WorldWideScience

Sample records for river site 1955-present

  1. Local and Regional Economic Benefits from Forest Products Production Activities at the Savannah River Site: 1955-Present

    International Nuclear Information System (INIS)

    Teeter, L.; Blake, J.I.

    2002-01-01

    SRS was established in 1951 as a nuclear materials production facility; however, decline in the defense mission budget at SRS has created a major economic impact on the community in the Central Savannah River Area. SRS has been offsetting these effects by producing revenue (80 million dollars to date) from the sale of forest products since 1955 primarily trees, but also pine straw. Revenue has been re-invested into the infrastructure development, restoration and management of natural resources. Total asset value of the forest-land has increased from 21 million to over 500 million dollars in the same period

  2. Savannah River Site's Site Specific Plan

    International Nuclear Information System (INIS)

    1991-01-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering

  3. Savannah River Site computing architecture

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site`s production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  4. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  5. Savannah River Site computing architecture

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site's production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  6. Savannah River Site dose control

    International Nuclear Information System (INIS)

    Smith, L.S.

    1992-01-01

    Health physicists from the Brookhaven National Laboratory (BNL) visited the Savannah River Site (SRS) as one of 12 facilities operated by the Department of Energy (DOE) contractors with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). Their charter was to review, evaluate and summarize as low as reasonably achievable (ALARA) techniques, methods and practices as implemented. This presentation gives an overview of the two selected ALARA practices implemented at the SRS: Administrative Exposure Limits and Goal Setting. These dose control methods are used to assure that individual and collective occupational doses are ALARA and within regulatory limits

  7. Savannah River Site Environmental Implentation Plan

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes the organizational responsibilities for the Savannah River Site Environmental program. Operations, Engineering and projects, Environment, safety, and health, Quality assurance, and the Savannah River Laboratory are described

  8. Savannah River Site Environmental Report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  9. Savannah River Site Environmental Report for 1997

    International Nuclear Information System (INIS)

    Arnett, M.W.; Mamatey, A.R.

    1998-01-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site

  10. Savannah River Site Environmental Report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M

    1999-06-09

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  11. Savannah River Site Environmental Report for 1998

    International Nuclear Information System (INIS)

    Arnett, M.

    1999-01-01

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program

  12. Advanced separations at Savannah River Site

    International Nuclear Information System (INIS)

    Thompson, M.; McCabe, D.

    1996-01-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (cesium, strontium, tritium, actinides) and hazardous components (polychlorinated biphenyls (PCBs), cyanide, metal ions)

  13. Land Use Baseline Report Savannah River Site

    International Nuclear Information System (INIS)

    Noah, J.C.

    1995-01-01

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area

  14. Land Use Baseline Report Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Noah, J.C.

    1995-06-29

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  15. 76 FR 71342 - Proposed CERCLA Administrative Cost Recovery Settlement; River Forest Dry Cleaners Site, River...

    Science.gov (United States)

    2011-11-17

    ... Settlement; River Forest Dry Cleaners Site, River Forest, Cook County, IL AGENCY: Environmental Protection... response costs concerning the River Forest Dry Cleaners site in River Forest, Cook County, Illinois with... code: C-14J, Chicago, Illinois 60604. Comments should reference the River Forest Dry Cleaners Site...

  16. Radioiodine in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  17. Radioiodine in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-01

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s

  18. The Savannah River Site's groundwater monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results

  19. The Savannah River Site's Groundwater Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results

  20. Wildflowers of the Savannah River Site

    Science.gov (United States)

    T. Segar

    2015-01-01

    This guidebook is a resource to help field personnel (nonbotanists) identify plants on the Savannah River Site (SRS) premises. Although not a complete flora guide, this publication contains information about 123 plant species found on the SRS. Plants are listed by their common names and arranged by the color of the flower.

  1. Savannah River Site (SRS) environmental overview

    International Nuclear Information System (INIS)

    O'Rear, M.G.; Steele, J.L.; Kitchen, B.G.

    1990-01-01

    The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) [formerly the Savannah River Plant (SRP)] comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours ampersand Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site

  2. Savannah River Site environmental report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A. [eds.

    1995-12-31

    The 1990s have brought dramatic change to the Savannah River Site (SRS) in its role as a key part of the U.S. Department of Energy`s (DOE) weapons complex. Shrinking federal budgets, sharp workforce reductions, the end of the Cold War, and a major shift in mission objectives have combined to severely test the mettle of SRS-South Carolina`s largest employer. But the sprawling 310-square-mile site`s employees have responded to the test in admirable fashion, effectively shifting their emphasis from weapons production to environmental restoration. This report describes the environmental report for the SRS for 1995.

  3. Savannah River Site environmental report for 1993

    International Nuclear Information System (INIS)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.

    1994-01-01

    Savannah River Site (SRS) conducts effluent monitoring and environmental surveillance to ensure the safety of the public and the well-being of the environment. DOE Order 5400,1, ''General Environmental Protection Program,'' requires the submission of an environmental report that documents the impact of facility operations on the environment and on public health. SRS has had an extensive environmental surveillance program in place since 1951 (before site startup). At that time, data generated by the on-site surveillance program were reported in site documents. Beginning in 1959, data from off-site environmental monitoring activities were presented in reports issued for public dissemination. Separate reporting of SRS's on- and off-site environmental monitoring activities continued until 1985, when data from both surveillance programs were merged into a single public document. The Savannah River Site Environmental Report for 1993 is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 1993. For complete program descriptions, consult the ''SRS Environmental Monitoring Plan'' (WSRC-3Ql-2-1000). It documents the rationale and design criteria for the monitoring program, the frequency of monitoring and analysis, the specific analytical and sampling procedures, and the quality assurance requirements

  4. Savannah River Site environmental report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R. [eds.

    1994-08-01

    Savannah River Site (SRS) conducts effluent monitoring and environmental surveillance to ensure the safety of the public and the well-being of the environment. DOE Order 5400,1, ``General Environmental Protection Program,`` requires the submission of an environmental report that documents the impact of facility operations on the environment and on public health. SRS has had an extensive environmental surveillance program in place since 1951 (before site startup). At that time, data generated by the on-site surveillance program were reported in site documents. Beginning in 1959, data from off-site environmental monitoring activities were presented in reports issued for public dissemination. Separate reporting of SRS`s on- and off-site environmental monitoring activities continued until 1985, when data from both surveillance programs were merged into a single public document. The Savannah River Site Environmental Report for 1993 is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 1993. For complete program descriptions, consult the ``SRS Environmental Monitoring Plan`` (WSRC-3Ql-2-1000). It documents the rationale and design criteria for the monitoring program, the frequency of monitoring and analysis, the specific analytical and sampling procedures, and the quality assurance requirements.

  5. Savannah River Site Environmental Report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A.; Spitzer, D.

    1994-12-16

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site`s mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  6. Climatology of the Savannah River Plant site

    International Nuclear Information System (INIS)

    Hoel, D.D.

    1983-01-01

    This document is intended as a reference for those involved in environmental research, and preparing environmental and safety analysis reports about aspects of operations of production and support facilities at the Savannah River Plant (SRP). The information in this document is drawn from appropriate references and from the extensive meteorological data base collected on SRP. This document contains information on the climatological characteristics of the SRP site, as well as information on relative concentrations and deposition for specific radionuclides

  7. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  8. Savannah River Site 1996 epidemiologic surveillance report

    International Nuclear Information System (INIS)

    2000-01-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996

  9. Savannah River Site 1997 epidemiologic surveillance report

    International Nuclear Information System (INIS)

    2000-01-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997

  10. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2007

    International Nuclear Information System (INIS)

    Mamatey, A

    2008-01-01

    The Savannah River Site Environmental Report for 2007 (WSRC-STI-2008-00057) prepared for the US Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting', and DOE Order 5400.5, 'Radiation Protection of the Public and Environment'. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; (4) assess the impact of SRS operations on the public and the environment

  11. Savannah River Site Environmental Report for 2004

    International Nuclear Information System (INIS)

    Mamatey, Albert R.

    2005-01-01

    The Savannah River Site Environmental Report for 2004 (WSRC-TR-2005-00005) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting,'' and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment

  12. Savannah River Site environmental report for 1995

    International Nuclear Information System (INIS)

    Arnett, M.W.; Mamatey, A.

    1997-01-01

    The 1990s have brought dramatic change to the Savannah River Site (SRS) in its role as a key part of the U.S. Department of Energy's (DOE) weapons complex. Shrinking federal budgets, sharp workforce reductions, the end of the Cold War, and a major shift in mission objectives have combined to severely test the mettle of SRS-South Carolina's largest employer. But the sprawling 310-square-mile site's employees have responded to the test in admirable fashion, effectively shifting their emphasis from weapons production to environmental restoration. This report describes the environmental report for the SRS for 1995

  13. Savannah River Site Environmental Report for 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, Albert R.

    2005-06-07

    The Savannah River Site Environmental Report for 2004 (WSRC-TR-2005-00005) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting,'' and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  14. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2007

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2008-08-27

    The Savannah River Site Environmental Report for 2007 (WSRC-STI-2008-00057) prepared for the US Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting', and DOE Order 5400.5, 'Radiation Protection of the Public and Environment'. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; (4) assess the impact of SRS operations on the public and the environment.

  15. Savannah River Site Environmental Report for 1994

    International Nuclear Information System (INIS)

    Arnett, M.W.; Mamatey, A.; Spitzer, D.

    1994-01-01

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site's mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants

  16. Savannah River site environmental report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.; Mamatey, A. [eds.

    1998-12-31

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  17. Savannah River site environmental report for 1996

    International Nuclear Information System (INIS)

    Arnett, M.; Mamatey, A.

    1998-01-01

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants

  18. Cesium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of 137 Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of 137 Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope 137 Cs releases have resulted in a negligible risk to the environment and the population it supports

  19. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  20. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  1. Savannah River Site environmental report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  2. Savannah River Site environmental report for 1991

    International Nuclear Information System (INIS)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included

  3. Electronic Denitration Savannah River Site Radioactive Waste

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1995-01-01

    Electrochemical destruction of nitrate in radioactive Savannah River Site Waste has been demonstrated in a bench-scale flow cell reactor. Greater than 99% of the nitrate can be destroyed in either an undivided or a divided cell reactor. The rate of destruction and the overall power consumption is dependent on the cell configuration and electrode materials. The fastest rate was observed using an undivided cell equipped with a nickel cathode and nickel anode. The use of platinized titanium anode increased the energy requirement and costs compared to a nickel anode in both the undivided and divided cell configurations

  4. Savannah River Site environmental report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01

    This volume of Savannah River Site Environmental report for 1988 (WSRC-RP-89-59-1) contains the figures and tables referenced in Volume 1. The figures contain graphic illustrations of sample locations and/or data. The tables contain summaries of the following types of data: Federal and State standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation dose commitments from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results.

  5. Savannah River Site Environmental Implementation Plan

    International Nuclear Information System (INIS)

    1989-01-01

    Formal sitewide environmental planning at the . Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan (Volume 2) provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period

  6. Savannah River Site environmental report for 1989

    International Nuclear Information System (INIS)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    The purpose of this report is to meet three of the primary objectives of the Savannah River Site (SRS) environmental monitoring program. These objectives are to assess actual or potential exposures to populations form the presence of radioactive and nonradioactive materials from normal operations or nonroutine occurrences; to demonstrate compliance with applicable authorized limits and legal requirements; and to communicate results of the monitoring program to the public. This 1989 report contains descriptions of radiological and nonradiological monitoring programs, it provides data obtained from these programs, and it describes various environmental research activities ongoing at the site. Also included are summaries of environmental management and compliance activities, a summary of National Environmental Policy Act activities, and a listing of environmental permits issued by regulatory agencies

  7. Waste reduction at the Savannah River Site

    International Nuclear Information System (INIS)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities

  8. Savannah River Site Environmental Report For 2008

    International Nuclear Information System (INIS)

    Mamatey, A.

    2009-01-01

    The Savannah River Site Environmental Report for 2008 (SRNS-STI-2009-00190) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts

  9. Savannah River Site environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    The purpose of this report is to meet three of the primary objectives of the Savannah River Site (SRS) environmental monitoring program. These objectives are to assess actual or potential exposures to populations form the presence of radioactive and nonradioactive materials from normal operations or nonroutine occurrences; to demonstrate compliance with applicable authorized limits and legal requirements; and to communicate results of the monitoring program to the public. This 1989 report contains descriptions of radiological and nonradiological monitoring programs, it provides data obtained from these programs, and it describes various environmental research activities ongoing at the site. Also included are summaries of environmental management and compliance activities, a summary of National Environmental Policy Act activities, and a listing of environmental permits issued by regulatory agencies.

  10. Savannah River Site Environmental Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    Formal sitewide environmental planning at the . Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan (Volume 2) provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period.

  11. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2005

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2006-07-18

    The ''Savannah River Site Environmental Report for 2005'' (WSRC-TR-2006-00007) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  12. Savannah River Site environmental implementation plan

    International Nuclear Information System (INIS)

    1989-01-01

    Formal sitewide environmental planning at the Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period

  13. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2008

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.

    2009-09-15

    The Savannah River Site Environmental Report for 2008 (SRNS-STI-2009-00190) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts.

  14. Optimization Review: Carson River Mercury Superfund Site, Carson City, Nevada

    Science.gov (United States)

    The Carson River Mercury Site (CRMS) (Figure 1) is located in northwest Nevada and was designated a Superfund site in 1990 because of elevated mercury concentrations observed in surface water, sediments and biota inhabiting the site.

  15. Savannah River Site's Site Specific Plan

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  16. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Berry, M.

    1998-03-01

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  17. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue

  18. Robotics at Savannah River site: activity report

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report

  19. Mammals of the Savannah River Site

    International Nuclear Information System (INIS)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-01-01

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ''The Forbearer Census'' and ''White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references

  20. Mammals of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-01-01

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, The Forbearer Census'' and White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  1. Mammals of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-12-31

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ``The Forbearer Census`` and ``White-tailed Deer Studies``. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master`s theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  2. Savannah River Site Environmental Report for 2003

    International Nuclear Information System (INIS)

    A. MAMATEY

    2003-01-01

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations

  3. Savannah River Site Environmental Report for 2003

    Energy Technology Data Exchange (ETDEWEB)

    A. MAMATEY

    2003-01-01

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations.

  4. Deer monitoring at the Savannah River Site

    International Nuclear Information System (INIS)

    Fledderman, P.D.

    1992-01-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter's cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data

  5. Advanced separations at Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.C. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (Cs, Sr, tritium, actinides) and hazardous components (poly-chlorinated biphenyls [PCBs], cyanide, metal ions). This task provides testbeds for ESP-developed materials and technology using actual SRS waste streams. The work includes different SRS waste streams: high-level waste (HLW) solutions currently stored in underground tanks onsite, water recycled from the waste vitrification plant, groundwater and other aqueous streams contaminated with metal ions and radionuclides, and reactor basin water in excess facilities. Another part of this task is to provide a report on materials for Cs removal from aqueous solutions for use as a reference.

  6. Wildflowers of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Seger, Tona [Savannah River Site (SRS), Aiken, SC (United States). USDA Forest Service

    2015-08-01

    This guidebook is a resource to help field personnel (nonbotanists) identify plants on the Savannah River Site (SRS) premises. Although not a complete flora guide, this publication contains information about 123 plant species found on the SRS. Plants are listed by their common names and arranged by the color of the flower. The SRS supports a diverse array of plant communities. Land use history, the establishment of the SRS, and current land management practices have shaped the flora presently found on the SRS. Located south of Aiken, SC, SRS spans 198,344 acres with land covering Aiken, Allendale, and Barnwell Counties. Situated on the Upper Coastal Plain and Sandhills physiographic provinces, the SRS has more than 50 distinct soil types. The topography is rolling to flat with elevation ranges from 50 to 400 feet above sea level.

  7. Modern NDA needs at Savannah River Site

    International Nuclear Information System (INIS)

    Holt, S.H.

    1995-01-01

    As the missions within the nuclear weapons complex change, so do the accountability measurement needs. Non-Destructive Assay (NDA) measurements have played a key role in accounting for special nuclear materials (SNM), and as time goes on, more and more reliance is made on this type of measurement. Key questions NDA instrument designers ask are: Which isotopes are of interest? What matrix are they in? What other isotopes are present? What container configuration will it be measured through? What precision and accuracy is required? What level of resolution is required? At the Savannah River Site (SRS) the desire to make direct measurements of SNM isotopes has prompted the evaluation to these and other questions. This paper will outline the current NDA needs at SRS. The discussion includes the types of materials that require measurement ,including the very difficult waste measurements. The special challenges associated with these measurement efforts will also be discussed

  8. Savannah River Site environmental data for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W. [ed.

    1994-05-01

    The figures and tables in this report represent a capsule view of the routine environmental monitoring and surveillance programs at the Savannah River Site. An attempt has been made to include all available data from environmental research programs. The first section of the book is a collection of maps of radiological and nonradiological sampling locations. Also included are general radiological and nonradiological sampling and analysis schedules; a list of the media sampled, along with sample sizes and representative aliquots; a list of the lower limits of detection for radiological detection instruments; the minimum detectable concentrations for gamma analysis of water and air samples; and the minimum detectable concentrations for gamma analysis of soil, food, fish and wildlife, and vegetation samples. Following the first section are data tables containing radiological and nonradiological effluent monitoring results, radiological and nonradiological environmental surveillance results, dose estimates, quality assurance activities, and results of nonroutine occurrences and special surveys.

  9. Savannah River Site environmental report for 1989

    International Nuclear Information System (INIS)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    this volume of Savannah River Site Environmental Report for 1989 (WSRC-IM-90-60) contains the figures and tables referenced in Volume I. The figures contain graphic illustrations of sample locations and/or data. The tables present summaries of the following types of data federal and state standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation committed dose from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results. The figures and tables in this report contain information about the routine environmental monitoring program at SRS unless otherwise indicated. No attempt has been made to include all data from environmental research programs. Variations in the report's content from year to year reflect changes in the routine environmental monitoring program or the inability to obtain certain samples from a specific location. 42 figs., 188 tabs

  10. Savannah River Site generic data base development

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report describes the results of a project to improve the generic component failure database for the Savannah River Site (SRS). Additionally, guidelines were developed further for more advanced applications of database values. A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. For each component failure mode, this information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor based on a lognormal distribution). Results are presented in a table in this report. A major difference between generic database and previous efforts is that this effort estimates failure rates based on actual data (failure events) rather than on existing failure rate estimates. This effort was successful in that over 75% of the results are now based on actual data. Also included is a section on guidelines for more advanced applications of failure rate data. This report describes the results of a project to improve the generic component failure database for the Savannah River site (SRS). Additionally, guidelines were developed further for more advanced applications of database values

  11. Knife River Indian Villages National Historic Site: Teacher's Guide.

    Science.gov (United States)

    National Park Service (Dept. of Interior), Washington, DC. National Register of Historic Places.

    This guide provides history and social studies teachers, at all grade levels, with information and activities about the American Indians of the Northern Plains who lived in the area of the Knife River where it enters the Missouri River. Located in what is now North Dakota, this area is the Knife River Indian Villages National Historic Site. The…

  12. Savannah River Site disaggregated seismic spectra

    International Nuclear Information System (INIS)

    Stephenson, D.E.

    1993-02-01

    The objective of this technical note is to characterize seismic ground motion at the Savannah River Site (SRS) by postulated earthquakes that may impact facilities at the site. This task is accomplished by reviewing the deterministic and probabilistic assessments of the seismic hazard to establish the earthquakes that control the hazard to establish the earthquakes that control the hazard at the site and then evaluate the associated seismic ground motions in terms of response spectra. For engineering design criteria of earthquake-resistant structures, response spectra serve the function of characterizing ground motions as a function of period or frequency. These motions then provide the input parameters that are used in the analysis of structural response. Because they use the maximum response, the response spectra are an inherently conservative design tool. Response spectra are described in terms of amplitude, duration, and frequency content, and these are related to source parameters, travel path, and site conditions. Studies by a number of investigators have shown by statistical analysis that for different magnitudes the response spectrum values are different for differing periods. These facts support Jennings' position that using different shapes of design spectra for earthquakes of different magnitudes and travel paths is a better practice than employing a single, general-purpose shape. All seismic ground motion characterization results indicate that the PGA is controlled by a local event with M w < 6 and R < 30km. The results also show that lower frequencies are controlled by a larger, more distant event, typically the Charleston source. The PGA of 0.2 g, based originally on the Blume study, is consistent with LLNL report UCRL-15910 (1990) and with the DOE position on LLNL/EPRI

  13. Savannah River Site environmental report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01

    During 1988, as in previous years, Savannah River Site operations had no adverse impact on the general public or the environment. Based on the SRS site-specific code, the maximum radiation dose commitment to a hypothetical individual at the SRS boundary from 1988 SRS atmospheric releases of radioactive materials was 0.46 millirem (mrem) (0.0046 millisievert (mSv)). To obtain the maximum dose, an individual would have had to reside on the SRS boundary at the location of highest dose for 24 hours per day, 365 days per year, consume a maximum amount of foliage and meat which originated from the general vicinity of the plant boundary, and drink a maximum amount of milk from cows grazing at the plant boundary. The average radiation dose commitment from atmospheric releases to the hypothetical individual on the SRS boundary in 1988 was 0.18 mrem (0. 0018 mSv). This person, unlike the maximumly exposed individual, consumes an average amount of foliage, meat, and milk which originated from the foliage and animals living at the plant boundary.

  14. Savannah River Site. Environmental report for 2001

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, Margaret W. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Site. ed; Mamatey, Albert R. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Site. ed

    2001-12-31

    The goal of the Savannah River Site (SRS)—and that of the U.S. Department of Energy (DOE)—is positive environmental stewardship and full regulatory compliance, with zero violations. The site’s employees maintained progress toward achievement of this goal in 2001, as demonstrated by examples in this chapter. The site’s compliance efforts were near-perfect again in 2001. No notices of violation (NOVs) were issued in 2001 under the Resource Conservation and Recovery Act (RCRA), the Safe Drinking Water Act (SDWA), or the Clean Water Act (CWA). Two NOVs were issued to SRS during 2001—one, associated with permit requirement compliance, was issued under the Clean Air Act (CAA); the other, related to an oil release, was issued under the South Carolina Pollution Control Act. Under the CWA, the site’s National Pollutant Discharge Elimination System (NPDES) compliance rate was 99.6 percent. Also, 274 National Environmental Policy Act (NEPA) reviews of newly proposed actions were conducted and formally documented in 2001, and only one of the year’s 799 Site Item Reportability and Issues Management (SIRIM) program-reportable events was categorized as environmental; it was classified as an off-normal event.

  15. Tritium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  16. The Savannah River Site's groundwater monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents

  17. Tritium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found

  18. Savannah River Site Environmental Report for 1998 Summary

    International Nuclear Information System (INIS)

    Arnett, M.

    1999-01-01

    This pamphlet gives a brief overview of the Savannah River Site and its activities, summarizes the impact of 1998 site operations on the environment and the public, and provides a brief explanation of radiation and dose

  19. Natural Remediation at Savannah River Site

    International Nuclear Information System (INIS)

    Lewis, C. M.; Van Pelt, R.

    2002-01-01

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  20. Environmental justice at the Savannah River Site

    International Nuclear Information System (INIS)

    Flemming, R.; Hooker, K.L.

    1995-01-01

    Environmental justice is the conscious commitment to ensure that poor and/or minority communities are not disproportionately bearing adverse human health and environmental effects from the production, processing, or disposal of hazardous or toxic waste. To focus federal attention on assessing the environmental and human health conditions in minority and/or low-income communities surrounding federal facilities, on February 11, 1994, President Clinton signed Executive Order (EO) 12898. As part of the strategy to comply with EO 12898, the President required all federal agencies to develop localized strategies to ensure that their programs and policies are consistent with EO 12898. This would incorporate mechanisms for increasing public participation opportunities for involvement in the decision making, easier access to information, and the collection and analysis of economic, demographic, and food consumption data in surrounding communities. The U.S. Department of Energy (DOE) responded by issuing its Environmental Justice Strategy 2 (April 1995), although many of its field offices had been actively implementing activities in support of the executive order since its issuance. One DOE facility, the Savannah River Site (SRS), which is located in west central South Carolina, is making great strides toward implementing a successful public participation program, which includes environmental justice initiatives

  1. Savannah River Site environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    this volume of Savannah River Site Environmental Report for 1989 (WSRC-IM-90-60) contains the figures and tables referenced in Volume I. The figures contain graphic illustrations of sample locations and/or data. The tables present summaries of the following types of data federal and state standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation committed dose from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results. The figures and tables in this report contain information about the routine environmental monitoring program at SRS unless otherwise indicated. No attempt has been made to include all data from environmental research programs. Variations in the report's content from year to year reflect changes in the routine environmental monitoring program or the inability to obtain certain samples from a specific location. 42 figs., 188 tabs.

  2. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  3. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2009

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.; Fanning, R.

    2010-08-19

    The Savannah River Site Environmental Report for 2009 (SRNS-STI-2010-00175) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A,'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts. SRS maintained its record of environmental excellence in 2009, as its operations continued to result in minimal impact to the offsite public and the surrounding environment. The site's radioactive and chemical discharges to air and water were well below regulatory standards for environmental and public health protection; its air and water quality met applicable requirements; and the potential radiation dose from its discharges was less than the national dose standards. The largest radiation dose that an offsite, hypothetical, maximally exposed individual could have received from SRS operations during 2009 was estimated to be 0.12 millirem (mrem). (An mrem is a standard unit of measure for radiation exposure.) The 2009 SRS dose is just 0.12 percent of the DOE all-pathway dose standard of 100 mrem per year, and far less than the natural average dose of about 300 mrem per year (according to Report No. 160 of the National Council of Radiation Protection and Measurements) to people in the United States. This 2009 all-pathway dose of 0.12 mrem was the same as the 2008 dose. Environmental monitoring is conducted extensively within a 2,000-square-mile network

  4. Surface Wind Gust Statistics at the Savannah River Site

    International Nuclear Information System (INIS)

    Weber, A.H.

    2001-01-01

    The Atmospheric Technologies Group (ATG) of the Savannah River Technology Center (SRTC) collects meteorological data for many purposes at the Savannah River Site (SRS) including weather forecasting. This study focuses on wind gusts and also, to a lesser degree, turbulence intensities that occur in fair weather conditions near the surface over time periods from 1 hour to one week (168 hours)

  5. Assessment of Radionuclides in the Savannah River Site Environment Summary

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.

    1999-01-26

    This document summarizes the impact of radionuclide releases from Savannah River Site (SRS) facilities from 1954 through 1996. The radionuclides reported here are those whose release resulted in the highest dose to people living near SRS.

  6. 78 FR 14088 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-03-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act requires that public notice of this meeting be announced in the Federal Register.

  7. Savannah River Site Environmental Report for 1997 Summary

    International Nuclear Information System (INIS)

    Arnett, M.

    1998-01-01

    The Savannah River Site (SRS) publishes an environmental report each year to provide environmental monitoring and surveillance results to the U. S. Department of Energy (DOE), the public, Congress, state and federal regulators, universities, local governments, the news media, and environmental and civic groups. The Savannah River Site Environmental Report for 1997 (WSRC-TR-97-00322) contains detailed information on site operations, environmental monitoring and surveillance programs, environmental compliance activities, and special projects for the calendar year 1997. The purpose of this documents is to give a brief overview of the site and its activities, to summarize the site environmental report and the impact of 1997 SRS operations on the environment and the public, and to provide a brief explanation of radiation and dose.The data used to compile the annual environmental report and this summary can be found in Savannah River Site Environmental Data for 1997 (WSRC-TR-97-00324)

  8. Rheology of Savannah River site tank 42 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1997-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer

  9. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  10. Food production and consumption near the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hamby, D.M.

    1991-12-31

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  11. Food production and consumption near the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hamby, D.M.

    1991-01-01

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  12. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  13. Savannah River Site environmental report for 1993 summary pamphlet

    International Nuclear Information System (INIS)

    Karapatakis, L.

    1994-01-01

    This pamphlet summarizes the impact of 1993 Savannah River Site operations on the environment and the off-site public. It includes an overview of site operations; the basis for radiological and nonradiological monitoring; 1993 radiological releases and the resulting dose to the off-site population; and results of the 1993 nonradiological program. The Savannah River Site Environmental Report for 1993 describes the findings of the environmental monitoring program for 1993. The report contains detailed information about site operations,the environmental monitoring and surveillance programs, monitoring and surveillance results, environmental compliance activities, and special programs. The report is distributed to government officials, members of the US Congress, universities, government facilities, environmental and civic groups, the news media, and interested individuals

  14. Savannah River Site peer evaluator standards: Operator assessment for restart

    International Nuclear Information System (INIS)

    1990-01-01

    Savannah River Site has implemented a Peer Evaluator program for the assessment of certified Central Control Room Operators, Central Control Room Supervisors and Shift Technical Engineers prior to restart. This program is modeled after the nuclear Regulatory Commission's (NRC's) Examiner Standard, ES-601, for the requalification of licensed operators in the commercial utility industry. It has been tailored to reflect the unique differences between Savannah River production reactors and commercial power reactors

  15. Savannah River Site Environmental Report for 1995 Summary Pamphlet (U)

    International Nuclear Information System (INIS)

    Arnett, M.W.; Mamatey, A.

    1995-01-01

    Welcome to the Savannah River Site Environmental Report for 1995 Summary Pamphlet.Ibis pamphlet is written so you can better understand what goes on at the Savannah River Site and how it affects the environment and you personally. We hope this document also will help answer your questions on radiation and its effects. In this pamphlet we will discuss the operations at SRS, the potential impact of operations on the environment and the public, and special programs that SRS supports. This pamphlet is a summary of a detailed re- port entitled Savannah River Site Environmental Report for 1995 The report contains a summary of environmental Monitoring activities for the calendar year 1995. Additional data on groundwater are found in quarterly groundwater reports

  16. Climatology of the Savannah River Plant site

    International Nuclear Information System (INIS)

    Hoel, D.D.

    1984-06-01

    This document contains information on the climatological characteristics of the SRP site, as well as information on relative concentrations and deposition for specific radionuclides. 42 references, 42 figures, 45 tables

  17. Savannah River Site environmental report for 1997 summary

    International Nuclear Information System (INIS)

    Arnett, M.

    1997-01-01

    The Savannah River Site (SRS) publishes an environmental report each year to provide environmental monitoring and surveillance results to the US Department of Energy (DOE), the public, Congress, state and federal regulators, universities, local governments, the news media, and environmental and civic groups. The Savannah River Site Environmental Report for 1997 (WSRC-TR-97-00322) contains detailed information on site operations, environmental monitoring and surveillance programs, environmental compliance activities, and special projects for calendar year 1997. The purpose of this document is to give a brief overview of the site and its activities, to summarize the site environmental report and the impact of 1997 SRS operations on the environment and the public, and to provide a brief explanation of radiation and dose

  18. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    International Nuclear Information System (INIS)

    Teese, G.D.

    1995-01-01

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers

  19. Savannah River Site`s Site Specific Plan. Environmental restoration and waste management, fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  20. Shutdown of the River Water System at the Savannah River Site: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-11-01

    This environmental impact statement (EIS) evaluates alternative approaches to and environmental impacts of shutting down the River Water System at the Savannah River Site (SRS). Five production reactors were operated at the site.to support these facilities, the River Water System was constructed to provide cooling water to pass through heat exchangers to absorb heat from the reactor core in each of the five reactor areas (C, K, L, P, and R). The DOE Savannah River Strategic Plan directs the SRS to find ways to reduce operating costs and to determine what site infrastructure it must maintain and what infrastructure is surplus. The River Water System has been identified as a potential surplus facility. Three alternatives to reduce the River Water System operating costs are evaluated in this EIS. In addition to the No-Action Alternative, which consists of continuing to operate the River Water System, this EIS examines one alternative (the Preferred Alternative) to shut down and maintain the River Water System in a standby condition until DOE determines that a standby condition is no longer necessary, and one alternative to shut down and deactivate the River Water System. The document provides background information and introduces the River Water System at the SRS; sets forth the purpose and need for DOE action; describes the alternatives DOE is considering; describes the environment at the SRS and in the surrounding area potentially affected by the alternatives addressed and provides a detailed assessment of the potential environmental impacts of the alternatives; and identifies regulatory requirements and evaluates their applicability to the alternatives considered

  1. Savannah River Site Environmental Report for 1999

    International Nuclear Information System (INIS)

    Arnett, M.

    2000-01-01

    The purpose of this report is to present summary environmental data that characterize site environmental management performance, confirm compliance with environmental standards and requirements, highlight significant programs and efforts, and assess the impact of SRS operations on the public and the environment

  2. Savannah River Site Environmental Report for 1999

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.

    2000-06-30

    The purpose of this report is to present summary environmental data that characterize site environmental management performance, confirm compliance with environmental standards and requirements, highlight significant programs and efforts, and assess the impact of SRS operations on the public and the environment.

  3. Savannah River Site Environmental report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Michael; Jannik, Timothy; Cauthen, Kim; Bryant, Tracy; Coward, Lori; Eddy, Teresa; Vangelas, Karen; O' Quinn, Sadika; Meyer, Amy; Ackerman, Jana D.; Adams, John; Fanning, Greta; Thompson, Martha; Farfan, Eduardo B.; Dixon, Kenneth L.; Kemmerlin, Robert; Millings, Ted; Maxwell, Sherrod; Blas, Susan; Looney, Brian; Jackson, Dennis; Paller, Michael; Wabbersen, William

    2013-09-12

    This report is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 2012 - including the Site's performance against applicable standards and requirements. Details are provided on major programs such as the Environmental Management System (EMS) and permit compliance.

  4. Tiger Team Assessment of the Savannah River Site: Appendices

    International Nuclear Information System (INIS)

    1990-06-01

    This draft document contains findings identified during the Tiger Team Compliance Assessment of the US Department of Energy Savannah River Site (SRS), located in three countries (Aiken, Barnwell and Allendale), South Carolina. The Assessment was directed by the Department's Office of the Assistant Secretary for Environment, Safety, and Health (ES ampersand H) and was conducted from January 29 to March 23, 1990. The Savannah River Site Tiger Team Compliance Assessment was broad in scope covering the Environment, Safety and Health, and Management areas and was designed to determine the site's compliance with applicable Federal (including DOE), state, and local regulations and requirements. The scope of the Environmental assessment was sitewide while the Safety and Health assessments included site operating facilities (except reactors), and the sitewide elements of Aviation Safety, Emergency Preparedness, Medical Services, and Packaging and Transportation. This report contains the appendices to the assessment

  5. Tiger Team Assessment of the Savannah River Site

    International Nuclear Information System (INIS)

    1990-06-01

    This draft document contains findings identified during the Tiger Team Compliance Assessment of the US Department of Energy Savannah River Site (SRS), located in three counties (Aiken, Barnwell and Allendale), South Carolina. The Assessment was directed by the Department's Office of the Assistant Secretary for Environment, Safety, and Health (ES ampersand H) and was conducted from January 29 to March 23, 1990. The Savannah River Site Tiger Team Compliance Assessment was broad in scope covering the Environment, Safety and Health, and Management areas and was designed to determine the site's compliance with applicable Federal (including DOE), state, and local regulations and requirements. The scope of the Environmental assessment was sitewide while the Safety and Health assessments included site operating facilities (except reactors), and the sitewide elements of Aviation Safety, Emergency Preparedness, Medical Services, and Packaging and Transportation

  6. Savannah River Site environmental report for 1996 summary

    International Nuclear Information System (INIS)

    Arnett, M.W.

    1997-01-01

    The Savannah River Site (SRS) publishes an environmental report each year to provide environmental monitoring and surveillance results to the US department of Energy (DOE), the public, Congress, state and federal regulators, universities, local governments, the news media, environmental and civic groups. The Savannah River Site Environmental Report for 1996 (WSRC-TR-97-0171) contains detailed information on site operations, environmental monitoring and surveillance programs, environmental compliance activities, and special projects for the calendar year 1996. The purpose of this document is to give a brief overview of the site and its activities, to summarize the report and the impact of 1996 SRS operations on the environment and the public, and to provide a brief explanation of radiation and dose

  7. Savannah River Site environmental restoration lessons learned program

    International Nuclear Information System (INIS)

    Plunkett, R.A.; Leibfarth, E.C.; Treger, T.M.; Blackmon, A.M.

    1993-01-01

    For the past three years environmental restoration has been formally consolidated at Savannah River Site. Accomplishments include waste site investigations to closure activities. Positive, as well as negatively impacting, events have occurred. Until recently, lessons learned were captured on a less than formal basis. Now, a program based upon critiques, evaluations and corrective actions is being used. This presentation reviews the development, implementation and use of that program

  8. Savannah River Site Surplus Facilities Available for Reuse

    International Nuclear Information System (INIS)

    Clarke, R.M.; Owens, M.B.; Lentz, D.W.

    1995-01-01

    The purpose of this document is to provide a current, centralized list of Savannah River Site facilities, which are surplus and available for reuse. These surplus facilities may be made available for other DOE site missions, commercial economic development reuse, or other governmental reuse. SRS procedures also require that before new construction can be approved, available surplus facilities are screened for possible reuse in lieu of the proposed new construction

  9. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  10. Numerical Weather Forecasting at the Savannah River Site

    International Nuclear Information System (INIS)

    Buckley, R.L.

    1999-01-01

    Facilities such as the Savannah River Site (SRS), which contain the potential for hazardous atmospheric releases, rely on the predictive capabilities of dispersion models to assess possible emergency response actions. The operational design in relation to domain size and forecast time is presented, along with verification of model results over extended time periods with archived surface observations

  11. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  12. Onsite transportation of radioactive materials at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  13. Regulatory Support of Treatment of Savannah River Site Purex Waste

    International Nuclear Information System (INIS)

    Reid, L.T.

    2009-01-01

    This paper describes the support given by federal and state regulatory agencies to Savannah River Site (SRS) during the treatment of an organic liquid mixed waste from the Plutonium Extraction (Purex) process. The support from these agencies allowed (SRS) to overcome several technical and regulatory barriers and treat the Purex waste such that it met LDR treatment standards. (authors)

  14. Radiological impact of 2016 operations at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Minter, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, G. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2016 Savannah River Site (SRS) air and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios, such as the consumption of wildlife or goat milk.

  15. Transportation Packages to Support Savannah River Site Missions

    International Nuclear Information System (INIS)

    Opperman, E.

    2001-01-01

    The Savannah River Site's missions have expanded from primarily a defense mission to one that includes environmental cleanup and the stabilization, storage, and preparation for final disposition of nuclear materials. The development of packaging and the transportation of radioactive materials are playing an ever-increasing role in the successful completion of the site's missions. This paper describes the Savannah River Site and the three strategic mission areas of (1) nuclear materials stewardship, (2) environmental stewardship, and (3) nuclear weapons stockpile stewardship. The materials and components that need to be shipped, and associated packaging, will be described for each of the mission areas. The diverse range of materials requiring shipment include spent fuel, irradiated target assemblies, excess plutonium and uranium materials, high level waste canisters, transuranic wastes, mixed and low level wastes, and nuclear weapons stockpile materials and components. Since many of these materials have been in prolonged storage or resulted from disassembly of components, the composition, size and shape of the materials present packaging and certification challenges that need to be met. Over 30 different package designs are required to support the site's missions. Approximately 15 inbound shipping-legs transport materials into the Savannah River Site and the same number (15) of outgoing shipment-legs are carrying materials from the site for further processing or permanent disposal

  16. New appraisement of siting for a NPP on Mures river

    International Nuclear Information System (INIS)

    Traian Mauna

    2010-01-01

    The studies for a second NPP siting on inner Romanian rivers began in a careful manner since 1982 as a first part of the Nuclear Power Plant Romanian Program adopted by political and governmental authorities at the time. The experience gained from Cernavoda NPP siting, the first mission of new multi-branch of specialists team was to choose new NPP sites adapting the CANDU type NPP Cernavoda project to the new parameters of close water cooling circuit and of hard less or no rock foundation strata. The new sites conditions mean a lot of changes of CANDU license and a decrease the output power supplied to the national electric grid. The studies on the Mures river as alternative site of Olt river in Transylvania region began in 1986 and were stopped after 1990. This paper tries to reconsider shortly the old analysis focused on geological and geotechnical aspects and other local sites characteristics according to the last IAEA Safety Standards taking into account also the last types of NPP generations and the number of units. (author)

  17. Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1981-08-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors

  18. The Savannah River site`s groundwater monitoring program: second quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-11-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1997, EPD/EMS conducted extensive sampling of monitoring wells. A detailed explanation of the flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1997 are included in this report.

  19. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  20. 78 FR 26005 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-05-03

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  1. 78 FR 65979 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-11-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  2. 78 FR 40130 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-07-03

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. No. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  3. 77 FR 24695 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-04-25

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. . 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  4. 77 FR 60688 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-10-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  5. 77 FR 13104 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-03-05

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  6. 77 FR 39235 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-07-02

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  7. 78 FR 716 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-01-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  8. 78 FR 16260 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-03-14

    ...On March 4, 2013, the Department of Energy (DOE) published a notice of open meeting announcing a meeting on March 25-26, 2013 of the Environmental Management Site-Specific Advisory Board, Savannah River Site (78 FR 14088). This document makes a correction to that notice.

  9. 78 FR 54461 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-09-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  10. 77 FR 53193 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-08-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  11. Savannah River Site Environmental Report for 1990: Summary pamphlet

    International Nuclear Information System (INIS)

    Cummings, C.L.; Martin, D.K.; Todd, J.L.

    1991-01-01

    The SRS publishes the Environmental Report each year to communicate the endings of the environmental monitoring and research programs to the public and government agencies. This pamphlet is intended to summarize important environmental activities at the Savannah River Site in 1990. Highlights include: In 1990, over 40,000 samples of environmental material were collected for radiological and nonradiological analyses. The largest radiation doses to the surrounding population were from the radionuclide ''tritium,'' which was released to air and water from SRS operations.; tritium concentrations measured near the site in air, rainwater, Savannah River water, milk from local dairies and downriver drinking water were higher than background levels; the maximum radiation dose to individuals offsite was estimated to be 0.16 millirem from atmospheric releases of radioactivity, and 0.17 millirem from liquid releases of radioactivity. There was one accidental release of tritium to air on February 7, when 100 curies were released from a K-Area stack. The maximum radiation dose offsite was calculated to be 0.003 millirem (mrem); SRS issued a detailed report on the impact of routine and accidental releases of tritium from 1964 to 1988 on the environment. Currently, SRS investigating possible causes for higher concentrations of mercury found in fish caught onsite, compared to those taken from the Savannah River. Mercury concentrations have been higher in onsite fish since 1989; and, n response to concerns expressed by the Georgia Department of Natural Resources (GDNR) over concentrations of radionuclides in fish collected from the Savannah River, the Savannah River Site is working with the GDNR to resolve technical issues regarding sampling and analyses of fish from the river and the resultant dose calculations

  12. Risk assessment for nuclear processes at the Savannah River Site

    International Nuclear Information System (INIS)

    Durant, W.S.

    1992-01-01

    The Savannah River Site, one of the US Department of Energy's nuclear materials processing facilities, has for many years conducted risk-based safety analyses for the nuclear processes conducted at the facilities. This approach has allowed comparisons of risks to established criteria for acceptability. When the risk-based program was begun, it was evident that its success would depend upon having a compilation of data that was site specific. The decision was made to create a data bank of undesirable events that had occurred at the site's nuclear fuel reprocessing facilities. From this modest beginning, five data banks have been created for nuclear fuel reprocessing, waste management, nuclear fuel fabrication, tritium operations, and the Savannah River Technology Center. In addition to the primary purpose of providing a sound basis for risk-based safety analyses, these highly versatile data banks are routinely used for equipment breakdown histories, incident investigations, design studies, project justifications, reliability studies, process problem solving, training, and audits

  13. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  14. Machinery Vibration Monitoring Program at the Savannah River Site

    International Nuclear Information System (INIS)

    Potvin, M.M.

    1990-01-01

    The Reactor Maintenance's Machinery Vibration Monitoring Program (MVMP) plays an essential role in ensuring the safe operation of the three Production Reactors at the Westinghouse Savannah River Company (WRSC) Savannah River Site (SRS). This program has increased machinery availability and reduced maintenance cost by the early detection and determination of machinery problems. This paper presents the Reactor Maintenance's Machinery Vibration Monitoring Program, which has been documented based on Electric Power Research Institute's (EPRI) NP-5311, Utility Machinery Monitoring Guide, and some examples of the successes that it has enjoyed

  15. Floodplain sedimentology and sediment accumulation assessment – Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, Kevin M. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Earth and Environmental Sciences

    2016-01-03

    The primary goal of the larger research program, of which this work is one component, is to restore the hydrodynamics and energy gradients of targeted Savannah River Site (SRS) streams to a condition comparable to local natural streams or rivers of similar order, and to stabilize sediment transport (net degradation/aggregation) with the assumption that the faunal components of these systems will quickly recover on their own (e.g., Pen Branch; Lakly and McArthur, 2000). This work is specifically focused on the identification of near-stream floodplain areas that exhibit sediment deposition or erosion, and the quantification of these processes over a historical time scale (last ~100 years).

  16. Bagless transfer at the Savannah River Site

    International Nuclear Information System (INIS)

    Rogers, L.; Jones, R.H.

    1995-01-01

    With the end of the Cold War buildup, the U.S. Department of Energy (DOE) complex is shifting its focus from producing nuclear weapons to cleaning up, packaging, and storing excess materials and associated by-products. Old transfer and interim storage methods are now being reevaluated in the context of the recent long-term storage criteria. One of the methods used for the interim storage of plutonium/uranium products in the past involved the use of a bagout technique. In reviewing interim storage containers, it was found that the plastic bags used in this technique are not suitable for use inside long-term storage containers because they release gases that cause container pressurization and associated problems. As the DOE synthesized its long-term plutonium storage criteria, plastic bags and other organics were banned from use in future storage processes to prevent these types of problems. In response to these problems and the subsequent long-term storage criteria, the DOE sites began to pursue alternate material transferral methods

  17. Facility siting as a decision process at the Savannah River Site

    International Nuclear Information System (INIS)

    Wike, L.D.

    1995-01-01

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts

  18. Nuclear engineering R ampersand D at the Savannah River Site

    International Nuclear Information System (INIS)

    Strosnider, D.R.; Ferrara, W.R.

    1991-01-01

    The Westinghouse Savannah River Company (WSRC) is the prime operating contractor for the US Department of Energy at the Savannah River Site (SRS), located near Aiken, South Carolina. One division of WSRC, the Savannah River Laboratory (SRL), has the primary responsibility for research and development, which includes supporting the safe and efficient operation of the SRS production reactors. Several Sections of SRL, as well as other organization in WSRC, pursue R ampersand D and oversight activities related to nuclear engineering. The Sections listed below are described in more detail in this document: (SRL) nuclear reactor technology and scientific computations department; (SRL) safety analysis and risk management department; (WSRC) new production reactor program; and (WSRC) environment, safety, health, and quality assurance division

  19. River and river-related drainage area parameters for site investigation program

    International Nuclear Information System (INIS)

    Blomqvist, P.; Brunberg, A.K.; Brydsten, L.

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  20. River and river-related drainage area parameters for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L. [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  1. Worker Alienation and Compensation at the Savannah River Site.

    Science.gov (United States)

    Ashwood, Loka; Wing, Steve

    2016-05-01

    Corporations operating U.S. nuclear weapons plants for the federal government began tracking occupational exposures to ionizing radiation in 1943. However, workers, scholars, and policy makers have questioned the accuracy and completeness of radiation monitoring and its capacity to provide a basis for workers' compensation. We use interviews to explore the limitations of broad-scale, corporate epidemiological surveillance through worker accounts from the Savannah River Site nuclear weapons plant. Interviewees report inadequate monitoring, overbearing surveillance, limited venues to access medical support and exposure records, and administrative failure to report radiation and other exposures at the plant. The alienation of workers from their records and toil is relevant to worker compensation programs and the accuracy of radiation dose measurements used in epidemiologic studies of occupational radiation exposures at the Savannah River Site and other weapons plants. © The Author(s) 2016.

  2. Remote video radioactive systems evaluation, Savannah River Site

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.

    1991-01-01

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS

  3. The Savannah River Site's Groundwater Monitoring Program: Third quarter 1992

    International Nuclear Information System (INIS)

    Rogers, C.D.

    1993-01-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table

  4. Pre-Shipment Preparations at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, J.E.

    2000-01-01

    This paper will provide a detailed description of each of the pre-shipment process steps WSRC performs to produce the technical basis for approving the receipt and storage of spent nuclear fuel at the Savannah River Site. It is intended to be a guide to reactor operators who plan on returning ''U.S. origin'' SNF and to emphasize the need for accurate and timely completion of pre-shipment activities

  5. 1996 Savannah River Site annual epidemiologic surveillance report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996.

  6. 1997 Savannah River Site annual epidemiologic surveillance report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-06-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997.

  7. Successful characterization of radioactive waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Hughes, M.B.; Miles, G.M.

    1995-01-01

    Characterization of the low-level radioactive waste generated by forty five independent operating facilities at The Savannah River Site (SRS) experienced a slow start. However, the site effectively accelerated waste characterization based on findings of an independent assessment that recommended several changes to the existing process. The new approach included the development of a generic waste characterization protocol and methodology and the formulation of a technical board to approve waste characterization. As a result, consistent, detailed characterization of waste streams from SRS facilities was achieved in six months

  8. Summary of the engineering assessment of inactive uranium mill tailings, Green River site, Green River, Utah

    International Nuclear Information System (INIS)

    1981-08-01

    Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the five options range from about $4,300,000 for stabilization in-place, to about $9,600,000 for disposal at a distance of about 30 miles. Three principal alternatives for the reprocessing of the Green River tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $1,800/lb by heap leach and $1,600/lb by conventional plant processes

  9. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  10. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  11. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  12. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-02-04

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  13. The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  14. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  15. Risk assessment data bank design at the Savannah River Site

    International Nuclear Information System (INIS)

    Townsend, C.S.; Johnson, K.B.

    1992-01-01

    The Savannah River Site has designed and implemented a database system containing a series of compilations of incidents used primarily for risk assessment. Four databases have been designed and implemented using advanced database management system computer software. These databases exist for reprocessing, fuel fabrication, waste management, and the Savannah River Technology Center. They are combined into one system caged the Risk Assessment Methodology (RAM) Fault Tree Data Banks. This paper will discuss the logical design of the data, the menus, and the operating platform. Built-in updating features, such as batch and on-line data entry; data validation methods; automatic update features; and expert system programs, will also be discussed. User functions, such as on-line search/view/report and statistical functions, will be presented. Security features and backup and recovery methods will also be covered

  16. Savannah River Site TEP-SET tests uncertainty report

    International Nuclear Information System (INIS)

    Taylor, D.J.N.

    1993-09-01

    This document presents a measurement uncertainty analysis for the instruments used for the Phase I, II and III of the Savannah River One-Fourth Linear Scale, One-Sixth Sector, Tank/Muff/Pump (TMP) Separate Effects Tests (SET) Experiment Series. The Idaho National Engineering Laboratory conducted the tests for the Savannah River Site (SRS). The tests represented a range of hydraulic conditions and geometries that bound anticipated Large Break Loss of Coolant Accidents in the SRS reactors. Important hydraulic phenomena were identified from experiments. In addition, code calculations will be benchmarked from these experiments. The experimental system includes the following measurement groups: coolant density; absolute and differential pressures; turbine flowmeters (liquid phase); thermal flowmeters (gas phase); ultrasonic liquid level meters; temperatures; pump torque; pump speed; moderator tank liquid inventory via a load cells measurement; and relative humidity meters. This document also analyzes data acquisition system including the presampling filters as it relates to these measurements

  17. Characterization recommendations for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil

  18. Nuclear Material Processing at the Savannah River Site

    International Nuclear Information System (INIS)

    Severynse, T.F.

    1998-07-01

    Plutonium production for national defense began at Savannah River in the mid-1950s, following construction of production reactors and separations facilities. Following the successful completion of its production mission, the site's nuclear material processing facilities continue to operate to perform stabilization of excess materials and potentially support the disposition of these materials. A number of restoration and productivity improvement projects implemented in the 1980s, totaling nearly a billion dollars, have resulted in these facilities representing the most modern and only remaining operating large-scale processing facilities in the DOE Complex. Together with the Site's extensive nuclear infrastructure, and integrated waste management system, SRS is the only DOE site with the capability and mission of ongoing processing operations

  19. A cursory application of DRASTIC to the Savannah River Site

    International Nuclear Information System (INIS)

    Crider, S.S.

    1989-01-01

    Geohydrologists at the National Water Well Association (NWWA) created DRASTIC as a formalized decision-making procedure to assess the potential for groundwater pollution at existing and proposed industrial sites. It is a method to examine groundwater pollution potential anywhere in the country. DRASTIC is generalized because it is meant to be universal; therefore, NWWA stresses its qualitative nature. Its objective are: (1) to help direct resources and land use activities to appropriate areas; and, (2) to help prioritize groundwater protection, monitoring and cleanup efforts. Even though it is a general siting tool, usually applied where only scanty geohydrological information is available, it can be helpful -- perhaps in a modified form -- for locations like the Savannah River Site (SRS) that have relatively abundant data resources

  20. Waste certification review program at the Savannah River Site

    International Nuclear Information System (INIS)

    Faulk, G.W.; Kinney, J.C.; Knapp, D.C.; Burdette, T.E.

    1996-01-01

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators' waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988)

  1. Bats of the Savannah River Site and vicinity.

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Menzel; J.M. Menzel; J.C. Kilgo; W.M. Ford; T.C. Carter; J.W. Edwards

    2003-10-01

    The U.S. Department of Energy's Savannah River Site supports a diverse bat community. Nine species occur there regularly, including the eastern pipistrelle (Pipistrellus subflavus), southeastern myotis (Myotis austroriparius), evening bat (Nycticeius humeralis), Rafinesque's big-eared bat (Corynorhinus rafinesquii), silver-haired bat (Lasionycteris noctivagans), eastern red bat (Lasiurus borealis), Seminole bat (L. seminolus), hoary bat (L. cinereus), and big brown bat (Eptesicus fuscus). There are extralimital capture records for two additional species: little brown bat (M. lucifigus) and northern yellow bat (Lasiurus intermedius). Acoustical sampling has documented the presence of Brazilian free-tailed bats (Tadarida brasiliensis), but none has been captured. Among those species common to the Site, the southeastern myotis and Rafinesque's big-eared bat are listed in South Carolina as threatened and endangered, respectively. The presence of those two species, and a growing concern for the conservation of forest-dwelling bats, led to extensive and focused research on the Savannah River Site between 1996 and 2002. Summarizing this and other bat research, we provide species accounts that discuss morphology and distribution, roosting and foraging behaviors, home range characteristics, habitat relations, and reproductive biology. We also present information on conservation needs and rabies issues; and, finally, identification keys that may be useful wherever the bat species we describe are found.

  2. PROTECTING GROUNDWATER & THE COLUMBIA RIVER AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2006-06-29

    Along the remote shores of the Columbia River in southeast Washington state, a race is on. Fluor Hanford, a prime cleanup contractor to the U.S. Department of Energy (DOE) at the Hanford Site, is managing a massive, multi-faceted project to remove contaminants from the groundwater before they can reach the Columbia. Despite the daunting nature and size of the problem--about 80 square miles of aquifer under the site contains long-lived radionuclides and hazardous chemicals--significant progress is being made. Many groups are watching, speaking out, and helping. A large. passionate, diverse, and geographically dispersed community is united in its desire to protect the Columbia River--the eighth largest in the world--and have a voice in Hanford's future. Fluor Hanford and the DOE, along with the US. Environmental Protection Agency (EPA) and the Washington Department of Ecology (Ecology) interact with all the stakeholders to make the best decisions. Together, they have made some remarkable strides in the battle against groundwater contamination under the site.

  3. M-area basin closure-Savannah River Site

    International Nuclear Information System (INIS)

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway

  4. Savannah River Site Bagless Transfer - What Have We Learned?

    International Nuclear Information System (INIS)

    Wong, J.W.

    2001-01-01

    Conventional glovebox techniques for handling radioactive material include the use of plastic sleeving for ''bagging out'' material in order to remove it from the glovebox. This method has been used for many years, and has proven very effective when implemented by trained operators. One drawback to this method is that it is not suitable for removal of material for long-term storage, due to radiolytic decomposition of the plastic. In order to comply with long term storage criteria, engineers at the Savannah River Site developed an alternative process for removal of radioactive material known as ''bagless transfer''

  5. Savannah River Site environmental report for 1991. [Contains Glossary

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  6. Savannah River Site K-Reactor Probabilistic Safety Assessment

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O'Kula, K.R.; Wittman, R.S.; Woody, N.D.; Amos, C.N.; Weingardt, J.J.

    1992-12-01

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety

  7. Savannah River Site Waste Management Program Plan, FY 1993

    International Nuclear Information System (INIS)

    1993-06-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes

  8. Data banks for risk assessment at the Savannah River Site

    International Nuclear Information System (INIS)

    Durant, W.S.; Townsend, C.S.; Baughman, D.F.; Hang, P.

    1992-01-01

    One of the lessons learned from many years of risk assessment experience is that mistakes of the past are soon forgotten if no method is available to retrieve and review these events. Savannah River Site has maintained a computerized data bank system for recording, retrieving and reviewing its incident history. The system is based on a series of compilations developed primarily for risk assessment but has been found to be invaluable for many other uses such as equipment reliability, project justification, and incident investigations

  9. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  10. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    'A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods.'

  11. Savannah River Site Environmental Implementation Plan. Volume 2, Protection programs

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    Formal sitewide environmental planning at the . Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan (Volume 2) provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period.

  12. Epidemiologic surveillance. Annual report for Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Epidemiologic surveillance at US Department of Energy (DOE) facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Savannah River Site (SRS) are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 16-75 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and salary status; (2) the absences per person, diagnoses per absences, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

  13. Technology implementation and cleanup progress at Savannah River site

    International Nuclear Information System (INIS)

    Papouchado, L.M.

    1996-01-01

    The integrated high level waste treatment system at Savannah River has started up and the process of converting 34 million gallons of liquid waste to glass and saltstone is in its initial phase. New waste disposal vaults and startup of several other facilities such as the Consolidated Incinerator Facility and a mixed waste vitrification facility will help completion of the integrated system to treat and dispose of SRS wastes. Technology was utilized from industry, other laboratories, or was developed at the Savannah River Technology Center if it was not available. Many SRTC developments involved academia and other labs. SRS also has over 400 waste sites (400 acres) in its characterization/remediation program. To date over 90 acres were remediated (23 percent) and by 1997 we plan to remediate 175 acres or 44 percent. Thirteen groundwater facility treatment sites will be in operation by 1997. SRS has provided and continues to provide unique test platforms for testing innovative remediation, characterization and monitoring technologies. We are currently testing DNAPL characterization and remediation and an in-situ Inorganic remediation technique for ground water

  14. Risk assessment data banks at the Savannah River Site

    International Nuclear Information System (INIS)

    Townsend, C.S.; Durant, W.S.; Baughman, D.F.

    1993-01-01

    In the risk assessment business, it is a well known fact that past mistakes will not be remembered if nothing is done to record them and make them available for future reference and review. The Savannah River Site maintains a computer database system for nonreactor facilities that contains a compilation of the incidents that have occurred since the start up of the Site in 1953. The nationally recognized data banks are highly valued across the US Department of Energy (DOE) complex for their use in risk-related analyses. They provide data for uses such as failure rate analyses, equipment reliability and breakdown studies, project justification, incident investigations, design studies, Safety Analysis Reports, Process Hazards Reviews, consequence analyses, quality assurance studies, trend analyses, management decision, administrative control effectiveness studies, and process problem solving. Five risk assessment data banks exist in the areas of reprocessing, fuel fabrication, waste management, tritium, and the Savannah River Technology Center. The data banks are comprised of approximately one-third million entries collectively and continue to grow at a rate of about two hundred entries per day

  15. The Frequency of Incipient Fires at the Savannah River Site

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    Fire is a significant hazard in most industrial and nuclear facilities. As such it is important that adequate safeguards be provided to ensure a responsible level of safety. In determining this level of safety it is necessary to know three key parameters. These are the frequency of the incipient fire, the probability that a fire will grow from the incipient stage to cause the potential consequence, and the potential consequences (i.e., losses) from an unwanted fire. Consequence predictions have been modeled and evaluated extensively and can be readily confirmed by comparison with historic loss records. These loss records can also provide significant insight into the probability that given a fire it grows to create a defined consequence. The other key parameter, frequency, is the focus of this report. this report determines an alternative method for estimating Savannah River Site (SRS) building fire frequencies as a function of floor area to the linear method previously used. The frequency of an incipient fire is not easily derived from existing fire loss records. This occurs because the fire loss records do not make reference to the sample population. To derive an initiating frequency both the number of events (incipient fires) and the population (number of buildings and years in service) must be known. this report documents an evaluation that estimates the frequency of incipient fires in industrial and nuclear facilities. these estimates were developed from the unique historical record that has been maintained at the Savannah River Site

  16. Savannah River Site Bagless Transfer Technology Applied at Hanford

    International Nuclear Information System (INIS)

    Wong, J.W.

    2001-01-01

    A ''bagless transfer'' process was developed at the Savannah River Site (SRS) to remove radioactive materials from glovebox enclosures for long-term storage in conformance with DOE Standard 3013. This process, unlike the more conventional ''bag-out'' process, produces an all-metal, helium-filled, welded storage container that does not contain materials subject to radiolytic decomposition. A Bagless Transfer System (BTS), utilizing this bagless transfer process, has been in service at SRS since August 1997. It is a semi-automated system that has proven to be very reliable during its three years of operation.The Plutonium Finishing Plant (PFP) at Hanford has a similar need for long-term storage of radioactive materials. The successful operation of the Savannah River Site BTS led to the selection of the same technology to fulfill the packaging need at Hanford. However, there are a number of differences between the existing SRS BTS and the system currently in operation at Hanford. These differences will be discussed in this paper. Additionally, a system is necessary to produce another all-metal, welded container into which the container produced by the BTS can be placed. This container must be in conformance with the criteria specified in DOE-STD-3013 for an outer container. SRS Engineers are developing a system (outer container welder), based on the tungsten inert gas (TIG) welding equipment used in the BTS, to produce this outer container

  17. Remedial action at the Green River uranium mill tailings site, Green River, Utah: Environmental assessment

    International Nuclear Information System (INIS)

    1988-07-01

    The inactive Green River uranium mill tailings site is one mile southeast of Green River, Utah. The existing tailings pile is within the floodplain boundaries of the 100-year and 500-year flood events. The 48-acre designated site contains eight acres of tailings, the mill yard and ore storage area, four main buildings, a water tower, and several small buildings. Dispersion of the tailings has contaminated an additional 24 acres surrounding the designated site. Elevated concentrations of molybdenum, nitrate, selenium, uranium, and gross alpha activity exceed background levels and the proposed US Environmental Protection Agency (EPA) maximum concentration limits in the groundwater in the unconsolidated alluvium and in the shallow shales and limestones beneath the alluvium at the mill tailings site. The contamination is localized beneath, and slightly downgradient of, the tailings pile. The proposed action is to relocate the tailings and associated contaminated materials to an area 600 feet south of the existing tailings pile where they would be consolidated into one, below-grade disposal cell. A radon/infiltration barrier would be constructed to cover the stabilized pile and various erosion control measures would be taken to ensure the long-term stability of the stabilized pile. 88 refs., 12 figs., 20 tabs

  18. The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-08-01

    This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  19. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-17

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the fourth quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities; and serves as an official document of the analytical results.

  20. Integration of Environmental Compliance at the Savannah River Site - 13024

    Energy Technology Data Exchange (ETDEWEB)

    Hoel, David [United States Department of Energy - Savannah River Operations Office (United States); Griffith, Michael [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01

    The Savannah River Site (SRS) is a large federal installation hosting diverse missions and multiple organizations with competing regulatory needs. Accordingly, there was a need to integrate environmental compliance strategies to ensure the consistent flow of information between Department of Energy-Savannah River (DOE-SR), the regulatory agencies and other interested parties. In order to meet this objective, DOE and major SRS contractors and tenants have committed to a strategy of collaboratively working together to ensure that a consistent, integrated, and fully coordinated approach to environmental compliance and regulator relationships is maintained. DOE-SR and Savannah River Nuclear Solutions, LLC, the SRS management and operations contractor, have established an environmental compliance integration process that provides for the consistent flow down of requirements to projects, facilities, SRS contractors, and subcontractors as well as the upward flow of information to assist in the early identification and resolution of environmental regulatory issues and enhancement of compliance opportunities. In addition, this process strongly fosters teamwork to collaboratively resolve complex regulatory challenges, promote pollution prevention and waste minimization opportunities to advance site missions in a manner that balances near-term actions with the long-term site vision, while being protective of human health and the environment. Communication tools are being utilized, some with enhancements, to ensure appropriate information is communicated to all levels with environmental responsibility at SRS. SRS internal regulatory integration is accomplished through a variety of informational exchange forums (e.g., Challenges, Opportunities and Resolution (COR) Team, DOE's Joint Site Regulatory Integration Team, and the Senior Environmental Managers Council (SEMC)). SRS communications and problem-solving with the regulatory agencies have been enhanced through formation

  1. Integration of Environmental Compliance at the Savannah River Site - 13024

    International Nuclear Information System (INIS)

    Hoel, David; Griffith, Michael

    2013-01-01

    The Savannah River Site (SRS) is a large federal installation hosting diverse missions and multiple organizations with competing regulatory needs. Accordingly, there was a need to integrate environmental compliance strategies to ensure the consistent flow of information between Department of Energy-Savannah River (DOE-SR), the regulatory agencies and other interested parties. In order to meet this objective, DOE and major SRS contractors and tenants have committed to a strategy of collaboratively working together to ensure that a consistent, integrated, and fully coordinated approach to environmental compliance and regulator relationships is maintained. DOE-SR and Savannah River Nuclear Solutions, LLC, the SRS management and operations contractor, have established an environmental compliance integration process that provides for the consistent flow down of requirements to projects, facilities, SRS contractors, and subcontractors as well as the upward flow of information to assist in the early identification and resolution of environmental regulatory issues and enhancement of compliance opportunities. In addition, this process strongly fosters teamwork to collaboratively resolve complex regulatory challenges, promote pollution prevention and waste minimization opportunities to advance site missions in a manner that balances near-term actions with the long-term site vision, while being protective of human health and the environment. Communication tools are being utilized, some with enhancements, to ensure appropriate information is communicated to all levels with environmental responsibility at SRS. SRS internal regulatory integration is accomplished through a variety of informational exchange forums (e.g., Challenges, Opportunities and Resolution (COR) Team, DOE's Joint Site Regulatory Integration Team, and the Senior Environmental Managers Council (SEMC)). SRS communications and problem-solving with the regulatory agencies have been enhanced through formation of an

  2. Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

  3. Application of UAVs at the Savannah River Site

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Pendergast, M.M.

    1996-01-01

    Small, unmanned aerial vehicles (UAVs) equipped with sensors for physical, chemical, and radiochemical measurements of remote environments have been tested at the Savannah River Site (SRS). A miniature helicopter was used as an aerial platform for testing a variety of sensors with outputs integrated with the flight control system for real-time data acquisition and evaluation. The sensors included a precision magnetometer, two broad band infra-red radiometers, a 1-inch by 1-inch Nal(TI) scintillation detector, and an on-board color video camera. Included in the avionics package was an ultrasonic altimeter, a precision barometer, and a portable Global Positioning System. Two separate demonstration locations at SRS were flown that had been previously characterized by careful sampling and analyses and by aerial surveys at high altitudes. The Steed Pond demonstration site contains elevated levels of uranium in the soil and pond silt due to runoff from one of the site's uranium fuel and target production areas. The soil at the other site is contaminated with oil bearing materials and contains some buried objects. The results and limitations of the UAV surveys are presented and improvements for future measurements are discussed

  4. Assessment of mercury in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

    1994-09-01

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities' gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard

  5. Assessment of mercury in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

    1994-09-01

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.

  6. Assessment of Soil Erosion Methods for Sludge Recovery, Savannah River Site

    National Research Council Canada - National Science Library

    Smith, Lawson

    1997-01-01

    ...) from selected storage tanks at the Savannah River Site (SRS) was assessed conceptually. Soil erosion methods are defined as the processes of soil detachment, entrainment, transport, and deposition...

  7. Disposal of Draeger Tubes at Savannah River Site

    International Nuclear Information System (INIS)

    Malik, N.P.

    2000-01-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed

  8. Radiological/toxicological sabotage assessments at the Savannah River Site

    International Nuclear Information System (INIS)

    Johnson, H.D.; Pascal, M.D.; Richardson, D.L.

    1995-01-01

    This paper describes the methods being employed by Westinghouse Savannah River Company (WSRC) to perform graded assessments of radiological and toxicological sabotage vulnerability at Savannah River Site (SRS) facilities. These assessments are conducted to ensure that effective measures are in place to prevent, mitigate, and respond to a potential sabotage event which may cause an airborne release of radiological/toxicological material, causing an adverse effect on the health and safety of employees, the public, and the environment. Department of Energy (DOE) Notice 5630.3A, open-quotes Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,close quotes and the associated April 1993 DOE-Headquarters guidance provide the requirements and outline an eight-step process for hazardous material evaluation. The process requires the integration of information from a variety of disciplines, including safety, safeguards and security, and emergency preparedness. This paper summarizes WSRC's approach towards implementation of the DOE requirements, and explains the inter-relationships between the Radiological and Toxicological Assessments developed using this process, and facility Hazard Assessment Reports (HAs), Safety Analysis Reports (SARs), and Facility Vulnerability Assessments (VAs)

  9. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  10. Commercial integration and partnering at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Steele, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Babione, R.A.; Shikashio, L.A.; Wacaster, A.J.; Paterson, A.D. [SCIENTECH, Inc., Idaho Falls, ID (United States)

    1994-06-01

    Savannah River Site (SRS), particularly the Savannah River Technology Center (SRTC) with the experience from the first successful Integrated Technology Demonstration, can provide an excellent foundation for meeting DOE-EM`s objectives with the new DOE-EM five focus area approach. With this in mind, SRTC established an activity to pursue full commercialization of environmental technologies. This report is an assessment of the status of commercialization at SRS and provides recommendations for enhancement as well as some tools critical to implementation. A review was made of the current situation at SRS with regards to taking technology development to commercial fruition. This was done from the perspective of comparing it to known commercialization models and processes. It was found that SRTC already works through many of the steps in these processes. With integration and action-oriented efforts of the inclusion of business and market factors, SRTC could become an aggressive, successful developer of commercialized technologies. Commercial success criteria tools were developed with regards to integrating them with SRTC selection criteria to ensure that all critical factors are covered in technology commercialization project evaluations. Private investors are very clear that their interest lies in funding commercial enterprises, not merely technologies. Mobilizing private capital is critical to real job growth and long-term economic development. Also, potential industry partners were identified that are willing to be involved with SRS` technology applications and regional development efforts. As another important component to success, regional support organizations were reviewed and evaluated.

  11. Savannah River Site radioiodine atmospheric releases and offsite maximum doses

    International Nuclear Information System (INIS)

    Marter, W.L.

    1990-01-01

    Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models

  12. Environmental data management system at the Savannah River Site

    International Nuclear Information System (INIS)

    Story, C.H.; Gordon, D.E.

    1989-01-01

    The volume and complexity of data associated with escalating environmental regulations has prompted professionals at the Savannah River Site to begin taking steps necessary to better manage environmental information. This paper describes a plan to implement an integrated environmental information system at the site. Nine topic areas have been identified. They are: administrative, air, audit ampersand QA, chemical information/inventory, ecology, environmental education, groundwater, solid/hazardous waste, and surface water. Identification of environmental databases that currently exist, integration into a ''friendly environment,'' and development of new applications will all take place as a result of this effort. New applications recently completed include Groundwater Well Construction, NPDES (Surface Water) Discharge Monitoring, RCRA Quarterly Reporting, and Material Safety Data Sheet Information. Database applications are relational (Oracle RDBMS) and reside largely in DEC VMS environments. In today's regulatory and litigation climate, the site recognizes they must have knowledge of accurate environmental data at the earliest possible time. Implementation of this system will help ensure this

  13. MOX Lead Assembly Fabrication at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Spiker, D.L.; Poon, A.P.

    1997-12-01

    The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

  14. Natural radioactivity in ground water near the Savannah River Site

    International Nuclear Information System (INIS)

    Price, V. Jr.; Michel, J.

    1990-08-01

    A study of natural radioactivity in groundwater on and adjacent to the Savannah River Site (SRS) in Aiken (SC) was conducted to determine the spatial and temporal variations in the concentration of specific radionuclides. All available measurements for gross alpha particle activity, gross beta activity, uranium, Ra-226, Ra-228, and radon were collated. Relatively few radionuclide-specific results were found. Twenty samples from drinking water supplies in the area were collected in October 1987 and analyzed for U-238, U-234, Ra-226, Ra-228, and Rn-222. The aquifer type for each public water supply system was determined, and statistical analyses were conducted to detect differences among aquifer types and geographic areas defined at the country level. For samples from the public water wells and distribution systems on and adjacent to the site, most of the gross alpha particle activity could be attributed to Ra-226. Aquifer type was an important factor in determining the level of radioactivity in groundwater. The distribution and geochemical factors affecting the distribution of each radionuclide for the different aquifer types are discussed in detail. Statistical analyses were also run to test for aerial differences, among counties and the site. For all types of measurements, there were no differences in the distribution of radioactivity among the ten counties in the vicinity of the site or the site itself. The mean value for the plant was the lowest of all geographic areas for gross alpha particle activity and radon, intermediate for gross beta activity, and in the upper ranks for Ra-226 and Ra-228. It is concluded that the drinking water quality onsite is comparable with that in the vicinity. 19 refs., 5 figs., 5 tabs

  15. Improvements MOIRA system for application to nuclear sites Spanish river

    International Nuclear Information System (INIS)

    Gallego Diaz, E.; Iglesias Ferrer, R.; Dvorzhak, A.; Hofman, D.

    2011-01-01

    Possible consequences of a nuclear accident must have radioactive contamination in the medium and long-term freshwater aquatic systems. Faced with this problem, it is essential to have a realistic assessment of the radiological impact, ecological, social and economic potential management strategies, to take the best decisions rationally. MOIRA is a system of decision support developed in the course of the European Framework Programmes with participation of the UPM, which has been improved and adapted to Spanish nuclear sites in recent years in the context ISIDRO Project, sponsored by the Council Nuclear, with the participation of CIEMAT and UPM. The paper focuses on these advances, primarily related to complex hydraulic systems such as rivers Tajo, Ebro and Jucar, which are located several Spanish plants.

  16. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    International Nuclear Information System (INIS)

    Boettinger, W.L.

    1993-01-01

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today's legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ''Indifference'' decision process in assessing the Beneficial Reuse option relative to the Burial option are described

  17. Revision to flood hazard evaluation for the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-08-25

    Requirements for the Natural Phenomena Hazard (NPH) mitigation for new and existing Department of Energy (DOE) facilities are outlined in DOE Order 420.1. This report examines the hazards posed by potential flooding and represents an update to two previous reports. The facility-specific probabilistic flood hazard curve is defined as the water elevation for each annual probability of precipitation occurrence (or inversely, the return period in years). New design hyetographs for both 6-hr and 24-hr precipitation distributions were used in conjunction with hydrological models of various basins within the Savannah River Site (SRS). For numerous locations of interest, peak flow discharge and flood water elevation were determined. In all cases, the probability of flooding of these facilities for a 100,000 year precipitation event is negligible.

  18. New instrument calibration facility for the DOE Savannah River Site

    International Nuclear Information System (INIS)

    Wilkie, W.H.; Polz, E.J.

    1993-01-01

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided

  19. New instrument calibration facility for the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, W.H.; Polz, E.J. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  20. Savannah River Site waste management. Final environmental impact statement - addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economics, and the health and safety of onsite workers and the public are included in the assessment

  1. Environmental ALARA Program at the Savannah River Site

    International Nuclear Information System (INIS)

    Jannik, G.T.

    1993-01-01

    The Savannah River Site (SRS) follows the ALARA (As Low As Reasonably Achievable) philosophy of keeping radiation doses to the general public as low as practical by minimizing radioactive releases to the environment. SRS accomplishes this goal by establishing challenging sitewide and area-specific Environmental ALARA Release Guides and trending radioactive releases against these guides on a monthly basis. The SRS Environmental ALARA Program, mandated by DOE Order 5400.5, is a dose-based program that has gone through many changes and improvements in recent years. A description of the SRS Environmental ALARA Program and its performance is presented in this paper. Recent SRS studies of the ''Zero Release'' option also are described

  2. Savannah River Site Waste Management Final Environmental Impact Statement Addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economic, and the health and safety of onsite workers and the public are included in the assessment

  3. Savannah River Site production reactor technical specifications. K Production Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

  4. Flood Hazard Recurrence Frequencies for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2001-01-01

    Department of Energy (DOE) regulations outline the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this report is flooding. The facility-specific probabilistic flood hazard curve defines, as a function of water elevation, the annual probability of occurrence or the return period in years. The facility-specific probabilistic flood hazard curves provide basis to avoid unnecessary facility upgrades, to establish appropriate design criteria for new facilities, and to develop emergency preparedness plans to mitigate the consequences of floods. A method based on precipitation, basin runoff and open channel hydraulics was developed to determine probabilistic flood hazard curves for the Savannah River Site. The calculated flood hazard curves show that the probabilities of flooding existing SRS major facilities are significantly less than 1.E-05 per year

  5. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  6. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  7. Sanitary landfill groundwater quality assessment plan Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  8. External events analysis for the Savannah River Site K reactor

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Wingo, H.E.

    1990-01-01

    The probabilistic external events analysis performed for the Savannah River Site K-reactor PRA considered many different events which are generally perceived to be ''external'' to the reactor and its systems, such as fires, floods, seismic events, and transportation accidents (as well as many others). Events which have been shown to be significant contributors to risk include seismic events, tornados, a crane failure scenario, fires and dam failures. The total contribution to the core melt frequency from external initiators has been found to be 2.2 x 10 -4 per year, from which seismic events are the major contributor (1.2 x 10 -4 per year). Fire initiated events contribute 1.4 x 10 -7 per year, tornados 5.8 x 10 -7 per year, dam failures 1.5 x 10 -6 per year and the crane failure scenario less than 10 -4 per year to the core melt frequency. 8 refs., 3 figs., 5 tabs

  9. Savannah River Site Operating Experience with Transuranic (TRU) Waste Retrieval

    International Nuclear Information System (INIS)

    Stone, K.A.; Milner, T.N.

    2006-01-01

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads from the 1970's through the 1980's. These drums were subsequently covered with tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This paper will describe the operating experience and lessons learned from the SRS retrieval activities. (authors)

  10. The Savannah River Site Waste Inventory Management Program

    International Nuclear Information System (INIS)

    Griffith, J.M.; Holmes, B.R.

    1995-01-01

    Each hazardous and radioactive waste generator that delivers waste to Savannah River Site (SRS) treatment, storage and disposal (TSD) facilities is required to implement a waste certification plan. The waste certification process ensures that waste has been properly identified, characterized, segregated, packaged, and shipped according to the receiving facilities waste acceptance criteria. In order to comply with the rigid acceptance criteria, the Reactor Division developed and implemented the Waste Inventory Management Program (WIMP) to track the generation and disposal of low level radioactive waste. The WIMP system is a relational database with integrated barcode technology designed to track the inventory radioactive waste. During the development of the WIMP several waste minimization tools were incorporated into the design of the program. The inclusion of waste minimization tools as part of the WIMP has resulted in a 40% increase in the amount of waste designated as compactible and an overall volume reduction of 5,000 cu-ft

  11. Radionuclide limits for vault disposal at the Savannah River Site

    International Nuclear Information System (INIS)

    Cook, James R.

    1992-01-01

    The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater) and on waste package concentrations for those radionuclides which could affect intruders. (author)

  12. Assessment of radiocarbon in the Savannah River Site Environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Evans, A.G.; Murphy, C.E. Jr.; Tuck, D.M.

    1993-03-01

    This report is a radiological assessment of 14 C releases from the Savannah River Site. During the operation of five production reactors 14 C has been produced at SRS. Approximately 3000 curies have been released to the atmosphere but there are no recorded releases to surface waters. Once released, the 14 C joins the carbon cycle and a portion enters the food chain. The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by a dose of 1.1 mrem, compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Releases of 14 C have resulted in a negligible risk to the environment and the population it supports

  13. Excavations at the Buller River Site (K29/8), January 2004

    International Nuclear Information System (INIS)

    Jacomb, C.; Tucker, B.; Walter, R.

    2004-01-01

    The Buller River Site (K29/8) is located on the south (true left) bank of the Buller, or Kawatiri, River directly across from Westport and approximately one kilometre from the present shoreline. This report describes the excavations at Buller River in February 2004, outlines the results to date and canvasses options for future research. 12 refs., 11 figs

  14. Site Selection for the Salt Disposition Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Gladden, J.B.; Rueter, K.J.; Morin, J.P.

    2000-01-01

    A site selection study was conducted to identify a suitable location for the construction and operation of a new Salt Disposition Facility (SDF) at the Savannah River Site (SRS). The facility to be sited is a single processing facility and support buildings that could house either of three technology alternatives being developed by the High Level Waste Systems Engineering Team: Small Tank Tetraphenylborate Precipitation, Crystalline Silicotitanate Non-Elutable Ion Exchange or Caustic Side Solvent Extraction. A fourth alternative, Direct Disposal in grout, is not part of the site selection study because a location has been identified that is unique to this technology (i.e., Z-Area). Facility site selection at SRS is a formal, documented process that seeks to optimize siting of new facilities with respect to facility-specific engineering requirements, sensitive environmental resources, and applicable regulatory requirements. In this manner, the prime objectives of cost minimization, environmental protection, and regulatory compliance are achieved. The results from this geotechnical characterization indicated that continued consideration be given to Site B for the proposed SDF. Suitable topography, the lack of surface hydrology and floodplain issues, no significant groundwater contamination, the presence of minor soft zones along the northeast portion of footprint, and no apparent geological structure in the Gordon Aquitard support this recommendation

  15. Functional groups of macro-benthos of selected sites of upstream of Hron River and Hnilec River

    International Nuclear Information System (INIS)

    Rufusova, A.

    2011-01-01

    The author used six functional groups of macro-benthos based on 'species traits', which are indicated with the Greek letters α to ζ. In the work authors applied this method to the macroinvertebrate communities of selected sites of upstream of the Hron River and the Hnilec River. The method appropriately captured increasing gradient of anthropogenic changes in the direction of the river continuum. Although the method was used for Slovak rivers for the first time, it seems to be promising for use in the future. (author)

  16. CRITICAL RADIONUCLIDE AND PATHWAY ANALYSIS FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.

    2011-08-30

    This report is an update to the analysis, Assessment of SRS Radiological Liquid and Airborne Contaminants and Pathways, that was performed in 1997. An electronic version of this large original report is included in the attached CD to this report. During the operational history (1954 to the present) of the Savannah River Site (SRS), many different radionuclides have been released to the environment from the various production facilities. However, as will be shown by this updated radiological critical contaminant/critical pathway analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to offsite people. The analysis covers radiological releases to the atmosphere and to surface waters, the principal media that carry contaminants offsite. These releases potentially result in exposure to offsite people. The groundwater monitoring performed at the site shows that an estimated 5 to 10% of SRS has been contaminated by radionuclides, no evidence exists from the extensive monitoring performed that groundwater contaminated with these constituents has migrated off the site (SRS 2011). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people. In addition, in response to the Department of Energy's (DOE) Order 435.1, several Performance Assessments (WSRC 2008; LWO 2009; SRR 2010; SRR 2011) and a Comprehensive SRS Composite Analysis (SRNO 2010) have recently been completed at SRS. The critical radionuclides and pathways identified in these extensive reports are discussed and, where applicable, included in this analysis.

  17. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  18. Tritium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  19. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. A method was developed to determine the probabilistic flood hazard curves for SRS facilities. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  20. Flood hazard assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  1. Evaluation of Cone Penetrometer Data for Permeability Correlation at the Savannah River Site

    International Nuclear Information System (INIS)

    Harris, M.K.

    1997-02-01

    This report documents the results of an assessment of cone penetrometer technology (CPT) use at the Savannah River Site. The study is intended to provide valuable insight into methods of increasing the utility of CPT data for site characterization

  2. Evaluation of Cone Penetrometer Data for Permeability Correlation at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.K. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-02-01

    This report documents the results of an assessment of cone penetrometer technology (CPT) use at the Savannah River Site. The study is intended to provide valuable insight into methods of increasing the utility of CPT data for site characterization.

  3. Hanford and Savannah River Site Programmatic and Technical Integration

    International Nuclear Information System (INIS)

    Ramsey, William Gene

    2013-01-01

    Abstract only. The Hanford Site and the Savannah River Site (SRS) were the primary plutonium production facilities within the U.S. nuclear weapons complex. Radioactive wastes were generated as part of these missions and are stored in similar fashion. The majority of radioactivity maintained by the two sites is located in underground carbon steel tanks in the physical form of supernatant, saltcake, or sludge. Disposition of SRS tank waste is ongoing by converting it into glass (pathway for sludge and radionuclides separated from supernatant or dissolved saltcake) or cement (pathway for the decontaminated supernatant and dissolved saltcake). Tank closure activity has also begun at SRS and will continue for the duration of mission. The Hanford tank waste inventory is roughly 2/3rds larger than SRS's by volume- but nominally half the radioactivity. The baseline disposition path includes high-level and low-activity waste vitrification with separate disposition of contact-handled transuranic tank waste. Retrieval of tank waste from aging single shell tanks (SSTs) into double-shell tanks (DSTs) is currently ongoing. As vitrification commences later this decade, Hanford will be in a similar operations mode as SRS. Site integration is increasing as the missions align. The ongoing integration is centered on key issues that impact both sites- regardless of mission timeframe. Three recent workshop exchanges have been held to improve communication with the primary intent of improving operations and technical work organization. The topics of these workshops are as follows: DST space utilization, optimization, and closure; Waste Feed Qualification; and, Cementitious Waste Forms. Key goals for these and future exchanges include aligning research and technology, preparing for joint initiatives (to maximize budgetary value for the customer), and reviewing lessons learned. Each site has played a leading role in the development of technology and operational practices that can be used

  4. Assessment of Technetium in the Savannah River Site Environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Denham, M.; Evans, A.G.

    1993-07-01

    Assessment of Technetium in the Savannah River Site Environment is the last in a series of eight documents on individual radioisotopes released to the environment as a result of SRS operations. The earlier documents describe the environmental consequences of tritium cesium, iodine, uranium plutonium, strontium, and carbon. Technetium transport and metabolism have been studied by the nuclear industry because it is a fission product of uranium, and by the medical community because 99m Tc commonly is used as a diagnostic imaging agent in nuclear medicine. Technetium has been produced at SRS during the operation of five production reactors. The only isotope with environmental significance is 99 Tc. Because of the small activities of 99 Tc relative to other fission products, such as 90 Sr and 137 Cs, no measurements were made of releases to either the atmosphere or surface waters. Dose calculations were made in this document using conservative estimates of atmospheric releases and from a few measurements of 99 Tc concentrations in the Savannah River. Technetium in groundwater has been found principally in the vicinity of the separation areas seepage basins. Technetium is soluble in water and follows groundwater flow with little retardation. While most groundwater samples are negative or show little technetium a few samples have levels slightly above the limits set by the EPA for drinking water. The overall radiological impact of SRS 99 Tc releases on the offsite maximally exposed individual during 38 years of operations can be characterized by maximum individual doses of 0.1 mrem (atmospheric) and 0.8 mrem (liquid), compared with a dose of 13,680 mrem from non-SRS sources during the same time period. Technetium releases have resulted in a negligible risk to the environment and the population it supports

  5. Isotope hydrology of the Chalk River Laboratories site, Ontario, Canada

    Science.gov (United States)

    Peterman, Zell; Neymark, Leonid; King-Sharp, K.J.; Gascoyne, Mel

    2016-01-01

    This paper presents results of hydrochemical and isotopic analyses of groundwater (fracture water) and porewater, and physical property and water content measurements of bedrock core at the Chalk River Laboratories (CRL) site in Ontario. Density and water contents were determined and water-loss porosity values were calculated for core samples. Average and standard deviations of density and water-loss porosity of 50 core samples from four boreholes are 2.73 ± 12 g/cc and 1.32 ± 1.24 percent. Respective median values are 2.68 and 0.83 indicating a positive skewness in the distributions. Groundwater samples from four deep boreholes were analyzed for strontium (87Sr/86Sr) and uranium (234U/238U) isotope ratios. Oxygen and hydrogen isotope analyses and selected solute concentrations determined by CRL are included for comparison. Groundwater from borehole CRG-1 in a zone between approximately +60 and −240 m elevation is relatively depleted in δ18O and δ2H perhaps reflecting a slug of water recharged during colder climatic conditions. Porewater was extracted from core samples by centrifugation and analyzed for major dissolved ions and for strontium and uranium isotopes. On average, the extracted water contains 15 times larger concentration of solutes than the groundwater. 234U/238U and correlation of 87Sr/86Sr with Rb/Sr values indicate that the porewater may be substantially older than the groundwater. Results of this study show that the Precambrian gneisses at Chalk River are similar in physical properties and hydrochemical aspects to crystalline rocks being considered for the construction of nuclear waste repositories in other regions.

  6. Wetland restoration and compliance issues on the Savannah River site

    International Nuclear Information System (INIS)

    Wein, G.R.; McLeod, K.W.; Sharitz, R.R.

    1993-01-01

    Operation of the nuclear production reactors on the Savannah River Site has faced potential conflicts with wetland regulations on several occasions. This paper provides two examples in which regulatory compliance and restoration research have been meshed, providing both compliance and better knowledge to aid future regulatory needs. The decision to restart the L reactor required the mitigation of thermal effluents under Sec. 316 of the Clean Water Act. The National Pollutant Discharge Elimination System, permit for the selected mitigation alternative, a 405-ha once-through cooling reservoir, required the establishment of a balanced biological community (BBC) within the lake. To promote the development of a BBC, the reservoir was seeded with water from an existing BBC (Par Pond) and stocked with fish and had artificial reefs constructed. The US Department of Energy (DOE) also requested that the Savannah River Ecology Laboratory establish littoral/wetland vegetation along the shoreline to provide aquatic and wildlife habitat, shoreline stabilization, and a good faith effort toward the establishment of a BBC. The development of wetland vegetation was deemed important to the successful development of a BBC within L Lake. However, in a similar cooling reservoir system constructed in 1957 (Par Pond), wetland vegetation successfully developed without any planting effort. Other than the good faith effort toward a BBC, there is no reason to assume a littoral/wetland community would not develop of its own accord. However, research conducted at L Lake indicates that the planting of wetland vegetation at L Lake accelerated the process of natural selection over that of areas that were not planted

  7. Savannah River Site: Canyons and associated facilities utilization study

    International Nuclear Information System (INIS)

    Ellison, D.; Dickenson, J.

    1995-01-01

    The Westinghouse Savannah River Company was asked by the U.S. Department of Energy (DOE) to study options for utilization of Savannah River Site (SRS) Canyons and Associated Facilities to support existing and potential future material stabilization and/or disposition missions. This report is WSRC's response to that request. It includes: (1) A compilation of pending DOE material stabilization and/or disposition decisions involving utilization of SRS canyons and associated facilities, including discussion of quantities and expected availability of materials for which SRS handling and/or processing capability is a reasonable alternative under consideration. (2) A description of SRS canyons and associated facilities affected by pending DOE material stabilization and/or disposition decisions, including discussion of material handling and/or processing capabilities and capacities. (3) A comparative evaluation of three proposed scenarios for SRS canyon utilization with respect to startup and operating schedules; annual and life cycle costs; impacts on completion of commitments in the DOE Implementation Plan (IP) for Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1; SRS ability to support alternatives under consideration in pending DOE materials stabilization and/or disposition decisions; and timing for potential transition to deactivation. (4) The sensitivity of the comparative evaluation of the three canyon utilization scenarios to the effect of the selection of other alternatives for individual stabilization missions or individual new missions. Briefings on the scope of this study have been presented to key representatives of several SRS public stakeholder groups. Briefings on the major conclusions from this study have been presented to WSRC Management, DOE-SR, EM-60, EM-1, and the DNFSB

  8. The Savannah River Site`s Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  9. The Savannah River Site`s Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  10. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  11. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  12. The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  13. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update (U)

    International Nuclear Information System (INIS)

    Lawrence, B.; Berry, M.

    1998-03-01

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE's requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information

  14. Design basis flood for nuclear power plants on river sites

    International Nuclear Information System (INIS)

    1983-01-01

    The Guide presents techniques for determining the design basis flood (DBF) to be used for siting nuclear power plants at or near non-tidal reaches of rivers and for protecting nuclear power plants against floods. Since flooding of a nuclear power plant can have repercussions on safety, the DBF is always chosen to have a very low probability of exceedance per annum. The DBF may result from one or more of the following causes: (1) Precipitation, snowmelt; (2) Failure of water control structures, either from seismic or hydrological causes or from faulty operation of these structures; (3) Channel obstruction such as landslide, ice effects, log or debris jams, and effects of vulcanism. Normally the DBF is not less than any recorded or historical flood occurrence. For flood evaluation two types of methods are discussed in this Guide: probabilistic and deterministic. Simple probabilistic methods to determine floods of such low exceedance probability have a great degree of uncertainty and are presented for use only during the site survey. However, the more sophisticated probabilistic methods, the so-called stochastic methods, may give an acceptable result, as outlined in this Guide. The preferred method of evaluating the component of the DBF due to precipitation, as described in this Guide, is the deterministic one, based on the concept of a limit to the probable maximum precipitation (PMP) and on the unit hydrograph technique. Dam failures may generate a flood substantially more severe than that due to precipitation. The methodology for evaluating these types of floods is therefore presented in this Guide. Making allowance for the possible simultaneous occurrence of two or more important flood-producing events is also discussed here. The Guide does not deal with floods caused by sabotage

  15. Used nuclear materials at Savannah River Site: asset or waste?

    International Nuclear Information System (INIS)

    Magoulas, Virginia

    2013-01-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ''assets'' to worthless ''wastes''. In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as ''waste'' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

  16. THE COLD AND DARK PROCESS AT THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-01

    The deactivation and decommissioning (D and D) of a facility exposes D and D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called ''Cold and Dark''. Several ''near miss'' events involving cutting of energized conductors during D and D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D and D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold and Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold and Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tagout, arc flash PPE). It is important to note that the Cold and Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards

  17. Law enforcement tools available at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.

    2000-03-29

    A number of nuclear technologies developed and applied at the Savannah River Site in support of nuclear weapons material production and environmental remediation can be applied to problems in law enforcement. Techniques and equipment for high-sensitivity analyses of samples are available to identify and quantify trace elements and establish origins and histories of forensic evidence removed from crime scenes. While some of theses capabilities are available at local crime laboratories, state-of-the-art equipment and breakthroughs in analytical techniques are continually being developed at DOE laboratories. Extensive experience with the handling of radioactive samples at the DOE labs minimizes the chances of cross-contamination of evidence received from law enforcement. In addition to high-sensitivity analyses, many of the field techniques developed for use in a nuclear facility can assist law enforcement personnel in detecting illicit materials and operations, in retrieving of pertinent evidence and in surveying crime scenes. Some of these tools include chemical sniffers, hand-held detectors, thermal imaging, etc. In addition, mobile laboratories can be deployed to a crime scene to provide field screening of potential evidence. A variety of portable sensors can be deployed on vehicle, aerial, surface or submersible platforms to assist in the location of pertinent evidence or illicit operations. Several specific nuclear technologies available to law enforcement and their potential uses are discussed.

  18. Savannah River Site reactor hardware design modification study

    International Nuclear Information System (INIS)

    Fisher, J.E.

    1990-01-01

    A study was undertaken to assess the merits of proposed design modifications to the Savannah River Site (SRS) reactors. The evaluation was based on the responses calculated by the RELAP5 systems code to double-ended guillotine break loss-of-coolant-accidents (DEGB LOCAs). The three concepts evaluated were (a) elevated plenum inlet piping with a guard vessel and clamshell enclosures, (b) closure of both rotovalves in the affected loop, and (c) closure of the pump suction valve in the affected loop. Each concept included a fast reactor shutdown (to 65% power in 100 ms) and a 2-s ac pump trip. System recovery potential was evaluated for break locations at the pump suction, the pump discharge, and the plenum inlet. The code version used was RELAP5/MOD2.5 version 3d3, a preliminary version of RELAP5/MOD3. The model was a three-dimensional representation of the K-Reactor water plenum and moderator tank. It included explicit representations of all six loops, which were based on the configuration of L-Reactor. A combination of features is recommended to ensure liquid inventory recovery for all break locations. Valve closure design performance for a break location in the short section of piping between the reactor concrete shield and the pump suction valve would benefit from the clamshell enclosing that section of piping. 7 refs., 10 figs., 2 tabs

  19. Savannah River Site delayed neutron instruments for safeguards measurements

    International Nuclear Information System (INIS)

    Studley, R.V.

    1992-01-01

    The Savannah River Site (SRS) includes a variety of nuclear production facilities that, since 1953, have processed special nuclear materials (SNM) including highly-enriched uranium (>90% 235 U), recycled enriched uranium (∼50% 235 U + 40% 236 U), low burnup plutonium (> 90% 239 Pu + 240 Pu ) and several other nuclear materials such as heat source plutonium ( 238 Pu). DOE Orders, primarily 5633.3, require all nuclear materials to be safeguarded through accountability and material control. Accountability measurements determine the total amount of material in a facility, balancing inventory changes against receipts and shipments, to provide assurance (delayed) that all material was present. Material control immediately detects or deters theft or diversion by assuring materials remain in assigned locations or by impeding unplanned movement of materials within or from a material access area. Goals for accountability or material control, and, therefore, the design of measurement systems, are distinctly different. Accountability measurements are optimized for maximum precision and accuracy, usually for large amounts of special nuclear material. Material control measurements are oriented more toward security features and often must be optimized for sensitivity, to detect small amounts of materials where none should be

  20. Mathematical model of the Savannah River Site waste tank farm

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1991-01-01

    A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers

  1. Hydrogen isotope separation experience at the Savannah River Site

    International Nuclear Information System (INIS)

    Lee, M.W.

    1993-01-01

    Savannah River Site (SRS) is a sole producer of tritium for US Weapons Program. SRS has built Facilities, developed the tritium handling processes, and operated safely for the last forty years. Tritium is extracted from the irradiated reactor target, purified, mixed with deuterium, and loaded to the booster gas bottle in the weapon system for limited lifetime. Tritium is recovered from the retired bottle and recycled. Newly produced tritium is branded into the recycled tritium. One of the key process is the hydrogen isotope separation that tritium is separated from deuterium and protium. Several processes have been used for the hydrogen isotope separation at SRS: Thermal Diffusion Column (TD), Batch Cryogenic Still (CS), and Batch Chromatography called Fractional Sorption (FS). TD and CS requires straight vertical columns. The overall system separation factor depends on the length of the column. These are three story building high and difficult to put in glove box. FS is a batch process and slow operation. An improved continuous chromatographic process called Thermal Cycling Absorption Process (TCAP) has been developed. It is small enough to be about to put in a glove box yet high capacity comparable to CS. The SRS tritium purification processes can be directly applicable to the Fusion Fuel Cycle System of the fusion reactor

  2. Assessment of strontium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Strom, R.N.

    1992-01-01

    This document on strontium is published as a part of the Radiological Assessment Program (RAP). It is the sixth in a series of eight documents on individual radioisotopes released to the environment as a result of SRS (Savannah River Site) operations. Strontium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Strontium has been produced at SRS during the operation of 5 production reactors. About 300 curies of radiostrontium were released into streams in the late 50s and 60s, primarily from leaking fuel elements in reactor storage basins. Smaller quantities were released from the fuel reprocessing operations. About 400 Ci were released to seepage basins. A much smaller quantity, about 2 Ci, was released to the atmosphere. The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 6.2 mrem (atmospheric) and 1.4 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Radiostrontium releases have resulted in a negligible risk to the environment and the population it supports

  3. Assessment of strontium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Strom, R.N.

    1992-12-31

    This document on strontium is published as a part of the Radiological Assessment Program (RAP). It is the sixth in a series of eight documents on individual radioisotopes released to the environment as a result of SRS (Savannah River Site) operations. Strontium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Strontium has been produced at SRS during the operation of 5 production reactors. About 300 curies of radiostrontium were released into streams in the late 50s and 60s, primarily from leaking fuel elements in reactor storage basins. Smaller quantities were released from the fuel reprocessing operations. About 400 Ci were released to seepage basins. A much smaller quantity, about 2 Ci, was released to the atmosphere. The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 6.2 mrem (atmospheric) and 1.4 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Radiostrontium releases have resulted in a negligible risk to the environment and the population it supports.

  4. Law enforcement tools available at the Savannah River Site

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Beals, D.M.; Halverson, J.E.; Villa-Aleman, E.; Hayes, D.W.

    2001-01-01

    A number of nuclear technologies developed and applied at the Savannah River Site in support of nuclear weapons material production and environmental remediation can be applied to problems in law enforcement. Techniques and equipment for high-sensitivity analyses of samples are available to identify and quantify trace elements and establish origins and histories of forensic evidence removed from crime scenes. While some of these capabilities are available at local crime laboratories, state-of-the-art equipment and breakthroughs in analytical techniques are continually being developed at DOE laboratories. Extensive experience with the handling of radioactive samples at the DOE labs minimizes the chances of cross-contamination of evidence received from law enforcement. In addition to high-sensitivity analyses, many of the field techniques developed for use in a nuclear facility can assist law enforcement personnel in detecting illicit materials and operations, in retrieving of pertinent evidence and in surveying crime sciences. Some of these tools include chemical sniffers, hand-held detectors, thermal imaging, etc. In addition, mobile laboratories can be deployed to a crime scene to provide field screening of potential evidence. A variety of portable sensors can be deployed on vehicle, aerial, surface of submersible platforms to assist in the location of pertinent evidence or illicit operations. Several specific nuclear technologies available to law enforcement and their potential uses are discussed. (author)

  5. Reconnaissance survey of site 7 of the proposed Three Rivers Regional Landfill and Technology Center, Savannah River Site, Aiken County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Cabak, M.A.; Beck, M.L.; Gillam, C.; Sassaman, K.E.

    1996-02-01

    This report documents the archaeological investigation of Site 7 of the proposed Three Rivers Regional Landfill and Technology Center in Aiken County on the United States Department of Energy`s Savannah River Site (SRS) in Aiken and Barnwell Counties, South Carolina. Pedestrian and subsurface survey techniques were used to investigate the 1,403-acre project area. Survey resulted in the discovery of 23 previously unrecorded sites and 11 occurrences; six previously recorded sites were also investigated. These sites consist of six prehistoric sites, nine historic sites, and 14 sites with both prehistoric and historic components. Sites locations and project area boundaries are provided on a facsimile of a USGS 7.5 topographic map. The prehistoric components consist of very small, low-density lithic and ceramic scatters; most contain less than 10 artifacts. Six of the prehistoric components are of unknown cultural affiliation, the remaining prehistoric sites were occupied predominately in the Woodland period. The historic sites are dominated by postbellum/modem home places of tenant and yeoman farmers but four historic sites were locations of antebellum house sites (38AK136, 38AK613, 38AK660, and 38AK674). The historic sites also include an African-American school (38AK677).

  6. A New Hydrogeological Research Site in the Willamette River Floodplain

    Science.gov (United States)

    The Willamette River is a ninth-order tributary of the Columbia which passes through a productive and populous region in northwest Oregon. Where unconstrained by shoreline revetments, the floodplain of this river is a high-energy, dynamic system which supports a variety of ripari...

  7. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    International Nuclear Information System (INIS)

    1992-12-01

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program

  8. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  9. Development of a site-wide accident management center for the Savannah River Site

    International Nuclear Information System (INIS)

    Heal, D.W.; Britt, T.E.

    1992-01-01

    In 1990, the Safety Analysis Group at the Savannah River Site (SRS) began development of an Accident Management program. The program was designed to provide a total system which would meet the Department of Energy (DOE) Safety Performance Criteria, in regard to severe accident management, in the most effective manner. This paper will present two significant changes in the current SRS Accident Management program which will be used to meet these expanded needs. The first and most significant change will be to expand the diversity of the groups involved in the Accident Management process. In the future, organizations such as Environmental Safety, Health ampersand Quality Assurance, Emergency Planning, Site Management, Human Factors, Risk Assessment, and many others will work as an integrated team to solve facility problems. Organizations such as Materials Technology, Equipment Engineering and many of the laboratories on site will be utilized as support groups to increase the technical capability for specific accident analyses. This phase of the program is currently being structured, and should be operational by January of 1993

  10. Site Outcomes Baseline Multi Year Work Plan Volume 1, River Corridor Restoration Baseline

    International Nuclear Information System (INIS)

    Wintczak, T.M.

    2001-01-01

    The River Corridor Restoration volume is a compilation of Hanford Site scope, which excludes the approximately 194 km 2 Central Plateau. The River Corridor scope is currently contractually assigned to Fluor Hanford, Bechtel Hanford, inc., DynCorp, and Pacific Northwest National Laboratory, and others. The purpose of this project specification is to provide an overall scoping document for the River Corridor Restoration volume, and to provide a link with the overall Hanford Site River Corridor scope. Additionally, this specification provides an integrated and consolidated source of information for the various scopes, by current contract, for the River Corridor Restoration Baseline. It identifies the vision, mission, and goals, as well as the operational history of the Hanford Site, along with environmental setting and hazards

  11. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  12. Carbon-14 geochemistry at the Savannah River Site

    International Nuclear Information System (INIS)

    Roberts, Kimberly A.; Kaplan, Daniel I.

    2013-01-01

    Carbon-14 is among the key radionuclides driving risk at the E-Area Low-Level Waste Disposal Facility on the Savannah River Site (SRS). Much of this calculated risk is believed to be the result of having to make conservative assumptions in risk calculations because of the lack of site-specific data. The original geochemical data package (Kaplan 2006) recommended that performance assessments and composite analyses for the SRS assume that 14 C did not sorbed to sediments or cementitious materials, i.e., that C-14 K d value (solid:liquid concentration ratio) be set to 0 mL/g (Kaplan 2006). This recommendation was based primarily on the fact that no site-specific experimental work was available and the assumption that the interaction of anionic 14 C as CO 2 2- ) with similarly charged sediments or cementitious materials would be minimal. When used in reactive transport equations, the 0 mL/g Kd value results in 14 C not interacting with the solid phase and moving quickly through the porous media at the same rate as water. The objective of this study was to quantify and understand how aqueous 14 C, as dissolved carbonate, sorbs to and desorbs from SRS sediments and cementitious materials. Laboratory studies measuring the sorption of 14 C, added as a carbonate, showed unequivocally that 14 C-carbonate K d values were not equal to 0 mL/g for any of the solid phases tested, but they required several months to come to steady state. After six months of contact, the apparent K d values for a clayey sediment was 3,000 mL/g, for a sandy sediment was 10 mL/g, for a 36-year-old concrete was 30,000 mL/g, and for a reducing grout was 40 mL/g. Furthermore, it was demonstrated that (ad)sorption rates were appreciably faster than desorption rates, indicating that a kinetic sorption model, as opposed to the steady-state K d model, may be a more accurate description of the 14 C-carbonate sorption process. A second study demonstrated that the 14 C-carbonate sorbed very strongly onto the

  13. Title V Operating Permit: XTO Energy, Inc. - River Bend Dehydration Site

    Science.gov (United States)

    Initial Title V Operating Permit (Permit Number: V-UO-000026-2011.00) and the Administrative Permit Record for the XTO Energy, Inc., River Bend Dehydration Site, located on the Uintah and Ouray Indian Reservation.

  14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: STAGING (Staging Site Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for staging sites along the Hudson River. Vector points in this data set represent locations of possible staging areas...

  15. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, F.S.

    1999-01-01

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials

  16. Waterborne Release Monitoring and Surveillance Programs at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-03-26

    This report documents the liquid release environmental compliance programs currently in place at the Savannah river Site (SRS). Included are descriptions of stream monitoring programs, which measure chemical parameters and radionuclides in site streams and the Savannah river and test representative biological communities within the streams for chemical and radiological uptake. This report also explains the field sampling and analytical capabilities that are available at SRS during both normal and emergency conditions.

  17. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K.

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of ''refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs

  18. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K. (ed.)

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  19. Waterborne Release Monitoring and Surveillance Programs at the Savannah River Site

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    This report documents the liquid release environmental compliance programs currently in place at the Savannah river Site (SRS). Included are descriptions of stream monitoring programs, which measure chemical parameters and radionuclides in site streams and the Savannah river and test representative biological communities within the streams for chemical and radiological uptake. This report also explains the field sampling and analytical capabilities that are available at SRS during both normal and emergency conditions

  20. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  1. Monitoring and Evaluation of Environmental Flow Prescriptions for Five Demonstration Sites of the Sustainable Rivers Project

    Science.gov (United States)

    Konrad, Christopher P.

    2010-01-01

    The Nature Conservancy has been working with U.S. Army Corps of Engineers (Corps) through the Sustainable Rivers Project (SRP) to modify operations of dams to achieve ecological objectives in addition to meeting the authorized purposes of the dams. Modifications to dam operations are specified in terms of environmental flow prescriptions that quantify the magnitude, duration, frequency, and seasonal timing of releases to achieve specific ecological outcomes. Outcomes of environmental flow prescriptions implemented from 2002 to 2008 have been monitored and evaluated at demonstration sites in five rivers: Green River, Kentucky; Savannah River, Georgia/South Carolina; Bill Williams River, Arizona; Big Cypress Creek, Texas; and Middle Fork Willamette River, Oregon. Monitoring and evaluation have been accomplished through collaborative partnerships of federal and state agencies, universities, and nongovernmental organizations.

  2. Hydrogeological investigations of river bed clogging at a river bank filtration site along the River Warta, Poland

    Directory of Open Access Journals (Sweden)

    Przybyłek Jan

    2017-12-01

    Full Text Available River bank filtration (RBF is a system that enriches groundwater resources by induced infiltration of river water to an aquifer. Problematic during operation of RBF systems is the deterioration of infiltration effectiveness caused by river bed clogging. This situation was observed in the Krajkowo well field which supplies fresh water to the city of Poznań (Poland during and after the long hydrological drought between the years 1989 and 1992. The present note discusses results of specific hydrogeological research which included drilling of a net of boreholes to a depth of 10 m below river bottom (for sediment sampling as well as for hydrogeological measurements, analyses of grain size distribution and relative density studies. The results obtained have allowed the recognition of the origin of the clogging processes, as well as the documentation of the clogged parts of the river bottom designated for unclogging activities.

  3. Environmental Assessment for the construction and operation of the Health Physics Site Support Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    1995-07-01

    DOE has prepared an environmental assessment for the proposed construction and operation of the Health Physics Site Support Facility on the Savannah River Site. This (new) facility would meet requirements of the site radiological protection program and would ensure site compliance with regulations. It was determined that the proposed action is not a major Federal action significantly affecting the quality of the environment within the meaning of NEPA. Therefore, a finding of no significant impact is made, and no environmental impact statement is needed

  4. Summary of the Phase II, Title I engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Green River site, Utah. The services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 123 thousand tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The three alternative actions presented are dike stabilization, fencing, on- and off-site decontamination and maintenance; improvements in the stabilization cover and diking plus cleanup of the site and Browns Wash, and realignment of Browns Wash; and addition of stabilization cover to a total of 2 ft, realignment of Browns Wash and placement of additional riprap, on-site cleanup and drainage improvements. All options include remedial action at off-site structures. Cost estimates for the three options range from $700,000 to $926,000

  5. Phase II, Title I engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Green River site, Utah. Services included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations , the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 123 thousand tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The three alternative actions presented are dike stabilization, fencing, on- and off-site decontamination and maintenance (Option I); improvements in the stabilization cover and diking plus cleanup of the site and Browns Wash, and realignment of Browns Wash (Option II); and addition of stabilization cover to a total of 2 ft, realignment of Browns Wash and placement of additional riprap, on-site cleanup and drainage improvements (Option III). All options include remedial action at off-site structures. Cost estimates for the three options range from $700,000 to $926,000

  6. SITE SPECIFIC REFERENCE PERSON PARAMETERS AND DERIVED CONCENTRATION STANDARDS FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.

    2013-03-14

    The purpose of this report is twofold. The first is to develop a set of behavioral parameters for a reference person specific for the Savannah River Site (SRS) such that the parameters can be used to determine dose to members of the public in compliance with Department of Energy (DOE) Order 458.1 “Radiation Protection of the Public and the Environment.” A reference person is a hypothetical, gender and age aggregation of human physical and physiological characteristics arrived at by international consensus for the purpose of standardizing radiation dose calculations. DOE O 458.1 states that compliance with the annual dose limit of 100 mrem (1 mSv) to a member of the public may be demonstrated by calculating the dose to the maximally exposed individual (MEI) or to a representative person. Historically, for dose compliance, SRS has used the MEI concept, which uses adult dose coefficients and adult male usage parameters. Beginning with the 2012 annual site environmental report, SRS will be using the representative person concept for dose compliance. The dose to a representative person will be based on 1) the SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data, which are documented in this report, 2) the reference person (gender and age averaged) ingestion and inhalation dose coefficients provided in DOE Derived Concentration Technical Standard (DOE-STD-1196-2011), and 3) the external dose coefficients provided in the DC_PAK3 toolbox. The second purpose of this report is to develop SRS-specific derived concentration standards (DCSs) for all applicable food ingestion pathways, ground shine, and water submersion. The DCS is the concentration of a particular radionuclide in water, in air, or on the ground that results in a member of the public receiving 100 mrem (1 mSv) effective dose following continuous exposure for one year. In DOE-STD-1196-2011, DCSs were developed for the ingestion of water, inhalation of

  7. Recovery of thermophilic Campylobacter by three sampling methods from classified river sites in Northeast Georgia, USA

    Science.gov (United States)

    It is not clear how best to sample streams for the detection of Campylobacter which may be introduced from agricultural or community land use. Fifteen sites in the watershed of the South Fork of the Broad River (SFBR) in Northeastern Georgia, USA, were sampled in three seasons. Seven sites were cl...

  8. Test program for closure activities at a mixed waste disposal site at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Harley, J.P. Jr.

    1988-01-01

    A 58-acre site at the Savannah River Plant which was used for disposal of low-level radioactive waste and quantities of the hazardous materials lead, cadmium, scintillation fluid, and oil will be the first large waste site at the Savannah River Plant to be permanently closed. The actions leading to closure of the facility will include surface stabilization and capping of the site. Test programs have been conducted to evaluate the effectiveness of dynamic compaction as a stabilization technique and the feasibility of using locally derived clay as a capping material

  9. Critical Radionuclide and Pathway Analysis for the Savannah River Site, 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hartman, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-08

    During the operational history of Savannah River Site, many different radionuclides have been released from site facilities. However, as shown in this analysis, only a relatively small number of the released radionuclides have been significant contributors to doses to the offsite public. This report is an update to the 2011 analysis, Critical Radionuclide and Pathway Analysis for the Savannah River Site. SRS-based Performance Assessments for E-Area, Saltstone, F-Tank Farm, H-Tank Farm, and a Comprehensive SRS Composite Analysis have been completed. The critical radionuclides and pathways identified in those extensive reports are also detailed and included in this analysis.

  10. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  11. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    International Nuclear Information System (INIS)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS)

  12. Westinghouse Savannah River Site Supplier Environmental Restoration and Waste Management Information Exchange Forum

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.; Hottel, R.E.; Christoper, N.

    1994-01-01

    The Savannah River Site conducted its first Supplier Information Exchange in September 1993. The intent of the conference was to inform potential suppliers of the Savannah River Sites mission and research and development program objectives in the areas of environmental restoration and waste management, and to solicit proposals for innovative research in those areas. Major areas addressed were Solid Waste, Environmental Restoration, Environmental Monitoring, Transition/Decontamination and Decommissioning, and the Savannah River Technology Center. A total of 1062 proposals were received addressing the 89 abstracts presented. This paper will describe the forum the process for solicitation, the process for proposal review and selection, and review the overall results and benefits to Savannah River

  13. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    International Nuclear Information System (INIS)

    Specht, W.L.

    2000-01-01

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams

  14. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    2000-02-28

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  15. Environmental Assessment for the off-site commercial cleaning of lead and asbestos contaminated laundry from the Savannah River Site

    International Nuclear Information System (INIS)

    1995-12-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts of off-site commercial cleaning of lead and asbestos contaminated laundry generated at the Savannah River Site (SRS), located near Aiken, South Carolina. The proposed action constitutes an addition to the already-implemented action of sending controlled and routine SRS laundry to an off-site commercial facility for cleaning. This already-implemented action was evaluated in a previous EA (i.e., DOE/EA-0990; DOE, 1994) prepared under the National Environmental Policy Act of 1969 (NEPA)

  16. Mixed Waste Management Facility closure at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.

    1991-08-01

    The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein

  17. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  18. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-01

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  19. Land cover mapping and GIS processing for the Savannah River Site Database

    International Nuclear Information System (INIS)

    Christel, L.M.; Guber, A.L.

    1994-07-01

    The Savannah River Site (SRS) is owned by the U.S. Department of Energy and operated by Westinghouse Savannah River Company. Located in Barnwell, Aiken, and Allendale counties in South Carolina, SRS covers an area of approximately 77,700 hectares. Land cover information for SRS was interpreted from color and color infrared aerial photography acquired between 1980 and 1989. The data were then used as the source of the land cover data layer for the SRS sitewide Geographic Information System database. This database provides SRS managers with recent land use information and has been successfully used to support cost-effective site characterization and reclamation

  20. Audit of the Uranium Solidification Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    1994-01-01

    In the late 1980s, DOE decided to construct a Uranium Solidification Facility at the Savannah River Site to process liquid uranyl nitrate into powder. Since the need for weapons materials has been reduced, an audit was conducted to assess the need for this facility. The audit disclosed that DOE continued to construct the facility, because DOE's procedures did not ensure that projects of this type were periodically reassessed when significant program changes occurred. The audit identified more economical alternatives for processing existing quantities of liquid uranyl nitrate at the Savannah River Site

  1. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  2. Environmental assessment for the off-site volume reduction of low-level radioactive waste from the Savannah River Site

    International Nuclear Information System (INIS)

    1995-07-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1061) for the proposed off-site volume reduction of low-level radioactive wastes (LLW) generated at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  3. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT SUMMARY FOR 2012

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, M.; Meyer, A.

    2013-09-12

    This report's purpose is to: Present summary environmental data that characterize Site environmental management performance, Describe compliance status with respect to environmental standards and requirements, and Highlight significant programs and efforts. Environmental monitoring is conducted extensively with a 2,000-square-mile network extending 25 miles from SRS, with some monitoring performed as far as 100 miles from the Site. The area includes neighboring cities, towns, and counties in Georgia (GA) and South Carolina (SC). Thousands of samples of air, rainwater, surface water, drinking water, groundwater, food products, wildlife, soil, sediment, and vegetation are collected by SRS and analyzed for the presence of radioactive and nonradioactive contaminants. During 2012, SRS accomplished several significant milestones while maintaining its record of environmental excellence, as its operations continued to result in minimal impact to the public and the environment. The Site's radioactive and chemical discharges to air and water were well below regulatory standards for environmental and public health protection; its air and water quality met applicable requirements; and the potential radiation dose to the public was well below the DOE public dose limit.

  4. Long-term surveillance plan for the Green River, Utah, disposal site

    International Nuclear Information System (INIS)

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  5. Rheology of Savannah River Site Tank 42 radioactive sludges. Revision 1

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1995-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site (SRS), Tank 42 sludge represents one of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility (DWPF). The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer. Rheological properties of Tank 42 radioactive sludge were measured as a function of weight percent total solids to ensure that the first DWPF radioactive sludge batch can be pumped and processed in the DWPF with the current design bases. The yield stress and consistency of the sludge slurries were determined by assuming a Bingham plastic fluid model

  6. Long-term surveillance plan for the Green River, Utah disposal site. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  7. Investigation of nonlinear dynamic soil property at the Savannah River Site

    International Nuclear Information System (INIS)

    Lee, R.C.

    2000-01-01

    This document summarizes laboratory dynamic soil testing investigations conducted by the University of Texas at Austin (UTA) for the Savannah River Site (SRS) (Stokoe et al., 1995a, Stokoe et al., 1995b, Sponseller and Stokoe, 1995). The purpose of the investigation is to provide an evaluation of past testing results in the context of new test data and the development of consistent site wide models of material strain dependencies based upon geologic formation, depth, and relevant index properties

  8. Initial Operation of the Savannah River Site Advanced Storage Monitoring Facility

    International Nuclear Information System (INIS)

    McCurry, D.R.

    2001-01-01

    An advanced storage monitoring facility has been constructed at the Savannah River Site capable of storing sensitive nuclear materials (SNM) with access to monitoring information available over the Internet. This system will also have monitoring information available over the Internet to appropriate users. The programs will ultimately supply authenticated and encrypted data from the storage sites to certified users to demonstrate the capability of using the Internet as a safe and secure communications medium for remote monitoring of sensitive items

  9. Analysis of Removal Alternatives for the Heavy Water Components Test Reactor at the Savannah River Site

    International Nuclear Information System (INIS)

    Owen, M.B.

    1996-08-01

    This engineering study was developed to evaluate different options for decommissioning of the Heavy Water Components Test Reactor (HWCTR) at the Savannah River Site. This document will be placed in the DOE-SRS Area reading rooms for a period of 30 days in order to obtain public input to plans for the demolition of HWCTR

  10. Savannah River Site TIER TWO report 1992: Emergency and Hazardous Chemical Inventory report

    International Nuclear Information System (INIS)

    Still, G.O.

    1993-03-01

    This report is a compilation of data on emergency and hazardous chemicals stored at the Savannah River Site. The report lists quantities of materials, general types of storage containment, types of storage conditions (pressure and temperature), and other information of relevance for particular materials

  11. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  12. Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, A.W. III

    2001-01-03

    This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.

  13. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1999-01-01

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results

  14. Hanford Site River Protection Project (RPP) High-Level Waste Storage

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2000-01-01

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc

  15. Land and water use characteristics in the vicinity of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hamby, D.M.

    1991-03-01

    Routine operations at the Savannah River Site (SRS) result in the release of small amounts of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the offsite maximum individual and the offsite population within 50 miles of the SRS are estimated on a yearly basis. These estimates are generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose model parameters for facilities not having enough data to develop site-specific values. A survey of land and water use characteristics for the Savannah River area has been conducted to determine as many site-specific values as possible for inclusion in the dose models used at the SRS. These site parameters include local characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates. The report that follows describes the origin of the NRC default values, the methodology for deriving regional data, the results of the study, and the derivations of region-specific usage and consumption rates. 33 refs., 3 figs., 8 tabs.

  16. Cost benefit of caustic recycle for tank waste remediation at the Hanford and Savannah River Sites

    International Nuclear Information System (INIS)

    DeMuth, S.

    1998-01-01

    The potential cost savings due to the use of caustic recycle used in conjunction with remediation of radioactive underground storage tank waste, is shown in a figure for the Hanford and Savannah River sites. Two cost savings estimates for each case have been made for Hanford, and one cost savings estimate for each case have been made for Hanford, and one cost savings estimate for each case has been made for the Savannah River site. This is due to the Hanford site remediation effort being less mature than that of Savannah River; and consequently, a range of cost savings being more appropriate for Hanford. This range of cost savings (rather than a ingle value) for each case at Hanford is due to cost uncertainties related to the LAW immobilization operation. Caustic recycle Case-1 has been defined as the sodium required to meet al identified caustic needs for the entire Site. Case-2 has been defined as the maximum sodium which can be separated from the low activity waste without precipitation of Al(OH) 3 . It has been determined that the potential cost savings at Hanford ranges from $194 M to $215 M for Case-1, and $293 M to $324 M for Case-2. The potential cost savings at Savannah River are $186 M for Case-1 and $281 M for Case-2. A discussion of the uncertainty associated with these cost savings estimates can be found in the Discussion and Conclusions section

  17. Basement Surface Faulting and Topography for Savannah River Site and Vicinity

    International Nuclear Information System (INIS)

    Cumbest, R.J.

    1998-01-01

    This report integrates the data from more than 60 basement borings and over 100 miles of seismic reflection profiling acquired on the Savannah River Site to map the topography of the basement (unweathered rock) surface and faulting recorded on this surface

  18. Innovative in situ treatment approach for DOE Savannah River Site Sanitary Landfill

    International Nuclear Information System (INIS)

    Knapp, J.; Suer, A.

    1994-01-01

    Pursuant to a settlement agreement reached between the US Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC), the Sanitary Landfill at the Savannah River Site will be closed. This paper addresses the approach used to select the innovative in situ treatment alternative for the groundwater and the vadose zone associated with the landfill

  19. 76 FR 7835 - Great River Hydropower, LLC; Notice of Scoping Meetings and Environmental Site Review and...

    Science.gov (United States)

    2011-02-11

    ... Hydropower, LLC; Notice of Scoping Meetings and Environmental Site Review and Soliciting Scoping Comments.... c. Date filed: July 12, 2010. d. Applicant: Great River Hydropower, LLC. e. Name of Project: Upper... 796-foot-long by 46-foot-wide by 25-foot-high concrete hydropower structure consisting of 30 turbine...

  20. The Savannah River Site's Groundwater Monitoring Program 1991 well installation report

    International Nuclear Information System (INIS)

    1992-06-01

    This report is a summary of the well and environmental soil boring information compiled for the groundwater monitoring program of the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) at the Savannah River Site (SRS) during 1991. It includes discussion of environmental soil borings, surveying, well installations, abandonments, maintenance, and stabilization

  1. The seasonal factor at the prehistoric site of Shag River Mouth, New Zealand

    International Nuclear Information System (INIS)

    Higham, T.F.G.

    1997-01-01

    This paper addresses moa hunters' seasonality at the Shag River Mouth site. A two meters section in layer 4 of the SM/C: Dune site was left as a baulk in 1988 to enable the stratigraphic profile (∼2m) to be more carefully investigated. Within the baulk, detailed lensing and microstrata could be identified. Claassen (1991) has suggested that one of the most important variables in determining seasonal and prehistoric shell-bearing site formation more accurately is emphasizing finer stratigraphic resolution and more rigorous attention to retrieving midden components. At Shag River Mouth, seven sub-layers, or spits, were excavated within the 2m baulk to refine the precision of subsequent seasonal analyses and enable a detailed assessment of the components of each and their season of deposition. A variety of seasonal methods were utilised including 18 O analysis of blue mussel shell carbonate and growth ring analysis of estuarine bivalves. In addition, sagital otoliths of red cod excavated from the site were sectioned and the annual and seasonal growth rings formed during the fishes' life were analysed for seasonal information. This has enabled a detailed analysis of the seasonality of this discrete area of the Shag River Mouth site. The significance of the results for understanding the prehistoric seasonal round of activities within the site and its wider orbit is presented

  2. Assessment of tritium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Murphy, C.E. Jr.; Bauer, L.R.

    1993-10-01

    This report is the first revision to a series of reports on radionuclides inn the SRS environment. Tritium was chosen as the first radionuclide in the series because the calculations used to assess the dose to the offsite population from SRS releases indicate that the dose due to tritium, through of small consequence, is one of the most important the radionuclides. This was recognized early in the site operation, and extensive measurements of tritium in the atmosphere, surface water, and ground water exist due to the effort of the Environmental Monitoring Section. In addition, research into the transport and fate of tritium in the environment has been supported at the SRS by both the local Department of Energy (DOE) Office and DOE's Office of Health and Environmental Research

  3. Assessment of tritium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Murphy, C.E. Jr.; Bauer, L.R. [and others

    1993-10-01

    This report is the first revision to a series of reports on radionuclides inn the SRS environment. Tritium was chosen as the first radionuclide in the series because the calculations used to assess the dose to the offsite population from SRS releases indicate that the dose due to tritium, through of small consequence, is one of the most important the radionuclides. This was recognized early in the site operation, and extensive measurements of tritium in the atmosphere, surface water, and ground water exist due to the effort of the Environmental Monitoring Section. In addition, research into the transport and fate of tritium in the environment has been supported at the SRS by both the local Department of Energy (DOE) Office and DOE`s Office of Health and Environmental Research.

  4. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  5. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  6. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River Site

    International Nuclear Information System (INIS)

    Cummins, C.L.

    1994-09-01

    As a result of operations at the Savannah River Site (SRS), over 50 radionuclides have been released to the atmosphere and to onsite streams and seepage basins. Now, many of these radionuclides are available to aquatic and/or terrestrial organisms for uptake and cycling through the food chain. Knowledge about the uptake and cycling of these radionuclides is now crucial in evaluating waste management and clean-up alternatives for the site. Numerous studies have been conducted at the SRS over the past forty years to study the uptake and distribution of radionuclides in the Savannah River Site environment. In many instances, bioconcentration factors have been calculated to quantify the uptake of a radionuclide by an organism from the surrounding medium (i.e., soil or water). In the past, it has been common practice to use bioconcentration factors from the literature because site-specific data were not readily available. However, because of the variability of bioconcentration factors due to experimental or environmental conditions, site-specific data should be used when available. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at the Savannah River Site (SRS). An extensive literature search yielded site-specific bioconcentration factors for cesium, strontium, cobalt, plutonium, americium, curium, and tritium. These eight radionuclides have been the primary radionuclides studied at SRS because of their long half lives or because they are major contributors to radiological dose from exposure. For most radionuclides, it was determined that the site-specific bioconcentration factors were higher than those reported in literature. This report also summarizes some conditions that affect radionuclide bioavailability to and bioconcentration by aquatic and terrestrial organisms

  7. SAVANNAH RIVER SITE CAPABILITIES FOR CONDUCTING INGESTION PATHWAY CONSEQUENCE ASSESSMENTS FOR EMERGENCY RESPONSE

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C

    2007-12-11

    Potential airborne releases of radioactivity from facilities operated for the U. S. Department of Energy at the Savannah River Site could pose significant consequences to the public through the ingestion pathway. The Savannah River National Laboratory has developed a suite of technologies needed to conduct assessments of ingestion dose during emergency response, enabling emergency manager at SRS to develop initial protective action recommendation for state agencies early in the response and to make informed decisions on activation of additional Federal assets that would be needed to support long-term monitoring and assessment activities.

  8. Criticality safety engineering at the Savannah River Site - the 1990s

    International Nuclear Information System (INIS)

    Chandler, J.R.; Apperson, C.E. Jr.

    1996-01-01

    The privatization and downsizing effort that is ongoing within the U.S. Department of Energy (DOE) is requiring a change in the management of criticality safety engineering resources at the Savannah River Site (SRS). Downsizing affects the number of criticality engineers employed by the prime contractor, Westinghouse Savannah River Company (WSRC), and privatization affects the manner in which business is conducted. In the past, criticality engineers at the SRS have been part of the engineering organizations that support each facility handling fissile material. This practice led to different criticality safety engineering organizations dedicated to fuel fabrication activities, reactor loading and unloading activities, separation and waste management operations, and research and development

  9. Demonstration of Caustic-Side Solvent Extraction with Savannah River Site High Level Waste

    International Nuclear Information System (INIS)

    Walker, D.D.

    2001-01-01

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet for the decontamination of high level waste using a 33-stage, 2-cm centrifugal contactor apparatus at the Savannah River Technology Center. This represents the first CSSX process demonstration using Savannah River Site (SRS) high level waste. Three tests lasting 6, 12, and 48 hours processed simulated average SRS waste, simulated Tank 37H/44F composite waste, and Tank 37H/44F high level waste, respectively

  10. Using Geoscience and Geostatistics to Optimize Groundwater Monitoring Networks at the Savannah River Site

    International Nuclear Information System (INIS)

    Tuckfield, R.C.

    2001-01-01

    A team of scientists, engineers, and statisticians was assembled to review the operation efficiency of groundwater monitoring networks at US Department of Energy Savannah River Site (SRS). Subsequent to a feasibility study, this team selected and conducted an analysis of the A/M area groundwater monitoring well network. The purpose was to optimize the number of groundwater wells requisite for monitoring the plumes of the principal constituent of concern, viz., trichloroethylene (TCE). The project gathered technical expertise from the Savannah River Technology Center (SRTC), the Environmental Restoration Division (ERD), and the Environmental Protection Department (EPD) of SRS

  11. Wetlands for Industrial Wastewater Treatment at the Savannah River Site

    International Nuclear Information System (INIS)

    Gladden, J.B.

    2002-01-01

    The A-01 effluent outfall, which collects both normal daily process flow and stormwater runoff from a industrial park area, did not meet the South Carolina Department of Health and Environmental Control (SCDHEC) National Pollutant Discharge Elimination System (NPDES) permit limits for metals, toxicity, and total residual chlorine at the outfall sampling point. Copper was the constituent of primary concern and the effluent consistently failed to meet that NPDES limit. Installation of a constructed wetland system including a basin to manage stormwater surges was required to reduce the problematic constituent concentrations to below the NPDES permit limits before the effluent reaches the sampling point. Both bench-scale and on-site pilot scale physical models were constructed to refine and optimize the preliminary design as well as demonstrate the effectiveness of this approach prior to construction, which was completed in October 2000. The constructed treatment wetlands system has prov en its ability to treat industrial wastewaters containing metals with low O and M costs since there are no mechanical parts. With an anticipated life of over 50 years, this system is exceptionally cost effective

  12. Department of Energy Plutonium ES ampersand H Vulnerability Assessment Savannah River Site interim compensatory measures

    International Nuclear Information System (INIS)

    Bickford, W.E.

    1994-01-01

    The Savannah River Site (SRS) has recently completed a self-assessment of potential vulnerabilities associated with plutonium and other transuranic materials stored at the site. An independent Working Group Assessment Team (WGAT) appointed by DOE/ES ampersand H also performed an independent assessment, and reviewed and validated the site self-assessment. The purpose of this report is to provide a status of interim compensatory measures at SRS to address hazards in advance of any corrective actions. ES ampersand H has requested this status for all vulnerabilities ranked medium or higher with respect to potential consequences to workers, environment, and the public

  13. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2010-03-15

    The Savannah River Site disposes of low-activity radioactive waste within subsurface-engineered facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste (i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The objective of this document is to provide the geochemical values for the PA calculations. This work is being conducted as part of the on-going maintenance program that permits the PA to periodically update existing calculations when new data become available.

  14. SRP baseline hydrogeologic investigation: Aquifer characterization. Groundwater geochemistry of the Savannah River Site and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  15. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States); Dam, Wiliam [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  16. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wike, L.D.

    2000-01-01

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site

  17. Pilot study risk assessment for selected problems at the Savannah River Site (SRS)

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.; Morris, S.C.; Pardi, R.; Sun, C.; Daniels, J.I.; Layton, D.; McKone, T.E.; Straume, T.; Anspaugh, L.

    1993-03-01

    An assessment of the health risks was made for releases of tritium and 137 Cs from the Savannah River Site (SRS) at water-receptor locations downriver. Although reactor operations were shut down at the SRS in 1989, liquid wastes continue to be released to the Savannah River either by direct discharges into onsite surface waters or by groundwater transport into surface waters from waste facilities. Existing state mandates will cause the liquid waste streams from future operations to go directly into surface waters. Two drinking water processing plants take water from the river approximately 129 km downriver from the SRS. Potential incremental risks of cancer fatality to individuals and each population were analyzed for either no further reactor operations or resumption of operation of one specific reactor

  18. Pilot study risk assessment for selected problems at the Savannah River Site (SRS)

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.; Morris, S.C.; Pardi, R.; Sun, C. [Brookhaven National Lab., Upton, NY (United States); Daniels, J.I.; Layton, D.; McKone, T.E.; Straume, T.; Anspaugh, L. [Lawrence Livermore National Lab., CA (United States)

    1993-03-01

    An assessment of the health risks was made for releases of tritium and {sup 137}Cs from the Savannah River Site (SRS) at water-receptor locations downriver. Although reactor operations were shut down at the SRS in 1989, liquid wastes continue to be released to the Savannah River either by direct discharges into onsite surface waters or by groundwater transport into surface waters from waste facilities. Existing state mandates will cause the liquid waste streams from future operations to go directly into surface waters. Two drinking water processing plants take water from the river approximately 129 km downriver from the SRS. Potential incremental risks of cancer fatality to individuals and each population were analyzed for either no further reactor operations or resumption of operation of one specific reactor.

  19. Pilot study risk assessment for selected problems at the Savannah River Site (SRS)

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.; Morris, S.C.; Pardi, R.; Sun, C. (Brookhaven National Lab., Upton, NY (United States)); Daniels, J.I.; Layton, D.; McKone, T.E.; Straume, T.; Anspaugh, L. (Lawrence Livermore National Lab., CA (United States))

    1993-03-01

    An assessment of the health risks was made for releases of tritium and [sup 137]Cs from the Savannah River Site (SRS) at water-receptor locations downriver. Although reactor operations were shut down at the SRS in 1989, liquid wastes continue to be released to the Savannah River either by direct discharges into onsite surface waters or by groundwater transport into surface waters from waste facilities. Existing state mandates will cause the liquid waste streams from future operations to go directly into surface waters. Two drinking water processing plants take water from the river approximately 129 km downriver from the SRS. Potential incremental risks of cancer fatality to individuals and each population were analyzed for either no further reactor operations or resumption of operation of one specific reactor.

  20. Reliability Centered Maintenance for Savannah River Site`s interim waste management facilities. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, K.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Wilson, J.F. [PRC, Inc. (US)

    1992-06-01

    The application of Reliability Centered Maintenance (RCM) has been shown to be an effective means to optimize maintenance programs or to establish new programs. The key to success of any RCM program is to customize the methodology to meet the specific needs of the implementing organization. This paper discusses how RCM is being used to establish the preventive maintenance program and how the resulting system data is being used to support the Technical Baseline reconstitution effort for the interim Waste Management Division of Westinghouse Savannah River Company (WSRC).

  1. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, J.D. [ed.] [Exploration Resources, Inc., Athens, GA (United States)

    1991-11-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

  2. The Fall River Long-Term Site Productivity study in coastal Washington: site characteristics, methods, and biomass and carbon and nitrogen stores before and after harvest.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Kathryn B. Piatek; Robert B. Harrison; Richard E. Miller; Barry L. Flaming; ChristopherW Licata; Brian D. Strahm; Constance A. Harrington; Rodney Meade; Harry W. Anderson; Leslie C. Brodie; Joseph M. Kraft

    2007-01-01

    The Fall River research site in coastal Washington is an affiliate installation of the North American Long-Term Soil Productivity (LTSP) network, which constitutes one of the world’s largest coordinated research programs addressing forest management impacts on sustained productivity. Overall goals of the Fall River study are to assess effects of biomass removals, soil...

  3. Geomorphology and geologic characteristics of the Savannah River floodplain in the vicinity of the Savannah River Site, South Carolina and Georgia

    International Nuclear Information System (INIS)

    Leeth, D.C.; Nagle, D.D.

    1994-01-01

    The potential for migration of contaminated ground water from the US Department of Energy Savannah River Site (SRS) beneath the Savannah River into Georgia (trans-river flow) is a subject of recent environmental concern. The degree of incision of the ancestral Savannah River into the local hydrogeologic framework is a significant consideration in the assessment of trans-river flow. The objective of this investigation is to identify the geologic formations which subcrop beneath the alluvium and the extent to which the river has incised regional confining beds. To meet this objective 18 boreholes were drilled to depths of 25 to 100 feet along three transects across the present floodplain. These borings provided data on the hydrogeologic character of the strata that fill the alluvial valley. The profiles from the borehole transects were compared with electrical conductivity (EM-34) data to ascertain the applicability of this geophysical technique to future investigations

  4. DOE Research Set-Aside Areas of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  5. The ArcSDE GIS Dynamic Population Model Tool for Savannah River Site Emergency Response

    International Nuclear Information System (INIS)

    MCLANE, TRACY; JONES, DWIGHT

    2005-01-01

    The Savannah River Site (SRS) is a 310-square-mile Department of Energy site located near Aiken, South Carolina. With a workforce of over 10,000 employees and subcontractors, SRS emergency personnel must be able to respond to an emergency event in a timely and effective manner, in order to ensure the safety and security of the Site. Geographic Information Systems (GIS) provides the technology needed to give managers and emergency personnel the information they need to make quick and effective decisions. In the event of a site evacuation, knowing the number of on-site personnel to evacuate from a given area is an essential piece of information for emergency staff. SRS has developed a GIS Dynamic Population Model Tool to quickly communicate real-time information that summarizes employee populations by facility area and building and then generates dynamic maps that illustrate output statistics

  6. Site Management and Monitoring Plan (SMMP) for the Mouth of Columbia River- Deep and Shallow Water Ocean Dredged Material Disposal Sites, OR/WA

    Science.gov (United States)

    This SMMP is intended to provide management and monitoring strategies for disposal in the Mouth of Columbia River- Deep and Shallow Ocean Dredged Material Disposal Sites on the border of Oregon and Washington.

  7. Breeding bird populations and habitat associations within the Savannah River Site (SRS).

    Energy Technology Data Exchange (ETDEWEB)

    Gauthreaux, Sidney, A.; Steven J. Wagner.

    2005-06-29

    Gauthreaux, Sidney, A., and Steven J. Wagner. 2005. Breeding bird populations and habitat associations within the Savannah River Site (SRS). Final Report. USDA Forest Service, Savannah River, Aiken, SC. 48 pp. Abstract: During the 1970's and 1980's a dramatic decline occurred in the populations of Neotropical migratory birds, species that breed in North America and winter south of the border in Central and South America and in the Caribbean. In 1991 an international initiative was mounted by U. S. governmental land management agencies, nongovernmental conservation agencies, and the academic and lay ornithological communities to understand the decline of Neotropical migratory birds in the Americas. In cooperation with the USDA Forest Service - Savannah River (FS - SR) we began 1992 a project directed to monitoring population densities of breeding birds using the Breeding Bird Census (BBC) methodology in selected habitats within the Savannah River Site SRS. In addition we related point count data on the occurrence of breeding Neotropical migrants and other bird species to the habitat data gathered by the Forest Inventory and Analysis (FIA) program of the USDA Forest Service and data on habitat treatments within forest stands.

  8. Intensive archaeological survey of the proposed Savannah River Ecology Laboratory Conference Center and Educational Facility, Savannah River Site, Aiken County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, K.; Crass, D.C.; Sassaman, K.E.

    1993-02-01

    Documented in this report are the methods and results of an intensive archaeological survey for the proposed University of Georgia Savannah River Ecology Laboratory (SREL) Conference Center and Educational Facility on the DOE Savannah River Site (SRS). Archaeological investigations conducted by the Savannah River Archaeological Research Program (SRARP) on the 70-acre project area and associated rights-of-way consisted of subsurface testing at two previously recorded sites and the discovery of one previously unrecorded site. The results show that 2 sites contain archaeological remains that may yield significant information about human occupations in the Aiken Plateau and are therefore considered eligible for nomination to the National Register of Historic Places. Adverse impacts to these sites can be mitigated through avoidance.

  9. Laboratory QA/QC improvements for small drinking water systems at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R.D.

    1995-12-01

    The Savannah River Site (SRS), a 310 square mile facility located near Aiken, S.C., is operated by Westinghouse Savannah River Company for the US Department of Energy. SRS has 28 separate drinking water systems with average daily demands ranging from 0.0002 to 0.5 MGD. All systems utilize treated groundwater. Until recently, the water laboratories for each system operated independently. As a result, equipment, reagents, chemicals, procedures, personnel, and quality control practices differed from location to location. Due to this inconsistency, and a lack of extensive laboratory OA/QC practices at some locations, SRS auditors were not confident in the accuracy of daily water quality analyses results. The Site`s Water Services Department addressed these concerns by developing and implementing a practical laboratory QA/QC program. Basic changes were made which can be readily adopted by most small drinking water systems. Key features of the program include: Standardized and upgraded laboratory instrumentation and equipment; standardized analytical procedures based on vendor manuals and site requirements; periodic accuracy checks for all instrumentation; creation of a centralized laboratory to perform metals digestions and chlorine colorimeter accuracy checks; off-site and on-site operator training; proper storage, inventory and shelf life monitoring for reagents and chemicals. This program has enhanced the credibility and accuracy of SRS drinking water system analyses results.

  10. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  11. Control of safety and risk management software at the Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Toffer, H.; Crowe, R.D.

    1992-01-01

    As a part of its Reactor Operations Improvement Program at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC), in cooperation with the Westinghouse Hanford Company, has developed and implemented software quality assurance (SQA) for computer codes essential to the safety and reliability of reactor operations. This effort includes the use of quality standards and attendant procedures developed for and applied to computer codes used in safety and risk management analyses. The certification process that was recently implemented is in compliance with site wide and departmental SQA requirements. Certification consists of preparing a specific verification and validation (V and V) plan, a configuration control plan, and user qualifications. Applicable documentation is reviewed to determine compliance with V and V and configuration control action items. The results of this review are documented and serve as a baseline for additional certification activities. Resource commitment and schedules are drawn up for each individual code to complete certification in accordance with SQA requirements

  12. Long-term surveillance plan for the Green River, Utah disposal site. Revision 2

    International Nuclear Information System (INIS)

    1998-07-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out

  13. Comprehensive strategy for corrective actions at the Savannah River Site General Separations Area

    International Nuclear Information System (INIS)

    Ebra, M.A.; Lewis, C.M.; Amidon, M.B.; McClain, L.K.

    1991-01-01

    The Savannah River Site (SRS), operated by the Westinghouse Savannah River Company for the United States Department of Energy, contains a number of waste disposal units that are currently in various stages of corrective action investigations, closures, and postclosure corrective actions. Many of these sites are located within a 40-square-kilometer area called the General Separations Area (GSA). The SRS has proposed to the regulatory agencies, the United States Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), that groundwater investigations and corrective actions in this area be conducted under a comprehensive plan. The proposed plan would address the continuous nature of the hydrogeologic regime below the GSA and the potential for multiple sources of contamination. This paper describes the proposed approach

  14. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2004-12-31

    Franzreb, Kathleen, E. 2004. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 9. Habitat Management and Habitat Relationships. Pp 553-561. Abstract: I constructed a foraging study to examine habitat use of red-cockaded woodpeckers at the Savannah River Site, South Carolina. Because much of the land had been harvested in the late 1940s and early 1950s prior to being sold to the Department of Energy, the available habitat largely consisted of younger trees (e.g., less than 40 years old). From 1992 to 1995, I examined the foraging behavior and reproductive success of 7 groups of red-cockaded woodpeckers.

  15. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986

    International Nuclear Information System (INIS)

    Heffner, J.D.

    1991-01-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy's (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon's 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined

  16. Characterization of the geology, geochemistry, and microbiology of the radio frequency heating demonstration site at the Savannah River Site

    International Nuclear Information System (INIS)

    Eddy Dilek, C.A.; Jarosch, T.R.; Fliermans, C.B.; Looney, B.B.; Parker, W.H.

    1993-08-01

    The overall objective of the Integrated Demonstration Project for the Remediation of Organics at Nonarid Sites at the Savannah River Site (SRS) is to evaluate innovative remediation, characterization, and monitoring systems to facilitate restoration of contaminated sites. The first phase of the demonstration focused on the application and development of in situ air stripping technologies to remediate sediments and groundwater contaminated with volatile organic compounds (VOCs). The second phase focused on the enhancement of the in situ air stripping process by adding selected nutrients to stimulate naturally occurring microorganisms that degrade VOCs. The purpose of the third phase was to evaluate the use of heating technologies [radio frequency (rf) and ohmic heating] to enhance the removal of contamination from clay layers where mass transfer is limited. The objective of this report is to document pretest and post-test data collected in support of the rf heating demonstration. The following data are discussed in this report: (1) a general description of the site including piezometers and sensors installed to monitor the remedial process; (2) stratigraphy, lithology, and a detailed geologic cross section of the study site; (3) tabulations of pretest and post-test moisture and VOC content of the sediments; (4) sampling and analysis procedures for sediment samples; (5) microbial abundance and diversity; (6) three-dimensional images of pretest and post-test contaminant distribution; (7) volumetric calculations

  17. Savannah River Site RCRA/CERCLA/NEPA integrated investigation case study

    International Nuclear Information System (INIS)

    Clark, D.R.; Thomas, R.; Wilson, M.P.

    1992-01-01

    The Savannah River Site (SRS) is a US Department of Energy facility placed on the Superfund National Priority List in 1989. Numerous past disposal facilities and contaminated areas are undergoing the integrated regulatory remediation process detailed in the draft SRS Federal Facility Agreement. This paper will discuss the integration of these requirements by highlighting the investigation of the D-Area Burning/Rubble Pits, a typical waste unit at SRS

  18. 2003 Savannah River Site Annual Illness and Injury Surveillance Report, Revised September 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-05

    Annual Illness and Injury Surveillance Program report for 2003 for the Savannah River Site. DOE is commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The report monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  19. Savannah River Site FY 1998 Spent Nuclear Fuel Interim Management Plan

    International Nuclear Information System (INIS)

    Dupont, M.E.

    1998-01-01

    This document has been prepared to present in one place the near and long-term plans for safe management of Savannah River Site (SRS) spent nuclear fuel inventories until final disposition has been identified and implemented. The activities described are consistent with FY 1998 Annual Operational Plan guidance and with the December 1997 SRS Accelerated Cleanup Plan update. Summarized are highlights, key decision dates, and baseline assumptions of this plan

  20. Discussion about design basis flood of site of research reactors by river

    International Nuclear Information System (INIS)

    Rong Feng; Zhao Jianjun; Du Qiaomin; Zhang Lingyan

    2006-01-01

    This paper presents the well-defined standard in relation to design the basis flood of the sites of research reactors by river. It is based on the concept of some relational standards, analysis of hydrological calculation technology and methods, and analysis of accident dangerous degrees of research reactor, as well as in combination with the engineering practices. The flood preventing standard for research reactors with higher power should be the same with that of the nuclear power plants. (authors)

  1. DOE Research Set-Aside Areas of the Savannah River Site

    International Nuclear Information System (INIS)

    Davis, C.E.; Janecek, L.L.

    1997-01-01

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site's total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside

  2. Aerial radiological surveys of Steed Pond, Savannah River Site: Dates of surveys, 1984--1989

    International Nuclear Information System (INIS)

    Fritzsche, A.E.; Jobst, J.E.

    1993-09-01

    From June 1984 to August 1985, three aerial radiological surveys were conducted over Steed Pond at the Savannah River Site in South Carolina. In addition, Steed Pond was included in larger-area surveys of the Savannah River Site in subsequent years. The surveys were conducted by the Remote Sensing Laboratory of EG ampersand G Energy Measurements, Inc., Las Vegas, Nevada, for the US Department of Energy. Airborne measurements were obtained for both natural and man-made gamma radiation over Steed Pond and surrounding areas. The first survey was conducted when the pond was filled to normal capacity for the time of the year. On September 1, 1984, the Steed Pond dam spillway failed causing the pond to drain. The four subsequent surveys were conducted with the pond drained. The second survey and the third were conducted to study silt deposits exposed by the drop in water level after the spillway's opening. Steed Pond data from the February 1987 and April 1989 Savannah River Site surveys have been included to bring this study up to date

  3. A review of geophysical investigations at the site of Chalk River Nuclear Laboratories, Ontario

    International Nuclear Information System (INIS)

    Thomas, M.D.; Hayles, J.G.

    1988-01-01

    The site of the Chalk River Nuclear Laboratories was one of the first research areas located on crystalline rocks to be extensively investigated under the Canadian Nuclear Fuel Waste Management Program. A large contribution to meeting the geoscientific objectives of the program has been made using a suite of geophysical techniques. Many of them are standard, though sometimes modified in terms of instrumentation and/or experimental and/or analytical procedures, to meet the particular needs of the waste management program. Relatively new techniques have also been employed. Much of the early evaluation and development of the various techniques took place at the Chalk River site. Standard methods such as gravity, magnetics and seismic sounding have been used to investigate bedrock structure, and the seismic method has also been used to estimate overburden thickness. Standard geophysical borehole logging has been used to obtain in situ estimates of physical properties, to locate fracture zones and to make hole to hole correlations that have helped define local structure. Several standard electrical (e.g. resitivity) and electromagnetic (e.g. VLF-EM) techniques have proven successful in identifying water-filled fractures and faults. Relatively new techniques introduced into the geophysics at Chalk River were: ground probing radar; to investigate overburden; borehole TV and acoustic televiewer and VLF-EM, to locate fractures; studies of seismic tube-waves, well tides and temperature logs, to investigate fracture location and permeability. Most of these methods have been successful and are now routinely employed at other research sites

  4. Nuclear incident monitor criticality alarm instrument for the Savannah River Site: Technical manual

    International Nuclear Information System (INIS)

    Jenkins, J.B.

    1996-01-01

    The Savannah River Site is a Department of Energy facility. The facility stores, processes, and works with fissionable material at a number of locations. Technical standards and US Department of Energy orders, require these locations to be monitored by criticality alarm systems under certain circumstances. The Savannah River Site calls such instruments Nuclear Incident Monitors or NIMs. The Sole purpose of the Nuclear Incident Monitor is to provide an immediate evacuation signal in the case of an accidental criticality in order to minimize personnel exposure to radiation. The new unit is the third generation Nuclear Incident Monitor at the Savannah River Site. The second generation unit was developed in 1979. It was designed to eliminate vacuum-tube circuits, and was the first solid state NIM at SRS. The major design objectives of the second generation NIM were to improve reliability and reduce maintenance costs. Ten prototype units have been built and tested. This report describes the design of the new NIM and the testing that took place to verify its acceptability

  5. Effect of Hydrologic Alteration on the Community Succession of Macrophytes at Xiangyang Site, Hanjiang River, China.

    Science.gov (United States)

    Yang, Na; Zhang, Yehui; Duan, Kai

    2017-01-01

    With the intensification of human activities over the past three decades in China, adverse effects on river ecosystem become more serious especially in the Hanjiang River. Xiangyang site is an important spawn ground for four domestic fishes in the downstream region of Hanjiang River. Based on the field survey results of macrophytes during 1997-2000 and 2013-2014, community succession of aquatic macrophytes at Xiangyang site was evaluated and discussed. Two-key ecologic-related hydrologic characteristics, flow regime and water level, were identified as the main influence factors. The EFC (environmental flow components) parameters were adopted to evaluate the alteration of flow regimes at Xiangyang site during 1941-2013. Evaluation results demonstrate a highly altered flow process after being regulated by reservoir. The flow patterns tend to be an attenuation process with no large floods occurring but a higher monthly low flow. Furthermore, the water level decreased and fluctuation reduced after the dam was built, which caused the decrease of biomass but favored the submerged macrophytes during 1995-2009. However, with the water level increasing after 2010 and gently fluctuating, due to uplift by the hydraulic projects downstream as well as the flow attenuation, the dominant position of submerged macrophytes will be weakened.

  6. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    International Nuclear Information System (INIS)

    Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

    1996-01-01

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS

  7. ASME N510 test results for Savannah River Site AACS filter compartments

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.D.; Punch, T.M. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-02-01

    The K-Reactor at the Savannah River Site recently implemented design improvements for the Airborne Activity Confinement System (AACS) by procuring, installing, and testing new Air Cleaning Units, or filter compartments, to ASME AG-11, N509, and N510 requirements. Specifically, these new units provide documentable seismic resistance to a Design Basis Accident earthquake, provide 2 inch adsorber beds with 0.25 second residence time, and meet all AG-1, N509, and N510 requirements for testability and maintainability. This paper presents the results of the Site acceptance testing and discusses an issue associated with sample manifold qualification testing.

  8. 50 years of excellence in science and engineering at the Savannah River Site

    International Nuclear Information System (INIS)

    Phillips, A.G.

    2000-01-01

    This is a collection of papers including abstracts about the celebration of 50 years of excellence in science and engineering at the Savannah River Site. The Symposium Committee invited current and former employees to nominate the innovations to be recognized. Several selection panels of experts in various technical fields reviewed 190 nominations and selected the achievements included in this proceedings. Neither the Symposium Committee nor the selection panels claim that these accomplishments are the best of the best. Instead, they believe that they typify the outstanding quality of science and engineering at the Site during its first half-century

  9. Upgrade of the Department of Energy's Savannah River Site's reactor operations and maintenance procedures

    International Nuclear Information System (INIS)

    Walsh, T.E.

    1991-01-01

    This paper describes the program in progress at the Savannah River Site (SRS) to upgrade the existing reactor operating and maintenance procedures to current commercial nuclear industry standards. In order to meet this goal, the following elements were established: administrative procedures to govern the upgrade process, tracking system to provide status and accountability; and procedure writing guides. The goal is to establish a benchmark of excellence by which other Department of Energy (DOE) sites will measure themselves. The above three elements are addressed in detail in this paper

  10. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

    1996-12-31

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS.

  11. Feasibility determination of low head hydroelectric power development at existing sites: Mousam River Project

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The technical and economic feasibility of low head hydroelectric power development at existing sites along the Mousam River in southeastern Maine was studied. The following areas were investigated: determination of available energy; development of restoration concepts; environmental studies; historical and archeological studies; assessment of civil construction requirements; geotechnical and geologic assessment of existing dams; assessment of turbine alternatives; assessment of generator and utility interface alternatives; economic analysis; and restoration concept evaluation and selection. The results of the hydropower evaluation showed that: of the seven sites evaluated, only four can be considered economically feasible for refurbishment at this time; the use of used and/or rebuilt equipment is more economically attractive than new equipment; the cost of equipment at each site was of the same order as the cost of the dam reconstruction; and the cost of fuel prices will be the determining feature of whether the sites should be reconstructed.

  12. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    Science.gov (United States)

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  13. Savannah River Site nuclear materials management plan FY 2017-2031

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-22

    The purpose of the Nuclear Materials Management Plan (herein referred to as “this Plan”) is to integrate and document the activities required to disposition the legacy and/or surplus Enriched Uranium (EU) and Plutonium (Pu) and other nuclear materials already stored or anticipated to be received by facilities at the Department of Energy (DOE) Savannah River Site (SRS) as well as the activities to support the DOE Tritium mission. It establishes a planning basis for EU and Pu processing operations in Environmental Management Operations (EMO) facilities through the end of their program missions and for the tritium through the National Nuclear Security Administration (NNSA) Defense Programs (DP) facilities. Its development is a joint effort among the Department of Energy - Savannah River (DOE-SR), DOE – Environmental Management (EM), NNSA Office of Material Management and Minimization (M3), NNSA Savannah River Field Office (SRFO), and the Management and Operations (M&O) contractor, Savannah River Nuclear Solutions, LLC (SRNS). Life-cycle program planning for Nuclear Materials Stabilization and Disposition and the Tritium Enterprise may use this Plan as a basis for the development of the nuclear materials disposition scope and schedule. This Plan assumes full funding to accomplish the required project and operations activities. It is recognized that some aspects of this Plan are pre decisional with regard to National Environmental Policy Act (NEPA); in such cases new NEPA actions will be required.

  14. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Jenkins, R.A.; Wise, M.B. [Oak Ridge National Lab., TN (United States)] [and others

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.

  15. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-01-01

    The Department of Energy's Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ''Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.'' New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure

  16. Non-Operational Property Evaluation for the Hanford Site River Corridor - 12409

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, John [CH2M HILL, Richland, Washington 99354 (United States); Aly, Alaa [CH2M HILL Plateau Remediation Company and INTERA Incorporated, Richland, Washington 99354 (United States)

    2012-07-01

    The Hanford Site River Corridor consists of the former reactor areas of the 100 Areas and the former industrial (fuel processing) area in the 300 Area. Most of the waste sites are located close to the decommissioned reactors or former industrial facilities along the Columbia River. Most of the surface area of the River Corridor consists of land with little or no subsurface infrastructure or indication of past or present releases of hazardous constituents, and is referred to as non-operational property or non-operational area. Multiple lines of evidence have been developed to assess identified fate and transport mechanisms and to evaluate the potential magnitude and significance of waste site-related contaminants in the non-operational area. Predictive modeling was used for determining the likelihood of locating waste sites and evaluating the distribution of radionuclides in soil based on available soil concentration data and aerial radiological surveys. The results of this evaluation indicated: 1) With the exception of stack emissions, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas, 2) Stack emissions that may have been associated with Hanford Site operations generally emitted short-lived and/or gaseous radionuclides, and (3) the likelihood of detecting elevated radionuclide concentrations or other waste sites in non-operational area soils is very small. The overall conclusions from the NPE evaluation of the River Corridor are: - With the exception of stack emissions to the air, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas. While pathways such as windblown dust, overland transport and biointrusion have the potential for dispersing waste site contaminants, the resulting transport is unlikely to result in substantial contamination in non-operational areas. - Stack

  17. Thermal and physical property determination for IONSIV/256 IE-911 crystalline silicotitanate and Savannah River Site waste simulant solutions

    International Nuclear Information System (INIS)

    Canada, C.C.

    1999-01-01

    This document describes physical and thermophysical property determinations that were made in order to resolve questions associated with the decontamination of Savannah River Site waste streams using ion exchange on crystalline silicotitanate

  18. Applications of high transition temperature superconductors at the Savannah River Site

    International Nuclear Information System (INIS)

    Payne, J.E.; Payne, L.L.

    1993-04-01

    The first year of the research program involved evaluating the applications of high transition temperature superconducting devices at the Savannah River Site and initiating the development of high T c circuit elements that might be of use in programs at the site. Although during the course of this year there were major changes in the direction of and areas of interest at the Savannah River Site, it has been possible to accomplish the first year goals. The technology required to produce a useful nitrogen temperature SQUID for applications such as those that might be encountered at the site has developed more rapidly than was anticipated. This has made it possible to begin the initial studies with a high T c device as opposed to starting with the helium temperature SQUID. This will have an important impact on the outcome of the project by allowing for a more complete evaluation of a device that can be used in an industrial situation. The goals of the first year of the project are listed and will be addressed in this report

  19. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    International Nuclear Information System (INIS)

    1992-07-01

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to ''review process technology issues preventing start up of the DWPF.'' This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992

  20. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M; Susan Dyer, S

    2004-11-08

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing

  1. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  2. An aerial radiological survey of the southwest drainage basin area of the Savannah River Site

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1994-04-01

    An aerial radiological survey was conducted over a 106-square-mile area of the Savannah River Site (SRS), formerly the Savannah River Plant. The survey was conducted from August 24 through September 8, 1988, to collect baseline radiological data over the area. Both natural and man-made gamma emitting radionuclides were detected in the area. The detected man-made sources were confined to creeks, branches, and SRS facilities in the surveyed area and were a result of SRS operations. Naturally-occurring radiation levels were consistent with those levels detected in adjacent areas during previous surveys. The annual dose levels were within the range of levels found throughout the United States

  3. New treatment facility for low level process effluents at the Savannah River site

    International Nuclear Information System (INIS)

    Ebra, M.A.; Bibler, J.P.; Johnston, B.S.; Kilpatrick, L.L.; Poy, F.L.; Wallace, R.M.

    1987-01-01

    A new facility, the F/H Effluent Treatment Facility (F/H ETF) is under construction at the Savannah River site. It will decontaminate process effluents containing low levels of radionuclides and hazardous chemicals prior to discharge to a surface stream. These effluents, which are currently discharged to seepage basins, originate in the chemical separations and high-level radioactive waste processing areas, known as F-Area and H-Area. The new facility will allow closure of the basins in order to meet the provisions of the Resource Conservation and Recovery Act by November 1988. A high degree of reliability is expected from this design as a result of extensive process development work that has been conducted at the Savannah River Laboratory. This work has included both bench scale testing of individual unit operations and pilot scale testing of an integrated facility, 150 to 285 L/min (40 to 75 gpm), that contains the major operations

  4. SOFTWARE QUALITY ASSURANCE FOR EMERGENCY RESPONSE CONSEQUENCE ASSESSMENT MODELS AT DOE'S SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Hunter, C

    2007-01-01

    The Savannah River National Laboratory's (SRNL) Atmospheric Technologies Group develops, maintains, and operates computer-based software applications for use in emergency response consequence assessment at DOE's Savannah River Site. These applications range from straightforward, stand-alone Gaussian dispersion models run with simple meteorological input to complex computational software systems with supporting scripts that simulate highly dynamic atmospheric processes. A software quality assurance program has been developed to ensure appropriate lifecycle management of these software applications. This program was designed to meet fully the overall structure and intent of SRNL's institutional software QA programs, yet remain sufficiently practical to achieve the necessary level of control in a cost-effective manner. A general overview of this program is described

  5. Lightning protection for the process canyons at the Savannah River site

    International Nuclear Information System (INIS)

    McAfee, D.E.

    1995-01-01

    Westinghouse Savannah River Company (WSRC) has performed Lightning Studies for the existing Process Canyons at the Savannah River Site (SRS). These studies were initiated to verify the lightning protection systems for the facilities and to compare the installations to the National Fire Protection (NFPA) Standard 780, Lighting Protection Code, 1992. The original study of the F-Canyon was initiated to develop answers to concerns raised by the Defense Nuclear Facility Safety Board (DNFSB). Once this study was completed it was determined that a similar study for H-Canyon would be prudent; followed by an evaluation of the Defense Waste Processing Facility (DWPF) Vitrification Building (S-Canyon). This paper will provide an overview of the nature of lightning and the principals of lightning protection. This will provide the reader with a basic understanding of the phenomena of lighting and its potential for damaging structures, components, and injuring personnel in or near the structure

  6. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    International Nuclear Information System (INIS)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-01-01

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site's preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised

  7. Program for closure of an inactive radioactive waste disposal site at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    The 643-G Radioactive Waste Disposal Facility was operated at the Savannah River Plant from 1952 through 1974, and has been inactive since that time. The actions leading to closure of 643-G will involve a combination of activities consisting of limited waste removal, stabilization, capping, and monitoring. The overall effect of these closure actions will be to place the 643-G site in a physically and chemically stable state which will remain stable over a long period of time. During a one-hundred year institutional control period surveillance and monitoring of the site will be carried out to verify that the performance of the system is acceptable, and access of the general public to the site will be restricted. The program described in this paper is a recommendation; the actual closure plan will be negotiated with regulatory authorities. 2 figs., 1 tab

  8. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments

    International Nuclear Information System (INIS)

    Wingo, H.E.

    1992-01-01

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site

  9. Total Mercury and Methylmercury Contamination in Fish from Sites along the Elbe River

    Directory of Open Access Journals (Sweden)

    P. Maršálek

    2006-01-01

    Full Text Available The aim of the study was to evaluate total mercury Hg and methylmercury MeHg contamination in muscle tissues of fish collected in 2002 from the Labe (Elbe river at sites upstream of Pardubice and downstream of Pardubice and Hřensko, and in 2004 from the Labe river upstream and downstream of the Spolana factory in Neratovice, and from the Vltava river downstream of Lenora. Eighty eight fish of the following species were sampled: bream (Abramis brama L., perch (Perca fluviatilis L., chub (Leuciscus cephalus L. and barbel (Barbus barbus L.. Total mercury content in chub, perch and bream was in the range of 0.05 - 1.96 mg kg-1 w.w., 0. 09 - 1.46 mg kg-1 w.w. and 0.35 - 0.82 mg kg-1 w.w., respectively. Methylmercury content in chub, perch and bream was in the range of 0.04 - 2.11 mg kg-1 w.w., 0.1 - 1.73 mg kg-1 w.w. and 0.371 - 0.650 mg kg-1 w.w., respectively. Significant correlation (p p < 0.05 between THg and MeHg contents were found between individual sites. In 2002, for example, the most contaminated fish were found downstream of Pardubice, followed by fish from upstream of Pardubice and from Hřensko. In 2004, fish from downstream and upstream of the Spolana factory in Neratovice were more contaminated than fish from the Vltava river downstream of Lenora. The methylmercury-tototal mercury ratio in muscle tissue was close to 1.0.

  10. Assessment of plutonium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  11. Environment and Economic Activity of the Pestretsy 2 Site Inhabitants on the Mesha River

    Directory of Open Access Journals (Sweden)

    Galimova Madina Sh.

    2016-09-01

    Full Text Available Preliminary results of integrated archaeological and paleo-ecological research in the multilayer site Pestretsy 2 on the Mesha river (Middle Volga region are discussed in the article. As a result of geology and geomorphology studies, it was found that cultural layers of the Bronze and Early Iron Ages occurred in the buried soil complex, which was coated by river fresh deposits formed in 19th–20th centuries. According paleo-geography data, the site was situated on elevated plot in the lake-marsh basin, the basin, which radiocarbon age is about 4 thousand years ago. The site seems to be the remnants of the Late Bronze long-term settlement (at least in excavated part belonging to so called Zaymishche cultural type as shown by stratigraphy, planigraphy and stone artifacts data. The shouldered arrowhead with barbs and triangular stem of the Seyma type found in this layer allows us to refer it to the 18th–16thth centuries. As for the subsequent Ananyino and Azelino cultural layers, they were apparently short-term camps. Numerous faunal remains studied using archaeo-zoological methods, demonstrated animal husbandry practice houses adjoining (so called “forest” type combined with highly developed hunting and seasonal fishing. Use-wear analysis of stone inventory confirms the authors conclusion.

  12. Long Term Remote Monitoring of TCE Contaminated Groundwater at Savannah River Site

    International Nuclear Information System (INIS)

    Duran, C.; Gudavalli, R.; Lagos, L.; Tansel, B.; Varona, J.; Allen, M.

    2004-01-01

    The purpose of this study was to develop a mobile self powered remote monitoring system enhanced for field deployment at Savannah River Site (SRS). The system used a localized power source with solar recharging and has wireless data collection, analysis, transmission, and data management capabilities. The prototype was equipped with a Hydrolab's DataSonde 4a multi-sensor array package managed by a Supervisory Control and Data Acquisition (SCADA) system, with an adequate pumping capacity of water samples for sampling and analysis of Trichloroethylene (TCE) in contaminated groundwater wells at SRS. This paper focuses on a study and technology development efforts conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) to automate the sampling of contaminated wells with a multi-sensor array package developed using COTS (Commercial Off The shelf) parts. Bladder pumps will pump water from different wells to the sensors array, water quality TCE indicator parameters are measured (i.e. pH, redox, ORP, DO, NO3 -, Cl-). In order to increase user access and data management, the system was designed to be accessible over the Internet. Remote users can take sample readings and collect data remotely over a web. Results obtained at Florida International University in-house testing and at a field deployment at the Savannah River Site indicate that this long term monitoring technique can be a feasible solution for the sampling of TCE indicator parameters at remote contaminated sites

  13. Infiltration experiment for closure cap evaluation at the Savannah River Site

    International Nuclear Information System (INIS)

    Roddy, N.S.; Cook, J.R.

    1990-01-01

    This document discusses several large waste disposal facilities at the Savannah River Site which are being closed. These facilities include two seepage basins and the low-level waste disposal facility. The key element of the closures is the construction of a cap system to limit the infiltration of water which might reach the disposed waste. Cap designs have been modeled using the Hydrologic Evaluation of Landfill Performance (HELP) computer code. This code was developed by the US Army Corps of Engineers for the Environmental Protection Agency to model the effects of various cap and liner designs on the water balance at landfills. A field experiment has been set up which will allow the results of the HELP Code to be verified at the Savannah River Site (SRS) by measuring the actual water balance created by closure cap configurations which will be used in waste site closures at SRS. Two of the caps will be similar to those used for the planned closure activities. Each one has a specific closure arrangement. Once operational, the experiment will be evaluated for a five-year period

  14. Hanford Site environmental data for calendar year 1989, surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.; Woodruff, R.K.

    1990-06-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor chemicals on the site and in the Columbia River. Pacific Northwest Laboratory publishes an annual environmental report Hanford Site Environmental Report for Calendar Year 1989. That report is a comprehensive source of offsite and onsite environmental monitoring data collected during 1989 by PNL's Environmental Monitoring Program. Appendix C of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries. Ground-water monitoring data will be available separately. Questions concerning the data appearing here can be directed to R. K. Woodruff, PNL Project Manager, Surface Environmental Surveillance Project

  15. AREA COMPLETION STRATEGIES AT SAVANNAH RIVER SITE: CHARACTERIZATION FOR CLOSURE AND BEYOND

    International Nuclear Information System (INIS)

    Bagwell, L; Mark Amidon, M; Sadika Baladi, S

    2007-01-01

    During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990s, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D and D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an ''area completion'' strategy that: (1) unites several discrete waste units into one conceptual model, (2) integrates historically disparate environmental characterization and D and D activities, (3) reduces the number of required regulatory documents, and (4) in some cases, compresses schedules for achieving a stakeholder-approved end-state

  16. AREA COMPLETION STRATEGIES AT SAVANNAH RIVER SITE: CHARACTERIZATION FOR CLOSURE AND BEYOND

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L; Mark Amidon, M; Sadika Baladi, S

    2007-06-11

    During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990s, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D&D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an ''area completion'' strategy that: (1) unites several discrete waste units into one conceptual model, (2) integrates historically disparate environmental characterization and D&D activities, (3) reduces the number of required regulatory documents, and (4) in some cases, compresses schedules for achieving a stakeholder-approved end-state.

  17. Geotechnical investigation for seismic issues for K-reactor area at Savannah River Site

    International Nuclear Information System (INIS)

    Castro, G.; Reeves, C.Q.

    1991-01-01

    A geotechnical investigation has been completed at Savannah River Site to characterize the foundation conditions in K-Reactor Area and confirm soil design properties for use in seismic qualification of structures. The scope of field work included ten soil borings to a 200-foot depth with split-spoon and undisturbed sampling. Additionally, 42 cone penetrometer tests were performed with seismic down-hole measurements. Three cross-hole shear wave velocity tests were also completed to confirm the assumed dynamic properties which had been used in preliminary seismic analysis

  18. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  19. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  20. Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-08

    A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

  1. Review of Savannah River Site K Reactor inservice inspection and testing restart program

    International Nuclear Information System (INIS)

    Anderson, M.T.; Hartley, R.S.; Kido, C.

    1992-09-01

    Inservice inspection (ISI) and inservice testing (IST) programs are used at commercial nuclear power plants to monitor the pressure boundary integrity and operability of components in important safety-related systems. The Department of Energy (DOE) - Office of Defense Programs (DP) operates a Category A (> 20 MW thermal) production reactor at the Savannah River Site (SRS). This report represents an evaluation of the ISI and IST practices proposed for restart of SRS K Reactor as compared, where applicable, to current ISI/IST activities of commercial nuclear power facilities

  2. D ampersand D Characterization of the 232-F Old Tritium Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Scallon, K.L.; England, J.L.

    1995-01-01

    The 232-F ''Old Tritium Facility'' operated in the 1950s as the first tritium production facility at the Savannah River Site (SRS). In 1957, the 232-F operation ceased with tritium production turned over to a larger, technologically improved facility at SRS. The 232-F Facility was abandoned in 1958 and the process areas have remained contaminated with radiological, hazardous and mixed constituents. Decontamination and decommissioning (D ampersand D) of the 232-F Facility is scheduled to occur in the years 1995-1996. This paper presents the D ampersand D characterization efforts for the 232-F Facility

  3. A New Automated Instrument Calibration Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Polz, E.; Rushton, R.O.; Wilkie, W.H.; Hancock, R.C.

    1998-01-01

    The Health Physics Instrument Calibration Facility at the Savannah River Site in Aiken, SC was expressly designed and built to calibrate portable radiation survey instruments. The facility incorporates recent advances in automation technology, building layout and construction, and computer software to improve the calibration process. Nine new calibration systems automate instrument calibration and data collection. The building is laid out so that instruments are moved from one area to another in a logical, efficient manner. New software and hardware integrate all functions such as shipping/receiving, work flow, calibration, testing, and report generation. Benefits include a streamlined and integrated program, improved efficiency, reduced errors, and better accuracy

  4. Independent Technical Review of In-Tank Precipitation (ITP) at the Savannah River Site

    International Nuclear Information System (INIS)

    1993-06-01

    An Independent Technical Review of In-Tank Precipitation (ITP) and Extended Sludge Processing (ESP) at the Savannah River Site (SRS) was carried out in March, 1993. The review focused on ITP/ESP equipment and chemical processes, integration of ITP/ESP within the High Level Waste (HLW) and Defense Waste Processing Facility (DWPF) systems, and management and regulatory concerns. Following the ITR executive summary, this report includes: Chapter I--summary assessment; Chapter II--recommendations; and Chapter III--technical evaluations

  5. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  6. Savannah River Site's H-Canyon Facility: Impacts of Foreign Obligations on Special Nuclear Material Disposition

    International Nuclear Information System (INIS)

    Magoulas, Virginia

    2013-01-01

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These ''123 agreements'' are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  7. CERCLA document flow: Compressing the schedule, saving costs, and expediting review at the Savannah River Site

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1991-01-01

    The purpose of this paper is to convey the logic of the CERCLA document flow including Work Plans, Characterization Studies, Risk Assessments, Remedial Investigations, Feasibility Studies, proposed plans, and Records of Decision. The intent is to show how schedules at the Savannah River Site are being formulated to accomplish work using an observational approach where carefully planned tasks can be initiated early and carried out in parallel. This paper will share specific proactive experience in working with the EPA to expedite projects, begin removal actions, take interim actions, speed document flow, and eliminate unnecessary documents from the review cycle

  8. Assessment of Neptunium, Americium, and Curium in the Savannah River Site Environment

    International Nuclear Information System (INIS)

    Carlton, W.H.

    1997-01-01

    A series of documents has been published in which the impact of various radionuclides released to the environment by Savannah River Site (SRS) operations has been assessed. The quantity released, the disposition of the radionuclides in the environment, and the dose to offsite individuals has been presented for activation products, carbon cesium, iodine, plutonium, selected fission products, strontium, technetium, tritium, uranium, and the noble gases. An assessment of the impact of nonradioactive mercury also has been published.This document assesses the impact of radioactive transuranics released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are 239Np, 241Am, and 244Cm

  9. Tritium confinement in a new tritium processing facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

    1991-01-01

    A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10 -2 μCi/cc tritium

  10. Summary of the Big Lost River fish study on the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Overton, C.K.; Johnson, D.W.

    1978-01-01

    Winter fish mortality and fish migration in the Big Lost River were related to natural phenomenon and man-created impacts. Low winter flows resulted in a reduction in habitat and increased rainbow trout mortality. Man-altered flows stimulated movement and created deleterious conditions. Migratory patterns were related to water discharge and temperature. A food habit study of three sympatric salmonid fishes was undertaken during a low water period. The ratio of food items differed between the three species. Flesh of salmonid fishes from within the INEL Site boundary was monitored for three years for radionuclides. Only one trout contained Cs-137 concentrations above the minimum detection limits

  11. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    International Nuclear Information System (INIS)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991

  12. Review of the SQUG type seismic program at Savannah River Site

    International Nuclear Information System (INIS)

    Bitner, J.L.; Lin, C.W.; Anderson, N.R.; Bezler, P.

    1991-01-01

    The production reactors at Savannah River were shut down in 1988 because of questions about their safety. One question is whether they can withstand earthquakes. To answer the earthquake question, the site operator (Westinghouse Savannah River Company) developed a program to evaluate the capability of the safety systems in the K, L, and P reactors to function during and after an earthquake, and to upgrade them if necessary. The seismic program for Savannah River relies heavily on the Generic Implementation Procedure (GIP) developed by the Seismic qualification Utility Group. The GIP was originally developed for application to over 65 commercial power reactors throughout the U.S. It has been thoroughly reviewed by the U.S. Nuclear Regulatory Commission. The objectives of the ISWRT (Independent Seismic Walkdown Review Team) review were to: evaluate the program and evaluate its execution. The first objective was accomplished using an in-office review of the program. The second objective was accomplished using an in-office review and in-plant walkdown of selected safety systems. The ISWRT review and walkdown are summarized in this paper

  13. Natural resource management activities at the Savannah River Site. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This environmental assessment (EA) reviews the environmental consequences of ongoing natural resource management activities on the Savannah River Site (SRS). Appendix A contains the Natural Resources Management Plant (NRMP). While several SRS organizations have primary responsibilities for different elements of the plan, the United States Department of Agriculture (USDA), Forest Service, Savannah River Forest Station (SRFS) is responsible for most elements. Of the river scenarios defined in 1985, the High-Intensity Management alternative established the upper bound of environmental consequences; it represents a more intense level of resource management than that being performed under current resource management activities. This alternative established compliance mechanisms for several natural resource-related requirements and maximum practical timber harvesting. Similarly, the Low-Intensity Management alternative established the lower bound of environmental consequences and represents a less intense level of resource management than that being performed under current resource management activities. This alternative also established compliance mechanisms, but defined a passively managed natural area. The Proposed Action of this EA describes the current level of multiple-natural resource management. This EA reviews the proposed action, and the high and low intensity alternative scenarios.

  14. Effective Half-Life of Caesium-137 in Various Environmental Media at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M. H.; Jannik, G. T.; Baker, R. A.

    2014-05-01

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities into the SRS environment. However, only a relatively small number of pathways, most importantly 137Cs in fish and deer, have contributed significantly to doses and risks to the public. The “effective” half-lives (Te) of 137Cs (which include both physical decay and environmental dispersion) in Savannah River floodplain soil and vegetation and in fish and white-tailed deer from the SRS were estimated using long-term monitoring data. For 1974–2011, the Tes of 137Cs in Savannah River floodplain soil and vegetation were 17.0 years (95% CI = 14.2–19.9) and 13.4 years (95% CI = 10.8–16.0), respectively. These Tes were greater than in a previous study that used data collected only through 2005 as a likely result of changes in the flood regime of the Savannah River. Field analyses of 137Cs concentrations in deer collected during yearly controlled hunts at the SRS indicated an overall Te of 15.9 years (95% CI = 12.3–19.6) for 1965–2011; however, the Te for 1990–2011 was significantly shorter (11.8 years, 95% CI = 4.8–18.8) due to an increase in the rate of 137Cs removal. The shortest Tes were for fish in SRS streams and the Savannah River (3.5–9.0 years), where dilution and dispersal resulted in rapid 137Cs removal. Long-term data show that Tes are significantly shorter than the physical half-life of 137Cs in the SRS environment but that they can change over time. Therefore, it is desirable have a long period of record for calculating Tes and risky to extrapolate Tes beyond this period unless the processes governing 137Cs removal are clearly understood.

  15. Dose Estimates from Irrigation with Tritiated Water at the Savannah River Site

    International Nuclear Information System (INIS)

    Lee, P.L.

    2000-01-01

    The Savannah River Site (SRS) is part of the U.S. Department of Energy (DOE) complex. It was constructed in the early 1950's to produce special nuclear materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 15 miles southeast of Augusta, Georgia. The production of nuclear materials at SRS continued for more than 40 years. However, the end of the Cold War caused a downsizing of this original national defense mission. Current missions are focused on: (1) nuclear weapons stockpile stewardship which emphasizes science-based maintenance of the country's nuclear weapons stockpile; (2) nuclear materials stewardship for management of excess nuclear materials, including transportation, stabilization, storage, and safe and secure disposition; and (3) environmental stewardship involving management, treatment, and disposal of radioactive and nonradioactive wastes resulting from past, present, and future operations

  16. The determination of engineering parameters for the sanitary landfill, Savannah River Site

    International Nuclear Information System (INIS)

    McMullin, S.R.; Smalley, R.C.; Flood, P.J.

    1993-01-01

    The Savannah River Site is a 315 square mile, Department of Energy production facility located in western South Carolina. This facility has multiple operational areas which generate a variety of waste materials. Over the nearly 40 years of operation, sanitary wastes were deposited in a 60-acre, permitted solid waste disposal facility located on the site. Refuse and other clean wastes were deposited in shallow, slit trenches, ranging in size from 20 to 50 feet-wide and approximately 400 feet long. The historical depth of deposition appears to range between 12 and 15 feet below the ground surface. Recent changes in regulations has classified some wastes contained within the landfill as hazardous wastes, necessitating the closure of this facility as a RCRA hazardous waste management facility. The focus of this paper is to present the innovative techniques used to fully determine the engineering parameters necessary to reasonably predict future settlements, for input into the closure system design

  17. Electrical resistance tomography during gas injection at the Savannah River Site

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Daily, W.D.

    1993-05-01

    Electrical resistance tomography (ERT) is used to monitor some of the in situ remediation processes being evaluated for removal of volatile organic compounds from subsurface water and soil at the Integrated Demonstration for VOC's in Soils and Groundwater at Non Arid Sites, the Savannah River Site, near Aiken, South Carolina. Air was injected in the saturated zone and the intrained air was tomographically imaged by its effects on the formation electrical resistivity. The authors found that the flow paths are confined to a complex three dimensional network of channels, some of which extend as far as 30 m from the injection well. They conclude, based on these results, that the shape and extent of the air plume are controlled by spatial variations in the local gas permeability. These channels are somewhat unstable over a period of months and new channels appear to form with time

  18. An aerial radiological survey of the Central Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1991-09-01

    An aerial radiological survey was conducted over a 194-square- kilometer (75-square-mile) area encompassing the central portion of the Savannah River Site (SRS). The survey was flown during February 10--27, 1987. These radiological measurements were used as baseline data for the central area and for determining the extent of man-made radionuclide distribution. Previous SRS surveys included small portions of the area; the 1987 survey was covered during the site- wide survey conducted in 1979. Man-made radionuclides (including cobalt-60, cesium-137, protactinium-234m, and elevated levels of uranium-238 progeny) that were detected during the survey were typical of those produced by the reactor operations and material processing activities being conducted in the area. The natural terrestrial radiation levels were consistent with those measured during prior surveys of other SRS areas. 1 refs., 4 figs

  19. The terrestrial carbon inventory on the Savannah River Site: Assessing the change in Carbon pools 1951-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhaohua; Trettin, Carl, C.; Parresol, Bernard, R.

    2011-11-30

    The Savannah River Site (SRS) has changed from an agricultural-woodland landscape in 1951 to a forested landscape during that latter half of the twentieth century. The corresponding change in carbon (C) pools associated land use on the SRS was estimated using comprehensive inventories from 1951 and 2001 in conjunction with operational forest management and monitoring data from the site.

  20. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report

  1. Accident simulation in a chemical process facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Hope, E.P.

    1993-01-01

    The US Department of Energy requires Westinghouse Savannah River Company to safely operate the chemical separations facilities at the Savannah River Site (SRS). As part of the safety analysis program, simulation of a proposed frame waste recovery (FWR) system is needed to determine the possible accident consequences that may affect public safety. This paper details the simulation process for the proposed frame waste recovery process and describes the analytical tools used in order to make estimates of accident consequences. Since the process in question has been operated, historical data and statistics about its operation are available. Software tools have been developed to allow analysis of the frame waste recovery system, including the generation of system specific dose conversion factors for a number of unique situations. Accident scenarios involving spilled liquid material are analyzed and account for the specific floor geometry of the facility. Confinement and filtration systems are considered. Analysis of source terms is a limiting factor which affects the entire evaluation process. In the past, facility source terms were generally constant with occasional variations from established patterns. As new site missions unfold, significant variations in source terms can be expected. The impact of these variations on the safety analysis is discussed

  2. GRIMH3: A new reactor calculation code at Savannah River Site

    International Nuclear Information System (INIS)

    Le, T.T.; Pevey, R.E.

    1993-01-01

    The GRIMHX reactor code currently in use at the Savannah River Site (SRS) was written at a time when computer processing speed and memory storage were very limited. Recently, a new reactor code (GRIMH3) was written to take advantage of the hardware improvements (vectorization and higher memory capacities) as well as the range of available computers at SRS (workstations and supercomputers). The GRIMH3 code computes the solution of the static multigroup neutron diffusion equation in one-, two-, and three-dimensional hexagonal geometry. Either direct or adjoint solutions can be computed for k eff searches, buckling searches, external neutron sources, power flattening searches, or power normalization factor calculations with 1, 6, 24, 54, or 96 points per hex. The GRIMHX reactor code currently in use at the Savannah River Site (SRS) was written at a time when computer processing speed and memory storage were very limited. Recently, a new reactor code (GRIMH3) was written to take advantage of the hardware improvements (vectorization and higher memory capacities) as well as the range of available computers at SRS (workstations and supercomputers). The GRIMH3 code computes the solution of the static multigroup neutron diffusion equation in one-, two-, and three-dimensional hexagonal geometry. Either direct or adjoint solutions can be computed for k eff searches, buckling searches, external neutron sources, power flattening searches, or power normalization factor calculations with 1, 6, 24, 54, or 96 points per hex

  3. Mapping of impediments to contamination flow using multicomponent reflection seismology at the Savannah River Site

    International Nuclear Information System (INIS)

    Dickenson, O.A.; Steensma, G.J.; Boyd, T.M.

    1996-01-01

    A major obstacle to the remediation of contaminated aquifers at the Savannah River Site in Aiken, South Carolina is the presence of discontinuous sand and clay lenses that are difficult to map effectively using geologic and geophysical well logs. In order to map these discontinuous sand and clay lenses we acquire two perpendicular nine-component (9C) seismic lines, a 9C Vertical Seismic Profile, (VSP) and p-wave and s-wave sonic logs in a borehole south of the Old Burial Ground at the Savannah River Site within which were available natural gamma ray and interpreted geology logs. P-wave reflections are interpreted as originating from water table, the Tan Clay, the Green Clay, the top of the Ellenton Clay, and a calcareous sediment layer within the Barnwell/McBean aquifer. Along the east-west trending line, reflectors are generally continuous except for the occurrence of a discontinuity in the upper reflectors near the east end of the line. This discontinuity could be interpreted as a sediment slump feature possibly related to the dissolution of the calcareous sediment layer, or as the eastern terminus of a large scour feature. Along the north-south trending line, reflectors are spatially less continuous and are interpreted as being cut by several channel/scour features

  4. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Keene, Joshua L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating to the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.

  5. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, Jay

    1999-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S.-origin from foreign research reactors to the United States. As of July 1999, over 18% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These 2400 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into L-Area in April 1997 and approximately 86 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show how the empty

  6. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Conatser, E.R.; Thomas, J.E. [Westinghouse Savannah River Company, Aiken, SC 29808 (United States)

    2000-07-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These {approx}2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment

  7. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Conatser, E.R.; Thomas, J.E.

    2000-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These ∼2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show

  8. Environmental analysis of closure options for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gordon, D.E.; King, C.M.; Looney, B.B.; Stephenson, D.E.; Johnson, W.F.

    1987-01-01

    Previously acceptable waste management practices (e.g., the use of unlined seepage basins) for discarding of wastes from nuclear materials production has resulted in occasional cases of groundwater contamination beneath some disposal sites, mainly in water-table aquifers. Groundwater contaminants include volatile organic compounds, heavy metals, radionuclides, and other chemicals. The closure of active and inactive waste sites that have received hazardous and/or low-level radioactive materials at the Savannah River Plant (SRP) is planned as part of an overall program to protect groundwater quality. DOE developed and submitted to Congress a groundwater protection plan for SRP. This initial plan and subsequent revisions provide the basis for closure of SRP waste sites to comply with applicable groundwater protection requirements. An environmental analysis of the closure options for the criteria waste sites that have received hazardous and/or low-level radioactive wastes was conducted to provide technical support. The several parts of this environmental analysis include description of geohydrologic conditions; determination of waste inventories; definition of closure options; modeling of environmental pathways; assessment of risk; and analysis of project costs. Each of these components of the overall analysis is described in turn in the following paragraphs. Production operations at SRP have generated a variety of solid, hazardous, and low-level radioactive waste materials. Several locations onplant have been used as waste disposal sites for solid and liquid wastes. Seventy-six individual waste sites at 45 distinct geographical locations on SRP have received hazardous, low-level radioactive, or mixed wastes. These waste sites can be categorized into 26 groupings according to the function of the waste disposed. 15 refs., 6 figs., 5 tabs

  9. Conditions and processes affecting sand resources at archeological sites in the Colorado River corridor below Glen Canyon Dam, Arizona

    Science.gov (United States)

    East, Amy E.; Collins, Brian D.; Sankey, Joel B.; Corbett, Skye C.; Fairley, Helen C.; Caster, Joshua J.

    2016-05-17

    This study examined links among fluvial, aeolian, and hillslope geomorphic processes that affect archeological sites and surrounding landscapes in the Colorado River corridor downstream from Glen Canyon Dam, Arizona. We assessed the potential for Colorado River sediment to enhance the preservation of river-corridor archeological resources through aeolian sand deposition or mitigation of gully erosion. By identifying locally prevailing wind directions, locations of modern sandbars, and likely aeolian-transport barriers, we determined that relatively few archeological sites are now ideally situated to receive aeolian sand supply from sandbars deposited by recent controlled floods. Whereas three-fourths of the 358 river-corridor archeological sites we examined include Colorado River sediment as an integral component of their geomorphic context, only 32 sites currently appear to have a high degree of connectivity (coupled interactions) between modern fluvial sandbars and sand-dominated landscapes downwind. This represents a substantial decrease from past decades, as determined by aerial-photograph analysis. Thus, we infer that recent controlled floods have had a limited, and declining, influence on archeological-site preservation.

  10. Evolution of the LR56 radioactive liquid waste transportation system for use at Hanford, Oak Ridge, and Savannah River Sites

    International Nuclear Information System (INIS)

    Clement, G.; Delvecchio, D.J.; Sazawal, V.

    1997-01-01

    The LR56 system is a radioactive liquid transportation cask licensed for use in France for on-site road transfer of Type B bulk quantities of radioactive liquids. Three LR56 systems (with adaptations for use at the Department of Energy (DOE) sites in the US) have been recently purchased for use at the Hanford site, the Oak Ridge National laboratory site and the Savannah River Site. The paper discussed the main features of the LR56 system and presents the evolution of the design. Particular attention is given to the last version developed for the Savannah River Site to be used for the transfer of highly concentrated alpha bearing liquids. For this application a special enhancement of the secondary vessel has been implemented which provides the system with a double leak tight confinement

  11. Hanford Site environmental data for calendar year 1994: Surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1995-07-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1994 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1994 b PNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries

  12. Mycorrhizal Fungal Community of Poplars Growing on Pyrite Tailings Contaminated Site near the River Timok

    Directory of Open Access Journals (Sweden)

    Marina Katanić

    2015-06-01

    Full Text Available Background and Purpose: Mycorrhizal fungi are of high importance for functioning of forest ecosystems and they could be used as indicators of environmental stress. The aim of this research was to analyze ectomycorrhizal community structure and to determine root colonization rate with ectomycorrhizal, arbuscular mycorrhizal and endophytic fungi of poplars growing on pyrite tailings contaminated site near the river Timok (Eastern Serbia. Materials and Methods: Identification of ectomycorrhizal types was performed by combining morphological and anatomical characterization of ectomycorrhizae with molecular identification approach, based on sequencing of the nuclear ITS rRNA region. Also, colonization of poplar roots with ectomycorrhizal, arbuscular mycorrhizal and dark septated endophytic fungi were analysed with intersection method. Results and Conclusions: Physico-chemical analyses of soil from studied site showed unfavourable water properties of soil, relatively low pH and high content of heavy metals (copper and zinc. In investigated samples only four different ectomycorrhizal fungi were found. To the species level were identified Thelephora terrestris and Tomentella ellisi, while two types remained unidentified. Type Thelephora terrestris made up 89% of all ectomycorrhizal roots on studied site. Consequently total values of Species richness index and Shannon-Weaver diversity index were 0.80 and 0.43, respectively. No structures of arbuscular mycorrhizal fungi were recorded. Unfavourable environmental conditions prevailing on investigated site caused decrease of ectomycorrhizal types diversity. Our findings point out that mycorrhyzal fungal community could be used as an appropriate indicator of environmental changes.

  13. Hanford Site environmental data for calendar year 1993--surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1994-06-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1993 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1993 by PNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries

  14. Hanford Site environmental data for calendar year 1994: Surface and Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1995-07-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1994 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1994 b PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries.

  15. Hanford Site environmental data for calendar year 1993--surface and Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1994-06-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1993 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1993 by PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries.

  16. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  17. Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, Mickie A. [Pacific Northwest National Laboratory

    2008-08-29

    In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridge fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of

  18. Research in Support of Remediation Activities at the Savannah River Site

    International Nuclear Information System (INIS)

    Seaman, J.C.; B.B. Looney and M.K. Harris

    2007-01-01

    The USDOE Savannah River Site (SRS), an 803-km 2 (310-mile 2 ) facility located south of Aiken, SC on the upper Atlantic Coastal Plain and bounded to the west by the Savannah River, was established in the 1950s for the production and refinement of nuclear materials. To fulfill this mission during the past 50 years SRS has operated five nuclear reactors, two large chemical separation areas, waste disposal facilities (landfills, waste ponds, waste tanks, and waste stabilization), and a large number of research and logistics support facilities. Contaminants of concern (COC) resulting from site operations include chlorinated solvents, radionuclides, metals, and metalloids, often found as complex mixtures that greatly complicate remediation efforts when compared with civilian industries. The objective of this article is to provide a description of the lithology and hydrostratigraphy of the SRS, as well as a brief history of site operations and research activities as a preface to the current special section of Vadose Zone Journal (VZJ) dedicated to SRS, focusing mainly on issues that are unique to the USDOE complex. Contributions to the special section reflect a diverse range of topics, from hydrologic tracer experiments conducted both within the vadose and saturated zones to studies specifically aimed at identifying geochemical processes controlling the migration and partitioning of specific contaminants (e.g., TCE, 137 Cs, U, and Pu) in SRS subsurface environments. Addressing the diverse environmental challenges of the SRS provides a unique opportunity to conduct both fundamental and applied research across a range of experimental scales. Hence, the SRS has been a pioneering force in several areas of environmental research and remediation, often through active interdisciplinary collaboration with researchers from other USDOE facilities, academic and federal institutions, and commercial entities

  19. Modifications to the remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Green River, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    Modifications to the water resources protection strategy detailed in the remedial action plan for the Green River, Utah, disposal site are presented. The modifications are based on new information, including ground water quality data collected after remedial action was completed and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The modifications will result in compliance with the U.S. EPA proposed ground water standards (52 FR 36000 (1987))

  20. Westinghouse Savannah River Site vendor forum: An innovative cooperative technology development success

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1996-01-01

    The Westinghouse Savannah River Company (WSRC) Supplier Environmental and Waste Management Information Exchange Forum was held August 31 - September 1, 1993. The forum, which was planned and conducted in concert with the Department of Energy Savannah River Operations Office (DOE-SROO), was held to foster a technical exchange in which new, innovative technologies were proposed by suppliers, to identify more cost-effective methods to apply to future and on-going activities, to increase use of the private sector, and to promote partnerships with other industries. The two day forum provided the opportunity for WSRC and DOE-SR to review program activities and challenges in five major areas, Savannah River Technology Center, Solid Waste Facilities, Environmental Restoration, Environmental Monitoring, and Decontamination and Decommissioning through formal presentations. The second day was designed to provide suppliers the opportunity to talk about current and future activities and challenges with representatives of each of these areas at display booths, special high interest topic interactive sessions, and site tours. Each attendee was then invited to submit pre-proposals relative to the abstracts presented in The Special Consolidate Solicitation for Environmental and Waste Management Basic and Applied Research and Research-Related Development and/or Demonstration No. E10600-E1 document. Twenty-five contracts totaling $12 million were awarded. Twenty-four contracts have now been completed. This paper provides an overview of the pre forum activities, the forum, post-forum and proposal review process, and most importantly a description of the technologies demonstrated, the benefits and savings derived, and future use potential from a DOE perspective, as well as technology transfer and industrial partnership potential

  1. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    International Nuclear Information System (INIS)

    Case, J. T.; Renfro, M. L.

    1998-01-01

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team down-selected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their down-selection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives

  2. Savannah River Site chemical, metal, and pesticide (CMP) waste vitrification treatability studies

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1997-01-01

    Numerous Department of Energy (DOE) facilities, as well as Department of Defense (DOD) and commercial facilities, have used earthen pits for disposal of chemicals, organic contaminants, and other waste materials. Although this was an acceptable means of disposal in the past, direct disposal into earthen pits without liners or barriers is no longer a standard practice. At the Savannah River Site (SRS), approximately three million pounds of such material was removed from seven chemical, metal, and pesticide disposal pits. This material is known as the Chemical, Metal, and Pesticide (CMP) Pit waste and carries several different listed waste codes depending on the contaminants in the respective storage container. The waste is not classified as a mixed waste because it is believed to be non-radioactive; however, in order to treat the material in a non-radioactive facility, the waste would first have to be screened for radioactivity. The Defense Waste Processing Technology (DWPT) Section of the Savannah River Technology Center (SRTC) was requested by the DOE-Savannah River (SR) office to determine the viability of vitrification of the CMP Pit wastes. Radioactive vitrification facilities exist which would be able to process this waste, so the material would not have to be analyzed for radioactive content. Bench-scale treatability studies were performed by the DWPT to determine whether a homogeneous and durable glass could be produced from the CMP Pit wastes. Homogeneous and durable glasses were produced from the six pits sampled. The optimum composition was determined to be 68.5 wt% CMP waste, 7.2 wt% Na 2 O, 9 wt% CaO, 7.2 wt% Li 2 O and 8.1 wt% Fe 2 O 3 . This glass melted at 1,150 C and represented a two fold volume reduction

  3. Ground motion for the design basis earthquake at the Savannah River Site, South Carolina based on a deterministic approach

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Silva, W.J.; Stephenson, D.E.

    1991-01-01

    Ground motion assessments are presented for evaluation of the seismic safety of K-Reactor at the Savannah River Site. Two earthquake sources were identified as the most significant to seismic hazard at the site, a M 7.5 earthquake occurring at Charleston, South Carolina, and a M 5 event occurring in the site vicinity. These events control the low frequency and high frequency portions of the spectrum, respectively. Three major issues were identified in the assessment of ground motions for the Savannah River site; specification of the appropriate stress drop for the Charleston source earthquake, specification of the appropriate levels of soil damping at large depths for site response analyses, and the appropriateness of western US recordings for specification of ground motions in the eastern US

  4. Use of Electronic Hand-held Devices for Collection of Savannah River Site Environmental Data - 13329

    Energy Technology Data Exchange (ETDEWEB)

    Marberry, Hugh [SRNS Savannah River Site 730-4B Room 3043 Aiken, SC 29808 (United States); Moore, Winston [SRNS Savannah River Site 735B Room 116 Aiken, SC 29808 (United States)

    2013-07-01

    Savannah River Nuclear Solutions has begun using Xplore Tablet PC's to collect data in the field for soil samples, groundwater samples, air samples and round sheets at the Savannah River Site (SRS). EPA guidelines for groundwater sampling are incorporated into the application to ensure the sample technician follows the proper protocol. The sample technician is guided through the process for sampling and round sheet data collection by a series of menus and input boxes. Field measurements and well stabilization information are entered into the tablet for uploading into Environmental Restoration Data Management System (ERDMS). The process helps to eliminate input errors and provides data integrity. A soil sample technician has the ability to collect information about location of sample, field parameter, describe the soil sample, print bottle labels, and print chain of custody for the sample that they have collected. An air sample technician has the ability to provide flow, pressure, hours of operation, print bottle labels and chain of custody for samples they collect. Round sheets are collected using the information provided in the various procedures. The data are collected and uploaded into ERDMS. The equipment used is weather proof and hardened for the field use. Global Positioning System (GPS) capabilities are integrated into the applications to provide the location where samples were collected and to help sample technicians locate wells that are not visited often. (authors)

  5. Statistical Sampling For In-Service Inspection Of Liquid Waste Tanks At The Savannah River Site

    International Nuclear Information System (INIS)

    Harris, S.

    2011-01-01

    Savannah River Remediation, LLC (SRR) is implementing a statistical sampling strategy for In-Service Inspection (ISI) of Liquid Waste (LW) Tanks at the United States Department of Energy's Savannah River Site (SRS) in Aiken, South Carolina. As a component of SRS's corrosion control program, the ISI program assesses tank wall structural integrity through the use of ultrasonic testing (UT). The statistical strategy for ISI is based on the random sampling of a number of vertically oriented unit areas, called strips, within each tank. The number of strips to inspect was determined so as to attain, over time, a high probability of observing at least one of the worst 5% in terms of pitting and corrosion across all tanks. The probability estimation to determine the number of strips to inspect was performed using the hypergeometric distribution. Statistical tolerance limits for pit depth and corrosion rates were calculated by fitting the lognormal distribution to the data. In addition to the strip sampling strategy, a single strip within each tank was identified to serve as the baseline for a longitudinal assessment of the tank safe operational life. The statistical sampling strategy enables the ISI program to develop individual profiles of LW tank wall structural integrity that collectively provide a high confidence in their safety and integrity over operational lifetimes.

  6. Analysis of thematic mapper simulator data acquired during winter season over Pearl River, Mississippi, test site

    Science.gov (United States)

    Anderson, J. E.; Kalcic, M. T. (Principal Investigator)

    1982-01-01

    Digital processed aircraft-acquired thematic mapping simulator (TMS) data collected during the winter season over a forested site in southern Mississippi are presented to investigate the utility of TMS data for use in forest inventories and monitoring. Analyses indicated that TMS data are capable of delineating the mixed forest land cover type to an accuracy of 92.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct, respectively. The figures reflect the performance for products produced using the best subset of channels for each forest cover type. It was found that the choice of channels (subsets) has a significant effect on the accuracy of classification produced, and that the same channels are not the most desirable for all three forest types studied. Both supervised and unsupervised spectral signature development techniques are evaluated; the unsupervised methods proved unacceptable for the three forest types considered.

  7. A synopsis of environmental horizontal wells at the Savannah River Site

    International Nuclear Information System (INIS)

    Denham, M.E.; Lombard, K.H.

    1995-01-01

    Seven horizontal wells for environmental remediation were installed at the Savannah River Site as part of an Integrated Demonstration Project sponsored by the Department of Energy's Office of Technology Development. The wells were used to demonstrate innovative remediation systems for the clean up of chlorinated organic solvent contamination in groundwater and the vadose zone. The wells were installed in four demonstrations of different horizontal drilling technologies. A short-radius petroleum industry technology, a modified petroleum industry technology (using a down-hole motor), a utility industry technology, and a river crossing technology were demonstrated. The goals of the demonstrations were to show the utility of horizontal wells in environmental remediation and further development of the technology required to install these wells. From the first demonstration in 1988 to the latest in 1991, there was significant evolution in horizontal drilling technology. The main technical challenges in the first demonstration were directional control during drilling and borehole instability. Through advancement of the technology these problems were overcome and did not affect the last demonstration. Those considering the use of horizontal wells for environmental remediation will benefit from the knowledge gained from these demonstrations

  8. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  9. Use of Electronic Hand-held Devices for Collection of Savannah River Site Environmental Data - 13329

    International Nuclear Information System (INIS)

    Marberry, Hugh; Moore, Winston

    2013-01-01

    Savannah River Nuclear Solutions has begun using Xplore Tablet PC's to collect data in the field for soil samples, groundwater samples, air samples and round sheets at the Savannah River Site (SRS). EPA guidelines for groundwater sampling are incorporated into the application to ensure the sample technician follows the proper protocol. The sample technician is guided through the process for sampling and round sheet data collection by a series of menus and input boxes. Field measurements and well stabilization information are entered into the tablet for uploading into Environmental Restoration Data Management System (ERDMS). The process helps to eliminate input errors and provides data integrity. A soil sample technician has the ability to collect information about location of sample, field parameter, describe the soil sample, print bottle labels, and print chain of custody for the sample that they have collected. An air sample technician has the ability to provide flow, pressure, hours of operation, print bottle labels and chain of custody for samples they collect. Round sheets are collected using the information provided in the various procedures. The data are collected and uploaded into ERDMS. The equipment used is weather proof and hardened for the field use. Global Positioning System (GPS) capabilities are integrated into the applications to provide the location where samples were collected and to help sample technicians locate wells that are not visited often. (authors)

  10. Proposed radioactive liquid effluent monitoring requirements at the Savannah River Site

    International Nuclear Information System (INIS)

    Jannik, G.T.; Carlton, W.H.; Blunt, B.C.

    1994-01-01

    Clear regulatory guidance exists for structuring a radiological air monitoring program, however, there is no parallel guidance for radiological liquid monitoring. For Department of Energy (DOE) facilities, there are no existing applicable federal regulations, DOE orders, or DOE guidance documents that specify at what levels continuous monitoring, continuous sampling, or periodic confirmatory measurements of radioactive liquid effluents must be made. In order to bridge this gap and to technically justify and document liquid effluent monitoring decisions at DOE's Savannah River Site, Westinghouse Savannah River Company has proposed that a graded, dose-based approach be established, in conjunction with limits on facility radionuclide inventories, to determine the monitoring and sampling criteria to be applied at each potential liquid radioactive effluent point. The graded approach would be similar to--and a conservative extension of--the existing, agreed-upon SRS/EPA-IV airborne effluent monitoring approach documented in WSRC's NESHAP Quality Assurance Project Plan. The limits on facility radionuclide inventories are based on--and are a conservative extension of--the 10 CFR 834, 10 CFR 20, and SCR 61-63 annual limits on discharges to sanitary sewers. Used in conjunction with each other, the recommended source category criteria levels and facility radionuclide inventories would allow for the best utilization of resources and provide consistent, technically justifiable determinations of radioactive liquid effluent monitoring requirements

  11. Software quality assurance for safety analysis and risk management at the Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Toffer, H.; Crowe, R.D.

    1991-01-01

    As part of its Reactor Operations Improvement Program at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC), in cooperation with the Westinghouse Hanford Company, has developed and implemented quality assurance for safety-related software for technical programs essential to the safety and reliability of reactor operations. More specifically, the quality assurance process involved the development and implementation of quality standards and attendant procedures based on industry software quality standards. These procedures were then applied to computer codes in reactor safety and probabilistic risk assessment analyses. This paper provides a review of the major aspects of the WSRC safety-related software quality assurance. In particular, quality assurance procedures are described for the different life cycle phases of the software that include the Requirements, Software Design and Implementation, Testing and Installation, Operation and Maintenance, and Retirement Phases. For each phase, specific provisions are made to categorize the range of activities, the level of responsibilities, and the documentation needed to assure the control of the software. The software quality assurance procedures developed and implemented are evolutionary in nature, and thus, prone to further refinements. These procedures, nevertheless, represent an effective controlling tool for the development, production, and operation of safety-related software applicable to reactor safety and probabilistic risk assessment analyses

  12. Operational readiness review of the Low Level Waste vaults at Savannah River Site: A case study

    International Nuclear Information System (INIS)

    Ahmad, M.; McVay, C.; Venkatesh, S.

    1994-01-01

    Low Level radioactive Waste (LLW) at the Savannah River Site at Aiken, South Carolina, has traditionally been disposed of using engineered trenches in accordance with the guidelines and technology existing at the time. Recently, subgrade concrete vaults known as E-Area Vaults (EAV) have been constructed at SRS. The EAV project is a comprehensive effort for upgrading LLW disposal at SRS based on meeting the requirements of current Department of Energy (DOE) Orders, and addressing more stringent federal and state regulations. The EAV is a first of its kind state-of-the-art facility designed and built in the United States to receive LLW. Westinghouse Savannah River Company (WSRC) conducted an Operational Readiness Review (ORR) of the vaults prior to startup. The objective of the EAV ORR was to perform a comprehensive review of the operational readiness of the facilities per DOE guidelines including Defense Nuclear Facilities Safety Board (DNFSB) recommendations. This review included assessing construction of the vaults as per design, adequate approved procedures, and training of all the personnel associated with the facility operations. EAV ORR incorporated the lessons learned from other DOE ORRs, included DNFSB recommendations, used a graded approach, and utilized subject matter experts for each functional area of assessment

  13. Savannah River Site plan for performing maintenance in Federal Facility Agreement areas (O and M Plan)

    International Nuclear Information System (INIS)

    Morris, D.R.

    1996-01-01

    The Savannah River Site was placed on the National Priority List (NPL) in December 1989 and became subject to comprehensive remediation in accordance with CERCLA. The FFA, effective August 16, 1993, establishes the requirements for Site investigation and remediation of releases and potential releases of hazardous substances, and interim status corrective action for releases of hazardous wastes or hazardous constituents. It was determined that further direction was needed for the Operating Departments regarding operation and maintenance activities within those areas listed in the FFA. The Plan for Performing Maintenance (O and M Plan) provides this additional direction. Section 4.0 addresses the operation and maintenance activities necessary for continued operation of the facilities in areas identified as RCRA/CERCLA Units or Site Evaluation Areas. Certain types of the O and M activity could be construed as a remedial or removal action. The intent of this Plan is to provide direction for conducting operation and maintenance activities that are not intended to be remedial or removal actions. The Plan identifies the locations of the units and areas, defines intrusive O and M activities, classifies the intrusive activity as either minor or major, and identifies the requirements, approvals, and documentation necessary to perform the activity in a manner that is protective of human health and the environment; and minimizes any potential impact to any future removal and remedial actions

  14. Plant water status relationships among major floodplain sites of the Flathead River, Montana

    Science.gov (United States)

    Lee, L.C.; Hinckley, T.M.; Scott, M.L.

    1985-01-01

    Water status measurements of dominant species from major floodplain plant community types of the North Fork Flathead River, Montana were used to test the accuracy of site moisture gradient relationships postulated from floristic ordinations and site water balance estimates. Analysis of variance tests showed significant differences among the average predawn xylem pressure potential (ψp) of species in several community types. However, additional analyses failed to indicate a significant degree of association between averaged predawn Yp measurements and either floristic ordination or site water balance results. Sixty eight percent of 22 trials comparing the diurnal average ψp of the same species in different community types on the same day were less negative for a species in the wetter community types as predicted by floristic ordinations. Similarly, 64% of the trials indicated that the diurnal average stomatal conductance was higher for a species in the wetter type. These results suggest that although a floodplain moisture gradient exists, it alone does not limit the distribution of floodplain plant communities in the North Fork.

  15. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    International Nuclear Information System (INIS)

    Maxwell, S.L. III.

    1991-01-01

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS

  16. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  17. Rapid Bioassessment Methods for Assessing Stream Macroinvertebrate Community on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1999-11-22

    Macroinvertebrate sampling was performed at 16 locations in the Savannah River Site (SRS) streams using Hester-Dendy multiplate samplers and EPA Rapid Bioassessment Protocols (RBP). Some of the sampling locations were unimpacted, while other locations had been subject to various forms of perturbation by SRS activities. In general, the data from the Hester-Dendy multiplate samplers were more sensitive at detecting impacts than were the RBP data. We developed a Biotic Index for the Hester-Dendy data which incorporated eight community structure, function, and balance parameters. when tested using a data set that was unrelated to the data set that was used in developing the Biotic Index, the index was very successful at detecting impact.

  18. The Savannah River Site's Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  19. A novel use of LIMS for surveillance activities at the Savannah River Site

    International Nuclear Information System (INIS)

    Rogier, W.J.

    2000-01-01

    The current mission of the Savannah River Site is focused primarily on cleanup and disposal of waste associated with more than 40 years of nuclear material production. However, SRS continues to provide tritium processing for the Department of Energy. Tritium, a radioactive isotope of hydrogen gas, is used to boost the explosive power of nuclear weapons. The tritium container, processed by SRS, is known as a reservoir. Part of the SRS tritium mission is to assure the safety and reliability of tritium reservoirs by conducting a series of thorough surveillance tests on a sampling of fielded reservoirs. Data from these tests have historically been stored in a database archive and reporting system known as QUADSTAR. This system was developed at the Mound Facility in the mid-1980s when Mound performed the reservoir surveillance mission for DOE. The surveillance mission and the QUADSTAR database were transferred to SRS during the downsizing of the Nuclear Weapon Complex in the mid-1990s

  20. Design and performance of the Savannah River Site Billet Active Well Coincidence Counter

    International Nuclear Information System (INIS)

    Griffin, J.C.; Sadowski, E.T.

    1991-01-01

    The Savannah River Site (SRS) has acquired, installed, and tested a custom-built Billet Active Well (neutron) Coincidence Counter (BAWCC). The BAWCC is used to make accountability measurements of the 235 U content of U-Al coextrusion billets in the SRS fuel fabrication facility. The instrument design incorporates a unique center-source configuration, with two moderated americium-lithium (AmLi) neutron sources located in a central spindle that inserts through the center hole of the U-Al billets. This configuration, a result of earlier experimental studies at SRS, yields improved response and precision for billet assay when compared to the standard AWCC source arrangement. Initial tests of the BAWCC at SRS have yielded one-sigma uncertainties of 0.8--1.0% for a fifteen-minute assay. This paper will describe the design, testing program and performance characteristics of the BAWCC

  1. Probabilistic risk assessment support of emergency preparedness at the Savannah River Site

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Baker, W.H.; Simpkins, A.A.; Taylor, R.P.; Wagner, K.C.; Amos, C.N.

    1992-01-01

    Integration of the Probabilistic Risk Assessment (PRA) for K Reactor operation into related technical areas at the Savannah River Site (SRS) includes coordination with several onsite organizations responsible for maintaining and upgrading emergency preparedness capabilities. Major functional categories of the PRA application are scenario development and source term algorithm enhancement. Insights and technologies from the SRS PRA have facilitated development of: (1) credible timelines for scenarios; (2) algorithms tied to plant instrumentation to provide best-estimate source terms for dose projection; and (3) expert-system logic models to implement informed counter-measures to assure onsite and offsite safety following accidental releases. The latter methodology, in particular, is readily transferable to other reactor and non-reactor facilities at SRS and represents a distinct advance relative to emergency preparedness capabilities elsewhere in the DOE complex

  2. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    International Nuclear Information System (INIS)

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021)

  3. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Sigg, R.

    1990-01-01

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in each of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements

  4. A Casting Form from the Muranka Unfortified Site on the Usa River

    Directory of Open Access Journals (Sweden)

    Stashenkov Dmitry A.

    2012-03-01

    Full Text Available A new find from Muranka unfortified settlement, one of major Golden Horde period sites in the Middle Volga river region is published. It is a double-sided stone mould intended for casting jewelry. Each side of the form was used for casting individual jewelry items: women's hair, head and costume decorations. The head ornaments include two temple rings and earrings shaped as question marks. One more decorative element, styled as a bird’s figure could be either part of some complex piece or an individual product. The other side of the form was used for casting two product varieties: belt buckles and pendants. The mould is of high-quality workmanship. The exact analogy of this rare find is not yet known.

  5. Rapid Bioassessment Methods for Assessing Stream Macroinvertebrate Community on the Savannah River Site

    International Nuclear Information System (INIS)

    Specht, W.L.

    1999-01-01

    Macroinvertebrate sampling was performed at 16 locations in the Savannah River Site (SRS) streams using Hester-Dendy multiplate samplers and EPA Rapid Bioassessment Protocols (RBP). Some of the sampling locations were unimpacted, while other locations had been subject to various forms of perturbation by SRS activities. In general, the data from the Hester-Dendy multiplate samplers were more sensitive at detecting impacts than were the RBP data. We developed a Biotic Index for the Hester-Dendy data which incorporated eight community structure, function, and balance parameters. when tested using a data set that was unrelated to the data set that was used in developing the Biotic Index, the index was very successful at detecting impact

  6. Solvent Extraction Batch Distribution Coefficients with Savannah River Site Dissolved Salt Cake

    International Nuclear Information System (INIS)

    Walker, D.D.

    2002-01-01

    Researchers characterized high-level waste derived from dissolved salt cake from the Savannah River Site (SRS) tank farm and measured the cesium distribution coefficients (DCs) for extraction, scrub, and stripping steps of the caustic-side solvent extraction (CSSX) flowsheet. The measurements used two SRS high-level waste samples derived entirely or in part from salt cake. The chemical compositions of both samples are reported. Dissolved salt cake waste contained less Cs-137 and more dianions than is typical of supernate samples. Extraction and scrub DCs values for both samples exceeded process requirements and agreed well with model predictions. Strip DCs values for the Tank 46F sample also met process requirements. However, strip DCs values could not be calculated for the Tank 38H sample due to the poor material balance for Cs-137. Potential explanations for the poor material balance are discussed and additional work to determine the cause is described

  7. Savannah River Site Environmental Monitoring Plan. Volume 1, Section 1000 Addendum: Revision 3

    International Nuclear Information System (INIS)

    Jannik, G.T.

    1994-01-01

    This document -- the Savannah River Site Environmental Monitoring Plan (SRS EM Plan) -- has been prepared according to guidance contained in the DOE 5400 Series orders, in 10 CFR 834, and in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and environmental Surveillance [DOE, 1991]. The SRS EM Plan's purpose is to define the criteria, regulations, and guideline requirements with which SRS will comply. These criteria and requirements are applicable to environmental monitoring activities performed in support of the SRS Environmental Monitoring Program (SRS EM Program), WSRC-3Q1-2, Volume 1, Section 1100. They are not applicable to monitoring activities utilized exclusively for process monitoring/control. The environmental monitoring program requirements documented in the SRS EM Plan incorporate all applicable should requirements of DOE/EH-0173T and expand upon them to include nonradiological environmental monitoring program requirements

  8. The Savannah River Site's Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  9. The Savannah River Site's Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  10. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

  11. Cadmium control/safety rod disposal at the Savannah River Site

    International Nuclear Information System (INIS)

    McInnis, S.H.

    1995-01-01

    Four heavy-water-moderated reactors at the Savannah River Site will undergo the removal of 862 activated cadmium control/safety rods. Although these reactors are 40 years old, they offer 4 basic advantages for decommissioning: the equipment is still in some sort of operable state; the reactor is blow the floor in a large process room, allowing access; Control/safety rods can be handled remotely by existing equipment; a radiologically shielded removal path exists. Drawbacks include the following: age of reactors; improvements in technology have caused incompatibility problems; more strigent standards; compliance with environmental regulations. This article details how the removal was carried out and the current status of the project, keeping in mind the above considerations

  12. An aerial radiological survey of L Lake and Steel Creek, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1992-11-01

    An aerial radiological survey was conducted over a portion of the Savannah River Site along the Steel Creek Corridor during the period of July 16--31, 1986. Similar surveys of this area were performed in 1974, 1979, 1982, 1983, and 1985. This survey was flown with the same survey parameters and coverage as the 1985 survey to obtain measurements of both natural and man-made gamma radiation. These radiological measurements were used to determine if there had been any changes in concentration, spatial distribution, or estimated equivalent annual dose (mrem/yr) of the natural terrestrial background or man-made contaminants detected during the 1985 survey and earlier. The 1986 data are presented as isodose rate contour maps with overlays of corresponding 1985 survey data

  13. Point and Fixed Plot Sampling Inventory Estimates at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Parresol, Bernard, R.

    2004-02-01

    This report provides calculation of systematic point sampling volume estimates for trees greater than or equal to 5 inches diameter breast height (dbh) and fixed radius plot volume estimates for trees < 5 inches dbh at the Savannah River Site (SRS), Aiken County, South Carolina. The inventory of 622 plots was started in March 1999 and completed in January 2002 (Figure 1). Estimates are given in cubic foot volume. The analyses are presented in a series of Tables and Figures. In addition, a preliminary analysis of fuel levels on the SRS is given, based on depth measurements of the duff and litter layers on the 622 inventory plots plus line transect samples of down coarse woody material. Potential standing live fuels are also included. The fuels analyses are presented in a series of tables.

  14. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.; Frye-O'Bryant, R.C.

    1992-01-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches

  15. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    International Nuclear Information System (INIS)

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy's (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions

  16. Life cycle cost analysis changes mixed waste treatment program at the Savannah River Site

    International Nuclear Information System (INIS)

    Pickett, J.B.; England, J.L.; Martin, H.L.

    1992-01-01

    A direct result of the reduced need for weapons production has been a re-evaluation of the treatment projects for mixed (hazardous/radioactive) wastes generated from metal finishing and plating operations and from a mixed waste incinerator at the Savannah River Site (SRS). A Life Cycle Cost (LCC) analysis was conducted for two waste treatment projects to determine the most cost effective approach in response to SRS mission changes. A key parameter included in the LCC analysis was the cost of the disposal vaults required for the final stabilized wasteform(s) . The analysis indicated that volume reduction of the final stabilized wasteform(s) can provide significant cost savings. The LCC analysis demonstrated that one SRS project could be eliminated, and a second project could be totally ''rescoped and downsized.'' The changes resulted in an estimated Life Cycle Cost saving (over a 20 year period) of $270,000,000

  17. High-level waste processing at the Savannah River Site: An update

    International Nuclear Information System (INIS)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ''sludge-only'' composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ''coupled'' feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates

  18. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    International Nuclear Information System (INIS)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area

  19. Migration studies at the Savannah River Plant shallow land burial site

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Emslie, R.H.; Ryan, J.P. Jr.; King, C.M.

    1983-01-01

    Radionuclide migration from the Savannah River Plant low-level waste burial ground was studied in ongoing programs that provide generic data on a shallow land burial site in a humid region and support local waste disposal operations. Field, laboratory, and theoretical work continued in four areas. (1) Subsurface Monitoring: Groundwater around the burial ground was monitored for traces of radioactivity and mercury. (2) Lysimeter Tests: Gamma-emitting radionuclides were identified by sensitive methods in defense waste lysimeter percolate waters. Results from these and other lysimeters containing tritium, I-129, or Pu-239 sources are given. (3) Soil-Water Chemistry: Experiments on specific factors affecting migration of Cs-137 showed that potassium significantly increases cesium mobility, thus confirming observations with trench waters. Distribution coefficients for ruthenium were measured. (4) Transport Modeling: Efforts to refine and validate the SRL dose-to-man model continued. Transport calculations were made for tritium, Sr-90, Tc-99, and TRU radionuclides. 12 references, 3 tables

  20. A QUICK KEY TO THE SUBFAMILIES AND GENERA OF ANTS OF THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D

    2007-09-04

    This taxonomic key was devised to support development of a Rapid Bioassessment Protocol using ants at the Savannah River Site. The emphasis is on 'rapid' and, because the available keys contained a very large number of genera not known to occur at the Savannah River Site, we found that the available keys were unwieldy. Because these keys contained many more genera than we would ever encounter and because this larger number of genera required more couplets in the key and often required examination of characters that are difficult to assess without higher magnifications (60X or higher), more time was required to process samples. In developing this set of keys I emphasized character states that are easier for nonspecialists to recognize. I recognize that the character sets used may lead to some errors but I believe that the error rate will be small and, for the purpose of rapid bioassessment, this error rate will be acceptable provided that overall sample sizes are adequate. Oliver and Beattie (1996a, 1996b) found that for rapid assessment of biodiversity the same results were found when identifications were done to morphospecies by people with minimal expertise as when the same data sets were identified by subject matter experts. Basset et al. (2004) concluded that it was not as important to correctly identify all species as it was to be sure that the study included as many functional groups as possible. If your study requires high levels of accuracy, it is highly recommended that, when you key out a specimen and have any doubts concerning the identification, you should refer to keys in Bolton (1994) or to the other keys used to develop this area specific taxonomic key.

  1. Use of Savannah River Site facilities for blend down of highly enriched uranium

    International Nuclear Information System (INIS)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO 3 ) powder, uranyl nitrate [UO 2 (NO 3 ) 2 ] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO 2 ) or uranium hexafluoride (UF 3 ), the normal inputs for commercial fuel fabrication. This study's scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO 2 or UF 6 , blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM)

  2. Safety Evaluation Report Restart of K-Reactor Savannah River Site

    International Nuclear Information System (INIS)

    1991-10-01

    In April 1991, the Department of Energy (DOE) issued DOE/DP-0084T, ''Safety Evaluation Report Restart of K-Reactor Savannah River Site.'' The Safety Evaluation Report (SER) documents the results of DOE reviews and evaluations of the programmatic aspects of a large number of issues necessary to be satisfactorily addressed before restart. The issues were evaluated for compliance with the restart criteria included in the SER. The results of those evaluations determined that the restart criteria had been satisfied for some of the issues. However, for most of the issues at least part of the applicable restart criteria had not been found to be satisfied at the time the evaluations were prepared. For those issues, open or confirmatory items were identified that required resolution. In August 1991, DOE issued DOE/DP-0090T, ''Safety Evaluation Report Restart of K-Reactor Savannah River Site Supplement 1.'' That document was the first Supplement to the April 1991 SER, and documented the resolution of 62 of the open items identified in the SER. This document is the second Supplement to the April 1991 SER. This second SER Supplement documents the resolution of additional open times identified in the SER, and includes a complete list of all remaining SER open items. The resolution of those remaining open items will be documented in future SER Supplements. Resolution of all open items for an issue indicates that its associated restart criteria have been satisfied, and that DOE concludes that the programmatic aspects of the issue have been satisfactorily addressed

  3. Providing Meteorological Information for Controlled Burns at the Savannah River Site

    International Nuclear Information System (INIS)

    Buckley, R.

    1999-01-01

    Regional and local weather information are important for a variety of applications at the Savannah River Site (SRS), a Department of Energy (DOE) facility covering approximately 800 square kilometers of southwest South Carolina east of the Savannah River. For example, meteorological observations and forecasts are used to assess the consequences of an accidental radiological or chemical release. Traditionally, hazards posed by SRS operations have been associated with nuclear reactors, chemical reprocessing plants, fuel fabrication, or waste-vitrification facilities. However, recent events have shown site-specific meteorology to be a valuable tool to the United States Forest Service (USFS) in mitigating potential hazards from controlled burns that are conducted at the SRS. Prescribed burns at the SRS are important for a variety of reasons. The removal of thick undergrowth allows wildlife to more easily feed and migrate, accelerates the growth of young pine stands, and controls certain diseases that affect local pine forests (e.g. Adams et al. 1973). In addition, the removal of twigs, pine needles, or leaves (a fuel source) reduces the chance of serious wildfire damage. However, the threat of smoke inhalation and reduced visibility requires careful planning on the part of the fire professionals. At the SRS, approximately 100 square kilometers of land per year are burned in a controlled manner, mainly in the spring.To reduce the potentially harmful effects to any onsite activity, it is important that USFS personnel understand current and predicted weather patterns within the area. This paper discusses two sources of meteorological information that are provided to SRS-USFS personnel for use in planning forest burns: (1) a meteorological tower system which provides current data from a series of onsite locations, and (2) an operational prognostic mesoscale model used to generate forecast information. The forecast data supplements the basic National Weather Service (NWS

  4. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    International Nuclear Information System (INIS)

    Geist, D.R.; Oregon State Univ., Corvallis, OR; Dauble, D.D.

    1998-01-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost

  5. Macroinvertebrate-based assessment of biological condition at selected sites in the Eagle River watershed, Colorado, 2000-07

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Healy, Brian D.; Williams, Cory A.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service (FS), compiled macroinvertebrate (73 sites, 124 samples) data previously collected in the Eagle River watershed from selected USGS and FS studies, 2000-07. These data were analyzed to assess the biological condition (that is, biologically ?degraded? or ?good?) at selected sites in the Eagle River watershed and determine if site class (for example, urban or undeveloped) described biological condition. An independently developed predictive model was applied to calculate a site-specific measure of taxonomic completeness for macroinvertebrate communities, where taxonomic completeness was expressed as the ratio of observed (O) taxa to those expected (E) to occur at each site. Macroinvertebrate communities were considered degraded at sites were O/E values were less than 0.80, indicating that at least 20 percent of expected taxa were not observed. Sites were classified into one of four classes (undeveloped, adjacent road or highway or both, mixed, urban) using a combination of riparian land-cover characteristics, examination of topographic maps and aerial imagery, screening for exceedances in water-quality standards, and best professional judgment. Analysis of variance was used to determine if site class accounted for variability in mean macroinvertebrate O/E values. Finally, macroinvertebrate taxa observed more or less frequently than expected at urban sites were indentified. This study represents the first standardized assessment of biological condition of selected sites distributed across the Eagle River watershed. Of the 73 sites evaluated, just over

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  8. Natural resource risk and cost management in environmental restoration: Demonstration project at the Savannah River Site

    International Nuclear Information System (INIS)

    Bascietto, J.J.; Sharples, F.E.

    1995-01-01

    The US Department of Energy (DOE) is both a trustee for the natural resources present on its properties and the lead response agency under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As such, DOE is addressing the destruction or loss of those resources caused by releases of hazardous substances from its facilities (DOE 1991) and collecting data to be used in determining the extent of contamination at its facilities, estimating risks to human health and the environment, and selecting appropriate remedial actions. The remedial investigation/feasibility study (RI/FS) process is used to investigate sites and select remedial actions. A Natural Resource Damage Assessment (NRDA) process may be used to determine whether natural resources have also been injured by the released hazardous substances and to calculate compensatory monetary damages to be used to restore the natural resources. In FY 1994, the Savannah River Site (SRS) was chosen to serve as a demonstration site for testing the integrated NRDA framework and demonstrating how NRDA concerns might be integrated into the environmental restoration activities of an actual site that is characteristically large and complex. The demonstration project (1) provided a means to illustrate the use of complex analyses using real information on the specific natural resources of the SRS; (2) served as a vehicle for reinforcing and expanding the SRS staff's understanding of the links between the NRDA and RI/FS processes; (3) provided a forum for the discussion of strategic issues with SRS personnel; and (4) allowed the refining and elaboration of DOE guidance by benchmarking the theoretical process using real information and issues

  9. Environmental Assessment for the Independent Waste Handling Facility, 211-F at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Currently, liquid Low Activity Waste (LAW) and liquid High Activity Waste (HAW) are generated from various process operational facilities/processes throughout the Savannah River Site (SRS) as depicted on Figure 2-1. Prior to storage in the F-Area tank farm, these wastes are neutralized and concentrated to minimize their volume. The Waste Handling Facility (211-3F) at Building 211-F Complex (see Figure 2-2) is the only existing facility onsite equipped to receive acidic HAW for neutralization and volume reduction processing. Currently, Building 221-F Canyon (see Figure 2-2) houses the neutralization and evaporation facilities for HAW volume reduction and provides support services such as electric power and plant, process, and instrument air, waste transfer capabilities, etc., for 21 1-F operations. The future plan is to deactivate the 221-F building. DOE`s purpose is to be able to process the LAW/HAW that will continue to be generated on site. DOE needs to establish an alternative liquid waste receipt and treatment capability to support site facilities with a continuing mission. The desire is for Building 211-F to provide the receipt and neutralization functions for LAW and HAW independent of 221-F Canyon. The neutralization capability is required to be part of the Nuclear Materials Stabilization Programs (NMSP) facilities since the liquid waste generated by the various site facilities is acidic. Tn order for Waste Management to receive the waste streams, the solutions must be neutralized to meet Waste Management`s acceptance criteria. The Waste Management system is caustic in nature to prevent corrosion and the subsequent potential failure of tanks and associated piping and hardware.

  10. Geologic features of dam sites in the Nehalem, Rogue, and Willamette River basins, Oregon, 1935-37

    Science.gov (United States)

    Piper, A.M.

    1947-01-01

    The present report comprises brief descriptions of geologic features at 19 potential dam sites in the Nehalem, Rogue, and Willamette River basins in western Oregon. The topography of these site and of the corresponding reservoir site was mapped in 1934-36 under an allocation of funds, by the Public Works Administration for river-utilization surveys by the Conservation Branch of the United States Geological Survey. The field program in Oregon has been under the immediate charge of R. O. Helland. The 19 dam sites are distributed as follows: three on the Nehalem River, on the west or Pacific slope of the Oregon Coast range; four on Little Butte Creek and two on Evans Creek, tributaries of the Rogue River in the eastern part of the Klamath Mountains; four on the South and Middle Santiam Rivers, tributaries of the Willamette River from the west slope of the Cascade mountains; and six on tributaries of the Willamette River from the east slope of the Coast Range. Except in the Evans Creek basin, all the rocks in the districts that were studied are of comparatively late geological age. They include volcanic rocks, crystalline rocks of several types, marine and nonmarine sedimentary rocks, and recent stream deposits. The study of geologic features has sought to estimate the bearing power and water-tightness of the rocks at each dam site, also to place rather broad limits on the type of dam for which the respective sites seem best suited. It was not considered necessary to study the corresponding reservoir sites in detail for excessive leakage appears to be unlikely. Except at three of the four site in the Santiam River basin, no test pits have been dug nor exploratory holes drilled, so that geologic features have been interpreted wholly from natural outcrops and from highway and railroad cuts. Because these outcrops and cuts are few, many problems related to the construction and maintenance of dams can not be answered at the this time and all critical features of the sites

  11. High-frequency acoustic imaging of L Lake Phase 4 [Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Dunn, D.L.; Sjostrom, Keith J.; Leist, Rodney L.; Harmon, Thomas S. Jr.

    1997-01-01

    The objective of the seismic reflection and side scan sonar survey is to determine the location, aerial extent, and depth of burial pits situated along the reservoir bottom of L Lake, Savannah River Site, SC. The results will be used in the overall characterization of L Lake by providing continuous profile line coverage of the bottom and subbottom sediment structure along the entire length of the project area. The results are also intended to supplement previous scientific information obtained from soil samples, aerial photography, and radiometric studies. Resultant information will be used as input for an Environmental Impact Statement of the site. Overall, the seismic reflection data will provide better descriptions of variations in the actual subbottom conditions and help identify the differing sediment layers. The side scan sonar will help identify the location of the burial pits and any other features on the bottom of the reservoir. A 3.5 kiloHertz (kHz), high resolution subbottom profiling system and an EG and G Model 260 side scan sonar system were used to meet the primary objectives of the investigation

  12. Geochemical and physical properties of soils and shallow sediments at the Savannah River Site

    International Nuclear Information System (INIS)

    Looney, B.B.; Eddy, C.A.; Ramdeen, M.; Pickett, J.; Rogers, V.; Scott, M.T.; Shirley, P.A.

    1990-01-01

    A program to characterize the geochemical and physical properties of the unimpacted soils and shallow sediments at the Savannah River Site (SRS) has been completed. The maximum, minimum, median, standard deviation, and mean values for metals, radionuclides, inorganic anions, organic compounds, and agricultural indicator parameters are summarized for six soil series that were identified as representative of the 29 soil series at SRS. The soils from unimpacted areas of SRS are typical of soils found in moderately aggressive weathering environments, including the southeastern United States. Appendix 8 organic compounds were detected in all samples. Since these constituents are not generally present in soil, this portion of the investigation was intended to assess possible laboratory artifacts. An additional objective of the SRS Soil Study was to determine if the composition of the split spoon sampler biased chemical analysis of the soils. Twenty-five duplicate samples were analyzed for a number of metals, radiological and agricultural parameters, and organics by two laboratories currently contracted with to analyze samples during waste site characterization. In all cases, the absolute values of the average differences are relatively small compared to the overall variability in the population. 31 refs., 14 figs., 48 tabs

  13. Development of a design package for a viscous barrier at the Savannah River Site

    International Nuclear Information System (INIS)

    Moridis, G.J.; James, A.; Oldenburg, C.

    1996-10-01

    This paper describes elements of a design for a pilot-scale field demonstration of a new subsurface containment technology for waste isolation developed at the Lawrence Berkeley National Laboratory (LBNL), which uses a new generation of barrier liquids for permeation grouting. The demonstration site was Retention Basin 281-3H, a shallow catchment basin at the Savannah River Site (SRS), originally built to control contaminated runoff for the H Reactor, and which has been contaminated mainly by radionuclides. The LBNL viscous barrier technology employs barrier liquids which, when injected into the subsurface, produce chemically benign nearly impermeable barriers through a very large increase in viscosity. The initially low-viscosity liquids are emplaced through multiple injection points in the subsurface and the intersecting plumes merge and completely surround the contaminant source and/or plume. Once in place, they gel or cure to form a nearly impermeable barrier. The barrier liquid to be used in this application is Colloidal Silica (CS), an aqueous suspension of silica microspheres in a stabilizing electrolyte. It has excellent durability characteristics, poses no health hazard, is practically unaffected by filtration, and is chemically and biologically benign

  14. Estimating Derived Response Levels at the Savannah River Site for Use with Emergency Response Models

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    2002-01-01

    Emergency response computer models at the Savannah River Site (SRS) are coupled with real-time meteorological data to estimate dose to individuals downwind of accidental radioactive releases. Currently, these models estimate doses for inhalation and shine pathways, but do not consider dose due to ingestion of contaminated food products. The Food and Drug Administration (FDA) has developed derived intervention levels (DIL) which refer to the radionuclide-specific concentration in food present throughout the relevant period of time, with no intervention, that could lead to an individual receiving a radiation dose equal to the protective action guide. In the event of an emergency, concentrations in various food types are compared with these levels to make interdictions decisions. Prior to monitoring results being available, concentrations in the environmental media (i.e. soil), called derived response levels (DRLs), can be estimated from the DILs and directly compared with computer output to provide preliminary guidance as to whether intervention is necessary. Site-specific derived response levels (DRLs) are developed for ingestion pathways pertinent to SRS: milk, meat, fish, grain, produce, and beverage. This provides decision-makers with an additional tool for use immediately following an accident prior to the acquisition of food monitoring data

  15. Lower Columbia River and Estuary Ecosystem Restoration Program Reference Site Study: 2011 Restoration Analysis - FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B.; Cullinan, Valerie I.; Diefenderfer, Heida L.; Thom, Ronald M.; Kaufmann, Ronald M.; Zimmerman, Shon A.; Sagar, Jina; Buenau, Kate E.; Corbett, C.

    2012-05-31

    The Reference Site (RS) study is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers, Portland District [USACE], and U.S. Bureau of Reclamation) in response to Federal Columbia River Power System (FCRPS) Biological Opinions (BiOp). While the RS study was initiated in 2007, data have been collected at relatively undisturbed reference wetland sites in the LCRE by PNNL and collaborators since 2005. These data on habitat structural metrics were previously summarized to provide baseline characterization of 51 wetlands throughout the estuarine and tidal freshwater portions of the 235-km LCRE; however, further analysis of these data has been limited. Therefore, in 2011, we conducted additional analyses of existing field data previously collected for the Columbia Estuary Ecosystem Restoration Program (CEERP) - including data collected by PNNL and others - to help inform the multi-agency restoration planning and ecosystem management work underway in the LCRE.

  16. The red-cockaded woodpecker on the Savannah River Site: Aspects of reproductive success.

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Peter A; Imm, Donald, W.; Jarvis, William L

    2004-12-31

    Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 5. Status and Trends of Populations. Pp 224-229. Abstract: The red-cockaded woodpecker (Picoides borealis) population on the Savannah River Site has been closely monitored and studied over the last 17 years. In 1985, the USDA Forest Service Southern Research Station was given responsibility to study and manage this population in an effort to prevent its extirpation. In December 1985, there were only 4 individuals on the site: 1 pair and 2 solitary males. The population had increased to a total of 175 individuals in 42 active clusters in 2002. Although this represents a very successful recovery effort, there has been substantial annual variation in nesting survival from banding to fledging. Data were analyzed to more completely understand the factors affecting reproduction. No significant effects of age of the breeding male and female, years paired, number of helpers, habitat quality, number of nestings, and time of nest initiation were found when comparing reproductive success in 117 nesting attempts from 1999 to 2002. However, the number of neighboring groups had a direct effect on mortality rates, possibly demonstrating the importance of cluster spacing.

  17. Geochemical and physical properties of soils and shallow sediments at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.B.; Eddy, C.A.; Ramdeen, M.; Pickett, J. (Savannah River Lab., Aiken, SC (USA)); Rogers, V. (Soil Conservation Service, Aiken, SC (USA). Savannah River Site Savannah River Lab., Aiken, SC (USA)); Scott, M.T.; Shirley, P.A. (Sirrine Environmental Consultants, Greenville, SC (USA))

    1990-08-31

    A program to characterize the geochemical and physical properties of the unimpacted soils and shallow sediments at the Savannah River Site (SRS) has been completed. The maximum, minimum, median, standard deviation, and mean values for metals, radionuclides, inorganic anions, organic compounds, and agricultural indicator parameters are summarized for six soil series that were identified as representative of the 29 soil series at SRS. The soils from unimpacted areas of SRS are typical of soils found in moderately aggressive weathering environments, including the southeastern United States. Appendix 8 organic compounds were detected in all samples. Since these constituents are not generally present in soil, this portion of the investigation was intended to assess possible laboratory artifacts. An additional objective of the SRS Soil Study was to determine if the composition of the split spoon sampler biased chemical analysis of the soils. Twenty-five duplicate samples were analyzed for a number of metals, radiological and agricultural parameters, and organics by two laboratories currently contracted with to analyze samples during waste site characterization. In all cases, the absolute values of the average differences are relatively small compared to the overall variability in the population. 31 refs., 14 figs., 48 tabs.

  18. Mapping of contamination at Savannah River Site FBWU by INEEL trolley

    International Nuclear Information System (INIS)

    Carpenter, M.V.; Gehrke, R.J.; Helmer, R.G.; Josten, N.

    1998-01-01

    The Ford Building Waste Unit (FBWU) 643-11G is a Resource Conservation and Recovery Act/Comprehensive Environmental Response Compensation and Liability Act (RCRA/CERCLA) designated site at the Savannah River Site (SRS) in Aiken, South Carolina. Pre-Work Plan Characterization at the FBWU in May 1996 indicated that radiological contamination was present in surface and near surface soils and identified cesium-137, 137 Cs, the unit specific contaminant, as being primarily in the top 15 cm of soil. The Idaho National Engineering and Environmental Laboratory (INEEL) sent the dig-face trolley system to SRS where it demonstrated its capability over a 6.1-m (20 ft.) x 9.6-m (30 ft.) area to rapidly map the contamination on-line with its large area plastic scintillation detector. Also, an extended-range (10 keV to 3 MeV) Ge detector was used at selected locations to identify and quantify the 137 Cs contamination. The coordinate locations of each measurement acquired in either the scanning or fixed position mode was obtained with a survey system based on radial encoders. Topography measurements were also made during measurements to permit correction of field of view and activity concentrations for changes in the ground to detector distance

  19. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  20. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-01-01

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities

  1. Hydrogeology along the southern boundary of the Hanford Site between the Yakima and Columbia Rivers, Washington

    International Nuclear Information System (INIS)

    Liikala, T.L.

    1994-09-01

    US Department of Energy (DOE) operations at the Hanford Site, located in southeastern Washington, have generated large volumes of hazardous and radioactive wastes since 1944. Some of the hazardous wastes were discharged to the ground in the 1100 and 3000 Areas, near the city of Richland. The specific waste types and quantities are unknown; however, they probably include battery acid, antifreeze, hydraulic fluids, waste oils, solvents, degreasers, paints, and paint thinners. Between the Yakima and Columbia rivers in support of future hazardous waste site investigations and ground-water and land-use management. The specific objectives were to collect and review existing hydrogeologic data for the study area and establish a water-level monitoring network; describe the regional and study area hydrogeology; develop a hydrogeologic conceptual model of the unconfined ground-water flow system beneath the study area, based on available data; describe the flow characteristics of the unconfined aquifer based on the spatial and temporal distribution of hydraulic head within the aquifer; use the results of this study to delineate additional data needs in support of future Remedial Investigation/Feasibility Studies (RI/FS), Fate and Transport modeling, Baseline Risk Assessments (BRA), and ground-water and land-use management

  2. Regulatory requirements of the integrated technology demonstration program, Savannah River Site (U)

    International Nuclear Information System (INIS)

    Bergren, C.L.

    1992-01-01

    The integrated demonstration program at the Savannah River Site (SRS) involves demonstration, testing and evaluation of new characterization, monitoring, drilling and remediation technologies for soils and groundwater impacted by organic solvent contamination. The regulatory success of the demonstration program has developed as a result of open communications between the regulators and the technical teams involved. This open dialogue is an attempt to allow timely completion of applied environmental restoration demonstrations while meeting all applicable regulatory requirements. Simultaneous processing of multiple regulatory documents (satisfying RCRA, CERCLA, NEPA and various state regulations) has streamlined the overall permitting process. Public involvement is achieved as various regulatory documents are advertised for public comment consistent with the site's community relations plan. The SRS integrated demonstration has been permitted and endorsed by regulatory agencies, including the Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control. EPA headquarters and regional offices are involved in DOE's integrated Demonstration Program. This relationship allows for rapid regulatory acceptance while reducing federal funding and time requirements. (author)

  3. Test Excavations at the Cedar Grove Site (3LA97): A Late Caddo Farmstead on the Red River.

    Science.gov (United States)

    1982-09-01

    trees around Maya Lake, just eastward of the Cedar Grove site (Figure 3). There appears to be some lcorrelation in this region between floodplain prairies...Press, New York. Davis, E. Mott 1970 Archaeological and historical assessment of the Red River Basin in Texas. In Archeological and historical... Archaeological Conference, Atlanta. 113 4 -- - - - - .. .. .- .. - . . . Webb, Clarence B. 1945 A second historic Caddo site at Natchitoches, Louisiana

  4. Audit Report The Procurement of Safety Class/Safety-Significant Items at the Savannah River Site

    International Nuclear Information System (INIS)

    2009-01-01

    The Department of Energy operates several nuclear facilities at its Savannah River Site, and several additional facilities are under construction. This includes the National Nuclear Security Administration's Tritium Extraction Facility (TEF) which is designated to help maintain the reliability of the U.S. nuclear stockpile. The Mixed Oxide Fuel Fabrication Facility (MOX Facility) is being constructed to manufacture commercial nuclear reactor fuel assemblies from weapon-grade plutonium oxide and depleted uranium. The Interim Salt Processing (ISP) project, managed by the Office of Environmental Management, will treat radioactive waste. The Department has committed to procuring products and services for nuclear-related activities that meet or exceed recognized quality assurance standards. Such standards help to ensure the safety and performance of these facilities. To that end, it issued Departmental Order 414.1C, Quality Assurance (QA Order). The QA Order requires the application of Quality Assurance Requirements for Nuclear Facility Applications (NQA-1) for nuclear-related activities. The NQA-1 standard provides requirements and guidelines for the establishment and execution of quality assurance programs during the siting, design, construction, operation, and decommissioning of nuclear facilities. These requirements, promulgated by the American Society of Mechanical Engineers, must be applied to 'safety-class' and 'safety-significant' structures, systems and components (SSCs). Safety-class SSCs are defined as those necessary to prevent exposure off site and to protect the public. Safety-significant SSCs are those whose failure could irreversibly impact worker safety such as a fatality, serious injury, or significant radiological or chemical exposure. Due to the importance of protecting the public, workers, and environment, we initiated an audit to determine whether the Department of Energy procured safety-class and safety-significant SSCs that met NQA-1 standards at

  5. Savannah River Site Footprint Reduction Results under the American Recovery and Reinvestment Act - 13302

    Energy Technology Data Exchange (ETDEWEB)

    Flora, Mary [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Angelia [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States); Pope, Robert [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilities were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and

  6. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    Science.gov (United States)

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  7. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    International Nuclear Information System (INIS)

    Jannik, G. T.; Dixon, K. L.

    2016-01-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  8. Review of reports associated with systems of the K, P and L reactors at the Savannah River Site

    International Nuclear Information System (INIS)

    Cowgill, M.G.

    1992-02-01

    Six reports associated with the structural integrity of several systems of the Savannah River Site reactors are reviewed. The focus is on the materials-related aspects of the reports and no attempt is made to address the stress analysis-related issues

  9. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site.

    Science.gov (United States)

    Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K

    2013-10-01

    The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  11. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-12-16

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  12. Area Completion Strategies at Savannah River Site: Characterization for Closure and Beyond

    International Nuclear Information System (INIS)

    Bagwell, Laura; O'Quinn, Sadika; Amidon, Mark

    2008-01-01

    During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990's, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D and D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an 'area completion' strategy that: - unites several discrete waste units into one conceptual model, - integrates historically disparate environmental characterization and D and D activities - reduces the number of required regulatory documents, - and, in some cases, compresses schedules for achieving a stakeholder-approved end-state. The area completion approaches being implemented at SRS reflect an evolution of the traditional RCRA/ CERCLA remedial process. Area completion strategies: - group waste units and/or D and D facilities together for characterization, remediation, and possible reuse; - identify data needs and integrate data collection activities for D and D, characterization, and remediation; - identify problems that require action

  13. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    Science.gov (United States)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  14. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    Science.gov (United States)

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  15. Rheology of Savannah River site tank 42 and tank 51 HLW radioactive sludges

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1996-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. The high activity radioactive wastes stored as caustic slurries at SRS result from the neutralization of acid waste generated from production of nuclear defense materials. During storage, the wastes separate into a supernate layer and a sludge layer. In the Defense Waste Processing Facility (DWPF) at SRS, the radionuclides from the sludge and supernate will be immobilized into borosilicate glass for long term storage and eventual disposal. Before transferring the waste from a storage tank to the DWPF, a portion of the aluminum in the waste sludge will be dissolved and the sludge will be extensively washed to remove sodium. Tank 51 and Tank 42 radioactive sludges represent the first batch of HLW sludge to be processed in the DWPF. This paper presents results of rheology measurements of Tank 51 and Tank 42 at various solids concentrations. The rheologies of Tank 51 and Tank 42 radioactive slurries were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco RV-12 with an M150 measuring drive unit and TI sensor system. Rheological properties of the Tank 51 and Tank 42 radioactive sludges were measured as a function of weight percent solids. The weight percent solids of Tank 42 sludge was 27, as received. Tank 51 sludge had already been washed. The weight percent solids were adjusted by dilution with water or by concentration through drying. At 12, 15, and 18 weight percent solids, the yield stresses of Tank 51 sludge were 5, 11, and 14 dynes/cm2, respectively. The apparent viscosities were 6, 10, and 12 centipoises at 300 sec-1 shear rate, respectively

  16. OPERATIONS REVIEW OF THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS - 11327

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Poirier, M.; Fondeur, F.; Fink, S.; Brown, S.; Geeting, M.

    2011-02-07

    The Savannah River Site (SRS) is removing liquid radioactive waste from its Tank Farm. To treat waste streams that are low in Cs-137, Sr-90, and actinides, SRS developed the Actinide Removal Process and implemented the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The Actinide Removal Process contacts salt solution with monosodium titanate to sorb strontium and select actinides. After monosodium titanate contact, the resulting slurry is filtered to remove the monosodium titanate (and sorbed strontium and actinides) and entrained sludge. The filtrate is transferred to the MCU for further treatment to remove cesium. The solid particulates removed by the filter are concentrated to {approx} 5 wt %, washed to reduce the sodium concentration, and transferred to the Defense Waste Processing Facility for vitrification. The CSSX process extracts the cesium from the radioactive waste using a customized solvent to produce a Decontaminated Salt Solution (DSS), and strips and concentrates the cesium from the solvent with dilute nitric acid. The DSS is incorporated in grout while the strip acid solution is transferred to the Defense Waste Processing Facility for vitrification. The facilities began radiological processing in April 2008 and started processing of the third campaign ('MarcoBatch 3') of waste in June 2010. Campaigns to date have processed {approx}1.2 million gallons of dissolved saltcake. Savannah River National Laboratory (SRNL) personnel performed tests using actual radioactive samples for each waste batch prior to processing. Testing included monosodium titanate sorption of strontium and actinides followed by CSSX batch contact tests to verify expected cesium mass transfer. This paper describes the tests conducted and compares results from facility operations. The results include strontium, plutonium, and cesium removal, cesium concentration, and organic entrainment and recovery data. Additionally, the poster describes lessons learned during

  17. Instream Biological Assessment of NPDES Point Source Discharges at the Savannah River Site, 2000

    International Nuclear Information System (INIS)

    Specht, W.L.

    2001-01-01

    The Savannah River Site (SRS) currently has 31 NPDES outfalls that have been permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams. These studies were designed to detect biological impacts due to point source discharges. Sampling was initially conducted between November 1997 and July 1998 and was repeated in the summer and fall of 2000. A total of 18 locations were sampled (Table 1, Figure 1). Sampling locations for fish and macroinvertebrates were generally the same. However, different locations were sampled for fish (Road A-2) and macroinvertebrates (Road C) in the lower portion of Upper Three Runs, to avoid interference with ongoing fisheries studies at Road C. Also, fish were sampled in Fourmile Branch at Road 4 rather than at Road F because the stream at Road F was too narrow and shallow to support many fish. Sampling locations and parameters are detailed in Sections 2 and 3 of this report. In general, sampling locations were selected that would permit comparisons upstream and downstream of NPDES outfalls. In instances where this approach was not feasible because effluents discharge into the headwaters of a stream, appropriate unimpacted reference were used for comparison purposes. This report summarizes the results of the sampling that was conducted in 2000 and also compares these data to the data that were collected in 1997 and 1998

  18. Factors affecting food chain transfer of mercury in the vicinity of the Nyanza site, Sudbury River, Massachusetts

    Science.gov (United States)

    Haines, T.A.; May, T.W.; Finlayson, R.T.; Mierzykowski, S.E.

    2003-01-01

    The influence of the Nyanza Chemical Waste Dump Superfund Site on the Sudbury River, Massachusetts, was assessed by analysis of sediment, fish prey organisms, and predator fish from four locations in the river system. Whitehall Reservoir is an impoundment upstream of the site, and Reservoir #2 is an impoundment downstream of the site. Cedar Street is a flowing reach upstream of the site, and Sherman Bridge is a flowing reach downstream of the site. Collections of material for analysis were made three times, in May, July, and October. Sediment was analyzed for acid-volatile sulfide (AVS), simultaneously-extracted (SEM) metals (As, Cd, Cr, Hg, Pb, Sb, Zn), and total recoverable Hg. The dominant predatory fish species collected at all sites, largemouth bass (Micropterus salmoides), was analyzed for the same suite of metals as sediment. Analysis of stomach contents of bass identified small fish (yellow perch Perca flavescens, bluegill Lepomis macrochirus, and pumpkinseed Lepomis gibbosus), crayfish, and dragonfly larvae as the dominant prey organisms. Samples of the prey were collected from the same locations and at the same times as predator fish, and were analyzed for total and methyl mercury. Results of AVS and SEM analyses indicated that sediments were not toxic to aquatic invertebrates at any site. The SEM concentrations of As, Cd, and Cr were significantly higher at Reservoir #2 than at the reference sites, and SEM As and Cd were significantly higher at Sherman Bridge than at Cedar St. Sediment total Hg was elevated only at Reservoir #2. Hg was higher at site-influenced locations in all fish species except brown bullhead (Ameiurus nebulosus). Cd was higher in bluegill, black crappie (Pomoxis nigromaculatus), and brown bullhead, and Cr was higher in largemouth bass fillet samples but not in whole-body samples. There were no seasonal differences in sediment or prey organism metals, but some metals in some fish species did vary over time in an inconsistent manner

  19. Characterization of the Burma Road Rubble Pit at the Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Ward, K.G.; Frazier, W.L.; McAdams, T.D.; McFalls, S.L.; Rabin, M.; Voss, L.

    1996-01-01

    The Burma Road Rubble Pit (BRRP) is located at the Savannah River Site (SRS). The BRRP unit consists of two unlined earthen pits dug into surficial soil and filled with various waste materials. It was used from 1973--1983 for the disposal of dry inert rubble such as metal, concrete, lumber, poles, light fixtures, and glass. No record of the disposal of hazardous substances at the BRRP has been found. In 1983, the BRRP was closed by covering it with soil. In September 1988, a Ground Penetrating Radar survey detected three disturbed areas of soil near the BRRP, and a detailed and combined RCRA Facility Investigation/Remedial Investigation was conducted from November 1993 to February 1994 to determine whether hazardous substances were present in the subsurface, to evaluate the nature and extent of contamination, and to evaluate the risks posed to the SRS facility due to activities conducted at the BRRP site. Metals, semi-volatile organic compounds, volatile organic compounds, radionuclides and one pesticide (Aldrin) were detected in soil and groundwater samples collected from seventeen BRRP locations. A baseline risk assessment (BRA) was performed quantitatively to evaluate whether chemical and radionuclide concentrations detected in soil and groundwater at the BRRP posed an unacceptable threat to human health and the environment. The exposure scenarios identifiable for the BRRP were for environmental researchers, future residential and occupational land use. The total site noncancer hazard indices were below unity, and cancer risk levels were below 1.0E-06 for the existing and future case environmental researcher scenario. The future case residential and occupational scenarios showed total hazard and risk levels which exceeded US EPA criterion values relative to groundwater scenarios. For the most part, the total carcinogenic risks were within the 1.0E-04 to 1.0E-06 risk range. Only the future adult residential scenario was associated with risks exceeding 1.0E-04

  20. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA.