WorldWideScience

Sample records for river salmon flow

  1. 1992 Columbia River salmon flow measures Options Analysis/EIS

    International Nuclear Information System (INIS)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described

  2. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  3. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

  4. 1992 Columbia River salmon flow measures Options Analysis/EIS: Appendices

    International Nuclear Information System (INIS)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices

  5. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  6. Developing New Modelling Tools for Environmental Flow Assessment in Regulated Salmon Rivers

    Science.gov (United States)

    Geris, Josie; Soulsby, Chris; Tetzlaff, Doerthe

    2013-04-01

    There is a strong political drive in Scotland to meet all electricity demands from renewable sources by 2020. In Scotland, hydropower generation has a long history and is a key component of this strategy. However, many rivers sustain freshwater communities that have both high conservation status and support economically important Atlantic salmon fisheries. Both new and existing hydropower schemes must be managed in accordance with the European Union's Water Framework Directive (WFD), which requires that all surface water bodies achieve good ecological status or maintain good ecological potential. Unfortunately, long-term river flow monitoring is sparse in the Scottish Highlands and there are limited data for defining environmental flows. The River Tay is the most heavily regulated catchment in the UK. To support hydropower generation, it has an extensive network of inter- and intra- catchment transfers, in addition to a large number of regulating reservoirs for which abstraction legislation often only requires minimum compensation flows. The Tay is also considered as one of Scotland's most important rivers for Atlantic salmon (Salmo salar), and there is considerable uncertainty as to how best change reservoir operations to improve the ecological potential of the river system. It is now usually considered that environmental flows require more than a minimum compensation flow, and instead should cover a range of hydrological flow aspects that represent ecologically relevant streamflow attributes, including magnitude, timing, duration, frequency and rate of change. For salmon, these hydrological indices are of particular interest, with requirements varying at different stages of their life cycle. To meet the WFD requirements, rationally alter current abstraction licences and provide an evidence base for regulating new hydropower schemes, advanced definitions for abstraction limits and ecologically appropriate flow releases are desirable. However, a good understanding

  7. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  8. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  9. Behavior and movement of formerly landlocked juvenile coho salmon after release into the free-flowing Cowlitz River, Washington

    Science.gov (United States)

    Kock, Tobias J.; Henning, Julie A.; Liedtke, Theresa L.; Royer, Ida M.; Ekstrom, Brian K.; Rondorf, Dennis W.

    2011-01-01

    Formerly landlocked Coho Salmon (Oncorhynchus kisutch) juveniles (age 2) were monitored following release into the free-flowing Cowlitz River to determine if they remained in the river or resumed seaward migration. Juvenile Coho Salmon were tagged with a radio transmitter (30 fish) or Floy tag (1050 fish) and their behavior was monitored in the lower Cowlitz River. We found that 97% of the radio-tagged fish remained in the Cowlitz River beyond the juvenile outmigration period, and the number of fish dispersing downstream decreased with increasing distance from the release site. None of the tagged fish returned as spawning adults in the 2 y following release. We suspect that fish in our study failed to migrate because they exceeded a threshold in size, age, or physiological status. Tagged fish in our study primarily remained in the Cowlitz River, thus it is possible that these fish presented challenges to juvenile salmon migrating through the system either directly by predation or indirectly by competition for food or habitat. Given these findings, returning formerly landlocked Coho Salmon juveniles to the free-flowing river apparently provided no benefit to the anadromous population. These findings have management implications in locations where landlocked salmon have the potential to interact with anadromous species of concern.

  10. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geist, D. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arntzen, E. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  11. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  12. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  13. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

    2004-09-24

    The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures

  14. Benefits of prescribed flows for salmon smolt survival enhancement vary longitudinally in a highly managed river system

    Science.gov (United States)

    Courter, Ian; Garrison, Thomas; Kock, Tobias J.; Perry, Russell W.; Child, David; Hubble, Joel

    2016-01-01

    The influence of streamflow on survival of emigrating juvenile Pacific salmonids Oncorhynchus spp. (smolts) is a major concern for water managers throughout the northeast Pacific Rim. However, few studies have quantified flow effects on smolt survival, and available information does not indicate a consistent flow–survival relationship within the typical range of flows under management control. In the Yakima Basin, Washington, the potential effects of streamflow alterations on smolt survival have been debated for over 20 years. Using a series of controlled flow releases from upper basin reservoirs and radiotelemetry, we quantified the relationship between flow and yearling Chinook salmon smolt survival in the 208 km reach between Roza Dam and the Yakima River mouth. A multistate mark–recapture model accounted for weekly variation in flow conditions experienced by tagged fish in four discrete river segments. Smolt survival was significantly associated with streamflow in the Roza Reach [river kilometre (rkm) 208–189] and marginally associated with streamflow in the Sunnyside Reach (rkm 169–77). However, smolt survival was not significantly associated with flow in the Naches and Prosser Reaches (rkm 189–169 and rkm 77–3). This discrepancy indicates potential differences in underlying flow-related survival mechanisms, such as predation or passage impediments. Our results clarify trade-offs between flow augmentation for fisheries enhancement and other beneficial uses, and our study design provides a framework for resolving uncertainties about streamflow effects on migratory fish survival in other river systems. 

  15. Migratory Patterns of Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-flowing River Basin

    Science.gov (United States)

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  16. Assessment of the Flow-Survival Relationship Obtained by Sims and Ossiander (1981) for Snake River Spring/Summer Chinook Salmon Smolts, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R. (Cleveland R.)

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic`s chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts.

  17. Assessment of the flow-survival relationship obtained by Sims and Ossiander (1981) for Snake River spring/summer chinook salmon smolts. Final report

    International Nuclear Information System (INIS)

    Steward, C.R.

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic's chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts

  18. Effect of tides, river flow, and gate operations on entrainment of juvenile salmon into the interior Sacramento–San Joaquin River Delta

    Science.gov (United States)

    Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.

    2015-01-01

    Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to

  19. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    Science.gov (United States)

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  20. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  1. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin.

    Directory of Open Access Journals (Sweden)

    John H Eiler

    Full Text Available Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002-2004. Most (97.5% of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28-40 km d-1 compared to upper basin stocks (52-62 km d-1. Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between "hares" (faster fish becoming slower and "tortoises" (slow but steady fish explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  2. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  3. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  4. Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington

    Science.gov (United States)

    Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.

    2014-01-01

    Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.

  5. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  6. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    Science.gov (United States)

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  7. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  8. Juvenile salmon usage of the Skeena River estuary.

    Science.gov (United States)

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  9. AFSC/ABL: Movements of Yukon River Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, relatively pristine river basin. A total of...

  10. Yukon River King Salmon - Ichthyophonus Pilot Study

    Science.gov (United States)

    Kocan, R.M.; Hershberger, P.K.

    2001-01-01

    When king salmon enter the Yukon River on their spawning migration in mid June, over 25% of the population are infected with Ichthyophonus. The percent of infected fish remains relatively constant until the fish pass river mile 1,319 at Dawson, Y.T., then it drops to 13% when they reach river mile 1,745 at Whitehorse, Y.T. When the sexes are examined separately, slightly more females are infected than males (29% vs 22%). The percent of fish exhibiting clinical signs (diseased) is 2-3% when they enter the river, but increases to over 20% at river mile 715 near Tanana, AK. Disease prevalence within the population remains constant at >20% until fish pass Dawson, then the percent of diseased fish drops to <9% at Whitehorse. When the sexes are examined separately, male disease prevalence is highest at Tanana (22.6%) then gradually drops to just 12.9% at Whitehorse. Females however, continue to show an increase in disease prevalence peaking at river mile 1,081 near Circle, AK, at 36.4%, then dropping to just 5.3% at Whitehorse. Data on infection and disease collected from kings at Nenana on the Tanana River more closely resembles that seen at Whitehorse than the lower and middle Yukon River.

  11. Columbia River basin fish and wildlife program strategy for salmon

    International Nuclear Information System (INIS)

    Ruff, J.; Fazio, J.

    1993-01-01

    Three species of Snake River salmon have been listed as threatened or endangered under the federal Endangered Species Act. In response, the Northwest Power Planning Council worked with the states of Idaho, Montana, Oregon and Washington, Indian tribes, federal agencies and interest groups to address the status of Snake River salmon runs in a forum known as the Salmon Summit. The Summit met in 1990 and 1991 and reached agreement on specific, short-term actions. When the Summit disbanded in April 1991, responsibility for developing a regional recovery plan for salmon shifted to the Council. The Council responded with a four-phased process of amending its Columbia River Basin Fish and Wildlife Program. The first three phases. completed in September 1992, pertain to salmon and steelhead. Phase four, scheduled for completion in October 1993, will take up issues of resident fish and wildlife. This paper deals with the first three phases, collectively known as Strategy for Salmon

  12. Physicochemical characteristics of the hyporheic zone affect redd site selection of chum and fall chinook salmon, Columbia River, 2001

    International Nuclear Information System (INIS)

    Geist, David R.

    2001-01-01

    Chum salmon (Oncorhynchus keta) may historically have been the most abundant species of Columbia River salmon, contributing as much as 50% of the total biomass of all salmon in the Pacific Ocean prior to the 1940's (Neave 1961). By the 1950's, however, run sizes to the Columbia River dropped dramatically and in 1999 the National Marine Fisheries Service (NMFS) listed Columbia River chum salmon as threatened under the Endangered Species Act (ESA; NMFS 1999). Habitat degradation, water diversions, harvest, and artificial propagation are the major human-induced factors that have contributed to the species decline (NMFS 1998). Columbia River chum salmon spawn exclusively in the lower river below Bonneville Dam, including an area near Ives Island. The Ives Island chum salmon are part of the Columbia River evolutionary significant unit (ESU) for this species, and are included in the ESA listing. In addition to chum salmon, fall chinook salmon (O. tshawytscha) also spawn at Ives Island. Spawning surveys conducted at Ives Island over the last several years show that chum and fall chinook salmon spawned in clusters in different locations (US Fish and Wildlife Service and Washington Department of Fish and Wildlife, unpublished data). The presence of redd clusters suggested that fish were selecting specific habitat features within the study area (Geist and Dauble 1998). Understanding the specific features of these spawning areas is needed to quantify the amount of habitat available to each species so that minimum flows can be set to protect fish and maintain high quality habitat

  13. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  14. Captive Rearing Initiative for Salmon River Chinook Salmon, 1998-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  15. Captive Rearing Initiative for Salmon River Chinook Salmon, 1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  16. Breakup ice control structure for the Salmon River in Connecticut

    International Nuclear Information System (INIS)

    Tuthill, A.M.; White, K.D.

    1997-01-01

    The Salmon River ice jam problem was investigated and a conceptual design for a breakup ice control structure was developed. Historical ice jam events were reviewed and an ice observation program was conducted during the winter of 1994-95. The factors affecting ice jam frequency and severity were examined. The factors included daily temperature, rainfall quantity and intensity, Salmon River stage and discharge, and Connecticut River tide levels. First, a numerical model was developed to simulate a worst case scenario for ice jams, followed by a conceptual design for a concrete pier ice control structure under two ice breakup scenarios. The first scenario assumed that a semi-intact ice sheet would rest against the piers and retain a floating equilibrium jam upstream, allowing water discharge to pass beneath. The second scenario was based on the assumption that a grounded ice jam in direct contact with the piers would divert water flow around the structure via an armored channel in the overbank area. An ice retention structure consisting of a row of concrete piers, spaced across the main channel, 60 m upstream of an existing dam, was proposed. 11 refs., 6 figs

  17. Fish Culture data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  18. Spawning data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  19. Production data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  20. Growth data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  1. Broodyear data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  2. Isotopes - Recolonization of the Cedar River, WA by Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this study is to quantify population, community, and ecosystem level changes as a result of salmon recolonization of the Cedar River, WA above...

  3. Diet - Recolonization of the Cedar River, WA by Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this study is to quantify population, community, and ecosystem level changes as a result of salmon recolonization of the Cedar River, WA above...

  4. The role of episodic fire-related debris flows on long-term (103-104) sediment yields in the Middle Fork Salmon River Watershed, in central Idaho

    Science.gov (United States)

    Riley, K. E.; Pierce, J. L.; Hopkins, A.

    2010-12-01

    Episodic fire-related debris flows contribute large amounts of sediment and large woody debris to streams. This study evaluates fire-related sedimentation from small steep tributaries of the Middle Fork Salmon River (MFSR) in central Idaho to evaluate the timing, frequency, and magnitude of episodic fire-related sedimentation on long-term (10 3-10 4) sediment yields. The MFSR lies within the Northern Rocky Mountains and encompasses a range of ecosystems including high elevation (~3,000 -1,700 m) subalpine pine and spruce forests, mid-elevation (2650 - 1130 m) montane Douglas-fir and ponderosa pine-dominated forests and low elevation (~ 1,800 - 900 m) sagebrush steppe. Recent debris flow events in tributaries of the MFSR appear to primarily result from increased surface runoff, rilling, and progressive sediment bulking following high severity fires. This study estimates: 1) the volume of sediment delivered by four recent (1997-2008) fire-related debris flow events using real time kinematic GPS surveys, and 2) the timing of Holocene fire-related debris flow events determined by 14C dating charcoal fragments preserved in buried burned soils and within fire-related deposits. Our measured volumes of the four recent debris flow events are compared to two empirically derived volume estimates based on remotely sensed spatial data (burn severity and slope), measured geometric data (longitudinal profile, cross sectional area, flow banking angle), and precipitation records. Preliminary stratigraphic profiles in incised alluvial fans suggest that a large percentage of alluvial fan thickness is composed of fire-related deposits suggesting fire-related hillslope erosion is a major process delivering sediment to alluvial fans and to the MFSR. Fire-related deposits from upper basins compose ~71% of total alluvial fan thickness, while fire-related deposits from lower basins make up 36% of alluvial fan thickness. However, lower basins are less densely vegetated with small diameter

  5. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Science.gov (United States)

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River... Snake—Asotin 17060103 17060103 17060103 Upper Grande Ronde 17060104 Wallowa 17060105 Lower Grande Ronde...

  6. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    International Nuclear Information System (INIS)

    Geist, D.R.; Oregon State Univ., Corvallis, OR; Dauble, D.D.

    1998-01-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost

  7. Skagit River coho salmon life history model—Users’ guide

    Science.gov (United States)

    Woodward, Andrea; Kirby, Grant; Morris, Scott

    2017-09-29

    Natural resource management is conducted in the context of multiple anthropogenic stressors and is further challenged owing to changing climate. Experiments to determine the effects of climate change on complex ecological systems are nearly impossible. However, using a simulation model to synthesize current understanding of key ecological processes through the life cycle of a fish population can provide a platform for exploring potential effects of and management responses to changing conditions. Potential climate-change scenarios can be imposed, responses can be observed, and the effectiveness of potential actions can be evaluated. This approach is limited owing to future conditions likely deviating in range and timing from conditions used to create the model so that the model is expected to become obsolete. In the meantime, however, the modeling process explicitly states assumptions, clarifies information gaps, and provides a means to better understand which relationships are robust and which are vulnerable to changing climate by observing whether and why model output diverges from actual observations through time. The purpose of the model described herein is to provide such a decision-support tool regarding coho (Oncorhynchus kisutch) salmon for the Sauk-Suiattle Indian Tribe of Washington State.The Skagit coho salmon model is implemented in a system dynamics format and has three primary stocks—(1) predicted smolts, (2) realized smolts, and (3) escapement. “Predicted smolts” are the number of smolts expected based on the number of spawners in any year and the Ricker production curve. Pink salmon (Oncorhynchus gorbuscha) return to the Skagit River in odd years, and when they overlap with juvenile rearing coho salmon, coho smolt production is substantially higher than in non-pink years. Therefore, the model uses alternative Ricker equations to predict smolts depending on whether their juvenile year was a pink or non-pink year. The stock “realized smolts

  8. Radio telemetry data - Characterizing migration and survival for juvenile Snake River sockeye salmon between the upper Salmon River basin and Lower Granite Dam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project estimates survival and characterizes the migration of juvenile sockeye salmon between the upper Salmon River basin in central Idaho and Lower Granite...

  9. Costs of climate change: Economic value of Yakima River salmon

    International Nuclear Information System (INIS)

    Anderson, D.M.; Shankle, S.A.; Scott, M.J.; Neitzel, D.A.; Chatters, J.C.

    1992-07-01

    This work resulted from a continuing multidisciplinary analysis of species preservation and global change. The paper explores the economic cost of a potential regional warming as it affects one Pacific Northwest natural resource, the spring chinook salmon (Oncorhynchus tshcawytscha). Climate change and planned habitat improvements impact the production and economic value of soling chinook salmon of the Yakima River tributary of the Columbia River in eastern Washington. The paper presents a derivation of the total economic value of a chinook salmon, which includes the summation of the existence, commercial, recreational, and capital values of the fish. When currently available commercial, recreational, existence, and capital values for chinook salmon were applied to estimated population changes, the estimated change in the economic value per fish associated with reduction of one fish run proved significant

  10. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjomn (Bjornn), Theodore C.

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).

  11. Fall chinook salmon survival and supplementation studies in the Snake River and Lower Snake River reservoirs: Annual report 1995

    International Nuclear Information System (INIS)

    Williams, John G.; Bjornn, Theodore C.

    1997-01-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2)

  12. Distribution, stock composition and timing, and tagging response of wild Chinook Salmon returning to a large, free-flowing river basin

    Science.gov (United States)

    Eiler, John H.; Masuda, Michele; Spencer, Ted R.; Driscoll, Richard J.; Schreck, Carl B.

    2014-01-01

    Chinook Salmon Oncorhynchus tshawytscha returns to the Yukon River basin have declined dramatically since the late 1990s, and detailed information on the spawning distribution, stock structure, and stock timing is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio-tagged in the lower basin during 2002–2004 and tracked upriver. Fish traveled to spawning areas throughout the basin, ranging from several hundred to over 3,000 km from the tagging site. Similar distribution patterns were observed across years, suggesting that the major components of the run were identified. Daily and seasonal composition estimates were calculated for the component stocks. The run was dominated by two regional components comprising over 70% of the return. Substantially fewer fish returned to other areas, ranging from 2% to 9% of the return, but their collective contribution was appreciable. Most regional components consisted of several principal stocks and a number of small, spatially isolated populations. Regional and stock composition estimates were similar across years even though differences in run abundance were reported, suggesting that the differences in abundance were not related to regional or stock-specific variability. Run timing was relatively compressed compared with that in rivers in the southern portion of the species’ range. Most stocks passed through the lower river over a 6-week period, ranging in duration from 16 to 38 d. Run timing was similar for middle- and upper-basin stocks, limiting the use of timing information for management. The lower-basin stocks were primarily later-run fish. Although differences were observed, there was general agreement between our composition and timing estimates and those from other assessment projects within the basin, suggesting that the telemetry-based estimates provided a plausible approximation of the return. However, the short duration of the run, complex stock structure, and

  13. Implications of climate change on flow regime affecting Atlantic salmon

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The UKCIP02 climate change scenarios (2070–2100 suggest that the UK climate will become warmer (an overall increase of 2.5–3°C, with temperature increases being greater in the summer and autumn than in the spring and winter seasons. In terms of precipitation, winters are expected to become wetter and summers drier throughout the UK. The effect of changes in the future climate on flow regimes are investigated for the Atlantic salmon, Salmo salar, in a case study in an upland UK river. Using a hydraulic modelling approach, flows simulated across the catchment are assessed in terms of hydraulic characteristics (discharge per metre width, flow depths, flow velocities and Froude number. These, compared with suitable characteristics published in the literature for various life stages of Atlantic salmon, enable assessment of habitat suitability. Climate change factors have been applied to meteorological observations in the Eden catchment (north-west England and effects on the flow regime have been investigated using the SHETRAN hydrological modelling system. High flows are predicted to increase by up to 1.5%; yet, a greater impact is predicted from decreasing low flows (e.g. a Q95 at the outlet of the study catchment may decrease to a Q85 flow. Reliability, Resilience and Vulnerability (RRV analysis provides a statistical indication of the extent and effect of such changes on flows. Results show that future climate will decrease the percentage time the ideal minimum physical habitat requirements will be met. In the case of suitable flow depth for spawning activity at the outlet of the catchment, the percentage time may decrease from 100% under current conditions to 94% in the future. Such changes will have implications for the species under the Habitats Directive and for catchment ecological flow management strategies.

  14. Snake River sockeye salmon (Oncorhynchus nerka) habitat/limnologic research

    International Nuclear Information System (INIS)

    Spaulding, S.

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock

  15. 76 FR 8345 - Endangered and Threatened Species; Recovery Plan Module for Columbia River Estuary Salmon and...

    Science.gov (United States)

    2011-02-14

    ... and Threatened Species; Recovery Plan Module for Columbia River Estuary Salmon and Steelhead AGENCY.... ACTION: Notice of availability; recovery plan module for Columbia River estuary salmon and steelhead... Plan Module for Salmon and Steelhead (Estuary Module). The Estuary Module addresses the estuary...

  16. High-flow, low-head pumps provide safe passage for Pacific salmon

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    The installation of 29 ultra-low head, high capacity submersible pump and auxiliary equipment at the Rocky Reach Dam in Washington State to allow juvenile salmon safe passage on their journey down the Columbia River to the Pacific Ocean is described. The reputed cost of the project is US$160 million; its purpose is to get juvenile salmon safely around the Rocky Reach Dam without interfering with the dam's original mission of generating electric power. The project is the most expensive fish bypass on any Columbia River dam. Getting the salmon safely around the dam is intended to reduce the impact of hydroelectric power projects on the basin's salmon stocks which are now estimated at less than 10 per cent of their historic size, despite major hatchery programs. The Columbia River has the second largest volume flow of any river in the United States, and millions of people depend on it for employment in water-related industries, and for transportation. The new horizontally installed propeller pump was developed by ITT Flygt; it utilizes planetary gear reduced to match the motor speed with the propeller rpm. Each 90 kW propeller pump has a flow rate of seven cubic meters per second at a head of 0.55 metres. The auxiliary equipment includes 10 racks of flap gates to prevent reverse flow, electric controls, remote supervision, testing, installation and maintenance facilities. It is anticipated that the new bypass will allow the Chelan County Public Utility Department, owners of the facility, to phase out all current spills, except for a 16 per cent spill for 40 days each spring for Sockeye salmon which tend to travel too deep to use the bypass. Prior to installation of this new facility, 60 to 70 per cent of average daily flow in the spring and summer had to be sacrificed to accommodate all species of salmon and steelhead, with corresponding losses of power generating capacity

  17. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  18. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Science.gov (United States)

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  19. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  20. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in the Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.

  1. Snake River Fall Chinook Salmon life history investigations

    Science.gov (United States)

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  2. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. [Washington Department of Fish and Wildlife

    2009-06-12

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to

  3. Effect of habitat improvement on Atlantic salmon in the regulated river Suldalslaagen

    International Nuclear Information System (INIS)

    Raastad, J.E.; Lillehammer, A.; Lillehammer, L.; Eie, J.A.

    1993-01-01

    The River Suldaalslagen, which holds a population of large Atlantic salmon, has been regulated twice for hydropower production. The first regulation occurred in 1968 and the second in 1980. Present problems include the reduced density of benthic fauna, the reduced growth rate of young salmon, the low survival of 0 + fish and the increased time required for smoltification. A programme of habitat restoration includes building a rearing channel system where water flow and the substrate can be controlled. The salmon fry are stocked in the rearing channel and in an adjacent tributary stream. The effects on macrobenthos of introduced dead organic material were also studied. Improvement of physical habitat increased the density of benthic animals, and the survival of 1 + salmon was about 30%. Experiments that included adding 115 g wheat/m 2 resulted in a threefold increase in benthic fauna compared with a control area. The largest increase in numbers was Chironomidae in August-September, when benthic Crustacea also showed a significant increase. An increase in macrobenthos is expected to increase the growth and survival of young salmon fry. (Author)

  4. Effect of habitat improvement on Atlantic salmon in the regulated river Suldalslaagen

    Energy Technology Data Exchange (ETDEWEB)

    Raastad, J.E.; Lillehammer, A.; Lillehammer, L. (Oslo Univ. (Norway). Zoological Museum); Kaasa, H. (Statkraft, Hoevik (Norway)); Eie, J.A. (Norwegian Water Resources and Energy Administration, Oslo (Norway))

    1993-05-01

    The River Suldaalslagen, which holds a population of large Atlantic salmon, has been regulated twice for hydropower production. The first regulation occurred in 1968 and the second in 1980. Present problems include the reduced density of benthic fauna, the reduced growth rate of young salmon, the low survival of 0[sup +] fish and the increased time required for smoltification. A programme of habitat restoration includes building a rearing channel system where water flow and the substrate can be controlled. The salmon fry are stocked in the rearing channel and in an adjacent tributary stream. The effects on macrobenthos of introduced dead organic material were also studied. Improvement of physical habitat increased the density of benthic animals, and the survival of 1[sup +] salmon was about 30%. Experiments that included adding 115 g wheat/m[sup 2] resulted in a threefold increase in benthic fauna compared with a control area. The largest increase in numbers was Chironomidae in August-September, when benthic Crustacea also showed a significant increase. An increase in macrobenthos is expected to increase the growth and survival of young salmon fry. (Author)

  5. Estimating freshwater productivity, overwinter survival, and migration patterns of Klamath River Coho Salmon

    Science.gov (United States)

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Faukner, Jimmy; Soto, Toz

    2018-01-01

    An area of great importance to resource management and conservation biology in the Klamath Basin is balancing water usage against the life history requirements of threatened Coho Salmon. One tool for addressing this topic is a freshwater dynamics model to forecast Coho Salmon productivity based on environmental inputs. Constructing such a forecasting tool requires local data to quantify the unique life history processes of Coho Salmon inhabiting this region. Here, we describe analytical methods for estimating a series of sub-models, each capturing a different life history process, which will eventually be synchronized as part of a freshwater dynamics model for Klamath River Coho Salmon. Specifically, we draw upon extensive population monitoring data collected in the basin to estimate models of freshwater productivity, overwinter survival, and migration patterns. Our models of freshwater productivity indicated that high summer temperatures and high winter flows can both adversely affect smolt production and that such relationships are more likely in tributaries with naturally regulated flows due to substantial intraannual environmental variation. Our models of overwinter survival demonstrated extensive variability in survival among years, but not among rearing locations, and demonstrated that a substantial proportion (~ 20%) of age-0+ fish emigrate from some rearing sites in the winter. Our models of migration patterns indicated that many age-0+ fish redistribute in the basin during the summer and winter. Further, we observed that these redistributions can entail long migrations in the mainstem where environmental stressors likely play a role in cueing refuge entry. Finally, our models of migration patterns indicated that changes in discharge are important in cueing the seaward migration of smolts, but that the nature of this behavioral response can differ dramatically between tributaries with naturally and artificially regulated flows. Collectively, these analyses

  6. Experiment of Burst Speed of Fingerling Masu salmon, Oncorhynchus, with Stamina Tunnel in The River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    A swimming experiment of cultured fingerling masu salmon (Oncorhynchus masou masou) (measuring 3cm to 6cm in length) was conducted in a round stamina tunnel (cylindrical pipe) installed in a fishway of a local river with a water flow velocity of 64cm·s-1 to 218cm·s-1 in order to study the burst speed of the masu salmon.The results show that: (1) the faster the swimming speed,the swimming time of the fingerling masu salmon shortened, and the ground speed also decreased as the flow velocity increased; (2)the faster the flow velocity,the shorter the swimming distance became; (3) the burst speed was calculated for the fingerling masu salmon with the considerably excellent swimming ability(measuring 4.6cm to 6.2cm in mean length) in conditions of a high velocity(218cm·s-1), and the result was: mean burst speed:229cm·s-1(S.D.8cm·s-1) to 232cm·s-1(S.D.:8cm·s-1).

  7. Multiyear Downstream Response to Dam Removal on the White Salmon River, WA

    Science.gov (United States)

    Wilcox, A. C.; O'Connor, J. E.; Major, J. J.

    2017-12-01

    The 2011 removal of the 38 m tall Condit Dam on the White Salmon River, Washington was one of the largest dam removals to date, in terms of both dam height and sediment release. We examined the multiyear geomorphic response to this event, through 2015, including in a bedrock-confined canyon and in a less-confined, backwater-influenced pool reach near the river's mouth, to the large, rapid influx of fine reservoir sediment produced by the breach and to subsequent sediment transfer in the free-flowing White Salmon River. In the canyon reach, aggraded sediments were rapidly eroded from riffles, returning them toward pre-breach bed elevations within weeks, but pool aggradation persisted for longer. The downstream, less-confined reach transformed from a deep pool to a narrower pool-riffle channel with alternate bars; multiyear observations showed persistence of bars and of this new and distinct morphology. This downstream reach marks a rare case in post-dam removal channel response; in most dam removals, channels have rapidly reverted toward pre-removal morphology, as in the canyon reach here. Comparison of the multiyear geomorphic evolution of the White Salmon River to other recent large dam removals in the U.S. allows evaluation of the relative influences of antecedent channel morphology, post-breach hydrology, and dam removal style, as well as providing a basis for predicting responses to future dam removals.

  8. Migratory characteristics of spring chinook salmon in the Willamette River

    International Nuclear Information System (INIS)

    Snelling, J.C.; Schreck, C.B.; Bradford, C.S.; Davis, L.E.; Slater, C.H.; Beck, M.T.; Ewing, S.K.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na + /K + gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls

  9. Chemical data for 7 streams in Salmon River Basin - Importance of biotic and abiotic features of salmon habitat implications for juvenile Chinook and steelhead growth and survival

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a large-scale, long-term comparative study that includes many streams (20+ streams in the Salmon River Basin, Idaho, including a few non-salmon streams for...

  10. An annotated bibliography for lamprey habitat in the White Salmon River, Washington

    Science.gov (United States)

    Allen, M. Brady

    2012-01-01

    The October 2011 decommissioning of Condit Dam on the White Salmon River at river kilometer (rkm) 5.3 removed a significant fish passage barrier from the White Salmon River basin for the first time in nearly a century. This affords an opportunity to regain a potentially important drainage basin for Pacific lamprey (Entosphenus tridentatus) production. In anticipation of Pacific lamprey recolonization or reintroduction, aquatic resource managers, such as the Yakama Nation (YN), are planning to perform surveys in the White Salmon River and its tributaries. The likely survey objectives will be to investigate the presence of lamprey, habitat conditions, and habitat availability. In preparation for this work, a compilation and review of the relevant aquatic habitat and biological information on the White Salmon River was conducted. References specific to the White Salmon River were collected and an annotated bibliography was produced including reports containing:

  11. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2002-04-01

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and

  12. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    Science.gov (United States)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  13. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix D: Natural River Drawdown Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  14. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    Science.gov (United States)

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to

  15. Spawning distribution of fall chinook salmon in the Snake River: Annual report 1999

    International Nuclear Information System (INIS)

    Garcia, Aaron P.

    2000-01-01

    This report is separated into 2 chapters. The chapters are (1) Progress toward determining the spawning distribution of supplemented fall chinook salmon in the Snake River in 1999; and (2) Fall chinook salmon spawning ground surveys in the Snake River, 1999

  16. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix I: Economics

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  17. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix C: Water Quality

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower-Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  18. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix K: Real Estate

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects-on four lower Snake River salmon and steelhead stocks listed for protection- under the Endangered Species Act (ESA). The U.S...

  19. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix J: Plan Formulation

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  20. Fish vs. power: Remaking salmon, science and society on the Fraser River, 1900--1960

    Science.gov (United States)

    Evenden, Matthew Dominic

    Overlapping resource demands made the Fraser River a contested site of development politics in twentieth century British Columbia. Since the turn of the century, power interests surveyed the river's flow, sited dams and promoted development schemes. Fisheries interests, on the other hand, sought to maintain the river as salmon spawning habitat. They questioned the necessity of dams, supported fisheries research and rehabilitation and organized anti-development coalitions. Before the mid-1950s a number of dam projects proceeded on Fraser tributaries and major landslides at Hells Gate modeled the dangers of main stem development. Because of the concerted political lobbying of fisheries groups, the skeptical appraisal of fisheries scientists to development proposals and the legal and political authority of the federal Department of Fisheries and the International Pacific Salmon Fisheries Commission, major dam projects were defeated on the Fraser in the late 1950s. Delayed development on the Fraser helped to spur hydroelectric projects on other rivers in the province; the fish-power problem on the Fraser altered the province's spatial economy of power. Once development began on the Columbia and Peace Rivers, the Fraser was protected by implication. The study combines approaches from environmental history, the history of science and political economy to demonstrate the intersections and interactions between nature, knowledge and society. Research was conducted at eleven archives in Canada and the United States in the papers of organizations, corporations, government departments, politicians, scientists and individuals.

  1. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary and Their Implications for Managing River Flows and Restoring Estuarine Habitat, Physical Sciences Component, Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Jay, David A. [Portland State University

    2009-08-03

    Long-term changes and fluctuations in river flow, water properties, tides, and sediment transport in the Columbia River and its estuary have had a profound effect on Columbia River salmonids and their habitat. Understanding the river-flow, temperature, tidal, and sediment-supply regimes of the Lower Columbia River (LCR) and how they interact with habitat is, therefore, critical to development of system management and restoration strategies. It is also useful to separate management and climate impacts on hydrologic properties and habitat. This contract, part of a larger project led by the National Oceanic and Atmospheric Administration (NOAA), consists of three work elements, one with five tasks. The first work element relates to reconstruction of historic conditions in a broad sense. The second and third elements consist, respectively, of participation in project-wide integration efforts, and reporting. This report focuses on the five tasks within the historic reconstruction work element. It in part satisfies the reporting requirement, and it forms the basis for our participation in the project integration effort. The first task consists of several topics related to historic changes in river stage and tide. Within this task, the chart datum levels of 14 historic bathymetric surveys completed before definition of Columbia River Datum (CRD) were related to CRD, to enable analysis of these surveys by other project scientists. We have also modeled tidal datums and properties (lower low water or LLW, higher high water or HHW, mean water level or MWL, and greater diurnal tidal range or GDTR) as a function of river flow and tidal range at Astoria. These calculations have been carried for 10 year intervals (1940-date) for 21 stations, though most stations have data for only a few time intervals. Longer-term analyses involve the records at Astoria (1925-date) and Vancouver (1902-date). Water levels for any given river flow have decreased substantially (0.3-1.8 m, depending

  2. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska.

    Science.gov (United States)

    Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...

  3. Protecting salmon and trout in the Capilano River

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Capilano Reservoir and Cleveland Dam were constructed in 1954 in order to supply energy to a growing urban region. The dam became a barrier for trout and salmon trying to migrate from the reservoir behind the dam into the lower Capilano River. Studies have indicated that up to 90 per cent of the fish do not survive the drop into the rocky pool at the base of the dam. This paper discussed a project being conducted to improve the fish habitat in the lower Capilano River and reduce the mortality of smolt or young fish during their passage over the dam. A trap-and-truck project was launched to catch migrating trout and salmon in rotary screw traps in the upper portion of the river as well as in the reservoir. The fish were measured, weighed and tagged and then trucked to the base of the dam near the fish hatchery. It was concluded that more traps will be used to increase the capture rate in 2009. Habitat assessments are also being conducted in order to design long-term fish passage systems. 10 figs.

  4. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    Science.gov (United States)

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  5. Effect of ice formation and streamflow on salmon incubation habitat in the lower Bradley River, Alaska

    Science.gov (United States)

    Rickman, R.L.

    1996-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate salmon egg incubation habitat. The study that determined this minimum flow did not account for the effects of ice formation on habitat. An investigation was made during periods of ice formation. Hydraulic properties and field water-quality data were measured in winter only from March 1993 to April 1995 at six transects in the lower Bradley River. Discharge in the lower Bradley River ranged from 42.6 to 73.0 cubic feet per second (average 57 cubic feet per second) with ice conditions ranging from near ice free to 100 percent ice cover. Stream water velocity and depth were adequate for habitat protection for all ice conditions and discharges. No relation was found between percent ice cover and mean velocity and depth for any given discharge and no trends were found with changes in discharge for a given ice condition. Velocity distribution within each transect varied significantly from one sampling period to the next. Mean depth and velocity at flows of 40 cubic feet per second or less could not be predicted. No consistent relation was found between the amount of wetted perimeter and percent ice cover. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface and intragravel-water dissolved-oxygen levels were adequate for all flows and ice conditions. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Excellent oxygen exchange was indicated throughout the study reach. Stranding potential of salmon fry was found to be low throughout the study reach. The limiting factors for determining the minimal acceptable flow limit appear to be stream-water velocity and depth, although specific limits could not be estimated because of the high flows that occurred during this study.

  6. Captive Rearing Program for Salmon River Chinook Salmon : Project Progress Report, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2003-10-01

    During 2001, the Idaho Department of Fish and Game continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 311) and the West Fork Yankee Fork Salmon River (WFYF; N = 272) to establish brood year 2001 culture cohorts. The eyed-eggs were incubated and reared by family group at the Eagle Fish Hatchery (Eagle). Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to the majority of them being transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through maturity. Smolt transfers included 210 individuals from the Lemhi River (LEM), 242 from the WFYF, and 178 from the EFSR. Maturing fish transfers from Manchester to Eagle included 62 individuals from the LEM, 72 from the WFYF, and 27 from the EFSR. Additional water chilling capacity was added at Eagle in 2001 to test if spawn timing could be advanced by temperature manipulations, and adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) water temperature groups while at Eagle. Twenty-five mature females from the LEM (11 chilled, 14 ambient) were spawned in captivity with 23 males with the same temperature history in 2001. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage of development averaged 37.9% and did not differ significantly between the two temperature groups. A total of 8,154 eyed-eggs from these crosses were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 89) were released into the WFYF to evaluate their reproductive performance. After release, fish

  7. Evidence of deepwater spawning of fall chinook salmon (Oncorhynchus tshawytscha): spawning near Ives and Pierce Island of the Columbia River, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Mueller, Robert P.; Dauble, Dennis D.

    2000-01-01

    Fall chinook salmon Oncorhynchus tshawytscha, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives island. Limited spawning ground surveys were conducted in the area around Ives and Pierce Islands during 1994-1997 and based on these surveys it was believed that fall chinook salmon successfully spawned in this area. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997). Recently, chum salmon were also documented spawning downstream of Bonneville Dam. Chum salmon O. kisutch were listed as threatened under the Endangered Species Act (ESA) in March, 1999. There are several ongoing investigations to define the physical habitat characteristics associated with fall chinook and chum salmon spawning areas downstream of Bonneville Dam. A major concern is to determine what flows (i.e. surface elevations) are necessary to ensure their long-term survival. Our objective was to locate deepwater spawning locations in the main Columbia River channel and to collect additional data on physical habitat parameters at the site. This objective is consistent with the high priority that the Northwest Power Planning Council's Independent Advisory Board and the salmon managers have placed on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin

  8. Interactions between brown bears and chum salmon at McNeil River, Alaska

    Science.gov (United States)

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  9. A qualitative model of the salmon life cycle in the context of river rehabilitation

    NARCIS (Netherlands)

    Noble, R.A.A.; Bredeweg, B.; Linnebank, F.; Salles, P.; Cowx, I.G.; Žabkar, J.; Bratko, I.

    2009-01-01

    A qualitative model was developed in Garp3 to capture and formalise knowledge about river rehabilitation and the management of an Atlantic salmon population. The model integrates information about the ecology of the salmon life cycle, the environmental factors that may limit the survival of key life

  10. Snake River Sockeye Salmon Habitat and Limnological Research; 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-06-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU); The Tribe's long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through their Integrated Fish and Wildlife Program. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2004 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit Lake; (3) reduce the number of mature kokanee salmon spawning in Fishhook Creek; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye salmon and kokanee salmon population surveys; (7) evaluate potential competition and predation

  11. Land use, fishing, climate change, and decline of Thompson River, British Columbia, coho salmon

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, M. J.; Irvine, J. R. [Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC (Canada)

    2000-01-01

    Reasons for the decline in abundance of Pacific salmon population in the Thompson River watershed in British Columbia was investigated. Results suggests that the decline could be the result of a declining trend in productivity related to changes in ocean conditions, overfishing, and changes in the freshwater habitat. The abundance of salmon correlated with agricultural land use, road density, and qualitative changes in stream habitat status; logging appeared to have had no such effect. It was concluded that salmon populations will continue to decline unless limits on fishing are strictly enforced, and unless salmon producing watersheds are restored and ocean conditions are significantly improved . 12 refs., 2 figs.

  12. Cedar River Chinook genotypes - Estimate relative reproductive success of hatchery and wild fall Chinook salmon in the Cedar River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic pedigree information to estimate the reproductive success of hatchery and wild fall-run Chinook salmon spawning in the Cedar River, Washington....

  13. Radiotelemetry to estimate stream life of adult chum salmon in the McNeil River, Alaska

    Science.gov (United States)

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2011-01-01

    Estimating salmon escapement is one of the fundamental steps in managing salmon populations. The area-under-the-curve (AUC) method is commonly used to convert periodic aerial survey counts into annual salmon escapement indices. The AUC requires obtaining accurate estimates of stream life (SL) for target species. Traditional methods for estimating SL (e.g., mark–recapture) are not feasible for many populations. Our objective in this study was to determine the average SL of chum salmon Oncorhynchus keta in the McNeil River, Alaska, through radiotelemetry. During the 2005 and 2006 runs, 155 chum salmon were fitted with mortality-indicating radio tags as they entered the McNeil River and tracked until they died. A combination of remote data loggers, aerial surveys, and foot surveys were used to determine the location of fish and provide an estimate of time of death. Higher predation resulted in tagged fish below McNeil Falls having a significantly shorter SL (12.6 d) than those above (21.9 d). The streamwide average SL (13.8 d) for chum salmon at the McNeil River was lower than the regionwide value (17.5 d) previously used to generate AUC indices of chum salmon escapement for the McNeil River. We conclude that radiotelemetry is an effective tool for estimating SL in rivers not well suited to other methods.

  14. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  15. Analyses of flow modification on water quality on Nechako River

    International Nuclear Information System (INIS)

    Mitchell, A.C.; James, C.B.; Edinger, J.E.

    1995-01-01

    Alcan Smelters and Chemicals Ltd. initiated construction of the final phase of the Kemano Completion Project in north-central British Columbia to divert additional water from the Nechako Reservoir to the existing powerhouse. The Nechako Reservoir was created by the construction of the Kenney Dam in Nechako Canyon, a natural barrier to salmon migration. The Nechako River downstream of Nechako Canyon supports important runs of sockeye and chinook salmon. This additional diversion of Nechako River flow creates the potential of high water temperatures and increased thermal stress to migrating sockeye salmon enroute to their spawning grounds in Nechako River tributaries. To achieve specific downstream water temperature objectives during sockeye salmon migration each summer, a two-level outlet facility adjacent to Kenney Dam is to be constructed to release cooling water at 10 C to the Nechako River. Results of mathematical modeling of Nechako River water temperatures show that, based on specified design criteria, a maximum Kenney Dam release of 167 m 3 /s at 10 C would be required to meet the downstream water temperature objectives

  16. Salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  17. Experimental streams - Recolonization of the Cedar River, WA by Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this study is to quantify population, community, and ecosystem level changes as a result of salmon recolonization of the Cedar River, WA above...

  18. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Summary

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four -lower Snake- Rive salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  19. Broodyear Data - Captive Broodstock Gene Rescue Program for Odd Year Class Elwha River Pink Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct captive brood stock gene rescue program for Elwha River odd-year class pink salmon. Data is collected by broodyear on % survival to adult, % maturity as two...

  20. Production Data - Captive Broodstock Gene Rescue Program for Odd Year Class Elwha River Pink Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct captive brood stock gene rescue program for Elwha River odd-year class pink salmon. Information on the number of smolts received into the program is...

  1. Fish abundance, composition, distribution - Recolonization of the Cedar River, WA by Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this study is to quantify population, community, and ecosystem level changes as a result of salmon recolonization of the Cedar River, WA above...

  2. Fish Health Data - Captive Broodstock Gene Rescue Program for Odd Year Class Elwha River Pink Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct captive brood stock gene rescue program for Elwha River odd-year class pink salmon. All fresh mortalities larger than 100 mm are sent to Fish Health for...

  3. Growth Data - Captive Broodstock Gene Rescue Program for Odd Year Class Elwha River Pink Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct captive brood stock gene rescue program for Elwha River odd-year class pink salmon. The fork length to the nearest mm and weight to the nearest gram of a...

  4. Growth, movement and survival - Recolonization of the Cedar River, WA by Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this study is to quantify population, community, and ecosystem level changes as a result of salmon recolonization of the Cedar River, WA above...

  5. Estuary fish data - Juvenile salmon in migratory corridors of lower Columbia River estuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sampling juvenile salmon and associated fishes in open waters of the lower Columbia River estuary. Field work includes bi-weekly sampling during the spring...

  6. Fish Culture Data - Captive Broodstock Gene Rescue Program for Odd Year Class Elwha River Pink Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct captive brood stock gene rescue program for Elwha River odd-year class pink salmon. Raw data on rearing density, loading density, water temperature, ration,...

  7. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    Science.gov (United States)

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  8. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 6, 1995--June 20, 1995

    International Nuclear Information System (INIS)

    Blenden, M.L.; Osborne, R.S.; Kucera, P.A.

    1996-01-01

    For the second consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 6 to June 20, 1995. We PIT tagged and released 421 wild chinook salmon smolts, 747 hatchery chinook salmon smolts (445 HxW and 302 HxH), 227 wild steelhead trout smolts and 1,296 hatchery steelhead trout smolts. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 78.4% for wild chinook salmon, 58.9% for hatchery chinook salmon (HxW), 56.6% for hatchery chinook salmon (HxH), 76.2% for wild steelhead trout, and 69.2% for hatchery steelhead trout. Peak outmigration of NPT tagged wild Imnaha River chinook salmon smolts occurred from early to mid-May at Lower Granite, Little Goose, and Lower Monumental Dams. Median and 90% passage dates for wild chinook salmon smolts at Lower Granite Dam were May 1 and May 11, respectively. Continuous spill at Lower Granite Dam was initiated on May 3 and lasted for 51 days. The 90% passage date of wild chinook salmon smolts at Lower Granite Dam (May 11) preceded peak Snake River and Lower Granite (June 6) flows by 26 days. Although hatchery chinook salmon exhibited a shorter outmigration period through the Snake River than their wild counterparts, peak arrival for both groups occurred at approximately the same time. Median and 90% passage dates at Lower Granite Dam for other PIT tagged groups were: hatchery chinook salmon (NPT-HxW) - May 2 and May 13; hatchery chinook salmon (FPC-HxH) - May 8 and May 15; wild steelhead trout - May 2 and May 9; and hatchery steelhead trout (NPT and FPC) - May 31 and June 16. Hatchery steelhead trout displayed small peaks in arrival timing at Lower Granite and Little Goose Dams in mid-May to mid-June

  9. Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington

    Science.gov (United States)

    Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.

    2012-01-01

    Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.

  10. Understanding the Complexities of Communicating Management Decisions on the Subsistence Use of Yukon River Salmon

    Science.gov (United States)

    Brooks, J. F.; Trainor, S.

    2017-12-01

    Over 20,000 residents in Alaska and Yukon Territory rely upon the Yukon River to provide them harvests of Pacific salmon each year. Salmon are a highly valued food resource and the practice of salmon fishing along the Yukon is deep rooted in local cultures and traditions. Potential future impacts of climate change on the health of Yukon River salmon stocks could be significant. Collaborative managerial processes which incorporate the viewpoints of subsistence stakeholders will be crucial in enabling communities and managerial institutions to adapt and manage these impacts. However, the massive extent of the Yukon River makes it difficult for communities rich with highly localized knowledge to situate themselves within a drainage-wide context of resource availability, and to fully understand the implications that management decisions may have for their harvest. Differences in salmon availability and abundance between the upper and lower Yukon, commercial vs. subsistence fishery interests, and enforcement of the international Pacific Salmon Treaty further complicate understanding and makes the topic of salmon as a subsistence resource a highly contentious issue. A map which synthesizes the presence and absence of Pacific salmon throughout the entire Yukon River drainage was requested by both subsistence fishers and natural resource managers in Alaska in order to help facilitate productive conversations about salmon management decisions. Interviews with Alaskan stakeholders with managerial, biological, and subsistence harvest backgrounds were carried out and a literature review was conducted in order to understand what such a map should and could accomplish. During the research process, numerous data gaps concerning the distribution of salmon along the Yukon River were discovered, and insights about the complexities involved in translating science when it is situated within a charged political, economic, and cultural context were revealed. Preliminary maps depicting

  11. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  12. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and

  13. Hindrances to upstream migration of atlantic salmon (Salmo salar) in a northern Swedish river caused by a hydroelectric power-station

    International Nuclear Information System (INIS)

    Rivinoja, P.; Lundqvist, H.

    2001-01-01

    Many Baltic salmon rivers have lost their natural juvenile production due to human activities blocking or reducing access to their spawning grounds, e.g. damming, power generation, partial hinders, etc.. One such hindrance is a hydroelectric complex located in the lower reaches of River Umeaelven in northern Sweden. Water from the forbay created by the dam Norrfors is directed to the Stornorrfors power-station. At times, 100 per cent of the river is directed to the power-station. Water from the power-station then flows via a tunnel and outlet channel to the river. From the point of the tunnel's discharge into the river, the old river bed acts as a bypass channel directing migrating adult fish to a fish ladder located at the base of the dam. In this study, the effect that an additional turbine, that was installed at the power-station in 1986, had on fish passage run-time was examined. Changes in run-time were compared for two periods 1974-1985 and 1986-1995. In 1997, 55 wild and 25 hatchery salmon were captured in the Umeaelven estuary, radio tagged with uniquely coded tags, and tracked upstream. Both manual and automatic loggers were used to locate fish daily. The main findings show that only 26 per cent of the wild salmon and none of the hatchery salmon found the fish ladder. It is suggested that the salmon followed the main water discharge from the power-station outlet and are thus directed away from the entrance to the bypass channel leading to the fish ladder. Salmon respond by moving upstream or downstream depending on the current flow regimes. The bypass channel consists of partial hinders that may explain why it takes on average 52 days for the salmon to migrate 32 km from the estuary to the fish ladder. Adding a fourth turbine at the power-station did not appear to have changed the timing of the migration or the seasonal distribution of the migrating wild salmon through the fish ladder. There was no significant effect of the fourth turbine on the duration

  14. Escapement monitoring of adult chinook salmon in the Secesh River and Lake Creek, Idaho, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Faurot, Dave; Kucera, Paul A.

    2001-01-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  15. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves throughout

  16. Snake River Sockeye Salmon Habitat and Limnological Research : 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E.; Griswold, Robert G.; Gilliland, Kim

    2006-07-14

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2005 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee spawning in Fishhook and Alturas Lake creeks; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  17. The influence of hydrology and waterway distance on population structure of Chinook salmon Oncorhynchus tshawytscha in a large river.

    Science.gov (United States)

    Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K

    2010-04-01

    Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.

  18. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    Science.gov (United States)

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  19. Resource implications of listing Columbia River Basin salmon stocks under the endangered species act

    International Nuclear Information System (INIS)

    Velehradsky, J.E.

    1993-01-01

    The Columbia River and Snake River dams and reservoirs provide substantial benefits in the Northwest through their operation for hydropower, flood control, irrigation, navigation, and fish and wildlife. The listing of certain Snake River salmon stocks as endangered and threatened, under provisions of the Endangered Species Act, has surfaced major public policy issues. Protection and enhancement of these salmon stocks has resulted in proposals to significantly modify the operation of the reservoir projects. Implementation of these proposals could have significant economic, environmental and social impacts in the region

  20. Monitoring the migrations of wild Snake River spring/summer chinook salmon smolts, 1995. Annual report

    International Nuclear Information System (INIS)

    Achord, S.; Eppard, M.B.; Sandford, B.P.; Matthews, G.M.

    1996-09-01

    We PIT tagged wild spring/summer chinook-salmon parr in the Snake River Basin in 1994 and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Darns during spring, summer, and fall 1995. This report details our findings. The goals of this study are to (1) characterize the migration timing of different wild stocks of Snake River spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence migration timing

  1. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjornn (Bjomn), Theodore C.

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on the Clearwater River to collect data on survival detection probabilities, and travel time.

  2. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from

  3. Historical occurrence and extinction of Atlantic salmon in the River Elbe from the fourteenth to the twentieth centuries

    Directory of Open Access Journals (Sweden)

    Andreska J.

    2015-03-01

    Full Text Available Data on the occurrence, biology, and historical background of the Atlantic salmon, Salmo salar L., (Pisces, Salmoniformes in the Elbe river basin (Europe, North Sea drainage area with a focus on Bohemian territory (Central Europe from the fourteenth to twentieth centuries are summarized in this paper. Historical methods of salmon fishing in Central Europe and historical legal protection of salmon in Bohemia are presented. The salmon is a model example of species which was extirpated as a result of anthropogenic changes in the landscape and rivers in some water systems. The human activities, such as stream bed regulation, dam system construction, other migration barriers, water pollution, fisheries exploitation, that led to the extirpation of Atlantic salmon in the Elbe river basin (are discussed. The last sporadic migrating native salmon were registered in the Bohemian section of the Elbe river basin in the mid twentieth century.

  4. SALMON: an innovative concept of ship propulsion on rivers

    NARCIS (Netherlands)

    Wind, H.G.; Rotgers, A.

    2001-01-01

    In this paper a concept is studied, where the energy for the propulsion of a ship is extracted from the down flow of the river. In this concept three elements are important; a wire which is connected upstream, paddles on both sides of the ship and a drum which rotates due to the movement of the

  5. Lower Columbia River salmon business plan for terminal fisheries. Final report

    International Nuclear Information System (INIS)

    1996-07-01

    Salmon fishing in the Northwest requires a public-private partnership. The public through its decision-makers, agencies, and laws states it will do all that is necessary to protect and preserve the valuable salmon resource. Yet, the public side of the partnership is broken. The Columbia River salmon fishing industry, with over 140 years of documented history, is at a crossroads. This report explores a variety of issues, concerns, and ideas related to terminal fishery development. In some cases recommendations are made. In addition, options are explored with an understanding that those designated as decision-makers must make decisions following considerable discussion and reflection

  6. Lower Columbia River Salmon Business Plan for Terminal Fisheries : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Salmon For All

    1996-07-01

    Salmon fishing in the Northwest requires a public-private partnership. The public through its decision-makers, agencies, and laws states it will do all that is necessary to protect and preserve the valuable salmon resource. Yet, the public side of the partnership is broken. The Columbia River salmon fishing industry, with over 140 years of documented history, is at a crossroads. This report explores a variety of issues, concerns, and ideas related to terminal fishery development. In some cases recommendations are made. In addition, options are explored with an understanding that those designated as decision-makers must make decisions following considerable discussion and reflection.

  7. Snake River Sockeye Salmon Habitat and Limnological Research; 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E. (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition, the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power and Conservation Council Fish and Wildlife Program (NPCCFWP). Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2003 calendar year. Project objectives include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) reduce the number of mature kokanee spawning in Fishhook Creek; (3) monitor sockeye salmon smolt migration from the captive rearing program release of juveniles into Pettit and Alturas lakes; (4) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (5) conduct sockeye and kokanee salmon population surveys; (6

  8. Harvest Management and Recovery of Snake River Salmon Stocks : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 7 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Lestelle, Lawrence C.; Gilbertson, Larry G.

    1993-06-01

    Management measures to regulate salmon fishing harvest have grown increasingly complex over the past decade in response to the needs for improved protection for some salmon runs and to alter harvest sharing between fisheries. The development of management plans that adequately address both needs is an immensely complicated task, one that involves a multitude of stocks, each with its own migration patterns and capacity to sustain exploitation. The fishing industry that relies on these fish populations is also highly diverse. The management task is made especially difficult because the stocks are often intermingled on the fishing grounds, creating highly mixed aggregates of stocks and species on which the fisheries operate. This situation is the one confronting harvest managers attempting to protect Snake River salmon. This report provides an overview of some of the factors that will need to be addressed in assessing the potential for using harvest management measures in the recovery of Snake River salmon stocks. The major sections of the report include the following: perspectives on harvest impacts; ocean distribution and in-river adult migration timing; description of management processes and associated fisheries of interest; and altemative harvest strategies.

  9. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Part II: Chapters 5-13

    National Research Council Canada - National Science Library

    2003-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  10. Adaptation Turning Points in River Restoration? The Rhine salmon case

    NARCIS (Netherlands)

    Bölscher, T.; Slobbe, van E.J.J.; Vliet, van M.T.H.; Werners, S.E.

    2013-01-01

    Abstract: Bringing a sustainable population of Atlantic salmon (Salmo salar) back into the Rhine, after the species became extinct in the 1950s, is an important environmental ambition with efforts made both by governments and civil society. Our analysis finds a significant risk of failure of salmon

  11. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T. [Pacific Northwest National Laboratory

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile

  12. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    Science.gov (United States)

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  13. Potential Effects of Dams on Migratory Fish in the Mekong River: Lessons from Salmon in the Fraser and Columbia Rivers

    Science.gov (United States)

    Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  14. Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, António M. [Oregon Health & Science University, Science and Technology Center for Coastal Margin Observation and Prediction

    2009-08-02

    This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary

  15. Bedform morphology of salmon spawning areas in a large gravel-bed river

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.

    2007-05-01

    While the importance of river channel morphology to salmon spawning habitat is increasingly recognized, quantitative measures of the relationships between channel morphology and habitat use are lacking. Such quantitative measures are necessary as management and regulatory agencies within the Pacific Northwestern region of the USA, and elsewhere, seek to quantify potential spawning habitat and develop recovery goals for declining salmon populations. The objective of this study was to determine if fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Snake River, Idaho, USA, were correlated with specific bed form types at the pool-riffle scale. A bed form differencing technique was used to objectively quantify the longitudinal riverbed profile into four distinct pool-riffle units that were independent of discharge. The vertical location of thalweg points within these units was quantified with a riffle proximity index. Chinook salmon spawning areas were mapped and correlated with the pool-riffle units through the use of cross-tabulation tables. The results indicate that 84% of fall Chinook salmon spawning areas were correlated with riffles (Chi-square=152.1, df=3, p<0.001), with 53% of those areas located on the upstream side of riffle crests. The majority of Snake River fall Chinook salmon spawning occurred at a vertical location within 80% of the nearest riffle crest elevation. The analyses of bed form morphology will assist regional fish mangers in quantifying existing and potential fall Chinook salmon spawning habitat, and will provide a quantitative framework for evaluating general ecological implications of channel morphology in large gravel-bed rivers.

  16. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  17. Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA

    Directory of Open Access Journals (Sweden)

    Natalie S. Wagenbrenner

    2018-01-01

    Full Text Available This work investigates gap winds in a steep, deep river canyon prone to wildland fire. The driving mechanisms and the potential for forecasting the gap winds are investigated. The onset and strength of the gap winds are found to be correlated to the formation of an along-gap pressure gradient linked to periodic development of a thermal trough in the Pacific Northwest, USA. Numerical simulations are performed using a reanalysis dataset to investigate the ability of numerical weather prediction (NWP to simulate the observed gap wind events, including the timing and flow characteristics within the canyon. The effects of model horizontal grid spacing and terrain representation are considered. The reanalysis simulations suggest that horizontal grid spacings used in operational NWP could be sufficient for simulating the gap flow events given the regional-scale depression in which the Salmon River Canyon is situated. The strength of the events, however, is under-predicted due, at least in part, to terrain smoothing in the model. Routine NWP, however, is found to have mixed results in terms of forecasting the gap wind events, primarily due to problems in simulating the regional sea level pressure system correctly.

  18. From Rivers to Oceans and Back: Linking Models to Encompass the Full Salmon Life Cycle

    Science.gov (United States)

    Danner, E.; Hendrix, N.; Martin, B.; Lindley, S. T.

    2016-02-01

    Pacific salmon are a promising study subject for investigating the linkages between freshwater and coastal ocean ecosystems. Salmon use a wide range of habitats throughout their life cycle as they move with water from mountain streams, mainstem rivers, estuaries, bays, and coastal oceans, with adult fish swimming back through the same migration route they took as juveniles. Conditions in one habitat can have growth and survival consequences that manifest in the following habitat, so is key that full life cycle models are used to further our understanding salmon population dynamics. Given the wide range of habitats and potential stressors, this approach requires the coordination of a multidisciplinary suite of physical and biological models, including climate, hydrologic, hydraulic, food web, circulation, bioenergetic, and ecosystem models. Here we present current approaches to linking physical and biological models that capture the foundational drivers for salmon in complex and dynamic systems.

  19. Light Experiment data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the early 1990s, Redfish Lake sockeye salmon from the Sawtooth Basin in Idaho were on the brink of extinction, and they were listed as endangered under the US...

  20. Fish Health data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the early 1990s, Redfish Lake sockeye salmon from the Sawtooth Basin in Idaho were on the brink of extinction, and they were listed as endangered under the US...

  1. Social Behavior - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the early 1990s, Redfish Lake sockeye salmon from the Sawtooth Basin in Idaho were on the brink of extinction, and they were listed as endangered under the US...

  2. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  3. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha.

    Directory of Open Access Journals (Sweden)

    Bobbi M Johnson

    Full Text Available The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha. Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed "the four H's": habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins

  4. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    Science.gov (United States)

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  5. Migratory behavior and physiological development as potential determinants of life history diversity in fall Chinook Salmon in the Clearwater River

    Science.gov (United States)

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Richmond, Marshall C.; Perkins, William A.

    2018-01-01

    We studied the influence of behavior, water velocity, and physiological development on the downstream movement of subyearling fall‐run Chinook Salmon Oncorhynchus tshawytscha in both free‐flowing and impounded reaches of the Clearwater and Snake rivers as potential mechanisms that might explain life history diversity in this stock. Movement rates and the percentage of radio‐tagged fish that moved faster than the average current velocity were higher in the free‐flowing Clearwater River than in impounded reaches. This supports the notion that water velocity is a primary determinant of downstream movement regardless of a fish's physiological development. In contrast, movement rates slowed and detections became fewer in impounded reaches, where water velocities were much lower. The percentage of fish that moved faster than the average current velocity continued to decline and reached zero in the lowermost reach of Lower Granite Reservoir, suggesting that the behavioral disposition to move downstream was low. These findings contrast with those of a similar, previous study of Snake River subyearlings despite similarity in hydrodynamic conditions between the two studies. Physiological differences between Snake and Clearwater River migrants shed light on this disparity. Subyearlings from the Clearwater River were parr‐like in their development and never showed the increase in gill Na+/K+‐ATPase activity displayed by smolts from the Snake River. Results from this study provide evidence that behavioral and life history differences between Snake and Clearwater River subyearlings may have a physiological basis that is modified by environmental conditions.

  6. Migratory Behavior and Physiological Development as Potential Determinants of Life History Diversity in Fall Chinook Salmon in the Clearwater River

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey, Western Fisheries Research Center, 5501-A Cook-Underwood Road Cook Washington 98605 USA; Kock, Tobias J. [U.S. Geological Survey, Western Fisheries Research Center, 5501-A Cook-Underwood Road Cook Washington 98605 USA; Connor, William P. [U.S. Fish and Wildlife Service, Idaho Fishery Resource Office, Post Office Box 18 Ahsahka Idaho 81530 USA; Richmond, Marshall C. [Pacific Northwest National Laboratory, Post Office Box 999 Richland Washington 99352 USA; Perkins, William A. [Pacific Northwest National Laboratory, Post Office Box 999 Richland Washington 99352 USA

    2018-03-01

    We studied the influence of behavior, water velocity, and physiological development on the downstream movement of subyearling fall Chinook Salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Clearwater and Snake rivers as potential mechanisms that might explain life history diversity in this stock. Movement rates and the percentage of radio-tagged fish that moved faster than the average current velocity were highest in the free-flowing Clearwater River compared to impounded reaches. This provided support for our hypothesis that water velocity is a primary determinant of downstream movement regardless of a fish’s physiological development. In contrast, movement rates slowed and detections became fewer in impounded reaches where velocities were much lower. The percentage of fish that moved faster than the average current velocity continued to decline and reached zero in the lower-most reach of Lower Granite Reservoir suggesting that behavioral disposition to move downstream was low. These findings contrast those of a similar, previous study of Snake River subyearlings in spite of hydrodynamic conditions being similar. Physiological differences between Snake and Clearwater river migrants shed light on this disparity. Subyearlings from the Clearwater River were parr-like in their development and never showed an increase in gill Na+/K+-ATPase activity as did smolts from the Snake River. The later emergence timing and cooler rearing temperatures in the Clearwater River may suppress normal physiological development that causes many fish to delay downstream movement and adopt a yearling life history strategy.

  7. Flowing with Rivers

    Science.gov (United States)

    Anderson, Heather

    2004-01-01

    This article describes a lesson in which students compare how artists have depicted rivers in paintings, using different styles, compositions, subject matter, colors, and techniques. They create a watercolor landscape that includes a river. Students can learn about rivers by studying them on site, through environmental study, and through works of…

  8. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. (Washington Department of Wildlife, Olympia, WA)

    2002-10-01

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 spawners present day (Johnson et al. 1997). Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline in this species in the Columbia River. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of chum salmon (Johnson et al. 1997). This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. The recovery strategy for Lower Columbia River chum as outlined in the Hatchery Genetic Management Plan (HGMP) for the Grays River project has four main tasks. First, determine if remnant populations of Lower Columbia River chum salmon exist in Lower Columbia River tributaries. Second, if such populations exist, develop stock-specific recovery plans that would involve habitat restoration including the creation of spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of Lower Columbia River chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce the extinction risk to Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction of Lower Columbia River chum salmon into the Chinook River basin. The

  9. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow.

    Science.gov (United States)

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-12-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing.

  10. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason (Idaho Department of Fish and Game, Boise, ID)

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacks and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by anglers

  11. Seasonal variation exceeds effects of salmon carcass additions on benthic food webs in the Elwha River

    Science.gov (United States)

    Morley, S.A.; Coe, H.J.; Duda, J.J.; Dunphy, L.S.; McHenry, M.L.; Beckman, B.R.; Elofson, M.; Sampson, E. M.; Ward, L.

    2016-01-01

    Dam removal and other fish barrier removal projects in western North America are assumed to boost freshwater productivity via the transport of marine-derived nutrients from recolonizing Pacific salmon (Oncorhynchus spp.). In anticipation of the removal of two hydroelectric dams on the Elwha River in Washington State, we tested this hypothesis with a salmon carcass addition experiment. Our study was designed to examine how background nutrient dynamics and benthic food webs vary seasonally, and how these features respond to salmon subsidies. We conducted our experiment in six side channels of the Elwha River, each with a spatially paired reference and treatment reach. Each reach was sampled on multiple occasions from October 2007 to August 2008, before and after carcass placement. We evaluated nutrient limitation status; measured water chemistry, periphyton, benthic invertebrates, and juvenile rainbow trout (O. mykiss) response; and traced salmon-derived nutrient uptake using stable isotopes. Outside of winter, algal accrual was limited by both nitrogen and phosphorous and remained so even in the presence of salmon carcasses. One month after salmon addition, dissolved inorganic nitrogen levels doubled in treatment reaches. Two months after addition, benthic algal accrual was significantly elevated. We detected no changes in invertebrate or fish metrics, with the exception of 15N enrichment. Natural seasonal variability was greater than salmon effects for the majority of our response metrics. Yet seasonality and synchronicity of nutrient supply and demand are often overlooked in nutrient enhancement studies. Timing and magnitude of salmon-derived nitrogen utilization suggest that uptake of dissolved nutrients was favored over direct consumption of carcasses. The highest proportion of salmon-derived nitrogen was incorporated by herbivores (18–30%) and peaked 1–2 months after carcass addition. Peak nitrogen enrichment in predators (11–16%) occurred 2–3

  12. Role of economics in endangered species act activities related to Snake River salmon

    International Nuclear Information System (INIS)

    Woodruff, E.J.; Huppert, D.D.

    1993-01-01

    The development of recovery actions for the species of Snake River Salmon listed under the Endangered Species Act (ESA) must consider a wide range of actions covering the different life-cycles of the species. This paper examines the possible role of economic analysis in assisting in selection of actions to undertake and draws heavily on similar opinions presented by others in the region

  13. Wild Steelhead Studies, Salmon and Clearwater Rivers, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holubetz, Terry B; Leth, Brian D.

    1997-05-01

    To enumerate chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss adult escapements, weirs were operated in Marsh, Chamberlain, West Fork Chamberlain, and Running creeks. Beginning in late July 1994, a juvenile trap was installed in Running Creek to estimate juvenile outmigrants. Plans have been completed to install a weir in Rush Creek to enumerate steelhead adult escapement beginning in spring 1995. Design and agreements are being developed for Johnson Creek and Captain John Creek. Data collected in 1993 and 1994 indicate that spring chinook salmon and group-B steelhead populations and truly nearing extinction levels. For example, no adult salmon or steelhead were passed above the West Fork Chamberlain Creek weir in 1984, and only 6 steelhead and 16 chinook salmon were passed into the important spawning area on upper Marsh Creek. Group-A steelhead are considerably below desirable production levels, but in much better status than group-B stocks. Production of both group-A and group-B steelhead is being limited by low spawning escapements. Studies have not been initiated on wild summer chinook salmon stocks.

  14. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers.

    Science.gov (United States)

    Otero, Jaime; Jensen, Arne J; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr; Storvik, Geir O; Vøllestad, Leif Asbjørn

    2011-01-01

    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979-2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to

  15. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers.

    Directory of Open Access Journals (Sweden)

    Jaime Otero

    Full Text Available Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse from Norwegian rivers over 29 years (1979-2007. Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching

  16. Survival of migrating salmon smolts in large rivers with and without dams.

    Directory of Open Access Journals (Sweden)

    David W Welch

    2008-10-01

    Full Text Available The mortality of salmon smolts during their migration out of freshwater and into the ocean has been difficult to measure. In the Columbia River, which has an extensive network of hydroelectric dams, the decline in abundance of adult salmon returning from the ocean since the late 1970s has been ascribed in large measure to the presence of the dams, although the completion of the hydropower system occurred at the same time as large-scale shifts in ocean climate, as measured by climate indices such as the Pacific Decadal Oscillation. We measured the survival of salmon smolts during their migration to sea using elements of the large-scale acoustic telemetry system, the Pacific Ocean Shelf Tracking (POST array. Survival measurements using acoustic tags were comparable to those obtained independently using the Passive Integrated Transponder (PIT tag system, which is operational at Columbia and Snake River dams. Because the technology underlying the POST array works in both freshwater and the ocean, it is therefore possible to extend the measurement of survival to large rivers lacking dams, such as the Fraser, and to also extend the measurement of survival to the lower Columbia River and estuary, where there are no dams. Of particular note, survival during the downstream migration of at least some endangered Columbia and Snake River Chinook and steelhead stocks appears to be as high or higher than that of the same species migrating out of the Fraser River in Canada, which lacks dams. Equally surprising, smolt survival during migration through the hydrosystem, when scaled by either the time or distance migrated, is higher than in the lower Columbia River and estuary where dams are absent. Our results raise important questions regarding the factors that are preventing the recovery of salmon stocks in the Columbia and the future health of stocks in the Fraser River.

  17. Spatial consistency of chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    Science.gov (United States)

    Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.

    2013-01-01

    We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.

  18. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    Science.gov (United States)

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  19. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    Science.gov (United States)

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T

  20. Snake River sockeye salmon Sawtooth Valley project: 1992 Juvenile and Adult Trapping Program

    International Nuclear Information System (INIS)

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ''endangered'' (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973

  1. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D. (Nez Perce Tribe, Lapwai, ID)

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  2. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.P. [Pacific Northwest National Laboratory

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the

  3. Migratory Characteristics of Juvenile Spring Chinook Salmon in the Willamette River : Completion Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate.

  4. Migratory characteristics of juvenile spring chinook salmon in the Willamette River. Completion report 1994

    International Nuclear Information System (INIS)

    Schreck, C.B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate

  5. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a

  6. Estuary-wide genetic stock distribution and salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  7. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  8. Wenatchee Chinook Parentage - Evaluate the reproductive success of hatchery and wild Chinook salmon in the Wenatchee River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic parentage analysis to measure the relative fitness of hatchery and wild spring run Chinook salmon that spawn in the Wenatchee River. In addition...

  9. Bull Trout Population Assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thiesfeld, Steven L.; McPeak, Ronald H.; McNamara, Brian S. (Washington Department of Fish and Wildlife); Honanie, Isadore (Confederated Tribes and Bands, Yakama Nation)

    2002-01-01

    We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River.

  10. Snake River sockeye salmon captive broodstock program: hatchery element: annual progress report, 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Kline, Paul A.; Willard, Catherine

    2001-01-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 2000 and December 31, 2000 are presented in this report

  11. Assessing summer and fall chinook salmon restoration in the Upper Clearwater River and principal tributaries. Annual report 1994

    International Nuclear Information System (INIS)

    Arnsberg, B.D.; Statler, D.P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  12. Collaborative Approaches to Flow Restoration in Intermittent Salmon-Bearing Streams: Salmon Creek, CA, USA

    Directory of Open Access Journals (Sweden)

    Cleo Woelfle-Erskine

    2017-03-01

    Full Text Available In Mediterranean-climate regions of California and southern Oregon, juvenile salmon depend on groundwater aquifers to sustain their tributary habitats through the dry summers. Along California’s North Coast streams, private property regimes on land have created commons tragedies in groundwater and salmon fisheries, both classic examples of commons that are often governed collectively and sustainably by their users. Understanding the linkages between salmon and groundwater is one major focus of salmon recovery and climate change adaptation planning in central California and increasingly throughout the Pacific Northwest. In this paper, I use extended field interviews and participant-observation in field ecology campaigns and regulatory forums to explore how, in one water-scarce, salmon-bearing watershed on California’s central coast, collaborators are synthesizing agency and landowner data on groundwater and salmon management. I focus on three projects undertaken by citizen scientists in collaboration with me and Gold Ridge Resource Conservation District staff: salmonid censuses, mapping of wet and dry stream reaches and well monitoring. I find that collaborative research initiated by local residents and agency personnel has, in some cases, created a new sense of ecological possibility in the region. I also consider some limitations of this collaborations, namely the lack of engagement with indigenous Pomo and Miwok tribal members, with the Confederated Tribes of Graton Rancheria and with farmworkers and other marginalized residents, and suggest strategies for deepening environmental justice commitments in future collaborative work.

  13. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    Science.gov (United States)

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  14. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-10-15

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 present day spawners. Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline of Columbia River chum salmon. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Currently, only two main populations are recognized as genetically distinct in the Columbia River, although spawning has been documented in most lower Columbia River tributaries. The first is located in the Grays River (RKm 34) (Grays population), a tributary of the Columbia, and the second is a group of spawners that utilize the Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks (Lower Gorge population). A possible third population of mainstem spawners, found in the fall of 1999, were located spawning above the I-205 bridge (approximately RKm 182), this aggregation is referred to as the Woods Landing/Rivershore population or the I-205 group. The recovery strategy for Lower Columbia River (LCR) chum as outlined in Hatchery Genetic Management Plans (HGMP) has three main tasks. First, determine if remnant populations of LCR chum salmon exist in LCR tributaries. Second, if such populations exist, develop stock-specific recovery plans involving habitat restoration including the creation of

  15. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J,; Heindel, Jeff A.; Kline, Paul A. (Idaho Department of Fish and Game, Boise, ID)

    2005-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1999 and December 31, 1999 are presented in this report. In 1999, seven anadromous sockeye salmon returned to the Sawtooth Valley and were captured at the adult weir located on the upper Salmon River. Four anadromous adults were incorporated in the captive broodstock program spawning design for year 1999. The remaining three adults were released to Redfish Lake for natural spawning. All seven adults were adipose and left ventral fin-clipped, indicating hatchery origin. One sockeye salmon female from the anadromous group and 81 females from the captive broodstock group were spawned at the Eagle Fish Hatchery in 1999. Spawn pairings produced approximately 63,147 eyed-eggs with egg survival to eyed-stage of development averaging 38.97%. Eyed-eggs (20,311), presmolts (40,271), smolts (9,718), and adults (21) were planted or released into Sawtooth Valley waters in 1999. Supplementation strategies involved releases to Redfish Lake, Redfish Lake Creek

  16. Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    2001-04-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  17. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

  18. Archaeological Investigations on the East Fork of the Salmon River, Custer County, Idaho.

    Science.gov (United States)

    1984-01-01

    coniferous environment in addition to pine marten (Martes americana), red squirrel (Tamiasciurus hudsonicus), porcupine (Erithizon dorsatum), mountain vole...can be seen in small herds throughout the East Fork valley from the Salmon River to Big Boulder Creek. Two bands of Rocky Mountain bighorn sheep...utilize the Challis Planning Unit, one on the East Fork and the other in the Birch Creek area. The East Fork herd is comprised of approximately 50-70

  19. Analysis of Chinook Salmon in the Columbia River from an Ecosystem Perspective. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lichatowich, James A.; Mobrand, Lars E.

    1995-01-01

    Ecosystem Diagnosis and Treatment (EDT) methodology was applied to the analysis of chinook salmon in the mid-Columbia subbasins which flow through the steppe and steppe-shrub vegetation zones. The EDT examines historical changes in life history diversity related to changes in habitat. The emphasis on life history, habitat and historical context is consistent with and ecosystem perspective. This study is based on the working hypothesis that the decline in chinook salmon was at least in part due to a loss of biodiversity defined as the intrapopulation life history diversity. The mid Columbia subbasins included in the study are the Deschutes, John Day, Umatilla, Tucannon and Yakima.

  20. Migratory Characteristics of Spring Chinook Salmon in the Willamette River : Annual Report 1991.

    Energy Technology Data Exchange (ETDEWEB)

    Snelling, John C.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na{sup +}/K{sup +} gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls.

  1. Research and recovery of Snake River sockeye salmon. Annual report 1994

    International Nuclear Information System (INIS)

    Kline, P.; Younk, J.

    1995-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribe and the Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. In 1994, the authors estimated the total September Redfish Lake O. nerka population at 51,529 fish (95% CI, ± 33,179). The Alturas Lake O. nerka population was estimated at 5,785 fish (± 6,919). The total density and biomass of Alturas Lake was estimated at 27 fish/hectare (± 33) and 0.7 kg/hectare, respectively. The total O. nerka population estimate for Pettit Lake was 14,743 fish (± 3,683). Stanley Lake O. nerka total population size, density, and biomass was estimated at 2,695 fish (± 963), 37 fish/hectare (± 13), and 0.5 kg/hectare, respectively. Estimated numbers of O. nerka outmigrant smolts passing Redfish Lake Creek and Salmon River trapping sites increased in 1994. The authors estimated 1,820 (90% CI 1,229--2,671) and 945 (90% CI 331--13,000) smolts left Redfish and Alturas lakes, respectively. The total PIT tag detection rate at mainstem dams for Redfish Lake outmigrants was 21% in 1994. No Alturas Lake outmigrants were detected at any of the downstream facilities with detection capabilities (zero of 50 fish)

  2. Snake River sockeye salmon habitat and limnological research, annual report 1998

    International Nuclear Information System (INIS)

    Lewis, Bert

    2000-01-01

    In March of 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an inter-agency effort to save the Redfish Lake stock of O. nerka from extinction. This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the calendar year of 1998. Project objectives included; (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka released from the captive rearing program into Pettit and Alturas lakes; (2) fertilize Redfish, Pettit, and Alturas lakes; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) control the number of spawning kokanee in Fishhook Creek; (6) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity. Results by objective are summarized

  3. From salmon to shad: Shifting sources of marine-derived nutrients in the Columbia River Basin

    Science.gov (United States)

    Haskell, Craig A.

    2018-01-01

    Like Pacific salmon (Oncorhynchus spp.), nonnative American shad (Alosa sapidissima) have the potential to convey large quantities of nutrients between the Pacific Ocean and freshwater spawning areas in the Columbia River Basin (CRB). American shad are now the most numerous anadromous fish in the CRB, yet the magnitude of the resulting nutrient flux owing to the shift from salmon to shad is unknown. Nutrient flux models revealed that American shad conveyed over 15,000 kg of nitrogen (N) and 3,000 kg of phosphorus (P) annually to John Day Reservoir, the largest mainstem reservoir in the lower Columbia River. Shad were net importers of N, with juveniles and postspawners exporting just 31% of the N imported by adults. Shad were usually net importers of P, with juveniles and postspawners exporting 46% of the P imported by adults on average. American shad contributed salmon owing to their smaller size. Given the relatively high background P levels and low retention times in lower Columbia River reservoirs, it is unlikely that shad marine-derived nutrients affect nutrient balances or food web productivity through autotrophic pathways. However, a better understanding of shad spawning aggregations in the CRB is needed.

  4. Streambed scour of salmon spawning habitat in a regulated river influenced by management of peak discharge

    Science.gov (United States)

    Gendaszek, Andrew S.; Burton, Karl D.; Magirl, Christopher S.; Konrad, Christopher P.

    2017-01-01

    In the Pacific Northwest of the United States, salmon eggs incubating within streambed gravels are susceptible to scour during floods. The threat to egg-to-fry survival by streambed scour is mitigated, in part, by the adaptation of salmon to bury their eggs below the typical depth of scour. In regulated rivers globally, we suggest that water managers consider the effect of dam operations on scour and its impacts on species dependent on benthic habitats.We instrumented salmon-spawning habitat with accelerometer scour monitors (ASMs) at 73 locations in 11 reaches of the Cedar River in western Washington State of the United States from Autumn 2013 through the Spring of 2014. The timing of scour was related to the discharge measured at a nearby gage and compared to previously published ASM data at 26 locations in two reaches of the Cedar River collected between Autumn 2010 and Spring 2011.Thirteen percent of the recovered ASMs recorded scour during a peak-discharge event in March 2014 (2-to 3-year recurrence interval) compared to 71% of the recovered ASMs during a higher peak-discharge event in January 2011 (10-year recurrence interval). Of the 23 locations where ASMs recorded scour during the 2011 and 2014 deployments, 35% had scour when the discharge was ≤87.3 m3/s (3,082 ft3/s) (2-year recurrence interval discharge) with 13% recording scour at or below the 62.3 m3/s (2,200 ft3/s) operational threshold for peak-discharge management during the incubation of salmon eggs.Scour to the depth of salmon egg pockets was limited during peak discharges with frequent (1.25-year or less) recurrence intervals, which managers can regulate through dam operations on the Cedar River. Pairing novel measurements of the timing of streambed scour with discharge data allows the development of peak-discharge management strategies that protect salmon eggs incubating within streambed gravels during floods.

  5. Spatial consistency of Chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Klett, Katherine J.; Torgersen, Christian; Henning, Julie; Murray, Christopher J.

    2013-04-28

    We investigated the spawning patterns of Chinook salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington (USA) using a unique set of fine- and coarse-scale 35 temporal and spatial data collected during bi-weekly aerial surveys conducted in 1991-2009 (500 m to 28 km resolution) and 2008-2009 (100-500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held global positioning system (GPS) synchronized with in-flight audio recordings. We examined spatial patterns of Chinook salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook salmon spawned in the same sections each year with little variation among years. On a coarse scale, five years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years resulting in a minimum correlation coefficient of 0.90 (adjusted P = 0.002). Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations (P < 0.001). On a finer temporal scale, we observed that salmon spawned in the same sections during the first and last week (2008: P < 0.02; and 2009: P < 0.001). Redds were clustered in both 2008 and 2009 (P < 0.001). Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook salmon spawning surveys.

  6. Factors Affecting the Survival of Upstream Migrant Adult Salmonids in the Columbia River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 9 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, Dennis D.; Mueller, Robert P.

    1993-06-01

    The Bonneville Power Administration (BPA) is developing conservation planning documentation to support the National Marine Fisheries Service`s (NMFS) recovery plan for Columbia Basin salmonid stocks that are currently listed under the Endangered Species Act (ESA). Information from the conservation planning documentation will be used as a partial scientific basis for identifying alternative conservation strategies and to make recommendations toward conserving, rebuilding, and ultimately removing these salmon stocks from the list of endangered species. This report describes the adult upstream survival study, a synthesis of biological analyses related to conditions affecting the survival of adult upstream migrant salmonids in the Columbia River system. The objective of the adult upstream survival study was to analyze existing data related to increasing the survival of adult migrant salmonids returning to the Snake River system. The fate and accountability of each stock during its upstream migration period and the uncertainties associated with measurements of escapement and survival were evaluated. Operational measures that affected the survival of adult salmon were evaluated including existing conditions, augmented flows from upstream storage release, and drawdown of mainstem reservoirs. The potential impacts and benefits of these measures to each ESA stock were, also described based on considerations of species behavior and run timing.

  7. Polychlorinated biphenyl (PCB) load, lipid reserves and biotransformation activity in migrating Atlantic salmon from River Moerrum, Sweden

    International Nuclear Information System (INIS)

    Hansson, Maria C.; Persson, Maria E.; Larsson, Per; Schantz, Torbjoern von

    2009-01-01

    Atlantic salmon accumulate high levels of contaminants such as polychlorinated biphenyls (PCBs) in their lipids during the adult growth phase spent at sea. The lipids are later utilized during migration for swimming and biological adaptations. We hypothesize that migrating salmons' biotransformation processes are affected by the high levels of built-up PCBs compared to salmon that in a pre-migrational stage. For these analyses we sampled adult Atlantic salmon during migration in the Swedish River Moerrum and measured the 21 most common PCB congeners (ΣPCB) and lipid levels in muscle tissue, aryl hydrocarbon receptor (AHR2) and cytochrome P4501A1 (CYP1A1) transcript levels as well as ethoxyresorufin-O-deethylase activity (EROD) in liver. We also determined which AHR2 genotypes the salmon carried. We show that EROD activity is correlated to CYP1A1 level but not to ΣPCB concentration. ΣPCB concentration does not predict levels of neither the AHR2 nor CYP1A1 genes. We find no associations between specific AHR2 transcription levels and AHR2 genotypes or a correlation between AHR2 and CYP1A1 transcription levels, which is in direct contrast to pre-migrational adult salmon from the Baltic Sea. When we compare River Moerrum to salmon we have previously sampled in the Baltic Sea we show that migrating salmon have significantly lower lipid levels in their muscles; higher muscle concentrations of ΣPCB on a lipid basis; and significantly lower CYP1A1 and EROD levels compared to salmon from the Baltic Sea. Also, transcript levels of three out of four AHR2 genes are significantly different. In conclusion, migrating Swedish Atlantic salmon carry higher concentrations of PCBs in their lipids compared to salmon in the Baltic Sea, but have lower activation of biotransformation genes and enzymes. Our results indicate that accumulated pollutants from the Baltic Sea are deactivated inside the migrating salmon's lipid tissues and increase in concentration when migration is initiated

  8. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy (Idaho Department of Fish and Game, Boise, ID)

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to

  9. Buck Creek River Flow Analysis

    Science.gov (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  10. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Baker, Dan J.; Heindel, Jeff A. (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2002 and December 31, 2002 for the hatchery element of the program are presented in this report. n 2002, 22 anadromous sockeye salmon returned to the Sawtooth Valley. Fifteen of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Seven of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on September 30, 2002). All adult returns were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Sixty-six females from brood year 1999 and 28 females from brood year 2000 captive broodstock groups were spawned at the Eagle Hatchery in 2002. Spawn pairings produced approximately 65

  11. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    Science.gov (United States)

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  12. Using broad landscape level features to predict redd densities of steelhead trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) in the Methow River watershed, Washington

    Science.gov (United States)

    Romine, Jason G.; Perry, Russell W.; Connolly, Patrick J.

    2013-01-01

    We used broad-scale landscape feature variables to model redd densities of spring Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Methow River watershed. Redd densities were estimated from redd counts conducted from 2005 to 2007 and 2009 for steelhead trout and 2005 to 2009 for spring Chinook salmon. These densities were modeled using generalized linear mixed models. Variables examined included primary and secondary geology type, habitat type, flow type, sinuosity, and slope of stream channel. In addition, we included spring effect and hatchery effect variables to account for high densities of redds near known springs and hatchery outflows. Variables were associated with National Hydrography Database reach designations for modeling redd densities within each reach. Reaches were assigned a dominant habitat type, geology, mean slope, and sinuosity. The best fit model for spring Chinook salmon included sinuosity, critical slope, habitat type, flow type, and hatchery effect. Flow type, slope, and habitat type variables accounted for most of the variation in the data. The best fit model for steelhead trout included year, habitat type, flow type, hatchery effect, and spring effect. The spring effect, flow type, and hatchery effect variables explained most of the variation in the data. Our models illustrate how broad-scale landscape features may be used to predict spawning habitat over large areas where fine-scale data may be lacking.

  13. Numerical modelling of river processes: flow and river bed deformation

    NARCIS (Netherlands)

    Tassi, P.A.

    2007-01-01

    The morphology of alluvial river channels is a consequence of complex interaction among a number of constituent physical processes, such as flow, sediment transport and river bed deformation. This is, an alluvial river channel is formed from its own sediment. From time to time, alluvial river

  14. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    2003-12-01

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenile chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303

  15. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  16. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

    2002-08-30

    This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of

  17. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  18. Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Hand, Kristine D.; Geist, David R.; Murray, Katherine J.; Panther, Jenny; Cullinan, Valerie I.; Dawley, Earl M.; Elston, Ralph A.

    2008-01-30

    This report describes research conducted by Pacific Northwest National Laboratory in FY 2007 for the U.S. Army Corps of Engineers, Portland District, to characterize the effects of total dissolved gas (TDG) on the incubating fry of chum salmon (Onchorhynchus keta) in the lower Columbia River. The tasks conducted and results obtained in pursuit of three objectives are summarized: * to conduct a field monitoring program at the Ives Island and Multnomah Falls study sites, collecting empirical data on TDG to obtain a more thorough understanding of TDG levels during different river stage scenarios (i.e., high-water year versus low-water year) * to conduct laboratory toxicity tests on hatchery chum salmon fry at gas levels likely to occur downstream from Bonneville Dam * to sample chum salmon sac fry during Bonneville Dam spill operations to determine if there is a physiological response to TDG levels. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the study methdology and results are provided in Appendixes A through D.

  19. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.; Heindel, Jeff A.; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1997 and December 31, 1997 are presented in this report. One hundred twenty-six female sockeye salmon from one captive broodstock group were spawned at the Eagle Fish Hatchery in 1997. Successful spawn pairings produced approximately 148,781 eyed-eggs with a cumulative mean survival to eyed-egg rate of 57.3%. Approximately 361,600 sockeye salmon were released to Sawtooth basin waters in 1997. Reintroduction strategies included eyed-eggs (brood year 1997), presmolts (brood year 1996), and prespawn adults for volitional spawning (brood year 1994). Release locations included Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, four broodstocks and two unique production groups were in culture at the Eagle Fish Hatchery. Two of the four broodstocks were incorporated into the 1997 spawning design, and one broodstock was terminated following

  20. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In

  1. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  2. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and

  3. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix E: Existing Systems and Major System Improvements Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  4. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix F: Hydrology/Hydraulics and Sedimentation. Appendix G: Hydroregulations. Appendix H: Fluvial Geomorphology

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  5. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environment Impact Statement. Appendix N: Cultural Resources. Appendix O: Public Outreach Program. Appendix P: Air Quality

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  6. Growth and smolting in lower-mode Atlantic Salmon stocked into the Penobscot River, Maine

    Science.gov (United States)

    Zydlewski, Joseph D.; O'Malley, Andrew; Cox, Oliver; Ruksznis, Peter; Trial, Joan G.

    2014-01-01

    Restoration of Atlantic Salmon Salmo salar in Maine has relied on hatchery-produced fry and smolts for critical stocking strategies. Stocking fry minimizes domestication selection, but these fish have poor survival. Conversely, stocked smolts have little freshwater experience but provide higher adult returns. Lower-mode (LM) fish, those not growing fast enough to ensure smolting by the time of stocking, are a by-product of the smolt program and are an intermediate hatchery product. From 2002 to 2009, between 70,000 and 170,000 marked LM Atlantic Salmon were stocked into the Pleasant River (a tributary in the Penobscot River drainage, Maine) in late September to early October. These fish were recaptured as actively migrating smolts (screw trapping), as nonmigrants (electrofishing), and as returning adults to the Penobscot River (Veazie Dam trap). Fork length (FL) was measured and a scale sample was taken to retrospectively estimate FL at winter annulus one (FW1) using the intercept-corrected direct proportion model. The LM fish were observed to migrate as age-1, age-2, and infrequently as age-3 smolts. Those migrating as age-1 smolts had a distinctly larger estimated FL at FW1 (>112 mm) than those that remained in the river for at least one additional year. At the time of migration, age-2 and age-3 smolts were substantially larger than age-1 smolts. Returning adult Atlantic Salmon of LM origin had estimated FLs at FW1 that corresponded to smolt age (greater FL for age 1 than age 2). The LM product produces both age-1 and age-2 smolts that have greater freshwater experience than hatchery smolts and may have growth and fitness advantages. The data from this study will allow managers to better assess the probability of smolting age and manipulate hatchery growth rates to produce a targeted-size LM product.

  7. Merits and Limits of Ecosystem Protection for Conserving Wild Salmon in a Northern Coastal British Columbia River

    Directory of Open Access Journals (Sweden)

    Aaron C. Hill

    2010-06-01

    Full Text Available Loss and degradation of freshwater habitat reduces the ability of wild salmon populations to endure other anthropogenic stressors such as climate change, harvest, and interactions with artificially propagated fishes. Preservation of pristine salmon rivers has thus been advocated as a cost-effective way of sustaining wild Pacific salmon populations. We examine the value of freshwater habitat protection in conserving salmon and fostering resilience in the Kitlope watershed in northern coastal British Columbia - a large (3186 km2 and undeveloped temperate rainforest ecosystem with legislated protected status. In comparison with other pristine Pacific Rim salmon rivers we studied, the Kitlope is characterized by abundant and complex habitats for salmon that should contribute to high resilience. However, biological productivity in this system is constrained by naturally cold, light limited, ultra-oligotrophic growing conditions; and the mean (± SD density of river-rearing salmonids is currently low (0.32 ± 0.27 fish per square meter; n = 36 compared to our other four study rivers (grand mean = 2.55 ± 2.98 fish per square meter; n = 224. Existing data and traditional ecological knowledge suggest that current returns of adult salmon to the Kitlope, particularly sockeye, are declining or depressed relative to historic levels. This poor stock status - presumably owing to unfavorable conditions in the marine environment and ongoing harvest in coastal mixed-stock fisheries - reduces the salmon-mediated transfer of marine-derived nutrients and energy to the system's nutrient-poor aquatic and terrestrial food webs. In fact, Kitlope Lake sediments and riparian tree leaves had marine nitrogen signatures (δ15N among the lowest recorded in a salmon ecosystem. The protection of the Kitlope watershed is undoubtedly a conservation success story. However, "salmon strongholds" of pristine watersheds may not adequately sustain salmon populations and foster

  8. The Contribution of Tidal Fluvial Habitats in the Columbia River Estuary to the Recovery of Diverse Salmon ESUs

    Science.gov (United States)

    2013-05-01

    Chinook salmon (presumably subyearling) was the most prevalent life-history type detected at the Russian Island and Woody Island sites. The number of...Extend and refine the computational grid We extended the Virtual Columbia River to include regions upstream of Beaver Army, which previously served as...the Columbia River above Beaver Army and particularly above the confluence of the Willamette River. That process of calibration is highly iterative

  9. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; McMichael, Geoffrey A. [Pacific Northwest National Laboratory

    2009-08-21

    In 2007, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. Monthly releases of radio-tagged fish ({approx}95/month) were made from May through October and releases of 122-149/month acoustic-tagged fish per month were made from August through October. We compared the size at release of our tagged fish to that which could have been obtained at the same time from in-river, beach seine collections made by the Nez Perce Tribe. Had we relied on in-river collections to obtain our fish, we would have obtained very few in June from the free-flowing river but by late July and August over 90% of collected fish in the transition zone were large enough for tagging. Detection probabilities of radio-tagged subyearlings were generally high ranging from 0.60 (SE=0.22) to 1.0 (SE=0) in the different study reaches and months. Lower detection probabilities were observed in the confluence and upper reservoir reaches where fewer fish were detected. Detection probabilities of acoustic-tagged subyearlings were also high and ranged from 0.86 (SE=0.09) to 1.0 (SE=0) in the confluence and upper reservoir reaches during August through October. Estimates of the joint probability of migration and survival generally declined in a downstream direction for fish released from June through August. Estimates were lowest in the transition zone (the lower 7 km of the Clearwater River) for the June release and lowest in the confluence area for July and August releases. The joint probability of migration and survival in these reaches was higher for the September and October releases, and were similar to those of fish released in May. Both fish weight and length at tagging were significantly correlated with the joint probability of migrating and surviving for both radio-tagged and acoustic-tagged fish. For both tag types, fish that were heavier at tagging had a

  10. Snake River sockeye salmon habitat and limnological research, annual report 1999

    International Nuclear Information System (INIS)

    Griswold, Robert G.

    2001-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity

  11. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  12. Impact of Ichthyophonus infection on spawning success of Yukon River Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Hamazaki, Toshihide; Kahler, Eryn; Borba, Bonnie M; Burton, Tamara

    2013-11-06

    We examined the impacts of Ichthyophonus infection on spawning success of Yukon River Chinook salmon Oncorhynchus tshawytscha at spawning grounds of the Chena and Salcha Rivers, Alaska, USA. During the period 2005 to 2006, 1281 salmon carcasses (628 male, 652 female) were collected throughout the spawning season and from the entire spawning reaches of the Chena and Salcha Rivers. For each fish, infection status was determined by culture method and visual inspection of lesions of heart tissue as uninfected (culture negative), infected without lesions (culture positive with no visible lesions), and infected with lesions (culture positive with visible lesions), and spawning status was determined by visually inspecting the percentage of gametes remaining as full-spawned (50%). Among the 3 groups, the proportion of full-spawned (i.e. spawning success) females was lower for those infected without lesions (69%) than those uninfected (87%) and infected with lesions (86%), but this did not apply to males (uninfected 42%, infected without lesions 38%, infected with lesions 41%). At the population level, the combined (infected and uninfected) proportion of female spawning success was 86%, compared to 87% when all females were assumed uninfected. These data suggest that while Ichthyophonus infection slightly reduces spawning success of infected females, its impact on the spawning population as a whole appears minimal.

  13. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    Science.gov (United States)

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  14. Research and Recovery of Snake River Sockeye Salmon, 1994-1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith A.

    1996-09-01

    In 1991, the National Marine Fisheries Service (NMFS) listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Idaho Department of Fish and Game (IDFG) Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye salmon conducted by IDFG during the period of April 1994 to April 1995 are covered by this report. One female anadromous adult returned to the Redfish Lake Creek trap this year. She was spawned at Eagle Fish Hatchery on October 21, 1994. Her fecundity was 2,896. The mean fertilization rate and percent swim-up were 96% and 95%, respectively. Four hundred eighty eyed eggs were shipped to the NMFS Big Beef Creek Fish Hatchery in Washington state, leaving 2,028 fish on site at Eagle. Additionally, captive broodstock and wild residual sockeye salmon (captured at Redfish Lake) were spawned. Spawning data from 234 females spawned during this period are included in this report. Other spawning data (i.e., genetic cross and incubation temperature) are included in the Captive Broodstock Research section of this report.

  15. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura; Heindel, Jeff; Kline, Paul

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from

  16. Influences of Stocking Salmon Carcass Analogs on Salmonids in Klickitat River Tributaries, 2001-2005 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zendt, Joe; Sharp, Bill (Yakama Nation Fisheries, Toppenish, WA)

    2006-09-01

    This report describes the work completed by the Yakama Nation Fisheries Program (YNFP) in the Klickitat subbasin in south-central Washington under BPA innovative project No.200105500--Influences of stocking salmon carcass analogs on salmonids in Columbia River Tributaries. Salmon carcasses historically provided a significant source of marine-derived nutrients to many stream systems in the Columbia basin, and decreased run sizes have led to a loss of this nutrient source in many streams. Partners in this project developed a pathogen-free carcass analog and stocked the analogs in streams with the following objectives: restoring food availability to streams with reduced anadromous salmon returns; mimicking the natural pathways and timing of food acquisition by salmonids; minimizing unintended negative ecological effects; and increasing the growth and survival of salmonids. In the Klickitat subbasin, carcass analogs were stocked in two streams in 2002 and 2003; a third stream was used as a control. Salmonid fish abundance, growth, and stomach contents were monitored in all three streams before and after carcass analog placement. Fish, invertebrate, and periphyton samples were also collected for stable isotope analysis (to determine if nutrients from carcass analogs were incorporated into the stream food web). Water quality samples were also collected to determine if nutrient overloading occurred in streams. Significant differences in growth were found between fish in treated and untreated stream reaches. Fish in treatment reaches exhibited higher instantaneous growth rates approximately one month after the first carcass analog stocking. Stomach contents sampling indicated that salmonid fish routinely consumed the carcass analog material directly, and that stomach fullness of fish in treatment reaches was higher than in untreated reaches in the first few weeks following carcass analog stockings. No significant differences were detected in fish abundance between

  17. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  18. Spatio-temporal migration patterns of Pacific salmon smolts in rivers and coastal marine waters.

    Directory of Open Access Journals (Sweden)

    Michael C Melnychuk

    Full Text Available BACKGROUND: Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. METHODOLOGY/PRINCIPAL FINDINGS: Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations were tagged between 2004-2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. CONCLUSIONS/SIGNIFICANCE: Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong

  19. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    International Nuclear Information System (INIS)

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon

  20. Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River, 2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rawding, Dan; Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-11-15

    Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The five assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but batch

  1. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix L: Lower Snake River Mitigation History and Status. Appendix M: Fish and Wildlife Coordination Act Report

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  2. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks.

    Science.gov (United States)

    Kocan, R; Hershberger, P

    2006-08-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish.

  3. Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016

    Science.gov (United States)

    Jezorek, Ian G.; Hardiman, Jill M.

    2017-06-23

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and removed completely in 2012, allowing anadromous salmonids access to habitat that had been blocked for nearly 100 years. A multi-agency workgroup concluded that the preferred salmonid restoration alternative was natural recolonization with monitoring to assess efficacy, followed by a management evaluation 5 years after dam removal. Limited monitoring of salmon and steelhead spawning has occurred since 2011, but no monitoring of juveniles occurred until 2016. During 2016, we operated a rotary screw trap at river kilometer 2.3 (3 kilometers downstream of the former dam site) from late March through May and used backpack electrofishing during summer to assess juvenile salmonid distribution and abundance. The screw trap captured primarily steelhead (Oncorhynchus mykiss; smolts, parr, and fry) and coho salmon (O. kisutch; smolts and fry). We estimated the number of steelhead smolts at 3,851 (standard error = 1,454) and coho smolts at 1,093 (standard error = 412). In this document, we refer to O. mykiss caught at the screw trap as steelhead because they were actively migrating, but because we did not know migratory status of O. mykiss caught in electrofishing surveys, we simply refer to them as O. mykiss or steelhead/rainbow trout. Steelhead and coho smolts tagged with passive integrated transponder tags were subsequently detected downstream at Bonneville Dam on the Columbia River. Few Chinook salmon (O. tshawytscha) fry were captured, possibly as a result of trap location or effects of a December 2015 flood. Sampling in Mill, Buck, and Rattlesnake Creeks (all upstream of the former dam site) showed that juvenile coho were present in Mill and Buck Creeks, suggesting spawning had occurred there. We compared O. mykiss abundance data in sites on Buck and Rattlesnake Creeks to pre-dam removal data. During 2016, age-0 O. mykiss were more abundant in Buck Creek than in 2009 or

  4. "Investigations of salmon and steelhead trout downstream migrations in Caspar Creek and Little River, Mendocino County, March-July, 1993"

    Science.gov (United States)

    Albert Rodriguez; Weldon Jones

    1993-01-01

    Abstract - This annual study has been conducted, since 1987, on two coastal streams, in order to observe the different trend patterns of juvenile out migrations for coho salmon and steelhead-trout, figure 1. Analysis of the 1993 trapping season indicates, at Little River, a decrease of steelhead-trout yearlings but an increase in coho ""y+"". Coho...

  5. Stock Assessment of Columbia River Anadromous Salmonids : Final Report, Volume I, Chinook, Coho, Chum and Sockeye Salmon Summaries.

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Philip J.

    1986-07-01

    The purpose was to identify and characterize the wild and hatchery stocks of salmon and steelhead in the Columbia River Basin on the basis of currently available information. This report provides a comprehensive compilation of data on the status and life histories of Columbia Basin salmonid stocks.

  6. Global warming of salmon and trout rivers in the northwestern U.S.: Road to ruin or path through purgatory?

    Science.gov (United States)

    Daniel J. Isaak; Charles H. Luce; Dona L. Horan; Gwynne Chandler; Sherry Wollrab; David E. Nagel

    2018-01-01

    Large rivers constitute small portions of drainage networks but provide important migratory habitats and fisheries for salmon and trout when and where temperatures are sufficiently cold. Management and conservation of cold‐water fishes in the current era of rapid climate change requires knowing how riverine thermal environments are evolving and the potential for...

  7. Evaluation of partial water reuse systems used for Atlantic salmon smolt production at the White River National Fish Hatchery

    Science.gov (United States)

    Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8,000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The part...

  8. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    Science.gov (United States)

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2018-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  9. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason (Idaho Department of Fish and Game, Boise, ID)

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to May 29

  10. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael P.; Bumgarner, Joseph D.

    2002-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW volitionally

  11. Tucannon River spring chinook salmon captive brood program, FY 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-01-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  12. Tucannon River Spring Chinook Salmon Captive Brood Program, FY 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-06-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  13. Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary: An Overview of Research Results, 2002-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    2008-08-01

    From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities

  14. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    Science.gov (United States)

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  15. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1996-08-01

    Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

  16. Survival estimates for the passage of juvenile chinook salmon through Snake River dams and reservoirs. Annual report 1993

    International Nuclear Information System (INIS)

    Iwamoto, R.N.; Muir, W.D.; Sandford, B.P.; McIntyre, K.W.; Frost, D.A.; Williams, J.G.; Smith, S.G.; Skalski, J.R.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers

  17. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  18. Upstream movements of Atlantic Salmon in the Lower Penobscot River, Maine following two dam removals and fish passage modifications

    Science.gov (United States)

    Izzo, Lisa K.; Maynard, George A.; Zydlewski, Joseph D.

    2016-01-01

    The Penobscot River Restoration Project (PRRP), to be completed in 2016, involved an extensive plan of dam removal, increases in hydroelectric capacity, and fish passage modifications to increase habitat access for diadromous species. As part of the PRRP, Great Works and Veazie dams were removed, making Milford Dam the first impediment to federally endangered Atlantic Salmon Salmo salar. Upstream habitat access for Atlantic Salmon is dependent upon successful and timely passage at Milford Dam because nearly all suitable spawning habitat is located upstream. In 2014 and 2015, a total of 73 adult salmon were radio-tagged to track their upstream movements through the Penobscot River to assess potential delays at (1) the dam remnants, (2) the confluence of the Stillwater Branch and the main stem of the Penobscot River below the impassable Orono Dam, and (3) the Milford Dam fish lift (installed in 2014). Movement rates through the dam remnants and the Stillwater confluence were comparable to open river reaches. Passage efficiency of the fish lift was high in both years (95% and 100%). However, fish experienced long delays at Milford Dam, with approximately one-third of fish taking more than a week to pass in each year, well below the Federal Energy Regulatory Commission passage standard of 95% within 48 h. Telemetry indicates most fish locate the fishway entrance within 5 h of arrival and were observed at the entrance at all hours of the day. These data indicate that overall transit times through the lower river were comparable to reported movement rates prior to changes to the Penobscot River due to the substantial delays seen at Milford Dam. The results of this study show that while adult Atlantic Salmon locate the new fish lift entrance quickly, passage of these fish was significantly delayed under 2014–2015 operations.

  19. Research and Recovery of Snake River Sockeye Salmon, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pravecek, Jay J.

    1997-07-01

    In 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Idaho Department of Fish and Game`s Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye conducted by the Idaho Department of Fish and Game at the Eagle Fish Hatchery during the period April 1, 1995 to April 1, 1996 are covered by this report. The performance of all captive broodstock groups held at Eagle Fish Hatchery is included in this report. No anadromous adults returned to Redfish Lake in 1995. Three adult residual males were captured in a merwin trap and used in the spawning of captive residual females held at Eagle Fish Hatchery.

  20. Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA

    Science.gov (United States)

    Kohler, Andre E.; Kusnierz, Paul C.; Copeland, Timothy; Venditti, David A.; Denny, Lytle; Gable, Josh; Lewis, Bert; Kinzer, Ryan; Barnett, Bruce; Wipfli, Mark S.

    2013-01-01

    Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not uni-directional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22 ± 3% of the nitrogen and 30 ± 4% of the phosphorus their parents imported. This relationship was density dependent and nonlinear; during periods of low adult abundance juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to 1) maintain consistently positive net nutrient flux and 2) reduce the average proportional rate of export across study streams. Our results suggest a state-shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.

  1. Impact of low-head hydropower generation at Morgan Falls, LaHave River on migrating Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Amiro, P.G.; Jansen, H.

    2000-01-01

    A study was conducted to assess the impact that a low-head hydro electric power generating facility has on Atlantic salmon populations, particularly salmon smolts migrating downstream. The facility, located at Morgan Falls, LaHave River in Nova Scotia, is adjacent to a fishway and counting trap used to monitor salmon migration. Since 1972, the effects monitoring at the power facility for Atlantic salmon smolts concentrated on estimating three rates: (1) the facility use rate for downstream migrating smolts, (2) the louver efficiency rate for smolts entering the power canal, and (3) the turbine mortality rate for smolts passing through the turbine. Estimates of the number of wild smolt produced above the falls were determined and together with adult salmon data collected at the fishway, the potential impact of the facility on the salmon population was assessed. In this study, a total of 4,750 tagged smolts were released on four dates in 1997. Counts were recorded as the fish exited the bypass collection tank during louver or turbine testing periods and during daytime and evening hours. The estimated louver efficiencies of 86.3 and 88.3 per cent were higher than previously reported near-surface efficiencies of 80 per cent guidance for Atlantic salmon smolts experiencing a bypass acceleration factor of 1.26:1. Louver efficiencies of 96 per cent were estimated if fish that were recovered in the bypass holding tank after the experiments were included. Estimates of turbine mortality ranged from 15.4 per cent to 78.5 per cent, depending on the assumption about the missing fish. Mortalities in the assessment facility were due to turbulence in the bypass holding tank and impingement of fish on the incline screen fish separator. 7 refs., 10 tabs., 6 figs

  2. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River: March 1, 1994--June 15, 1994; TOPICAL

    International Nuclear Information System (INIS)

    Ashe, B.L.; Miller, A.C.; Kucera, P.A.; Blenden, M.L.

    1995-01-01

    In 1994, the Nez Perce Tribe began a smolt monitoring study on the Imnaha River in cooperation with the Fish Passage Center (FPC). A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from March 1 to June 15, 1994. We PIT tagged and released 956 wild chinook salmon, 661 hatchery chinook salmon, 1,432 wild steelhead trout and 2,029 hatchery steelhead trout. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 62.2% for wild chinook salmon, 45.2% for hatchery chinook salmon, 51.3% for wild steelhead trout, and 34.3% for hatchery steelhead trout

  3. Migratory urge and gll Na+,K+-ATPase activity of hatchery-reared Atlantic salmon smolts from the Dennys and Penobscot River stocks, Maine

    Science.gov (United States)

    Spencer, Randall C.; Zydlewski, Joseph D.; Zydlewski, Gayle B.

    2010-01-01

    Hatchery-reared Atlantic salmon Salmo salar smolts produced from captive-reared Dennys River and sea-run Penobscot River broodstock are released into their source rivers in Maine. The adult return rate of Dennys smolts is comparatively low, and disparity in smolt quality between stocks resulting from genetic or broodstock rearing effects is plausible. Smolt behavior and physiology were assessed during sequential 14-d trials conducted in seminatural annular tanks with circular flow. “Migratory urge” (downstream movement) was monitored remotely using passive integrated transponder tags, and gill Na+,K+-ATPase activity was measured at the beginning and end of the trials to provide an index of smolt development. The migratory urge of both stocks was low in early April, increased 20-fold through late May, and declined by the end of June. The frequency and seasonal distribution of downstream movement were independent of stock. In March and April, initial gill Na+,K+-ATPase activities of Penobscot River smolts were lower than those of Dennys River smolts. For these trials, however, Penobscot River smolts increased enzyme activity after exposure to the tank, whereas Dennys River smolts did not, resulting in similar activities between stocks at the end of all trials. There was no clear relationship between migratory urge and gill Na+,K+-ATPase activity. Gill Na+,K+-ATPase activity of both stocks increased in advance of migratory urge and then declined while migratory urge was increasing. Maximum movement was observed from 2 h after sunset through 1 h after sunrise but varied seasonally. Dennys River smolts were slightly more nocturnal than Penobscot River smolts. These data suggest that Dennys and Penobscot River stocks are not markedly different in either physiological or behavioral expression of smolting.

  4. Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam, Columbia River : Annual Report 2005-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Haskell, Craig A.; Kock, Tobias J.

    2008-12-01

    In unimpounded rivers, Pacific salmon (Oncorhynchus spp.) typically spawn under relatively stable stream flows, with exceptions occurring during periodic precipitation events. In contrast, hydroelectric development has often resulted in an artificial hydrograph characterized by rapid changes in discharge and tailwater elevation that occur on a daily, or even an hourly basis, due to power generation (Cushman 1985; Moog 1993). Consequently, populations of Pacific salmon that are known to spawn in main-stem habitats below hydroelectric dams face the risks of changing habitat suitability, potential redd dewatering, and uncertain spawning success (Hamilton and Buell 1976; Chapman et al. 1986; Dauble et al. 1999; Garland et al. 2003; Connor and Pflug 2004; McMichael et al. 2005). Although the direct effects of a variable hydrograph, such as redd dewatering are apparent, specific effects on spawning behavior remain largely unexplored. Chum salmon (O. keta) that spawn below Bonneville Dam on the Columbia River are particularly vulnerable to the effects of water level fluctuations. Although chum salmon generally spawn in smaller tributaries (Johnson et al. 1997), many fish spawn in main-stem habitats below Bonneville Dam near Ives Island (Tomaro et al. 2007; Figure 1). The primary spawning area near Ives Island is shallow and sensitive to changes in water level caused by hydroelectric power generation at Bonneville Dam. In the past, fluctuating water levels have dewatered redds and changed the amount of available spawning habitat (Garland et al. 2003). To minimize these effects, fishery managers attempt to maintain a stable tailwater elevation at Bonneville Dam of 3.5 m (above mean sea level) during spawning, which ensures adequate water is provided to the primary chum salmon spawning area below the mouth of Hamilton Creek (Figure 1). Given the uncertainty of winter precipitation and water supply, this strategy has been effective at restricting spawning to a specific

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  6. Climate influences on Vaal River flow

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... enriched NW-cloud bands over the Vaal River catchment, during the flood case study of January 2010. Comparison of. (Pacific) Southern Oscillation and east Atlantic influence on Vaal River discharge reveals the former drives evaporative losses while the latter provides an advance warning of flow ...

  7. Ecological flow requirements for South African rivers

    CSIR Research Space (South Africa)

    Ferrar, AA

    1989-01-01

    Full Text Available This document contains the proceedings of a workshop which was convened to debate the ecological flow requirements of South African rivers. Topics which are discussed include the influence of weirs and impoundments, the quantity requirements...

  8. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, J. Lance; Castillo, Jason; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999, when six jacks and one jill were captured at Idaho Department of Fish and Game's Sawtooth Fish Hatchery. In 2001, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to all three lakes in October and to Pettit and Alturas lakes in July; age-1 smolts were released to Redfish Lake Creek, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September along with anadromous adult sockeye salmon that returned to the Sawtooth basin and were not incorporated into the captive broodstock program. Kokanee population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September. Only age-0 and age-1 kokanee were captured on Redfish Lake, resulting in a population estimate of 12,980 kokanee. This was the second lowest kokanee abundance estimated since 1990. On Alturas Lake age-0, age-1, and age-2 kokanee were captured, and the kokanee population was estimated at 70,159. This is a mid range kokanee population estimate for Alturas Lake, which has been sampled yearly since 1990. On Pettit Lake only age-1 kokanee were captured, and the kokanee population estimate was 16,931. This estimate is in the midrange of estimates of the kokanee population in Pettit Lake, which has been sampled

  9. Bull trout population assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington; ANNUAL fiscal year 2001 annual report

    International Nuclear Information System (INIS)

    Thiesfield, Steven L.

    2002-01-01

    We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River

  10. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael; Varney, Michelle

    2003-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River Spring Chinook Captive Broodstock Program during 2002. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program collected fish from five (1997-2001) brood years (BY). As of January 1, 2003, WDFW has approximately 11 BY 1998, 194 BY 1999, 314 BY 2000, 447 BY 2001, and 300 BY 2002 (for extra males) fish on hand at LFH. The 2002 eggtake from the 1997 brood year (Age 5) was 13,176 eggs from 10 ripe females. Egg survival was 22%. Mean fecundity based on the 5 fully spawned females was 1,803 eggs/female. The 2002 eggtake from the 1998 brood year (Age 4) was 143,709 eggs from 93 ripe females. Egg survival was 29%. Mean fecundity based on the 81 fully spawned females was 1,650 eggs/female. The 2002 eggtake from the 1999 brood year (Age 3) was 19,659 eggs from 18 ripe females. Egg survival was 55%. Mean fecundity based on the 18 fully spawned fish was 1,092 eggs/female. The total 2002 eggtake from the captive brood program was 176,544 eggs. A total of 120,833 dead eggs (68%) were removed with 55,711 live eggs remaining for the program. As of May 1, 2003 we had 46,417 BY 2002 captive brood progeny on hand A total of 20,592 excess BY 01 fish were marked as parr (AD/CWT) and

  11. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A. [Nez Perce Tribe Department of Fisheries Resources Management

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical

  12. Assessment of the significance of direct and indirect pollution inputs to a major salmon-producing river using polyethylene membrane devices.

    Science.gov (United States)

    Moles, Adam; Holland, Larry; Andersson, Ole

    2006-08-01

    Conventional passive sampling devices for monitoring pollution input often prove to be cost-prohibitive when assessing large spatial and temporal scales. The Kenai River, a major salmon-producing river in Alaska (USA), served as the perfect laboratory to test the utility of polyethylene membrane devices for assessing chronic nonpoint-source inputs to a large riverine watershed. Comparison of the relative levels of polycyclic aromatic hydrocarbons (PAHs) at a large number of locations over time allowed us to assess the significance and potential source of these compounds in the river. Concentrations of PAH were greatest near urban areas and peaked during the late winter, when streams flows and dilution were low. Vessel activity and PAH levels peaked in July and were heaviest in the lower 16 km of the river, where fishing activity was concentrated. Nearly one-third of the vessels observed on the river were powered by two-stroke engines, which release a higher proportion of unburned fuel into the water than the cleaner burning four-stroke engines. The low concentrations of hydrocarbons upriver of the boat traffic suggest very little remote delivery of these contaminants to the watershed. Polyethylene strips proved to be an excellent, low-cost tool for determining the PAH patterns in a large watershed.

  13. A Study of Stranding of Juvenile Salmon by Ship Wakes Along the Lower Columbia River Using a Before-and-After Design: Before-Phase Results

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Walter H.; Skalski, J R.; Sobocinski, Kathryn L.; Miller, Martin C.; Johnson, Gary E.; Williams, Greg D.; Southard, John A.; Buchanan, Rebecca A.

    2006-02-01

    Ship wakes produced by deep-draft vessels transiting the lower Columbia River have been observed to cause stranding of juvenile salmon. Proposed deepening of the Columbia River navigation channel has raised concerns about the potential impact of the deepening project on juvenile salmon stranding. The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory design and conduct a study to assess stranding impacts that may be associated with channel deepening. The basic study design was a multivariate analysis of covariance of field observations and measurements under a statistical design for a before and after impact comparison. We have summarized field activities and statistical analyses for the ?before? component of the study here. Stranding occurred at all three sampling sites and during all three sampling seasons (Summer 2004, Winter 2005, and Spring 2005), for a total of 46 stranding events during 126 observed vessel passages. The highest occurrence of stranding occurred at Barlow Point, WA, where 53% of the observed events resulted in stranding. Other sites included Sauvie Island, OR (37%) and County Line Park, WA (15%). To develop an appropriate impact assessment model that accounted for relevant covariates, regression analyses were conducted to determine the relationships between stranding probability and other factors. Nineteen independent variables were considered as potential factors affecting the incidence of juvenile salmon stranding, including tidal stage, tidal height, river flow, current velocity, ship type, ship direction, ship condition (loaded/unloaded), ship speed, ship size, and a proxy variable for ship kinetic energy. In addition to the ambient and ship characteristics listed above, site, season, and fish density were also considered. Although no single factor appears as the primary factor for stranding, statistical analyses of the covariates resulted in the following equations: (1) Stranding

  14. AFSC/ABL: Eastern Bering Sea (BASIS) Coastal Research on Juvenile Salmon (Oceanography data)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pacific salmon (Oncorhynchus spp.) runs in rivers that flow into the eastern Bering Sea have been inconsistent and at times very weak. Low returns of chinook (O....

  15. AFSC/ABL: Eastern Bering Sea (BASIS) Coastal Research on Juvenile Salmon (TSG-thermosalinigraph data)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pacific salmon (Oncorhynchus spp.) runs in rivers that flow into the eastern Bering Sea have been inconsistent and at times very weak. Low returns of chinook (O....

  16. AFSC/ABL: Eastern Bering Sea (BASIS) Coastal Research on Juvenile Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pacific salmon (Oncorhynchus spp.) runs in rivers that flow into the eastern Bering Sea have been inconsistent and at times very weak. Low returns of chinook (O....

  17. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  18. Snake River sockeye salmon captive broodstock program hatchery element, Annual Progress Report: January 1, 1998 - December 31, 1998

    International Nuclear Information System (INIS)

    Kline A, Paul; Heindel A, Jeff

    1999-01-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and NMFS initiated efforts to conserve and rebuild populations in Idaho. Captive broodstock program activities conducted between January 1, 1998 and December 31, 1998, are presented in this report

  19. Age-Specific Lipid and Fatty Acid Profiles of Atlantic Salmon Juveniles in the Varzuga River

    Directory of Open Access Journals (Sweden)

    Svetlana A. Murzina

    2016-06-01

    Full Text Available The age-specific lipid and fatty acid profiles of juvenile Atlantic salmon at different ages (0+, 1+, and 2+ years after hatching from nests located in the mainstream of a large Arctic River, the Varzuga River, and resettling to the favorable Sobachji shoal in autumn before overwinter are herein presented. The contemporary methods of the lipid analysis were used: thin layer chromatography and gas chromatography. The results show that the stability of the regulation of important functions in developing organisms is maintained through structural alterations in lipids. These alterations can be considered as a sequence of the modifications and changes in the ratios of certain lipid classes and fatty acids constituents. In general, changes in the lipids and fatty acids (FAs maintained the physiological limits and controls through the adaptive systems of the organism. The mechanisms of juvenile fish biochemical adaptation to the environmental conditions in the studied biotope include the modification of the energy metabolism and anabolism, and here belongs to the energy characteristics of metabolic processes.

  20. Snake River Sockeye Salmon Habitat and Limnological Research; 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, David (Shoshone-Bannock Tribes, Fort Hall, ID); Wurtsbaugh, Wayne A. (Utah State University, Department of Fisheries and Wildlife, Ecology Center and Watershed Science Unit); Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID)

    1994-06-01

    In 1990 the Shoshone-Bannock Tribes (SBT) petitioned the National Marine Fisheries Service (NMFS) to list Snake River Sockeye salmon as endangered. As a result, Snake River Sockeye were listed and the Bonneville Power Administration (BPA) began funding efforts to enhance sockeye stocks. Recovery efforts include development of a brood stock program, genetics work, describing fish community dynamics in rearing lakes, and completing limnology studies. The SBT, in cooperation with Idaho Department of Fish and Game (IDFG), are directing fish community and limnology studies. IDFG is managing the brood stock program. The University of Idaho and NMFS are completing genetics work. Part I of this document is the SBT 1993' annual report that describes findings related to fish community research. Part II is a document completed by Utah State University (USU). The SBT subcontracted USU to complete a limnology investigation on the Sawtooth Valley Lakes. Management suggestions in Part II are those of USU and are not endorsed by the SBT and may not reflect the opinions of SBT biologists.

  1. Visualization of Flow Alternatives, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.; Heuser, Jeanne

    2002-01-01

    Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.

  2. Modelling the Future Hydroclimatology of the Lower Fraser River and its Impacts on the Spawning Migration Survival of Sockeye Salmon

    Science.gov (United States)

    Hague, M. J.; Ferrari, M. R.; Miller, J. R.; Patterson, D. A.; Russell, G. L.; Farrell, A.P.; Hinch, S. G.

    2010-01-01

    Short episodic high temperature events can be lethal for migrating adult Pacific salmon (Oncorhynchus spp.). We downscaled temperatures for the Fraser River, British Columbia to evaluate the impact of climate warming on the frequency of exceeding thermal thresholds associated with salmon migratory success. Alarmingly, a modest 1.0 C increase in average summer water temperature over 100 years (1981-2000 to 2081-2100) tripled the number of days per year exceeding critical salmonid thermal thresholds (i.e. 19.0 C). Refined thresholds for two populations (Gates Creek and Weaver Creek) of sockeye salmon (Oncorhynchus nerka) were defined using physiological constraint models based on aerobic scope. While extreme temperatures leading to complete aerobic collapse remained unlikely under our warming scenario, both populations were increasingly forced to migrate upriver at reduced levels of aerobic performance (e.g. in 80% of future simulations, => 90% of salmon encountered temperatures exceeding population specific thermal optima for maximum aerobic scope; T(sub opt)) = 16.3 C for Gates Creek and T(sub sopt)=14.5 C for Weaver Creek). Assuming recent changes to river entry timing persist, we also predicted dramatic increases in the probability of freshwater mortality for Weaver Creek salmon due to reductions in aerobic, and general physiological, performance (e.g. in 42% of future simulations =>50% of Weaver Creek fish exceeded temperature thresholds associated with 0 - 60% of maximum aerobic scope). Potential for adaptation via directional selection on run-timing was more evident for the Weaver Creek population. Early entry Weaver Creek fish experienced 25% (range: 15 - 31%) more suboptimal temperatures than late entrants, compared with an 8% difference (range: 0 - 17%) between early and late Gates Creek fish. Our results emphasize the need to consider daily temperature variability in association with population-specific differences in behaviour and physiological

  3. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework.

    Science.gov (United States)

    McCoy, Amy L; Holmes, S Rankin; Boisjolie, Brett A

    2018-03-01

    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  4. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework

    Science.gov (United States)

    McCoy, Amy L.; Holmes, S. Rankin; Boisjolie, Brett A.

    2018-03-01

    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  5. Fish research project -- Oregon: Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin. Annual progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Jonasson, B.C.; Carmichael, R.W.; Keefe, M.

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grande Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek

  6. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy

  7. Effect of Ichthyophonus on blood plasma chemistry of spawning Chinook salmon and their resulting offspring in a Yukon River tributary.

    Science.gov (United States)

    Floyd-Rump, T P; Horstmann-Dehn, L A; Atkinson, S; Skaugstad, C

    2017-01-24

    Ichthyophonus is a protozoan parasite of Alaska Chinook salmon Oncorhynchus tshawytscha. In this study, we determined whether spawning Chinook salmon in the Yukon River drainage exhibited a measurable stress response (i.e. elevated plasma cortisol concentrations) and detectable changes in selected blood plasma chemistry parameters when infected with Ichthyophonus. The resulting alevin were also analyzed for any differences in blood plasma chemistry caused by parental infection with Ichthyophonus. In 2010, 2011, and 2012, spawning adult Chinook salmon were collected from the Salcha River, Alaska, USA, and the prevalence of Ichthyophonus in these fish was 7.8, 6.3, and 8.3%, respectively. Fish with no clinical signs of Ichthyophonus and Ichthyophonus-positive parents were cross-fertilized to investigate potential second-generation effects as a result of Ichthyophonus infection. We found no significant difference in cortisol concentrations in blood plasma between Ichthyophonus-positive and -negative adults or between alevin from Ichthyophonus-positive and -negative parents. There were no significant differences in blood plasma parameters (e.g. alanine aminotransferase, creatine kinase, glucose) of Ichthyophonus-negative and -positive adults, with the exception of aspartate aminotransferase, which was significantly higher in plasma of Ichthyophonus-negative adults. All clinical chemistry parameters for alevin resulting from both Ichthyophonus-negative and -positive parents were not significantly different. Based on this study, which has a limited sample size and low prevalence of Ichthyophonus, offspring of Chinook salmon appear to suffer no disadvantage as a result of Ichthyophonus infection in their parents on the Salcha River.

  8. Smolt migration characteristics and mainstem Snake and Columbia River detection rates of pit-tagged Grande Ronde and Imnaha River naturally produced spring chinook salmon. 1993, 1994 and 1995 annual reports

    International Nuclear Information System (INIS)

    Walters, T.R.; Carmichael, R.W.; Keefe, M.L.; Sankovich, P.

    1997-01-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995

  9. Conservation and care: material politics and Atlantic salmon on Newfoundland’s Gander River

    Directory of Open Access Journals (Sweden)

    Jennifer Daniels

    2017-11-01

    Full Text Available Abstract This paper aims to contribute to an emerging and vibrant body of post-structural scholarship situated within science technology and society (STS on practices and their role in world making. Our focus is Atlantic salmon conservation in the Canadian province of Newfoundland and Labrador. We examine the different material and social orders that have over time connected human and salmon bodies. These different socio-material orders do not exist in harmony. On the contrary, they are in tension and reflect different visions/versions of how to conserve and care for Atlantic salmon. Our contribution is to interfere with the dominant narrative of Atlantic salmon conservation by drawing on the concept of care, and by introducing a new salmon that we call the willful salmon.

  10. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Simenstad, Charles A.; Campbell, Lance [Northwest Fisheries Science Center

    2009-05-15

    In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal

  11. Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Chris; Tabor, R.A.; Kinzer, Ryan (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-04-01

    This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkel and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek, 153 in the

  12. Assessing the accuracy of a polymerase chain reaction test for Ichthyophonus hoferi in Yukon River Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Whipps, Christopher M; Burton, Tamara; Watral, Virginia G; St-Hilaire, Sophie; Kent, Michael L

    2006-01-30

    Ichthyophonus hoferi Plehn & Mulsow, 1911, is a cosmopolitan, protistan pathogen of marine fishes. It is prevalent in mature returning Chinook salmon Oncorhynchus tshawytscha in the Yukon River watershed, and may be associated with prespawning mortality. We developed and evaluated a polymerase chain reaction (PCR) test for I. hoferi using primers specific to the parasite's small subunit rDNA. The test has a minimum detection limit of approximately 10(-5) parasite spores per reaction and does not cross-react with the closely related salmon parasites Dermocystidium salmonis or Sphaerothecum destruens. Sensitivity and specificity of the PCR test used on somatic muscle and heart tissue for detecting infected fish were determined using 334 Chinook salmon collected from the Yukon River at 2 locations (Tanana and Emmonak) in 2003 and 2004. The true infection status of the fish was determined by testing somatic muscle, heart and kidney tissue using histological evaluation, culture, and PCR. The severity of infection was grouped into 2 categories, light and heavy infection. The probability of detecting a heavily infected fish (sensitivity of the test) was generally much higher than the probability of detecting light infection, suggesting that more than one tissue and/or method should be used to accurately detect light or early infection by I. hoferi. The probability of correctly identifying a negative fish (specificity of the test) was always greater than 94% regardless of the tissue used, infection severity, sampling site or year of collection.

  13. Snake River sockeye salmon habitat and limnological research. Annual report 1994

    International Nuclear Information System (INIS)

    Teuscher, D.; Taki, D.; Wurtsbaugh, W.; Luecke, C.; Budy, P.; Steinhart, G.

    1995-05-01

    Snake River sockeye salmon were listed as endangered in 1991. Since then, the Shoshone-Bannock Tribes (SBT) have been involved in a multi-agency recovery effort. The purpose of this document is to report activities completed in the rearing environments of the Sawtooth Valley Lakes, central Idaho. SBT objectives for 1995 included: continuing population monitoring and spawning habitat surveys; estimating smolt carrying capacity of the lakes, and supervising limnology and barrier modification studies. Hydroacoustic estimates of O. nerka densities in the Sawtooth Valley lakes ranged from 32 to 339 fish/ha. Densities were greatest in Stanley followed by Redfish (217 fish/ha), Pettit (95 fish/ha), and Alturas. Except for Alturas, population abundance estimates were similar to 1993 results. In Alturas Lake, O. nerka abundance declined by approximately 90%. In 1994, about 142,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lakes was 19,000 and 2,000 fry, respectively. Egg to fry survival was 11%, 13%, and 7% in Fishhook, Alturas and Stanley Lake Creeks. Kokanee spawning in Fishhook Creek was slightly lower than 1993 estimates but similar to the mean escapement since 1991. About 9,200 kokanee entered the creek in 1994 compared to 10,800 in 1993. Escapement for Stanley Lake Creek was only 200, a 68% reduction from 1993. Conversely, O. nerka spawning densities increased to 3,200 in Alturas Lake Creek, up from 200 the previous year

  14. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    Science.gov (United States)

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  15. Model Watershed Plan; Lemhi, Pahsimeroi, and East Fork of the Salmon River Management Plan, 1995 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Ralph

    1995-11-01

    Idaho`s Model Watershed Project was established as part of the Northwest Power Planning Council`s plan for salmon recovery in the Columbia River Basin. The Council`s charge was simply stated and came without strings. The tasks were to identify actions within the watershed that are planned or needed for salmon habitat, and establish a procedure for implementing habitat-improvement measures. The Council gave the responsibility of developing this project to the Idaho Soil Conservation Commission. This Model Watershed Plan is intended to be a dynamic plan that helps address these two tasks. It is not intended to be the final say on either. It is also not meant to establish laws, policies, or regulations for the agencies, groups, or individuals who participated in the plan development.

  16. Losses of Sacramento River Chinook Salmon and Delta Smelt to Entrainment in Water Diversions in the Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-06-01

    Full Text Available Pumping at the water export facilities in the southern Sacramento-San Joaquin Delta kills fish at and near the associated fish-salvage facilities. Correlative analyses of salvage counts with population indices have failed to provide quantitative estimates of the magnitude of this mortality. I estimated the proportional losses of Sacramento River Chinook salmon (Oncorhynchus tshawytscha and delta smelt (Hypomesus transpacificus to place these losses in a population context. The estimate for salmon was based on recoveries of tagged smolts released in the upper Sacramento River basin, and recovered at the fish-salvage facilities in the south Delta and in a trawling program in the western Delta. The proportion of fish salvaged increased with export flow, with a mean value around 10% at the highest export flows recorded. Mortality was around 10% if pre-salvage losses were about 80%, but this value is nearly unconstrained. Losses of adult delta smelt in winter and young delta smelt in spring were estimated from salvage data (adults corrected for estimated pre-salvage survival, or from trawl data in the southern Delta (young. These losses were divided by population size and accumulated over the respective seasons. Losses of adult delta smelt were 1–50% (median 15% although the highest value may have been biased upward. Daily losses of larvae and juveniles were 0–8%, and seasonal losses accumulated were 0–25% (median 13%. The effect of these losses on population abundance was obscured by subsequent 50-fold variability in survival from summer to fall.

  17. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  18. Nearshore circulation and water-column properties in the Skagit River Delta, northern Puget Sound, Washington: juvenile Chinook Salmon habitat availability in the Swinomish Channel

    Science.gov (United States)

    Grossman, Eric E.; Stevens, Andrew W.; Gelfenbaum, Guy; Curran, Christopher

    2007-01-01

    Time-series and spatial measurements of nearshore hydrodynamic processes and water properties were made in the Swinomish Channel to quantify the net direction and rates of surface water transport that influence habitat for juvenile Chinook salmon along their primary migratory corridor between the Skagit River and Padilla Bay in northern Puget Sound, Washington. During the spring outmigration of Skagit River Chinook between March and June 2007, currents measured with fixed acoustic doppler current profilers (ADCP) at the south and north end of the Swinomish Channel and with roving ADCP revealed that the currents are highly asymmetric with a dominant flow to the north (toward Padilla Bay). Maximum surface current velocities reached 1.5 m/s and were generally uniform across the channel near McGlinn Island Causeway. Transport times for surface water to travel the 11 km from the southern end of Swinomish Channel at McGlinn Island to Padilla Bay ranged from 2.1 hours to 5.5 days. The mean travel time was ~1 day, while 17 percent of the time, transport of water and passive particles occurred within 3.75 hours. Surface water in the Swinomish Channel during this time was generally very saline 20-27 psu, except south of the Rainbow Bridge in the town of La Conner where it ranged 0-15 psu depending on tide and Skagit River discharge. This salinity regime restricts suitable low salinity (

  19. Food and feeding of juvenile chinook salmon in the central Columbia River in relation to thermal discharges and other environmental features

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.D. [Pacific Northwest Labs., Richland, WA (United States). Ecosystems Dept.

    1970-08-01

    The relationship of thermal discharges from operating Hanford reactors to food and feeding of juvenile chinook salmon (Oncorhynchus tshawytscha) in the central Columbia River, Washington was studied in 1968 and 1969. The primary objectives were to (1) evaluate the food composition and feeding activities of the fish and (2) determine if heated effluents influenced their welfare. Environmental conditions (seasonal changes in river temperatures and flow volumes) in relation to thermal requirements of young chinook are detailed. Data on food organisms utilized by the fish in 1968 and 1969 are presented, whereas analyses for possible thermal effects are based on the more extensive 1969 data. No consistent differences attributable to thermal increments were evident. The lack of detectable effects apparently results from the fact that the main discharge plumes occur in midriver and the effluents are well mixed before reaching inshore feeding areas. The transient nature of fish at each sampling site and the availability of food organisms in the river drift are ecological factors affecting critical thermal evaluation.

  20. Guidelines for monitoring and adaptively managing restoration of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) on the Elwha River

    Science.gov (United States)

    Peters, R.J.; Duda, J.J.; Pess, G.R.; Zimmerman, M.; Crain, P.; Hughes, Z.; Wilson, A.; Liermann, M.C.; Morley, S.A.; McMillan, J.; Denton, K.; Warheit, K.

    2014-01-01

    As of January, 2014, the removal of the Elwha and Glines Canyon dams on the Elwha River, Washington, represents the largest dam decommissioning to date in the United States. Dam removal is the single largest step in meeting the goals of the Elwha River Ecosystem and Fisheries Restoration Act of 1992 (The Elwha Act) — full restoration of the Elwha River ecosystem and its native anadromous fisheries (Section 3(a)). However, there is uncertainty about project outcomes with regards to salmon populations, as well as what the ‘best’ management strategy is to fully restore each salmon stock. This uncertainty is due to the magnitude of the action, the large volumes of sediment expected to be released during dam removal, and the duration of the sediment impact period following dam removal. Our task is further complicated by the depleted state of the native salmonid populations remaining in the Elwha, including four federally listed species. This situation lends itself to a monitoring and adaptive management approach to resource management, which allows for flexibility in decision-making processes in the face of uncertain outcomes.

  1. Evaluation of the behavior and movement patterns of adult coho salmon and steelhead in the North Fork Toutle River, Washington, 2005-2009

    Science.gov (United States)

    Liedtke, Theresa L.; Kock, Tobias J.; Rondorf, Dennis W.

    2013-01-01

    The 1980 eruption of Mount St. Helens severely affected the North Fork Toutle River (hereafter Toutle River), Washington, and threatened anadromous salmon (Oncorhynchus spp.) populations in the basin. The Toutle River was further affected in 1989 when a sediment retention structure (SRS) was constructed to trap sediments in the upper basin. The SRS completely blocked upstream volitional passage, so a fish collection facility (FCF) was constructed to trap adult coho salmon (O. kisutch) and steelhead (O. mykiss) so they could be transported upstream of the SRS. The Washington Department of Fish and Wildlife (WDFW) has operated a trap-and-haul program since 1989 to transport coho salmon and steelhead into tributaries of the Toutle River, upstream of the SRS. Although this program has allowed wild coho salmon and steelhead populations to persist in the Toutle River basin, the trap-andhaul program has faced many challenges that may be limiting the effectiveness of the program. We conducted a multi-year evaluation during 2005–2009 to monitor tagged fish in the upper Toutle River to provide information on the movements and behavior of adult coho salmon and steelhead, and to evaluate the efficacy of the FCF. Radio-tagged coho salmon and steelhead were released: (1) in Toutle River tributaries to evaluate the behavior and movements of fish released as part of the trap-and-haul program; (2) between the FCF and SRS to determine if volitional upstream passage through the SRS spillway was possible; (3) in the sediment plain upstream of the SRS to determine if volitional passage through the sediment plain was possible; and (4) downstream of the FCF to evaluate the efficacy of the structure. We also deployed an acoustic camera in the FCF to monitor fish movements near the entrance to the FCF, and in the fish holding vault where coho salmon and steelhead are trapped. A total of 20 radio-tagged coho salmon and 10 radio-tagged steelhead were released into Alder and Hoffstadt

  2. How coarse is too coarse for salmon spawning substrates?

    Science.gov (United States)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also

  3. Snake River Sockeye Salmon Captive Broodstock; Research Element, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith A.

    1995-12-01

    In 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye conducted by the Idaho Department of Fish and Game during the period of April 1993 to April 1994 are covered by this report. Eight anadromous adults (two female and six male) returned to the Redfish Lake Creek trap this year and were spawned at the Sawtooth Hatchery near Stanley, Idaho. Fecundity was 3160 for each female. The mean fertilization rate was 52% for female {open_quotes}A{close_quotes} and 65% for female {open_quotes}B.{close_quotes} Captive broodstock also spawned as well as residual sockeye captured in a Merwin trap in Redfish Lake. Spawning data from 72 fish spawned during this period is included in this report. Captive broodstock also matured later than normal (winter and spring 1994). Fish were spawned and samples were taken to investigate reasons for poor fertilization rates. Twenty-four out migrants of 1991 were selected for return to Redfish Lake for volitional spawning. Releases were made in August of 1993. All fish were implanted with sonic tags and tracking of this group began soon after the release to identify spawning-related activities. A research project is being conducted on captive broodstock diets. The project will investigate the effect of diet modification on spawn timing, gamete quality, and fertilization rates. A second project used ultrasound to examine fish for sexual maturity. The goal was to obtain a group a fish to be released f or volitional spawning. A total of 44 fish were found to be mature. The performance of all captive groups held at Eagle are included in this report.

  4. Mirror Lake salmon prey and diets - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  5. Mirror Lake salmon growth rate - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  6. COLUMBIA RIVER BASIN SALMON AND STEELHEAD: Federal Agencies' Recovery Responsibilities, Expenditures and Actions

    National Research Council Canada - National Science Library

    2002-01-01

    ..., and unfavorable weather and ocean conditions. The population decline has resulted in the listing of 12 salmon and steelhead populations in the basin as threatened or endangered under the Endangered...

  7. 2013 Early Life History Experiment Data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the early 1990s, Redfish Lake sockeye salmon from the Sawtooth Basin in Idaho were on the brink of extinction, and they were listed as endangered under the US...

  8. Water Quality - Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an ongoing Bonneville Power Administration funded project to annually collect, PIT tag, and release wild Chinook salmon parr in up to 17 streams of the...

  9. 2012 Early Life History Experiment Data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the early 1990s, Redfish Lake sockeye salmon from the Sawtooth Basin in Idaho were on the brink of extinction, and they were listed as endangered under the US...

  10. PIT Tag data - Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an ongoing Bonneville Power Administration funded project to annually collect, PIT tag, and release wild Chinook salmon parr in up to 17 streams of the...

  11. AFSC/ABL: Stock composition, timing, and spawning distribution of Yukon River Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radio telemetry was used to determine the distribution, locate spawning sites, and evaluate the tagging response of wild Chinook salmon Oncorhynchus tshawytscha...

  12. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    Science.gov (United States)

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged

  13. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

  14. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    Science.gov (United States)

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    remained in the San Joaquin River. Once tagged fish entered Old River, only fish collected at two large water conveyance projects and transported through the Delta by truck were detected exiting the Delta, suggesting that this route was the only successful migration pathway for fish that entered Old River. The rate of entrainment of tagged juvenile salmon into Old River was similar to the fraction of San Joaquin River discharge flowing into Old River, which averaged 63 percent but varied tidally and ranged from 33 to 100 percent daily. Although improvements in transmitter battery life are clearly needed, this information will help guide the development of future research and monitoring efforts in this system.

  15. Quantification of the probable effects of alternative in-river harvest regulations on recovery of Snake River fall chinook salmon. Final report

    International Nuclear Information System (INIS)

    Cramer, S.P.; Vigg, S.

    1996-03-01

    The goal of this study was to quantify the probable effects that alternative strategies for managing in-river harvest would have on recovery of Snake River fall chinook salmon. This report presents the analysis of existing data to quantify the way in which various in-river harvest strategies catch Snake River bright (SRB) fall chinook. Because there has been disagreement among experts regarding the magnitude of in-river harvest impacts on Snake River fall chinook, the authors compared the results from using the following three different methods to estimate in-river harvest rates: (1) use of run reconstruction through stock accounting of escapement and landings data to estimate harvest rate of SRB chinook in Zone 6 alone; (2) use of Coded Wire Tag (CWT) recoveries of fall chinook from Lyons Ferry Hatchery in a cohort analysis to estimate age and sex specific harvest rates for Zone 6 and for below Bonneville Dam; (3) comparison of harvest rates estimated for SRB chinook by the above methods to those estimated by the same methods for Upriver Bright (URB) fall chinook

  16. Extreme river flow dependence in Northern Scotland

    Science.gov (United States)

    Villoria, M. Franco; Scott, M.; Hoey, T.; Fischbacher-Smith, D.

    2012-04-01

    Various methods for the spatial analysis of hydrologic data have been developed recently. Here we present results using the conditional probability approach proposed by Keef et al. [Appl. Stat. (2009): 58,601-18] to investigate spatial interdependence in extreme river flows in Scotland. This approach does not require the specification of a correlation function, being mostly suitable for relatively small geographical areas. The work is motivated by the Flood Risk Management Act (Scotland (2009)) which requires maps of flood risk that take account of spatial dependence in extreme river flow. The method is based on two conditional measures of spatial flood risk: firstly the conditional probability PC(p) that a set of sites Y = (Y 1,...,Y d) within a region C of interest exceed a flow threshold Qp at time t (or any lag of t), given that in the specified conditioning site X > Qp; and, secondly the expected number of sites within C that will exceed a flow Qp on average (given that X > Qp). The conditional probabilities are estimated using the conditional distribution of Y |X = x (for large x), which can be modeled using a semi-parametric approach (Heffernan and Tawn [Roy. Statist. Soc. Ser. B (2004): 66,497-546]). Once the model is fitted, pseudo-samples can be generated to estimate functionals of the joint tails of the distribution of (Y,X). Conditional return level plots were directly compared to traditional return level plots thus improving our understanding of the dependence structure of extreme river flow events. Confidence intervals were calculated using block bootstrapping methods (100 replicates). We report results from applying this approach to a set of four rivers (Dulnain, Lossie, Ewe and Ness) in Northern Scotland. These sites were chosen based on data quality, spatial location and catchment characteristics. The river Ness, being the largest (catchment size 1839.1km2) was chosen as the conditioning river. Both the Ewe (441.1km2) and Ness catchments have

  17. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    Science.gov (United States)

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    survival model to identify diversion rates that meet a criterion of a having a small probability of exceeding a given decrease in survival. We examined diversion rates that led to a 10% chance of exceeding a given decrease in survival for a range of absolute and relative decreases in survival. To maintain a given constant level of protection across the range of river flows, our analysis indicated that diversions had to increase at a much slower rate with respect to Sacramento River flow relative to the rule curves defined in the NDD bypass table. Additionally, we determined that diversion rates could be higher than under the bypass table rule curves at river flows less than 20,000 ft3 /s, but diversions had to be less than defined by NDD bypass rules at higher flows. For the fourth analysis, we simulated the effect of “real-time operations” on salmon survival, where bypass flow rates were determined by the presence of juvenile salmon entering the Delta, as indicated by juvenile salmon catch in a rotary screw trap upstream of the Delta. For this analysis, we evaluated NDD operations as defined by the L1 scenario and an additional scenario (Unlimited Pulse Protection [UPP]) that provided protection to an unlimited number of fish pulses. This analysis indicated that the highest catches occurred during flow pulses when daily survival was high, which caused annual survival to be weighted towards periods of high daily survival, resulting in a high annual survival. We determined that the mean annual survival decreased by 1–4 percentage points, and annual survival decreases were more frequently smaller for the UPP scenario. Additionally, because the UPP scenario protected an unlimited number of fish pulses, decreases in daily survival under the UPP scenario were less than under the L1 scenario.

  18. Elemental composition of otoliths from migrating chum salmon, Oncorhynchus keta, captured at the Kitakami river and Ishinomaki Bay

    International Nuclear Information System (INIS)

    Kakuta, Izuru; Iizuka, Keiki; Sugawara, Yoshio; Tsuchiya, Takeshi; Ishii, Keizo

    2000-01-01

    The elemental composition (Ca, Sr, Zn and Fe) of otoliths from migrating chum salmon, Oncorhynchus keta, captured at the Kitakami river and Ishinomaki Bay was analyzed to understand the migratory history using a particle induced X-ray emission (PIXE) technique. The Sr/Ca ratio of salmon otoliths was lower (less than 1 x 10 -3 ) in the portion formed in a freshwater environment and higher (approximately 4.8 x 10 -3 ) in a sea water environment. When the fish migrated from sea water into a freshwater environment, the otoliths' Sr/Ca ratios significantly increased. The highest values were found in the fish captured at the lower part of the Kitakami river (about 20 km upriver from the mouth). The values from the fish captured at the upper part of the Kitakami river (about 200 km upriver from the mouth) were also not less than those of the fish captured at Ishinomaki Bay. Abnormally high otolith Sr/Ca ratios for these upriver-migrating fish, when compared to the values from non-migrating salmon inhabiting stable environmental (salinity and temperature) conditions, provided evidence that they were stressed. No significant changes in the otoliths' Zn/Ca ratios were found, while these values were inversely proportional to the Sr/Ca ratios. However, a rapid drop in the Zn/Ca ratio and an increase in the Sr/Ca ratio was observed in some individuals in which higher values for the Fe/Ca were found. These results suggest that these otolith parameters don't exactly reflect the salinity and temperature history in upriver-migrating chum salmon because the physiological mechanism of incorporation of Sr, Zn and Ca within the otolith of those fish is abnormal, though for fish in non-stressful conditions the Sr/Ca and the Zn/Ca ratios in otoliths are effective indices for predicting the history of environmental conditions experienced by the fish in the past. Regarding the relationship between the Sr/Ca and the Zn/Ca ratios, and also the Fe/Ca ratio, there is a possibility that they

  19. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne H.; Schricker, Jaym' e; Ruzychi, James R. (Oregon Department of Fish and Wildlife)

    2009-02-13

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluate project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer

  20. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  1. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996; ANNUAL

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-01-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  2. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., food web, and intra-specific competition would help to better inform the long-term management plan.

  3. Habitat selection influences sex distribution, morphology, tissue biochemistry, and parasite load of juvenile coho salmon in the West Fork Smith River, Oregon

    Science.gov (United States)

    Given the strong influence of water temperature on salmonid physiology and behavior, in the summers of 2004 and 2005 we studied juvenile male and female coho salmon Oncorhynchus kisutch in two reaches of Oregon’s West Fork Smith River with different thermal profiles. Our goals we...

  4. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  5. History of natural flows--Kansas River

    Science.gov (United States)

    Leeson, Elwood R.

    1958-01-01

    Through its Water Resources Division, the United States Geological Survey has become the major water-resources historian for the nation. The Geological Survey's collection of streamflow records in Kansas began on a very small scale in 1895 in response to some early irrigation interest, Since that time the program has grown, and we now have about 21 350 station-years of record accumulated. A station-year of record is defined as a continuous record of flow collected at a fixed point for a period of one year. Volume of data at hand, however, is not in itself an, adequate measure of its usefullness. An important element in historical streamflow data which enhances its value as a tool for the prediction of the future is the length of continuous records available in the area being studied. The records should be of sufficient length that they may be regarded as a reasonable sample of what has gone before and may be expected in the future. Table 1 gives a graphical inventory of the available streamflow records in Kansas. It shows that, in general, there is a fair coverage of stations with records of about thirty-seven years in length, This is not a long period as history goes but it does include considerable experience with floods and droughts.Although a large quantity of data on Kansas streamflow has been accumulated, hydrologists and planning engineers find that stream flow information for many areas of the State is considerably less than adequate. The problem of obtaining adequate coverage has been given careful study by the Kansas Water Resources Board in cooperation with the U. S. Geological Survey and a report entitled "Development of A Balanced Stream-Gaging Program For Kansas", has been published by the Board as Bulletin No. 4, That report presents an analysis of the existing stream-gaging program and recommendations for a program to meet the rapidly expanding needs for more comprehensive basic data.The Kansas River is formed near Junction City, Kansas, by the

  6. Fall and winter microhabitat use and suitability for spring chinook salmon parr in a U.S. Pacific Northwest River

    Science.gov (United States)

    Favrot, Scott D.; Jonasson, Brian C.; Peterson, James T.

    2018-01-01

    Habitat degradation has been implicated as a primary threat to Pacific salmon Oncorhynchus spp. Habitat restoration and conservation are key toward stemming population declines; however, winter microhabitat use and suitability knowledge are lacking for small juvenile salmonids. Our objective was to characterize microhabitat use and suitability for spring Chinook Salmon Oncorhynchus tshawytscha parr during fall and winter. Using radiotelemetry techniques during October–February (2009–2011), we identified fall and winter microhabitat use by spring Chinook Salmon parr in Catherine Creek, northeastern Oregon. Tagged fish occupied two distinct gradient reaches (moderate and low). Using a mixed‐effects logistic regression resource selection function (RSF) model, we found evidence that microhabitat use was similar between free‐flowing and surface ice conditions. However, habitat use shifted between seasons; most notably, there was greater use of silt substrate and areas farther from the bank during winter. Between gradients, microhabitat use differed with greater use of large wood (LW) and submerged aquatic vegetation in the low‐gradient reach. Using a Bayesian RSF approach, we developed gradient‐specific habitat suitability criteria. Throughout the study area, deep depths and slow currents were most suitable, with the exception of the low‐gradient reach where moderate depths were optimal. Near‐cover coarse and fine substrates were most suitable in the moderate‐ and low‐gradient reaches, respectively. Near‐bank LW was most suitable throughout the study area. Multivariate principal component analyses (PCA) indicated co‐occurring deep depths supporting slow currents near cover were intensively occupied in the moderate‐gradient reach. In the low‐gradient reach, PCA indicated co‐occurring moderate depths, slow currents, and near‐bank cover were most frequently occupied. Our study identified suitable and interrelated microhabitat

  7. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    Science.gov (United States)

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  8. LJUBLJANICA CONNECTS - Restoration of the Ljubljanica River corridor and improvement of the river's flow regime

    Science.gov (United States)

    Zabret, Katarina; Sapač, Klaudija; Šraj, Mojca; Bezak, Nejc; Sečnik, Matej; Vidmar, Andrej; Brilly, Mitja

    2016-04-01

    The project Ljubljanica connects is focused on improving connectivity and living conditions in Ljubljanica River which flows through capital city of Slovenia, Ljubljana. It represents living environment for endangered and Natura 2000 targeted fish species Danube Salmon (Hucho hucho), Danube Roach (Rutilus pigus) and Striped Chub (Leuciscus souffia). The project consists of four sets of activities: concrete restoration actions including improvement of two fish passes, monitoring of fish migration, monitoring of eco-hydrological parameters, and raising of public awareness. To improve living conditions the concrete restoration measures were performed. The reconstructions of sill and two fish passes on the Ljubljanica River have been implemented and barrier's lifting system on the weir was modernized. Above the sill in Zalog there is an oxbow which was disconnected with main river channel during the low flows. Interrupted inflow of fresh water caused very poor living conditions for animals in the oxbow. The raise of the sill helped to improve this situation. One of the fish passes included in the project is more than 100 years old whereas both are protected as cultural and technical heritage. None was working properly and due to the protection no visible nor drastic measures were allowed. With smaller improvements we managed to re-establish their operation. A lifting system of the barrier at the Ambrožev trg gate was outdated and did not allow precise regulation of the water level. Too fast raising of the barrier instantly caused deterioration of eco-hydrological conditions downstream. With modernization of the electromechanical equipment the situation is improved. The fish monitoring helps us to evaluate success of concrete restoration actions. The fish population status is monitored with marking the fish with Visible Implant Elastomer (VIE) tags. Regarding the location of catch we implant tags beneath transparent or translucent tissue combining different tag

  9. Effects of the proposed California WaterFix North Delta Diversion on flow reversals and entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel, northern California

    Science.gov (United States)

    Perry, Russell W.; Romine, Jason G.; Pope, Adam C.; Evans, Scott D.

    2018-02-27

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3/s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta.In this report, we conducted three analyses to investigate the effect of the NDD and its proposed operation on entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel (DCC). Fish that enter the interior Delta (the network of channels to the south of the Sacramento River) through Georgiana Slough and the DCC survive at lower rates than fish that use other migration routes (Sacramento River, Sutter Slough, and Steamboat Slough). Therefore, fisheries managers were concerned about the extent to which operation of the NDD would increase the proportion of the population entering the interior Delta, which, all else being equal, would lower overall survival through the Delta by increasing the fraction of the population subject to lower survival rates. Operation of the NDD would reduce flow in the Sacramento River, which has the potential to increase the magnitude and duration of reverse flows of the Sacramento River downstream of Georgiana Slough.In the first analysis, we

  10. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    Science.gov (United States)

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  11. Relative survival of juvenile chinook salmon (Oncorhynchus tshawyischa) through a Bonneville dam on the Columbia River

    International Nuclear Information System (INIS)

    Ferguson, J.

    1993-01-01

    The Bonneville Dam second powerhouse bypass system for juvenile salmon has one 6.1-m submersible travelling screen in each intake of all eight turbines, for a total of 24 screens. These screens set up a hydraulic cushion that deflects juvenile salmon away from the turbine intakes and into vertical bulkhead slots, from which they exit by their own volition into a collection gallery that travels the length of the powerhouse to a dewatering station and the outlet. A multiple-year evaluation was conducted on the comparative survival of subyearling chinook salmon through various passage modes at the dam. Using this information, operational scenarios could then be formulated to provide additional juvenile protection while meeting power system demands. In the summer, the juvenile salmon that passed through the bypass system had significantly lower survival rates than upper and lower turbine, spillway, and downstream control groups. Predation by northern squawfish (Ptychocheilus oregonensis) was suspected to have been the cause of high mortalities among bypassed fish. No significant differences existed between survival rates of upper and lower turbine groups. 7 refs., 2 figs., 1 tab

  12. SOIL N AND C GEOGRAPHY OF THE SALMON RIVER WATERSHED AND THE OREGON COAST

    Science.gov (United States)

    To help establish restorative criteria of salmon runs in the Pacific Northwest, resource inventories on affected watersheds are a critical component of this process. Diverse soil and geology influence the rich terrestrial and aquatic biota of the Oregon Coast. We characterized ...

  13. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Axel, Gordon A.; Hockersmith, Eric E.

    2002-07-01

    This report details the 2001 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these data in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers.

  14. PIT-tagged particle study of bed mobility in a Maine salmon river impacted by logging activities

    Science.gov (United States)

    Thompson, D. M.; Fixler, S. A.; Roberts, K. E.; McKenna, M.; Marshall, A. E.; Koenig, S.

    2017-12-01

    Presenting an interim report on a study on the Narraguagus River in Maine, which utilizes laser total stations cross-sectional surveys and tracking of passive integrated transponder (PIT) tags embedded in glass spheres to document changes in channel-bed characteristics associated with large wood (LW) additions and natural spawning activities. In 2016, work was initiated to monitor changes in bed elevation and sediment mobility with the addition of LW to the Narraguagus River as part of a restoration effort. Ten cross-sections, spaced 5-m apart, were established and surveyed with a laser total station in each of three different study reaches. The study sites include a control reach, a section with anticipated spawning activities and a site with ongoing LW placement. A grid of 200 glass spheres embedded with PIT tags, with twenty alternating 25-mm and 40-mm size particles equally spaced along each of the ten transects, were placed to serve as point sensors to detect sediment mobilization within each reach. In 2017, the site was revisited to determine if differences in PIT-tagged tracer particle mobilization reflect locations were LW was added and places where Atlantic salmon (Salmo salar) and sea lamprey (Petromyzon marinus) construct spawning redds. The positions of PIT-tagged tracer particles was recorded, but particles were not disturbed or uncovered to permit study of potential reworking of buried tracer particles the following year. Full tracer particle recovery will be determined in 2018 to determine if depths of tracer burial and changes in bed elevation vary among places near redds, LW and main channel locations. The data will be used to determine if salmon redds are preferentially located in either places with greater evidence of sediment reworking or alternatively in stable areas? The study will help determine the degree of bed disruption associated with spawning activities and whether LW placement encourages similar sediment mobilization processes.

  15. Yolo Bypass Juvenile Salmon Utilization Study 2016—Summary of acoustically tagged juvenile salmon and study fish release, Sacramento River, California

    Science.gov (United States)

    Liedtke, Theresa L.; Hurst, William R.

    2017-09-12

    The Yolo Bypass is a flood control bypass in Sacramento Valley, California. Flood plain habitats may be used for juvenile salmon rearing, however, the potential value of such habitats can be difficult to evaluate because of the intermittent nature of inundation events. The Yolo Bypass Juvenile Salmon Utilization Study (YBUS) used acoustic telemetry to evaluate the movements and survival of juvenile salmon adjacent to and within the Yolo Bypass during the winter of 2016. This report presents numbers, size data, and release data (times, dates, and locations) for the 1,197 acoustically tagged juvenile salmon released for the YBUS from February 21 to March 18, 2016. Detailed descriptions of the surgical implantation of transmitters are also presented. These data are presented to support the collaborative, interagency analysis and reporting of the study findings.

  16. Spawning distribution of fall chinook salmon in the Snake River : annual report 1998.; ANNUAL

    International Nuclear Information System (INIS)

    Garcia, Aaron P.

    1999-01-01

    In 1998 data was collected on the spawning distribution of the first adult fall chinook salmon to return from releases of yearling hatchery fish upriver of Lower Granite Dam. Yearling fish were released at three locations with the intent of distributing spawning throughout the existing habitat. The project was designed to use radio-telemetry to determine if the use of multiple release sites resulted in widespread spawning

  17. An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Gary E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thom, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weitkamp, Laurie A. [Marine Sciences lab., Sequim, WA (United States); Buenau, Kate E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kropp, Roy K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as “salmon”) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River and estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: • habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and • fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field

  18. Identification of basin characteristics influencing spatial variation of river flows

    NARCIS (Netherlands)

    Mazvimavi, D.; Burgers, S.L.G.E.; Stein, A.

    2006-01-01

    The selection of basin characteristics that explain spatial variation of river flows is important for hydrological regionalization as this enables estimation of flow statistics of ungauged basins. A direct gradient analysis method, redundancy analysis, is used to identify basin characteristics,

  19. Stream flow and temperature maps - Effect of Climate Change on Salmon Population Vulnerability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Steelhead (Oncorhynchus mykiss) and other Pacific salmon are threatened by unsustainable levels of harvest, genetic introgression from hatchery stocks and...

  20. Nonlinear analysis of river flow time sequences

    Science.gov (United States)

    Porporato, Amilcare; Ridolfi, Luca

    1997-06-01

    Within the field of chaos theory several methods for the analysis of complex dynamical systems have recently been proposed. In light of these ideas we study the dynamics which control the behavior over time of river flow, investigating the existence of a low-dimension deterministic component. The present article follows the research undertaken in the work of Porporato and Ridolfi [1996a] in which some clues as to the existence of chaos were collected. Particular emphasis is given here to the problem of noise and to nonlinear prediction. With regard to the latter, the benefits obtainable by means of the interpolation of the available time series are reported and the remarkable predictive results attained with this nonlinear method are shown.

  1. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    Science.gov (United States)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  2. Features in the Lipid Status of Two Generations of Fingerlings (0+ of Atlantic Salmon (Salmo salar L. Inhabiting the Arenga River (Kola Peninsula

    Directory of Open Access Journals (Sweden)

    Nina N. Nemova

    2015-07-01

    Full Text Available The present research focused on determining the lipid status of salmon fingerlings (0+ in early development after dispersal form groups of spawning nests in biotopes of different hydrological conditions. The revealed qualitative and quantitative differences in the levels of phospholipids and fatty acids among two generations of Atlantic salmon fingerlings (0+ living in different biotopes of the Arenga River (a tributary of the Varzuga River may be associated with the peculiarities of their genetically determined processes of the biosynthesis and modification of individual lipid classes and trophoecological factors (food spectrum, quality and availability of food objects, and hydrological regime. The research was organized to observe the dynamics of these developmental changes from ages 0+ to 2+.

  3. Poached Salmon

    Science.gov (United States)

    ... page: https://medlineplus.gov/recipe/poachedsalmon.html Poached Salmon To use the sharing features on this page, ... olive oil Ground black pepper, to taste For salmon: 4 salmon steaks, 5 oz each 3 cups ...

  4. Accuracy of Assignment of Atlantic Salmon (Salmo salar L.) to Rivers and Regions in Scotland and Northeast England Based on Single Nucleotide Polymorphism (SNP) Markers

    Science.gov (United States)

    Gilbey, John; Cauwelier, Eef; Coulson, Mark W.; Stradmeyer, Lee; Sampayo, James N.; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart

    2016-01-01

    Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations. PMID:27723810

  5. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L. (University of Montana, Flathead Lake Biological Station, Poison, MT)

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  6. Effects of multiple stresses hydropower, acid deposition and climate change on water chemistry and salmon populations in the River Otra, Norway.

    Science.gov (United States)

    Wright, Richard F; Couture, Raoul-Marie; Christiansen, Anne B; Guerrero, José-Luis; Kaste, Øyvind; Barlaup, Bjørn T

    2017-01-01

    Many surface waters in Europe suffer from the adverse effects of multiple stresses. The Otra River, southernmost Norway, is impacted by acid deposition, hydropower development and increasingly by climate change. The river holds a unique population of land-locked salmon and anadromous salmon in the lower reaches. Both populations have been severely affected by acidification. The decrease in acid deposition since the 1980s has led to partial recovery of both populations. Climate change with higher temperatures and altered precipitation can potentially further impact fish populations. We used a linked set of process-oriented models to simulate future climate, discharge, and water chemistry at five sub-catchments in the Otra river basin. Projections to year 2100 indicate that future climate change will give a small but measureable improvement in water quality, but that additional reductions in acid deposition are needed to promote full restoration of the fish communities. These results can help guide management decisions to sustain key salmon habitats and carry out effective long-term mitigation strategies such as liming. The Otra River is typical of many rivers in Europe in that it fails to achieve the good ecological status target of the EU Water Framework Directive. The programme of measures needed in the river basin management plan necessarily must consider the multiple stressors of acid deposition, hydropower, and climate change. This is difficult, however, as the synergistic and antagonistic effects are complex and challenging to address with modelling tools currently available. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Design and implementation of an emergency environmental responsesystem to protect migrating salmon in the lower San Joaquin River,California

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Jacobs, Karl C.

    2006-01-30

    In the past decade tens of millions of dollars have beenspent by water resource agencies in California to restore the nativesalmon fishery in the San Joaquin River and its major tributaries. Anexcavated deep water ship channel (DWSC), through which the river runs onits way to the Bay/Delta and Pacific Ocean, experiences episodes of lowdissolved oxygen which acts as a barrier to anadromous fish migration anda threat to the long-term survival of the salmon run. An emergencyresponse management system is under development to forecast theseepisodes of low dissolved oxygen and to deploy measures that will raisedissolved oxygen concentrations to prevent damage to the fisheryresource. The emergency response management system has been designed tointeract with a real-time water quality monitoring network and is servedby a comprehensive data management and forecasting model toolbox. TheBay/Delta and Tributaries (BDAT) Cooperative Data Management System is adistributed, web accessible database that contains terabytes ofinformation on all aspects of the ecology of the Bay/Delta and upperwatersheds. The complexity of the problem dictates data integration froma variety of monitoring programs. A unique data templating system hasbeen constructed to serve the needs of cooperating scientists who wish toshare their data and to simplify and streamline data uploading into themaster database. In this paper we demonstrate the utility of such asystem in providing decision support for management of the San JoaquinRiver fishery. We discuss how the system might be expanded to havefurther utility in coping with other emergencies and threats to watersupply system serving California's costal communities.

  8. StreamNet: Report on the status of salmon and steelhead in the Columbia River Basin -- 1995

    International Nuclear Information System (INIS)

    Anderson, D.A.; Christofferson, G.; Beamesderfer, R.; Woodard, B.; Rowe, M.; Hansen, J.

    1996-04-01

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project's objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies

  9. Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)

    Science.gov (United States)

    Kędra, Mariola

    2014-02-01

    Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.

  10. A Two-Stage Information-Theoretic Approach to Modeling Landscape-Level Attributes and Maximum Recruitment of Chinook Salmon in the Columbia River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, William L.; Lee, Danny C.

    2000-11-01

    Many anadromous salmonid stocks in the Pacific Northwest are at their lowest recorded levels, which has raised questions regarding their long-term persistence under current conditions. There are a number of factors, such as freshwater spawning and rearing habitat, that could potentially influence their numbers. Therefore, we used the latest advances in information-theoretic methods in a two-stage modeling process to investigate relationships between landscape-level habitat attributes and maximum recruitment of 25 index stocks of chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin. Our first-stage model selection results indicated that the Ricker-type, stock recruitment model with a constant Ricker a (i.e., recruits-per-spawner at low numbers of fish) across stocks was the only plausible one given these data, which contrasted with previous unpublished findings. Our second-stage results revealed that maximum recruitment of chinook salmon had a strongly negative relationship with percentage of surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and private moderate-high impact managed forest. That is, our model predicted that average maximum recruitment of chinook salmon would decrease by at least 247 fish for every increase of 33% in surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and privately managed forest. Conversely, mean annual air temperature had a positive relationship with salmon maximum recruitment, with an average increase of at least 179 fish for every increase in 2 C mean annual air temperature.

  11. Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, E.L.; National Science Foundation (U.S.)

    2002-08-01

    The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on

  12. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30 January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with

  13. Modeled inundation limits of potential lahars from Mount Adams in the White Salmon River Valley, Washington

    Science.gov (United States)

    Griswold, Julia P.; Pierson, Thomas C.; Bard, Joseph A.

    2018-05-09

    Lahars large enough to reach populated areas are a hazard at Mount Adams, a massive volcano in the southern Cascade Range of Washington State (fig. 1). It is considered to be still active and has the potential to erupt again. By definition, lahars are gravity-driven flows of water-saturated mixtures of mud and rock (plus or minus ice, wood, and other debris), which originate from volcanoes and have a variety of potential triggering mechanisms (Vallance, 2000; Vallance and Iverson, 2015). Flowing mixtures can range in fluid consistency from something like a milkshake to something more like wet concrete, and they behave like flash floods, in that they can appear suddenly in river channels with little warning and commonly have boulder- or log-choked flow fronts. Lahars are hazardous because they can flow rapidly in confined valleys (commonly 20–35 miles per hour [mph] or 9–16 meters per second [m/s]), can travel more than 100 miles (mi) (161 kilometers [km]) from a source volcano, and can move with incredible destructive force, carrying multi-ton boulders and logs that can act as battering rams (Pierson, 1998). The biggest threats from lahars to downstream communities are present during eruptive activity, and impacts to communities can be dire. For example, a very large eruption-triggered lahar in Colombia in 1985 surprised and killed more than 20,000 people in a large town located about 45 mi (72 km) downstream and out of sight of the volcano that produced it (Pierson and others, 1990).Mount Adams, one of the largest volcanoes in the Cascade Range, is a composite stratocone composed primarily of andesite lava flows. It has been the most continuously active volcano within the 480-mi2 Mount Adams volcanic field—a region covering parts of Klickitat, Skamania, Yakima, andLewis Counties and part of the Yakama Nation Reservation in Washington State (Hildreth and Fierstein,1995, 1997). About 500,000 years in age, Mount Adams reached its present size by about 15

  14. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, D.

    1996-05-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.

  15. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    International Nuclear Information System (INIS)

    Teuscher, D.

    1996-01-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout

  16. The coherent variability of African river flows : composite climate ...

    African Journals Online (AJOL)

    The composite structure of the ocean and atmosphere around Africa is studied in the context of river flow variability. Annual streamflows are analysed for the Blue and White Nile, Congo, Niger, Senegal, Zambezi, and Orange Rivers, and inflow to Lake Malawi. Spectral energy is concentrated in 6.6- and 2.4-year bands.

  17. Riparian trees as common denominators across the river flow ...

    African Journals Online (AJOL)

    Riparian tree species, growing under different conditions of water availability, can ... leaf area and increasing wood density correlating with deeper groundwater levels. ... and Sanddrifskloof Rivers (South Africa) under reduced flow conditions.

  18. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1984-1985 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Sharpe, Cameron; Li, Hiram W. (Oregon State University, Oregon Cooperative Fishery Research Unit, Corvallis, OR)

    1985-09-21

    Fish were collected from 60 stocks of chinook salmon and 62 stocks of steelhead trout. Electrophoretic analyses were completed on 43 stocks of chinook salmon and 41 stocks of steelhead trout and meristic counts were completed on 43 stocks of chinook and 41 stocks of steelhead. Statistical comparisons between year classes of our electrophoretic data indicate that most enzyme systems are stable over time but some may be dynamic and should be used with caution in our analyses. We also compared neighboring stocks of both spring chinook and steelhead trout. These comparisons were between stocks of the same race from adjacent stream systems and/or hatcheries. Differences in isozyme gene frequencies can be used to estimate genetic segregation between pairs of stocks. Analysis of the chinook data suggests that, as expected, the number of statistically significant differences in isozyme gene frequencies increases as the geographic distance between stocks increases. The results from comparisons between adjacent steelhead stocks were inconclusive and must await final analysis with more data. Cluster analyses using either isozyme gene frequencies or meristic characters both tended to group the chinook and steelhead stocks by geographic areas and by race and both methods resulted in generally similar grouping patterns. However, cluster analyses using isozyme gene frequencies produced more clusters than the analyses using meristic characters probably because of the greater number of electrophoretic characters compared to the number of meristic characters. Heterozygosity values for each stock were computed using the isozyme gene frequencies. The highest heterozygosity values for chinook were observed in summer chinook and the hatchery stocks while the lowest values were observed in the spring chinook and wild stocks. The results of comparisons of heterozygosity values among areas were inconclusive. The steelhead heterozygosity values were higher in the winter stocks than in the

  19. Gas Supersaturation May Reduce the Survival of Yearling Chinook Salmon in the Lower Columbia River and Ocean Plume

    Science.gov (United States)

    Brosnan, Ian; Welch, David; Scott, Melinda Jacobs

    2015-01-01

    Unusually high flows in the Columbia River in 2011 raised total dissolved gas (TDG) levels in the river above the 120 percent legal limit imposed to prevent harmful impacts to aquatic organisms. This provided a unique opportunity to evaluate the effect on smolt survival. In-river (IR) migrating juvenile yearling Chinook released at Bonneville Dam with acoustic tags during periods when TDG exceeded 120 percent received estimated maximum exposures of 134 TDG. Subsequent daily survival rates in the lower river and plume were reduced by 0.06 per day (SE equals 0.01) and 0.15 per day (SE equals 0.05) relative to IR migrant fish released when TDG was less than 120 percent. Transported smolts (T) released 10-13 kilometers below Bonneville Dam had lower maximum exposure levels (126 percent) and experienced no difference in daily survival rates relative to unexposed smolts. River temperature levels and trends in turbidity and disease prevalence between releases of high and low exposure smolts were not consistent with the observed effects on survival rates. We conclude that smolts may suffer from chronic effects of elevated TDG exposure while migrating through the Columbia River and plume. Consideration should be given to measuring these survival losses in an explicit experimental framework that isolates possible confounding factors.

  20. Persistence of effects of high sediment loading in a salmon-bearing river, northern California

    Science.gov (United States)

    Madej, Mary Ann; Ozaki, V.

    2009-01-01

    Regional high-magnitude rainstorms have produced several large floods in north coastal California during the last century, which resulted in extensive massmovement activity and channel aggradation. Channel monitoring in Redwood Creek, through the use of cross-sectional surveys, thalweg profi les, and pebble counts, has documented the persistence and routing of channel-stored sediment following these large floods in the 1960s and 1970s. Channel response varied on the basis of timing of peak aggradation. Channel-stored sediment was evacuated rapidly from the upstream third of the Redwood Creek channel, and the channel bed stabilized by 1985 as the bed coarsened. Currently only narrow remnants of flood deposits remain and are well vegetated. In the downstream reach, channel aggradation peaked in the 1990s, and the channel is still incising. Channel-bed elevations throughout the watershed showed an approximate exponential decrease with time, but decay rates were highest in areas with the thickest flood deposits. Pool frequencies and depths generally increased from 1977 to 1995, as did median residual water depths, but a 10 yr flood in 1997 resulted in a moderate reversal of this trend. Channel aggradation generated during 25 yr return interval floods has persisted in Redwood Creek for more than 30 yr and has impacted many life cycles of salmon. Watershed restoration work is currently focused on correcting erosion problems on hillslopes to reduce future sediment supply to Redwood Creek instead of attempting in-channel manipulations. ?? 2009 Geological Society of America.

  1. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.

    2013-01-01

    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  2. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  3. Snake River Sockeye salmon habitat and limnological research. Annual report 1995

    International Nuclear Information System (INIS)

    Teuscher, D.; Taki, D.

    1996-05-01

    This report contains studies which are part of the Bonneville Power Administration's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Attention is focused on population monitoring studies in the Sawtooth Valley Lakes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  4. Genetic diversity of riperian populations of glycyrrhiza lepidota along the salmon and snake rivers

    Science.gov (United States)

    Glycyrrhiza lepidota Pursh (Fabaceae; American wild licorice), is a nitrogen-fixing, perennial, facultative riparian species present along many dryland rivers in western North America, including the U.S., southern Canada and northern Mexico. Like Glycyrrhiza glabra, common licorice native to Europe,...

  5. Climate influences on upper Limpopo River flow

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Keywords: Limpopo Valley, hydro-meteorology, surface water deficit. * To whom all ... millenia and there is a history of drought impacts on vegetation. (Ekblom et ... water budget of the upper Limpopo River valley using direct.

  6. MSET modeling of Crystal River-3 venturi flow meters

    International Nuclear Information System (INIS)

    Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.

    1998-01-01

    The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication

  7. Flow intermittence and ecosystem services in rivers of the Anthropocene

    Science.gov (United States)

    Intermittent rivers and ephemeral streams (IRES) are watercourses that cease flow at some point in time and space. Arguably Earth's most widespread type of flowing water, IRES are expanding where Anthropocenic climates grow drier and human demands for water escalate. However, IRE...

  8. Snake River Sockeye Salmon Habitat and Limnological Research; 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, David; Taki, Doug [Shoshone-Bannock Tribes, Fort Hall, ID

    1996-05-01

    This report contains studies which are part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Attention is focused on population monitoring studies in the Sawtooth Valley Lakes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain).

    Science.gov (United States)

    Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco

    2011-05-01

    Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

  10. Statistical tables and charts showing geochemical variation in the Mesoproterozoic Big Creek, Apple Creek, and Gunsight formations, Lemhi group, Salmon River Mountains and Lemhi Range, central Idaho

    Science.gov (United States)

    Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.

    2002-01-01

    The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.

  11. Canada-USA Salmon Shelf Survival Study, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Trudel, Marc; Tucker, Strahan; Morris, John

    2009-03-09

    Historically, salmon stocks from the Columbia River and Snake River formed one of the most valuable fisheries on the west coast of North America. However, salmon and steelhead returns sharply declined during the 1980s and 1990s to reach nearly 1 million fish. Although several factors may be responsible for the decline of Columbia River salmon and steelhead, there is increasing evidence that these drastic declines were primarily attributable to persistently unfavorable ocean conditions. Hence, an understanding of the effects of ocean conditions on salmon production is required to forecast the return of salmon to the Columbia River basin and to assess the efficacy of mitigation measures such as flow regulation on salmon resources in this system. The Canadian Program on High Seas Salmon has been collecting juvenile salmon and oceanographic data off the west coast of British Columbia and Southeast Alaska since 1998 to assess the effects of ocean conditions on the distribution, migration, growth, and survival of Pacific salmon. Here, we present a summary of the work conducted as part of the Canada-USA Salmon Shelf Survival Study during the 2008 fiscal year and compare these results with those obtained from previous years. The working hypothesis of this research is that fast growth enhances the marine survival of salmon, either because fast growing fish quickly reach a size that is sufficient to successfully avoid predators, or because they accumulate enough energy reserves to better survive their first winter at sea, a period generally considered critical in the life cycle of salmon. Sea surface temperature decreased from FY05 to FY08, whereas, the summer biomass of phytoplankton increased steadily off the west coast of Vancouver Island from FY05 to FY08. As in FY07, zooplankton biomass was generally above average off the west coast of Vancouver Island in FY08. Interestingly, phytoplankton and zooplankton biomass were higher in FY08 than was expected from the observed

  12. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  13. River Bank Erosion and the Influence of Environmental Flow Management

    Science.gov (United States)

    Vietz, Geoff J.; Lintern, Anna; Webb, J. Angus; Straccione, David

    2018-03-01

    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional `know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  14. River Bank Erosion and the Influence of Environmental Flow Management.

    Science.gov (United States)

    Vietz, Geoff J; Lintern, Anna; Webb, J Angus; Straccione, David

    2018-03-01

    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional 'know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  15. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

  16. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, Justin K.; Olson, Jill M. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.

  17. Meeting instream flow needs of lower Colorado River in Texas

    International Nuclear Information System (INIS)

    Martin, Q.W.

    1993-01-01

    The Lower Colorado River Authority (LCRA), an agency of the State of Texas, manages the surface waters of the lower Colorado River in Texas. The major water supply source in the lower basin is the Highland Lakes chain of reservoirs in Central Texas. The use of water from these lakes for environmental protection and enhancement has received increasing attention in recent years. The LCRA recently completed major revisions to its comprehensive Water Management Plan (WMP) for the Highland Lakes. These revisions included changes to incorporate the results of a three year study of instream flow needs in the lower Colorado River. The instream flow needs were determined to consist of two flow regimes: critical and target. The critical flows are considered to be the daily minimum flows needed to maintain minimum viable aquatic conditions for important fish species. The target flow needs are those daily flows which maximize the available habitat for a variety of fish. After evaluating numerous policy options, LCRA revised to WMP to allow the release of water from the Highland Lakes to maintain the daily river flows at no less than the critical flows in all years. Further, in those years when drought-induced irrigation water supply curtailments do not occur, LCRA will release water from the lakes, to the extent of daily inflows, to maintain daily river flows at no less than the target levels. To fully honor this pledge, LCRA committed an average of 28,700 acre-feet annually, during any ten consecutive years, from the dependable supply of the Highland Lakes

  18. Elwha River dam removal: A major opportunity for salmon and steelhead recolonization

    Science.gov (United States)

    Pess, George R.; Brenkman, Samuel J.; Winans, Gary A.; McHenry, Michael L.; Duda, Jeffrey J.; Beechie, Timothy J.

    2010-01-01

    In this in-depth paper, authors George R. Pess, Gary A. Winans and Timothy J. Beechie of the NOAA Fisheries, Northwest Fisheries Science Center in Seattle, Samuel J. Brenkman of the National Park Service, Olympic National Park, Michael L. McHenry of the Lower Elwha Klallam Tribe and Jeffrey J. Duda of the U.S. Geological Survey, Western Fisheries Research Center in Seattle, provide an historical overview of the Elwha River system, and its native anadromous fish runs and the prospect of their recolonization after the Elwha and Glines Canyon dams are removed.

  19. Climate change impact on river flows in Chitral watershed

    International Nuclear Information System (INIS)

    Shakir, A.S.; Rehman, H.U.; Ehsan, S.

    2010-01-01

    The impact of climate change has always been very important for water resources in the world. In countries like Pakistan where different weather conditions exist, the effects of climate change can be more crucial. Generally, the climate changes are considered in terms of global warming i.e. increase in the average temperature of earth's near surface air. The global warming can have a strong impact on river flows in Pakistan. This may be due to the melting of snow and glaciers at a higher rate and changes in precipitation patterns. Glaciers in Pakistan cover about 13,680 km/sup 2/, which is 13% of the mountainous regions of the Upper Indus Basin. Glacier and Snow melt water from these glaciers contributes significantly to the river flows in Pakistan. Due to climate change, the changes in temperature and the amount of precipitation could have diversified effects on river flows of arid and semi-arid regions of Pakistan. This paper reviews the existing research studies on climate change impact on water resources of Pakistan. The past trend of river flows in Pakistan has been discussed with respect to the available data. Further, different projections about future climate changes in terms of glacier melting and changes in temperature and precipitation have also been taken into consideration in order to qualitatively assess the future trend of river flows in Pakistan. As a case study, the flows were generated for the Chitral watershed using UBC Watershed Model. Model was calibrated for the year 2002, which is an average flow year. Model results show good agreement between simulated and observed flows. UBC watershed model was applied to a climate change scenario of 1 deg. C increase in temperature and 15% decrease in glaciated area. Results of the study reveal that the flows were decreased by about 4.2 %. (author)

  20. Environmental flows and water quality objectives for the River Murray.

    Science.gov (United States)

    Gippel, C; Jacobs, T; McLeod, T

    2002-01-01

    Over the past decade, there intense consideration of managing flows in the River Murray to provide environmental benefits. In 1990 the Murray-Darling Basin Ministerial Council adopted a water quality policy: To maintain and, where necessary, improve existing water quality in the rivers of the Murray-Darling Basin for all beneficial uses - agricultural, environmental, urban, industrial and recreational, and in 1994 a flow policy: To maintain and where necessary improve existing flow regimes in the waterways of the Murray-Darling Basin to protect and enhance the riverine environment. The Audit of Water Use followed in 1995, culminating in the decision of the Ministerial Council to implement an interim cap on new diversions for consumptive use (the "Cap") in a bid to halt declining river health. In March 1999 the Environmental Flows and Water Quality Objectives for the River Murray Project (the Project) was set up, primarily to establish be developed that aims to achieve a sustainable river environment and water quality, in accordance with community needs, and including an adaptive approach to management and operation of the River. It will lead to objectives for water quality and environmental flows that are feasible, appropriate, have the support of the scientific, management and stakeholder communities, and carry acceptable levels of risk. This paper describes four key aspects of the process being undertaken to determine the objectives, and design the flow options that will meet those objectives: establishment of an appropriate technical, advisory and administrative framework; establishing clear evidence for regulation impacts; undergoing assessment of environmental flow needs; and filling knowledge gaps. A review of the impacts of flow regulation on the health of the River Murray revealed evidence for decline, but the case for flow regulation as the main cause is circumstantial or uncertain. This is to be expected, because the decline of the River Murray results

  1. Snake River sockeye salmon habitat and limnological research: Annual report 1997

    International Nuclear Information System (INIS)

    Taki, D.; Lewis, B.; Griswold, B.

    1999-01-01

    Since the late 1980's, Snake River sockeye Oncorhynchus nerka adults have only returned to Redfish Lake, one of five lakes in the Sawtooth Basin which historically reared sockeye. 1997 project objectives included (1) characterization of the limnology of Sawtooth Valley lakes; (2) fertilization of Redfish, Pettit, and Alturas lakes; (3) O.nerka lake population surveys; (4) estimation of kokanee escapement and fry production in Alturas Lake Creek, Stanley Lake Creek, and Fishhook Creek; (5) reduce the number of spawning kokanee in Fishook Creek; (6) evaluate hatchery rainbow trout overwinter survival and potential competition and predation interactions with O.nerka in Pettit Lake; (7) assess predation from bull trout Salvelinus malma, brook trout S.fontinalis, and northern squawfish Ptychocheilus oregonsis on lentic O.nerka; (8) establish screw tap and weir sites to monitor smolt emigration

  2. Influences of Stocking Salmon Carcass Analogs on Salmonids in Yakima River Tributaries, 2001-2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-04-01

    The benefits that marine derived nutrients from adult salmon carcasses provide to juvenile salmonids are increasingly being recognized. Current estimates suggest that only 6-7% of marine-derived nitrogen and phosphorus that were historically available to salmonids in the Pacific Northwest are currently available. Food limitation may be a major constraint limiting the restoration of salmonids. A variety of methods have been proposed to offset this nutrient deficit including: allowing greater salmon spawning escapement, stocking hatchery salmon carcasses, and stocking inorganic nutrients. Unfortunately, each of these methods has some ecological or socio-economic shortcoming. We intend to overcome many of these shortcomings by making and evaluating a pathogen free product that simulates a salmon carcass (analog). Abundant sources of marine derived nutrients are available such as fish offal from commercial fishing and salmon carcasses from hatcheries. However, a method for recycling these nutrients into a pathogen free analog that degrades at a similar rate as a natural salmon carcass has never been developed. We endeavored to (1) develop a salmon carcass analog that will increase the food available to salmonids, (2) determine the pathways that salmonids use to acquire food from analogs, and (3) determine the benefits to salmonids and the potential for application to salmonid restoration. We used a before-after-control-impact-paired design in six tributaries of the upper Yakima basin to determine the utility of stocking carcass analogs. Our preliminary results suggest that the introduction of carcass analogs into food-limited streams can be used to restore food pathways previously provided by anadromous salmon. The analogs probably reproduced both of the major food pathways that salmon carcasses produce: direct consumption and food chain enhancement. Trout and salmon fed directly on the carcass analogs during the late summer and presumably benefited from the increased

  3. Altered Precipitation and Flow Patterns in the Dunajec River Basin

    Directory of Open Access Journals (Sweden)

    Mariola Kędra

    2017-01-01

    Full Text Available This study analyzes changes in long-term patterns of precipitation and river flow, as well as changes in their variability over the most recent 60 years (1956–2015. The study area is situated in the mountain basin of the Dunajec River, encompassing streams draining the Tatra Mountains in southern Poland. The focus of the study was to evaluate how regional warming translates into precipitation changes in the studied mountain region, and how changes in climate affect sub-regional hydrology. Monthly time series of precipitation measured at several sites were compared for two 30-year periods (1986–2015 versus 1956–1985. The significance of the difference between the periods in question was evaluated by means of the Wilcoxon signed rank test with the Bonferroni correction. The identified shifts in precipitation for 6 months are statistically significant and largely consistent with the revealed changes in river flow patterns. Moreover, significant differences in precipitation variability were noted in the study area, resulting in a significant decrease in the repeatability of precipitation over the most recent 30 years (1986–2015. Changes in the variability of the river flow studied were less visible in this particular mountain region (while significant for two months; however, the overall repeatability of river flow decreased significantly at the same rate as for precipitation.

  4. Denitrification in the Mississippi River network controlled by flow through river bedforms

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian

    2015-01-01

    Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters1, 2, 3, 4. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions5, 6, 7, 8, 9, 10. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones8, 11, 12. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering. 

  5. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon

    Science.gov (United States)

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.

    2010-01-01

    dams on Blue River and South Fork McKenzie River likely have had the greatest effect on downstream habitats because these sediment and flood-rich tributaries historically contributed a disproportionate volume of bed material, wood, and peak flows in comparison with the spring-fed tributaries of the upper McKenzie River basin. The ecological effects of the dams were examined by focusing on nine exemplar aquatic and terrestrial species, including spring Chinook salmon, bull trout, Oregon chub, Pacific and western brook lamprey, red-legged frog, western pond turtle, alder, and cottonwood. The changes caused by the dams to streamflow hydrograph affect all these and other species in complex ways, although a few commonalities are apparent. A loss of channel complexity in the McKenzie River basin, which is associated with the reduction in flood events and widespread channel stabilization, is the primary factor related to the observed population declines for all nine exemplar species. The dams also have caused direct ecological effects by blocking access to habitat, changing the amount and timing of available critical habitat, and changing water temperature during important seasons for different life stages.

  6. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River; 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-02-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001.

  7. Post-release attributes and survival of hatchery and natural fall chinook salmon in the Snake River : annual report 2000-2001

    International Nuclear Information System (INIS)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.

    2003-01-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001

  8. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river

    Science.gov (United States)

    Furey, Nathan B.; Hinch, Scott G.; Lotto, A.G.; Beauchamp, David A.

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0–12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems.

  9. Potential predictability of a Colombian river flow

    Science.gov (United States)

    Córdoba-Machado, Samir; Palomino-Lemus, Reiner; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    In this study the predictability of an important Colombian river (Cauca) has been analysed based on the use of climatic variables as potential predictors. Cauca River is considered one of the most important rivers of Colombia because its basin supports important productive activities related with the agriculture, such as the production of coffee or sugar. Potential relationships between the Cauca River seasonal streamflow anomalies and different climatic variables such as sea surface temperature (SST), precipitation (Pt), temperature over land (Tm) and soil water (Sw) have been analysed for the period 1949-2009. For this end, moving correlation analysis of 30 years have been carried out for lags from one to four seasons for the global SST, and from one to two seasons for South America Pt, Tm and Sw. Also, the stability of the significant correlations have been also studied, identifying the regions used as potential predictors of streamflow. Finally, in order to establish a prediction scheme based on the previous stable correlations, a Principal Component Analysis (PCA) applied on the potential predictor regions has been carried out in order to obtain a representative time series for each predictor field. Significant and stable correlations between the seasonal streamflow and the tropical Pacific SST (El Niño region) are found for lags from one to four (one-year) season. Additionally, some regions in the Indian and Atlantic Oceans also show significant and stable correlations at different lags, highlighting the importance that exerts the Atlantic SST on the hydrology of Colombia. Also significant and stable correlations are found with the Pt, Tm and Sw for some regions over South America, at lags of one and two seasons. The prediction of Cauca seasonal streamflow based on this scheme shows an acceptable skill and represents a relative improvement compared with the predictability obtained using the teleconnection indices associated with El Niño. Keywords

  10. Microelement Exploration Water Flow of Rimnik River

    OpenAIRE

    , N. Bajraktari; , B. Baraj; , T. Arbneshi; , S. Jusufi

    2016-01-01

    Compared to the increasing need on qualitative water use, many water şows are subject to a rising pollution by urban and industrial untreated water discharge, and in some cases by incidental run-offs. Besides them, there is also a great impact made by disseminated agricultural pollution and air and soil rinsing after atmospheric rainfalls. The main purpose of this paper is the micro-element exploration in water and sediments, along the water şow of Rimnik River. Some of the heavy metals: Pb, ...

  11. Snake River Sockeye salmon habitat and limnological research. Annual report 1993

    International Nuclear Information System (INIS)

    Teuscher, D.; Taki, D.; Wurtsbaugh, W.A.; Luecke, C.; Budy, P.; Gross, H.P.; Steinhart, G.

    1994-06-01

    In 1993 we completed research directed at characterizing the 0. nerka populations and their interactions with other fish species in five Sawtooth Valley Lakes. Historically, Redfish, Alturas, Pettit, Stanley, and Yellow Belly Lakes provided Snake River sockeye (Oncorhynchus nerka) spawning and rearing habitat (Evermann 1896; Bjornn 1968). All of these lakes, with exception to Yellow Belly, still support 0. nerka populations. In chapter 1 of this report we describe 0. nerka spawning locations and densities, tributary fry recruitment, and results from a habitat survey completed in Redfish Lake. In chapter 2 we review foraging habits of fish that may compete with, or prey on 0. nerka populations. Kokanee fry emergence from Fishhook Creek in 1993 was 160,000. Fry emergence increased nearly five fold over that reported in 1992. Interestingly, spawning densities in 1991 and 1992 were somewhat similar (7,200 and 9,600, respectively). Discharge from Fishhook Creek was markedly higher in 1992 and may have caused the better egg to fry survival. 0. nerka spawning on sockeye beach appeared limited (< 100 fish). Additionally, sockeye beach was the only area that wild or residual sockeye were located. Of 24 adult sockeye released into Redfish Lake, from the brood stock program, two were found spawning in the south end of the lake. Results from the habitat survey indicated that substrate composition on sockeye beach is poor. 0. nerka diet patterns shifted from chironomid prey in June zooplankton prey in September. Rainbow trout consumed a broadrange of prey, with few instances of significant diet overlap with 0. nerka. Northern squawfish, bull char, and lake trout preyed on 0. nerka. Utilization of 0. nerka by predators was greatest in September

  12. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  13. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    Science.gov (United States)

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  14. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  15. Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin: annual progress report project period 1 September 1998 to 31 August 1999; ANNUAL

    International Nuclear Information System (INIS)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  16. Designing ecological flows to gravely braided rivers in alpine environments

    Science.gov (United States)

    Egozi, R.; Ashmore, P.

    2009-04-01

    Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.

  17. Climate influences on Vaal River flow | Jury | Water SA

    African Journals Online (AJOL)

    A study of climatic influences on Vaal River discharge, near Johannesburg, South Africa, finds that peak summer flows in the period 1979–2014 coincide with ocean–atmosphere interaction in the east Atlantic. The analysis has three parts: interannual influences by correlation of summer discharge with climate fields, ...

  18. Modeling river dune evolution using a parameterization of flow separation

    NARCIS (Netherlands)

    Paarlberg, Andries J.; Dohmen-Janssen, C. Marjolein; Hulscher, Suzanne J.M.H.; Termes, Paul

    2009-01-01

    This paper presents an idealized morphodynamic model to predict river dune evolution. The flow field is solved in a vertical plane assuming hydrostatic pressure conditions. The sediment transport is computed using a Meyer-Peter–Müller type of equation, including gravitational bed slope effects and a

  19. Distributional changes in rainfall and river flow in Sarawak, Malaysia

    Science.gov (United States)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.

  20. Comparative Measurement of Stream Flow in the Ethiope River for ...

    African Journals Online (AJOL)

    This study investigates comparative measurement of stream flow in the Ethiope River for small hydropower development. Two methods – the Float and Current Meter or Bridge Broom Methods were investigated and values compared to determine best method for optimal power generation. Depth and width measurements ...

  1. Computation of the flow in shallow river bends

    NARCIS (Netherlands)

    Kalkwijk, J.P.T.; De Vriend, H.J.

    1980-01-01

    The mathematical model presented describes the flow in rivers of which: i the depth is small compared with the width, ii the width is small compared with the radius of curvature, iii the horizontal length scale of the bottom variations is of the order of magnitude of the width. Within these limits,

  2. Low-Flow Water Study for the Missouri River.

    Science.gov (United States)

    2008-08-01

    The (MoDOT) retained TranSystems to identify and review low-flow industry : trends, equipment and strategies used in inland navigation settings throughout the United States and worldwide which : may be transferable to the Missouri River and which cou...

  3. Downstream flow top width prediction in a river system | Choudhury ...

    African Journals Online (AJOL)

    ANFIS, ARIMA and Hybrid Multiple Inflows Muskingum models (HMIM) were applied to simulate and forecast downstream discharge and flow top widths in a river system. The ANFIS model works on a set of linguistic rules while the ARIMA model uses a set of past values to predict the next value in a time series. The HMIM ...

  4. Documentation of a groundwater flow model (SJRRPGW) for the San Joaquin River Restoration Program study area, California

    Science.gov (United States)

    Traum, Jonathan A.; Phillips, Steven P.; Bennett, George L.; Zamora, Celia; Metzger, Loren F.

    2014-01-01

    To better understand the potential effects of restoration flows on existing drainage problems, anticipated as a result of the San Joaquin River Restoration Program (SJRRP), the U.S. Geological Survey (USGS), in cooperation with the U.S. Bureau of Reclamation (Reclamation), developed a groundwater flow model (SJRRPGW) of the SJRRP study area that is within 5 miles of the San Joaquin River and adjacent bypass system from Friant Dam to the Merced River. The primary goal of the SJRRP is to reestablish the natural ecology of the river to a degree that restores salmon and other fish populations. Increased flows in the river, particularly during the spring salmon run, are a key component of the restoration effort. A potential consequence of these increased river flows is the exacerbation of existing irrigation drainage problems along a section of the river between Mendota and the confluence with the Merced River. Historically, this reach typically was underlain by a water table within 10 feet of the land surface, thus requiring careful irrigation management and (or) artificial drainage to maintain crop health. The SJRRPGW is designed to meet the short-term needs of the SJRRP; future versions of the model may incorporate potential enhancements, several of which are identified in this report. The SJRRPGW was constructed using the USGS groundwater flow model MODFLOW and was built on the framework of the USGS Central Valley Hydrologic Model (CVHM) within which the SJRRPGW model domain is embedded. The Farm Process (FMP2) was used to simulate the supply and demand components of irrigated agriculture. The Streamflow-Routing Package (SFR2) was used to simulate the streams and bypasses and their interaction with the aquifer system. The 1,300-square mile study area was subdivided into 0.25-mile by 0.25-mile cells. The sediment texture of the aquifer system, which was used to distribute hydraulic properties by model cell, was refined from that used in the CVHM to better represent

  5. Fish Research Project, Oregon, Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin, Annual Progress Report, Project Period: September 1, 1996 - August 31, 1997; ANNUAL

    International Nuclear Information System (INIS)

    Brian C. Jonasson; J. Vincent Tranquilli; MaryLouise Keefe; Richard W. Carmichael

    1998-01-01

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving upper rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool

  6. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Nugent, Michael; Brock, Wendy (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

  7. Baltic Salmon, Salmo salar, from Swedish River Lule Älv Is More Resistant to Furunculosis Compared to Rainbow Trout

    DEFF Research Database (Denmark)

    Holten-Andersen, Lars; Dalsgaard, Inger; Buchmann, Kurt

    2012-01-01

    Background: Furunculosis, caused by Aeromonas salmonicida, continues to be a major health problem for the growing salmonid aquaculture. Despite effective vaccination programs regular outbreaks occur at the fish farms calling for repeated antibiotic treatment. We hypothesized that a difference...... in susceptibility to A. salmonicida were demonstrated between the two salmonids and hazard ratio estimation between rainbow trout and Baltic salmon showed a 3.36 higher risk of dying from the infection in the former. Conclusion: The finding that Baltic salmon carries a high level of natural resistance...

  8. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John

    2002-01-24

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the third year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1999 field season.

  9. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach in the Columbia River, 1998 Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Newsome, Todd; Nugent, Michael (Washington Department of Fish and Wildlife, Olympia, WA)

    2001-07-27

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the second year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fish species, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1998 field season.

  10. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    Science.gov (United States)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  11. Science advancements key to increasing management value of life stage monitoring networks for endangered Sacramento River winter-run Chinook salmon in California

    Science.gov (United States)

    Johnson, Rachel C.; Windell, Sean; Brandes, Patricia L.; Conrad, J. Louise; Ferguson, John; Goertler, Pascale A. L.; Harvey, Brett N.; Heublein, Joseph; Isreal, Joshua A.; Kratville, Daniel W.; Kirsch, Joseph E.; Perry, Russell W.; Pisciotto, Joseph; Poytress, William R.; Reece, Kevin; Swart, Brycen G.

    2017-01-01

    A robust monitoring network that provides quantitative information about the status of imperiled species at key life stages and geographic locations over time is fundamental for sustainable management of fisheries resources. For anadromous species, management actions in one geographic domain can substantially affect abundance of subsequent life stages that span broad geographic regions. Quantitative metrics (e.g., abundance, movement, survival, life history diversity, and condition) at multiple life stages are needed to inform how management actions (e.g., hatcheries, harvest, hydrology, and habitat restoration) influence salmon population dynamics. The existing monitoring network for endangered Sacramento River winterrun Chinook Salmon (SRWRC, Oncorhynchus tshawytscha) in California’s Central Valley was compared to conceptual models developed for each life stage and geographic region of the life cycle to identify relevant SRWRC metrics. We concluded that the current monitoring network was insufficient to diagnose when (life stage) and where (geographic domain) chronic or episodic reductions in SRWRC cohorts occur, precluding within- and among-year comparisons. The strongest quantitative data exist in the Upper Sacramento River, where abundance estimates are generated for adult spawners and emigrating juveniles. However, once SRWRC leave the upper river, our knowledge of their identity, abundance, and condition diminishes, despite the juvenile monitoring enterprise. We identified six system-wide recommended actions to strengthen the value of data generated from the existing monitoring network to assess resource management actions: (1) incorporate genetic run identification; (2) develop juvenile abundance estimates; (3) collect data for life history diversity metrics at multiple life stages; (4) expand and enhance real-time fish survival and movement monitoring; (5) collect fish condition data; and (6) provide timely public access to monitoring data in open data

  12. Distribution, feeding and growth of hatchery-reared Atlantic salmon (Salmo salar L. parr stocked into rivers with various abiotic conditions

    Directory of Open Access Journals (Sweden)

    Nikolaev A. M.

    2017-06-01

    Full Text Available Within the research of efficiency of Atlantic salmon the artificial reproduction, feeding rate, distribution and growth of farm-raised one-year-old Atlantic salmon have been examined. The fish has been released into nursery areas with different hydrological characteristics located in the Rivers Kola, Umba, Srednyaya and Akkim in the Murmansk region. The observations have being conducted for 1–5 months since the moment of fish release. In natural habitat, juveniles rapidly distribute downstream and upstream regardless of water temperature, depth and current velocity. In all examined nursery areas adapting one-year-old juveniles prefer to stay at weak current sites close to the shore, hiding in the gravel. In all the cases farmed parr shows high feed rate, but qualitative composition of their food differs significantly from food composition of wild juveniles. Revealed peculiarities of adapting parr's distribution and qualitative food composition indicate the impact of long-term rearing at hatcheries on fish behavior. Growth rate of one-year-old juveniles is arcwise connected with fraction composition of gravel and the level of bottom fouling: the bigger bottom rocks are and the thicker the fouling is, the more intensive fish growth is. The revealed correlations have been described with equations of linear regression. Connections between juvenile growth and water temperature, current velocity and depth of the area have not been detected. The research outcomes could provide a basis for scientific advice for planning release sites and number of released one-year-old Atlantic salmon by hatcheries in the Murmansk region.

  13. Organic salmon

    DEFF Research Database (Denmark)

    Ankamah Yeboah, Isaac; Nielsen, Max; Nielsen, Rasmus

    . This study identifies the price premium on organic salmon in the Danish retail sale sector using consumer panel scanner data for households by applying the hedonic price model while permitting unobserved heterogeneity between households. A premium of 20% for organic salmon is found. Since this premium...... is closer to organic labeled agriculture products than to ecolabelled capture fisheries products, it indicates that consumers value organic salmon as an agriculture product more than fisheries product....

  14. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R. [Oregon Department of Fish and Wildlife

    2009-04-10

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start of this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals

  15. Assessing flow regime alterations in a temporary river – the River Celone case study

    Directory of Open Access Journals (Sweden)

    De Girolamo Anna Maria

    2015-09-01

    Full Text Available In this paper, we present an approach to evaluate the hydrological alterations of a temporary river. In these rivers, it is expected that anthropogenic pressures largely modify low-flow components of the flow regime with consequences for aquatic habitat and diversity in invertebrate species. First, by using a simple hydrological index (IARI river segments of the Celone stream (southern Italy whose hydrological regime is significantly influenced by anthropogenic activities have been identified. Hydrological alteration has been further classified through the analysis of two metrics: the degree (Mf and the predictability of dry flow conditions (Sd6. Measured streamflow data were used to calculate the metrics in present conditions (impacted. Given the lack of data from pristine conditions, simulated streamflow time series were used to calculate the metrics in reference conditions. The Soil and Water Assessment Tool (SWAT model was used to estimate daily natural streamflow. Hydrological alterations associated with water abstractions, point discharges and the presence of a reservoir were assessed by comparing the metrics (Mf, Sd6 before and after the impacts. The results show that the hydrological regime of the river segment located in the upper part of the basin is slightly altered, while the regime of the river segment downstream of the reservoir is heavily altered. This approach is intended for use with ecological metrics in defining the water quality status and in planning streamflow management activities.

  16. Development of an Effective Transport Media for Juvenile Spring Chinook Salmon to Mitigate Stress and Improve Smolt Survival During Columbia River Fish Hauling Operations, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wedemeyer, Gary A.

    1985-02-01

    Selected transport media consisting of mineral salt additions (Na/sup +/, Cl/sup -/, Ca/sup + +/, PO/sub 4//sup -3/, HCO/sub 3//sup -/, and Mg/sup + +/), mineral salts plus tranquilizing concentrations of tricaine methane sulfonate (MS-222), or MS-222 alone were tested for their ability to mitigate stress and increase smolt survival during single and mixed species hauling of Columbia River spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri). Successful stress mitigation was afforded by several formulations as indicated by protection against life-threatening osmoregulatory and other physiological dysfunctions, and against immediate and delayed hauling mortality. Effects on the seawater survival and growth of smolts hauled in transport media were used as the overall criterion of success. Of the fourteen chemical formulations tested, 10 ppM MS-222 emerged as top-rated in terms of ability to mitigate physiological stress during single and mixed species transport of juvenile spring chinook salmon at hauling densities of 0.5 or 1.0 lb/gallon. Immediate and delayed mortalities from hauling stress were also reduced, but benefits to early marine growth and survival were limited to about the first month in seawater. The two physical factors tested (reduced light intensity and water temperature) were generally less effective than mineral salt additions in mitigating hauling stress, but the degree of protection afforded by reduced light intensity was nevertheless judged to be physiologically beneficial. 36 refs., 1 fig., 19 tabs.

  17. Chinook salmon emergence phenotypes: describing the relationships between temperature, emergence timing and condition factor in a reaction norm framework

    Science.gov (United States)

    Abby E. Fuhrman; Donald A. Larsen; Ashley Steel; Graham Young; Brian R. Beckman

    2017-01-01

    Water temperature can have a profound influence on development and distribution of aquatic species. Salmon are particularly vulnerable to temperature changes because their reproductive and early development life phases are spent in freshwater river systems where temperature fluctuates widely both daily and seasonally. Flow regulation downstream of dams can also cause...

  18. A description and assessment of the Atlantic salmon (salmo salar) fall pre-smolt migration in relation to the Tobique narrows hydroelectric facility, Tobique River, New Brunswick using radio telemetry

    International Nuclear Information System (INIS)

    Jones, R.A.; Flanagan, J.J.

    2007-01-01

    Atlantic salmon (salmo salar) smolts typically migrate to the ocean in the spring following 2 to 4 years in freshwater. However, in some rivers, migration can also begin in the fall for a small component of the population of known as pre-smolts. These fish do not complete their migration to the ocean in the fall, but rather remain in freshwater, closer to the marine environment, until the following spring when they complete their migration. This report presented the results of a collaborative research project between New Brunswick Power Commission, Fisheries and Oceans Canada, Atlantic Salmon Federation, University of New Brunswick and the Tobique Salmon Protective Association that utilized radio telemetry to study the spatial and temporal movements of fall migrating, wild Atlantic salmon pre-smolts in the upstream and downstream vicinities of the Tobique Narrows Dam. In order to provide an estimation of the fall pre-smolt population migrating from the Tobique River, rotary screw traps were used along with a mark recapture method. It was hoped that the results from this radio tagging experiment would facilitate the establishment of an effective downstream fish passage and/or collection strategies for juvenile salmon. The report described the study area; Tobique Narrows Dam; catches and estimates; radio tagging; fixed radio receivers; and searches. Results were presented for catches and estimates; migration to Arthurette; migration to Tobique Narrows Dam; operating conditions at Tobique Narrows Dam; estimated numbers of pre-smolts up river and down river of the Tobique Narrows Dam; and migration to Beechwood Dam. Recommendations and considerations for future evaluations or research were also presented. 29 refs., 8 tabs., 18 figs., 3 appendices

  19. TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER

    Directory of Open Access Journals (Sweden)

    N. JIPA

    2012-03-01

    Full Text Available TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER. In the context of climate change at global and regional scale, this study intends to identify the trends in variability of the annual and monthly flow of Teleajen river. The study is based on processing the series of mean, maximum and minimum flows at Cheia and Moara Domnească hydrometric stations (these data were taken from the National Institute of Meteorology and Hydrology. The period of analysis is 1966-1998, statistical methods beeing mostly used, among which the Mann – Kendall test, that identifies the liniar trend and its statistic significance, comes into focus. The trends in the variability of water annual and monthly flows are highlighted. The results obtained show downward trends for the mean and maximum annual flows, and for the minimum water discharge, a downward trend for Cheia station and an upward trend for Moara Domnească station. Knowing the trends in the variability of the rivers’ flow is important empirically in view of taking adequate administration measures of the water resources and managment measures for the risks lead by extreme hidrologic events (floods, low-water, according to the possible identified changes.

  20. PCR testing can be as accurate as culture for diagnosis of Ichthyophonus hoferi in Yukon River Chinook salmon Oncorhynchus tshawytscha .

    Science.gov (United States)

    Hamazaki, Toshihide; Kahler, Eryn; Borba, Bonnie M; Burton, Tamara

    2013-07-09

    We evaluated the comparability of culture and PCR tests for detecting Ichthyophonus in Yukon River Chinook salmon Oncorhynchus tshawytscha from field samples collected at 3 locations (Emmonak, Chena, and Salcha, Alaska, USA) in 2004, 2005, and 2006. Assuming diagnosis by culture as the 'true' infection status, we calculated the sensitivity (correctly identifying fish positive for Ichthyophonus), specificity (correctly identifying fish negative for Ichthyophonus), and accuracy (correctly identifying both positive and negative fish) of PCR. Regardless of sampling locations and years, sensitivity, specificity, and accuracy exceeded 90%. Estimates of infection prevalence by PCR were similar to those by culture, except for Salcha 2005, where prevalence by PCR was significantly higher than that by culture (p < 0.0001). These results show that the PCR test is comparable to the culture test for diagnosing Ichthyophonus infection.

  1. Flow controls on lowland river macrophytes: a review.

    Science.gov (United States)

    Franklin, Paul; Dunbar, Michael; Whitehead, Paul

    2008-08-01

    We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised.

  2. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  3. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, Desiree D.; Walter, Cara; Dunham, Jason B.

    2016-01-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: (1) the velocities considered to be representative of habitat units; (2) patterns of use of the hydraulic environment by fish; and (3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution (grid spacing from 10 to 100 cm), reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  4. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, D. D.; Walter, C.; Dunham, J.

    2016-12-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: 1) the velocities considered to be representative of habitat units; 2) patterns of use of the hydraulic environment by fish; and 3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution, reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  5. Owyhee River intracanyon lava flows: does the river give a dam?

    Science.gov (United States)

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  6. Investigation of flow and transport parameters in some Romanian rivers

    International Nuclear Information System (INIS)

    Pascu, M.; Gaspar, E.; Gaspar, R. D.; Roncea, C.; Pascu, A.

    1998-01-01

    Together with continuous pollution, the accidental spills-e.g. from industrial faults-are the greatest danger for rivers. When such spill occurs, downstream water supplies have to be warned about the arrival time of the pollutant wave. Establishing an efficient warning system implies knowing of the flow and transport parameters of the river. Within this frame, two tracer experiments were carried out in the Olt and Somes rivers, using 32 Br and fluorescent dye tracers as injected in input pulses. A basic analysis of the field data allows the calculation of the water Residence Time Distribution and the maximum concentration of the tracer versus the distance from the injection point. Afterwards, some results are found based on the interpolation technique, in order to estimate the travel time and the maximum concentration of the pollutant along the river for a given flow rate and a given injection point. A further analysis of the field data using the dispersion theory allows determining the transfer velocities of the water and dispersion coefficient. Empirical relationship between velocity, dispersion coefficient and the distance from injection point is established. (author)

  7. Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin

    Directory of Open Access Journals (Sweden)

    Hsiao-Ping Wei

    2016-03-01

    Full Text Available This study evaluated the overflow risk of the Tsengwen River under a climate change scenario by using bias-corrected dynamic downscaled data as inputs for a SOBEK model (Deltares, the Netherlands. The results showed that the simulated river flow rate at Yufeng Bridge (upstream, Erxi Bridge (midstream, and XinZong (1 (downstream stations are at risk of exceeding the management plan’s flow rate for three projection periods (1979–2003, 2015–2039, 2075–2099. After validation with the geomorphic and hydrological data collected in this study, the frequency at which the flow rate exceeded the design flood was 2 in 88 events in the base period (1979–2003, 6 in 82 events in the near future (2015–2039, and 10 in 81 events at the end of the century (2075–2099.

  8. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    Science.gov (United States)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is

  9. Anthropogenic Water Uses and River Flow Regime Alterations by Dams

    Science.gov (United States)

    Ferrazzi, M.; Botter, G.

    2017-12-01

    Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.

  10. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    Musa, J. J

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  11. Evaluating relationships between wild Skeena river sockeye salmon productivity and the abundance of spawning channel enhanced sockeye smolts.

    Science.gov (United States)

    Price, Michael H H; Connors, Brendan M

    2014-01-01

    The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962-2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena.

  12. Evaluating relationships between wild Skeena river sockeye salmon productivity and the abundance of spawning channel enhanced sockeye smolts.

    Directory of Open Access Journals (Sweden)

    Michael H H Price

    Full Text Available The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962-2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1 the reliance upon adult salmon produced per spawner (rather than per smolt as an index of marine survival, and (2 incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena.

  13. The Graded Alluvial River: Variable Flow and the Dominant Discharge

    Science.gov (United States)

    Blom, A.; Arkesteijn, L.; Viparelli, E.

    2016-12-01

    We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.

  14. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    International Nuclear Information System (INIS)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors

  15. A Computed River Flow-Based Turbine Controller on a Programmable Logic Controller for Run-Off River Hydroelectric Systems

    Directory of Open Access Journals (Sweden)

    Razali Jidin

    2017-10-01

    Full Text Available The main feature of a run-off river hydroelectric system is a small size intake pond that overspills when river flow is more than turbines’ intake. As river flow fluctuates, a large proportion of the potential energy is wasted due to the spillages which can occur when turbines are operated manually. Manual operation is often adopted due to unreliability of water level-based controllers at many remote and unmanned run-off river hydropower plants. In order to overcome these issues, this paper proposes a novel method by developing a controller that derives turbine output set points from computed mass flow rate of rivers that feed the hydroelectric system. The computed flow is derived by summation of pond volume difference with numerical integration of both turbine discharge flows and spillages. This approach of estimating river flow allows the use of existing sensors rather than requiring the installation of new ones. All computations, including the numerical integration, have been realized as ladder logics on a programmable logic controller. The implemented controller manages the dynamic changes in the flow rate of the river better than the old point-level based controller, with the aid of a newly installed water level sensor. The computed mass flow rate of the river also allows the controller to straightforwardly determine the number of turbines to be in service with considerations of turbine efficiencies and auxiliary power conservation.

  16. Impact of farm dams on river flows; A case study in the Limpopo River basin, Southern Africa

    NARCIS (Netherlands)

    Meijer, E.; Querner, E.P.; Boesveld, H.

    2013-01-01

    The study analysed the impact of a farm dam on the river flow in the Limpopo River basin. Two methods are used to calculate the water inflow: one uses the runoff component from the catchment water balance; the other uses the drainage output of the SIMFLOW model. The impact on the flow in a

  17. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    Science.gov (United States)

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin

  18. Comparison of Conventional and ANN Models for River Flow Forecasting

    Science.gov (United States)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  19. What maintains the waters flowing in our rivers?

    Science.gov (United States)

    Vasconcelos, Vitor Vieira

    2017-07-01

    This article discusses how new contributions from hydrogeological science in the 20th and 21st centuries have allowed for a better understanding of the processes that affect the maintenance of river flows. Moreover, the way in which this knowledge has been conveyed beyond academia and has been gradually incorporated into public policy for natural resource management is also discussed. This article explains the development of several approaches used to understand the relationships among the management of aquifers, vegetation and river flows, including water balance, aquifer recharge, the piston effect, seasonal effects, and safe and sustainable yields. Additionally, the current challenges regarding the modeling of hydrological processes that integrate groundwater and surface waters are discussed. Examples of studies applied in Brazil that demonstrate these processes and stimulate thought regarding water management strategies are presented. In light of the case studies, it is possible to propose different strategies, each adapted for specific hydrogeological context to maximize aquifer recharge or base flow maintenance. Based on these strategies, the role of infiltration ponds and other artificial recharge techniques is re-evaluated in the context of the mitigation of environmental impacts on the maintenance of river flows. Proposals for the improvement of public policies regarding the payment of related environmental services to stimulate investment in aquifer recharge and the maintenance of base flow, for which the goal is to attain win-win-win situations for the environment, farmers and water users, while preventing land speculation, are discussed. Lastly, a conceptual model for the dissemination of hydrogeological knowledge in public policies is provided, and its challenges and possibilities are discussed.

  20. DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA

    Science.gov (United States)

    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  1. Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon.

    Science.gov (United States)

    Piou, Cyril; Prévost, Etienne

    2013-03-01

    Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life-history pathways. Using an individual-based demo-genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life-history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life-history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might

  2. Integrating Salmon Recovery, Clean Water Act Compliance, Restoration, and Climate Change Impacts in the South Fork Nooksack River

    Science.gov (United States)

    "The South Fork Nooksack River (SFNR) is an important tributary to the Nooksack River, Bellingham Bay, and the Salish Sea. The South Fork Nooksack River comprises one of the 22 independent populations of spring Chinook in the Puget Sound Chinook Evolutionarily Significant Un...

  3. RiverFlow2D numerical simulation of flood mitigation solutions in the Ebro River

    Directory of Open Access Journals (Sweden)

    I. Echeverribar

    2017-01-01

    Full Text Available A study of measures oriented to flood mitigation in the mid reach of the Ebro river is presented: elimination of vegetation in the riverbed, use of controlled flooding areas and construction or re-adaptation of levees. The software used is RiverFlow2D which solves the conservative free-surface flow equations with a finite volume method running on GPU. The results are compared with measurements at gauge stations and aerial views. The most effective measure has turned out to be the elimination of vegetation in the riverbed. It is demonstrated that not only the maximum flooded area is narrower but also it reduces the water depth up to 1 m. The other measures have local consequences when the peak discharge is relatively high although they could be useful in case the discharge is lower.

  4. Low flow analysis of the lower Drava River

    International Nuclear Information System (INIS)

    Mijuskovic-Svetinovic, T; Maricic, S

    2008-01-01

    Understanding the regime and the characteristics of low streamflows is of vital importance in several aspects. It is essential for the effective planning, designing, constructing, maintaining, using and managing different water management systems and structures. In addition, frequent running and assessing of estimates of low stream-flow statistics are especially important when different aspects of water quality are considered. This paper attempts to present the results of a stochastic analysis of the River Drava low flow from the gauging station, Donji Miholjac [located at rkm 77+700]. Currently, almost all specialists apply the truncation method in low-flows analysis. Taking this into consideration, it is possible to accept the definition of a low streamflow, as a period when the analysed characteristics are either, equal to or lower than the truncation level of drought. The same method has been applied in this analysis. The calculating method applied takes into account all the essential components of the afore-mentioned process. This includes a number of elements, such as the deficit, duration or the time of the occurrence of low flows, the number of times, the maximum deficit and the maximum duration of the low flows in the analysed time period. Moreover, this paper determines computational values for deficits and for the duration of low flow in different return periods.

  5. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in Idaho, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942.. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. The Idaho portion of the survey consisted of extensive surveys of the Clearwater, Salmon, Weiser, and Payette River Subbasins. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database

  6. Salmon Mapper

    Science.gov (United States)

    Information about the web application to assist pesticide users' with an understanding of the spatial extent of certain pesticide use limitations to protect endangered or threatened salmon and steelhead in California, Oregon and Washington.

  7. River flow availability for environmental flow allocation downstream of hydropower facilities in the Kafue Basin of Zambia

    Science.gov (United States)

    Kalumba, Mulenga; Nyirenda, Edwin

    2017-12-01

    The Government of the Republic Zambia (GRZ) will install a new hydropower station Kafue Gorge Lower downstream of the existing Kafue Gorge Station (KGS) and plans to start operating the Itezhi-Tezhi (ITT) hydropower facility in the Kafue Basin. The Basin has significant biodiversity hot spots such as the Luangwa National park and Kafue Flats. It is described as a Man-Biosphere reserve and the National Park is a designated World Heritage Site hosting a variety of wildlife species. All these natural reserves demand special protection, and environmental flow requirements (e-flows) have been identified as a necessary need to preserve these ecosystems. Implementation of e-flows is therefore a priority as Zambia considers to install more hydropower facilities. However before allocation of e-flows, it is necessary to first assess the river flow available for allocation at existing hydropower stations in the Kafue Basin. The river flow availability in the basin was checked by assessing the variability in low and high flows since the timing, frequency and duration of extreme droughts and floods (caused by low and high flows) are all important hydrological characteristics of a flow regime that affects e-flows. The river flows for a 41 year monthly time series data (1973-2014) were used to extract independent low and high flows using the Water Engineering Time Series Processing Tool (WETSPRO). The low and high flows were used to construct cumulative frequency distribution curves that were compared and analysed to show their variation over a long period. A water balance of each hydropower station was used to check the river flow allocation aspect by comparing the calculated water balance outflow (river flow) with the observed river flow, the hydropower and consumptive water rights downstream of each hydropower station. In drought periods about 50-100 m3/s of riverflow is available or discharged at both ITT and KGS stations while as in extreme flood events about 1300-1500 m3/s

  8. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-09-01

    Currently, two methods of reintroduction are being simultaneously evaluated at Duncan Creek. Recolonization is occurring by introducing adult chum salmon from the Lower Gorge (LG) population into Duncan Creek and allowing them to naturally reproduce. The supplementation strategy required adults to be collected and artificially spawned, incubated, reared, and released at the mouth of Duncan Creek. All eggs from the artificial crossings at Washougal Hatchery were incubated and the fry reared to release size at the hatchery. The Duncan Creek chum salmon project was very successful in 2003-04, providing knowledge and experience that will improve program execution in future years. The gear used to collect adult brood stock was changed from tangle nets to beach seines. This increased efficiency and the speed at which adults could be processed in the field, and most likely reduced stress on the adults handled. Certain weaknesses exposed in past seasons still exist and new ones were exposed (e.g. inadequate incubation and rearing space at Washougal Hatchery for any large salvage operation and having to move the rearing troughs outside the raceway in 2004). Egg-to-fry survival rates of 64% and 58% showed that the channels are functioning at the upper end of what can be expected from them. Possibly the most important event this season was the ability to strontium mark and release all naturally-produced fry from the spawning channels. Channel and floodplain modifications reduced the likelihood that floods will damage the channels and negatively impact survival rates.

  9. Role river flow for Sr 90 decontamination of polluted territories of Belarus

    International Nuclear Information System (INIS)

    Kudel'skij, A.V.; Smith, J.T.; Zhukova, O.M.; Rudaya, S.M.; Sasina, N.V.

    2002-01-01

    Sr 90 contamination of the water flow Dnepr, Pripyat', Sozh, Besed', Iput' rivers is considered. The dynamics of reducing the average year activities of Sr 90 and the variations of the levels of Sr 90 activities in river water during spring-autumn high water are shown. The results of investigation of Sr 90 activity of the sediments of Pripyat' and Braginka rivers are connected with the second effects of the contamination of the river flowing off Sr 90 during high water period. Sr 90 transfer in composition of the flowing off river during 1990-1995 (from Belarus to Ukraine) is being estimated. (authors)

  10. The International River Interface Cooperative: Public Domain Software for River Flow and Morphodynamics (Invited)

    Science.gov (United States)

    Nelson, J. M.; Shimizu, Y.; McDonald, R.; Takebayashi, H.

    2009-12-01

    The International River Interface Cooperative is an informal organization made up of academic faculty and government scientists with the goal of developing, distributing and providing education for a public-domain software interface for modeling river flow and morphodynamics. Formed in late 2007, the group released the first version of this interface (iRIC) in late 2009. iRIC includes models for two and three-dimensional flow, sediment transport, bed evolution, groundwater-surface water interaction, topographic data processing, and habitat assessment, as well as comprehensive data and model output visualization, mapping, and editing tools. All the tools in iRIC are specifically designed for use in river reaches and utilize common river data sets. The models are couched within a single graphical user interface so that a broad spectrum of models are available to users without learning new pre- and post-processing tools. The first version of iRIC was developed by combining the USGS public-domain Multi-Dimensional Surface Water Modeling System (MD_SWMS), developed at the USGS Geomorphology and Sediment Transport Laboratory in Golden, Colorado, with the public-domain river modeling code NAYS developed by the Universities of Hokkaido and Kyoto, Mizuho Corporation, and the Foundation of the River Disaster Prevention Research Institute in Sapporo, Japan. Since this initial effort, other Universities and Agencies have joined the group, and the interface has been expanded to allow users to integrate their own modeling code using Executable Markup Language (XML), which provides easy access and expandability to the iRIC software interface. In this presentation, the current components of iRIC are described and results from several practical modeling applications are presented to illustrate the capabilities and flexibility of the software. In addition, some future extensions to iRIC are demonstrated, including software for Lagrangian particle tracking and the prediction of

  11. Monitoring the Reproductive Success of Naturally Spawning Hatchery and Natural Spring Chinook Salmon in the Wenatchee River, 2008-2009 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J.; Williamson, Kevin S. [Northwest Fisheries Science Center

    2009-05-28

    male fitness. For both sexes, run time had a smaller but still significant effect on fitness, with earlier returning fish favored. Spawning location within the river had a significant effect on fitness for both males and females, and for females explained most of the reduced fitness observed for hatchery fish in this population. While differences have been reported in the relative reproductive success of hatchery and naturally produced salmonids Oncorhynchus spp., factors explaining the differences are often confounded. We examined the spawning site habitat and redd structure variables of hatchery and naturally produced spring Chinook salmon O. tshawytscha of known size that spawned in two tributaries of the Wenatchee River. We controlled for variability in spawning habitat by limiting our analysis to redds found within four selected reaches. No difference in the instantaneous spawner density or location of the redd in the stream channel was detected between reaches. Within each reach, no difference in the fork length or weight of hatchery and naturally produced fish was detected. While most variables differed between reaches, we found no difference in redd characteristics within a reach between hatchery and naturally produced females. Correlation analysis of fish size and redd characteristics found several weak but significant relationships suggesting larger fish contract larger redds in deeper water. Spawner density was inversely related to several redd structure variables suggesting redd size may decrease as spawner density increases. Results should be considered preliminary until samples size and statistical power goals are reached in future years. Trends in relative reproductive success of hatchery and naturally produced spring Chinook salmon Oncorhynchus tshawytscha in the Wenatchee Basins suggest females that spawn in the upper reaches of the tributaries produced a great number of offspring compared to females that spawn in the lower reaches of the tributaries

  12. StreamNet; Northwest Aquatic Resource Information Network - Status of Salmon and Steelhead in the Columbia River Basin, 1995 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Duane A.; Beamesderfer, Raymond C. [Oregon Dept. of Fish and Wildlife, Enterprise, OR (United States); Woodard, Bob [Washington Dept. of Fish and Wildlife, Olympia, WA (United States)

    1996-04-01

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project`s objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies.

  13. Large Dam Effects on Flow Regime and Hydraulic Parameters of river (Case study: Karkheh River, Downstream of Reservoir Dam

    Directory of Open Access Journals (Sweden)

    Farhang Azarang

    2017-06-01

    Full Text Available Introduction: The critical role of the rivers in supplying water for various needs of life has led to engineering identification of the hydraulic regime and flow condition of the rivers. Hydraulic structures such dams have inevitable effects on their downstream that should be well investigated. The reservoir dams are the most important hydraulic structures which are the cause of great changes in river flow conditions. Materials and Methods: In this research, an accurate assessment was performed to study the flow regime of Karkheh river at downstream of Karkheh Reservoir Dam as the largest dam in Middle East. Karkheh River is the third waterful river of Iran after Karun and Dez and the third longest river after the Karun and Sefidrud. The Karkheh Dam is a large reservoir dam built in Iran on the Karkheh River in 2000. The Karkheh Reservoir Dam is on the Karkheh River in the Northwestern Khouzestan Province, the closest city being Andimeshk to the east. The part of Karkheh River, which was studied in this research is located at downstream of Karkheh Reservoir Dam. This interval is approximately 94 km, which is located between PayePol and Abdolkhan hydrometric stations. In this research, 138 cross sections were used along Karkheh River. Distance of cross sections from each other was 680m in average. The efficient model of HEC-RAS has been utilized to simulate the Karkheh flow conditions before and after the reservoir dam construction using of hydrometric stations data included annually and monthly mean discharges, instantaneous maximum discharges, water surface profiles and etc. Three defined discharges had been chosen to simulate the Karkheh River flow; maximum defined discharge, mean defined discharge and minimum defined discharge. For each of these discharges values, HEC-RAS model was implemented as a steady flow of the Karkheh River at river reach of study. Water surface profiles of flow, hydraulic parameters and other results of flow regime in

  14. Evaluation of Environmental Flows in Rivers Using Hydrological Methods (Case study: The Barandozchi River- Urmia Lake Basin

    Directory of Open Access Journals (Sweden)

    S. Mostafavi

    2017-01-01

    Full Text Available Introduction Development of water resources projects are accompanied by several environmental impacts, among them, the changes in the natural flow regime and the reduction of downstream water flows. With respect to the water shortages and non-uniform distribution of rainfall, sustainable management of water resources would be inevitable. In order to prevent negative effects on long-term river ecosystems, it is necessary to preserve the ecological requirements of the river systems. The assessment of environmental flow requirements in a river ecosystem is a challenging practice all over the world, and in particular, in developing countries such as Iran. Environmental requirements of rivers are often defined as a suite of flow discharges of certain magnitude, timing, frequency and duration. These flows ensure a flow regime capable of sustaining a complex set of aquatic habitats and ecosystem processes and are referred to as "environmental flows". There are several methods for determining environmental flows. The majority of these methods can be grouped into four reasonably distinct categories, namely as: hydrological, hydraulic rating, habitat simulation (or rating, and holistic methodologies. However, the current knowledge of river ecology and existing data on the needs of aquatic habitats for water quantity and quality is very limited. It is considered that there is no unique and universal method to adapt to different rivers and/or different reaches in a river. The main aim of the present study was to provide with a framework to determine environmental flow requirements of a typical perennial river using eco-hydrological methods. The Barandozchi River was selected as an important water body in the Urmia Lake Basin, Iran. The preservation of the river lives, the restoration of the internationally recognized Urmia Lake, and the elimination of negative impact from the construction of the Barandoz dam on this river were the main concerns in this

  15. Surveys on Gyrodactylus parasites onwild Atlantic salmon in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Heinecke, Rasmus Demuth; Buchmann, Kurt

    Gyrodactylus salaris is a monogenean ectoparasite parasitizing salmonids in freshwater. This parasite is highly pathogenic to both Norwegian and Scottish salmon and has decimated the salmon populations in 45 Norwegian rivers after anthropogenic transfer from Sweden. G. salaris has also been found...... on several occasions in Danish rainbow trout farms but has never been recorded as a pathogenic parasite on Danish wild salmon. In the present study the occurrence of G. salaris and other Gyrodactylus parasites on wild Danish salmon fry and parr were monitored. Electrofishing was conducted in three river......-systems (River Skjern, Ribe and Varde) and 0+ and 1+ salmon were collected and sacrificed using an overdose of MS222. During spring or summer time more salmon fry and parr will be collected. The fins were excised and fins and body were conserved separately in 96% ethanol. In the laboratory, the fins and body...

  16. DNA capture reveals transoceanic gene flow in endangered river sharks.

    Science.gov (United States)

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T; Naylor, Gavin J P

    2015-10-27

    For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.

  17. Evidence for density-dependent changes in growth, downstream movement, and size of Chinook salmon subyearlings in a large-river landscape

    Science.gov (United States)

    Connor, William P.; Tiffan, Kenneth F.; Plumb, John M.; Moffit, Christine M.

    2013-01-01

    We studied the growth rate, downstream movement, and size of naturally produced fall Chinook Salmon Oncorhynchus tshawytscha subyearlings (age 0) for 20 years in an 8th-order river landscape with regulated riverine upstream rearing areas and an impounded downstream migration corridor. The population transitioned from low to high abundance in association with U.S. Endangered Species Act and other federally mandated recovery efforts. The mean growth rate of parr in the river did not decline with increasing abundance, but during the period of higher abundance the timing of dispersal from riverine habitat into the reservoir averaged 17 d earlier and the average size at the time of downstream dispersal was smaller by 10 mm and 1.8 g. Changes in apparent abundance, measured by catch per unit effort, largely explained the time of dispersal, measured by median day of capture, in riverine habitat. The growth rate of smolts in the reservoir declined from an average of 0.6 to 0.2 g/d between the abundance periods because the reduction in size at reservoir entry was accompanied by a tendency to migrate rather than linger and by increasing concentrations of smolts in the reservoir. The median date of passage through the reservoir was 14 d earlier on average, and average smolt size was smaller by 38 mm and 22.0 g, in accordance with density-dependent behavioral changes reflected by decreased smolt growth. Unexpectedly, smolts during the high-abundance period had begun to reexpress the migration timing and size phenotypes observed before the river was impounded, when abundance was relatively high. Our findings provide evidence for density-dependent phenotypic change in a large river that was influenced by the expansion of a recovery program. Thus, this study shows that efforts to recover native fishes can have detectable effects in large-river landscapes. The outcome of such phenotypic change, which will be an important area of future research, can only be fully judged by

  18. The Intersection of Environmental Variability, Policy, and Human Values: International Treaties, Yukon River Salmon, and Food Security in a Changing Arctic (Invited)

    Science.gov (United States)

    Gerlach, S.; Loring, P. A.; Murray, M. S.

    2009-12-01

    2009 was a particularly devastating year for rural communities of the Yukon River in Alaska. For a number of reasons, including annual variability in Chinook and Chum salmon runs, imperfect monitoring and information, “best practices” management decisions by regulatory agencies, and international treaty obligations related to conservation and total allowable catch allocation, the smokehouses and freezers of many Alaska Native families, particularly those in up-river communities in the Yukon Flats region, are empty; a problem that has prompted Alaska’s Governor Sean Parnell to ask the US Federal Government to declare a disaster. However, depending on whom you ask, this year’s management of these resources, which provide food security and enable self-reliance in rural communities, may be evaluated as a failure or as a success. How can we reconcile an institutional assessment that claims success as defined in terms of internationally-agreed upon conservation and escapement goals, with the negative economic and health impacts on communities? We use this case to illustrate how the whole Yukon River watershed and drainage, including Alaska and Canada, provides an elegant, geographic context for the discussion and analysis of the human dimensions of environmental change and regional sustainability. Policymakers have arguably gone to great lengths to reconcile competing ‘uses’ of the Yukon River, including commercial and subsistence uses as well as conservation goals, but while managers continue to strive to be ‘adaptive learners’ in their approach to balancing these goals, the impacts on rural communities are immediate and cumulative, synergistic, temporally and spatially scaled, and directly related to rural livelihoods, community health, well-being and sustainability. The cost of this ‘adaptive’ process may be too high, both for the ecosystem and for the people who live there. Are we asking too much of the Yukon River? Are we asking too much of the

  19. Early migration and estuary stopover of introduced chinook salmon population in the Lapataia River Basin, southern Tierra del Fuego Island

    Science.gov (United States)

    Chalde, T.; Fernández, D. A.

    2017-12-01

    Established populations of chinook salmon (Oncorhynchus tshawytscha) have recently been reported in South America, at both Atlantic and Pacific basins. Several studies have evaluated different aspects of their life histories; however, little is known about the use of the estuaries by the juveniles of these populations. We examined spawning time, seaward migration timing, growth rate, scale patterns, diet, and geometric morphometric, contrasting the early life history during freshwater and estuary residence of a chinook population established in Lapataia Basin. Fall run spawning took place in March-April and the parr emerged in September. Two distinct seaward migration patterns were identified from sein net fishing records: one population segment migrating earlier to the estuary in October and a second group migrating later in February. The growth rate of fish captured at the estuary was significantly higher than the fish captured in freshwater. In addition, higher scale intercirculi distances were observed in estuary fish showing differences in growth rate. The feeding habitat in fish captured in both environments changed through time from bottom feeding to surface feeding and from significant diet overlap to no overlap. The morphology of the fish captured at the estuary was associated with the elongation of the caudal peduncle and a decrease in the condition factor index, both changes related to smolt transformation. The earlier migration and the higher growth rate of juveniles in the estuary together with fish of 1 + yo captured in this environment reveal that the estuary of Lapataia Basin is not only a stopover for the chinook salmon, but also a key habitat to reside and feed previous to the final seaward migration.

  20. Monitoring of downstream salmon and steelhead at federal hydroelectric facilities, 1991

    International Nuclear Information System (INIS)

    Hawkes, L.A.; Martinson, R.D.; Smith, W.W.

    1992-04-01

    The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management

  1. Longitudinal heterogeneity of flow and heat fluxes in a large lowland river: A study of the San Joaquin River, CA, USA during a large-scale flow experiment

    Science.gov (United States)

    Bray, E. N.; Dunne, T.; Dozier, J.

    2011-12-01

    Systematic downstream variation of channel characteristics, scaled by flow affects the transport and distribution of heat throughout a large river. As water moves through a river channel, streamflow and velocity may fluctuate by orders of magnitude primarily due to channel geometry, slope and resistance to flow, and the time scales of those fluctuations range from days to decades (Constantz et al., 1994; Lundquist and Cayan, 2002; McKerchar and Henderson, 2003). It is well understood that the heat budget of a river is primarily governed by surface exchanges, with the most significant surface flux coming from net shortwave radiation. The absorption of radiation at a given point in a river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient (Dozier, 1980). Few studies consider the influence of hydrologic alteration to the optical properties governing net radiative heat transfer in a large lowland river, yet it is the most significant component of the heat budget and definitive to a river's thermal regime. We seek a physically based model without calibration to incorporate scale-dependent physical processes governing heat and flow dynamics in large rivers, how they change across the longitudinal profile, and how they change under different flow regimes. Longitudinal flow and heat flux analyses require synoptic flow time series from multiple sites along rivers, and few hydrometric networks meet this requirement (Larned et al, 2011). We model the energy budget in a regulated 240-km mainstem reach of the San Joaquin River California, USA equipped with multiple gaging stations from Friant Dam to its confluence with the Merced River during a large-scale flow experiment. We use detailed hydroclimatic observations distributed across the longitudinal gradient creating a non-replicable field experiment of heat fluxes across a range of flow regime

  2. Review of a model to assess stranding of juvenile salmon by ship wakes along the Lower Columbia River, Oregon and Washington

    Science.gov (United States)

    Kock, Tobias J.; Plumb, John M.; Adams, Noah S.

    2013-01-01

    Long period wake waves from deep draft vessels have been shown to strand small fish, particularly juvenile Chinook salmon Oncorhynchus tschawytcha, in the lower Columbia River (LCR). The U.S. Army Corps of Engineers is responsible for maintaining the shipping channel in the LCR and recently conducted dredging operations to deepen the shipping channel from an authorized depth of 40 feet(ft) to an authorized depth of 43 ft (in areas where rapid shoaling was expected, dredging operations were used to increase the channel depth to 48 ft). A model was developed to estimate stranding probabilities for juvenile salmon under the 40- and 43-ft channel scenarios, to determine if channel deepening was going to affect wake stranding (Assessment of potential stranding of juvenile salmon by ship wakes along the Lower Columbia River under scenarios of ship traffic and channel depth: Report prepared for the Portland District U.S. Army Corps of Engineers, Portland, Oregon). The U.S. Army Corps of Engineers funded the U.S. Geological Survey to review this model. A total of 30 review questions were provided to guide the review process, and these questions are addressed in this report. In general, we determined that the analyses by Pearson (2011) were appropriate given the data available. We did identify two areas where additional information could have been provided: (1) a more thorough description of model diagnostics and model selection would have been useful for the reader to better understand the model framework; and (2) model uncertainty should have been explicitly described and reported in the document. Stranding probability estimates between the 40- and 43-ft channel depths were minimally different under most of the scenarios that were examined by Pearson (2011), and a discussion of the effects of uncertainty given these minimal differences would have been useful. Ultimately, however, a stochastic (or simulation) model would provide the best opportunity to illustrate

  3. Salmon carcass movements in forest streams

    Science.gov (United States)

    Burke Strobel; Daniel R. Shivley; Brett B. Roper

    2009-01-01

    The movements of salmon carcasses over time were studied in two forest streams in the context of a large-scale salmon carcass supplementation program. The objectives were to assess both the level of treatment after stream flows had displaced carcasses and to evaluate whether the magnitude of carcass movements outside of a given reach could be predicted. The movements...

  4. 76 FR 53436 - Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing...

    Science.gov (United States)

    2011-08-26

    ... Mississippi River, near the town of Luling, in St. Charles Parish, Louisiana. The sole purpose of a.... 14091-000] Free Flow Power Corporation; Northland Power Missis