.74 mg/kg for Cu, 61.25 and 87.68 mg/kg for Cr, 15.29 and 25.59 mg/kg for Ni, 0.21 and 0.28 mg/kg for Cd, 13.26 and 17.59 mg/kg for Zn, 10.71 and 14.26 mg/kg for Pb in different season. Metal contamination factor indicates the anthropogenic input in the river sediment was in the range of (0.62-0.97) for Co, (0.04-0.26) for Cu, (0.68-0.97) for Cr, (0.22-0.38) for Ni, (0.70-0.93) for Cd, (0.14-0.19) for Zn, and (0.54-0.71) for Pb. The highest contamination degree of the sediment was noticed as 4.01 at Ayodhya and lowest as 3.16 at Katerniaghat. Geo-accumulation index was noted between (0 and 1) which showed that sediment was uncontaminated to moderately contaminated and may have adverse affects on freshwater ecology of the river. Pollution load index (PLI) was found highest at Chhapra which was 0.45 and lowest at Katerniaghat which was 0.35 and it indicates that the river sediment has a low level of contamination. Significant high correlation was observed between Co, Cu, and Zn, it suggests same source of contamination input is mainly due to human settlement and agriculture activity. Positive correlation between Zn, Co, Cu, Cr, and Ni indicated a natural origin of these elements in the river sediment. Cluster analysis suggests grouping of similar polluted sites. The strong similarity between Co, Zn, Pb, Ni, Cu, and Cd showed relationship of these

  16. Assessing Microplastic Loads in the Mississippi River and Its Major Tributaries

    Science.gov (United States)

    Hasenmueller, E. A.; Martin, K. M.; Conkle, J. L.; White, J. R.

    2017-12-01

    Plastic debris is ubiquitous in marine environments and can cause significant harm to aquatic life when organisms become entangled in the plastic or mistake it for food. Macroplastic debris (plastic >5 mm in diameter) has received significant attention from the public, government agencies, and the scientific community. However, the majority of plastics in aquatic environments are microplastics (plastic Administration (NOAA) Marine Debris Program, has quantified and characterized microplastics (i.e., size, shape, and resin type) at the surface and at depth along the mainstem of the Mississippi River, including near major cities such as St. Louis and New Orleans, as well as in some of the Mississippi River's major tributaries (i.e., the Missouri River, Ohio River, and Illinois River). Sampling is ongoing, but our datasets will allow us to characterize: 1) total microplastic concentrations and loads, 2) spatial and temporal trends in microplastic abundances, and 3) land-use effects on microplastic levels across the Mississippi River watershed. Our data will also provide estimates of the total discharge of microplastics from the Mississippi River to the Gulf of Mexico. These efforts will provide a baseline for future research relating to the fate and effects of microplastics in aquatic environments and can guide federal and local policy makers in creating and assessing mitigation strategies to improve water quality.

  17. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  18. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium—An indicator of large river valleys

    Science.gov (United States)

    Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent. PMID:29543919

  19. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium-An indicator of large river valleys.

    Science.gov (United States)

    Nobis, Agnieszka; Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent.

  20. Mures river hydroenergetic development in the Rastolita-Reghin sector. Environmental impact assessment

    International Nuclear Information System (INIS)

    Lazarescu, M.

    1993-01-01

    The study for determining the influence which the Mures river hydroenergetic project development in the Rastolita-Reghin sector has over the environment was achieved in the frame of the stage of the site studies. The project will be carried out in order to obtain electric power, to protect about 1850 ha of land against floods and to reinstate about 120 ha of land in the agricultural circuit. The article presents the development scheme proposed by the Hydropower Study and Design Institute (ISPH), the present state of the environment and an assessment matrix of what influence this project has over the environmental components and the socio-economic factors. In addition, measures are presented meant for improving the proposed project development scheme so as to diminish the influence over environment and and to ensure conditions for an optimum and safe functioning of this hydroelectric power unit. (author) 2 figs., 1 tab., 3 refs

  1. Assessment of long-term channel changes in the Mekong River using remote sensing and a channel-evolution model

    Science.gov (United States)

    Miyazawa, N.

    2011-12-01

    River-channel changes are a key factor affecting physical, ecological and management issues in the fluvial environment. In this study, long-term channel changes in the Mekong River were assessed using remote sensing and a channel-evolution model. A channel-evolution model for calculating long-term channel changes of a measndering river was developed using a previous fluid-dynamic model [Zolezzi and Seminara, 2001], and was applied in order to quantify channel changes of two meandering reaches in the Mekong River. Quite few attempts have been made so far to combine remote sensing observation of meandering planform change with the application of channel evolution models within relatively small-scale gravel-bed systems in humid temperate regions. The novel point of the present work is to link state-of-art meandering planform evolution model with observed morphological changes within large-scale sand-bed rivers with higher bank height in tropical monsoonal climate regions, which are the highly dynamic system, and assess the performance. Unstable extents of the reaches could be historically identified using remote-sensing technique. The instability caused i) bank erosion and accretion of meander bends and ii) movement or development of bars and changes in the flow around the bars. The remote sensing measurements indicate that maximum erosion occurred downstream of the maximum curvature of the river-center line in both reaches. The model simulations indicates that under the mean annual peak discharge the maximum of excess longitudinal velocity near the banks occurs downstream of the maximum curvature in both reaches. The channel migration coefficients of the reaches were calibrated by comparing remote-sensing measurements and model simulations. The diffrence in the migration coefficients between both reaches depends on the diffrence in bank height rather than the geotechnical properties of floodplain sediments. Possible eroded floodplain areas and accreted floodplain

  2. Assessment of the Effects of Temperature and Precipitation Variations on the Trend of River Flows in Urmia Lake Watershed

    Directory of Open Access Journals (Sweden)

    Ashkan Farokhnia

    2014-07-01

    Full Text Available Trend analysis is one of the appropriate methods to assess the hydro-climatic condition of watersheds, which is commonly used for analysis of change pattern in a single variable over time. However, in real cases, many hydrological variables such as river flow are directly affected by climate and environmental factors, which usually go unnoticed in routine analyzes. The aim of the present research is to investigate the trend of river discharge in 25 hydrometric stations in Lake Urmia river basin with and without consideration of temperature and rainfall variability. Briefly, the results showed that there is a decreasing trend in all stations, which is significant in 9 cases. Also, it has been shown that regarding to trends in precipitation and temperature, the number of stations with significant decreasing trend will reduce to 7, which shows low impact of climate factors on the reduction rate of discharge in these stations. Based on the results, it can be concluded that climate variations have direct effect in inferring significant trends in river flow, so that considering these variables in studying of river discharge can lead to different results in the detection of significant trends.

  3. Creation of of the National GIS system «The geography and geo-ecology of rivers and river basins of European Part of Russia: Spatial Analysis, Assessment and Modeling»

    Science.gov (United States)

    Yermolaev, Oleg; Gilyazov, Albert; Ivanov, Maksim; Kharchenko, Sergei; Maltsev, Kirill; Mozzherin, Vadim; Muharamova, Svetlana; Shynbergenov, Erlan

    2016-04-01

    Problem-oriented geographic information system and geoportal «The geography and geo-ecology of rivers and river basins of European Part of Russia» is proposed to form the base for investigations concerned to assessment and prognosis of geo-ecological state of river basins belonging to the European Russia (approx. 4 million of sq. km. in total). This large part of Russia concentrates the predominant part of country's population, industrial and agricultural potential. Actuality of assessment and prognosis of the environmental state for the chosen territory is caused by the increasing anthropogenic influence onto the basin geosystems of Russia and triggering negative riverbed-erosion processes, shifts of river runoff regimes, and lack of drinking water resources. These problems are demanding for examination of the response of the basin geosystems from various landscape zones to the anthropogenic impact, and the climate change, for understanding, predicting and managing streamflow. Assessment of river basins and changes occurring in them is based on a complex spatial-temporal analysis of long-term monitoring data, the use of remote sensing and maps of state surveys. All available geo-information will be integrated into the multi-function, problem-oriented GIS. Proposed approaches of investigation: cartographic and geoinformational methods, automated procedures of territory zoning, automated procedures of interpretation of remote sensing images, modern statistical methods of analysis (geostatistics, statistical and mathematical models). Study area: the European Part of Russia (except for mountainous areas). Scale studies (level of spatial detail): Regional (corresponding to a scale 1: 1 000 000). The object of study: Geosystems river basins. Subject of study: - The development of GIS; - Analysis of the spatial and temporal relationships of river runoff; - Quantitative assessment of the current geo-ecological state of European Russia river basins. Scientific novelty of

  4. Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Cazenave, Jimena, E-mail: jcazenave@inali.unl.edu.a [Laboratorio de Ictiologia, Instituto Nacional de Limnologia (INALI-CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe (Argentina); Bacchetta, Carla; Parma, Maria J.; Scarabotti, Pablo A. [Laboratorio de Ictiologia, Instituto Nacional de Limnologia (INALI-CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe (Argentina); Wunderlin, Daniel A. [Dto. Bioquimica Clinica-CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre esq Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-11-15

    This field study assessed water quality of Salado River basin by using a set of biomarkers in the fish Prochilodus lineatus. Multiple biomarkers were measured, including morphological indexes (condition factor, liver somatic index), hematological (red and white blood cells) and biochemical (glucose, total protein and cholinesterase activity) parameters. Besides, detoxication and oxidative stress markers (antioxidant enzymes, lipid peroxidation) were measured in liver, gills and kidney. Despite water quality assessment did not show marked differences among sites, biomarkers responses indicate that fish are living under stressful environmental conditions. According to multivariate analysis glucose, glutathione S-transferase activity, lipid peroxidation levels and the count of white blood cells are key biomarkers to contribute to discrimination of sites. So, we suggest use those biomarkers in future monitoring of freshwater aquatic systems. - A battery of biomarkers was successfully applied to assess the health of the fish Prochilodus lineatus from Salado River basin.

  5. Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina)

    International Nuclear Information System (INIS)

    Cazenave, Jimena; Bacchetta, Carla; Parma, Maria J.; Scarabotti, Pablo A.; Wunderlin, Daniel A.

    2009-01-01

    This field study assessed water quality of Salado River basin by using a set of biomarkers in the fish Prochilodus lineatus. Multiple biomarkers were measured, including morphological indexes (condition factor, liver somatic index), hematological (red and white blood cells) and biochemical (glucose, total protein and cholinesterase activity) parameters. Besides, detoxication and oxidative stress markers (antioxidant enzymes, lipid peroxidation) were measured in liver, gills and kidney. Despite water quality assessment did not show marked differences among sites, biomarkers responses indicate that fish are living under stressful environmental conditions. According to multivariate analysis glucose, glutathione S-transferase activity, lipid peroxidation levels and the count of white blood cells are key biomarkers to contribute to discrimination of sites. So, we suggest use those biomarkers in future monitoring of freshwater aquatic systems. - A battery of biomarkers was successfully applied to assess the health of the fish Prochilodus lineatus from Salado River basin.

  6. Habitat quality assessment for the Eurasian otter (Lutra lutra on the river Jajrood, Iran

    Directory of Open Access Journals (Sweden)

    Roohallah Mirzaei

    2010-06-01

    Full Text Available Abstract There is little information about the status and ecology of the Eurasian otter (Lutra lutra in Iran. We assessed the habitat suitability for otters of the River Jajrood, Tehran province, measuring, or visually estimating, 12 environmental parameters along 16 600 m long river stretches (sampling sites. The downstream stretches of the river were found to be more suitable for otters with respect to the upper part of its course. Although the assessments of habitat suitability for the otter may be affected by several limits, the current distribution of the species on the river agrees with the results of this study. The preservation of the otter in Tehran province should involve the restoration of the ecosystem of the River Jajrood in order to improve the length of suitable river stretches.
    Riassunto Stima dell’idoneità ambientale per la lontra (Lutra lutra del fiume Jajrood, Iran. Le informazioni relative alla lontra (Lutra lutra in Iran sono scarse. L’idoneità ambientale per la specie del fiume Jajrood, provincia di Tehran, è stata valutata, misurando o stimando 12 parametri ambientali lungo 16 stazioni di campionamento, coincidenti con tratti di fiume della lunghezza di 600 m. I tratti più a valle sono risultati più idonei rispetto al corso superiore del fiume. Malgrado i numerosi limiti del metodo di stima dell’idoneità ambientale adottato, i risultati sono in accordo con l’attuale distribuzione della lontra lungo il fiume Jajrood. La conservazione della lontra nella provincia di Tehran dovrebbe prevedere miglioramenti ambientali volti a incrementare lo sviluppo lineare degli habitat idonei lungo il fiume Jajrood.

    doi:10.4404/hystrix-20.2-4447

  7. Assessment of metal contamination in the biota of four rivers experiencing varying degrees of human impact.

    Science.gov (United States)

    Bielmyer-Fraser, Gretchen K; Waters, Matthew Neal; Duckworth, Christina G; Patel, Pratik P; Webster, Benjamin Cole; Blocker, Amber; Crummey, Cliff Hunter; Duncan, Aundrea Nicole; Nwokike, Somuayiro Nadia; Picariello, Codie Richard; Ragan, James T; Schumacher, Erika L; Tucker, Rebecca Lea; Tuttle, Elizabeth Ann; Wiggins, Charlie Rufus

    2017-01-01

    Urbanization, agriculture, and other land transformations can affect water quality, decrease species biodiversity, and increase metal and nutrient concentrations in aquatic systems. Metal pollution, in particular, is a reported consequence of elevated anthropogenic inputs, especially from urbanized areas. The objectives of this study were to quantify metal (Cu, Al, Cd, Ni, and Pb) concentrations in the waters and biota of four streams in South Georgia, USA, and relate metal concentrations to land use and abiotic and biotic stream processes. Additionally, macrophytes, invertebrates, and fish were identified to assess biodiversity at each site. Metal concentrations in the three trophic levels differed among sites and species, correlating to differences in land use surrounding the rivers. The highest metal concentrations (except Al) were found in the streams most impacted by urbanization and development. Al concentrations were highest in streams surrounded by land dominated by forested areas. Metal content in macrophytes reflected metal concentrations in the water and was at least three orders of magnitude higher than any other trophic level. Despite metal concentration differences, all four streams contained similar water quality and were healthy based on macroinvertebrate community structure. This study provides insight into the impact of urbanization and the fate and effects of metals in river ecosystems with varying degrees of anthropogenic impact.

  8. Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River

    International Nuclear Information System (INIS)

    Zhang, D.; Yan, X.P.; Yang, Z.L.; Wall, A.; Wang, J.

    2013-01-01

    Formal safety assessment (FSA), as a structured and systematic risk evaluation methodology, has been increasingly and broadly used in the shipping industry around the world. Concerns have been raised as to navigational safety of the Yangtze River, China's largest and the world's busiest inland waterway. Over the last few decades, the throughput of ships in the Yangtze River has increased rapidly due to the national development of the Middle and Western parts of China. Accidents such as collisions, groundings, contacts, oil-spills and fires occur repeatedly, often causing serious consequences. In order to improve the navigational safety in the Yangtze River, this paper estimates the navigational risk of the Yangtze River using the FSA concept and a Bayesian network (BN) technique. The navigational risk model is established by considering both probability and consequences of accidents with respect to a risk matrix method, followed by a scenario analysis to demonstrate the application of the proposed model

  9. Biological monitoring and assessment of rivers as a basis for identifying and prioritising river management options

    CSIR Research Space (South Africa)

    Roux, DJ

    1999-01-01

    Full Text Available management objectives. This paper demonstrates how the results obtained with biological indices and system-specific knowledge, are combined to derive semi quantitative assessments of ecosystem condition. These assessments provide the basis for responding...

  10. Water-quality assessment of part of the Upper Mississippi River Basin Study Unit, Minnesota and Wisconsin- Nutrients, chlorophyll a, phytoplankton, and suspended sediment in streams, 1996-98

    Science.gov (United States)

    Kroening, Sharon E.; Lee, Kathy E.; Goldstein, R.M.

    2003-01-01

    Stream water-quality data from part of the Upper Mississippi River Basin Study Unit (Study Unit) from 1995 through 1998 was used to describe the distribution of nutrients, chlorophyll a, phytoplankton, and suspended sediment; and the influence of natural and anthropogenic factors on reported concentrations, loads, and yields. During the study period, streamflows generally were near to greater than average. Agricultural land cover, particularly on tile-drained soils, had the most substantial influence on nutrients, chlorophyll a, and suspended sediment in the Study Unit. The greatest concentrations and yields of total nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved nitrite nitrogen, total organic plus ammonia nitrogen, total phosphorus, and suspended sediment were measured in a stream representing agricultural land cover on tile-drained soils. Total nitrogen yields also were about 6 times greater in a stream representing agricultural land cover on tile-drained soils than in a stream representing agricultural land cover on naturally welldrained soils.

  11. ECOLOGICAL ASSESSMENT OF THE HUMAN -TRANSFORMED SYSTEMS OF THE IRPIN RIVER

    Directory of Open Access Journals (Sweden)

    Svitlana Madzhd

    2017-07-01

    Full Text Available Purpose: to learn the interaction of natural and anthropogenic factors and their consequences in the system “Natural environment (Irpin river – human-transformed environment (Nyvka river”. Methods: To assess the structural and functional changes of hydroecosystems, transformed under technogenic impact, hydrochemical, toxicological and biological techniques, as well as the methods of mathematical statistics for experimental data processing and summarization of obtained results, were applied. Results: it is proposed to determine the dynamics of the biotic self-regulation mechanism change under impact of the modifying (anthropogenic factors, by the example of the two-component system – “Natural environment (Irpin River – environment, transformed under technogenic impact (Nyvka River, the right-hand tributary of the Irpin River”. It is proposed to extend additionally the opportunities of the ecological assessment due to application of the integrating index – the index of ecological conformity. Discussion: obtained results stipulate necessity of the further investigation of structural and functional patterns of the Irpin River ecosystem in space and time. Assessment of anthropogenic factors impact on hydroecosystem condition will make it possible to correct the nature guard activity concerning the improvement of the fishery object ecological condition and recreation essence of the Irpin River. Integration of the Nyvka and Irpin Rivers into a single system “Natural environment – environment, transformed under technogenic impact” will make it possible to obtain the objective assessment of technogenic changes in hydroecosystems. Implementation of the index of ecological conformity will make it possible to estimate completely the inner processes in the rivers.

  12. Hydrochemical evaluation of river water quality—a case study: Horroud River

    Science.gov (United States)

    Falah, Fatemeh; Haghizadeh, Ali

    2017-12-01

    Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.

  13. River Gain and Loss Studies for the Red River of the North Basin, North Dakota and Minnesota

    National Research Council Canada - National Science Library

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act passed by the U.S. Congress in 2000 authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and -quality needs of the Red River of the North (Red River...

  14. Impact of farm dams on river flows; A case study in the Limpopo River basin, Southern Africa

    NARCIS (Netherlands)

    Meijer, E.; Querner, E.P.; Boesveld, H.

    2013-01-01

    The study analysed the impact of a farm dam on the river flow in the Limpopo River basin. Two methods are used to calculate the water inflow: one uses the runoff component from the catchment water balance; the other uses the drainage output of the SIMFLOW model. The impact on the flow in a

  15. Assessment of potential impacts of climate change on agricultural development in the Lower Benue River Basin.

    Science.gov (United States)

    Abah, Roland Clement; Petja, Brilliant Mareme

    2016-12-01

    Agriculture in the Lower Benue River Basin faces several challenges which threaten the future of agricultural development. This study was an assessment of potential impacts of climate change on agricultural development in the Lower Benue River Basin. Through analysis of physical and socioeconomic parameters, the study adapted an impact assessment model to rank potential impacts on agricultural development in the study area. Rainfall intensity seemed to be increasing with a gradual reduction in the number of rainy days. The average discharge at Makurdi hydrological station was 3468.24 cubic metres per second (m 3  s -1 ), and the highest peak flow discharge was 16,400 m 3  s -1 . The daily maximum temperature and annual temperature averages for the study area are gradually rising leading to increased heat stress. Physical and chemical analyses showed that the soils are moderately fertile but require effective application of inorganic and organic fertilisers. The main occupational activities in the study area are agricultural based. The identified potential impacts of climate change on agriculture were categorised under atmospheric carbon dioxides and oxides, rainfall intensity, frequency of floods and droughts, temperature intensity and variation, heat stress, surface water trends, and soil quality and fertility. The identified potential impacts related to population dynamics on agriculture were categorised under population growth, rural-urban migration, household income and infectious diseases and HIV and AIDS. Community-level mitigation strategies were proffered. Policy makers are advised to promote irrigation farming, support farmers with farm inputs and credit facilities and establish active agricultural extension services to support the sustainable development of agriculture.

  16. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  17. Impact assessment of oil spills on sediments in Vasyugan River Basin (Western Siberia)

    International Nuclear Information System (INIS)

    Vorobyov, D.S.

    2005-01-01

    Vasyugan River (more than 1100 km of length and 65000 km 2 of catchment totally) is right tributary of Ob River. Exploration and development of oil fields have provided in the area since 1970's. Long-term project for hydro-ecological investigation of Vasyugan River Basin was provided during 1992-2002. Main aim of the project was study of distribution and spatial dynamics of bottom invertebrate communities (population density, biomass) affected by oil contamination for tasks of environmental monitoring. Samples of sediments were assessed hydro-biologically (zoo-benthos) and chemically (petroleum hydrocarbons). Concentrations of petroleum hydrocarbons (non-polar hydrocarbons) in bottom sediments in oil fields were significantly different depending on texture and organic matter content: detritus - 370 mg/kg; silt - 89 mg/kg; silty-sand - 37 mg/kg. The significant correlation between concentration of petroleum hydrocarbons and organic matter content in sediments was found (? = 0,94). Concentration of in bottom sediments depended on destination from and age of developed oil fields: 300 mg/kg (areas of oil fields developed more than 20 years); 77 mg/kg (areas of oil fields developed less than 10 years); 59 mg/kg (estuary of Vasyugan, 400 km far from main sources of contamination at least). Population of zoo-benthos is increasing depending on extension of destination from source of contamination. The phenomena can be explained by stream transport and accumulation of PAH. Population of oligochaeta and mollusks in sediments increase depending on extension from sources of contamination (p<0,05). (author)

  18. Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon.

    Science.gov (United States)

    Olivero-Verbel, Jesus; Carranza-Lopez, Liliana; Caballero-Gallardo, Karina; Ripoll-Arboleda, Adriana; Muñoz-Sosa, Diego

    2016-10-01

    Mercury (Hg) is a global contaminant posing severe risks to human health worldwide. The aim of this study was to assess the levels of total Hg (T-Hg) in human hair and fish in the Caqueta River, at the Colombian Amazon, as well as to determine fish consumption-based risks for T-Hg ingestion. T-Hg levels were measured using a direct mercury analyzer. The overall mean T-Hg level in hair for humans in the Caqueta River sample (n = 200) was 17.29 ± 0.61 μg/g (1.2 to 47.0 μg/g). Ninety-four percent of the individuals had hair T-Hg concentrations greater than the WHO threshold level (5 μg/g), and 79 % displayed levels higher than 10 μg/g. Average Hg concentrations in fish varied between 0.10-0.15 μg/g and 0.10-1.60 μg/g, for noncarnivorous and carnivorous species, respectively. Based on the maximum allowable fish consumption rate for adults, most carnivorous species should be avoided in the diet, as their target hazard quotient ranged from 2.96 up to 31.05, representing a risk for Hg-related health problems. In the light of existing evidence for elevated Hg levels in the indigenous population of the Colombian Amazon, carnivorous fish should be restricted as part of the diet, and breastfeeding should be reduced to protect children health. Most importantly, gold mining activities directly on rivers demand immediate attention from the national government to avoid extensive damage on the environment and human health.

  19. Comparison of 2D numerical models for river flood hazard assessment: simulation of the Secchia River flood in January, 2014

    Science.gov (United States)

    Shustikova, Iuliia; Domeneghetti, Alessio; Neal, Jeffrey; Bates, Paul; Castellarin, Attilio

    2017-04-01

    Hydrodynamic modeling of inundation events still brings a large array of uncertainties. This effect is especially evident in the models run for geographically large areas. Recent studies suggest using fully two-dimensional (2D) models with high resolution in order to avoid uncertainties and limitations coming from the incorrect interpretation of flood dynamics and an unrealistic reproduction of the terrain topography. This, however, affects the computational efficiency increasing the running time and hardware demands. Concerning this point, our study evaluates and compares numerical models of different complexity by testing them on a flood event that occurred in the basin of the Secchia River, Northern Italy, on 19th January, 2014. The event was characterized by a levee breach and consequent flooding of over 75 km2 of the plain behind the dike within 48 hours causing population displacement, one death and economic losses in excess of 400 million Euro. We test the well-established TELEMAC 2D, and LISFLOOD-FP codes, together with the recently launched HEC-RAS 5.0.3 (2D model), all models are implemented using different grid size (2-200 m) based on the 1 m digital elevation model resolution. TELEMAC is a fully 2D hydrodynamic model which is based on the finite-element or finite-volume approach. Whereas HEC-RAS 5.0.3 and LISFLOOD-FP are both coupled 1D-2D models. All models are calibrated against observed inundation extent and maximum water depths, which are retrieved from remotely sensed data and field survey reports. Our study quantitatively compares the three modeling strategies highlighting differences in terms of the ease of implementation, accuracy of representation of hydraulic processes within floodplains and computational efficiency. Additionally, we look into the different grid resolutions in terms of the results accuracy and computation time. Our study is a preliminary assessment that focuses on smaller areas in order to identify potential modeling schemes

  20. Population characteristics and assessment of overfishing for an exploited paddlefish population in the lower Tennessee River

    Science.gov (United States)

    Scholten, G.D.; Bettoli, P.W.

    2005-01-01

    Paddlefish Polyodon spathula (n = 576) were collected from Kentucky Lake, Kentucky-Tennessee, with experimental gill nets in 2003-2004 to assess population characteristics and the potential for commercial overfishing. Additional data were collected from 1,039 paddlefish caught by commercial gillnetters in this impoundment. Since the most recent study in 1991, size and age structure have been reduced and annual mortality has tripled. In the 1991 study, 37% of the fish collected were older than the maximum age we observed (age 11), and in 2003 annual mortality for paddlefish age 7 and older was high (A = 68%). Natural mortality is presumably low (overfishing probably occurs during drought years; however, variation in river discharge has prevented the population from being exploited at unsustainable rates in the past. ?? Copyright by the American Fisheries Society 2005.

  1. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments

    International Nuclear Information System (INIS)

    Wingo, H.E.

    1992-01-01

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site

  2. Visualizing ecological sensitivity assessment of Huangnan, in the Three-river Region, China, based on GIS

    Science.gov (United States)

    Meng, Xia; Guo, Luo

    2017-07-01

    Huangnan Tibetan Autonomous Prefecture is located in the three-river source region (the TRSR) in the Qinghai-Tibetan Plateau, China, which is characterized with ecological sensitivity and vulnerability. In the paper, we integrated remote sensing images, field investigation and social-economic data , and with the help of analytic hierarchy process (AHP) and comprehensive index methods, a sensitivity assessment system was built to calculate ecological sensitivity scores and assign levels for the study area. Results show that: areas which are moderately or even highly ecologically sensitive account for 54.02%, distributed in south, north and northeast of study area and those that have most apparent ecological sensitivity are mainly located in Zeekog, northwest of Huangnan while other counties enjoy relatively lower sensitivity. The results will facilitate future region management and planning for decision-makers.

  3. Savannah River Site reactor hardware design modification study

    International Nuclear Information System (INIS)

    Fisher, J.E.

    1990-01-01

    A study was undertaken to assess the merits of proposed design modifications to the Savannah River Site (SRS) reactors. The evaluation was based on the responses calculated by the RELAP5 systems code to double-ended guillotine break loss-of-coolant-accidents (DEGB LOCAs). The three concepts evaluated were (a) elevated plenum inlet piping with a guard vessel and clamshell enclosures, (b) closure of both rotovalves in the affected loop, and (c) closure of the pump suction valve in the affected loop. Each concept included a fast reactor shutdown (to 65% power in 100 ms) and a 2-s ac pump trip. System recovery potential was evaluated for break locations at the pump suction, the pump discharge, and the plenum inlet. The code version used was RELAP5/MOD2.5 version 3d3, a preliminary version of RELAP5/MOD3. The model was a three-dimensional representation of the K-Reactor water plenum and moderator tank. It included explicit representations of all six loops, which were based on the configuration of L-Reactor. A combination of features is recommended to ensure liquid inventory recovery for all break locations. Valve closure design performance for a break location in the short section of piping between the reactor concrete shield and the pump suction valve would benefit from the clamshell enclosing that section of piping. 7 refs., 10 figs., 2 tabs

  4. Application of two quality indices as monitoring and management tools of rivers. Case study: the Imera Meridionale River, Italy.

    Science.gov (United States)

    Bonanno, Giuseppe; Lo Giudice, Rosa

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily's largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  5. SAVANNAH RIVER SITE CAPABILITIES FOR CONDUCTING INGESTION PATHWAY CONSEQUENCE ASSESSMENTS FOR EMERGENCY RESPONSE

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C

    2007-12-11

    Potential airborne releases of radioactivity from facilities operated for the U. S. Department of Energy at the Savannah River Site could pose significant consequences to the public through the ingestion pathway. The Savannah River National Laboratory has developed a suite of technologies needed to conduct assessments of ingestion dose during emergency response, enabling emergency manager at SRS to develop initial protective action recommendation for state agencies early in the response and to make informed decisions on activation of additional Federal assets that would be needed to support long-term monitoring and assessment activities.

  6. Environmental Impact Assessment: Uri hydroelectric power project on River Jhelum in Kashmir, India

    International Nuclear Information System (INIS)

    Nyman, L.

    1995-09-01

    This report is an Initial Aquatic Environmental Impact Assessment of the Uri Hydroelectric Power Project on River Jhelum in Kashmir, India. It includes the Terms of Reference of the assessment, a discussion on biodiversity and threats to it, the environmental indicators used to monitor and predict the impacts, a description of the physical, chemical and biological prerequisites of the River Jhelum ecosystem, a description of the survey sites chosen, and an overview of the present fish and bottom fauna. Finally, there are sections on the potential impacts on biota of the Uri Project and a list of proposals for how mitigating and enhancing measures could be enforced

  7. Assessment of Heavy Metal Contamination in the Surrounding Soils and Surface Sediments in Xiawangang River, Qingshuitang District

    Science.gov (United States)

    Jiang, Min; Zeng, Guangming; Zhang, Chang; Ma, Xiaoying; Chen, Ming; Zhang, Jiachao; Lu, Lunhui; Yu, Qian; Hu, Langping; Liu, Lifeng

    2013-01-01

    Xiawanggang River region is considered to be one of the most polluted areas in China due to its huge amount discharge of pollutants and accumulation for years. As it is one branch of Xiang River and the area downstream is Changsha city, the capital of Hunan Province, the ecological niche of Xiawangang River is very important. The pollution treatment in this area was emphasized in the Twelfth Five-Year Plan of Chinese government for Xiang River Water Environmental Pollution Control. In order to assess the heavy metal pollution and provide the base information in this region for The Twelfth Five-Year Plan, contents and fractions of four heavy metals (Cd, Cu, Pb and Zn) covering both sediments and soils were analyzed to study their contamination state. Three different indexes were applied to assess the pollution extent. The results showed this area was severely polluted by the four heavy metals, and the total concentrations exceeded the Chinese environmental quality standard for soil, grade III, especially for Cd. Moreover, Cd, rated as being in high risk, had a high mobility as its great contents of exchangeable and carbonates fractions in spite of its relative low content. Regression analysis revealed clay could well explain the regression equation for Cd, Cu and Zn while pH and sand could significantly interpret the regression equation for Pb. Moreover, there was a significant correlation between Non-residual fraction and Igeo for all the four metals. Correlation analysis showed four metals maybe had similar pollution sources. PMID:23951103

  8. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

  9. Effects of potash mining on river ecosystems: An experimental study.

    Science.gov (United States)

    Cañedo-Argüelles, Miguel; Brucet, Sandra; Carrasco, Sergi; Flor-Arnau, Núria; Ordeix, Marc; Ponsá, Sergio; Coring, Eckhard

    2017-05-01

    In spite of being a widespread activity causing the salinization of rivers worldwide, the impact of potash mining on river ecosystems is poorly understood. Here we used a mesocosm approach to test the effects of a salt effluent coming from a potash mine on algal and aquatic invertebrate communities at different concentrations and release modes (i.e. press versus pulse releases). Algal biomass was higher in salt treatments than in control (i.e. river water), with an increase in salt-tolerant diatom species. Salt addition had an effect on invertebrate community composition that was mainly related with changes in the abundance of certain taxa. Short (i.e. 48 h long) salt pulses had no significant effect on the algal and invertebrate communities. The biotic indices showed a weak response to treatment, with only the treatment with the highest salt concentration causing a consistent (i.e. according to all indices) reduction in the ecological quality of the streams and only by the end of the study. Overall, the treatment's effects were time-dependent, being more clear by the end of the study. Our results suggest that potash mining has the potential to significantly alter biological communities of surrounding rivers and streams, and that specific biotic indices to detect salt pollution should be developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Monitoring of emerging pollutants in Guadiamar River basin (South of Spain): analytical method, spatial distribution and environmental risk assessment.

    Science.gov (United States)

    Garrido, Eva; Camacho-Muñoz, Dolores; Martín, Julia; Santos, Antonio; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2016-12-01

    Guadiamar River is located in the southwest of the Iberian Peninsula and connects two protected areas in the South of Spain: Sierra Morena and Doñana National Park. It is sited in an area affected by urban, industrial and agriculture sewage pollution and with tradition on intensive mining activities. Most of the studies performed in this area have been mainly focused on the presence of heavy metals and, until now, little is known about the occurrence of other contaminants such as emerging organic pollutants (EOPs). In this work, an analytical method has been optimized and validated for monitoring of forty-seven EOPs in surface water. The analytical method has been applied to study the distribution and environmental risk of these pollutants in Guadiamar River basin. The analytical method was based on solid-phase extraction and determination by liquid chromatography-triple quadrupole-tandem mass spectrometry. The 60 % of the target compounds were found in the analyzed samples. The highest concentrations were found for two plasticizers (bisphenol A and di(2-ethyhexyl)phthalate, mean concentration up to 930 ng/L) and two pharmaceutical compounds (caffeine (up to 623 ng/L) and salicylic acid (up to 318 ng/L)). This study allowed to evaluate the potential sources (industrial or urban) of the studied compounds and the spatial distribution of their concentrations along the river. Environmental risk assessment showed a major risk on the south of the river, mainly due to discharges of wastewater effluents.

  11. The assessment of khorramabad River water quality with National Sanitation Foundation Water Quality Index and Zoning by GIS

    Directory of Open Access Journals (Sweden)

    abdolrahim Yusefzadeh

    2014-03-01

    Full Text Available Background : Rivers are a fraction of flowing waters in the worlds and one of the important sources of water for different consumptions such as agricultural, drinking and industrial uses. The aim of this study was to assess water quality of the Khorramrood River in Khorramabad by NSFWQI index. Materials and Methods: In this cross-sectional study, quality parameters needed for NASWQI index calculation such as BOD5, dissolved oxygen (DO, total nitrate, fecal coliform, pH, total phosphate, temperature, turbidity and total suspended solids content were measured for six months (from July to December 2012using standard methods at six selected stations. The river zoning conducted by GIS software. Results: According to the results obtained through this study, the highest and the lowest water quality value was observed in stations 1 and 6 with NSFWQI indexes 82 water with good quality, 42 water with bad quality, respectively. With moving toward last station (from 1 to 6 station water pollution increased. Conclusion: Results of the study indicated that water quality index NSFWQI is a good index to identify the effect of polluter sources on the river water. Based on the average of the index NSFWQI, water quality in station one was good, in the second, third and fourth stations were mediocre and the fifth and sixth stations had bad quality. These results allow to make decisions about monitoring and controlling water pollution sources, as well as provide different efficient uses of it by relevant authorities.

  12. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    'A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods.'

  13. A study of sediment transport in the Herbert River, Australia, using plutonium AMS

    International Nuclear Information System (INIS)

    Everett, S.E.; Tims, S.G.; Fifield, L.K.; Hancock, G.J.

    2005-01-01

    The ANU and CSIRO have begun a new collaboration to study the human impacts of sediment transport into the Great Barrier Reef (GBR) lagoon. The project aims to use fallout plutonium for essentially the first time, as an isotopic tracer of soil and sediment movement. The study aims to assess how recent human activity in the river catchments that feed the GBR lagoon is influencing the distribution and quantity of sediment entering the lagoon. 2 figs

  14. Numerical assessment of water-saving irrigation on the water cycle at the oasis of the Manas River Basin

    OpenAIRE

    he

    2018-01-01

    As the birthplace of water-saving technology under mulch drip irrigation in China, the Manas River Basin (MRB) has developed into the largest oasis farming area in Xinjiang and the fourth largest irrigated agricultural area in China. This study presents systematic evaluation the effect of water-saving technologies on precipitation, runoff, infiltration and evapotranspiration in this basin. A model of the regional water cycle was developed for quantitatively assessing groundwater balance and g...

  15. Urban river design and aesthetics: A river restoration case study from the UK

    OpenAIRE

    Prior, Jonathan

    2016-01-01

    This paper analyses the restoration of an urbanized section of the River Skerne where it flows through a suburb of Darlington, England; a project which was one of the first comprehensive urban river restorations undertaken in the UK. It is shown how aesthetic values were central to the identification of the River Skerne as a site for restoration, the production of restoration objectives, and a design vision of urban river renewal via restoration. Secondly, the means by which these aesthetic v...

  16. A preliminary assessment of sources of nitrate in springwaters, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, B.G.; Hornsby, H.D.

    1998-01-01

    A cooperative study between the Suwannee River Water Management District (SRWMD) and the U.S. Geological Survey (USGS) is evaluating sources of nitrate in water from selected springs and zones in the Upper Floridan aquifer in the Suwannee River Basin. A multi-tracer approach, which consists of the analysis of water samples for naturally occurring chemical and isotopic indicators, is being used to better understand sources and chronology of nitrate contamination in the middle Suwannee River region. In July and August 1997, water samples were collected and analyzed from six springs and two wells for major ions, nutrients, and dissolved organic carbon. These water samples also were analyzed for environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N] to determine sources of water and nitrate. Chlorofluorocarbons (CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H) were analyzed to assess the apparent ages (residence time) of springwaters and water from the Upper Floridan aquifer. Delta 15N-NO3 values in water from the six springs range from 3.94 per mil (Little River Springs) to 8.39 per mil (Lafayette Blue Spring). The range of values indicates that nitrate in the sampled springwaters most likely originates from a mixture of inorganic (fertilizers) and organic (animal wastes) sources, although the higher delta 15N-NO3 value for Lafayette Blue Spring indicates that an organic source of nitrogen is likely at this site. Water samples from the two wells sampled in Lafayette County have high delta 15N-NO3 values of 10.98 and 12.1 per mil, indicating the likelihood of an organic source of nitrate. These two wells are located near dairy and poultry farms, where leachate from animal wastes may contribute nitrate to ground water. Based on analysis of chlorofluorocarbons in ground water, the mean residence time of water in springs ranges from about 12 to 25 years. Chlorofluorocarbons-modeled recharge dates for water samples from the two shallow zones in the Upper Floridan aquifer

  17. Risk Assessment and Mapping of Fecal Contamination in the Ohio River Basin

    Science.gov (United States)

    Cabezas, A.; Morehead, D.; Teklitz, A.; Yeghiazarian, L.

    2014-12-01

    Decisions in many problems in engineering planning are invariably made under conditions of uncertainty imposed by the inherent randomness of natural phenomena. Water quality is one such problem. For example, the leading cause of surface-water impairment in the US is fecal microbial contamination, which can potentially trigger massive outbreaks of gastrointestinal disease. It is well known that the difficulty in prediction of water contamination is rooted in the stochastic variability of microbes in the environment, and in the complexity of environmental systems.To address these issues, we employ a risk-based design format to compute the variability in microbial concentrations and the probability of exceeding the E. Coli target in the Ohio River Basin (ORB). This probability is then mapped onto the basin's stream network within the ArcGIS environment. We demonstrate how spatial risk maps can be used in support of watershed management decisions, in particular in the assessment of best management practices for reduction of E. Coli load in surface water. The modeling environment selected for the analysis is the Schematic Processor (SP), a suite of geoprocessing ArcGIS tools. SP operates on a schematic, link-and-node network model of the watershed. The National Hydrography Dataset (NHD) is used as the basis for this representation, as it provides the stream network, lakes, and catchment definitions. Given the schematic network of the watershed, SP adds the capability to perform mathematical computations along the links and at the nodes. This enables modeling fate and transport of any entity over the network. Data from various sources have been integrated for this analysis. Catchment boundaries, lake locations, the stream network and flow data have been retrieved from the NHDPlus. Land use data come from the National Land Cover Database (NLCD), and microbial observations data from the Ohio River Sanitation Committee. The latter dataset is a result of a 2003

  18. Pesticide residue assessment in three selected agricultural production systems in the Choluteca River Basin of Honduras

    International Nuclear Information System (INIS)

    Kammerbauer, J.; Moncada, J.

    1999-01-01

    There is a basic lack of information about the presence of pesticide residues in the environment in Central America. Over the period of February 1995 to June 1997, river, well, lagoon and spring water samples, as well as soil, fish tissue, lagoon bed sediments and some foodstuffs were taken from the greater Cholutecan River Basin of Honduras and analyzed for pesticide residues. These were collected at three separate sites (La Lima, Zamorano and Choluteca), each characterized by differing agricultural production systems. The main pesticide residues found in soil samples were dieldrin and p,p'-DDT, while river water samples were found to have detectable levels of heptachlor, endosulfan and chlorpyrifos, with lagoon and well water also being shown to contain heptachlor. These pesticides detected were in more than 20% of the samples assessed. In river water samples more pesticide residues at higher concentrations were found to be associated with areas of more intensive agricultural production. The fewest pesticides with lowest concentrations were found in the small subwatershed associated with traditional agricultural production. Although the pesticides found in the soils at the three sites were generally similar they tended to be higher in the southern part of the Cholutecan watershed, followed by the central zone, with the lowest concentrations being found in the more traditional production zone. In lagoon and well water samples more pesticides, but mostly in lower concentrations were detected at the traditional production site than at the others. Ten pesticide compounds were detected in fish tissue, mainly organochlorines, some of which were also found in lagoon sediments. In terms of food products, almost no pesticides were detected in vegetables, but the kidney adipose tissue taken from slaughtered cows was shown to have a tendency to contain some organochlorines. Spring water in the traditional agricultural production zone contained three organochlorine compounds

  19. Yakima River Spring Chinook Enhancement Study, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, Larry

    1985-01-01

    This study develops data to present management alternatives for Yakima River spring chinook. The first objective is to determine the distribution, abundance and survival of wild Yakima River spring chinook. Naturally produced populations will be studied to determine if these runs can be sustained in the face of present harvest and environmental conditions. This information will be gathered through spawning ground surveys, counting of adults at Prosser and Roza fish ladders, and through monitoring the tribal dipnet fishery. Concurrent studies will examine potential habitat limitations within the basin. Presently, survival to emergence studies, in conjunction with substrate quality analysis is being undertaken. Water temperature is monitored throughout the basin, and seining takes place monthly to evaluate distribution and abundance. The outcome of this phase of the investigation is to determine an effective manner for introducing hatchery stocks that minimize the impacts on the wild population. The second objective of this study is to determine relative effectiveness of different methods of hatchery supplementation.

  20. Assessment and classification of hydromorphological state of the Breń River

    Directory of Open Access Journals (Sweden)

    Borek Łukasz

    2016-09-01

    Full Text Available The paper presents the classification of the hydromorphological condition of the Breń River according to the River Habitat Survey (RHS. The research of the hydromorphological assessment of the Breń River, which is a right-bank tributary of the Vistula River and almost entirely flows through the area of the Dąbrowa Tarnowska district was conducted in June 2015. The research sites were situated on the border of the Tarnów Plateau and the Vistula Lowland. The Breń River in these sections flows through rural areas used for agricultural purposes with low-density housing. The analysis of qualitative parameters describing the morphological characteristics were based on two synthetic indices of stream quality: Habitat Quality Assesment (HQA and Habitat Modification Score (HMS. The calculated numerical values of the two indices proved that the sections of the Breń River correspond with the third and fifth class, which means a moderate (III and very bad (V hydromorphological condition.

  1. Contamination assessment of heavy metal in surface sediments of the Wuding River, northern China

    International Nuclear Information System (INIS)

    Longjiang, M.; Qiang, F.; Duowen, M.; Ke, H.; Jinghong, Y.

    2011-01-01

    The heavy metal contents and the contamination levels of the surface sediments of the Wuding River, northern China, were investigated. Heavy metal concentration ranged in μg g -1 : 50.15 - 71.91 for Cr, 408.1 - 442.9 for Mn, 20.11 - 43.59 for Ni, 17.51 - 20.1 for Cu, 68.32 - 89.57 for Zn, 0.2 - 0.38 for Cd and 15.08 - 16.14 for Pb in the Wuding River sediments. The enrichment factor (EF) and the geo-accumulation index (Igeo) demonstrated that the sediments of the Wuding River had been polluted by Cd, Cr and Ni, which mainly originated from anthropogenic sources, whereas the sediments had not been polluted by Zn, Pb, Cu and Mn, which were derived from the crust. In addition, the assessment results of EF and Igeo suggested that the sediments of the Wuding River was 'moderately' polluted by Cd and 'unpolluted to moderately' polluted by Cr and Ni. The elevated urban sewage discharges and agriculture fertilizers usage in river basin are the anthropogenic sources of these heavy metals in river. (author)

  2. Estimation of geochemical parameters for assessing subsurface transport at the Savannah River Plant: Environmental information document

    International Nuclear Information System (INIS)

    Looney, B.B.; Grant, M.W.; King, C.M.

    1987-03-01

    Geochemical parameter estimates to be used in assessing the subsurface transport of chemicals from Savannah River Plant (SRP) waste sites are presented. Specifically, reference values for soil-solution distribution coefficients, solubility, leach rates, and retardation coefficients are estimated for 31 inorganic chemicals (assuming speciation is governed by reasonable assumptions about controlling variables such as Eh and pH) and 36 organic compounds. Additionally, facilitated transport (the association of chemicals with inorganic and organic ligands or colloids resulting in relatively high mobility) was estimated using field data to derive a fraction of the disposal mass which was assumed to be mobile. Hydrologic parameters such as dispersion coefficient, average moisture content in vadose zone, bulk density, and effective porosity are also presented. The estimates are based on site-specific studies when available, combined with technical literature

  3. Assessment of solid low-level waste management at the Savannah River Plant

    International Nuclear Information System (INIS)

    Fenimore, J.W.; Hooker, R.L.

    1977-08-01

    Site description, facilities, operating practices, and assessment of solid low-level waste management at the Savannah River Plant are covered. The following recommendations are made. Programs to reduce the volume of waste generated at the source should be continued. Planning to utilize volume reduction by compaction and/or incineration should be continued and adopted when practical technology is available. Utilization of grading and ditching to reduce water infiltration into trenches and to control erosion should be continued. Burial ground studies should be continued to: measure Kd's of all important radionuclides in burial ground sediments; measure hydraulic conductivities in disturbed backfill and underlying undisturbed sediments at sufficient locations to give a statistically significant sampling; and measure water flow rates better, so that individual radionuclide rates can be computed

  4. Source identification and ecological impact evaluation of PAHs in urban river sediments: A case study in Taiwan.

    Science.gov (United States)

    Tu, Y T; Ou, J H; Tsang, D C W; Dong, C D; Chen, C W; Kao, C M

    2018-03-01

    The Love River and Ho-Jin River, two major urban rivers in Kaohsiung City, Taiwan, are moderately to heavily polluted because different types of improperly treated wastewaters are discharged into the rivers. In this study, sediment and river water samples were collected from two rivers to investigate the river water quality and accumulation of polycyclic aromatic hydrocarbons (PAHs) in sediments. The spatial distribution, composition, and source appointment of PAHs of the sediments were examined. The impacts of PAHs on ecological system were assessed using toxic equivalence quotient (TEQ) of potentially carcinogenic PAHs (TEQ carc ) and sediment quality guidelines. The average PAHs concentrations ranged from 2161 ng/g in Love River sediment to 160 ng/g in Ho-Jin River sediment. This could be due to the fact that Love River Basin had much higher population density and pyrolytic activities. High-ring PAHs (4-6 rings) contributed to 59-90% of the total PAHs concentrations. Benzo(a)pyrene (BaP) had the highest toxic equivalence quotient (up to 188 ng TEQ/g). Moreover, the downstream sediments contained higher TEQ of total TPHs than midstream and upstream sediment samples. The PAHs were adsorbed onto the fine particles with high organic content. Results from diagnostic ratio analyses indicate that the PAHs in two urban river sediments might originate from oil/coal combustion, traffic-related emissions, and waste combustion (pyrogenic activities). Future pollution prevention and management should target the various industries, incinerators, and transportation emission in this region to reduce the PAHs pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    Science.gov (United States)

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  6. Assessing the health condition profile in the freshwater fish Astyanax aeneus in Champoton River, Mexico.

    Science.gov (United States)

    Trujillo-Jiménez, Patricia; Sedeño-Díaz, Jacinto Elías; López-López, Eugenia

    2014-01-01

    The use of biomarkers for monitoring aquatic environmental quality has gained considerable interest worldwide. The effects of the environmental conditions of Río Champotón, México, in the hotspot of Mesoamerica, were assessed in Astyanax aeneus, a native fish of the tropics of southwestern México. Pollution from agrochemical residues is a major problem in Río Champotón. Three study sites along the freshwater portion of the river were monitored in April, July, and November 2007 and February 2008. This study includes a water quality index, a set of biomarkers (hepatic glycogen levels and lipid peroxidation in liver, gills, and muscle) to assess the integrated biomarker response, and population bioindicators (gonadosomatic and hepatosomatic indices and Fulton's condition factor). Although the water quality index suggested low level of contamination in the Río Champotón, biomarkers indicated that A. aeneus is exposed to stressors that impair biological responses. The integrated biomarker response showed stress periods with higher biomarker response and recovery periods with decreasing biomarker values. The somatic indices did not indicate severe effects at the population level. This study illustrates the usefulness of lipid peroxidation evaluation in the assessment of aquatic health conditions and corroborates the suitability of A. aeneus as a sentinel species.

  7. Disappearing rivers — The limits of environmental assessment for hydropower in India

    International Nuclear Information System (INIS)

    Erlewein, Alexander

    2013-01-01

    The mountain rivers of the Indian Himalaya possess a vast potential for hydropower generation. After decades of comparatively modest development recent years have seen a major intensification in the construction of new hydropower dams. Although increasingly portrayed as a form of renewable energy generation, hydropower development may lead to extensive alterations of fluvial systems and conflicts with resource use patterns of local communities. To appraise and reduce adverse effects is the purpose of statutory Environmental Impact Assessments (EIA) and corresponding mitigation plans. However, in the light of ambitious policies for hydropower expansion conventional approaches of environmental assessment are increasingly challenged to keep up with the intensity and pace of development. This paper aims to explore the systemic limitations of environmental assessment for hydropower development in the Indian state of Himachal Pradesh. Based on a qualitative methodology involving interviews with environmental experts, document reviews and field observations the study suggests that the current practice of constraining EIAs to the project level fails to address the larger effects of extensive hydropower development. Furthermore, it is critically discussed as to what extent the concept of Strategic Environmental Assessment (SEA) might have the potential to overcome existing shortcomings

  8. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers.

    Science.gov (United States)

    Johnson, Andrew C; Keller, Virginie; Dumont, Egon; Sumpter, John P

    2015-04-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6×9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2-3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1-1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Assessing Water Security in the Amu Darya River Basin, Afghanistan

    National Research Council Canada - National Science Library

    DiPasquale, Joseph A

    2006-01-01

    ...; and water development projects. The thesis evaluated the quantitative techniques employed for their utility in planning, executing, and assessing military operations in relation to water resources. Afghanistan...

  10. A Simplified Nitrogen Assessment in Tagus River Basin: A Management Focused Review

    Directory of Open Access Journals (Sweden)

    Cláudia M. d. S. Cordovil

    2018-03-01

    Full Text Available Interactions among nitrogen (N management and water resources quality are complex and enhanced in transboundary river basins. This is the case of Tagus River, which is an important river flowing from Spain to Portugal in the Iberian Peninsula. The aim was to provide a N assessment review along the Tagus River Basin regarding mostly agriculture, livestock, and urban activities. To estimate reactive nitrogen (Nr load into surface waters, emission factor approaches were applied. Nr pressures are much higher in Spain than in Portugal (~13 times, which is mostly because of livestock intensification. Some policy and technical measures have been defined aiming at solving this problem. Main policy responses were the designation of Nitrate Vulnerable and Sensitive Zones, according to European Union (EU directives. Nitrate Vulnerable Zone comprise approximately one third of both territories. On the contrary, Sensitive Zones are more extended in Spain, attaining 60% of the watershed, against only 30% in Portugal. Technical measures comprised advanced urban and industrial wastewater treatment that was designed to remove N compounds before discharge in the water bodies. Given this assessment, Tagus River Basin sustainability can only be guaranteed through load inputs reductions and effective transnational management processes of water flows.

  11. Assessment of Cd, Cr and Pb Pollution in Sediment and Water of Gheshlagh River, Iran, in September 2013

    Directory of Open Access Journals (Sweden)

    Farshid Majnoni

    2015-03-01

    Full Text Available Background: This study aimed to evaluate the pollution levels of surface water with heavy metals including Pb, Cd and Cr in Gheshlagh River, western Iran. Methods: Water and sediment were sampled in five monitoring stations with three replicates in time along the river. The concentration of Cr, Pb and Cd in both water and sediment samples were measured with graphite furnace atomic absorption spectrometer (Australia, Varian 220. The Geoaccumulation Index and Pollution Load Index were employed to assess the pollution level of sediments with heavy metals. Results: The mean value of Cd, Cr, Pb in sediment samples were 0.69, 17.19 and 10.69 µgg-1 per dry weight, respectively. Water samples contained Cd, Cr and Pb concentration of 1.99, 1.45 and 12.92 µgL-1, respectively. The Geoaccumulation Index and Pollution Load Index indicates that the sediments were not polluted with Pb and Cr, and unpolluted to moderately contaminated with Cd in Gheshlagh River. Conclusion: This study concludes that the Gheshlagh River is threatened by heavy metals particularly Cd and Pb.

  12. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. A method was developed to determine the probabilistic flood hazard curves for SRS facilities. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  13. Flood hazard assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  14. USING THE SEDIMENT QUALITY TRIAD (SQT) APPROACH TO ASSESS SEDIMENTARY CONTAMINATION IN THE ANACOSTIA RIVER, WASHINGTON

    Science.gov (United States)

    Using the Sediment Quality Triad (SQT) Approach to Assess Sedimentary Contamination in the Anacostia River, Washington, D.C. Velinsky, DJ*1, Ashley, JTF1,2, Pinkney, F.3, McGee, BL3 and Norberg-King, TJ.4 1Academy of Natural Sciences-PCER, Philadelphia, PA. 2Philadelphia Universi...

  15. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP): WESTERN STREAMS AND RIVERS STATISTICAL SUMMARY

    Science.gov (United States)

    This statistical summary reports data from the Environmental Monitoring and Assessment Program (EMAP) Western Pilot (EMAP-W). EMAP-W was a sample survey (or probability survey, often simply called 'random') of streams and rivers in 12 states of the western U.S. (Arizona, Californ...

  16. 75 FR 22737 - Final Damage Assessment and Restoration Plan for the Bayou Verdine and Calcasieu River

    Science.gov (United States)

    2010-04-30

    ..., and Liability Act (CERCLA), 42 U.S.C. 9607(f), Section 311 of the Federal Water Pollution and Control... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Final Damage Assessment and Restoration Plan for the Bayou Verdine and Calcasieu River AGENCY: National Oceanic and Atmospheric...

  17. Assessment of the microbial quality of river water sources in rural ...

    African Journals Online (AJOL)

    drinie

    2002-07-03

    Jul 3, 2002 ... Assessment of the microbial quality of river water sources ... These untreated water sources are used for drinking and domestic purposes and pose a serious threat to ... These diseases cause crippling, devastating and debilitating effects ..... gastrointestinal illness, due mainly by enteric viruses in sewage.

  18. Pollution assessment using local enrichment factors: the Berounka River (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Nováková, Tereza; Matys Grygar, Tomáš; Kotková, Kristýna; Elznicová, J.; Strnad, L.; Mihaljevic, M.

    2016-01-01

    Roč. 16, č. 3 (2016), s. 1081-1092 ISSN 1439-0108 Institutional support: RVO:61388980 Keywords : Berounka River * Fluvial sediments * Local enrichment factors * Normalization * Pollution assessment Subject RIV: DD - Geochemistry Impact factor: 2.522, year: 2016

  19. Mercury bioaccumulation assessment for the St. Louis River Area of Concern

    Science.gov (United States)

    Both Minnesota and Wisconsin have posted fish consumption advisories within the St. Louis River Area of Concern (SLR AOC), in part because fish have elevated mercury concentrations. To assess mercury concentrations in fish tissue within the SLR AOC relative to reference condition...

  20. Assessing disruption of longitudinal connectivity on macroinvertebrate assemblages in a semiarid lowland river

    Directory of Open Access Journals (Sweden)

    Marta Leiva

    2017-12-01

    Full Text Available Abstract Aim: Our aim in this study was evaluate the effects of flow regulation for irrigation on the macroinvertebrate assemblages in a semiarid river. Methods We sampled two reaches in Dulce River; one placed upstream a weir that diverts flow into a network of irrigation channels and the other downstream that weir, in the assessment of the fluvial discontinuity. We assess the differences among reaches and sites, environmental variables, invertebrate density, richness and Shannon-Wiener index applying non-parametric analyses of variance Kruskal Wallis. The similarity percentage analysis (SIMPER was used to identify which species contributed to the dissimilarities on macroinvertebrate assemblage structure. Canonical Correspondence Analysis (CCA was performed with the total set of samples to explore macroinvertebrate distribution in reaches and associations of the assemblages with habitat variables. Results The density, richness and Shannon index values did not show differences between the reaches located upstream and downstream. Beta diversity (Whittaker was 0.72 among upstream sites, 0.56 among downstream sites and higher species turnover (0.73 was obtained between both reaches. The Canonical Correspondence Analysis explained 46.71% of the variance differentiating upstream sites explained by higher values of organic matter of bottom sediments and discharge, high density of Nais communis, Bothrioneurum americanum, Pelomus, Stephensoniana trivandrana, Pristina menoni, P. jenkinae, P.longidentata, P. americana, Dero obtusa, Endotribelos, Heleobia and Turbellaria. The downstream sites were associated to coarser substratum and higher density of Lopescladius, Polypedilum, Cricotopus, Thienamaniella, Cryptochironomus, Baetidae, Nematoda and Corbicula fluminea. Conclusions The low-flow disturbance had effects on the composition of the benthic invertebrate assemblages, but attributes (such as density and richness showed a lower variability probably

  1. Comparative water quality assessment between a young and a stabilized hydroelectric reservoir in Aliakmon River, Greece.

    Science.gov (United States)

    Samiotis, Georgios; Trikoilidou, Eleni; Tsikritzis, Lazaros; Amanatidou, Elisavet

    2018-03-20

    In this work, a comparative study on the water quality characteristics of two in-line water reservoirs (artificial lakes) in Aliakmon River (Western Macedonia, Greece) is performed. Polyfytos Reservoir and Ilarion Reservoir were created in 1975 and 2012 respectively, in order to serve the homonymous hydroelectric stations. In young artificial lakes, severe deterioration of water quality may occur; thus, the monitoring and assessment of their water quality characteristics and their statistical interpretation are of great importance. In order to evaluate any temporal or spatial variations and to characterize water quality of these two in-line water reservoirs, water quality data from measurements conducted from 2012 to 2015 were statistically processed and interpreted by using a modified National Sanitation Foundation water quality index (WQI). The water physicochemical characteristics of the two reservoirs were found to be generally within the legislation limits, with relatively small temporal and spatial variations. Although Polyfytos Reservoir showed no significant deviations of its water quality, Ilarion Reservoir exhibited deviations in total Kjeldahl nitrogen, nitrite nitrogen, total suspended solids, and turbidity due to the inundated vegetation decomposition. The conducted measurements and the use of the modified NSFWQI revealed that during the inundation period of Ilarion Reservoir, its water quality was "moderate" and that the deviations were softened through time, leading to "good" water quality during its maturation period. Three years since the creation of Ilarion Reservoir, water quality does not match that of Aliakmon River (feeding water) or that of the stabilized reservoir (Polyfytos Reservoir), whose quality is characterized as "high." The use of a WQI, such as the proposed modified NSFWQI, for evaluating water quality of each sampling site and of an entire water system proved to be a rapid and relatively accurate assessment tool.

  2. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada.

    Science.gov (United States)

    Shrestha, Narayan Kumar; Du, Xinzhong; Wang, Junye

    2017-12-01

    Proper management of blue and green water resources is important for the sustainability of ecosystems and for the socio-economic development of river basins such as the Athabasca River Basin (ARB) in Canada. For this reason, quantifying climate change impacts on these water resources at a finer temporal and spatial scale is often necessary. In this study, we used a Soil and Water Assessment Tool (SWAT) to assess climate change impacts on fresh water resources, focusing explicitly on the impacts to both blue and green water. We used future climate data generated by the Canadian Center for Climate Modelling and Analysis Regional Climate Model (CanRCM4) with a spatial resolution of 0.22°×0.22° (~25km) for two emission scenarios (RCP 4.5 and 8.5). Results projected the climate of the ARB to be wetter by 21-34% and warmer by 2-5.4°C on an annual time scale. Consequently, the annual average blue and green water flow was projected to increase by 16-54% and 11-34%, respectively, depending on the region, future period, and emission scenario. Furthermore, the annual average green water storage at the boreal region was expected to increase by 30%, while the storage was projected to remain fairly stable or decrease in other regions, especially during the summer season. On average, the fresh water resources in the ARB are likely to increase in the future. However, evidence of temporal and spatial heterogeneity could pose many future challenges to water resource planners and managers. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. Hydrogeochemical studies of historical mining areas in the Humboldt River basin and adjacent areas, northern Nevada

    Science.gov (United States)

    Nash, J. Thomas

    2005-01-01

    The study area comprises the Humboldt River Basin and adjacent areas, with emphasis on mining areas relatively close to the Humboldt River. The basin comprises about 16,840 mi2 or 10,800,000 acres. The mineral resources of the Humboldt Basin have been investigated by many scientists over the past 100 years, but only recently has our knowledge of regional geology and mine geology been applied to the understanding and evaluation of mining effects on water and environmental quality. The investigations reported here apply some of the techniques and perspectives developed in the Abandoned Mine Lands Initiative (AMLI) of the U.S. Geological Survey (USGS), a program of integrated geological-hydrological-biological-chemical studies underway in the Upper Animas River watershed in Colorado and the Boulder River watershed in, Montana. The goal of my studies of sites and districts is to determine the character of mining-related contamination that is actively or potentially a threat to water quality and to estimate the potential for natural attenuation of that contamination. These geology-based studies and recommendations differ in matters of emphasis and data collection from the biology-based assessments that are the cornerstone of environmental regulations.

  4. Assessing regional climate simulations of the last 30 years (1982-2012) over Ganges-Brahmaputra-Meghna River Basin

    Science.gov (United States)

    Khandu; Awange, Joseph L.; Anyah, Richard; Kuhn, Michael; Fukuda, Yoichi

    2017-10-01

    The Ganges-Brahmaputra-Meghna (GBM) River Basin presents a spatially diverse hydrological regime due to it's complex topography and escalating demand for freshwater resources. This presents a big challenge in applying the current state-of-the-art regional climate models (RCMs) for climate change impact studies in the GBM River Basin. In this study, several RCM simulations generated by RegCM4.4 and PRECIS are assessed for their seasonal and interannual variations, onset/withdrawal of the Indian monsoon, and long-term trends in precipitation and temperature from 1982 to 2012. The results indicate that in general, RegCM4.4 and PRECIS simulations appear to reasonably reproduce the mean seasonal distribution of precipitation and temperature across the GBM River Basin, although the two RCMs are integrated over a different domain size. On average, the RegCM4.4 simulations overestimate monsoon precipitation by {˜ }26 and {˜ }5% in the Ganges and Brahmaputra-Meghna River Basin, respectively, while PRECIS simulations underestimate (overestimate) the same by {˜ }7% ({˜ }16%). Both RegCM4.4 and PRECIS simulations indicate an intense cold bias (up to 10° C) in the Himalayas, and are generally stronger in the RegCM4.4 simulations. Additionally, they tend to produce high precipitation between April and May in the Ganges (RegCM4.4 simulations) and Brahmaputra-Meghna (PRECIS simulations) River Basins, resulting in early onset of the Indian monsoon in the Ganges River Basin. PRECIS simulations exhibit a delayed monsoon withdrawal in the Brahmaputra-Meghna River Basin. Despite large spatial variations in onset and withdrawal periods across the GBM River Basin, the basin-averaged results agree reasonably well with the observed periods. Although global climate model (GCM) driven simulations are generally poor in representing the interannual variability of precipitation and winter temperature variations, they tend to agree well with observed precipitation anomalies when driven by

  5. Fish communities and trophic metrics as measures of ecological degradation: a case study in the tributaries of the river Ganga basin, India

    OpenAIRE

    Kumar Dubey, Vineet; Kumar Sarkar, Uttam; Pandey, Ajay; Singh Lakra, Wazir

    2013-01-01

    In India, freshwater aquatic resources are suffering from increasing human population, urbanization and shortage of all kind of natural resources like water. To mitigate this, all the major rivers have been planned for a river-interlinking through an interlinking canal system under a huge scheme; yet, the baseline information on ecological conditions of those tropical rivers and their fish communities is lacking at present. In view of that, the present study was undertaken to assess the ecolo...

  6. Summary of the Phase II, Title I engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Green River site, Utah. The services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 123 thousand tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The three alternative actions presented are dike stabilization, fencing, on- and off-site decontamination and maintenance; improvements in the stabilization cover and diking plus cleanup of the site and Browns Wash, and realignment of Browns Wash; and addition of stabilization cover to a total of 2 ft, realignment of Browns Wash and placement of additional riprap, on-site cleanup and drainage improvements. All options include remedial action at off-site structures. Cost estimates for the three options range from $700,000 to $926,000

  7. Phase II, Title I engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Green River site, Utah. Services included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations , the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 123 thousand tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The three alternative actions presented are dike stabilization, fencing, on- and off-site decontamination and maintenance (Option I); improvements in the stabilization cover and diking plus cleanup of the site and Browns Wash, and realignment of Browns Wash (Option II); and addition of stabilization cover to a total of 2 ft, realignment of Browns Wash and placement of additional riprap, on-site cleanup and drainage improvements (Option III). All options include remedial action at off-site structures. Cost estimates for the three options range from $700,000 to $926,000

  8. Tracking Polychlorinated Biphenyls (PCB) after an incident along a river system - Case study Elbe River

    Science.gov (United States)

    Kleisinger, Carmen; Dietrich, Stephan; Kehl, Nora; Claus, Evelyn; Schubert, Birgit

    2017-04-01

    In spring 2015, extremely high concentrations of Polychlorinated Biphenyls (PCB) well above the long-term average were detected in suspended particulate matter (SPM) within the River Elbe. They were released due to abrasive blasting of the old coating from a bridge in the upper part of the River, approximately 50 km upstream of the first measurement site. PCBs are persistent organic pollutants, preferentially bound to fine-grained fractions of the SPM. Results from monitoring of contaminants in SPM along the Elbe indicate the further dispersal of the PCB-contaminated sediments. These measurements include yearly investigations on PCB concentrations in sediments in the inner reaches of the Elbe, an additional longitudinal survey in 2015 and monthly monitoring of PCBs in SPM at stations along the river including the Elbe estuary (Germany). The Elbe estuary is of major economic importance since Hamburg harbour, one of the largest harbours in Europe, is located there. Maintaining the harbour includes dredging and, i.a., relocating large amounts of the dredged material within the water body. High PCB concentrations in sediments could lead to restrictions on the relocation of these sediments. This study aims at tracking the fate of PCB contaminated material released from the point source of the incident site along the whole river stretch and at estimating its impact on the quality of sediments and consequently on dredging activities in the estuary. The ratio of high (PCB 138, 152 and 180) versus low (PCB 28, 52, 101) chlorinated PCB congeners proved to be a suitable tracer to distinguish the PCB load released by the incident from the long-term background signals. As Delor 106/Clophen A60, which contains approx. 90% hexa- to decachloric congeners, was an additive in the coating of the bridge, the pattern of PCBs released by the incident is dominated by the highly chlorinated PCB-congeners PCB 138, 153 and 180. At the tidal weir Geesthacht, the entrance to the estuary, an

  9. Identification of significant pressures and assessment of wastewater discharge on Krivaja River water quality

    Directory of Open Access Journals (Sweden)

    Pešić Vesna Z.

    2017-01-01

    Full Text Available One of the key stages of the process of preparing management plans for the river basin is the analysis of pressures and impacts, as well as the risk assessment of failing to achieve the environmental objectives. DPSIR framework (Driving Forces-Pressure-State-Impact-Response was developed by the European Agency for the environmental protection, and makes the conceptual basis for the pressures and impacts analysis, taking into account the complexity of the interactions in the environment and represents the tool for their analysis. Impact assessment of the water body requires some quantitative information to describe the condition of the water body and/or the pressures that act on it. The aim of the study was to determine the effect of wastewater discharge on Krivaja watercourse. Impact assessment is carried out based on data of polluters’ wastewater and monitoring information for water in Krivaja. For each site at which sampling was performed, the specific risk quotients for surface water were calculated, as the ratio of the each pollutant concentration in surface water at the sampling point and environmental quality standards for pollutants, as well as their sum that represents the risk index. In order to have the integrated perceive of processes in the Krivaja River, taking into account cumulative effects from point sources, the concept of total maximum daily load was applied, using which the pollution amount, that can be discharged daily in a water body without degrading his prescribed/required quality, was calculated. Comparison of emitted loads from pollution point sources with maximum allowable ones was performed. Wastewaters of different polluters located on Krivaja are, due to insufficient treatment, very loaded with organic matter and nutrients. Krivaja receives daily 1332 m3 of wastewater, 999 kg COD, 722 kg BOD, 144 kg of nitrogen, 4.3 kg of phosphorus and 627 kg of suspended solids. Of the total wastewater volume, the majority (69

  10. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality in an urban part of the Twin Cities Metropolitan area, Minnesota, 1996

    Science.gov (United States)

    Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.

    1998-01-01

    In the spring of 1996, the Upper Mississippi River Basin Study Unit of the National Water-Quality Assessment Program drilled 30 shallow monitoring wells in a study area characterized by urban residential and commercial land uses. The monitoring wells were installed in sandy river-terrace deposits adjacent to the Mississippi River in Anoka and Hennepin Counties, Minnesota, in areas where urban development primarily occurred during the past 30 years.

  11. Experience of Assessment of Current Radiation Doses to the Population from the Contamination of the Techa River (The Urals, Russia)

    International Nuclear Information System (INIS)

    Bolshakov, V. N.; Pozolotina, V. N.; Cabianca, T.; Simmonds, J.

    2001-01-01

    Full text: Significant quantities (about 108 PBq) of liquid radioactive waste were discharged to the Techa River in the Urals region of Russia in the early years of operation of the MAYK Production Association (1948-1951). The compositions of the releases consisted mainly of medium and long-lived beta emitting radionuclides: 103,106 Ru (28 PBq), 95 Zr/Nb (14 PBq), 137 Cs (13 PBq), 90 Sr (12 PBq). More than 120,000 people received high levels of radiation as a result of this contamination of the Techa River. The objective of this study is preliminary assessment of current and future radiation doses received by the population living in the affected area (Brodokalmak village). The assessment made use of local habit data and measurements of radionuclides concentrations in food and water, supplemented by model predictions whenever measurements in environmental materials were not available. Exposure pathways included in the calculations were ingestion of foods and external exposure to gamma radiation from radionuclides deposited on the banks of the river. Doses were calculated for three age groups (adults, children, infants) and two types of individuals: average consumers and users of the river banks, and individuals most likely to receive the highest dose. Two scenarios were considered in the calculations. In the first scenario is was assumed that access to the river banks, for both people and cattle, was restricted. For the second scenario, doses were calculated assuming that restrictions were lifted and people had free access to all areas in the village. With restrictions the highest dose estimated was 0.56 mSv/y for the most exposed adults and without restrictions this increased to 3.4 mSv/y. (author)

  12. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    Science.gov (United States)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  13. Comparability of river quality assessment using macrophytes: a multi-step procedure to overcome biogeographical differences.

    Science.gov (United States)

    Aguiar, F C; Segurado, P; Urbanič, G; Cambra, J; Chauvin, C; Ciadamidaro, S; Dörflinger, G; Ferreira, J; Germ, M; Manolaki, P; Minciardi, M R; Munné, A; Papastergiadou, E; Ferreira, M T

    2014-04-01

    This paper exposes a new methodological approach to solve the problem of intercalibrating river quality national methods when a common metric is lacking and most of the countries share the same Water Framework Directive (WFD) assessment method. We provide recommendations for similar works in future concerning the assessment of ecological accuracy and highlight the importance of a good common ground to make feasible the scientific work beyond the intercalibration. The approach herein presented was applied to highly seasonal rivers of the Mediterranean Geographical Intercalibration Group for the Biological Quality Element Macrophytes. The Mediterranean Group of river macrophytes involved seven countries and two assessment methods with similar acquisition data and assessment concept: the Macrophyte Biological Index for Rivers (IBMR) for Cyprus, France, Greece, Italy, Portugal and Spain, and the River Macrophyte Index (RMI) for Slovenia. Database included 318 sites of which 78 were considered as benchmarks. The boundary harmonization was performed for common WFD-assessment methods (all countries except Slovenia) using the median of the Good/Moderate and High/Good boundaries of all countries. Then, whenever possible, the Slovenian method, RMI was computed for the entire database. The IBMR was also computed for the Slovenian sites and was regressed against RMI in order to check the relatedness of methods (R(2)=0.45; p<0.00001) and to convert RMI boundaries into the IBMR scale. The boundary bias of RMI was computed using direct comparison of classification and the median boundary values following boundary harmonization. The average absolute class differences after harmonization is 26% and the percentage of classifications differing by half of a quality class is also small (16.4%). This multi-step approach to the intercalibration was endorsed by the WFD Regulatory Committee. © 2013 Elsevier B.V. All rights reserved.

  14. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    International Nuclear Information System (INIS)

    Paller, M.

    1992-01-01

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70 degrees C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams ampersand Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS

  15. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    Science.gov (United States)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  16. Ecological study of algal flora of Neelum river Azad Kashmir

    International Nuclear Information System (INIS)

    Leghari, M.K.; Leghari, M.Y.

    2000-01-01

    First time ecological study of Algal Flora of Neelum River Azad Kashmir was carried out during January 1998 to July 1998. A total of 78 species belonging to 48 genera of 4 Algal groups. Cyanophyceae (16 species 20.5 % belonging to 11 genera), Choloronophycease (23 species 29.5 % belonging to 18 genera), Bacillariophyceae (37 species 47 % belonging to 17 genera), Xanthophyceae (2 species 3 % belonging to 2 genera) and 39 physico - chemical parameters were recorded. (author)

  17. Anatomy of an urban waterbody: A case study of Boston's Muddy River

    International Nuclear Information System (INIS)

    Mathew, Miriam; Yao Yifu; Cao Yixing; Shodhan, Khyati; Ghosh, Indrani; Bucci, Vanni; Leitao, Christopher; Njoka, Danson; Wei, Irvine; Hellweger, Ferdi L.

    2011-01-01

    The objective of this study was to characterize and understand the water quality of Boston's Muddy River prior to restoration, to help guide those activities and evaluate their success. We use a combination of monitoring, data analysis and mathematical modeling. The seasonal pattern of temperature, pollutant signatures (identified using a principal component analysis), correlations with precipitation and spatial patterns all point to a significant wastewater input at one of the outfalls and suggest significant receiving water impact. However, a quantitative analysis using a mathematical model (QUAL2K) suggests this source is not significant. Rather, internal loading from algae, sediment bed and waterfowl dominate the spatial pattern of water quality. These results suggest significant improvement can be expected from planned sediment dredging. The paper provides a case study of water quality assessment in the context of urban river restoration, and it illustrates the utility of combining monitoring and data analysis with modeling. - Highlights: → The water quality of an urban river is studied using monitoring and modeling. → Data analysis suggest an important wastewater input at one outfall. → A mathematical model shows the outfall is not significant. → Internal loading from algae, sediment bed and waterfowl control the water quality. - Monitoring and data analysis are combined with mathematical modeling to understand the water quality of an urban river.

  18. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    OpenAIRE

    Lili Wang; Zhonggen Wang; Jingjie Yu; Yichi Zhang; Suzhen Dang

    2018-01-01

    Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrolo...

  19. Ecological quality assessment of rivers and integrated catchment management in England and Wales

    Directory of Open Access Journals (Sweden)

    Paul LOGAN

    2001-09-01

    Full Text Available This paper deals with the ecological assessment of river quality and its relationship to integrated catchment management. The concept of catchment or river basin management has been a basic management tool in England and Wales since 1990; it is now being enshrined in the Water Framework Directive. Historically the statutory and operational drivers in the UK have lead to the development of distinctly different approaches to the management of water quality, water resources (quantity and physical river structure. More recently a proactive approach to the sustainable use of water promulgated in the Local Environment Agency Plans has also dealt with the three management aspects in some isolation although greater effort has been made to present the issues in an integrated manner. The Water Framework Directive calls for further integration in river basin plans and associated programmes of measures. In the paper the three approaches are described and considered in light of the requirements of the Water Framework Directive. Water Quality classification and objective setting has been based on information from the survey of benthic macro-invertebrates. The Biological Monitoring Working Party Score and the predictive software River Invertebrate Prediction and Classification System (RIVPACS have been used to set site-specific targets for management purposes. RIVPACS includes a reference database of minimally impacted sites for comparison with the observed data. This approach is in line with the requirements of the directive. Physical river structure work has been based on monitoring of in-river and river corridor characteristics. The River Habitat System (RHS has also developed a reference database but is less well developed in terms of its predictive ability. The use of ecological information in Water Resource management has taken a different approach based on the concept of differential ecological sensitivity to the hydrological regime within the river. In

  20. Instream Biological Assessment of NPDES Point Source Discharges at the Savannah River Site, 2000

    International Nuclear Information System (INIS)

    Specht, W.L.

    2001-01-01

    The Savannah River Site (SRS) currently has 31 NPDES outfalls that have been permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams. These studies were designed to detect biological impacts due to point source discharges. Sampling was initially conducted between November 1997 and July 1998 and was repeated in the summer and fall of 2000. A total of 18 locations were sampled (Table 1, Figure 1). Sampling locations for fish and macroinvertebrates were generally the same. However, different locations were sampled for fish (Road A-2) and macroinvertebrates (Road C) in the lower portion of Upper Three Runs, to avoid interference with ongoing fisheries studies at Road C. Also, fish were sampled in Fourmile Branch at Road 4 rather than at Road F because the stream at Road F was too narrow and shallow to support many fish. Sampling locations and parameters are detailed in Sections 2 and 3 of this report. In general, sampling locations were selected that would permit comparisons upstream and downstream of NPDES outfalls. In instances where this approach was not feasible because effluents discharge into the headwaters of a stream, appropriate unimpacted reference were used for comparison purposes. This report summarizes the results of the sampling that was conducted in 2000 and also compares these data to the data that were collected in 1997 and 1998

  1. Assessment of Large Wood budget in the gravel-bed Piave River: first attempt

    Science.gov (United States)

    Tonon, Alessia; Picco, Lorenzo; Ravazzolo, Diego; Aristide Lenzi, Mario

    2015-04-01

    During the last decades, the dynamics of large wood (LW) in rivers were analyzed to consider and define the LW budget. The space-time variations of LW amount results from the differences among input (e.g. fluvial transport, lateral recruitment) and output (e.g. fluvial transport, overbank deposition, natural chronic dead) of LW along a riverine environment. Different methodologies were applied in several fluvial environments, however in large river systems characterized by complex LW dynamics, the processes are still poor quantified. Aim of this contribution is to perform a LW budget estimation over the short period, assessing the effect of an over bankfull flood (Q=1039 m3 s-1; R.I=3.5 years). The research was carried out along a 1 km-long reach (around 15 ha) located into the middle course of the large gravel-bed Piave River (North East of Italy). The LW budget has been defined considering the recruitment through bank erosion and the fluvial transport of LW into and out of the study reach. The former factor was achieved integrating field data on riparian vegetation with the monitoring of riverbanks with a Differential Global Positioning System (DGPS). The latter was obtained detecting all LW elements (diameter ≥ 0.10 m and/or length ≥ 1 m) stored along the study reach, before and after the flood. For each LW the GPS position was recorded and a numbered tag was installed with the addition of colored paint to permit a rapid post-event recovery. Preliminary results indicate that, along the study area, the floating transport of LW is one of the most significant processes able to modify the amount of LW deposited along a riverine system. In fact, considering the input of LW, the 99.4 % (102 m3 km-1) comes from upstream due to floating, whereas the 0.6% (0.17 m3 km-1) was recruited through bank erosion. Analyzing the output, 94.3% (40.26 m3 km-1) of LW was transported downstream of the study area, whereas only the 5.7 % (2.43 m3 km-1) of LW was involved in the

  2. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    Science.gov (United States)

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Study to compare the performance of two designs to prevent river bend erosion in Arctic environments.

    Science.gov (United States)

    2010-09-01

    Messing with Mother Nature takes knowledge and work, and she is hard to outfox, especially when it comes to redirecting rivers. To : protect infrastructure, however, sometimes river flow must be altered. This study focuses on two erosion-control proj...

  4. Ecotoxicological Assessment of Water and Sediment Pollution of the Iskar River bellow Samokov

    Directory of Open Access Journals (Sweden)

    Ivan Diadovski

    2005-04-01

    Full Text Available A system of integral ecological indices has been worked out to assess the level of pollution of water and sediments with hazardous substances. A model for the dynamics of the integral index for water and sediments pollution is proposed. This index was applied for ecotoxicological assessment of water and sediments pollution of the Iskar river bellow Samokov. A modification method on time series analysis is applied.

  5. Environmental studies related to additional capacity on the Manicouagan River

    International Nuclear Information System (INIS)

    Guertin, G.; Tremblay, S.; Delagrave, M.

    1989-01-01

    Increasing the capacity of the hydroelectric power plants on the Manicouagan River in Quebec will have the effect of increasing flows in winter and decreasing flows in summer. These changes in flow and in the tidal range at the Manicouagan estuary could have effects on the thermal balance of the reservoirs, ice formation, erosion of river banks, and other effects on wildlife and local populations using the river resources. Studies were undertaken to determine the environmental feasibility of increasing the power plant capacity, the limits of such an increase, and the measures needed to mitigate any adverse effects. The studies concentrated on the effects on the reservoirs and the estuary. It appears that the salmonids in the Manic 5 reservoir will be affected by a lowering of water levels and an accentuation in the tidal range. The reproduction of whitefish and lake charr in the reservoirs will probably be reduced by the lowering of winter flow levels. The effects on the estuary were examined by a combination of oceanographic investigations and hydrodynamic model studies. Invasion of salt water into the estuary during high tide could move upstream during low-flow periods in summer, affecting fish breeding grounds. A minimum flow of 400 m 3 /s is needed upstream of Pointe des Booms to ensure an adequate habitat for survival of larvae of anadramous fish species. The forecast maximum winter flow is not perceived to affect species survival. The effects on commercial fishing would be minimal. 2 refs., 1 fig., 5 tabs

  6. Assessing Hydrologic Impacts of Future Land Cover Change Scenarios in the South Platte River Basin (CO, WY, & NE) and the San Pedro River Basin (U.S./Mexico).

    Science.gov (United States)

    Barlow, J. E.; Burns, I. S.; Guertin, D. P.; Kepner, W. G.; Goodrich, D. C.

    2016-12-01

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology to characterize hydrologic impacts from future urban growth through time that was developed and applied on the San Pedro River Basin was expanded and utilized on the South Platte River Basin as well. Future urban growth is represented by housing density maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land-Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and implement a methodology for adapting the ICLUS data for use in AGWA as an approach to evaluate impacts of development on water-quantity and -quality, 2) present, evaluate, and compare results from scenarios for watersheds in two different geographic and climatic regions, 3) determine watershed specific implications of this type of future land cover change analysis.

  7. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia

    International Nuclear Information System (INIS)

    Tejeda-Benitez, Lesly; Flegal, Russell; Odigie, Kingsley; Olivero-Verbel, Jesus

    2016-01-01

    The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system. - Highlights: • The Magdalena River has high levels of some metals such as Cd, Cu, and Ni. • Most sediment extracts affected lethality, growth, and locomotion of C. elegans. • Sediment extracts induced expression changes in mtl-2, sod-4, and gst-1. • Sediment toxicity was primarily associated with Cd and Pb. • Highest toxicity was observed for samples collected in mining and industrial areas. - In Magdalena River sediments, Cd and Pb were associated with toxicity in Caenorhabditis elegans and expression of stress response genes were related to

  8. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    Science.gov (United States)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  9. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (PYangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Measurements and modelling of evapotransiration to assess agricultural water productivity in basins with changing land use patterns : a case study in the São Francisco River basin, Brazil

    NARCIS (Netherlands)

    Castro Teixeira, de A.H.

    2008-01-01

    Key words: Vineyards, mango, energy balance, evapotranspiration, water productivity, Bowen ratio, eddy correlation, water balance, natural vegetation, latent heat flux, sensible heat flux, biomass, water productivity, remote sensing, water management. . The São Francisco River basin in Brazil is

  11. Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management?

    Directory of Open Access Journals (Sweden)

    G.T. (Tom Raadgever

    2008-06-01

    Full Text Available River basin management is faced with complex problems that are characterized by uncertainty and change. In transboundary river basins, historical, legal, and cultural differences add to the complexity. The literature on adaptive management gives several suggestions for handling this complexity. It recognizes the importance of management regimes as enabling or limiting adaptive management, but there is no comprehensive overview of regime features that support adaptive management. This paper presents such an overview, focused on transboundary river basin management. It inventories the features that have been claimed to be central to effective transboundary river basin management and refines them using adaptive management literature. It then collates these features into a framework describing actor networks, policy processes, information management, and legal and financial aspects. Subsequently, this framework is applied to the Orange and Rhine basins. The paper concludes that the framework provides a consistent and comprehensive perspective on transboundary river basin management regimes, and can be used for assessing their capacity to support adaptive management.

  12. Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries

    Directory of Open Access Journals (Sweden)

    Kuan-Ting Liu

    2016-04-01

    Full Text Available Water level (WL and water volume (WV of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in situ data, which could be a challenge for rivers in remote regions, including the Mekong River basin. As one of the most developed rivers in the world, with more than 20 dams built or under construction, Mekong River is in need of a monitoring system that could facilitate basin-scale management of water resources facing future climate change. This study used spaceborne sensors to investigate two dams in the upper Mekong River, Xiaowan and Jinghong Dams within China, to examine river flow dynamics after these dams became operational. We integrated multi-mission satellite radar altimetry (RA, Envisat and Jason-2 and Landsat-5/-7/-8 Thematic Mapper (TM/Enhanced Thematic Mapper plus (ETM+/Operational  Land Imager (OLI optical remote sensing (RS imageries to construct composite WL time series with enhanced spatial resolutions and substantially extended WL data records. An empirical relationship between WL variation and water extent was first established for each dam, and then the combined long-term WL time series from Landsat images are reconstructed for the dams. The R2 between altimetry WL and Landsat water area measurements is >0.95. Next, the Tropical Rainfall Measuring Mission (TRMM data were used to diagnose and determine water variation caused by the precipitation anomaly within the basin. Finally, the impact of hydrologic dynamics caused by the impoundment of the dams is assessed. The discrepancy between satellite-derived WL and available in situ gauge data, in term of root-mean-square error (RMSE is at 2–5 m level. Th