WorldWideScience

Sample records for river reservoirs annual

  1. Evaluation of Management of Water Release for Painted Rocks Reservoir, Bitterroot River, Montana, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lere, Mark E. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1984-11-01

    Baseline fisheries and habitat data were gathered during 1983 and 1984 to evaluate the effectiveness of supplemental water releases from Painted Rocks Reservoir in improving the fisheries resource in the Bitterroot River. Discharge relationships among main stem gaging stations varied annually and seasonally. Flow relationships in the river were dependent upon rainfall events and the timing and duration of the irrigation season. Daily discharge monitored during the summers of 1983 and 1984 was greater than median values derived at the U.S.G.S. station near Darby. Supplemental water released from Painted Rocks Reservoir totaled 14,476 acre feet in 1983 and 13,958 acre feet in 1984. Approximately 63% of a 5.66 m{sup 3}/sec test release of supplemental water conducted during April, 1984 was lost to irrigation withdrawals and natural phenomena before passing Bell Crossing. A similar loss occurred during a 5.66 m{sup 3}/sec test release conducted in August, 1984. Daily maximum temperature monitored during 1984 in the Bitterroot River averaged 11.0, 12.5, 13.9 and 13.6 C at the Darby, Hamilton, Bell and McClay stations, respectively. Chemical parameters measured in the Bitterroot River were favorable to aquatic life. Population estimates conducted in the Fall, 1983 indicated densities of I+ and older rainbow trout (Salmo gairdneri) were significantly greater in a control section than in a dewatered section (p < 0.20). Numbers of I+ and older brown trout (Salmo trutta) were not significantly different between the control and dewatered sections (p > 0.20). Population and biomass estimates for trout in the control section were 631/km and 154.4 kg/km. In the dewatered section, population and biomass estimates for trout were 253/km and 122.8 kg/km. The growth increments of back-calculated length for rainbow trout averaged 75.6 mm in the control section and 66.9mm in the dewatered section. The growth increments of back-calculated length for brown trout averaged 79.5 mm in the

  2. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    Science.gov (United States)

    Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  3. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.

    1999-03-01

    This report consists of two parts describing research activities completed during 1997 under Bonneville Power Administration Project Number 93-29. Part 1 provides reach survival and travel time estimates for 1997 for PIT-tagged hatchery steelhead and yearling chinook salmon in the Snake and Columbia Rivers. The results are reported primarily in the form of tables and figures with a minimum of text. More detailed information on methodology and the statistical models used in the analysis are provided in previous annual reports cited in the text. Analysis of the relationships among travel time, survival, and environmental factors for 1997 and previous years of the study will be reported elsewhere. Part 2 of this report describes research to determine areas of loss and delay for juvenile hatchery salmonids above Lower Granite Reservoir.

  4. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjornn (Bjomn), Theodore C.

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on the Clearwater River to collect data on survival detection probabilities, and travel time.

  5. Survival estimates for the passage of juvenile chinook salmon through Snake River dams and reservoirs. Annual report 1993

    International Nuclear Information System (INIS)

    Iwamoto, R.N.; Muir, W.D.; Sandford, B.P.; McIntyre, K.W.; Frost, D.A.; Williams, J.G.; Smith, S.G.; Skalski, J.R.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers

  6. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  7. System-Wide Significance of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs : Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, James H.; Poe, Thomas P.

    1993-12-01

    Northern squawfish (Ptychocheilus oregonensis) predation on juvenile salmonids was characterized during 1992 at ten locations in the Columbia River below Bonneville Dam and at three locations in John Day Reservoir. During the spring and summer, 1,487 northern squawfish were collected in the lower Columbia River and 202 squawfish were sampled in John Day Reservoir. Gut content data, predator weight, and water temperature were used to compute a consumption index (CI) for northern squawfish, and overall diet was also described. In the Columbia River below Bonneville Dam, northern squawfish diet was primarily fish (spring 69%; summer 53%), most of which were salmonids. Salmonids were also the primary diet component in the Bonneville Dam tailrace, John Day Dam forebay, and the McNary Dam tailrace. Crustaceans were the dominant diet item at the John Day mid-reservoir location, although sample sizes were small. About half of the non-salmonid preyfish were sculpins. The consumption index (CI) of northern squawfish was generally higher during summer than during spring. The highest CI`s were observed during summer in the tailrace boat restricted zones of Bonneville Dam (CI = 7.8) and McNary Dam (CI = 4.6). At locations below Bonneville Dam, CI`s were relatively low near Covert`s Landing and Rooster Rock, higher at four locations between Blue Lake and St. Helens, and low again at three downriver sites (Kalama, Ranier, and Jones Beach). Northern squawfish catches and CI`s were noticeably higher throughout the lower Columbia compared to mid-reservoir sites further upriver sampled during 1990--92. Predation may be especially intense in the free-flowing section of the Columbia River below Bonneville Dam. Smallmouth bass (Micropterus dolomieui; N = 198) ate mostly fish -- 25% salmonids, 29% sculpins, and 46% other fish. Highest catches of smallmouth bass were in the John Day Dam forebay.

  8. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjomn (Bjornn), Theodore C.

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).

  9. Fall chinook salmon survival and supplementation studies in the Snake River and Lower Snake River reservoirs: Annual report 1995

    International Nuclear Information System (INIS)

    Williams, John G.; Bjornn, Theodore C.

    1997-01-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2)

  10. Survival estimates for the passage of juvenile salmonids through Snake River dams and reservoirs, 1996. Annual report

    International Nuclear Information System (INIS)

    Smith, S.G.; Muir, W.D.; Hockersmith, E.E.; Achord, S.; Eppard, M.B.; Ruehle, T.E.; Williams, J.G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature

  11. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature.

  12. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Muir, William D.

    1995-02-01

    In 1994, the National Marine Fisheries Service and the University of Washington completed the second year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through the dams and reservoirs of the Snake River. Actively migrating smolts were collected at selected locations above, at, and below Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Survival estimates were calculated using the Single-Release, Modified Single-Release, and Paired-Release Models.

  13. System-wide significance of predation on juvenile salmonids in Columbia and Snake River reservoirs and evaluation of predation control measures. Annual report 1993

    International Nuclear Information System (INIS)

    Gadomski, D.M.; Poe, T.P.

    1994-01-01

    This project had three major goals. The first was to assist the Oregon Department of Fish and Wildlife with predation indexing as part of an effort to estimate the relative magnitude of juvenile salmonid losses to northern squawfish Ptychocheilus oregonensis in reservoirs throughout the Columbia River Basin. The second goal was to evaluate the northern squawfish control program and test critical assumptions about mid-reservoir predation processes. The final goal was to determine mechanisms underlying northern squawfish recruitment and factors affecting year-class strength

  14. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, Richard; Williams, John G.; Smith, Steven G. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2002-06-01

    In 2001, the National Marine Fisheries Service and the University of Washington completed the ninth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from passive integrated transponder (PIT)-tagged fish. We PIT tagged and released at Lower Granite Dam a total of 17,028 hatchery and 3,550 wild steelhead. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream of the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using the Single-Release Model. Primary research objectives in 2001 were to: (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2001 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures with a minimum of text. More details on methodology and statistical models used are provided in previous reports cited in the text. Results for summer-migrating chinook salmon will be reported separately.

  15. Incorporating an approach to aid river and reservoir fisheries in an altered landscape

    Science.gov (United States)

    Brewer, Shannon K.; Shoup, Daniel E.; Dattillo, John

    2018-01-01

    Reservoir construction for human-use services alters connected riverine flow patterns and influences fish production. We sampled two pelagic fishes from two rivers and two reservoirs and related seasonal and annual hydrology patterns to the recruitment and growth of each species. River and reservoir populations of Freshwater Drum Aplodinotus grunniens reached similar ages (32 and 31, respectively). Likewise, longevity of Gizzard Shad Dorosoma cepedianum between the two systems was also similar (7 and 8 years, respectively). However, both species grew larger in the rivers compared to reservoir residents. Recruitment of Freshwater Drum in reservoirs was negatively related to water retention time (r2=0.59) suggesting moving water through the reservoir was beneficial. Riverine recruitment of Freshwater Drum populations was negatively related to the annual number of flow reversals and positively related to prespawn discharge (r2 = 0.33). Unlike Freshwater Drum, there was no relationship between flow metrics and Gizzard Shad recruitment in reservoirs. However, recruitment of riverine Gizzard Shad was positively related to high flow pulses during the prespawn and spawning seasons (r2 = 0.48). The growth of both species in reservoirs was positively related to the number of days each year that water levels were above the conservation pool. Growth of Freshwater Drum was also negatively related to minimum reservoir summer water levels (r2 = 0.84). Growth of both Freshwater Drum and Gizzard Shad occupying lotic systems was positively related to May (r2 = 0.86) and July discharge (r2 = 0.84), respectively. In general, growth and recruitment of the reservoir populations was more related to annual water patterns, whereas riverine fishes responded more to seasonal flow patterns. Results of this study provide important information on the relationship between hydrology and pelagic fish production in both rivers and reservoirs. This information is useful if agencies are interested in

  16. The management of the Diama reservoir (Senegal River)

    Science.gov (United States)

    Duvail, S.; Hamerlynck, O.

    2003-04-01

    The Senegal River is regulated by 2 dams built in the 1980's by the "Organisation pour la Mise en Valeur du fleuve Sénégal" (OMVS), a river basin management organisation grouping Mali, Senegal and Mauritania. The initial objectives of OMVS, which were to regulate the Senegal flows in order to develop irrigated agriculture, produce hydropower and facilitate river navigation has been only partially met. The maintenance of the annual flood by the upstream dam (Manantali), initially to be phased out when irrigated agriculture would have replaced the traditional recession agriculture, is now scheduled to continue indefinitely on the basis of socio-economic and environmental concerns. This change of mindset has however not affected the management of the downstream dam (Diama). Initially conceived as a salt-wedge dam, its function evolved to a reservoir dam with a high and constant water level. During the dry season, the water level is maintained high and constant in order to reduce the pumping costs for the irrigated agriculture in the delta. During the flood season (July-October) the dam is primarily managed for risk avoidance: limit flooding downstream of the dam (especially the city of St. Louis) and secure the infrastructure of the dam itself. The permanent freshwater reservoir lake has adverse effects on ecosystems, on human and animal health and a high social cost for the traditional stakeholders of the deltaic floodplain (fishermen, livestock keepers and gatherers). Upstream of the reservoir there is an excess of stagnant freshwater and managers are confronted with the development of invasive species while substantial downstream flooding is essential for the estuarine ecosystems and local livelihoods. The presentation will review the different approaches to the management of the Diama reservoir and proposes different management scenarios and compares their economical, environmental, and social costs and benefits.

  17. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  18. Significance of selective predation and development of prey protection measures for juvenile salmonids in the Columbia and Snake River reservoirs. Annual progress report, February 1993--February 1994

    International Nuclear Information System (INIS)

    Poe, T.P.

    1994-01-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish

  19. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, James S.; Baxter, Jeremy

    2002-03-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing.

  20. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs

  1. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; Skookumchuck Creek Juvenile Bull Trout and Fish Habitat Monitoring Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.

    2003-06-01

    The Skookumchuck Creek juvenile bull trout (Salvelinus confluentus) and fish habitat-monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. This project was commissioned in planning for fish habitat protection and forest development within the Skookumchuck Creek watershed and was intended to expand upon similar studies initiated within the Wigwam River from 2000 to 2002. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes, especially as they relate to spawning and rearing habitat quality. The 2002 project year represents the first year of a long-term bull trout-monitoring program with current studies focused on collecting baseline information. This report provides a summary of results obtained to date. Bull trout represented 72.4% of the catch. Fry dominated the catch because site selection was biased towards electrofishing sample sites which favored high bull trout fry capture success. The mean density of all juvenile bull trout was estimated to be 6.6 fish/100m{sup 2}. This represents one-half the densities reported for the 2002 Wigwam River enumeration program, even though enumeration of bull trout redds was an order of magnitude higher for the Wigwam River. Typically, areas with combined fry and juvenile densities greater than 1.5 fish per 100 m{sup 2} are cited as critical rearing areas. Trends in abundance appeared to be related to proximity to spawning areas, bed material size, and water depth. Cover components utilized by juvenile and adult bull trout and cutthroat trout were interstices, boulder, depth, overhead vegetation and LWD. The range of morphological stream types encompass the stable and resilient spectrum (C3(1), C3 and B3c). The Skookumchuck can be generalized as a slightly entrenched, meandering, riffle-pool, cobble dominated

  2. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1991-February 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Poe, Thomas P.

    1992-12-31

    This document is the 1991 annual report of progress for the Bonneville Power Administration (BPA) research Project conducted by the US Fish and Wildlife Service (FWS). Our approach was to present the progress achieved during 1991 in a series of separate reports for each major project task. Each report is prepared in the format of a scientific paper and is able to stand alone, whatever the state of progress or completion. This project has two major goals. One is to understand the significance of selective predation and prey vulnerability by determining if substandard juvenile salmonids (dead, injured, stressed, diseased, or naive) are more vulnerable to predation by northern squawfish, than standard or normal juvenile salmonids. The second goal is to develop and test prey protection measures to control predation on juvenile salmonids by reducing predator-smolt encounters or predator capture efficiency.

  3. Large Dam Effects on Flow Regime and Hydraulic Parameters of river (Case study: Karkheh River, Downstream of Reservoir Dam

    Directory of Open Access Journals (Sweden)

    Farhang Azarang

    2017-06-01

    Full Text Available Introduction: The critical role of the rivers in supplying water for various needs of life has led to engineering identification of the hydraulic regime and flow condition of the rivers. Hydraulic structures such dams have inevitable effects on their downstream that should be well investigated. The reservoir dams are the most important hydraulic structures which are the cause of great changes in river flow conditions. Materials and Methods: In this research, an accurate assessment was performed to study the flow regime of Karkheh river at downstream of Karkheh Reservoir Dam as the largest dam in Middle East. Karkheh River is the third waterful river of Iran after Karun and Dez and the third longest river after the Karun and Sefidrud. The Karkheh Dam is a large reservoir dam built in Iran on the Karkheh River in 2000. The Karkheh Reservoir Dam is on the Karkheh River in the Northwestern Khouzestan Province, the closest city being Andimeshk to the east. The part of Karkheh River, which was studied in this research is located at downstream of Karkheh Reservoir Dam. This interval is approximately 94 km, which is located between PayePol and Abdolkhan hydrometric stations. In this research, 138 cross sections were used along Karkheh River. Distance of cross sections from each other was 680m in average. The efficient model of HEC-RAS has been utilized to simulate the Karkheh flow conditions before and after the reservoir dam construction using of hydrometric stations data included annually and monthly mean discharges, instantaneous maximum discharges, water surface profiles and etc. Three defined discharges had been chosen to simulate the Karkheh River flow; maximum defined discharge, mean defined discharge and minimum defined discharge. For each of these discharges values, HEC-RAS model was implemented as a steady flow of the Karkheh River at river reach of study. Water surface profiles of flow, hydraulic parameters and other results of flow regime in

  4. Kinbasket Reservoir and Upper Columbia River Kokanee spawner index 2005

    International Nuclear Information System (INIS)

    Manson, H.; Porto, L.

    2006-01-01

    The results of an escapement survey for tributaries to the Kinbasket Reservoir and the Upper Columbia River were provided. Two aerial surveys were conducted during October, 2005. The Kokanee were grouped in schools and summed in order to provide independent estimates. Otoliths of the fish were also extracted in order to determine their age. Results of the survey showed that an estimated 236,760 Kokanee fish were spawning within 11 index streams and rivers within the Kinbasket Reservoir drainage area. Mean fork length was estimated at 24.7 cm. While the Columbia River continues to be the most important Kokanee spawning location in the Kinbasket Reservoir drainage area, the 2005 Kokanee escapement index was the third lowest recorded since 1996. It was concluded that declining fish size and declining abundance may indicate reduced reservoir productivity. 5 refs., 1 tab., 4 figs

  5. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  6. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    International Nuclear Information System (INIS)

    Jean-François, Crétaux; Adalbert, Arsen; Muriel, Bergé-Nguyen; Sylvain, Biancamaria; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km 3 using a combination of MODIS data and satellite altimetry, and only 0.2 km 3 with Landsat images representing 2–4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250  ×  250 m with 20 cm accuracy. (letter)

  7. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    Science.gov (United States)

    Jean-François, Crétaux; Sylvain, Biancamaria; Adalbert, Arsen; Muriel, Bergé-Nguyen; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2-4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

  8. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analyte levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.

  9. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  10. An intelligent agent for optimal river-reservoir system management

    Science.gov (United States)

    Rieker, Jeffrey D.; Labadie, John W.

    2012-09-01

    A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.

  11. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  12. Selenium in Reservoir Sediment from the Republican River Basin

    Science.gov (United States)

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

  13. Future reservoir management under climate change for the Mississippi River

    International Nuclear Information System (INIS)

    Asnaashari, Ahmad; Gharabaghi, Bahram; McBean, Edward A.; Kunjikutty, Sobhalatha; Lehman, Paul; Wade, Winston

    2010-01-01

    This paper is part of an ongoing research project designed to evaluate the effect of climate change on reservoir operation policies in the Mississippi Valley Conservation Authority. The study used the results from a first paper, including projected daily temperature and precipitation, for future streamflow calculation. This paper presented the development, calibration and validation of a rainfall-runoff NAM model for the Mississippi River watershed. The calibrated Mike11/NAM model was fed with predicted climatic data to generate long term future streamflow in the basin. Forecast flows were run in a Mike 11/HD model to estimate the corresponding lake levels. The storages and flows at Shabomeka Lake, Mazinaw Lake and Marble Lake were simulated. The results showed that climate change is likely to have implications for reservoir operations in the Mississippi River watershed, which will include changed water level regimes due to modifications in the projected future streamflow hydrograph to meet desired lake levels.

  14. Capacity of the inflow river channels of the Krpelany and Hricov reservoirs with respect to flood control

    International Nuclear Information System (INIS)

    Capekova, Z.

    2004-01-01

    In this presentation author deals with the capacity of the inflow river channels of the Krpelany and Hricov reservoirs with respect to flood control (Vah River, Orava River, Kysuce River and Rajcianka River, Slovakia)

  15. The metal spectrum of river sediments from the Denso reservoir

    International Nuclear Information System (INIS)

    Carboo, C.; Brimah, A.K.; Debrah, C.; Serfor Armah, Y.

    1998-01-01

    The heavy metals in the sediment of the Densu reservoir was determined using instrumental neutron activation analysis. In all, about twenty nine elements were identified to be present in the river sediment. Of all the metals determined iron was found to have the the highest concentration with a maximum value of 15.090 g/kg and a minimum of 6.724 g/kg dry weight , other macro elements identified were Al, Na, K, and Ca. The concentration of most of the metals were higher before the major rains than after the rains. Though baseline data for heavy metals in sediment is not available, the values obtained for some of the metals were higher than normal , suggesting some form of heavy metal pollution in the reservoir. (author)

  16. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  17. Reservoirs on the mountain rivers and their safety

    Directory of Open Access Journals (Sweden)

    Ts.Z. Basilashvili

    2016-06-01

    Full Text Available Water resource issues and problems in the world's developing countries, present special challenges, as development of these countries significantly depends on the utilization of water resources. Georgia nestled between the Black Sea, Russia, and Turkey, and surrounded by the Caucasus Mountains, occupies a unique geographic space, which gives it strategic importance far beyond its size. Though blessed by its rich hydro resources, Georgia due to its uneven distribution, experiences some problems as the demand on water frequently doesn't coincide with water provision. As a result it causes acute deficit situation. Due to the global warming of the climate, it is expected that the fresh water amount will decrease in Georgia. This is why it is necessary to approach the use of water resources in a complex way by means of water reservoirs, which will enable attaining of a large economic effect. In the mountainous conditions filling of reservoirs take place in spring time, when snow and glaciers melt. In Georgia as in mountainous country, abundant rains take place, thus causing catastrophic flooding on rivers. In summer and winter water amount decreases 10 times and irrigation, water provision and energy production is impeded. Thus, the lack of water just like the excess amount of water causes damage. This is why it is needed to forecast water amount in water reservoirs for different periods of the year. But in a complex, mountainous terrain operative data of hydrometeorology is not sufficient for application of modern mathematical methods. We have elaborated multiple-factor statistical model for a forecast, which by means of different mathematical criteria and methods can simultaneously research the increase of the timeliness of forecasts and the level of their precision. We have obtained methodologies for short and long term forecasts of inflowing water properties in Georgia's main water reservoirs to further plan optimally and regulate water resources

  18. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  19. Yakima River species interactions studies annual report, 2000; ANNUAL

    International Nuclear Information System (INIS)

    Pearsons, Todd N.

    2001-01-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the ninth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with the chronology of ecological interactions that occur throughout a supplementation program, implementing NTT monitoring prescriptions for detecting potential impacts of hatchery supplementation, hatchery fish interactions, and monitoring fish predation indices. This report is organized into four chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 2000 and December 31, 2000 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns. Summaries of each of the chapters included in this report are described

  20. Multiple Changes in the Hydrologic Regime of the Yangtze River and the Possible Impact of Reservoirs

    Directory of Open Access Journals (Sweden)

    Feng Huang

    2016-09-01

    Full Text Available This paper investigates hydrologic changes in the Yangtze River using long-term daily stream flow records (1955–2013 collected from four flow gauging stations located from the upper to the lower reaches of the river. The hydrologic regime is quantified using the Indicators of Hydrologic Alteration, which statistically characterize hydrologic variation within each year. Scanning t-test is applied to analyze multiple changes in the hydrologic regime at different time scales. Then, coherency analysis is applied to identify common changes among different hydrologic indicators and across different reaches of the Yangtze River. The results point to various change patterns in the five components of hydrologic regime, including the magnitude of monthly water conditions, magnitude and duration of annual extreme water conditions, timing of annual extreme water conditions, frequency and duration of high and low pulses, and rate and frequency of water condition changes. The 32 hydrologic indicators feature multiple temporal-scale changes. Spatial variations can be observed in the hydrologic changes of the upper, middle, and lower reaches of the river. Common changes in different reaches consist of hydrologic indicators including the monthly flow in October and the low-flow indicators. The monthly flow in October is dominated by decreasing trends, while the monthly flows between January and March, the annual minimum 1/3/7/30/90-day flows, and the base flow index are characterized by increasing trends. Low pulse duration and total days of low pulses feature downward trends. The coherency analysis reveals significant relationships between the monthly flow in October and the low-flow indicators, indicating that reservoir regulation is an important factor behind the hydrologic changes.

  1. Mapping seepage through the River Reservoir Dam near Eagar, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Rollins, P.

    2005-06-30

    This article describes the actions taken to address an unusual amount of water seepage from the left abutment weir-box of the River Reservoir dam built in 1896 near Eagar, Arizona. Upon noting the seepage in March 2004, the operator, Round Valley Water Users Association, contacted the State of Arizona who funded the investigation and subsequent remediation activities through an emergency fund. The dam was originally built with local materials and did not include a clay core. It was modified at least four times. The embankment sits on basalt bedrock and consists of clayey soils within a rock-fill shell. AquaTrack technology developed by Willowstick Technologies was used to assess the deteriorating situation. AquaTrack uses a low voltage, low amperage audio-frequency electrical current to energize the groundwater or seepage. This made it possible to follow the path of groundwater between the electrodes. A magnetic field was created which made it possible to locate and map the field measurements. The measured magnetic field data was processed, contoured and correlated to other hydrogeologic information. This identified the extent and preferential flow paths of the seepage. The survey pinpointed the area with the greatest leakage in both the horizontal and vertical directions. Fluorescent dyes were also used for tracer work to confirm previous findings that showed a serious seepage problem. The water of the reservoir was lowered to perform remedial measures to eliminate the risk of immediate failure. Funding for a more permanent repair is pending. 10 figs.

  2. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    Science.gov (United States)

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to

  3. Heavy oil reservoirs recoverable by thermal technology. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  4. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high

  5. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, 1998.; ANNUAL

    International Nuclear Information System (INIS)

    2000-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and

  6. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    Science.gov (United States)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  7. Predictability of Western Himalayan river flow: melt seasonal inflow into Bhakra Reservoir in northern India

    Directory of Open Access Journals (Sweden)

    I. Pal

    2013-06-01

    Full Text Available Snowmelt-dominated streamflow of the Western Himalayan rivers is an important water resource during the dry pre-monsoon spring months to meet the irrigation and hydropower needs in northern India. Here we study the seasonal prediction of melt-dominated total inflow into the Bhakra Dam in northern India based on statistical relationships with meteorological variables during the preceding winter. Total inflow into the Bhakra Dam includes the Satluj River flow together with a flow diversion from its tributary, the Beas River. Both are tributaries of the Indus River that originate from the Western Himalayas, which is an under-studied region. Average measured winter snow volume at the upper-elevation stations and corresponding lower-elevation rainfall and temperature of the Satluj River basin were considered as empirical predictors. Akaike information criteria (AIC and Bayesian information criteria (BIC were used to select the best subset of inputs from all the possible combinations of predictors for a multiple linear regression framework. To test for potential issues arising due to multicollinearity of the predictor variables, cross-validated prediction skills of the best subset were also compared with the prediction skills of principal component regression (PCR and partial least squares regression (PLSR techniques, which yielded broadly similar results. As a whole, the forecasts of the melt season at the end of winter and as the melt season commences were shown to have potential skill for guiding the development of stochastic optimization models to manage the trade-off between irrigation and hydropower releases versus flood control during the annual fill cycle of the Bhakra Reservoir, a major energy and irrigation source in the region.

  8. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    Science.gov (United States)

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  9. 78 FR 42030 - Reservoirs at Headwaters of the Mississippi River; Use and Administration

    Science.gov (United States)

    2013-07-15

    ... Headwaters of the Mississippi River; Use and Administration AGENCY: U.S. Army Corps of Engineers, DoD. ACTION... proposing to amend the rules regarding use and administration of the reservoirs at the headwaters of the... Headwaters reservoirs containing minimum flow values that differ from those currently codified in the Code of...

  10. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The

  11. Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina.

    Science.gov (United States)

    Rigacci, Laura N; Giorgi, Adonis D N; Vilches, Carolina S; Ossana, Natalia Alejandra; Salibián, Alfredo

    2013-11-01

    The lower portion of the Reconquista River is highly polluted. However, little is known about the state of the high and middle basins. The aims of this work were to assess the water quality on the high and middle Reconquista River basins and to determinate if the presence of a reservoir in the river has a positive effect on the water quality. We conducted a seasonal study between August 2009 and November 2010 at the mouth of La Choza, Durazno, and La Horqueta streams at the Roggero reservoir--which receives the water from the former streams--at the origin of the Reconquista River and 17 km downstream from the reservoir. We measured 25 physical and chemical parameters, including six heavy metal concentrations, and performed a multivariate statistical analysis to summarize the information and allow the interpretation of the whole data set. We found that the Durazno and La Horqueta streams had better water quality than La Choza, and the presence of the reservoir contributed to the improvement of the water quality, allowing oxygenation of the water body and processing of organic matter and ammonia. The water quality of the Reconquista River at its origin is good and similar to the reservoir, but a few kilometers downstream, the water quality declines as a consequence of the presence of industries and human settlements. Therefore, the Roggero reservoir produces a significant improvement of water quality of the river, but the discharge of contaminants downstream quickly reverses this effect.

  12. A Study of Sedimentation at the River Estuary on the Change of Reservoir Storage

    Directory of Open Access Journals (Sweden)

    Iskahar

    2018-01-01

    Full Text Available Estuary of the river that leads to the reservoir has characteristics include: relatively flat, there is a change in the increase of wet cross-sectional area and backwater. The backwater will cause the flow velocity to be reduced, so that the grains of sediment with a certain diameter carried by the flow will settle in the estuary of the river. The purpose of this research is to know the distribution and sedimentation pattern at the river estuary that leads to the reservoir with the change of water level in the reservoir storage, so the solution can be found to remove / reduce sediment before entering the reservoir. The method used is the experimental, by making the physical model of the river estuary leading to the reservoir. This study expects a solution to reduce sedimentation, so that sedimentation can be removed / minimized before entering the reservoir. This research tries to apply bypass channel to reduce the sedimentation at the river estuary. Bypass channels can be applied to overcome sedimentation at the river estuary, but in order for the sediment to be removed optimally, it is necessary to modify the mouth of bypass channel and channel angle.

  13. The annual cycle of plutonium in the water column of a warm, monomictic reservoir

    International Nuclear Information System (INIS)

    Pinder, J.E. III; Alberts, J.J.; Bowling, J.W.; Nelson, D.M.; Orlandini, K.A.

    1992-01-01

    An annual cycle occurs in the 239,240 Pu inventories of the water column of Pond B, an 87-ha warm monomictic reservoir on the US Department of Energy's Savannah River Site in Barnwell Co., South Carolina. The pond has elevated concentrations of 238 Pu and 239,240 Pu in sediments due to releases from former reactor operations and continues to receive additional Pu input from atmospheric deposition. For surface waters, the 239,240 Pu inventory increases following turnover in November to a maximum in March followed by a decline until later summer when minimum inventories occur. For deeper waters, the 239,240 Pu inventories increase rapidly following turnover and reach maximum values in March. The inventories in deeper waters remain large from March until turnover. Maximum inventories for the entire water column occur in March with minimum inventories at turnover in October and November. Turnover results in a redistribution of Pu across water depth but no measurable Pu loss from the water column. Ratios of 238 Pu: 239,240 Pu indicate that the cycle involves primarily Pu from sediment sources with little influence from atmospheric sources. Thus, the cycle represents net remobilization of 239,240 Pu from the sediments to the water column during the oxic, holomictic portion of the year followed by a net loss of Pu from the water column once stratification occurs. (author)

  14. Reconstructing suspended sediment mercury contamination of a steep, gravel-bed river using reservoir theory

    Science.gov (United States)

    Skalak, Katherine; Pizzuto, James

    2014-01-01

    We use sediment ages and mercury (Hg) concentrations to estimate past and future concentrations in the South River, Virginia, where Hg was released between 1930 and 1950 from a manufacturing process related to nylon production. In a previous study, along a 40 km (25 mi) reach, samples were collected from 26 of 54 fine-grained deposits that formed in the lee of large wood obstructions in the channel and analyzed for grain size, Hg concentration, and organic content. We also obtained radiometric dates from six deposits. To create a history that reflects the full concentration distribution (which contains concentrations as high as 900 mg/kg [900 ppm]), here, we treat the deposits as a single reservoir exchanging contaminated sediments with the overlying water column, and assume that the total sediment mass in storage and the distribution of sediment ages are time invariant. We use reservoir theory to reconstruct the annual history of Hg concentration on suspended sediment using data from our previous study and new results presented here. Many different reconstructed histories fit our data. To constrain results, we use information from a well-preserved core (and our estimate of the total mass of Hg stored in 2007) to specify the years associated with the peak concentration of 900 mg/kg. Our results indicate that around 850 kg (1874 lb) of Hg was stored in the deposits between 1955 and 1961, compared to only 80 kg (176 lb) today. Simulations of future Hg remediation suggest that 100-yr timescales will be needed for the South River to remove Hg-contaminated sediments from the channel perimeter through natural processes.

  15. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  16. 78 FR 78717 - Reservoirs at Headwaters of the Mississippi River; Use and Administration

    Science.gov (United States)

    2013-12-27

    ... Headwaters of the Mississippi River; Use and Administration AGENCY: U.S. Army Corps of Engineers, DoD. ACTION... administration of the reservoirs at the headwaters of the Mississippi River by deleting from the Code of Federal... values that differ from those currently codified in the Code of Federal Regulations. Deleting all...

  17. Negligible contribution of reservoir dams to organic and inorganic transport in the lower Mimi River, Japan

    Science.gov (United States)

    Nukazawa, Kei; Kihara, Kousuke; Suzuki, Yoshihiro

    2017-12-01

    Rivers fulfill an essential ecological role by forming networks for material transport from upland forests to coastal areas. The way in which dams affect the organic and inorganic cycles in such systems is not well understood. Herein, we investigated the longitudinal profiles of the various components of the water chemistry across three cascade dams in Japan: the Yamasubaru Dam, Saigou Dam, and Ohuchibaru Dam, which are situated along the sediment-productive Mimi River in different flow conditions. We analyzed the following water quality components: suspended solids (SS), turbidity, total iron (TFe), dissolved iron (DFe), total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), humic substance (HS), and major ionic components (Na+, Mg2+, Ca2+, Cl-, NO3-, and SO42-) in the downstream channels of the three dams during the low-intermediate-flow and high-flow events from 2012 to 2014. We estimated hourly loads of each component using hourly turbidity data and discharge data (i.e., L-Q model) separately, and the results are integrated to estimate the annual fluxes. The annual fluxes between the methods were compared to verify predictability of the conventional L-Q models. Annual flux of TOC, TN, DFe, and HS estimated by the turbidity displayed similar values, whereas the flux of SS, TFe, and TP tended to increase downstream of the dams. Among the dams, estimated flux proportions for TP and TFe were higher during high-flow events (74%-94%). Considering geographic conditions (e.g., absence of major tributary between the dams), the result implies that accumulated TP and TFe in the reservoirs may be flushed and transported downstream with SS over the short height dams during flood events. Assuming this process, the reservoir dams probably make only a fractional contribution to the organic and inorganic transport in the catchment studied. The percent flux errors for SS, TFe, and TP fluxes ranged from -7.2% to -97% (except for the TP flux in 2013), which

  18. Biogeochemistry of mercury in a river-reservoir system: impact of an inactive chloralkali plant on the Holston River-Cherokee Reservoir, Virginia and Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, S. G.; Lindberg, S. E.; Turner, R. R.; Huckabee, J. W.; Strand, R. H.; Lund, J. R.; Andren, A. W.

    1980-08-01

    Elevated mercury concentrations in fish species from the North Fork of the Holston River were observed in the early 1970's. The source of the mercury was a chloralkali plant which had ceased operation in 1972. Mercury continues to be released to the river from two large (approx. 40-ha) waste disposal ponds at the plant site. This report presents results of a study of the emission of mercury to the environment from the abandoned waste ponds and of the distribution of mercury in water, sediment, and biota of the Holston River-Cherokee Reservoir System in Virginia and eastern Tennessee.

  19. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  20. A Study of Sedimentation at the River Estuary on the Change of Reservoir Storage

    OpenAIRE

    Iskahar; Suripin; Isdiyana

    2018-01-01

    Estuary of the river that leads to the reservoir has characteristics include: relatively flat, there is a change in the increase of wet cross-sectional area and backwater. The backwater will cause the flow velocity to be reduced, so that the grains of sediment with a certain diameter carried by the flow will settle in the estuary of the river. The purpose of this research is to know the distribution and sedimentation pattern at the river estuary that leads to the reservoir with the change of ...

  1. Malheur River Basin cooperative bull trout/redband trout research project, annual report FY 1999; ANNUAL

    International Nuclear Information System (INIS)

    Schwabe, Lawrence; Tiley, Mark

    2000-01-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99

  2. Characterization of floodflows along the Arkansas River without regulation by Pueblo Reservoir, Portland to John Martin Reservoir, Southeastern Colorado

    Science.gov (United States)

    Little, John R.; Bauer, Daniel P.

    1981-01-01

    The need for a method for estimating flow characteristics of flood hydrographs between Portland, Colo., and John Martin Reservoir has been promoted with the construction of the Pueble Reservoir. To meet this need a procedure was developed for predicting floodflow peaks, traveltimes, and volumes at any point along the Arkansas River between Portland and John Martin Reservoir without considering the existing Pueble Reservoir detention effects. A streamflow-routing model was calibrated initially and then typical flood simulations were made for the 164.8-mile study reach. Simulations were completed for varying magnitudes of floods and antecedent streamflow conditions. Multiple regression techniques were then used with simulation results as input to provide predictive relationships for food peak, volume, and traveltime. Management practices that may be used to benefit water users in the area include providing methods for the distribution and allotment of the flood waters upstream of Portland to different downstream water users according to Colorado water law and also under the Arkansas River Compact. (USGS)

  3. Calibration of Seismic Attributes for Reservoir Characterization; ANNUAL

    International Nuclear Information System (INIS)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-01

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines

  4. Dworshak Reservoir Kokanee Population Monitoring, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Maiolie, Melo; Stark, Eric

    2003-03-01

    Onsite testing of strobe lights was conducted to determine if they repelled kokanee Oncorhynchus nerka away from the turbine intakes at Dworshak Dam. We tested a set of nine strobe lights flashing at a rate of 360 flashes/min placed near the intake of a 90 mW turbine. A split-beam echo sounder was used to determine the effect of strobe light operation on fish density (thought to be mostly kokanee) in front of the turbine intakes. On five nights between December 2001 and January 2002, fish density averaged 110 fish/ha when no lights were flashing. Mean density dropped to 13 fish/ha when the strobe lights were turned on during five additional nights of sampling. This 88% decline in density was significant at the P = 0.009 level of significance based on a paired Student's t test. There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicate that a single set of nine lights may be sufficient to repel kokanee from a turbine intake during the night. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2001. Estimated abundance of kokanee has continued to increase since the spring of 1996 when high entrainment losses occurred. Based on hydroacoustic surveys, we estimated 3,276,000 kokanee in Dworshak Reservoir in early July 2001. This included 2,069,000 age-0 kokanee (90% CI {+-} 16.4%), 801,000 age-1 kokanee (90% CI {+-} 17.8%), and 406,000 age-2 kokanee (90% CI {+-} 20.5%). Entrainment sampling was also conducted with split-beam hydroacoustics a minimum of one continuous 24 h period per month. The highest entrainment rates occurred at night with lower discharges and shallower intake depths. Fish movement patterns suggested that they swam 'at will' in front of the intakes and may have chosen to move into the turbine intakes. Based on monthly hydroacoustic sampling in the forebay, we found that kokanee density was low in July and August during a period of high

  5. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Connolly, Patrick J.

    2001-01-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  6. Impact of the operation of cascade reservoirs in upper Yangtze River on hydrological variability of the mainstream

    Science.gov (United States)

    Changjiang, Xu; Dongdong, Zhang

    2018-06-01

    As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.

  7. Principal component analysis to assess the composition and fate of impurities in a large river-embedded reservoir: Qingcaosha Reservoir.

    Science.gov (United States)

    Ou, Hua-Se; Wei, Chao-Hai; Deng, Yang; Gao, Nai-Yun

    2013-08-01

    Qingcaosha Reservoir (QR) is the largest river-embedded reservoir in east China, which receives its source water from the Yangtze River (YR). The temporal and spatial variations in dissolved organic matter (DOM), chromophoric DOM (CDOM), nitrogen, phosphorus and phytoplankton biomass were investigated from June to September in 2012 and were integrated by principal component analysis (PCA). Three PCA factors were identified: (1) phytoplankton related factor 1, (2) total DOM related factor 2, and (3) eutrophication related factor 3. Factor 1 was a lake-type parameter which correlated with chlorophyll-a and protein-like CDOM (r = 0.793 and r = 0.831, respectively). Factor 2 was a river-type parameter which correlated with total DOC and humic-like CDOM (r = 0.668 and r = 0.726, respectively). Factor 3 correlated with total nitrogen and phosphorus (r = 0.864 and r = 0.621, respectively). The low flow speed, self-sedimentation and nutrient accumulation in QR resulted in increases in PCA factor 1 scores (phytoplankton biomass and derived CDOM) in the spatial scale, indicating a change of river-type water (YR) to lake-type water (QR). In summer, the water temperature variation induced a growth-bloom-decay process of phytoplankton combined with the increase of PCA factor 2 (humic-like CDOM) in the QR, which was absent in the YR.

  8. PRELIMINARY RESULTS OF QUALITY STUDY OF WATER FROM SMALL MICHALICE RESERVOIR ON WIDAWA RIVER

    Directory of Open Access Journals (Sweden)

    Mirosław Wiatkowski

    2014-10-01

    Full Text Available The paper presents an analysis of water quality of the small Michalice reservoir. A preliminary assessment of the reservoir water quality and its usability was made. The quality of water in the reservoir is particularly important as the main functions of the reservoir are agricultural irrigation, recreation and flood protection . The following physico-chemical parameters of the Widawa River were analyzed: NO3 -, NO2 -, NH4 +, PO4 3-, COD, water temperature, pH and electrolytic conductivity. Main descriptive statistical data were presented for the analyzed water quality indicators. The research results indicate that the reservoir contributed to the reduced concentrations of the following water quality indicators: nitrates, nitrites, phosphates, electrolytic conductivity and COD (in the outflowing water – St.3 in comparison to the water flowing into the reservoir – St.1. In the water flowing out of the Psurów reservoir higher values of the remaining indicators were observed if compared with the inflowing water. It was stated, as well, that analised waters are not vulnerable to nitrogen compounds pollution coming from the agricultural sources and are eutrophic. For purpose obtaining of the précised information about condition of Michalice reservoir water purity as well as river Widawa it becomes to continue the hydrological monitoring and water quality studies.

  9. Reservoir impacts downstream in highly regulated river basins: the Ebro delta and the Guadalquivir estuary in Spain

    Directory of Open Access Journals (Sweden)

    M. J. Polo

    2016-05-01

    Full Text Available Regulation by reservoirs affects both the freshwater regime and the sediment delivery at the area downstream, and may have a significant impact on water quality in the final transitional water bodies. Spain is one the countries with more water storage capacity by reservoirs in the world. Dense reservoir networks can be found in most of the hydrographic basins, especially in the central and southern regions. The spatial redistribution of the seasonal and annual water storage in reservoirs for irrigation and urban supply, mainly, has resulted in significant changes of water flow and sediment load regimes, together with a fostered development of soil and water uses, with environmental impacts downstream and higher vulnerability of these areas to the sea level rise and drought occurrence. This work shows these effects in the Guadalquivir and the Ebro River basins, two of the largest regulated areas in Spain. The results show a 71 % decrease of the annual freshwater input to the Guadalquivir River estuary during 1930–2014, an increase of 420 % of the irrigated area upstream the estuary, and suspended sediment loads up to 1000 % the initial levels. In the Ebro River delta, the annual water yield has decreased over a 30 % but, on the contrary, the big reservoirs are located in the main stream, and the sediment load has decreased a 99 %, resulting in a delta coastal regression up to 10 m per year and the massive presence of macrophytes in the lower river. Adaptive actions proposed to face these impacts in a sea level rise scenario are also analyzed.

  10. Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River

    International Nuclear Information System (INIS)

    Rieman, B.E.; Beamesderfer, R.C.; Vigg, S.; Poe, T.P.

    1991-01-01

    The authors estimated the loss of juvenile salmonids Oncorhynchus spp. to predation by northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, and smallmouth bass Micropterus dolomieu in John Day Reservoir during 1983-1986. Their estimates were based on measures of daily prey consumption, predator numbers, and numbers of juvenile salmonids entering the reservoir during the April-August period of migration. They estimated the mean annual loss was 2.7 million juvenile salmonids. Northern squawfish were responsible for 78% of the total loss; walleyes accounted for 13% and smallmouth bass for 9%. Twenty-one percent of the loss occurred in a small area immediately below McNary Dam at the head of John Day Reservoir. The authors estimated that the three predator species consumed 14% of all juvenile salmonids that entered the reservoir. Mortality changed by month and increased late in the migration season. Monthly mortality estimates ranged from 7% in June and 61% in August. Mortality from predation was highest for chinook salmon O. tshawytscha, which migrated in July and August. Despite uncertainties in the estimates, it is clear that predation by resident fish predators can easily account for previously explained mortality of out-migrating juvenile salmonids. Alteration of the Columbia River by dams and a decline in the number of salmonids could have increased the fraction of mortality caused by predation over what is was in the past

  11. Comparative water quality assessment between a young and a stabilized hydroelectric reservoir in Aliakmon River, Greece.

    Science.gov (United States)

    Samiotis, Georgios; Trikoilidou, Eleni; Tsikritzis, Lazaros; Amanatidou, Elisavet

    2018-03-20

    In this work, a comparative study on the water quality characteristics of two in-line water reservoirs (artificial lakes) in Aliakmon River (Western Macedonia, Greece) is performed. Polyfytos Reservoir and Ilarion Reservoir were created in 1975 and 2012 respectively, in order to serve the homonymous hydroelectric stations. In young artificial lakes, severe deterioration of water quality may occur; thus, the monitoring and assessment of their water quality characteristics and their statistical interpretation are of great importance. In order to evaluate any temporal or spatial variations and to characterize water quality of these two in-line water reservoirs, water quality data from measurements conducted from 2012 to 2015 were statistically processed and interpreted by using a modified National Sanitation Foundation water quality index (WQI). The water physicochemical characteristics of the two reservoirs were found to be generally within the legislation limits, with relatively small temporal and spatial variations. Although Polyfytos Reservoir showed no significant deviations of its water quality, Ilarion Reservoir exhibited deviations in total Kjeldahl nitrogen, nitrite nitrogen, total suspended solids, and turbidity due to the inundated vegetation decomposition. The conducted measurements and the use of the modified NSFWQI revealed that during the inundation period of Ilarion Reservoir, its water quality was "moderate" and that the deviations were softened through time, leading to "good" water quality during its maturation period. Three years since the creation of Ilarion Reservoir, water quality does not match that of Aliakmon River (feeding water) or that of the stabilized reservoir (Polyfytos Reservoir), whose quality is characterized as "high." The use of a WQI, such as the proposed modified NSFWQI, for evaluating water quality of each sampling site and of an entire water system proved to be a rapid and relatively accurate assessment tool.

  12. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    Science.gov (United States)

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and

  13. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  14. Ichthyofauna species of the upper Kaniv reservoir and mouth area of the Desna River

    Directory of Open Access Journals (Sweden)

    Y. M. Sytnik

    2012-07-01

    Full Text Available It was studied the fish species of the upper part of Kaniv reservoir (Kyiv water area and the mouth area of the Desna River. The found and preceding data of ichthyological research were compared. The changes in the fish population were analyzed. Two new invasive alien fish species were discovered in the Kaniv reservoir and Desna River: Amur sleeper (Perccotus glenii and Stone moroco (Pseudorasdora parva. Generally the ichthyofauna composition of these water bodies was supplemented with seven unmarketable and dirt species.

  15. Reservoir operation schemes for water pollution accidents in Yangtze River

    Directory of Open Access Journals (Sweden)

    Xiao-kang Xin

    2012-03-01

    Full Text Available After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.

  16. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Marshall Ford Dam and Reservoir... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford Dam...

  17. Environmental monitoring at the Savannah River Plant. Annual report, 1983

    International Nuclear Information System (INIS)

    Ashley, C.; Padezanin, P.C.; Zeigler, C.C.

    1984-06-01

    This annual report presents data for 1983 radioactivity and radioisotope concentrations in the air, water, plants, and animals of the Savannah River Plant. Additional monitoring was performed for chemical contaminants such as mercury and chlorocarbons. All concentrations were within applicable federal and state limits or not detectable with state-of-the-art monitoring equipment

  18. Influence of the hydrotechnical structures on the changes of total suspension transport - illustrated by the example of the Koronowski Reservoir on Brda River

    Science.gov (United States)

    Szatten, Dawid; Märker, Michael

    2015-04-01

    Artificial water reservoirs fulfil many functions. The most important are: flood control, retency, energetics and recreation. All of them play a significant role in water management. Division of the Brda River in the 60's of the twentieth century and construction of a dam had influence on the circulation of matter in the whole water ecosystem. Koronowski Reservoir, also known as Lake Koronowskie, is located in the central Poland. It was created by soil dam on the 49.115 km of the Brda River. The surface, while normal backing up level - 81,5 m above sea level, amounts to 16.0 km2 and a volume of 81.0 million m3 which classifies Koronowski Reservoir in fifteenth place in the country. Construction of the dam made it possible to obtain a back up of the Brda River to 18 m. Water outflow by lateral canal to Samociążek caused an additional 7 m water fall. Total 25 m difference in levels allows to produce annual average of 40.841 GWh of electricity which classifies power plant Koronowo in the top ten producents of energy from natural sources in Poland. Water, which is not used for creating energy (59.4 million m3) is the base for development of water recreation on Koronowski Reservoir. The research showed that the artificial reservoirs reduce the amount of suspended load in the stream channel below the reservoir. Research included: making the actual detailed bathymetric plan, in order to calculate the volume of water stored in the reservoir, carrying on hydrometric observation (measurement of water flow) on the inflows and outflows from the reservoir in order to specify the hydrological balance, measuring the concentration of indicators in order to identify the suspended load in the water, specifying the balance of suspended material in Koronowski Reservoir in full hydrological year. On the basis of researches of Koronowski Reservoir it can be concluded that: Koronowski Reservoir reduces suspended material concentrations in the water (the overall amount of total

  19. Spawning of migratory fish species between two reservoirs of the upper Uruguay River, Brazil

    Directory of Open Access Journals (Sweden)

    David A. Reynalte-Tataje

    Full Text Available This study investigated the migratory fish spawning within the reservoirs of the Machadinho and Itá dams (upper Uruguay River, Brazil and its relationship to environmental variables. Sampling was conducted in the lotic region of the river in two sites between the dams' reservoirs: Uruguay (main river and Ligeiro (tributary. Sampling included nine consecutive reproductive periods (RP spanning the period from 2001 to 2010 and was conducted at night on the water surface using cylindrical-conical plankton nets (0.5 mm mesh; environmental variables were also recorded. The spawning of the migratory species Salminus brasiliensis, Prochilodus lineatus, and Steindachneridion scriptum was registered: S. brasiliensis and P. lineatus spawned in the tributary river at the end of spring/beginning of summer, during flooding and during periods of high water temperature. Steindachneridion scriptum spawned in the main river at the beginning of spring. The study showed that S. brasiliensis, P. lineatus, and S. scriptum are able to spawn in small lotic river stretches within two reservoirs, but only under very specific and not common environmental conditions.

  20. Downstream passage of fish larvae and eggs through a small-sized reservoir, Mucuri river, Brazil

    Directory of Open Access Journals (Sweden)

    Paulo S. Pompeu

    2011-12-01

    Full Text Available In South America, one important symptom of the failure of fish passages to sustain fish migratory recruitment is the inability of eggs and larvae to reach the nurseries. This is especially so when the breeding areas are located upstream of a reservoir, and the floodplain is downstream of the dam. Therefore, the transport of fish larvae and eggs across reservoir barriers is a key factor in the development of effective conservation strategies. In this paper, we evaluate the potential for migratory fish larvae and egg transportation across a small size reservoir in eastern Brazil. We sampled fish daily between 15th October 2002 and 15th February 2003 (spawning period in the Mucuri River, immediately upstream of the reservoir and downstream of the Santa Clara Power Plant dam. Our study was the first to indicate the possibility of successful larval passage through the reservoir of a hydroelectric reservoir and dam in South America, and showed that the passage of migratory fish larvae was associated significantly with residence time of water in the reservoir. The relatively short water residence time and elevated turbidity of the Santa Clara's reservoir waters during the rainy season certainly contributed to the successful passage, and can be considered as key factors for a priori evaluations of the feasibility of a downstream larval passage.

  1. Reservoir release patterns for hydropower operations at the Aspinall Unit on the Gunnison River, Colorado

    International Nuclear Information System (INIS)

    Yin, S.C.L.; Sedlacek, J.

    1995-05-01

    This report presents the development of reservoir release patterns for the Aspinall Unit, which includes Blue Mesa, Morrow Point, and Crystal Reservoirs on the Gunnison River in Colorado. Release patterns were assessed for two hydropower operational scenarios--seasonally adjusted steady flows and seasonally adjusted high fluctuating flows--and three representative hydrologic years--moderate (1987), dry (1989), and wet (1983). The release patterns for the operational scenarios were developed with the aid of monthly, daily, and hourly reservoir operational models, which simulate the linked operation of the three Aspinall Unit reservoirs. Also presented are reservoir fluctuations and downstream water surface elevations corresponding to the reservoir release patterns. Both of the hydropower operational scenarios evaluated are based on the ecological research flows proposed by the US Fish and Wildlife Service for the Aspinall Unit. The first operational scenario allows only seasonally adjusted steady flows (no hourly fluctuations at any dam within one day), whereas the second scenario permits high fluctuating flows from Blue Mesa and Morrow Point Reservoirs during certain times of the year. Crystal Reservoir would release a steady flow within each day under both operational scenarios

  2. Analysis of fishing activity in the Itá reservoir, Upper Uruguay River, in the period 2004-2009

    Directory of Open Access Journals (Sweden)

    . Schork

    Full Text Available This study characterized fishing activity in the reservoir of the Hydroelectric Power Plant of Itá in Brazil. The reservoir is located in the Upper Uruguay River, which forms the border between the states of Santa Catarina and Rio Grande do Sul. To analyze fishing activity and the composition of ichthyofauna in the reservoir after damming, questionnaires were administered to fishermen in the region between 2004 and 2009. The results showed that fishing in the Itá reservoir can be classified as a subsistence activity performed on small vessels and usually involving the use of drift nets and handlines. Between 2004 and 2009, 292,780.10 kg worth of fish were captured, with an average annual productivity of 3.46 kg ha−1 yr−1. We recorded the highest values of catch per unit effort in 2006, with an annual average of 9.69 kg fisherman−1 day−1. A total of 27 morphospecies were captured during the sample period; carp, traíra, mandi and jundiá together accounted for almost 60% of the catch. This finding indicates that fishing is centered on the capture of sedentary and short-distance migratory species. Despite their lower abundance, long-distance migratory species continue to be captured. The case of the piracanjuba, a long-distance migratory species reintroduced to the region in 2004 and still present in the catches, is particularly noteworthy. Regarding the fishermen's socioeconomic profile, all were men, most of who have engaged in the activity for more than eleven years, have a low educational level, fish with the aid of family members and list agriculture as their main economic activity.

  3. Analysis of fishing activity in the Itá reservoir, Upper Uruguay River, in the period 2004-2009.

    Science.gov (United States)

    Schork, G; Hermes-Silva, S; Zaniboni-Filho, E

    2013-08-01

    This study characterized fishing activity in the reservoir of the Hydroelectric Power Plant of Itá in Brazil. The reservoir is located in the Upper Uruguay River, which forms the border between the states of Santa Catarina and Rio Grande do Sul. To analyze fishing activity and the composition of ichthyofauna in the reservoir after damming, questionnaires were administered to fishermen in the region between 2004 and 2009. The results showed that fishing in the Itá reservoir can be classified as a subsistence activity performed on small vessels and usually involving the use of drift nets and handlines. Between 2004 and 2009, 292,780.10 kg worth of fish were captured, with an average annual productivity of 3.46 kg ha(-1) yr(-1). We recorded the highest values of catch per unit effort in 2006, with an annual average of 9.69 kg fisherman(-1) day(-1). A total of 27 morphospecies were captured during the sample period; carp, traíra, mandi and jundiá together accounted for almost 60% of the catch. This finding indicates that fishing is centered on the capture of sedentary and short-distance migratory species. Despite their lower abundance, long-distance migratory species continue to be captured. The case of the piracanjuba, a long-distance migratory species reintroduced to the region in 2004 and still present in the catches, is particularly noteworthy. Regarding the fishermen's socioeconomic profile, all were men, most of who have engaged in the activity for more than eleven years, have a low educational level, fish with the aid of family members and list agriculture as their main economic activity.

  4. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    Science.gov (United States)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  5. Occurrence, Distribution, and Risk Assessment of Antibiotics in a Subtropical River-Reservoir System

    Directory of Open Access Journals (Sweden)

    Yihan Chen

    2018-01-01

    Full Text Available Antibiotic pollutions in the aquatic environment have attracted widespread attention due to their ubiquitous distribution and antibacterial properties. The occurrence, distribution, and ecological risk assessment of 17 common antibiotics in this study were preformed in a vital drinking water source represented as a river-reservoir system in South China. In general, 15 antibiotics were detected at least once in the watershed, with the total concentrations of antibiotics in the water samples ranging from 193.6 to 863.3 ng/L and 115.1 to 278.2 μg/kg in the sediment samples. For the water samples, higher rain runoff may contribute to the levels of total concentration in the river system, while perennial anthropic activity associated with the usage pattern of antibiotics may be an important factor determining similar sources and release mechanisms of antibiotics in the riparian environment. Meanwhile, the reservoir system could act as a stable reactor to influence the level and composition of antibiotics exported from the river system. For the sediment samples, hydrological factor in the reservoir may influence the antibiotic distributions along with seasonal variation. Ecological risk assessment revealed that tetracycline and ciprofloxacin could pose high risks in the aquatic environment. Taken together, further investigations should be performed to elaborate the environmental behaviors of antibiotics in the river-reservoir system, especially in drinking water sources.

  6. Application of remote sensing methods for detection of water pollution degree in rivers and water reservoirs

    International Nuclear Information System (INIS)

    Krzyworzeka, M.; Piasek, Z.

    1997-01-01

    The paper presents non-contact registration methods of the electromagnetic radiation which can be used for the detection of water pollution in rivers and water reservoirs. These methods include aerial photographs, satellite images and thermograms. The satellite images need reprocessing to obtain the mutual comparability of the images from various multispectral scanners (TM and MSS)

  7. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin

    Science.gov (United States)

    Aquatic ecosystems are a globally significant source of nitrous oxide (N2O), a potent greenhouse gas, but estimates are largely based on studies conducted in streams and rivers with relatively less known about N2O dynamics in lakes and reservoirs. Due to long water residence tim...

  8. Research of processes of eutrophication of Teteriv river reservoir based on neural networks mass

    Directory of Open Access Journals (Sweden)

    Yelnikova T.A.

    2016-12-01

    Full Text Available Methods of process control of eutrophication in water are based on water sampling, handling them in the laboratory and calculation of indexes of pond ecosystem. However, these methods have some significant drawbacks associated with using manual labor. The method of determining of the geometric parameters of phytoplankton through the use of neural networks for processing water samples is developed. Due to this method eutrophic processes of reservoirs of river Teteriv are investigated. A comparative analysis of eutrophic processes of reservoirs "Denyshi" and “Vidsichne” intake during 2014-2015 years are given. The differences between qualitative and quantitative composition of phytoplankton algae in two reservoirs of the river Teteriv used for water supply of Zhitomir city area are found out. The influence of exogenous and endogenous factors on the expansion of phytoplankton is researched. Research results can be used for monitoring and forecasting of ecological state of water for household purposes, used for water supply of cities.

  9. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    Directory of Open Access Journals (Sweden)

    J. F. Salazar

    2018-03-01

    Full Text Available Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land–atmosphere interactions (mainly precipitation recycling that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  10. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    Science.gov (United States)

    Salazar, Juan Fernando; Villegas, Juan Camilo; María Rendón, Angela; Rodríguez, Estiven; Hoyos, Isabel; Mercado-Bettín, Daniel; Poveda, Germán

    2018-03-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land-atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  11. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant.

    Science.gov (United States)

    Dranguet, P; Cosio, C; Le Faucheur, S; Hug Peter, D; Loizeau, J-L; Ungureanu, V-Gh; Slaveykova, V I

    2017-05-24

    Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na + , Ca 2+ , Cl - and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO 3 - , SO 4 2- , DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.

  12. Land use structures fish assemblages in reservoirs of the Tennessee River

    Science.gov (United States)

    Miranda, Leandro E.; Bies, J. M.; Hann, D. A.

    2015-01-01

    Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.

  13. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    Science.gov (United States)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  14. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    Science.gov (United States)

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow

  15. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river-reservoir system.

    Science.gov (United States)

    Jiang, Xiaoliang; Xiong, Ziqian; Liu, Hui; Liu, Guihua; Liu, Wenzhi

    2017-01-01

    The majority of rivers in the world have been dammed, and over 45,000 large reservoirs have been constructed for multiple purposes. Riparian and reservoir shorelines are the two most important wetland types in a dammed river. To date, few studies have concerned the heavy metal pollution in wetland soils of these river-reservoir systems. In this study, we measured the concentrations of ten heavy metals (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) in surface soils collected from riparian and reservoir shorelines along the Han River in different seasons. Our results found that the Co, Cu, and Ni concentrations in riparian wetlands were significantly lower than those in reservoir shorelines. In riparian wetlands, only soil Sr concentration significantly increased after summer and autumn submergence. Multivariate statistical analyses demonstrated that Ba and Cd might originate from industrial and mining sources, whereas Sr and Mn predominantly originated from natural rock weathering. The ecological risk assessment analysis indicated that both riparian and reservoir shorelines along the Han River in China exhibited a moderate ecological risk in soil heavy metals. The upper Han River basin is the water resource area of China's Middle Route of the South-to-North Water Transfer Project. Therefore, to control the contamination of heavy metals in wetland soils, more efforts should be focused on reducing the discharge of mining and industrial pollutants into the riparian and reservoir shorelines.

  16. Distribution and geochemistry of selected trace elements in the Sacramento River near Keswick Reservoir

    Science.gov (United States)

    Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.

    2012-01-01

    The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67. km from Keswick Dam.The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250m 3/s (cubic meters per second), even flows as low as 0.3m 3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow.The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100. ?? 2012.

  17. Smolt monitoring at the head of lower granite reservoir and lower Granite Dam, annual report 1999 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife; Idaho. Dept. of Fish and Game.

    2001-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris

  18. Multiscale Modeling of Radioisotope Transfers in Watersheds, Rivers, Reservoirs and Ponds of Fukushima Prefecture

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Nanba, K.; Wakiyama, Y.; Konoplev, A.; Onda, Y.; Gallego, E.; Papush, L.; Maderych, V.

    2015-12-01

    The highest densities of the radioisotopes in fallout from the Fukushima Daiichi NPP in March 2011 were measured at the north eastern part of Fukushima Prefecture. The post-accidental aquatic transfer of cesium -134/137 includes multiscale processes: wash-off from the watersheds in solute and with the eroded soil, long-range transport in the rivers, deposition and resuspension of contaminated sediments in reservoirs and floodplains. The models of EU decision support system RODOS are used for predicting dynamics of 137Cs in the Fukushima surface waters and for assessing efficiency of the remediation measures. The transfer of 137Cs through the watershed of Niida River was simulated by DHSVM -R model that includes the modified code of the distributed hydrological and sediment transport model DHSVM (Lettenmayer, Wigmosta et al.) and new module of radionuclide transport. DHSMV-R was tested by modelling the wash-off from the USLE experimental plots in Fukushima prefecture. The model helps to quantify the influence of the differentiators of Fukushima and Chernobyl watersheds, - intensity of extreme precipitation and steepness of watershed, on the much higher values of the ratio "particulated cesium /soluted cesium" in Fukushima rivers than in Chernobyl rivers. Two dimensional model COASTOX and three dimensional model THREETOX are used to simulate the fate of 137Cs in water and sediments of reservoirs in the Manogawa River, Otagawa River, Mizunashigawa River, which transport 137Cs from the heavy contaminated watersheds to the populated areas at the Pacific coast. The modeling of the extreme floods generated by typhoons shows the resuspension of the bottom sediments from the heavy contaminated areas in reservoirs at the mouths of inflowing rivers at the peaks of floods and then re-deposition of 137Cs downstream in the deeper areas. The forecasts of 137Cs dynamics in bottom sediments of the reservoirs were calculated for the set of the scenarios of the sequences of the high

  19. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  20. Transport and accumulation of radionuclides and stable elements in a Missouri River Reservoir

    Science.gov (United States)

    Callendar, Edward; Robbins, John A.

    1993-01-01

    Several long sediment cores from the Cheyenne River Embayment of Lake Oahe, a 250-km-long Missouri River reservoir in South Dakota, have been analyzed for radionuclides and stable elements. The combination of fine-scale sampling and rapid sedimentation produces radionuclide distributions that can be used to estimate the detailed chronology of particle transport processes in the Oahe reservoir system. A self-consistent and quantitative treatment of the 137Cs data suggests processes to which characteristic times may be associated. Times that characterize system-wide processes include (1) an integration time of several years reflecting retention of the sediment-bound tracer in regions within or external to the reservoir, (2) a relaxation time of approximately 15 years reflecting a decreasing rate of sediment accumulation ascribed to shoreline stabilization, (3) a time of a few months characterizing the breadth of riverine signatures in cores due to integration effects in the Cheyenne River system and deltaic deposits, and (4) times of a few years associated with propagation of riverine load signatures along the embayment. The distribution of total sedimentary arsenic confirms the validity of the variable sedimentation model. In 1977, a tailings retention facility was built at the Homestake Mine site, and the unrestricted input of As ceased. As a result of this remedial action, the concentration of sedimentary As decreased dramatically. In the upper section of the core, above the depth represented by the year 1976, the concentration of As decreases tenfold. In this same core the distribution of lithologically discriminating chemical elements, calcium and vanadium, relate to major flow events in the Cheyenne River basin. Because there is minimal diagenesis of chemical constituents in these rapidly accumulating sediments, stable element signatures, in addition to radiotracers, may be used to reconstruct hydrologic events in drainage basins that contribute sediment to

  1. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali

    2007-12-01

    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  2. VIDRARU RESERVOIR, ROMANIA. ENVIRONMENTAL IMPACT OF THE HYDROTEHNICAL CONSTRUCTIONS ON THE UPPER COURSE OF ARGES RIVER

    Directory of Open Access Journals (Sweden)

    Laura Ana MITITELU

    2010-12-01

    Full Text Available Having an important hydrographic system, with a significant discharge potential and being located in a place that has all the forms of relief, the basin Arges is, at present, one of the most complex hydroelectric facilities from all the rivers with reservoirs in the country. Vidraru reservoir is the biggest of its 11 reservoirs. The information (data about the management of the water in Walachia dates from the year 1576, and the oldest writing about protection against floods is known as the “Ipsilantis canal”, which stated that the big waters of Dambovita river were deviated at Lunguletu in the riverbed of Ciorogarla rivulet and dates from 1774.The effects caused by the hydrotehnical constructions on the environment are numerous and profound, both positive and negative. In this essay, the analysis of the environmental impact of the hydrotehnical facilities on Arges River is made from two perspectives. The first method of analysis is the Water Directive 2000/60 and the second method is basd on a SWOT analysis, a method taken from the economy, but very efficient in establishing the current state, and also the perpective of this environemental impact.

  3. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  4. Stochastic structure of annual discharges of large European rivers

    Directory of Open Access Journals (Sweden)

    Stojković Milan

    2015-03-01

    Full Text Available Water resource has become a guarantee for sustainable development on both local and global scales. Exploiting water resources involves development of hydrological models for water management planning. In this paper we present a new stochastic model for generation of mean annul flows. The model is based on historical characteristics of time series of annual flows and consists of the trend component, long-term periodic component and stochastic component. The rest of specified components are model errors which are represented as a random time series. The random time series is generated by the single bootstrap model (SBM. Stochastic ensemble of error terms at the single hydrological station is formed using the SBM method. The ultimate stochastic model gives solutions of annual flows and presents a useful tool for integrated river basin planning and water management studies. The model is applied for ten large European rivers with long observed period. Validation of model results suggests that the stochastic flows simulated by the model can be used for hydrological simulations in river basins.

  5. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    Science.gov (United States)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of

  6. Games between stakeholders and the payment for ecological services: evidence from the Wuxijiang River reservoir area in China

    Directory of Open Access Journals (Sweden)

    Lin Shu

    2018-03-01

    Full Text Available A gambling or “game” phenomenon can be observed in the complex relationship between sources and receptors of ecological compensation among multiple stakeholders. This paper investigates the problem of gambling to determine payment amounts, and details a method to estimate the ecological compensation amount related to water resources in the Wuxijiang River reservoir area in China. Public statistics and first-hand data obtained from a field investigation were used as data sources. Estimation of the source and receptor amount of ecological compensation relevant to the water resource being investigated was achieved using the contingent valuation method (CVM. The ecological compensation object and its benefit and gambling for the Wuxijiang River water source area are also analyzed in this paper. According to the results of a CVM survey, the ecological compensation standard for the Wuxijiang River was determined by the CVM, and the amount of compensation was estimated. Fifteen blocks downstream of the Wuxijiang River and 12 blocks in the water source area were used as samples to administer a survey that estimated the willingness to pay (WTP and the willingness to accept (WTA the ecological compensation of Wuxijiang River for both nonparametric and parametric estimation. Finally, the theoretical value of the ecological compensation amount was estimated. Without taking other factors into account, the WTP of residents in the Wuxi River water source was 297.48 yuan per year, while the WTAs were 3864.48 yuan per year. The theoretical standard of ecological compensation is 2294.39–2993.81 yuan per year. Under the parameter estimation of other factors, the WTP of residents in the Wuxi River water source area was 528.72 yuan per year, while the WTA was 1514.04 yuan per year. The theoretical standard of ecological compensation is 4076.25–5434.99 yuan per year. The main factors influencing the WTP ecological compensation in the Wuxi River basin are

  7. Games between stakeholders and the payment for ecological services: evidence from the Wuxijiang River reservoir area in China.

    Science.gov (United States)

    Shu, Lin

    2018-01-01

    A gambling or "game" phenomenon can be observed in the complex relationship between sources and receptors of ecological compensation among multiple stakeholders. This paper investigates the problem of gambling to determine payment amounts, and details a method to estimate the ecological compensation amount related to water resources in the Wuxijiang River reservoir area in China. Public statistics and first-hand data obtained from a field investigation were used as data sources. Estimation of the source and receptor amount of ecological compensation relevant to the water resource being investigated was achieved using the contingent valuation method (CVM). The ecological compensation object and its benefit and gambling for the Wuxijiang River water source area are also analyzed in this paper. According to the results of a CVM survey, the ecological compensation standard for the Wuxijiang River was determined by the CVM, and the amount of compensation was estimated. Fifteen blocks downstream of the Wuxijiang River and 12 blocks in the water source area were used as samples to administer a survey that estimated the willingness to pay (WTP) and the willingness to accept (WTA) the ecological compensation of Wuxijiang River for both nonparametric and parametric estimation. Finally, the theoretical value of the ecological compensation amount was estimated. Without taking other factors into account, the WTP of residents in the Wuxi River water source was 297.48 yuan per year, while the WTAs were 3864.48 yuan per year. The theoretical standard of ecological compensation is 2294.39-2993.81 yuan per year. Under the parameter estimation of other factors, the WTP of residents in the Wuxi River water source area was 528.72 yuan per year, while the WTA was 1514.04 yuan per year. The theoretical standard of ecological compensation is 4076.25-5434.99 yuan per year. The main factors influencing the WTP ecological compensation in the Wuxi River basin are annual income and age. The

  8. Games between stakeholders and the payment for ecological services: evidence from the Wuxijiang River reservoir area in China

    Science.gov (United States)

    2018-01-01

    A gambling or “game” phenomenon can be observed in the complex relationship between sources and receptors of ecological compensation among multiple stakeholders. This paper investigates the problem of gambling to determine payment amounts, and details a method to estimate the ecological compensation amount related to water resources in the Wuxijiang River reservoir area in China. Public statistics and first-hand data obtained from a field investigation were used as data sources. Estimation of the source and receptor amount of ecological compensation relevant to the water resource being investigated was achieved using the contingent valuation method (CVM). The ecological compensation object and its benefit and gambling for the Wuxijiang River water source area are also analyzed in this paper. According to the results of a CVM survey, the ecological compensation standard for the Wuxijiang River was determined by the CVM, and the amount of compensation was estimated. Fifteen blocks downstream of the Wuxijiang River and 12 blocks in the water source area were used as samples to administer a survey that estimated the willingness to pay (WTP) and the willingness to accept (WTA) the ecological compensation of Wuxijiang River for both nonparametric and parametric estimation. Finally, the theoretical value of the ecological compensation amount was estimated. Without taking other factors into account, the WTP of residents in the Wuxi River water source was 297.48 yuan per year, while the WTAs were 3864.48 yuan per year. The theoretical standard of ecological compensation is 2294.39–2993.81 yuan per year. Under the parameter estimation of other factors, the WTP of residents in the Wuxi River water source area was 528.72 yuan per year, while the WTA was 1514.04 yuan per year. The theoretical standard of ecological compensation is 4076.25–5434.99 yuan per year. The main factors influencing the WTP ecological compensation in the Wuxi River basin are annual income and age

  9. Effects of Coordinated Operation of Weirs and Reservoirs on the Water Quality of the Geum River

    Directory of Open Access Journals (Sweden)

    Jung Min Ahn

    2017-06-01

    Full Text Available Multifunctional weirs can be used to maintain water supply during dry seasons and to improve downstream water quality during drought conditions through discharge based on retained flux. Sixteen multifunctional weirs were recently constructed in four river systems as part of the Four Rivers Restoration Project. In this study, three multifunctional weirs in the Geum River Basin were investigated to analyze the environmental effects of multifunctional weir operation on downstream flow. To determine seasonal vulnerability to drought, the basin was evaluated using the Palmer Drought Severity Index (PDSI. Furthermore, the downstream flow regime and the effect on water quality improvement of a coordinated dam–multifunctional weir operation controlled by: (a a rainfall–runoff model; (b a reservoir optimization model; and (c a water quality model, were examined. A runoff estimate at each major location in the Geum River Basin was performed using the water quality model, and examined variation in downstream water quality depending on the operational scenario of each irrigation facility such as dams and weirs. Although the water quality was improved by the coordinated operation of the dams and weirs, when the discharged water quality is poor, the downstream water quality is not improved. Therefore, it is necessary to first improve the discharged water quality on the lower Geum River. Improvement of the water quality of main stream in the Geum River is important, but water quality from tributaries should also be improved. By applying the estimated runoff data to the reservoir optimization model, these scenarios will be utilized as basic parameters for assessing the optimal operation of the river.

  10. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    R. Müller

    2016-05-01

    Full Text Available Recently, the Kessem–Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i recent conditions and (ii future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i rule curves with a high degree of freedom – this allows for best performance, but may result in rules curves to variable for real word operation and (ii smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  11. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    Science.gov (United States)

    Müller, Ruben; Gebretsadik, Henok Y.; Schütze, Niels

    2016-05-01

    Recently, the Kessem-Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i) recent conditions and (ii) future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i) rule curves with a high degree of freedom - this allows for best performance, but may result in rules curves to variable for real word operation and (ii) smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  12. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, annual report 1997 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris

  13. Assessing summer and fall chinook salmon restoration in the Upper Clearwater River and principal tributaries. Annual report 1994

    International Nuclear Information System (INIS)

    Arnsberg, B.D.; Statler, D.P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  14. Reconstructing depositional processes and history from reservoir stratigraphy: Englebright Lake, Yuba River, northern California

    Science.gov (United States)

    Snyder, N.P.; Wright, S.A.; Alpers, Charles N.; Flint, L.E.; Holmes, C.W.; Rubin, D.M.

    2006-01-01

    Reservoirs provide the opportunity to link watershed history with its stratigraphic record. We analyze sediment cores from a northern California reservoir in the context of hydrologic history, watershed management, and depositional processes. Observations of recent depositional patterns, sediment-transport calculations, and 137CS geochronology support a conceptual model in which the reservoir delta progrades during floods of short duration (days) and is modified during prolonged (weeks to months) drawdowns that rework topset beds and transport sand from topsets to foresets. Sediment coarser than 0.25-0.5 mm. deposits in foresets and topsets, and finer material falls out of suspension as bottomset beds. Simple hydraulic calculations indicate that fine sand (0.063-0.5 mm) is transported into the distal bottomset area only during floods. The overall stratigraphy suggests that two phases of delta building occurred in the reservoir. The first, from dam construction in 1940 to 1970, was heavily influenced by annual, prolonged >20 m drawdowns of the water level. The second, built on top of the first, reflects sedimentation from 1970 to 2002 when the influence of drawdowns was less. Sedimentation rates in the central part of the reservoir have declined ???25% since 1970, likely reflecting a combination of fewer large floods, changes in watershed management, and winnowing of stored hydraulic mining sediment. Copyright 2006 by the American Geophysical Union.

  15. Energy optimization through probabilistic annual forecast water release technique for major storage hydroelectric reservoir

    International Nuclear Information System (INIS)

    Abdul Bahari Othman; Mohd Zamri Yusoff

    2006-01-01

    One of the important decisions to be made by the management of hydroelectric power plant associated with major storage reservoir is to determine the best turbine water release decision for the next financial year. The water release decision enables firm energy generated estimation for the coming financial year to be done. This task is usually a simple and straightforward task provided that the amount of turbine water release is known. The more challenging task is to determine the best water release decision that is able to resolve the two conflicting operational objectives which are minimizing the drop of turbine gross head and maximizing upper reserve margin of the reservoir. Most techniques from literature emphasize on utilizing the statistical simulations approach. Markovians models, for example, are a class of statistical model that utilizes the past and the present system states as a basis for predicting the future [1]. This paper illustrates that rigorous solution criterion can be mathematically proven to resolve those two conflicting operational objectives. Thus, best water release decision that maximizes potential energy for the prevailing natural inflow is met. It is shown that the annual water release decision shall be made in such a manner that annual return inflow that has return frequency smaller than critical return frequency (f c ) should not be considered. This criterion enables target turbine gross head to be set to the well-defined elevation. In the other words, upper storage margin of the reservoir shall be made available to capture magnitude of future inflow that has return frequency greater than or equal to f c. A case study is shown to demonstrate practical application of the derived mathematical formulas

  16. Transport and accumulation of radionuclides and stable elements in a Missouri River reservoir

    International Nuclear Information System (INIS)

    Callender, E.; Robbins, J.A.

    1993-01-01

    Several long sediment cores from the Cheyenne River Embayment of Lake Oahe, a 250-km-long Missouri River reservoir in South Dakota, have been analyzed for radionuclides and stable elements. The combination of fine-scale sampling and rapid sedimentation produces radionuclide distributions that can be used to estimate the detailed chronology of particle transport processes in the Oahe reservoir system. A self-consistent and quantitative treatment of the Cesium 137 data suggests processes to which characteristic times may be associated. Times that characterize system-wide processes include (1) an integration time of several years reflecting retention of the sediment-bound tracer in regions within or external to the reservoir, (2) a relaxation time of approximately 15 years reflecting a decreasing rate of sediment accumulation ascribed to shoreline stabilization, (3) a time of a few months characterizing the breadth of riverine signatures in cores due to integration effects in the Cheyenne River system and deltaic deposits, and (4) times of a few years associated with propagation of riverine load signatures along the embayment. The distribution of total sedimentary arsenic confirms the validity of the variable sedimentation model. In 1977, a tailings retention facility was built at the Homestake Mine site, and the unrestricted input of As ceased. As a result of this remedial action, the concentration of sedimentary As decreased dramatically. Because there is minimal diagenesis of chemical constituents in the rapidly accumulating sediments, stable element signatures, in addition to radiotracers, may be used to reconstruct hydrologic events in drainage basins that contribute sediment to lakes and reservoirs

  17. Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yueping Yin

    2016-10-01

    Full Text Available The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR. After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL, and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m3 in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m3 in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the

  18. Assessing Methane Fluxes in a Small Run-of-River Reservoir: The Importance of Adjacent Marshland

    Science.gov (United States)

    McGinnis, D. F.; Flury, S.; Fietzek, P.; Bilsley, N. A.; Bodmer, P.; Premke, K.; Maeck, A.; Lorke, A.; Schmidt, M.

    2013-12-01

    We investigate methane (CH4) emissions from a small run-of-river impoundment, the Schwentine River in Kiel, Germany. Small dammed rivers, while important regions for carbon transformation, are presently not considered in the terrestrial carbon budget and are under-represented in CH4 emission studies. Using state-of-the-art monitoring techniques, we determine that 1) the CH4 emissions well-exceed those reported for temperate reservoirs and 2) the hydrodynamic linkage to bordering marshland (consisting of reed belts, sidebays and creeks) is an important CH4 source for Schwentine River CH4. During our study, the Schwentine River discharged into the Kieler Fjord at 3 - 12 m3/s. CH4 measurements included 1) a moored sensor near the dam discharge, 2) discrete water sampling, and 3) real time surface flux measurements with floating chambers. We observed that the CH4 concentration increased nearly linearly from 2.5 km upstream towards the dam. The CH4 concentration near the dam discharge was logged and reported every 30 minutes nearly continuously from 11 July - 28 Sept 2011, and varied from 500 μmol/L to 2,200 μmol/L. Surprisingly, the CH4 mass discharge from the dam - ranging from 4 to 20 kg/day - increased with both temperature and flowrate, suggesting a flow-dependent CH4 source. We found that the bordering and numerous inundated reed belts, sidebays and small creeks, had significantly elevated CH4 concentrations. These marshland regions are relatively productive and quiescent compared to the main river, and trap organic and particulate matter, leading to enhanced CH4 production. As the river flowrate increases, the lateral exchange with these adjacent areas also increases. Using the CH4 concentration time series, measured surface diffusive and ebullition fluxes, and sediment CH4 porewater profiles, we estimate the relative contributions of CH4 in the main branch due to 1) sediment diffusion, 2) dissolution from sediment CH4 bubble release, and 3) lateral fluxes from

  19. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates

    Science.gov (United States)

    López, J.; Francés, F.

    2013-08-01

    Recent evidences of the impact of persistent modes of regional climate variability, coupled with the intensification of human activities, have led hydrologists to study flood regime without applying the hypothesis of stationarity. In this study, a framework for flood frequency analysis is developed on the basis of a tool that enables us to address the modelling of non-stationary time series, namely, the "generalized additive models for location, scale and shape" (GAMLSS). Two approaches to non-stationary modelling in GAMLSS were applied to the annual maximum flood records of 20 continental Spanish rivers. The results of the first approach, in which the parameters of the selected distributions were modelled as a function of time only, show the presence of clear non-stationarities in the flood regime. In a second approach, the parameters of the flood distributions are modelled as functions of climate indices (Arctic Oscillation, North Atlantic Oscillation, Mediterranean Oscillation and the Western Mediterranean Oscillation) and a reservoir index that is proposed in this paper. The results when incorporating external covariates in the study highlight the important role of interannual variability in low-frequency climate forcings when modelling the flood regime in continental Spanish rivers. Also, with this approach it is possible to properly introduce the impact on the flood regime of intensified reservoir regulation strategies. The inclusion of external covariates permits the use of these models as predictive tools. Finally, the application of non-stationary analysis shows that the differences between the non-stationary quantiles and their stationary equivalents may be important over long periods of time.

  20. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates

    Directory of Open Access Journals (Sweden)

    J. López

    2013-08-01

    Full Text Available Recent evidences of the impact of persistent modes of regional climate variability, coupled with the intensification of human activities, have led hydrologists to study flood regime without applying the hypothesis of stationarity. In this study, a framework for flood frequency analysis is developed on the basis of a tool that enables us to address the modelling of non-stationary time series, namely, the "generalized additive models for location, scale and shape" (GAMLSS. Two approaches to non-stationary modelling in GAMLSS were applied to the annual maximum flood records of 20 continental Spanish rivers. The results of the first approach, in which the parameters of the selected distributions were modelled as a function of time only, show the presence of clear non-stationarities in the flood regime. In a second approach, the parameters of the flood distributions are modelled as functions of climate indices (Arctic Oscillation, North Atlantic Oscillation, Mediterranean Oscillation and the Western Mediterranean Oscillation and a reservoir index that is proposed in this paper. The results when incorporating external covariates in the study highlight the important role of interannual variability in low-frequency climate forcings when modelling the flood regime in continental Spanish rivers. Also, with this approach it is possible to properly introduce the impact on the flood regime of intensified reservoir regulation strategies. The inclusion of external covariates permits the use of these models as predictive tools. Finally, the application of non-stationary analysis shows that the differences between the non-stationary quantiles and their stationary equivalents may be important over long periods of time.

  1. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  2. Ecological research at the Savannah River Ecology Laboratory. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Research is organized around two major programs: thermal and aquatic stress and mineral cycling. These programs are strengthened by a previously established foundation of basic ecological knowledge. Research in basic ecology continues to be a major component of all SREL environmental programs. Emphasis in all programs has been placed upon field-oriented research relating to regional and local problems having broad ecological significance. For example, extensive research has been conducted in the Par Pond reservoir system and the Savannah River swamp, both of which have received thermal effluent, heavy metals, and low levels of radioisotopes. Furthermore, the availability of low levels of plutonium and uranium in both terrestrial and aquatic environments on the Savannah River Plant (SRP) has provided an unusual opportunity for field research in this area. The studies seek to document the effects, to determine the extent of local environmental problems, and to establish predictable relationships which have general applicability. In order to accomplish this objective it has been imperative that studies be carried out in the natural, environmentally unaffected areas on the SRP as a vital part of the overall program. Progress is reported in forty-nine studies.

  3. Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data

    Science.gov (United States)

    Peel, M. C.; Srikanthan, R.; McMahon, T. A.; Karoly, D. J.

    2015-04-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between global climate models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) data sets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to present a proof-of-concept approximation of within-GCM uncertainty for monthly precipitation and temperature projections and to assess the impact of within-GCM uncertainty on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and scenario are unavailable, other than the Climateprediction.net data set for the Hadley Centre GCM. To date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2015) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from

  4. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    Science.gov (United States)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  5. Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania.

    Science.gov (United States)

    Bravo, Andrea Garcia; Loizeau, Jean-Luc; Ancey, Lydie; Ungureanu, Viorel Gheorghe; Dominik, Janusz

    2009-08-01

    Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments. Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01-0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3-2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor

  6. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    Science.gov (United States)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  7. The valley system of the Jihlava river and Mohelno reservoir with enhanced tritium activities.

    Science.gov (United States)

    Simek, P; Kořínková, T; Svetlik, I; Povinec, P P; Fejgl, M; Malátová, I; Tomaskova, L; Stepan, V

    2017-01-01

    The Dukovany nuclear power plant (NPP Dukovany) releases liquid effluents, including HTO, to the Mohelno reservoir, located in a deep valley. Significantly enhanced tritium activities were observed in the form of non-exchangeable organically bound tritium in the surrounding biota which lacks direct contact with the water body. This indicates a tritium uptake by plants from air moisture and haze, which is, besides the uptake by roots from soil, one of the most important mechanisms of tritium transfer from environment to plants. Results of a pilot study based on four sampling campaigns in 2011-2015 are presented and discussed, with the aim to provide new information on tritium transport in the Mohelno reservoir - Jihlava River - plants ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    Science.gov (United States)

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  9. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-12-01

    Full Text Available The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will

  10. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian

  11. Kootenai River Focus Watershed Coordination, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Gretchen (Kootenai River Network, Libby, MT)

    2002-07-01

    The 2001-2002 Kootenai River Network Annual Report reflects the organization's defined set of goals and objectives, and how by accomplishing these goals, we continue to meet the needs of communities and landowners throughout the Kootenai River Basin by protecting the resource. Our completed and ongoing projects throughout the watershed reflect the cooperation and support received and needed to accomplish the rehabilitation and restoration of critical habitat. They show that our mission of facilitation through collaboration with public and private interests can lead to improved resource management, the restoration of water quality and the preservation of pristine aquatic resources. Our vision to empower local citizens and groups from two states, one province, two countries and affected tribal nations to collaborate in natural resource management within the basin is largely successful due to the engagement of the basin's residents--the landowners, town government, local interest groups, businesses and agency representatives who live and work here. We are proof that forging these types of cooperative relationships, such as those exhibited by the Kootenai River subbasin planning process, leads to a sense of entitlement--that the quality of the river and its resources enriches our quality of life. Communication is essential in maintaining these relationships. Allowing ourselves to network and receive ideas and information, as well as to produce quality, accessible research data such as KRIS, shared with like organizations and individuals, is the hallmark of this facilitative organization. We are fortunate in the ability to contribute such information, and continue to strive to meet the standards and the needs of those who seek us out as a model for watershed rehabilitative planning and restoration. Sharing includes maintaining active, ongoing lines of communication with the public we serve--through our web site, quarterly newsletter, public presentations and

  12. Mapping mean annual and monthly river discharges: geostatistical developments for incorporating river network dependencies

    International Nuclear Information System (INIS)

    Sauquet, Eric

    2004-01-01

    Regional hydrology is one topic that shows real improvement in partly due to new statistical development and computation facilities. Nevertheless theoretical difficulties for mapping river regime characteristics or recover these features at un gauged location remain because of the nature of the variable under study: river flows are related to a specific area that is defined by the drainage basin, are spatially organised by the river network with upstream-downstream dependencies. Estimations of hydrological descriptors are required for studying links with ecological processes at different spatial scale, from local site where biological or/and water quality data are available to large scale for sustainable development purposes. This presentation aims at describing a method for runoff pattern along the main river network. The approach dedicated to mean annual runoff is based on geostatistical interpolation procedures to which a constraint of water budget has been added. Expansion in Empirical Orthogonal Function has been considered in combination with kriging for interpolating mean monthly discharges. The methodologies are implemented within a Geographical Information System and illustrated by two study cases (two large basins in France). River flow regime descriptors are estimated for basins of more than 50km 2 . Opportunities of collaboration with a partition of France into hydro-eco regions derived from geology and climate considerations is discussed. (Author)

  13. Epidemiologic surveillance. Annual report for Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Epidemiologic surveillance at US Department of Energy (DOE) facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Savannah River Site (SRS) are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 16-75 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and salary status; (2) the absences per person, diagnoses per absences, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

  14. Environmental monitoring at the Savannah River Plant. Annual report, 1984

    International Nuclear Information System (INIS)

    Zeigler, C.C.; Lawrimore, I.B.; O'Rear, W.E.

    1985-06-01

    Ensuring the radiation safety of the public in the vicinity of the Savannah River Plant was a foremost consideration in the design of the plant and has continued to be a primary objective during 31 years of SRP operations. An extensive surveillance program has been continuously maintained since 1951 (before SRP startup) to determine the concentrations of radionuclides in the environment of the plant. The results of this comprehensive monitoring program are reported annually in two publications. The first, ''Savannah River Plant Environmental Report for 1984'' [DPSPU85-30-1], contains radiation dose data, routine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs that are in progress, summaries of sitewide environmental research and management programs, and a summary of National Environmental Policy Act (NEPA) activities. This report is the second and contains primarily radiation dose data and radiological and nonradiological monitoring data both onsite and offsite. It is placed in Department of Energy (DOE) reading rooms and is available to the public upon request. A listing of corresponding reports that have been issued since before plant startup is presented in Appendix A. The scope of the environmental monitoring program at SRP has increased significantly during the years since plant startup. The change is reflected in annual reports. Prior to the mid-1970's the reports contained primarily radiological monitoring data. Beginning in the mid-1970's the reports started including more and more nonradiological monitoring data as those programs increased. The nonradiological monitoring program now approaches the size and extensiveness of the radiological monitoring program

  15. Yakima River Species Interactions Studies, Annual Report 1998

    International Nuclear Information System (INIS)

    Pearsons, Todd N.; Ham, Kenneth D.; McMichael, Geoffrey A.

    1999-01-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the seventh of a series of progress reports that address species interactions research and pre-supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with monitoring potential impacts to support adaptive management of NTT and baseline monitoring of fish predation indices on spring chinook salmon smolts. This report is organized into three chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 1998 and December 31, 1998 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns

  16. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservior Fisheries, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, Bradley B.

    1985-06-01

    We are evaluating the potential impacts of Libby Reservoir operation on the fishery in Libby Reservoir. The sampling program has been tested and modified to provide data for developing an understanding of how reservoir operation impacts the reservoir fishery. Temperature appears to be an important variable influenced by reservoir operation which regulates fish and fish food production and distribution. 39 refs., 21 figs., 19 tabs.

  17. Tucannon River spring chinook salmon captive brood program, FY 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-01-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  18. Documented changes in annual runoff and attribution since the 1950s within selected rivers in China

    Directory of Open Access Journals (Sweden)

    Lü-Liu Liu

    2017-03-01

    Full Text Available To enable local water resource management and maintenance of ecosystem integrity and to protect and mitigate against flood and drought, it is necessary to determine changes in long-term series of streamflow and to distinguish the roles that climate change and human disturbance play in these changes. A review of previous research on the detection and attribution of observed changes in annual runoff in China shows a decrease in annual runoff since the 1950s in northern China in areas such as the Songhuajiang River water resources zone, the Liaohe River water resources zone, the Haihe River water resources zone, the Yellow River water resources zone, and the Huaihe River water resources Zone. Furthermore, abrupt changes in annual runoff occurred mostly in the 1970s and 1980s in all the above zones, except for some of the sub-basins in the middle Yellow River where abrupt change occurred in the 1990s. Changes in annual runoff are found to be mainly caused by climate change in the western Songhuajiang River basin, the upper mainstream of the Yangtze River, and the western Pearl River basin, which shows that studies on the impact of climate change on future water resources under different climate change scenarios are required to enable planning and management by agencies in these river basins. However, changes in annual runoff were found to be mainly caused by human activities in most of the catchments in northern China (such as the southern Songhuajiang River, Liaohe River, Haihe River, the lower reach and some of the catchments within the middle Yellow River basin and in middle-eastern China, such as the Huaihe River and lower mainstream of the Yangtze River. This suggests that current hydro-climatic data can continue to be used in water-use planning and that policymakers need to focus on water resource management and protection.

  19. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    Science.gov (United States)

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2014-01-21

    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  20. Assessment of dam construction impact on hydrological regime changes in lowland river – A case of study: the Stare Miasto reservoir located on the Powa River

    Directory of Open Access Journals (Sweden)

    Sojka Mariusz

    2016-09-01

    Full Text Available The purpose of the presented research is analysis and assessment of the Stare Miasto reservoir impact on the hydrological regime changes of the Powa River. The reservoir was built in 2006 and is located in the central part of Poland. The total area of inundation in normal conditions is 90.68 ha and its capacity is 2.159 mln m3. Hydrological regime alteration of the Powa River is analysed on the basis of daily flows from the Posoka gauge station observed during period 1974–2014. Assessment of hydrological regime changes is carried out on the basis of Range of Variability Approach (RVA method. All calculations are made by means of Indicators of Hydrologic Alteration (IHA software version 7.1.0.10. The analysis shows that the Stare Miasto reservoir has a moderate impact on hydrological regime of the Powa River. Construction of the reservoir has positive effect on stability of minimal flows, which are important for protection of river ecosystems. The results obtained indicate that the Stare Miasto reservoir reduces a spring peak flow and enables to moderate control of floods.

  1. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    Science.gov (United States)

    Sauquet, Eric

    2015-04-01

    . A model of water management similar to the tools used by Electricité De France was calibrated to simulate the behavior of the three reservoirs Serre-Ponçon, Castillon, Sainte-Croix on present-day conditions. This model simulates water releases from reservoir under constraints imposed by rule curves, ecological flows downstream to the dams and water levels in summer for recreational purposes. The results demonstrate the relatively good performance of this simplified model and its ability to represent the influence of reservoir operations on the natural hydrological river flow regime, the decision-making involved in water management and the interactions at regional scale. Four territorial socio-economic scenarios have been also elaborated with the help of stake holders to project water needs in the 2050s for the area supplied with water from the Durance River basin. This presentation will focus on the specific tools developed within the project to simulate water management and water abstractions. The main conclusions related to the risk of water shortage in the 2050s and the level of satisfaction for each water use will be also discussed.

  2. Ecology of the Opossum Shrimp (Neomysis mercedis) in a Lower Snake River Reservoir, Washington

    Science.gov (United States)

    Tiffan, Kenneth F.; Erhardt, John M.; Bickford, Brad

    2017-01-01

    The opossum shrimp Neomysis mercedis has expanded its range from the lower Columbia River upstream 695 kilometers into Lower Granite Reservoir where it is now very abundant. We studied Neomysis ecology in the reservoir during 2011–2015 to better understand the physical and biological factors that shape their distribution as well as their potential role in the food web. Benthic densities in offshore habitats ranged from 19 to 145 mysids m-2 in shallow (2–12 m) water and from 3 to 48 mysids m-2 in deep (> 12 m) water. Water velocity, depth, substrate, and seasonal interactions were important variables for explaining variation in Neomysis densities in offshore habitats. During spring, daytime densities in shoreline habitats (reproduction and as temperatures approached 23 °C. Neomysis were mainly collected from the water column during nighttime vertical tows in the downstream end of the reservoir when water velocities were low during summer and autumn. Reproduction occurred mainly in spring and early summer, but a second, smaller reproductive event was observed during autumn. The diet of Neomysis consisted primarily of detritus, rotifers, and copepods, but cladocerans were more prominent during summer and autumn. Physical factors like water velocity may have limited vertical migrations of Neomysis to feed in the water column and influenced use of different habitats in the reservoir. Neomysis are prey for a number of species, including juvenile salmon, but their relations are still largely unknown, and continued monitoring and research is warranted.

  3. Kootenai River fisheries investigations: rainbow and bull trout recruitment: annual progress report 1999; ANNUAL

    International Nuclear Information System (INIS)

    Walters, Jody P.; Downs, Christopher Charles

    2001-01-01

    Our 1999 objectives were to determine sources of rainbow trout Oncorhynchus mykiss and bull trout Salvelinus confluentus spawning and recruitment in the Idaho reach of the Kootenai River. We used a rotary-screw trap to capture juvenile trout to determine age at out-migration and to estimate total out-migration from the Boundary Creek drainage to the Kootenai River. The out-migrant estimate for March through August 1999 was 1,574 (95% C. I.= 825-3,283) juvenile rainbow trout. Most juveniles out-migrated at age-2 and age-3. No out-migrating bull trout were caught. Five of 17 rainbow trout radio-tagged in Idaho migrated upstream into Montana waters during the spawning season. Five bull trout originally radio-tagged in O'Brien Creek, Montana in early October moved downstream into Idaho and British Columbia by mid-October. Annual angler exploitation for the rainbow trout population upstream of Bonners Ferry, Idaho was estimated to be 58%. Multi-pass depletion estimates for index reaches of Caboose, Curley, and Debt creeks showed 0.20, 0.01, and 0.13 rainbow trout juveniles/m(sup 2), respectively. We estimated rainbow trout (180-415 mm TL) standing stock of 1.6 kg/ha for the Hemlock Bar reach (29.4 ha) of the Kootenai River, similar to the 1998 estimate. Recruitment of juvenile rainbow and bull trout from Idaho tributaries is not sufficient to be the sole source of subsequent older fish in the mainstem Kootenai River. These populations are at least partly dependent on recruitment from Montana waters. The low recruitment and high exploitation rate may be indicators of a rainbow trout population in danger of further decline

  4. Nitrogen loading and nitrous oxide emissions from a river with multiple hydroelectric reservoirs.

    Science.gov (United States)

    Chen, Jinsong; Cao, Wenzhi; Cao, Di; Huang, Zheng; Liang, Ying

    2015-05-01

    River networks receive a large fraction of the anthropogenic nitrogen applied to river catchments. The different impacts of the stream nitrogen (N) loading on nitrous oxide (N2O) emissions from various of aquatic ecosystems are still unknown. In this study, direct measurements of water-air interface N2O exchange in different water bodies were conducted. Results showed that the water-air interface N2O exchange from tributaries, hydropower station reservoirs, a main stream, and its estuary were 10.14 ± 13.51, 15.64 ± 10.72, 27.59 ± 20.99, and 15.98 ± 12.26 µg N2O-N m(-2) h(-1), respectively, indicating the strong impacts of human activities on N2O emission rates. The water NO2 (-)-N values predicted the dissolved N2O concentrations better than did the NO3 (-)-N and NH4 (+)-N values, indicating strong denitrification and nitrification processes. The dissolved inorganic N explained 36 % of the variations in the N2O emissions for the whole river network.

  5. Optimizing Water Use and Hydropower Production in Operational Reservoir System Scheduling with RiverWare

    Science.gov (United States)

    Magee, T. M.; Zagona, E. A.

    2017-12-01

    Practical operational optimization of multipurpose reservoir systems is challenging for several reasons. Each purpose has its own constraints which may conflict with those of other purposes. While hydropower generation typically provides the bulk of the revenue, it is also among the lowest priority purposes. Each river system has important details that are specific to the location such as hydrology, reservoir storage capacity, physical limitations, bottlenecks, and the continuing evolution of operational policy. In addition, reservoir operations models include discrete, nonlinear, and nonconvex physical processes and if-then operating policies. Typically, the forecast horizon for scheduling needs to be extended far into the future to avoid near term (e.g., a few hours or a day) scheduling decisions that result in undesirable future states; this makes the computational effort much larger than may be expected. Put together, these challenges lead to large and customized mathematical optimization problems which must be solved efficiently to be of practical use. In addition, the solution process must be robust in an operational setting. We discuss a unique modeling approach in RiverWare that meets these challenges in an operational setting. The approach combines a Preemptive Linear Goal Programming optimization model to handle prioritized policies complimented by preprocessing and postprocessing with Rulebased Simulation to improve the solution with regard to nonlinearities, discrete issues, and if-then logic. An interactive policy language with a graphical user interface allows modelers to customize both the optimization and simulation based on the unique aspects of the policy for their system while the routine physical aspect of operations are modeled automatically. The modeler is aided by a set of compiled predefined functions and functions shared by other modelers. We illustrate the success of the approach with examples from daily use at the Tennessee Valley

  6. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  7. Bathymetry and Sediment-Storage Capacity Change in Three Reservoirs on the Lower Susquehanna River, 1996-2008

    Science.gov (United States)

    Langland, Michael J.

    2009-01-01

    The Susquehanna River transports a substantial amount of the sediment and nutrient load to the Chesapeake Bay. Upstream of the bay, three large dams and their associated reservoirs trap a large amount of the transported sediment and associated nutrients. During the fall of 2008, the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Protection completed bathymetric surveys of three reservoirs on the lower Susquehanna River to provide an estimate of the remaining sediment-storage capacity. Previous studies indicated the upper two reservoirs were in equilibrium with long-term sediment storage; only the most downstream reservoir retained capacity to trap sediments. A differential global positioning system (DGPS) instrument was used to provide the corresponding coordinate position. Bathymetry data were collected using a single beam 210 kHz (kilohertz) echo sounder at pre-defined transects that matched previous surveys. Final horizontal (X and Y) and vertical (Z) coordinates of the geographic positions and depth to bottom were used to create bathymetric maps of the reservoirs. Results indicated that from 1996 to 2008 about 14,700,000 tons of sediment were deposited in the three reservoirs with the majority (12,000,000 tons) being deposited in Conowingo Reservoir. Approximately 20,000 acre-feet or 30,000,000 tons of remaining storage capacity is available in Conowingo Reservoir. At current transport (3,000,000 tons per year) and deposition (2,000,000 tons per year) rates and with no occurrence of major scour events due to floods, the remaining capacity may be filled in 15 to 20 years. Once the remaining sediment-storage capacity in the reservoirs is filled, sediment and associated phosphorus loads entering the Chesapeake Bay are expected to increase.

  8. Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

  9. Monitoring of endangered Roanoke logperch (Percina rex) in Smith River upstream from the Philpott Reservoir on U.S. Army Corps of Engineers property near Martinsville, Virginia

    Science.gov (United States)

    Roberts, James H.; Angermeier, Paul L.

    2012-01-01

    The purpose of this study was to continue annual monitoring of Roanoke logperch (Percina rex), an endangered fish, in the Smith River immediately upstream from Philpott Reservoir. This river reach is owned by the U.S. Army Corps of Engineers (USACE), which must ensure that appropriate actions are undertaken to aid in recovery of logperch. Monitoring of fish abundance and habitat conditions provides a means for assessing the species’ status and its responses to USACE management actions. The Roanoke logperch is a large darter (Percidae: Etheostomatinae) endemic to the Roanoke, Dan, and Nottoway River basins of Virginia and North Carolina, where it occupies third- to sixth-order streams containing relatively silt-free substrate (Jenkins and Burkhead, 1994). Because of its rarity, small range, and vulnerability to siltation, the Roanoke logperch was listed in 1989 as endangered under the U.S. Endangered Species Act (ESA) (U.S. Federal Register 54:34468-34472). Within the Dan basin, Roanoke logperch have long been known to occupy the Smith River and one of its largest tributaries, Town Creek (Jenkins and Burkhead, 1994). Logperch also recently were discovered in other tributaries of the Dan River, including North Carolina segments of the Mayo River, Cascade Creek, Big Beaver Island Creek, Wolf Island Creek (William Hester, U.S. Fish and Wildlife Service, personal commun., 2012). Within the Smith River, Roanoke logperch are present both upstream and downstream from Philpott Reservoir, a hydroelectric and water storage project owned and operated by the USACE. Although logperch have not been observed in the reservoir itself, the species is relatively abundant in a free-flowing, ≈ 2.5-km-long segment of Smith River upstream from the reservoir on USACE property (Lahey and Angermeier, 2006). This segment is bounded on the downstream end by the lentic conditions of the reservoir and on the upstream end by White Falls, a natural waterfall that presumably allows fish passage

  10. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  11. Seasonal dynamics of zooplankton in Columbia–Snake River reservoirs,with special emphasis on the invasive copepod Pseudodiaptomus forbesi

    Science.gov (United States)

    Emerson, Joshua E.; Bollens, Stephen M.; Counihan, Timothy D.

    2015-01-01

    The Asian copepod Pseudodiaptomus forbesi has recently become established in the Columbia River. However, little is known about its ecology and effects on invaded ecosystems. We undertook a 2-year (July 2009 to June 2011) field study of the mesozooplankton in four reservoirs in the Columbia and Snake Rivers, with emphasis on the relation of the seasonal variation in distribution and abundance of P. forbesi to environmental variables. Pseudodiaptomus forbesi was abundant in three reservoirs; the zooplankton community of the fourth reservoir contained no known non-indigenous taxa. The composition and seasonal succession of zooplankton were similar in the three invaded reservoirs: a bloom of rotifers occurred in spring, native cyclopoid and cladoceran species peaked in abundance in summer, and P. forbesi was most abundant in late summer and autumn. In the uninvaded reservoir, total zooplankton abundance was very low year-round. Multivariate ordination indicated that temperature and dissolved oxygen were strongly associated with zooplankton community structure, with P. forbesi appearing to exhibit a single generation per year . The broad distribution and high abundance of P. forbesi in the Columbia–Snake River System could result in ecosystem level effects in areas intensively managed to improve conditions for salmon and other commercially and culturally important fish species. 

  12. DOE's environmental restoration program for the Clinch River and Watts Bar Reservoir

    International Nuclear Information System (INIS)

    Kimmel, B.

    1992-01-01

    Operations and waste disposal activities at the Y-12 Plant, the K-25 Site,and the Oak Ridge National Laboratory (ORNL) on the U.S. Department of Energy's Oak Ridge Reservation (ORR) have introduced a variety of contaminants (radionuclides, metals, and organic compounds) into off-site surface waters since the early 1940s, The Clinch River and Watts Bar Reservoir are located downstream from the ORR. A comprehensive remedial investigation (the Clinch River Remedial Investigation) of off-site surface water contamination at Oak Ridge is now being conducted in compliance with the Resource Conservation and Recovery Act and Comprehensive Environmental Response, Compensation, and Liability Act requirements. The objectives of the Clinch River Remedial Investigation (CRRI) are to: (1) define the nature and extent of off-site surface water contamination, (2) quantify the potential risks to human health and the environment associated with off-site contamination, and (3) identify and preliminarily evaluate potential remediation alternatives. The CRRI is being conducted in three phases: (1) scoping studies, in which preassessment studies based on existing data and limited sampling were conducted to preliminarily estimate the nature and extent of the problem; (2) Phase 1, in which limited sampling and risk analyses are conducted to define specifically the distributions of the contaminants of concern and the environmental and human health risks associated with the contamination. These phases allow a progressive focusing of assessment efforts on specific contaminants, pathways, and sites contributing to risk and on the evaluation of potential remediation alternatives. A brief overview of the Clinch River RI is presented, followed by a description of on going efforts to achieve control of contaminated sediments located in the White Oak Creek Embayment

  13. Low robustness of increasing reservoir capacity for adaptation to climate change: A case study for an agricultural river basin

    Science.gov (United States)

    Kim, Daeha; Eum, Hyung-Il

    2017-04-01

    With growing concerns of the uncertain climate change, investments in water infrastructures are considered as adaptation policies for water managers and stakeholders despite their negative impacts on the environment. Particularly in regions with limited water availability or conflicting demands, building reservoirs and/or augmenting their storage capacity were already adopted for alleviating influences of the climate change. This study provides a probabilistic assessment of climate change impacts on water scarcity in a river system regulated by an agricultural reservoir in South Korea, which already increased its storage capacity for water supply. For the assessment, we developed the climate response functions (CRFs) defined as relationships between bi-decadal system performance indicators (reservoir reliability and vulnerability) and corresponding climatic conditions, using hydrological models with 10,000-year long stochastic generation of daily precipitation and temperatures. The climate change impacts were assessed by plotting 52 downscaled climate projections of general circulation models (GCMs) on the CRFs. Results indicated that augmented reservoir capacity makes the reservoir system more sensitive to changes in long-term averages of precipitation and temperatures despite improved system performances. Increasing reservoir capacity is unlikely to be "no regret" adaptation policy for the river system. On the other hand, converting the planting strategy from transplanting to direct sowing (i.e., a demand control) could be a more robust to bi-decadal climatic changes based on CRFs and thus could be good to be a no-regret policy.

  14. The role of dissolved organic substance in radionuclide migration in river water of the Kiev's water reservoir

    International Nuclear Information System (INIS)

    Domin, V.V.; Bondarenko, G.N.; Zheldakov, Yu.A.

    1989-01-01

    The role of organic substance dissolved (DOS) in radionuclide migration in the river water of the Kiev's water reservoir was considered. It was ascertained, that metal complexes with fulvic acids were stable and complexing properties of fulvic acids affected radionuclide migration. When DOS content increased sharply during the freshet period, radionuclide migration also increased. 8 refs.; 4 figs.; 3 tabs

  15. Thermal pollution of rivers and reservoirs by discharges of heated water from thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Makarov, I.

    1974-12-01

    The problems are discussed of the thermal pollution of rivers and water reservoirs by discharges of heated water from thermal and nuclear power plants. The problems concerned are quantitative and qualitative changes in biocenoses, the disturbance or extinction of flora and fauna, physiological changes in organisms and changes in the hydrochemical regime. (Z.M.)

  16. Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2017-01-01

    Full Text Available This study examined the water quality of the large young tropical Bakun hydroelectric reservoir in Sarawak, Malaysia, and the influence of the outflow on the downstream river during wet and dry seasons. Water quality was determined at five stations in the reservoir at three different depths and one downstream station. The results show that seasons impacted the water quality of the Bakun Reservoir, particularly in the deeper water column. Significantly lower turbidity, SRP, and TP were found during the wet season. At 3–6 m, the oxygen content fell below 5 mg/L and hypoxia was also recorded. Low NO2--N, NO3--N, and SRP and high BOD5, OKN, and TP were observed in the reservoir indicating organic pollution. Active logging activities and the dam construction upstream resulted in water quality deterioration. The outflow decreased the temperature, DO, and pH and increased the turbidity and TSS downstream. Elevated organic matter and nutrients downstream are attributable to domestic discharge along the river. This study shows that the downstream river was affected by the discharge through the turbines, the spillway operations, and domestic waste. Therefore, all these factors should be taken into consideration in the downstream river management for the health of the aquatic organisms.

  17. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  18. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., food web, and intra-specific competition would help to better inform the long-term management plan.

  19. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bradford, Jacob [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Moore, Joseph [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Podgorney, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressure response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near

  20. Reservoir floodplains support distinct fish assemblages

    Science.gov (United States)

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. Creating an Erosion Vulnerability Map for the Columbia River Basin to Determine Reservoir Susceptibility to Sedimentation Before and After Wildfires

    Science.gov (United States)

    Ren, J.; Robichaud, P. J. L.; Adam, J. C.

    2017-12-01

    Sedimentation is important issue to most rivers and reservoirs especially in watersheds with extensive agricultural or wildfire activity. These human and natural induced disturbances have the potential to increase runoff-induced erosion and sediment load to rivers; downstream sedimentation can decrease the life expectancy of reservoir and consequently the dam. This is particularly critical in snowmelt-dominant regions because, as rising temperatures reduce snowpack as a natural reservoir, humans will become more reliant on reservoir storage. In the Northwest U.S., the Columbia River Basin (CRB) has more than 60 dams, which were built for irrigation, hydropower, and flood control, all of which are affected by sediment to varying degrees. Determining what dams are most likely to be affected by sedimentation caused by post-fire erosion is important for future management of reservoirs, especially as climate change is anticipated to exacerbate wildfire and its impacts. The objective of this study is to create a sedimentation vulnerability map for reservoirs in the CRB. There are four attributes of a watershed that determine erosion potential; soil type, topography, vegetation (such as forests, shrubs, and grasslands), and precipitation (although precipitation was excluded in this analysis). In this study, a rating system was developed on a scale of 0-90 (with 90 having the greatest erosion potential). The different layers in a Graphical Information System were combined to create an erosion vulnerability map. Results suggest that areas with agriculture have more erosion without a wildfire but that forested areas are most vulnerable to erosion rates following a fire, particularly a high severity fire. Sedimentation in dams is a growing problem that needs to be addressed especially with the likely reduction in snowpack, this vulnerability map will help determine which reservoirs in the CRB are prone to high sedimentation. This information can inform managers where post

  2. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

    Science.gov (United States)

    Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton

    2018-04-01

    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different

  3. Juvenile Lost River and shortnose sucker year class strength, survival, and growth in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California—2016 Monitoring Report

    Science.gov (United States)

    Burdick, Summer M.; Ostberg, Carl O.; Hoy, Marshal S.

    2018-04-20

    Executive SummaryThe largest populations of federally endangered Lost River (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) exist in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California. Upper Klamath Lake populations are decreasing because adult mortality, which is relatively low, is not being balanced by recruitment of young adult suckers into known spawning aggregations. Most Upper Klamath Lake juvenile sucker mortality appears to occur within the first year of life. Annual production of juvenile suckers in Clear Lake Reservoir appears to be highly variable and may not occur at all in very dry years. However, juvenile sucker survival is much higher in Clear Lake, with non-trivial numbers of suckers surviving to join spawning aggregations. Long-term monitoring of juvenile sucker populations is needed to (1) determine if there are annual and species-specific differences in production, survival, and growth, (2) to identify the season (summer or winter) in which most mortality occurs, and (3) to help identify potential causes of high juvenile sucker mortality, particularly in Upper Klamath Lake.We initiated an annual juvenile sucker monitoring program in 2015 to track cohorts in 3 months (June, August, and September) annually in Upper Klamath Lake and Clear Lake Reservoir. We tracked annual variability in age-0 sucker apparent production, juvenile sucker apparent survival, and apparent growth. Using genetic markers, we were able to classify suckers as one of three taxa: shortnose or Klamath largescale suckers, Lost River, or suckers with genetic markers of both species (Intermediate Prob[LRS]). Using catch data, we generated taxa-specific indices of year class strength, August–September apparent survival, and overwinter apparent survival. We also examined prevalence and severity of afflictions such as parasites, wounds, and deformities.Indices of year class strength in Upper Klamath Lake were similar for shortnose suckers in 2015

  4. Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir.

    Science.gov (United States)

    Han, Chaonan; Zheng, Binghui; Qin, Yanwen; Ma, Yingqun; Yang, Chenchen; Liu, Zhichao; Cao, Wei; Chi, Minghui

    2018-01-01

    The impoundment of the Three Gorges Reservoir (TGR) has changed water-sand transport regime, with inevitable effects on phosphorus transport behavior in the TGR. In this study, we measured phosphorus fractions in water and suspended particles transported from upstream rivers of the TGR (the Yangtze River, the Jialing River and the Wu River) to reservoir inner region over the full operation schedule of the TGR. The aim was to determine how phosphorus fractions in water and particulate phases varied in response to natural hydrological processes and reservoir operations. The results showed that total phosphorus concentration (TP) in water in the TGR inner region was 0.17±0.05mg/L, which was lower than that in the Yangtze River (0.21±0.04mg/L) and the Wu River (0.23±0.03mg/L), but higher than that in the Jialing River (0.12±0.07mg/L). In the TGR inner region, there was no clear trend of total dissolved phosphorus (TDP), but total particulate phosphorus (TPP) showed a decreasing trend from tail area to head area because of particle deposition along the TGR mainstream. In addition, the concentrations of TPP in water and particulate phosphorus in a unit mass of suspended particles (PP) in the TGR inner region were higher in October 2014 and January 2015 (the impounding period and high water level period) than that in July 2015 (the low water level period). The temporal variations of PP and TPP concentrations in the TGR may be linked to the change of particle size distribution of suspended particles in the TGR. The particle size tended to be finer due to large-size particle deposition under stable hydrodynamic conditions in the process of TGR impoundment, resulting in high adsorption capacities of phosphorus in suspended particles. The results implied that phosphorus temporal variations in the TGR could exert different impacts on water quality in the TGR tributaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mercury and drought along the lower Carson River, Nevada: II. Snowy egret and black-crowned night-heron reproduction on Lahontan Reservoir, 1997-2006

    Science.gov (United States)

    Hill, Elwood F.; Henry, Charles J.; Grove, Robert A.

    2008-01-01

    Mercury concentrations in the floodplain of the Carson River Basin in northwestern Nevada are some of the highest ever reported in a natural system. Thus, a portion of the basin including Lahontan Reservoir was placed on the U.S. Environmental Protection Agency’s Natural Priorities List for research and cleanup. Preliminary studies indicated that reproduction in piscivorous birds may be at risk. Therefore, a 10-year study (1997–2006) was conducted to evaluate reproduction of snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) nesting on Gull Island in Lahontan Reservoir. Special attention was given to the annual flow of the Carson River, the resultant fluctuation of this irrigation reservoir, and the annual exposure of snowy egrets and night-herons to methylmercury (MeHg). The dynamic character of the river due to flooding and drought (drought effect) influenced snowy egret and night-heron reproduction more so than did MeHg contamination of eggs. During an extended drought (2000–2004) in the middle of the study, snowy egret nests containing eggs with concentrations of MeHg (measured as total mercury [THg] ∼ 100% MeHg) ≥0.80 μg THg/g, ww, all failed, but in 1997 and 2006 (wet years with general flooding), substantial numbers of young were produced (but fewer than at nests where eggs contained reproductive threshold of tolerance to MeHg may be associated with habitat quality (food type and abundance). Clearly, drought was the most important factor affecting snowy egret annual productivity. In contrast to snowy egrets, night-herons generally had fewer nests meeting the 0.80 μg THg/g criterion, and those above the criterion were less sensitive to mercury than were snowy egrets. Furthermore, night-herons appeared more tolerant of drought conditions than snowy egrets because they nested earlier, selected more protected nesting sites, and had a more generalist diet that provided additional food options including terrestrial

  6. Parker River National Wildlife Refuge : Annual Narrative Report : Calendar Year 2006

    Data.gov (United States)

    Department of the Interior — This annual narrative report for Parker River National Wildlife Refuge summarizes refuge activities during 2006. The report begins with information about the year’s...

  7. Heavy metals and polychlorinated biphenyls (PCBs) sedimentation in the Lianhua Mountain Reservoir, Pearl River Delta, China.

    Science.gov (United States)

    Huang, Jingyu; Amuzu-Sefordzi, Basil; Li, Ming

    2015-05-01

    The Pearl River Delta is one of the biggest electronics manufacturing regions in the world. Due to the presence of abandoned industrial sites and the proliferation of large-scale electronics companies in the past four decades, it is therefore imperative to investigate the extent of heavy metals and polychlorinated biphenyls (PCBs) contamination in the region. Spatial and temporal distribution of heavy metals (Cr, Cu, Ni, Pb, and Zn) and PCBs (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) in the Lianhua Mountain reservoir in the Pearl River Delta, Dongguan City, China were examined based on a sedimentary profile analysis. Higher concentrations of the heavy metals detected were recorded in bottom sediments whereas 70% of the detected PCBs recorded maximum concentrations in top sediments. The geo-accumulation indices (Igeo) indicate that the study area is uncontaminated to moderately contaminated. Also, the integrated pollution indices (IPI) were above 1, except Pb, which shows that the study area is contaminated with heavy metals from anthropogenic sources. The concentrations of individual heavy metals and PCBs over a period of 60 years were also analyzed in order to establish a historical trend of pollution in the study area. This study provides baseline information on the level and historical trend of heavy metals and PCBs pollution in the study area.

  8. Measurement of Lake Roosevelt biota in relation to reservoir operations. 1991 Annual report

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th

  9. Measurement of Lake Roosevelt Biota in Relation to Reservoir Operations; 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Janelle R.; McDowell, Amy C.; Scholz, Allan T.

    1995-08-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th.

  10. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1996-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1995 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1995 snowpack was below average through February. Heavy precipitation from the Salmon River drainage south, in March through May, provided the best runoff conditions in the Salmon River since the drought began in 1987.

  11. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam. Annual report 1995

    International Nuclear Information System (INIS)

    Buettner, E.W.; Brimmer, A.F.

    1996-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1995 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1995 snowpack was below average through February. Heavy precipitation from the Salmon River drainage south, in March through May, provided the best runoff conditions in the Salmon River since the drought began in 1987

  12. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  13. 78 FR 55214 - Annual Marine Events in the Eighth Coast Guard District, Sabine River; Orange, TX

    Science.gov (United States)

    2013-09-10

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 [Docket No. USCG-2013-0723] Annual Marine Events in the Eighth Coast Guard District, Sabine River; Orange, TX AGENCY: Coast Guard, DHS... Neches River in Orange, TX from 3 p.m. on September 20, 2013, through 6 p.m. on September 22, 2013. This...

  14. 77 FR 47519 - Annual Marine Events in the Eighth Coast Guard District, Sabine River; Orange, TX

    Science.gov (United States)

    2012-08-09

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 [Docket No. USCG-2012-0656] Annual Marine Events in the Eighth Coast Guard District, Sabine River; Orange, TX AGENCY: Coast Guard, DHS... Regulations for the S.P.O.R.T. Power Boat Neches River in Orange, TX from 3 p.m. on September 21, 2012...

  15. Applying ARIMA model for annual volume time series of the Magdalena River

    OpenAIRE

    Gloria Amaris; Humberto Ávila; Thomas Guerrero

    2017-01-01

    Context: Climate change effects, human interventions, and river characteristics are factors that increase the risk on the population and the water resources. However, negative impacts such as flooding, and river droughts may be previously identified using appropriate numerical tools. Objectives: The annual volume (Millions of m3/year) time series of the Magdalena River was analyzed by an ARIMA model, using the historical time series of the Calamar station (Instituto de Hidrología, Meteoro...

  16. Dynamics and ecological risk assessment of chromophoric dissolved organic matter in the Yinma River Watershed: Rivers, reservoirs, and urban waters.

    Science.gov (United States)

    Li, Sijia; Zhang, Jiquan; Guo, Enliang; Zhang, Feng; Ma, Qiyun; Mu, Guangyi

    2017-10-01

    The extensive use of a geographic information system (GIS) and remote sensing in ecological risk assessment from a spatiotemporal perspective complements ecological environment management. Chromophoric dissolved organic matter (CDOM), which is a complex mixture of organic matter that can be estimated via remote sensing, carries and produces carcinogenic disinfection by-products and organic pollutants in various aquatic environments. This paper reports the first ecological risk assessment, which was conducted in 2016, of CDOM in the Yinma River watershed including riverine waters, reservoir waters, and urban waters. Referring to the risk formation theory of natural disaster, the entropy evaluation method and DPSIR (driving force-pressure-state-impact-response) framework were coupled to establish a hazard and vulnerability index with multisource data, i.e., meteorological, remote sensing, experimental, and socioeconomic data, of this watershed. This ecological vulnerability assessment indicator system contains 23 indicators with respect to ecological sensitivity, ecological pressure, and self-resilience. The characteristics of CDOM absorption parameters from different waters showed higher aromatic content and molecular weights in May because of increased terrestrial inputs. The assessment results indicated that the overall ecosystem risk in the study area was focused in the extremely, heavily, and moderately vulnerable regions. The ecological risk assessment results objectively reflect the regional ecological environment and demonstrate the potential of ecological risk assessment of pollutants over traditional chemical measurements. Copyright © 2017. Published by Elsevier Inc.

  17. Water mass interaction in the confluence zone of the Daning River and the Yangtze River--a driving force for algal growth in the Three Gorges Reservoir.

    Science.gov (United States)

    Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan

    2013-10-01

    Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.

  18. Interannual variability of phytoplankton in the main rivers of the Upper Paraná River floodplain, Brazil: influence of upstream reservoirs

    Directory of Open Access Journals (Sweden)

    LC. Rodrigues

    Full Text Available The interannual variation of phytoplankton communities in the three main rivers of the Upper Paraná River floodplain is evaluated in relation to changes in the hydrosedimentological regime. These changes are a result of climatic variability and the formation of Porto Primavera Reservoir, located at the upper Paraná River. Phytoplankton species richness and density were investigated in rivers during a prior period (1993-1994 and eight years after reservoir impoundment (2000-2007. Multiple analyses were conducted to test the differences between these time periods in order to find predictor variables for phytoplankton attributes. A total of 454 phytoplanktonic taxa were found. The regression analysis revealed significant differences between periods. In the years following construction of the Porto Primavera dam, species richness was lower in the Paraná River and density was higher in the three rivers. In general, the algal density decreased from 2005 to 2007. Diatoms and cyanobacteria contributed significantly to the total density during the period from March 1993 to February 1994. The years 2000-2007 presented the lowest diatom contribution to species richness and the highest cyanobacteria contribution. From 2000 on, cryptomonads and cyanobacteria dominated. The interannual variability of phytoplankton was probably influenced by changes in hydrosedimentological regime due to climatic variations (La Niña and El Niño - Southern Oscillation events - ENSO and the operational procedures associated with an upstream reservoirs. Studies on climatic variability and its effects on hydrosedimentological regimes of the Paraná, Baía and Ivinhema rivers and the biota therein are necessary to obtain subsidies for management, including decisions related to the operation of dams upstream and downstream of the study area, with the purpose of minimizing risks to the Environmental Protection Area.

  19. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

  20. Evaluation of Management of Water Releases for Painted Rocks Rexervoir, Bitterroot River, Montana, 1985 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lere, Mark E. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1985-12-01

    The Bitterroot River, located in western Montana, is an important and heavily used resource, providing water for agriculture and a source for diversified forms of recreation. Water shortages in the river, however, have been a persistent problem for both irrigators and recreational users. Five major diversions and numerous smaller canals remove substantial quantities of water from the river during the irrigation season. Historically, the river has been severely dewatered between the towns of Hamilton and Stevensville as a result of these withdrawals. Demands for irrigation water from the Bitterroot River have often conflicted with the instream flow needs for trout. Withdrawals of water can decrease suitable depths, velocities, substrates and cover utilized by trout (Stalnaker and Arnette 1976, Wesche 1976). Losses in habitat associated with dewatering have been shown to diminish the carrying capacities for trout populations (Nelson 1980). Additionally, dewatering of the Bitterroot River has forced irrigators to dike or channelize the streambed to obtain needed flows. These alterations reduce aquatic habitat and degrade channel stability. Odell (personal communication) found a substantial reduction in the total biomass of aquatic insects within a section of the Bitterroot River that had been bulldozed for irrigation purposes. The Montana Department of Fish, Wildlife and Parks (MDFWP) has submitted a proposal to the Northwest Power Planning Council for the purchase of 10,000 acre-feet (AF) of stored water in Painted Rocks Reservoir to augment low summer flows in the Bitterroot River. This supplemental water potentially would enhance the fishery in the river and reduce degradation of the channel due to diversion activities. The present study was undertaken to: (1) develop an implementable water management plan for supplemental releases from Painted Rocks Reservoir which would provide optimum benefits to the river: (2) gather fisheries and habitat information to

  1. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam; ANNUAL

    International Nuclear Information System (INIS)

    Brimmer, Arnold F.; Buettner, Edwin W.

    1998-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O.mykiss smolts during the 1996 spring outmigration at migrant traps on the Snake River and Salmon River

  2. Fractured reservoir discrete feature network technologies. Annual report, March 7, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.

    1998-01-01

    This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.

  3. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    Science.gov (United States)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  4. The ecological dynamics of Barra Bonita (Tietê River, SP, Brazil reservoir: implications for its biodiversity

    Directory of Open Access Journals (Sweden)

    JG. Tundisi

    Full Text Available Barra Bonita reservoir is located in the Tietê River Basin - São Paulo state - 22° 29" to 22° 44" S and 48° 10° W and it is the first of a series of six large reservoirs in this river. Built up in 1963 with the aim to produce hydroelectricity this reservoir is utilized for several activities such as fish production, irrigation, navigation, tourism and recreation, besides hydroelectricity production. The seasonal cycle of events in this reservoir is driven by the hydrological features of the basin with consequences on the retention time and on the limnological functions of this artificial ecosystem. The reservoir is polymitic with short periods of stability. Hydrology of the basin, retention time of the reservoir and cold fronts have an impact in the vertical and horizontal structure of the system promoting rapid changes in the planktonic community and in the succession of species. Blooms of Microcystis sp. are common during periods of stability. Superimposed to the climatological and hydrological forcing functions the human activities in the watershed produce considerable impact such as the discharge of untreated wastewater, the high suspended material contributions and fertilizers from the sugar cane plantations. The fish fauna of the reservoir has been changed extent due to the introduction of exotic fish species that exploit the pelagic zone of the reservoir. Changes in the primary productivity of phytoplankton in this reservoir, in the zooplankton community in the diversity and organization of trophic structure are a consequence of eutrophication and its increase during the last 20 years. Control of eutrophication by treating wastewater from urban sources, adequate agricultural practices in order to diminish the suspended particulate matter contribution, revegetation of the watershed and riparian forests along the tributaries are some possible restoration measures. Another action that can be effective is the protection of wetlands in

  5. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Colwell, Rita

    2012-06-01

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  6. Evaluation of Management of Water Releases for Painted Rocks Reservoir, Bitterroot River, Montana, 1983-1986, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Spoon, Ronald L. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1987-06-01

    This study was initiated in July, 1983 to develop a water management plan for the release of water purchased from Painted Rocks Reservoir. Releases were designed to provide optimum benefits to the Bitterroot River fishery. Fisheries, habitat, and stream flow information was gathered to evaluate the effectiveness of these supplemental releases in improving trout populations in the Bitterroot River. The study was part of the Northwest Power Planning Council's Fish and Wildlife Program and was funded by the Bonneville Power Administration. This report presents data collected from 1983 through 1986.

  7. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

    2014-02-01

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

  8. Trapping Efficiency of Fine Sediments in Reservoir Lake in Fukushima Rivers as Revealed by Radiocaesium attached in Suspended Sediment

    Science.gov (United States)

    Taniguchi, K.; Onda, Y.; Kuramoto, T.; Smith, H.; Blake, W.; Onuma, S.; Sato, T.; Arai, H.; Blake, W.

    2017-12-01

    Radiocaesium released from Fukushima Daiichi Nuclear Power Plant were widely distributed in the surrounded area. The radiocaesium deposited inland area were adsorbed to fine particles of the surface soils such as silt and clay particles. The contaminated particles were eroded by rainfall events, and then transported through river systems. The purpose of this research is to investigate the impact of existence of large reservoirs on the riverine transport of fine sediments by using the 137Cs as a kind of tracer. At 30 monitoring sites located in 9 river systems in the area affected by the accident, suspended sediments (SS) ware collected by time-integrated SS samplers. The particulate radiocaesium activity concentration was measured by germanium detector. The water discharge and SS flux each site were calculated by the water level and turbidity data every 10 minutes obtained by monitoring. The 137Cs flux was calculated by multiplying the activity concentration and the SS flux. The Cs-137 flux normalized by the water discharge and initial deposition of 137Cs in the watershed (L/QD) showed a correlation with the coverages of land use types in the watershed in the case of monitoring sites where there was no large reservoir in the watershed. However, at the sites that have large reservoir in the watershed, the value of L/QD were 6.5 -21 % of the values estimated by the coverage of land use types. This result implies that approximately more than 80 % of the fine SS is trapped by the reservoirs.

  9. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2006-2007 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide resident fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program is also designed to maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was very unproductive this year as a fishery. Fish morphometric and water quality data indicate that the turbidity is severely impacting trout survival. Lake Billy Shaw was very productive as a fishery and received good ratings from anglers. Mountain View was also productive and anglers reported a high number of quality sized fish. Water quality

  10. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fishereis Resource Management, Lapwai, ID)

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2000 annual report covers the fourth year of sampling of this multi-year study. In 2000 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 53,277 hours of setline effort and 630 hours of hook-and-line effort was employed in 2000. A total of 538 white sturgeon were captured and tagged in the Snake River and 25 in the Salmon River. Since 1997, 32.8 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 48 cm to 271 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 103 cm to 227 cm and averaged 163 cm. Using the Jolly-Seber open population estimator, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,725 fish, with a 95% confidence interval of 1,668-5,783. A total of 10 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 54.7 km (34 miles) downstream to 78.8 km (49 miles) upstream; however, 43.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of

  11. Duck Valley Reservoirs Fish Stocking and O&M, Annual Progress Report 2007-2008.

    Energy Technology Data Exchange (ETDEWEB)

    Sellman, Jake; Perugini, Carol [Department of Fish, Wildlife, and Parks, Shoshone-Paiute Tribes

    2009-02-20

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance Project (DV Fisheries) is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the federal hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View (MVR), Lake Billy Shaw (LBS), and Sheep Creek Reservoirs (SCR), the program is also designed to: maintain healthy aquatic conditions for fish growth and survival, provide superior facilities with wilderness qualities to attract non-Tribal angler use, and offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period fall into three categories: operations and maintenance, monitoring and evaluation, and public outreach. Operation and maintenance of the three reservoirs include maintaining fences, roads, dams and all reservoir structures, feeder canals, water troughs, stock ponds, educational signs, vehicles, equipment, and restroom facilities. Monitoring and evaluation activities include creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, and control of encroaching exotic vegetation. Public outreach activities include providing environmental education to school children, providing fishing reports to local newspapers and vendors, updating the website, hosting community environmental events, and fielding numerous phone calls from anglers. The reservoir monitoring program focuses on water quality and fishery success. Sheep Creek Reservoir and Lake Billy Shaw had less than productive trout growth due to water

  12. Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco river (northeastern Brazil

    Directory of Open Access Journals (Sweden)

    M. Callisto

    Full Text Available In order to verify the cascade-system effect in benthic macroinvertebrate communities, and the implications for policy making and proposals for conservation and sustainable use of the lower portion of São Francisco river basin (Bahia State, Brazil, a three-reservoir cascade system including two stretches downstream were studied during dry (June, 1997 and rainy (March, 1998 periods. The dominant groups found were Mollusca (Melanoides tuberculata, Oligochaeta, and Chironomidae larvae. Low Shannon-Wiener and Pielou index values were found, but with no significant difference between the sampling periods. However, density and taxonomic richness were significantly different (t(0.05; 31 = -2.1945; p < 0.05; e t(0.05; 31 = -3.0600; p < 0.01 between the sampling periods, with a reduction in the number of taxaand macroinvertebrate abundance during the rainy period. An increasing gradient in benthic macroinvertebrate community structures was noted along the reservoir cascade from the first reservoir (Apolônio Sales, followed by a decrease downstream from the third reservoir of the system (Xingó. Despite the negative consequences of rapid proliferation of dams, which have caused widespread loss of freshwater habitats, the reservoir cascade system promoted an increase in benthic macroinvertebrate diversity, due to water-quality improvement along the system.

  13. Kootenai River Biological Baseline Status Report : Annual Report, 1996.

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Diana [Kootenai Tribe of Idaho, Bonners Ferry, ID (United States)

    1997-02-01

    The Kootenai River ecosystem in Idaho, Montana and British Columbia (B.C.) Canada has been severely degraded during the past 50 years. This aquatic ecosystem has changed from one that was culturally eutrophic, to one that is oligotrophic due to channelization, diking, impoundment (construction and operation of Libby Dam), and pollution abatement measures in the watershed. As a result of these influences, flow regimes, temperature patterns, and water quality were altered, resulting in changes in primary production and aquatic insect and fish populations. Construction of Libby Dam (creation of Lake Koocanusa) and closure of Cominco`s fertilizer plant resulted in decreased phosphorus load to the Kootenai River to below historical levels. Dissolved orthophosphorus concentrations averaged 0.383 mg/L in 1970 as compared to 0.039 mg/L in 1979. Total phosphorus concentrations followed a similar pattern. Both total phosphorus and soluble reactive phosphorus concentrations remained below 0.05 mg/L from 1976 to 1994, characterizing the river as oligotrophic. Post Libby Dam primary productivity levels in the river represent an ultra-oligotrophic to mesotrophic system. Since the construction and operation of Libby Dam, invertebrate densities immediately downstream from the dam increased, but species diversity decreased. Insect diversity increased with increasing distance from the dam, but overall species diversity was lower than would be expected in a free-flowing river. Fish species composition and abundance has also changed as a result of the changes in the river and its watershed.

  14. Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

    2012-05-01

    The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

  15. Evaluate Potenial Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A.; Hesse, Jay A. (Nez Perce Tribe, Department of Fisheries Management, Lapwai, ID)

    2004-02-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This report presents a summary of results from the 1997-2002 Phase II data collection and represents the end of phase II. From 1997 to 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon. A total of 1,785 white sturgeon were captured and tagged in the Snake River and 77 in the Salmon River. Since 1997, 25.8 percent of the tagged white sturgeon have been recaptured. Relative density of white sturgeon was highest in the free-flowing segment of the Snake River, with reduced densities of fish in Lower Granite Reservoir, and low densities the Salmon River. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir, the free-flowing Snake River and the Salmon River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. Total annual mortality rate was estimated to be 0.14 (95% confidence interval of 0.12 to 0.17). A total of 35 white sturgeon were fitted with radio-tags during 1999-2002. The movement of these fish ranged from 53 km (33 miles) downstream to 77 km (48 miles) upstream; however, 38.8 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No

  16. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge

  17. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in the Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.

  18. Characterization of oil and gas reservoir heterogeneity. Annual report, November 1, 1990--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  19. Wind River Watershed Restoration 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

    2008-11-10

    During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder

  20. On the Techa’s reservoirs cascade influence on the long-term forecast of the Techa river radioactive contamination

    Directory of Open Access Journals (Sweden)

    S. S. Utkin

    2016-01-01

    Full Text Available In 1949–1956 years, the Techa river was exposed to the intense radioactive contamination, which consequences are not overcome up to now. Currently, the Techa Cascade of Water Reservoirs is the only source of contamination of this river that could be managed. In February 2016 the Chief Executive Officer of the State Corporation “ROSATOM” approved the «Strategic master-plan on the solution of the problems of the Techa Reservoir Cascade» providing a novel look at an issue of remediation of the Techa river. The aim of the article is the implementation of the modern radiation protection system to the existing or potential exposure situations of public residing near the Techa river and an analysis of possible features, events, and processes considered in the longterm forecasts performed in the field of public radiation safety. Although the current radiation state of the Techa River is relatively stable, the task of refining the traditional phenomenological retrospective analysis covering the assessment of the past and current radiation exposure and environmental impacts is considered quite relevant. The Calculation- monitoring complex “TCR-Prognoz” was developed in the framework of the “Strategic Master Plan”. This complex enables to evaluate multivariate scenario calculations resulting in long-term forecasts of radioactive contamination levels in the Techa River and its floodplain, depending on various sets of environmental conditions and anthropogenic factors. Complex radiation surveys to define the detailed character and the time frames of economic activities permitted under the existing radiation safety requirements in the floodplain of the Techa river are recommended to be started after 2020. By this time, the first steady effects associated with the “Strategic Master Plan” implementation will become evident, including those resulting from the efforts aimed at simultaneous minimization of radionuclide

  1. Post-depositional redistribution of trace metals in reservoir sediments of a mining/smelting-impacted watershed (the Lot River, SW France)

    International Nuclear Information System (INIS)

    Audry, Stephane; Grosbois, Cecile; Bril, Hubert; Schaefer, Joerg; Kierczak, Jakub; Blanc, Gerard

    2010-01-01

    flood event, about 870 t of Zn, 18 t of Cd, 25 t of Pb and 17 t of Cu could be mobilized from the downstream reservoir sediments along the Lot River by resuspension-induced oxidation of sulfide phases. These amounts are equivalent to 13-fold (Cd), ∼6-fold (Zn), 4-fold (Pb) the mean annual inputs of the respective dissolved trace metals into the Gironde estuary.

  2. ANNUAL ACTIVITY OF THE NOBLE CRAYFISH (ASTACUS ASTACUS) IN THE ORLJAVA RIVER (CROATIA)

    OpenAIRE

    FALLER M.; MAGUIRE I.; KLOBUČAR G.

    2006-01-01

    We studied the annual activity of the noble crayfish (Astacus astacus) at three sites along the Orljava River, in the continental part of Croatia, between August 2003 and September 2004. Each site represented the typical characteristics of the upper, middle and lower section of the river (5, 24 and 37 km from the spring, respectively). The biggest population size was recorded on the most upstream site, with greatest structural variability of bottom, high biotic index, and the lowest mean wate...

  3. Wind River Watershed Restoration, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie [U.S. Geological Survey

    2008-11-10

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  4. Selection of reservoirs amenable to micellar flooding. First annual report, October 1978-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Goldburg, A.; Price, H.

    1980-12-01

    The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolve both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.

  5. Experimental and Theoretical Determination of Heavy Oil Viscosity Under Reservoir Conditions; ANNUAL

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Barrufet, Maria

    2002-01-01

    The main objective of this research was to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes

  6. Yakima River Spring Chinook Enhancement Study, 1988 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.

    1988-12-01

    Smolt outmigration was monitored at Wapatox on the Naches River and Prosser on the lower Yakima. The spring outmigration at Wapatox was estimated to be smolts. The survival from egg to smolt was calculated using the 1986 redd counts and the 1988 smolt outmigration at Prosser. The smolt to adult survival was calculated based on the 1983 smolt outmigration estimated at Prosser and the 1984 return of jacks (3 year old fish), the 1985 return of four year old adults, and the 1986 return of five year old fish to the Yakima River. 13 refs., 4 figs., 47 tabs.

  7. Osprey: worldwide sentinel species for assessing and monitoring environmental contamination in rivers, lakes, reservoirs, and estuaries.

    Science.gov (United States)

    Grove, Robert A; Henny, Charles J; Kaiser, James L

    2009-01-01

    In the United States, many fish and wildlife species have been used nationwide to monitor environmental contaminant exposure and effects, including carcasses of the bald eagle (Haliaeetus leucocephalus), the only top avian predator regularly used in the past. Unfortunately, bald eagles are sensitive to investigator intrusion at the nest. Thus, the osprey (Pandion haliaetus) is evaluated as a potential sentinel species for aquatic ecosystems. Several characteristics support the choice of the osprey as a sentinel species, including: (1) fish-eating diet atop the aquatic food web, (2) long-lived with strong nest fidelity, (3) adapts to human landscapes (potentially the most contaminated), (4) tolerates short-term nest disturbance, (5) nests spatially distributed at regular intervals, (6) highly visible nests easily located for study, (7) ability to accumulate most, if not all, lipophilic contaminants, (8) known sensitivity to many contaminants, and (9) nearly a worldwide distribution. These osprey traits have been instrumental in successfully using the species to understand population distribution, abundance, and changes over time; the effects of various contaminants on reproductive success; how contaminants in prey (fish on biomass basis) contribute to egg concentrations (i.e., biomagnification factors); and spatial residue patterns. Data summarized include nesting population surveys, detailed nesting studies, and chemical analyses of osprey egg, organ, blood, and feather samples for contaminants that bioaccumulate and/or biomagnify in aquatic food webs; and biochemical evaluations of blood and various organs. Studies in the United States, Canada, Mexico, Europe, and elsewhere have shown the osprey to be a useful sentinel species for monitoring selected environmental contaminants, including some emerging contaminants in lakes, reservoirs, rivers, and estuaries.

  8. Sorption kinetics of Cs and Sr in sediments of a Savannah River Site reservoir

    International Nuclear Information System (INIS)

    Stephens, J.A.

    1997-07-01

    Laboratory measurements of the sorption and desorption of 134 Cs and 85 Sr to sediments were conducted. These sediments were sampled from the profundal zone of Par Pond at the Savannah River Site, Aiken, South Carolina. The isotopes 134 Cs and 85 Sr were used to trace the sorption properties of the main contaminants found in the reservoir which are 137 Cs and 90 Sr respectively. The sorption behavior of these two elements was studied using spiked sediment/water slurries of a known mass to volume ratio. The results reveal that Sr undergoes significant reversible sorption while a fraction of Cs irreversibly sorbs to the sediment. The calculated distribution coefficient Kd at equilibrium was (3 ± 0.6) x 10 3 for 134 Cs after 60 d and (1 ± 0.2) x 10 3 for 85 Sr after 7 d at pH ∼ 6 and slurry ratio of 1:1000 g/ml. The K d for 134 Cs ranged from 2 x 10 2 to 3 x 10 4 depending on pH and conductivity. The 85 Sr reached equilibrium in a few days, while 134 Cs reached an apparent equilibrium in 1--2 months. The K d for 134 Cs was a function of the slurry ratio, pH, conductivity, and contact time. These factors were interrelated since the sediments released ions to the slurry mixture which decreased the pH and increased the conductivity. A sorption isotherm measured for 134 Cs was linear at water concentrations from 60 mBq/ml to 20 Bq/ml. A kinetic model was proposed to describe the basic sorption of 134 Cs to Par Pond sediments under homogeneous laboratory conditions

  9. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    Science.gov (United States)

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  10. Scale-up of miscible flood processes for heterogeneous reservoirs. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Orr, F.M. Jr.

    1995-03-01

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Use of streamtube to model multiphase flow is demonstrated to be a fast and accurate approach for displacements that are dominated by reservoir heterogeneity. The streamtube technique is particularly powerful for multiphase compositional displacements because it represents the effects of phase behavior with a one-dimensional flow and represents the effects of heterogeneity through the locations of streamtubes. A new approach for fast calculations of critical tie-lines directly from criticality conditions is reported. A global triangular structure solution for four-component flow systems, whose tie-lies meet at the edge of a quaternary phase diagram or lie in planes is presented. Also demonstrated is the extension of this solution to multicomponent systems under the same assumptions. The interplay of gravity, capillary and viscous forces on final residual oil saturation is examined experimentally and theoretically. The analysis of vertical equilibrium conditions for three-phase gravity drainage shows that almost all oil can be recovered from the top part of a reservoir. The prediction of spreading and stability of thin film is performed to investigate three-phase gravity drainage mechanisms. Finally, experimental results from gravity drainage of crude oil in the presence of CO{sub 2} suggest that gravity drainage could be an efficient oil recovery process for vertically fractured reservoirs.

  11. Influence of releases from a fresh water reservoir on the hydrochemistry of the Tinto River (SW Spain).

    Science.gov (United States)

    Cánovas, Carlos Ruiz; Olias, Manuel; Vazquez-Suñé, Enric; Ayora, Carlos; Miguel Nieto, Jose

    2012-02-01

    The Tinto River is an extreme case of pollution by acid mine drainage (AMD), with pH values below 3 and high sulphate, metal and metalloid concentrations along its main course. This study evaluates the impact of releases from a freshwater reservoir on the Tinto River, identifying the metal transport mechanisms. This information is needed to understand the water quality evolution in the long term, and involves the comprehension of interactions between AMD sources, freshwaters, particulate matter and sediments. This work proposes a methodology for quantifying the proportions in which the different sources are contributing. The method is based on the mass balance of solutes and accounts for the uncertainty of end-members. The impact of the releases from the Corumbel Reservoir on the hydrochemistry of the Tinto River was significant, accounting up to a 92% of river discharge. These releases provoked a sharp decrease in dissolved metal concentrations, especially for Fe (approximately 1000 fold) due to dilution and precipitation. Cadmium, Zn, Cu, Co, Ni and Al suffered a dilution to a 12-16 fold decrease while Ca, Sr, Na, Pb and Si were less affected (2-4 folds decrease). However, these releases also gave rise to an increase in particulate transport, mainly Fe, As, Cr, Ba, Pb and Ti, due to sediment remobilisation and Fe precipitation. Aluminium, Li, K, Si, Al, Ni and Sr, together with Cu were present in the particulate phase during the discharge peak. The proposed 2-component mixing model revealed the existence of non-conservative behaviour for Al, Ca, Li, Mn, Ni and Si as a consequence of the interactions between the acidic Tinto waters and the clay-rich reservoir sediments during the bottom outlet opening. These results were improved by a 3-component mixing model, introducing a new end-member to account the chemical dissolution of clay-rich sediments by acidic Tinto waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Twelve Years of Monitoring Phosphorus and Suspended-Solids Concentrations and Yields in the North Fork Ninnescah River above Cheney Reservoir, South-Central Kansas 1997-2008

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Ziegler, Andrew C.

    2009-01-01

    Cheney Reservoir, located on the North Fork Ninnescah River in south-central Kansas, is the primary water supply for the city of Wichita and an important recreational resource. Concerns about taste-and-odor occurrences in Cheney Reservoir have drawn attention to potential pollutants, including total phosphorus (TP) and total suspended solids (TSS). July 2009 was the 15th anniversary of the establishment of the Cheney Reservoir Watershed pollution management plan. The U.S. Geological Survey (USGS), in cooperation with the city of Wichita, has collected water-quality data in the basin since 1996, and has monitored water quality continuously on the North Fork Ninnescah River since 1998. This fact sheet describes 12 years (1997-2008) of computed TP and TSS data and compares these data with water-quality goals for the North Fork Ninnescah River, the main tributary to Cheney Reservoir.

  13. Environmental monitoring at the Savannah River Plant. Annual report, 1980

    International Nuclear Information System (INIS)

    Zeigler, C.C.; Culp, P.A.; Smith, D.L.

    1983-11-01

    The results of the 1980 Savannah River Plant environmental monitoring program are presented. Appendices contain data analysis and quality control information, minimum detectable levels, tabes of environmental sample analyses, and maps of sampling locations. Radioactive releases are divided into four categories for comparison with previous releases. The categories are: tritium, noble gases, beta and gamma emitters, and total alpha emitters. 34 figures, 58 tables

  14. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  15. Columbia River : Terminal Fisheries Research Report : Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Paul; Miller, Marc; Hill, Jim

    1996-12-01

    In 1993 the Northwest Power Planning Council recommended in its Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin.

  16. Environmental monitoring at the Savannah River Plant. Annual report, 1974

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.

    1975-08-01

    Results obtained from the environmental radioactivity monitoring program at the Savannah River Plant (SRP) during 1974 are summarized. A brief discussion of plant releases to the environment and radioactivity detected in the environment is presented in the following text, figures, and tables. The appendices contain tables of results from environmental samples analyses, sensitivities of laboratory analyses, and maps of sampling locations. (auth)

  17. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  18. Influence of releases from a fresh water reservoir on the hydrochemistry of the Tinto River (SW Spain)

    International Nuclear Information System (INIS)

    Cánovas, Carlos Ruiz; Olias, Manuel; Vazquez-Suñé, Enric; Ayora, Carlos; Nieto, Jose Miguel

    2012-01-01

    The Tinto River is an extreme case of pollution by acid mine drainage (AMD), with pH values below 3 and high sulphate, metal and metalloid concentrations along its main course. This study evaluates the impact of releases from a freshwater reservoir on the Tinto River, identifying the metal transport mechanisms. This information is needed to understand the water quality evolution in the long term, and involves the comprehension of interactions between AMD sources, freshwaters, particulate matter and sediments. This work proposes a methodology for quantifying the proportions in which the different sources are contributing. The method is based on the mass balance of solutes and accounts for the uncertainty of end-members. The impact of the releases from the Corumbel Reservoir on the hydrochemistry of the Tinto River was significant, accounting up to a 92% of river discharge. These releases provoked a sharp decrease in dissolved metal concentrations, especially for Fe (approximately 1000 fold) due to dilution and precipitation. Cadmium, Zn, Cu, Co, Ni and Al suffered a dilution to a 12–16 fold decrease while Ca, Sr, Na, Pb and Si were less affected (2–4 folds decrease). However, these releases also gave rise to an increase in particulate transport, mainly Fe, As, Cr, Ba, Pb and Ti, due to sediment remobilisation and Fe precipitation. Aluminium, Li, K, Si, Al, Ni and Sr, together with Cu were present in the particulate phase during the discharge peak. The proposed 2-component mixing model revealed the existence of non-conservative behaviour for Al, Ca, Li, Mn, Ni and Si as a consequence of the interactions between the acidic Tinto waters and the clay-rich reservoir sediments during the bottom outlet opening. These results were improved by a 3-component mixing model, introducing a new end-member to account the chemical dissolution of clay-rich sediments by acidic Tinto waters. - Highlights: ► We study the influence of freshwater releases on the acidic Tinto river

  19. Influence of releases from a fresh water reservoir on the hydrochemistry of the Tinto River (SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Canovas, Carlos Ruiz, E-mail: carlos.ruiz@dgeo.uhu.es [Institute of Environmental Assessment and Water Research (IDAeA-CSIC). c/Jordi Girona 18-26, 08034 Barcelona (Spain); Department of Geodynamics and Paleontology, University of Huelva, Facultad de Ciencias Experimentales, Avenida 3 de Marzo s/n, 21071 Huelva (Spain); Olias, Manuel [Department of Physical, Chemical and Natural Systems, University Pablo de Olavide. Ctra.de Utrera km 1, 41013, Sevilla (Spain); Vazquez-Sune, Enric; Ayora, Carlos [Institute of Environmental Assessment and Water Research (IDAeA-CSIC). c/Jordi Girona 18-26, 08034 Barcelona (Spain); Nieto, Jose Miguel [Department of Geology, University of Huelva, Facultad de Ciencias Experimentales, Avenida 3 de Marzo s/n, 21071 Huelva (Spain)

    2012-02-01

    The Tinto River is an extreme case of pollution by acid mine drainage (AMD), with pH values below 3 and high sulphate, metal and metalloid concentrations along its main course. This study evaluates the impact of releases from a freshwater reservoir on the Tinto River, identifying the metal transport mechanisms. This information is needed to understand the water quality evolution in the long term, and involves the comprehension of interactions between AMD sources, freshwaters, particulate matter and sediments. This work proposes a methodology for quantifying the proportions in which the different sources are contributing. The method is based on the mass balance of solutes and accounts for the uncertainty of end-members. The impact of the releases from the Corumbel Reservoir on the hydrochemistry of the Tinto River was significant, accounting up to a 92% of river discharge. These releases provoked a sharp decrease in dissolved metal concentrations, especially for Fe (approximately 1000 fold) due to dilution and precipitation. Cadmium, Zn, Cu, Co, Ni and Al suffered a dilution to a 12-16 fold decrease while Ca, Sr, Na, Pb and Si were less affected (2-4 folds decrease). However, these releases also gave rise to an increase in particulate transport, mainly Fe, As, Cr, Ba, Pb and Ti, due to sediment remobilisation and Fe precipitation. Aluminium, Li, K, Si, Al, Ni and Sr, together with Cu were present in the particulate phase during the discharge peak. The proposed 2-component mixing model revealed the existence of non-conservative behaviour for Al, Ca, Li, Mn, Ni and Si as a consequence of the interactions between the acidic Tinto waters and the clay-rich reservoir sediments during the bottom outlet opening. These results were improved by a 3-component mixing model, introducing a new end-member to account the chemical dissolution of clay-rich sediments by acidic Tinto waters. - Highlights: Black-Right-Pointing-Pointer We study the influence of freshwater releases on the

  20. Dredged Material Management Plan and Environmental Impact Statement. McNary Reservoir and Lower Snake River Reservoirs. Appendix C: Economic Analysis

    National Research Council Canada - National Science Library

    2002-01-01

    ...; for managment of dredged material from these reservoirs; and for maintenance of flow conveyance capacity at the most upstream extent of the Lower Granite reservoir for the remaining economic life of the dam and reservoir project (to year 2074...

  1. Columbia River: Terminal fisheries research project. 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, P.; Miller, M.; Hill, J.

    1996-12-01

    Columbia River terminal fisheries have been conducted in Youngs Bay, Oregon, since the early 1960`s targeting coho salmon produced at the state facility on the North Fork Klaskanine River. In 1977 the Clatsop County Economic Development Council`s (CEDC) Fisheries Project began augmenting the Oregon Department of Fish and Wildlife production efforts. Together ODFW and CEDC smolt releases totaled 5,060,000 coho and 411,300 spring chinook in 1993 with most of the releases from the net pen acclimation program. During 1980-82 fall commercial terminal fisheries were conducted adjacent to the mouth of Big Creek in Oregon. All past terminal fisheries were successful in harvesting surplus hatchery fish with minimal impact on nonlocal weak stocks. In 1993 the Northwest Power Planning Council recommended in its` Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin. The findings of the initial year of the study are included in this report. The geographic area considered for study extends from Bonneville Dam to the river mouth. The initial year`s work is the beginning of a 2-year research stage to investigate potential sites, salmon stocks, and methodologies; a second 3-year stage will focus on expansion in Youngs Bay and experimental releases into sites with greatest potential; and a final 5-year phase establishing programs at full capacity at all acceptable sites. After ranking all possible sites using five harvest and five rearing criteria, four sites in Oregon (Tongue Point, Blind Slough, Clifton Channel and Wallace Slough) and three in Washington (Deep River, Steamboat Slough and Cathlamet Channel) were chosen for study.

  2. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  3. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  4. Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

    2014-03-28

    The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: • Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. • Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. • The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. • Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high

  5. Modelling non-stationary annual maximum flood heights in the lower Limpopo River basin of Mozambique

    Directory of Open Access Journals (Sweden)

    Daniel Maposa

    2016-05-01

    Full Text Available In this article we fit a time-dependent generalised extreme value (GEV distribution to annual maximum flood heights at three sites: Chokwe, Sicacate and Combomune in the lower Limpopo River basin of Mozambique. A GEV distribution is fitted to six annual maximum time series models at each site, namely: annual daily maximum (AM1, annual 2-day maximum (AM2, annual 5-day maximum (AM5, annual 7-day maximum (AM7, annual 10-day maximum (AM10 and annual 30-day maximum (AM30. Non-stationary time-dependent GEV models with a linear trend in location and scale parameters are considered in this study. The results show lack of sufficient evidence to indicate a linear trend in the location parameter at all three sites. On the other hand, the findings in this study reveal strong evidence of the existence of a linear trend in the scale parameter at Combomune and Sicacate, whilst the scale parameter had no significant linear trend at Chokwe. Further investigation in this study also reveals that the location parameter at Sicacate can be modelled by a nonlinear quadratic trend; however, the complexity of the overall model is not worthwhile in fit over a time-homogeneous model. This study shows the importance of extending the time-homogeneous GEV model to incorporate climate change factors such as trend in the lower Limpopo River basin, particularly in this era of global warming and a changing climate. Keywords: nonstationary extremes; annual maxima; lower Limpopo River; generalised extreme value

  6. Stimulation and reservoir engineering of geothermal resources. Second annual report, July 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr.

    1979-09-01

    Individual projects are grouped under four main areas of study: energy extraction, bench-scale flow experiments, radon tracer techniques, and well test analysis. The energy extraction experiments concern the efficiency with which the in-place heat and fluids can be produced in the most economical manner. The bench-scale flow experiments cover the results of three models used to examine the properties of flow through porous media at elevated temperature and pressures. Random tracer techniques describe accelerated efforts to field test several geothermal reservoirs by both transient and transect test procedures. The well test analysis section describes several new developments: analysis of earth-tide effects, pressure transient analysis of multilayered systems, interference testing with storage and skin effects, determination of steam-water relative permeability from wellhead data, well test analysis for wells produced at constant pressure, the parallelepiped model, slug test DST analysis, and pressure transient behavior in naturally fractured reservoirs. (MHR)

  7. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1994--September 24, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1996-05-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems -- KUSP1 systems which contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethylphthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system. The KUSP1 polymer-ester system and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to super-critical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  8. Bioavailability of pollutants sets risk of exposure to biota and human population in reservoirs from Iguaçu River (Southern Brazil).

    Science.gov (United States)

    Yamamoto, F Y; Pereira, M V M; Lottermann, E; Santos, G S; Stremel, T R O; Doria, H B; Gusso-Choueri, P; Campos, S X; Ortolani-Machado, C F; Cestari, M M; Neto, F Filipak; Azevedo, J C R; Ribeiro, C A Oliveira

    2016-09-01

    The Iguaçu River, located at the Southern part of Brazil, has a great socioeconomic and environmental importance due to its high endemic fish fauna and its potential to generate hydroelectric power. However, Iguaçu River suffers intense discharge of pollutants in the origin of the river. In a previous report, the local environmental agency described water quality to improve along the river course. However, no study with integrated evaluation of chemical analysis and biological responses has been reported so far for the Iguaçu River. In the current study, three different Brazilian fish species (Astyanax bifasciatus, Chrenicicla iguassuensis, and Geophagus brasiliensis) were captured in the five cascading reservoirs of Iguaçu River for a multi-biomarker study. Chemical analysis in water, sediment, and muscle indicated high levels of bioavailable metals in all reservoirs. Polycyclic aromatic hydrocarbons (PAHs) were detected in the bile of the three fish species. Integration of the data through a FA/PCA analysis demonstrated the poorest environmental quality of the reservoir farthest from river's source, which is the opposite of what has been reported by the environmental agency. The presence of hazardous chemicals in the five reservoirs of Iguaçu River, their bioaccumulation in the muscle of fish, and the biological responses showed the impacts of human activities to this area and did not confirm a gradient of pollution between the five reservoirs, from the source toward Iguaçu River's mouth. Therefore, diffuse source of pollutants present along the river course are increasing the risk of exposure to biota and human populations.

  9. SIMULATION OF SEDIMENT TRANSPORT IN THE JEZIORO KOWALSKIE RESERVOIR LOCATED IN THE GLOWNA RIVER

    Directory of Open Access Journals (Sweden)

    Joanna Jaskuła

    2015-07-01

    Full Text Available The purpose of the presented research is the analysis of bed elevation changes caused by sediment accumulation in the Jezioro Kowalskie reservoir. The Jezioro Kowalskie reservoir is a two stage reservoir constructed in such a way that the upper preliminary zone is separated from the main part of the reservoir. The split of the reservoir parts is done with a small pre-dam, located in Jerzykowo town. The analysis of such a construction impact on changes of bed elevations in the reservoir in different flow conditions is presented. The HEC-RAS 5.0 Beta model is used for simulations. The sediment transport intensity is calculated from England-Hansen and Meyer-Peter and Muller formulae. The results showed the processes of sediment accumulation and slight erosion occuring in the preliminary zone of the reservoir. The choice of the flow intensity does not have a huge importance. Similar results are obtained for low as well as high flows. The results confirm, that two stage construction with separated preliminary zone is effective method preventing from the sedimentation of the reservoir.

  10. Yakima River Spring Chinook Enhancement Study, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, Larry

    1985-01-01

    This study develops data to present management alternatives for Yakima River spring chinook. The first objective is to determine the distribution, abundance and survival of wild Yakima River spring chinook. Naturally produced populations will be studied to determine if these runs can be sustained in the face of present harvest and environmental conditions. This information will be gathered through spawning ground surveys, counting of adults at Prosser and Roza fish ladders, and through monitoring the tribal dipnet fishery. Concurrent studies will examine potential habitat limitations within the basin. Presently, survival to emergence studies, in conjunction with substrate quality analysis is being undertaken. Water temperature is monitored throughout the basin, and seining takes place monthly to evaluate distribution and abundance. The outcome of this phase of the investigation is to determine an effective manner for introducing hatchery stocks that minimize the impacts on the wild population. The second objective of this study is to determine relative effectiveness of different methods of hatchery supplementation.

  11. Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington

    Science.gov (United States)

    Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.

    2014-01-01

    Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.

  12. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  13. Arima modelling of annual rainfalls in the Bregalnica River basin

    OpenAIRE

    Jovanovski, Vlatko; Delipetrov, Todor

    2007-01-01

    Changes in the hydrological characteristics have an impact on the environment. The reasons for the impact in the Bregalnica river basin are heavy rains and long droughts. Monitoring the undenstanding of hydrological impacts may provide useful assessment ingand forecast in several fields. This paper analysis hydrological processes, and offeres data processing of the monitor with ARIMA Modelling in STATISTICA packet like good techniques for estimation forecast of the hydrological caracterist...

  14. Wind River Watershed Restoration, 2006-2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S. [U.S. Geological Survey

    2008-11-04

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  15. Effective Discharge and Annual Sediment Yield on Brazos River

    Science.gov (United States)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  16. 1996 Savannah River Site annual epidemiologic surveillance report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996.

  17. 1997 Savannah River Site annual epidemiologic surveillance report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-06-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997.

  18. Spatial synchrony of a highly endemic fish Assemblage (Segredo Reservoir, Iguaçu River, Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    W. M. Domingues

    Full Text Available In this study, patterns of spatial synchrony in population fluctuations (cross-correlation of an endemic fish assemblage of a Neotropical reservoir (Segredo Reservoir, Iguaçu River, Paraná State, Brazil were reported. First, the level of population synchrony for 20 species was estimated. Second, population synchrony was correlated, using the Mantel test, with geographical distances among sites (n = 11 and also environmental synchrony (temperature. Nine species presented significant correlations between spatial synchrony and geographic distances (Astyanax sp. b, Astyanax sp. c, Pimelodus sp., Hoplias malabaricus, Crenicichla iguassuensis, Hypostomus derbyi, Hypostomus myersi, Rhamdia branneri, and R. voulezi. Considering the ecology of the species and the significant relationship between population and environmental synchronies, it seems that environmental stochasticity is the most plausible hypothesis in explaining the observed synchrony patterns.

  19. Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD

    Energy Technology Data Exchange (ETDEWEB)

    Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

  20. Information retrieval system: impacts of water-level changes on uses of federal storage reservoirs of the Columbia River.

    Energy Technology Data Exchange (ETDEWEB)

    Fickeisen, D.H.; Cowley, P.J.; Neitzel, D.A.; Simmons, M.A.

    1982-09-01

    A project undertaken to provide the Bonneville Power Administration (BPA) with information needed to conduct environmental assessments and meet requirements of the National Environmental Policy Act (NEPA) and the Pacific Northwest Electric Power Planning and Conservation Act (Regional Act) is described. Access to information on environmental effects would help BPA fulfill its responsibilities to coordinate power generation on the Columbia River system, protect uses of the river system (e.g., irrigation, recreation, navigation), and enhance fish and wildlife production. Staff members at BPA identified the need to compile and index information resources that would help answer environmental impact questions. A computer retrieval system that would provide ready access to the information was envisioned. This project was supported by BPA to provide an initial step toward a compilation of environmental impact information. Scientists at Pacific Northwest Laboratory (PNL) identified, gathered, and evaluated information related to environmental effects of water level on uses of five study reservoirs and developed and implemented and environmental data retrieval system, which provides for automated storage and retrieval of annotated citations to published and unpublished information. The data retrieval system is operating on BPA's computer facility and includes the reservoir water-level environmental data. This project was divided into several tasks, some of which were conducted simultaneously to meet project deadlines. The tasks were to identify uses of the five study reservoirs, compile and evaluate reservoir information, develop a data entry and retrieval system, identify and analyze research needs, and document the data retrieval system and train users. Additional details of the project are described in several appendixes.

  1. [Sediment-water flux and processes of nutrients and gaseous nitrogen release in a China River Reservoir].

    Science.gov (United States)

    Chen, Zhu-hong; Chen, Neng-wang; Wu, Yin-qi; Mo, Qiong-li; Zhou, Xing-peng; Lu, Ting; Tian, Yun

    2014-09-01

    The key processes and fluxes of nutrients (N and P) and gaseous N (N2 and N2O) across the sediment-water interface in a river reservoir (Xipi) of the Jiulong River watershed in southeast China were studied. Intact core sediment incubation of nutrients exchange, in-situ observation and lab incubation of excess dissolved N2 and N2O (products of nitrification, denitrification and Anammox), and determination of physiochemical and microbe parameters were carried out in 2013 for three representative sites along the lacustrine zone of the reservoir. Results showed that ammonium and phosphate were generally released from sediment to overlying water [with averaged fluxes of N (479.8 ± 675.4) mg. (m2. d)-1 and P (4. 56 ± 0.54) mg. (m2 d) -1] , while nitrate and nitrite diffused into the sediment. Flood events in the wet season could introduce a large amount of particulate organic matter that would be trapped by the dam reservoir, resulting in the high release fluxes of ammonium and phosphate observed in the following low-flow season. No clear spatial variation of sediment nutrient release was found in the lacustrine zone of the reservoir. Gaseous N release was dominated by excess dissolved N2 (98% of total), and the N2 flux from sediment was (15.8 ± 12. 5) mg (m2. d) -1. There was a longitudinal and vertical variation of excess dissolved N2, reflecting the combined results of denitrification and Anammox occurring in anoxic sediment and fluvial transport. Nitrification mainly occurred in the lower lacustrine zone, and the enrichment of N2O was likely regulated by the ratio of ammonium to DIN in water.

  2. Hood River and Pelton Ladder monitoring and evaluation project and Hood River fish habitat project : annual progress report 1999-2000.; ANNUAL

    International Nuclear Information System (INIS)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-01-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat[contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000

  3. Bull trout population assessment in the Columbia River Gorge/annual report fy2000; ANNUAL

    International Nuclear Information System (INIS)

    Byrne, Jim; McPeak, Ron

    2001-01-01

    We summarized existing knowledge regarding the known distribution of bull trout (Salvelinus confluentus) across four sub-basins in the Columbia River Gorge in Washington. The Wind River, Little White Salmon River, White Salmon River, and the Klickitat River sub-basins were analyzed. Cold water is essential to the survival, spawning, and rearing of bull trout. We analyzed existing temperature data, installed Onset temperature loggers in the areas of the four sub-basins where data was not available, and determined that mean daily water temperatures were and lt;15 C and appropriate for spawning and rearing of bull trout. We snorkel surveyed more than 74 km (46.25 mi.) of rivers and streams in the four sub-basins (13.8 km at night and 60.2 km during the day) and found that night snorkeling was superior to day snorkeling for locating bull trout. Surveys incorporated the Draft Interim Protocol for Determining Bull Trout Presence (Peterson et al. In Press). However, due to access and safety issues, we were unable to randomly select sample sites nor use block nets as recommended. Additionally, we also implemented the Bull Trout/Dolly Varden sampling methodology described in Bonar et al. (1997). No bull trout were found in the Wind River, Little White Salmon, or White Salmon River sub-basins. We found bull trout in the West Fork Klickitat drainage of the Klickitat River Sub-basin. Bull trout averaged 6.7 fish/100m(sup 2) in Trappers Creek, 2.6 fish/100m(sup 2) on Clearwater Creek, and 0.4 fish/100m(sup 2) in Little Muddy Creek. Bull trout was the only species of salmonid encountered in Trappers Creek and dominated in Clearwater Creek. Little Muddy Creek was the only creek where bull trout and introduced brook trout occurred together. We found bull trout only at night and typically in low flow regimes. A single fish, believed to be a bull trout x brook trout hybrid, was observed in the Little Muddy Creek. Additional surveys are needed in the West Fork Klickitat and mainstem

  4. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Tuell, Michael A.; Everett, Scott R. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 1999 annual report covers the third year of sampling of this multi-year study. In 1999 white sturgeon were captured, marked and population data were collected in the Snake and Salmon rivers. A total of 33,943 hours of setline effort and 2,112 hours of hook-and-line effort was employed in 1999. A total of 289 white sturgeon were captured and tagged in the Snake River and 29 in the Salmon River. Since 1997, 11.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 27 cm to 261 cm and averaged 110 cm. In the Salmon River, white sturgeon ranged in total length from 98 cm to 244 cm and averaged 183.5 cm. Using the Jolly-Seber model, the abundance of white sturgeon < 60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 1,823 fish, with a 95% confidence interval of 1,052-4,221. A total of 15 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 6.4 km (4 miles) downstream to 13.7 km (8.5 miles) upstream; however, 83.6 percent of the detected movement was less than 0.8 kilometers (0.5 miles). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River

  5. Improving Oil Recovery (IOR) with Polymer Flooding in a Heavy-Oil River-Channel Sandstone Reservoir

    OpenAIRE

    Lu, Hongjiang

    2009-01-01

    Most of the old oil fields in China have reached high water cut stage, in order to meet the booming energy demanding, oil production rate must be kept in the near future with corresponding IOR (Improving Oil Recovery) methods. Z106 oilfield lies in Shengli Oilfields Area at the Yellow River delta. It was put into development in 1988. Since the oil belongs to heavy oil, the oil-water mobility ratio is so unfavourable that water cut increases very quickly. Especially for reservoir Ng21, the san...

  6. Aquatic macroinvertebrates of Batalha river reservoir for water captation and supply of the city of Bauru, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Diana Calcidoni Moreira

    2009-08-01

    Full Text Available In this study the composition and diversity of aquatic macroinvertebrates were evaluated in the reservoir of water captation of Batalha river for treatment and supplying of the city of Bauru. The samples were collected in dry (from June to August, 2005 and rainy (from December, 2005 to February, 2006 seasons. We analyzed and identified 840 organisms belonging to 8 taxa in dry season and 4 taxa in rainy season. The system presented low abundance and diversity of macroinvertebrates probably due to the water quality and its physical and chemical variations associated with rain events.

  7. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  8. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Berry, M.

    1998-03-01

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  9. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project

  10. Scale-up of miscible flood processes for heterogeneous reservoirs. 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Orr, F.M. Jr.

    1994-05-01

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Compositional and first-contact miscable simulations of viscous fingering and gravity segregation are compared to show that the two techniques can give very different results. Also, analyzed are two-dimensional and three-dimensional flows in which gravity segregation and viscous fingering interact. The simulations show that 2D and 3D flows can differ significantly. A comparison of analytical solutions for three-component two-phase flow with experimental results for oil/water/alcohol systems is reported. While the experiments and theory show reasonable agreement, some differences remain to be explained. The scaling behavior of the interaction of gravity segregation and capillary forces is investigated through simulations and through scaling arguments based on analysis of the differential equations. The simulations show that standard approaches do not agree well with results of low IFT displacements. The scaling analyses, however, reveal flow regimes where capillary, gravity, or viscous forces dominate the flow.

  11. Dworshak Reservoir kokanee population monitoring: project progress report, 1999 annual report

    International Nuclear Information System (INIS)

    Maiolie, Melo; Vidergar, Dmitri T.; Harryman, Bill

    2001-01-01

    We used split-beam hydroacoustics and trawling to monitor the kokanee Oncorhynchus nerka population in Dworshak Reservoir during 1999. Estimated abundance of kokanee has continued to increase since the high entrainment losses in the spring of 1996. Based on hydroacoustic surveys, we estimated 1,545,000 kokanee and rainbow trout O. mykiss in Dworshak Reservoir during July 1999. This included 1,144,000 age-0 kokanee (90% CI ± 42%), 212,000 age-1 kokanee (90% CI ± 15%), and 189,000 age-2 kokanee and stocked rainbow trout (90% CI ± 39%). Rainbow trout could not be distinguished from the age-2 kokanee in the echograms since they were of similar size. Age-0 kokanee ranged in length from 40 mm to 90 mm, age-1 from 193 mm to 212 mm, and age-2 kokanee from 219 mm to 336 mm. These sizes indicated kokanee are still growing well. Discharge of water from Dworshak Dam during 1999 did not stop the expansion of the kokanee population based on these results. Counts of spawning kokanee in four tributary streams exceeded 11,000 fish. This index also showed a marked increase from last year's 660 spawning kokanee or the 1997 total of 144 spawning kokanee

  12. 76 FR 1065 - Security Zone; 23rd Annual North American International Auto Show, Detroit River, Detroit, MI

    Science.gov (United States)

    2011-01-07

    ...-AA87 Security Zone; 23rd Annual North American International Auto Show, Detroit River, Detroit, MI... officials at the 23rd Annual North American International Auto Show (NAIAS) being held at Cobo Hall in... 23rd Annual North American International Auto Show (NAIAS) being held at Cobo Hall in downtown Detroit...

  13. 77 FR 76411 - Security Zone; 25th Annual North American International Auto Show, Detroit River, Detroit, MI

    Science.gov (United States)

    2012-12-28

    ...-AA87 Security Zone; 25th Annual North American International Auto Show, Detroit River, Detroit, MI..., visitors, and public officials at the 25th Annual North American International Auto Show (NAIAS), which is... Purpose The 25th Annual North American International Auto Show (NAIAS) will be held at Cobo Hall in...

  14. 77 FR 2453 - Security Zone; 24th Annual North American International Auto Show, Detroit River, Detroit, MI

    Science.gov (United States)

    2012-01-18

    ...-AA87 Security Zone; 24th Annual North American International Auto Show, Detroit River, Detroit, MI..., visitors, and public officials at the 24th Annual North American International Auto Show (NAIAS), which is... The 24th Annual North American International Auto Show (NAIAS) will be held at Cobo Hall in downtown...

  15. Umatilla River subbasin fish habitat improvement project. Annual report 1993

    International Nuclear Information System (INIS)

    Bailey, T.D.; Laws, T.S.

    1994-05-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. Major activities undertaken during this report period included: (1) procurement of one access easement with a private landowner, (2) design, layout, and implementation of 3.36 miles of instream structure maintenance, (3) inspection and routine maintenance of 15.1 miles of fence, (4) revegetation along 3.36 miles of stream, (5) collection and summarization of physical and biological monitoring data, (6) extensive interagency coordination, and (7) environmental education activities with local high school students

  16. Sedimentation in the Bremgarten-Zufikon-reservoir on the Reuss river

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Lambert, A.; Smart, G.

    1981-01-01

    Sedimentation processes in the reservoir and in the lacustrine realm of Unterlunkhofen are investigated by field measurements and numerical simulation. This procedure provides an approximation of the silting-up progress.

  17. Data for "Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dissolved oxygen, dissolved nitrous oxide, and water temperature in reservoirs. This dataset is associated with the following publication: Beaulieu , J., C. Nietch ,...

  18. Statistical attribution analysis of the nonstationarity of the annual runoff series of the Weihe River.

    Science.gov (United States)

    Xiong, Lihua; Jiang, Cong; Du, Tao

    2014-01-01

    Time-varying moments models based on Pearson Type III and normal distributions respectively are built under the generalized additive model in location, scale and shape (GAMLSS) framework to analyze the nonstationarity of the annual runoff series of the Weihe River, the largest tributary of the Yellow River. The detection of nonstationarities in hydrological time series (annual runoff, precipitation and temperature) from 1960 to 2009 is carried out using a GAMLSS model, and then the covariate analysis for the annual runoff series is implemented with GAMLSS. Finally, the attribution of each covariate to the nonstationarity of annual runoff is analyzed quantitatively. The results demonstrate that (1) obvious change-points exist in all three hydrological series, (2) precipitation, temperature and irrigated area are all significant covariates of the annual runoff series, and (3) temperature increase plays the main role in leading to the reduction of the annual runoff series in the study basin, followed by the decrease of precipitation and the increase of irrigated area.

  19. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.; Bereskin, S. Robert; Deo, Milind D.

    2002-12-02

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  20. Environmental monitoring at the Savannah River Plant. Annual report, 1976

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.

    1978-03-01

    The environmental monitoring program at the Savannah River Plant (SRP) provides reliable measurement of radioactive materials released at the source (approximately 40 locations) and present in the environment (approximately 500 locations). In recent years, water-quality testing and analysis have become an essential part of the environmental monitoring program. Aqueous discharges to plant streams are monitored for nonradioactive materials by chemical analyses of water sampled in flowing streams (approximately 25 locations). A brief discussion of plant releases to the environment and radioactive and nonradioactive materials detected in the environment are presented. The appendices contain data analysis and quality control information, sensitivities of laboratory analyses, tables of environmental sample analyses, and maps of sampling locations

  1. Environmental monitoring at the Savannah River Plant. Annual report, 1975

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.

    1975-01-01

    The environmental monitoring program at the Savannah River Plant (SRP) provides reliable measurement of radioactive materials both released at the source (approximately 40 locations) and concentrated in the environment (approximately 500 locations). In recent years, water quality testing and analysis have become an essential part of the environmental monitoring program. Aqueous discharges to plant streams are monitored for nonradioactive materials by chemical analyses of water sampled in flowing streams (approximately 25 locations). A brief discussion of plant releases to the environment and radioactive and nonradioactive materials detected in the environment are presented in the following text, figures, and tables. The appendices contain an interpretation of data treatment, tables of results of environmental sample analyses, sensitivities of laboratory analyses, and maps of sampling locations

  2. Nutrient-based ecological consideration of a temporary river catchment affected by a reservoir operation to facilitate efficient management.

    Science.gov (United States)

    Tzoraki, Ourania A; Dörflinger, Gerald; Kathijotes, Nicholas; Kontou, Artemis

    2014-01-01

    The water quality status of the Kouris river in Cyprus was examined in order to fulfil the requirements for ecological quality as defined by the Water Framework Directive-2000/60/EC. Nitrate concentration (mean value) was increased in the Limnatis (2.8 mg L(-1)) tributary in comparison with the Kryos (2.1 mg L(-1)) and Kouris (1.0 mg L(-1)) tributaries depicting the influence of anthropogenic activities. The total maximum daily nutrients loads (TMDLs) based on the flow duration curves approach, showed that nutrients loads exceeded threshold values (33.3-75.6% in all hydrologic condition classes in the Kouris tributary, and 65-78% in the Limnatis tributary) especially under low flow conditions. The TMDL graph is intended to guide the temporal schedule for chemical sampling in all hydrologic classes. Kouris reservoir is an oligotrophic system, strongly influenced by the river's flash-flood character but also by the implemented management practices. Kouris river outflow, which was reduced to one-tenth in the post dam period altered the wetland hydrologic network and contributed to the decrease of aquifer thickness. Continuous evaluation and update of the River Basin Management Plans will be the basis for the sustainable development of the Kouris basin.

  3. Transport and accumulation of cesium-137 and mercury in the Clinch River and Watts Bar Reservoir system

    International Nuclear Information System (INIS)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; Moriones, C.R.; Ford, C.J.; Dearstone, K.C.; Turner, R.R.; Kimmel, B.L.; Brandt, C.C.

    1992-06-01

    Operations and waste disposal activities at the Oak Ridge Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) have introduced a variety of airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams, which ultimately drain into the Clinch and Tennessee river system. Previously reported concentrations of radionuclides, metals and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of a variety of contaminants of possible concern to the protection of human health and the environment. The work reported here represents part of the initial scoping phase for the Clinch River RCRA Facility Investigation. In this work, the distribution of 137 Cs is used to identify contaminant accumulation patterns and potential problem, or ''hot-spot,'' areas with regard to environmental hazard or human health. Radiocesium was chosen for this scoping effort because (1) its history of release into the Clinch River is reasonably well documented, (2) it is easy and inexpensive to measure by gamma spectrometry, and (3) it is rapidly sorbed to particulate matter and thus serves as a cost-effective tracer for identifying the transport and accumulation patterns of many other particle-reactive contaminants, such as mercury (Hg), lead (Pb), and plutonium (Pu), and polychlorinated biphenyls (PCBs)

  4. Planning and realization of river diversions for the construction of reservoirs and river power stations; Planung und Ausfuehrung von Flussumleitungen im Talsperren- und Flusskraftwerksbau

    Energy Technology Data Exchange (ETDEWEB)

    Patt, M

    1992-03-19

    River diversions are necessary measures in reservoir and river power station construction in order to be able to construct the planned buildings in dry building ground. These diversion measures are only temporary as only in the construction phase of the retaining works the flow is led through the site. As in the recent past large hydraulic engineering plants have reached new dimensions also river diversions have gained importance with regard to the flow to be controlled. With this work the author wants to contribute to an improvement in river diversion with regard to safety, economy and environmental compatibility. (orig.) [Deutsch] Flussumleitungen sind im Talsperren- und Flusskraftwerksbau notwendige Massnahmen, um die projektierten Bauwerke in trockenen Baugruben errichten zu koennen. Diese Umleitungsmassnahmen besitzen einen temporaeren Charakter, da mit ihrer Hilfe der Abfluss ausschliesslich in der Bauphase des Sperrprojekts durch die Baustelle gewaehrleistet wird. Da in juengster Vergangenheit die wasserbaulichen Grossanlagen in neue Dimensionen vorgestossen sind, haben auch die Flussumleitungen hinsichtlich der Abfluesse, die es zu beherrschen gilt, an Bedeutung gewonnen. Mit der vorliegenden Arbeit moechte ich einen Beitrag leisten zur Verbesserung von Flussumleitungen im Hinblick auf Sicherheit, Wirtschaftlichkeit und Umweltvertraeglichkeit. (orig.)

  5. Assessing the Habitat Suitability of Dam Reservoirs: A Quantitative Model and Case Study of the Hantan River Dam, South Korea

    Directory of Open Access Journals (Sweden)

    Hyeongsik Kang

    2016-11-01

    Full Text Available The main objective of this study was to investigate ecologically healthy regions near a dam reservoir. This study developed a model for assessing habitat suitability as a proxy for the ecological value of reservoirs. Three main factors comprising nine assessment variables were selected and classified as having a habitat suitability (HS between 0 and 1: (1 geomorphic factors of altitude, slope steepness, and slope aspect; (2 vegetation factors of forest physiognomy, vegetation type, and tree age; and (3 ecological factors of land cover, ecological quality index, and environmental conservation value assessment. The spatial distribution of the nine HS indices was determined using geographic information systems and combined into one HS index value to determine ecologically healthy regions. The assessment model was applied to areas surrounding the Hantan River Dam, South Korea. To verify the model, wildlife location data from the national ecosystem survey of the Ministry of Environment were used. Areas with an HS index between 0.73 and 1 were found to contain 72% of observed wildlife locations. Ecologically healthy areas were identified by adding the indices of each variable. The methods shown here will be useful for establishing ecological restoration plans for dam reservoirs in South Korea.

  6. Radiocarbon reservoir effect from shell and plant pairs in Holocene sediments around the Yeongsan River in Korea

    International Nuclear Information System (INIS)

    Nakanishi, Toshimichi; Hong, Wan; Sung, Ki Suk; Lim, Jaesoo

    2013-01-01

    The marine reservoir effect was measured by comparing the radiocarbon ages of shell and plant pairs obtained from the same horizons of a sediment core around the Yeongsan River in the southwestern part of the Korean Peninsula. The Holocene sediment formed in five environments: tidal flat, inner bay, shallow marine, flood plain, and embankment from bottom to top. The tidal flat and shallow marine sediments should be good indicators of marine reservoir effect, as they formed in coastal environments where it was easy to access not only marine shells but also terrestrial plants. Some old detritus could be identified and removed, based on reliable accumulation curves and sedimentological interpretation. Hence, the age differences between the plants and shells could be successfully evaluated, and they indicated that the marine reservoir effect varied over time between 0 and 500 years. There was an increase of this effect at ca. 8000 cal year BP and a decrease at ca. 5000 cal year BP, possibly linked with coastal environment changes induced by sea level changes and by changes in the circulation of seawater.

  7. Radiocarbon reservoir effect from shell and plant pairs in Holocene sediments around the Yeongsan River in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Toshimichi [Korea Institute of Geoscience and Mineral Resources, Gwahang-no 124, Yuseong-gu, Daejeon (Korea, Republic of); Hong, Wan, E-mail: whong@kigam.re.kr [Korea Institute of Geoscience and Mineral Resources, Gwahang-no 124, Yuseong-gu, Daejeon (Korea, Republic of); Sung, Ki Suk; Lim, Jaesoo [Korea Institute of Geoscience and Mineral Resources, Gwahang-no 124, Yuseong-gu, Daejeon (Korea, Republic of)

    2013-01-15

    The marine reservoir effect was measured by comparing the radiocarbon ages of shell and plant pairs obtained from the same horizons of a sediment core around the Yeongsan River in the southwestern part of the Korean Peninsula. The Holocene sediment formed in five environments: tidal flat, inner bay, shallow marine, flood plain, and embankment from bottom to top. The tidal flat and shallow marine sediments should be good indicators of marine reservoir effect, as they formed in coastal environments where it was easy to access not only marine shells but also terrestrial plants. Some old detritus could be identified and removed, based on reliable accumulation curves and sedimentological interpretation. Hence, the age differences between the plants and shells could be successfully evaluated, and they indicated that the marine reservoir effect varied over time between 0 and 500 years. There was an increase of this effect at ca. 8000 cal year BP and a decrease at ca. 5000 cal year BP, possibly linked with coastal environment changes induced by sea level changes and by changes in the circulation of seawater.

  8. Multielemental characterization of sediments from rivers and reservoirs of a sediment quality monitoring network of Sao Paulo state, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Walace A.A.; Quinaglia, Gilson A., E-mail: wasoares@sp.gov.br, E-mail: gquinaglia@sp.gov.br [Companhia Ambiental do Estado de Sao Paulo (CETESB), SP (Brazil). Setor de Analises Toxicologicas; Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (LAN/CRPq/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica

    2013-07-01

    The Environment Company of the State of Sao Paulo (CETESB) by means of its quality monitoring network does, systematically, the assessment of water and sediment quality in rivers and reservoirs in the Sao Paulo state. The quality evaluation is done by means 50 parameters in water and 63 for sediment that are considered the more representative for CETESB monitoring. In 2011 the network monitoring analyzed 420 points being 24 in sediments. In the present study the multielemental characterization (total concentration) of 13 sediment samples from 24 rivers and reservoirs belonging to the CETESB monitoring network were analyzed by instrumental neutron activation analysis (INAA). The analytical validation according to precision and accuracy was checked through certified reference materials analyzes BEN (Basalt-IWG-GIT), SL-1 (Lake Sediment - IAEA) and Soil-5 (IAEA), that presents certified concentration values for all elements analyzed. The results obtained for multielemental characterization were compared to NASC values (North American Shale Composite) and the enrichment factor (EF) by using Sc as a normalizer element was calculated. The results showed higher enrichment values for As, Br, Cr, Hf, Ta, Th , U and Zn and rare earth elements (REE) Ce, Eu, La, Nd, Sm, Tb and Yb in many of the tested sediment samples indicating that there may be an anthropogenic contribution for these elements. The multielemental results were also compared to the granulometric composition of the sediment samples. Factorial and Cluster Analysis were applied and indicated that the elements distribution is controlled, mainly by the granulometric fractions of the sediments. (author)

  9. Occurrence of organotin compounds in river sediments under the dynamic water level conditions in the Three Gorges Reservoir Area, China.

    Science.gov (United States)

    Gao, Jun-Min; Zhang, Ke; Chen, You-Peng; Guo, Jin-Song; Wei, Yun-Mei; Jiang, Wen-Chao; Zhou, Bin; Qiu, Hui

    2015-06-01

    The Three Gorges Project is the largest hydro project in the world, and the water level of the Three Gorges Reservoir (TGR) is dynamic and adjustable with the aim of flood control and electrical power generation. It is necessary to investigate the pollutants and their underlying contamination processes under dynamic water levels to determine their environmental behaviors in the Three Gorges Reservoir Area (TGRA). Here, we report the assessment of organotin compounds (OTs) pollution in the river sediments of the TGRA. Surface sediment samples were collected in the TGRA at low and high water levels. Tributyltin (TBT), triphenyltin (TPhT), and their degradation products in sediments were quantified by gas chromatography-mass spectrometry. Butyltins (BTs) and phenyltins (PhTs) were detected in sediments, and BTs predominated over PhTs in the whole study area under dynamic water level conditions. The concentrations of OTs in sediments varied markedly among locations, and significant concentrations were found in river areas with high levels of boat traffic and wastewater discharge. Sediments at all stations except Cuntan were lightly contaminated with TBT, and total organic carbon (TOC) was a significant factor affecting the fate of TBT in the TGRA. The butyltin and phenyltin degradation indices showed no recent inputs of TBT or TPhT into this region, with the exception of fresh TPhT input at Xiakou Town. Shipping activity, wastewater discharge, and agriculture are the most likely sources of OTs in the TGRA.

  10. Multielemental characterization of sediments from rivers and reservoirs of a sediment quality monitoring network of Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Soares, Walace A.A.; Quinaglia, Gilson A.; Favaro, Deborah I.T.

    2013-01-01

    The Environment Company of the State of Sao Paulo (CETESB) by means of its quality monitoring network does, systematically, the assessment of water and sediment quality in rivers and reservoirs in the Sao Paulo state. The quality evaluation is done by means 50 parameters in water and 63 for sediment that are considered the more representative for CETESB monitoring. In 2011 the network monitoring analyzed 420 points being 24 in sediments. In the present study the multielemental characterization (total concentration) of 13 sediment samples from 24 rivers and reservoirs belonging to the CETESB monitoring network were analyzed by instrumental neutron activation analysis (INAA). The analytical validation according to precision and accuracy was checked through certified reference materials analyzes BEN (Basalt-IWG-GIT), SL-1 (Lake Sediment - IAEA) and Soil-5 (IAEA), that presents certified concentration values for all elements analyzed. The results obtained for multielemental characterization were compared to NASC values (North American Shale Composite) and the enrichment factor (EF) by using Sc as a normalizer element was calculated. The results showed higher enrichment values for As, Br, Cr, Hf, Ta, Th , U and Zn and rare earth elements (REE) Ce, Eu, La, Nd, Sm, Tb and Yb in many of the tested sediment samples indicating that there may be an anthropogenic contribution for these elements. The multielemental results were also compared to the granulometric composition of the sediment samples. Factorial and Cluster Analysis were applied and indicated that the elements distribution is controlled, mainly by the granulometric fractions of the sediments. (author)

  11. The effect of river water circulation on the distribution and functioning of reservoir microbial communities as determined by a relative distance approach

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Comerma, M.; García, J. C.; Nedoma, Jiří; Marcé, R.; Armengol, J.

    2011-01-01

    Roč. 14, č. 1 (2011), s. 1-14 ISSN 1432-9840 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : canyon-shaped reservoir * ongitudinal gradients * relative distance model * river-reservoir ecosystem * water circulation patterns * plankton succession * microbial dynamics Subject RIV: EE - Microbiology, Virology Impact factor: 3.495, year: 2011

  12. Diet, reproduction and population structure of the introduced Amazonian fish Cichla piquiti (Perciformes: Cichlidae) in the Cachoeira Dourada reservoir (Paranaíba River, central Brazil)

    OpenAIRE

    Ferraz Luiz, Tatiane; Roquetti Velludo, Marcela; Carvalho Peret, Alberto; Rodrigues Filho, Jorge Luiz; Moldenhauer Peret, André

    2011-01-01

    The Blue Peacock Bass (Cichla piquiti), native to the Tocantins-Araguaia river basin of the Amazon system, was introduced into the basin of the Paranaíba River, Paraná River system. Cachoeira Dourada reservoir is one of a series of dams on the Paranaíba River in central Brazil, where this fish has become established. A study of its feeding spectrum, combined with information about its reproductive characteristics and population structure, would enable the current state of this species in the ...

  13. Annual report of ecological research at the Savannah River Ecology Laboratory

    International Nuclear Information System (INIS)

    1984-09-01

    This report summarizes research conducted at the Savannah River Ecology Laboratory (SREL) during the annual period ending August 1, 1984. SREL is a regional research facility at the Savannah River Plant operated by the University of Georgia through a contract with the Department of Energy. It is part of the University of Georgia's Institute of Ecology. The overall goal of the research is to develop an understanding of the impact of various energy technologies and management practices on the ecosystems of the southeastern United States. SREL research is conducted by interdisciplinary research teams organized under three major divisions: (1) Biogeochemical Ecology, (2) Wetlands Ecology, and (3) Stress and Wildlife Ecology

  14. Savannah River Plant environmental report. Annual report for 1984

    International Nuclear Information System (INIS)

    1985-01-01

    Ensuring the radiation safety of the public in the vicinity of the Savannah River Plant (SRP) was a foremost consideration in the design of the plant and has continued to be a primary objective during 31 years of SRP operations. An extensive surveillance program has been continuously maintained since 1951 (before SRP startup) to determine the conecntrations of radionuclides in the environment of the plant and the radiation exposure to the offsite population resulting from SRP operations. The results of this comprehensive monitoring program have been reported to the public since 1959. The scope of the environmental protection program at SRP has increased significantly since the first report was issued. Prior to the mid-1970's the reports contained primarily radiological monitoring data. Beginning in the mid-1970's the reports started including more and more nonradiological monitoring data as those programs increased. The nonradiological monitoring program now approaches the size and extensiveness of the radiological monitoring program. The report name was changed this year to more accurately reflect the many environmental programs that have become an intergral part of the operation of SRP

  15. Wind River Watershed Project; 1998 Annual Report; Volume II

    International Nuclear Information System (INIS)

    Connolly, Patrick J.

    1999-01-01

    The authors report here their on-ground restoration actions. Part 1 describes work conducted by the Underwood Conservation District (UCD) on private lands. This work involves the Stabler Cut-Bank project. Part 2 describes work conducted by the U.S. Forest Service. The Stabler Cut-Bank Project is a cooperative stream restoration effort between Bonneville Power Administration (BPA), the UCD, private landowners, the U.S. Forest Service (USFS), and the U.S. Fish and Wildlife Service (USFWS). The Stabler site was identified by UCD during stream surveys conducted in 1996 as part of a USFWS funded project aimed at initiating water quality and habitat restoration efforts on private lands in the basin. In 1997 the Wind River Watershed Council selected the project as a top priority demonstration project. The landowners were approached by the UCD and a partnership developed. Due to their expertise in channel rehabilitation, the Forest Service was consulted for the design and assisted with the implementation of the project. A portion of the initial phase of the project was funded by USFWS. However, the majority of funding (approximately 80%) has been provided by BPA and it is anticipated that additional work that is planned for the site will be conducted with BPA funds

  16. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1988-1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Anthony A. (Oregon Dept. of Fish and Wildlife, Portland, OR (USA))

    1989-09-01

    We report on our progress from April 1988 through March 1989 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. Highlights of results of our work in the Dalles and Bonneville reservoirs are: using setlines, we caught 1,586 sturgeon in The Dalles Reservoir and 484 sturgeon in Bonneville Reservoir in 1988. Fork length of fish caught ranged from 34 cm to 274 cm. Of the fish caught we marked 1,248 in The Dalles Reservoir and 341 in Bonneville Reservoir. Of the fish marked in 1988, we recaptured 82 in The Dalles Reservoir and none in Bonneville Reservoir. We recaptured 89 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 35 fish marked in 1988 and 16 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 2 sturgeon marked in 1988 in Bonneville Reservoir. Individual papers were processed separately for the data base.

  17. Assessment of potential impact of the Clinch River Breeder Reactor Plant thermal effluent on the Watts Bar Reservoir striped bass population

    International Nuclear Information System (INIS)

    Heuer, J.H.; McIntosh, D.; Ostrowski, P.; Tomljanovich, D.A.

    1983-11-01

    This report is an assessment of potential adverse impact to striped bass (Morone saxatilis) in Watts Bar Reservoir caused by thermal effluent from operation of the Clinch River Breeder Reactor Plant (CRBRP). The Clinch River arm of Watts Bar Reservoir is occupied by adult striped bass during the warmest months of the year. Concern was raised that operation of the CRBRP, specifically thermal discharges, could conflict with management of striped bass. In all cases examined the thermal plume becomes nearly imperceptible within a short distance from the discharge pipe (about 30 ft [10 m]) compared to river width (about 630 ft [190 m]). Under worst case conditions any presence of the plume in the main channel (opposite side of the river from the discharge) will be confined to the surface layer of the water. An ample portion of river cross sections containing ambient temperature water for passage or residence of adult striped bass will always be available in the vicinity of this thermal effluent. Although a small portion of river cross section would exceed the thermal tolerance of striped bass, the fish would naturally avoid this area and seek out adjacent cooler water. Therefore, it is concluded the CRBRP thermal effluent will not significantly affect the integrity of the striped bass thermal refuge in the Clinch River arm of Watts Bar Reservoir. At this time there is no need to consider alternative diffuser designs and thermal modeling. 8 references, 3 figures, 2 tables

  18. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report, 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The concentration of radioactivity added by the Savannah River Plant operations to the environs during 1977 was, for the most part, too small to be distinguished from natural background radiation and fallout from worldwide nuclear weapon tests. Beta activity in particulate air filters was about two times the 1976 level and was due entirely to global fallout. Tritium oxide in air at the plant perimeter was greater than in air at more distant locations; the average concentration at the plant perimeter (65 pCi/m 3 ) was 0.03% of the Concentration Guide (CG). Tritium, 137 Cs, and 90 Sr were the only radionuclides of plant origin detectable in Savannah River water by routine analyses. None of these had an average concentration exceeding 0.2% of the CG in river water sampled 8 mi downstream from the plant. The tritium concentration in river water immediately downstream of the plant (4.8 pCi/ml, including 0.5 pCi/ml background river contribution) represented the highest CG percentage (0.16) of the three radionuclides measured in river water. Special research programs using ultra-low-level techniques may detect trace quantities of other radionuclides of plant origin. Radioactive materials in river fish also continued very low (0.2 pCi/g 137 Cs maximum). Annual analyses of plant perimeter soil samples 0-5 cm deep) showed deposition of 137 Cs (52 mCi/km 2 ) and 239 Pu (1.2 mCi/km 2 ) within the range normally found in global fallout. 238 Pu in all soil samples was near the sensitivity of the analysis (approximately 0.1 mCi/km 2 ). For 1977, the calculated annual average dose from atmospheric releases of radioactive materials from SRP was 0.8 millirem (mrem) at the plant perimeter

  19. Environmental monitoring at the Savannah River Plant. Annual report, 1979

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.; Culp, P.A.; Smith, D.L.

    1982-11-01

    An extensive surveillance program has been maintained since 1951 to determine the concentrations of radionuclides in a 1200 square mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. This document summarizes the 1979 results. The radiation dose at the plant perimeter and the population dose in the region from SRP operations are very small relative to the dose recieved from naturally occurring radiation. The annual average dose in 1979 from atmospheric releases of radioactive materials was 0.71 mrem at the perimeter (1% of natural background). The maximum dose at the plant perimeter was 0.97 mrem. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment were monitored. Releases of radioactivity from SRP had a very small effect on living plants and animals and were too minute to be detectable, and with a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests. 40 figures, 60 tables. (MF)

  20. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1992--September 24, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1994-08-01

    The general objectives of the research program are to (1) identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focuses on three types of gel systems-an aqueous polysaccharide (KUSPI) that gels as a function of pH, polyacrylamide or xanthan crosslinked by CR(III) and a polyacrylamide-aluminum citrate system. Work to date has focused primarily on development of a database, selection of systems, and work to characterize the gel/polymer physical properties and kinetics. The use of ester hydrolysis to control the rate of pH change of a gel system has been investigated and this approach to gel-time control shows promise. Extensive kinetic data were taken on the uptake of CR(III) oligomers by polyacrylamide. A model was developed which describes very well the monomer uptake rates. The model described the dimer uptake data less well and the trimer uptake data poorly. Studies of the flow and gelation in rock materials have been initiated. A mathematical model of rock-fluid interaction during flow of high pH solutions has been developed.

  1. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  2. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    Science.gov (United States)

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  3. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  4. Trace metal distributions in the sediments from river-reservoir systems: case of the Congo River and Lake Ma Vallée, Kinshasa (Democratic Republic of Congo).

    Science.gov (United States)

    Mwanamoki, Paola M; Devarajan, Naresh; Niane, Birane; Ngelinkoto, Patience; Thevenon, Florian; Nlandu, José W; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2015-01-01

    The contamination of drinking water resources by toxic metals is a major problem in many parts of the world, particularly in dense populated areas of developing countries that lack wastewater treatment facilities. The present study characterizes the recent evolution with time of some contaminants deposited in the Congo River and Lake Ma Vallée, both located in the vicinity of the large city of Kinshasa, capital of Democratic Republic of Congo (DRC). Physicochemical parameters including grain size distribution, organic matter and trace element concentrations were measured in sediment cores sampled from Congo River (n = 3) and Lake Ma Vallée (n = 2). The maximum concentration of trace elements in sediment profiles was found in the samples from the sites of Pool Malebo, with the values of 107.2, 111.7, 88.6, 39.3, 15.4, 6.1 and 4.7 mg kg(-1) for Cr, Ni, Zn, Cu, Pb, As and Hg, respectively. This site, which is characterized by intense human activities, is especially well known for the construction of numerous boats that are used for regular navigation on Congo River. Concerning Lake Ma Vallée, the concentration of all metals are generally low, with maximum values of 26.3, 53.6, 16.1, 15.3, 6.5 and 1.8 mg kg(-1) for Cr, Ni, Zn, Cu, Pb and As, respectively. However, the comparison of the metal profiles retrieved from the different sampled cores also reveals specific variations. The results of this study point out the sediment pollution by toxic metals in the Congo River Basin. This research presents useful tools for the evaluation of sediment contamination of river-reservoir systems.

  5. 2003 Savannah River Site Annual Illness and Injury Surveillance Report, Revised September 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-05

    Annual Illness and Injury Surveillance Program report for 2003 for the Savannah River Site. DOE is commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The report monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  6. Reservoir-flooded river mouth areas as sediment traps revealing erosion from peat mining areas - Jukajoki case study in eastern Finland

    Science.gov (United States)

    Tahvanainen, Teemu; Meriläinen, Henna-Kaisa; Haraguchi, Akira; Simola, Heikki

    2016-04-01

    Many types of soil-disturbing land use have caused excess sedimentation in Finnish lakes. Identification and quantification of catchment sources of sediment material is crucial in cases where demands for remediation measures are considered. We studied recent (50 yr) sediments of four small rivers, all draining to a reservoir impounded in 1971. Catchments of two of the rivers had had peat mining activities from early 1980s until recently, exposing large areas of peat surfaces to erosion. The water level of the reservoir had risen to the river mouth areas of all rivers, while in each case, the river mouth areas still form riverine narrows separable from the main reservoir, hence collecting sedimentation from their own catchments. The original soils under the reservoir water level could readily be observed in core samples, providing a dated horizon under recent sediments. In addition, we used 137Cs-stratigraphies for dating of samples from original river bed locations. As expected, recent sediments of rivers with peat mining influence differed from others e.g. by high organic content and C:N ratios. Stable isotopes 13C and 15N both correlated with C:N (r = 0.799 and r = -0.717, respectively) and they also differentiated the peat-mining influenced samples from other river sediments. Principal components of the physical-chemical variables revealed clearer distinction than any variables separately. Light-microscopy revealed abundance of leafs of Sphagnum mosses in peat-mining influenced river sediments that were nearly absent from other rivers. Spores of Sphagnum were, however, abundant in all river sediments indicating their predominantly airborne origin. We find that combination of several physical-chemical characters rather than any single variable and microscopy of plant remains can result in reliable recognition of peatland-origin of sediment material when non-impacted sites are available for comparison. Dating of disturbed recent sediments is challenging. River

  7. Abundance and distribution of northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia river

    International Nuclear Information System (INIS)

    Beamesderfer, R.C.; Rieman, B.E.

    1991-01-01

    The authors used mark-recapture and catch-per-unit effort data to estimate abundances and distributions of three potential predators on juvenile salmonids migrating through John Day Reservoir in 1984-1986. The northern squawfish Ptychocheilus oregonensis was the most abundant predator (estimated population: 85, 316), followed by smallmouth bass Micropterus dolomieu (34,954) and walleye Stizostedion vitreum (15,168). Because of uncertainty in sampling and assumption of the mark-recapture estimator, the combined abundance of these three predators could lie between 50,000 and 500,000. They believe, however, that bias is probably negative, and that any errors should result in conservative estimates. Northern squawfish were common reservoir-wide, but large concentrations occurred immediately below McNary Dam near the head of John Day Reservoir. Walleyes were largely restricted to the upper third of the reservoir, whereas the number of smallmouth bass increased progressively downriver. As judged by abundance and distribution, northern squawfish have by far the greatest potential for predation on juvenile salmonids. They also expect predation to be unevenly distributed in time and space as a result of variations in the number and distribution of predators

  8. Ecological requirements for pallid sturgeon reproduction and recruitment in the Lower Missouri River: Annual report 2010

    Science.gov (United States)

    DeLonay, Aaron J.; Jacobson, Robert B.; Papoulias, Diana M.; Wildhaber, Mark L.; Chojnacki, Kimberly A.; Pherigo, Emily K.; Haas, Justin D.; Mestl, Gerald E.

    2012-01-01

    The Comprehensive Sturgeon Research Project is a multiyear, multiagency collaborative research framework developed to provide information to support pallid sturgeon recovery and Missouri River management decisions. The project strategy integrates field and laboratory studies of sturgeon reproductive ecology, early life history, habitat requirements, and physiology. The project scope of work is developed annually with cooperating research partners and in collaboration with the U.S. Army Corps of Engineers, Missouri River Recovery—Integrated Science Program. The research consists of several interdependent and complementary tasks that engage multiple disciplines. The research tasks in the 2010 scope of work primarily address spawning as a probable factor limiting pallid sturgeon survival and recovery, although limited pilot studies also have been initiated to examine the requirements of early life stages. The research is designed to inform management decisions affecting channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River, and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2010.

  9. Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads.

    Science.gov (United States)

    Qi, Weixiao; Müller, Beat; Pernet-Coudrier, Benoit; Singer, Heinz; Liu, Huijuan; Qu, Jiuhui; Berg, Michael

    2014-02-15

    Twenty percent of the water run-off from China's land surface drains into the Yangtze River and carries the sewage of approximately 400 million people out to sea. The lower stretch of the Yangtze therefore offers the opportunity to assess the pollutant discharge of a huge population. To establish a comprehensive assessment of micropollutants, river water samples were collected monthly from May 2009 to June 2010 along a cross-section at the lowermost hydrological station of the Yangtze River not influenced by the tide (Datong Station, Anhui province). Following a prescreening of 268 target compounds, we examined the occurrence, seasonal variation, and annual loads of 117 organic micropollutants, including 51 pesticides, 43 pharmaceuticals, 7 household and industrial chemicals, and 16 polycyclic aromatic hydrocarbons (PAHs). During the 14-month study, the maximum concentrations of particulate PAHs (1-5 μg/g), pesticides (11-284 ng/L), pharmaceuticals (5-224 ng/L), and household and industrial chemicals (4-430 ng/L) were generally lower than in other Chinese rivers due to the dilution caused of the Yangtze River's average water discharge of approximately 30,000 m(3)/s. The loads of most pesticides, anti-infectives, and PAHs were higher in the wet season compared to the dry season, which was attributed to the increased agricultural application of chemicals in the summer, an elevated water discharge through the sewer systems and wastewater treatment plants (WWTP) as a result of high hydraulic loads and the related lower treatment efficiency, and seasonally increased deposition from the atmosphere and runoff from the catchment. The estimated annual load of PAHs in the river accounted for some 4% of the total emission of PAHs in the whole Yangtze Basin. Furthermore, by using sucralose as a tracer for domestic wastewater, we estimate a daily disposal of approximately 47 million m(3) of sewage into the river, corresponding to 1.8% of its average hydraulic load. In summary

  10. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Edilberto Guevara-Pérez

    2007-01-01

    Full Text Available Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km2, 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment yield models: Langbein- Schumm, Universal Soil Loss Equation-USLE and Poesen, are compared with observed data from five sub basins with records of twenty to thirty years. Men values of sediment yield for low, middle and upper Caroní are of 27, 76, 17 t/km2-year, respectively; and 46 and 78 t/km2-year for low and upper Paragua sub basins are. Standard errors of estimates vary between 13 and 29 for Langbein-Schumm model; between 8 and 32 for USLE procedure; and between 9 and 79, for Poesen model. Sediment yield predictions by Langbein-Schumm model seem to the best in Caroní basin.

  11. Estimation of reservoir inflow in data scarce region by using Sacramento rainfall runoff model - A case study for Sittaung River Basin, Myanmar

    Science.gov (United States)

    Myo Lin, Nay; Rutten, Martine

    2017-04-01

    The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir

  12. Snake River sockeye salmon captive broodstock program: hatchery element: annual progress report, 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Kline, Paul A.; Willard, Catherine

    2001-01-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 2000 and December 31, 2000 are presented in this report

  13. Feeding Activity, Rate of Consumption, Daily Ration and Prey Selection of Major Predators in John Day Reservoir, 1984 : Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Gerard A.; United States. Bonneville Power Administration; U.S. Fish and Wildlife Service; National Fishery Research Center (U.S.)

    1986-07-01

    The extent of predation on juvenile salmonids in John Day Reservoir was determined. Salmonids were the single most important food item by weight for northern squawfish (Ptychocheilus oregonensis) in the restricted zones at McNary tailrace and John Day forebay during all sampling periods. Salmonids accounted for 18.1% of the weight in the diet of walleyes (Stizostedion vitreum vitreum) in 1984 which was at least twice that found in previous years. In smallmouth bass (Micropterus dolomieui) salmonids contributed little to their diet whereas for channel catfish (Ictalurus punctatus) fish accounted for 64.1% of the weight in their diet with salmonids responsible for approximately half of this weight. An intensive search of the fisheries literature was conducted to review various fish capture and control techniques which might have potential as predation control measures for the major predators of juvenile salmonids in the Columbia River system. Most prey protection measures were judged to have high potential and direct predator control measures were judged to have moderate or low potential.

  14. Trophic feasibility of reintroducing anadromous salmonids in three reservoirs on the north fork Lewis River, Washington: Prey supply and consumption demand of resident fishes

    Science.gov (United States)

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.

    2016-01-01

    The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.

  15. Application of 137Cs and 210Pb in tracing the fate of mercury in a river-reservoir system

    International Nuclear Information System (INIS)

    Turner, R.R.; Olsen, C.R.

    1985-01-01

    The vertical distribution of 137 Cs and 210 Pb in sediment cores from the Tennessee River-Reservoir System (USA) was used to trace the fate of Hg discharged from two upstream facilities and to resolve the relative contribution from each facility. Discharges since 1943 at the Oak Ridge nuclear facilities left a clear record of releases for Hg and 137 Cs in undisturbed downstream sediments. High releases in the 1950s are reflected in well-defined peaks, located 30 cm or more below the sediment-water interface, which can now be used to accurately date sediment layers. Chronologies based on 210 Pb gave sediment ages concordant with those based on the release histories and helped to resolve mercury contributions from a chloralkali plant located 150 km downstream of the Oak Ridge facilities

  16. Study of 137 Cs contamination in Rochedo Reservoir, Meia Ponte river (Goias State) from the radiologic accident in Goiania

    International Nuclear Information System (INIS)

    De Luca, Marcia Emilia M.

    1997-01-01

    Through 137 Cs concentration profiles in sediments from Rochedo Reservoir, it was possible to estimate the amount of this radionuclide (94 GBq) which has reached the Meia Ponte River system, as a consequence of the Goiania radiological accident in 1987. Based on in-situ measurements as well as on laboratory studies, the influence of N H 4 + concentration on the K d value was also investigated. The results have shown that for high N H 4 + concentrations there is a clear correlation between both parameters. It was also observed the influence on the aging effect on the 137 Cs release from the sediment, as well as of the illite content in it. (author)

  17. 78 FR 53675 - Eighth Coast Guard District Annual Safety Zones; Boomsday Festival; Tennessee River 646.0-649.0...

    Science.gov (United States)

    2013-08-30

    ...-AA00 Eighth Coast Guard District Annual Safety Zones; Boomsday Festival; Tennessee River 646.0-649.0... Guard will enforce a Safety Zone for the Boomsday Festival Fireworks on the Tennessee River 646.0-649.0... Festival Fireworks. During the enforcement period, entry into, transiting or anchoring in the Safety Zone...

  18. Diet, reproduction and population structure of the introduced Amazonian fish Cichla piquiti (Perciformes: Cichlidae) in the Cachoeira Dourada reservoir (Paranaíba River, central Brazil).

    Science.gov (United States)

    Luiz, Tatiane Ferraz; Velludo, Marcela Roquetti; Peret, Alberto Carvalho; Rodrigues Filho, Jorge Luiz; Peret, André Moldenhauer

    2011-06-01

    The Blue Peacock Bass (Cichla piquiti), native to the Tocantins-Araguaia river basin of the Amazon system, was introduced into the basin of the Paranaíba River, Paraná River system. Cachoeira Dourada reservoir is one of a series of dams on the Paranaíba River in central Brazil, where this fish has become established. A study of its feeding spectrum, combined with information about its reproductive characteristics and population structure, would enable the current state of this species in the reservoir to be assessed and might provide useful data for the management of other species native to this habitat. This study showed that the peacock bass has no predators or natural competitors in the reservoir and that reproduces continuously, with high reproductive rates, and has a smaller median length at first maturity (L50) than other species of Cichla. Its successful establishment in habitats strongly affected by human activity should cause changes in the whole structure of the local fish communities. Nonetheless, in this reservoir, there appears to be some sharing of the functions of this species with native carnivorous fish, a situation that may be sustained by the presence of a wide variety of foraging fish.

  19. Diet, reproduction and population structure of the introduced Amazonian fish Cichla piquiti (Perciformes: Cichlidae in the Cachoeira Dourada reservoir (Paranaíba River, central Brazil

    Directory of Open Access Journals (Sweden)

    Tatiane Ferraz Luiz

    2011-06-01

    Full Text Available The Blue Peacock Bass (Cichla piquiti, native to the Tocantins-Araguaia river basin of the Amazon system, was introduced into the basin of the Paranaíba River, Paraná River system. Cachoeira Dourada reservoir is one of a series of dams on the Paranaíba River in central Brazil, where this fish has become established. A study of its feeding spectrum, combined with information about its reproductive characteristics and population structure, would enable the current state of this species in the reservoir to be assessed and might provide useful data for the management of other species native to this habitat. This study showed that the peacock bass has no predators or natural competitors in the reservoir and that reproduces continuously, with high reproductive rates, and has a smaller median length at first maturity (L50 than other species of Cichla. Its successful establishment in habitats strongly affected by human activity should cause changes in the whole structure of the local fish communities. Nonetheless, in this reservoir, there appears to be some sharing of the functions of this species with native carnivorous fish, a situation that may be sustained by the presence of a wide variety of foraging fish. Rev. Biol. Trop. 59 (2: 727-741. Epub 2011 June 01.

  20. Water quality control in Third River Reservoir (Argentina using geographical information systems and linear regression models

    Directory of Open Access Journals (Sweden)

    Claudia Ledesma

    2013-08-01

    Full Text Available Water quality is traditionally monitored and evaluated based upon field data collected at limited locations. The storage capacity of reservoirs is reduced by deposits of suspended matter. The major factors affecting surface water quality are suspended sediments, chlorophyll and nutrients. Modeling and monitoring the biogeochemical status of reservoirs can be done through data from remote sensors. Since the improvement of sensors’ spatial and spectral resolutions, satellites have been used to monitor the interior areas of bodies of water. Water quality parameters, such as chlorophyll-a concentration and secchi disk depth, were found to have a high correlation with transformed spectral variables derived from bands 1, 2, 3 and 4 of LANDSAT 5TM satellite. We created models of estimated responses in regard to values of chlorophyll-a. To do so, we used population models of single and multiple linear regression, whose parameters are associated with the reflectance data of bands 2 and 4 of the sub-image of the satellite, as well as the data of chlorophyll-a obtained in 25 selected stations. According to the physico-chemical analyzes performed, the characteristics of the water in the reservoir of Rio Tercero, correspond to somewhat hard freshwater with calcium bicarbonate. The water was classified as usable as a source of plant treatment, excellent for irrigation because of its low salinity and low residual sodium carbonate content, but unsuitable for animal consumption because of its low salt content.

  1. STATIONARITY OF ANNUAL MAXIMUM DAILY STREAMFLOW TIME SERIES IN SOUTH-EAST BRAZILIAN RIVERS

    Directory of Open Access Journals (Sweden)

    Jorge Machado Damázio

    2015-08-01

    Full Text Available DOI: 10.12957/cadest.2014.18302The paper presents a statistical analysis of annual maxima daily streamflow between 1931 and 2013 in South-East Brazil focused in detecting and modelling non-stationarity aspects. Flood protection for the large valleys in South-East Brazil is provided by multiple purpose reservoir systems built during 20th century, which design and operation plans has been done assuming stationarity of historical flood time series. Land cover changes and rapidly-increasing level of atmosphere greenhouse gases of the last century may be affecting flood regimes in these valleys so that it can be that nonstationary modelling should be applied to re-asses dam safety and flood control operation rules at the existent reservoir system. Six annual maximum daily streamflow time series are analysed. The time series were plotted together with fitted smooth loess functions and non-parametric statistical tests are performed to check the significance of apparent trends shown by the plots. Non-stationarity is modelled by fitting univariate extreme value distribution functions which location varies linearly with time. Stationarity and non-stationarity modelling are compared with the likelihood ratio statistic. In four of the six analyzed time series non-stationarity modelling outperformed stationarity modelling.Keywords: Stationarity; Extreme Value Distributions; Flood Frequency Analysis; Maximum Likelihood Method.

  2. Accuracy Enhancement for Forecasting Water Levels of Reservoirs and River Streams Using a Multiple-Input-Pattern Fuzzification Approach

    Directory of Open Access Journals (Sweden)

    Nariman Valizadeh

    2014-01-01

    Full Text Available Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS is one of the most accurate models used in water resource management. Because the membership functions (MFs possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.

  3. Accuracy enhancement for forecasting water levels of reservoirs and river streams using a multiple-input-pattern fuzzification approach.

    Science.gov (United States)

    Valizadeh, Nariman; El-Shafie, Ahmed; Mirzaei, Majid; Galavi, Hadi; Mukhlisin, Muhammad; Jaafar, Othman

    2014-01-01

    Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.

  4. Ecological risk assessment in a large river-reservoir. 1: Introduction and background

    International Nuclear Information System (INIS)

    Cook, R.B.; Suter, G.W. II; Sain, E.R.

    1999-01-01

    The US Department of Energy initiated a remedial investigation of the Clinch River/Poplar Creek system Superfund Site in 1989. This site, located in eastern Tennessee near Oak Ridge, consists of 70 river kilometers and 40 km 2 of surface area. The purpose of this study was to evaluate the nature and extent of contamination, perform an ecological and human health risk assessment, and evaluate possible remedial alternatives. This introductory article summarizes the environmental setting, the contamination history, and the study approach and provides some general results of the site characterization. Subsequent papers in this series describe the ecological risks to fish, piscivorous and insectivorous wildlife, and benthic invertebrates

  5. Drivers of annual to decadal streamflow variability in the lower Colorado River Basin

    Science.gov (United States)

    Lambeth-Beagles, R. S.; Troch, P. A.

    2010-12-01

    The Colorado River is the main water supply to the southwest region. As demand reaches the limit of supply in the southwest it becomes increasingly important to understand the dynamics of streamflow in the Colorado River and in particular the tributaries to the lower Colorado River. Climate change may pose an additional threat to the already-scarce water supply in the southwest. Due to the narrowing margin for error, water managers are keen on extending their ability to predict streamflow volumes on a mid-range to decadal scale. Before a predictive streamflow model can be developed, an understanding of the physical drivers of annual to decadal streamflow variability in the lower Colorado River Basin is needed. This research addresses this need by applying multiple statistical methods to identify trends, patterns and relationships present in streamflow, precipitation and temperature over the past century in four contributing watersheds to the lower Colorado River. The four watersheds selected were the Paria, Little Colorado, Virgin/Muddy, and Bill Williams. Time series data over a common period from 1906-2007 for streamflow, precipitation and temperature were used for the initial analysis. Through statistical analysis the following questions were addressed: 1) are there observable trends and patterns in these variables during the past century and 2) if there are trends or patterns, how are they related to each other? The Mann-Kendall test was used to identify trends in the three variables. Assumptions regarding autocorrelation and persistence in the data were taken into consideration. Kendall’s tau-b test was used to establish association between any found trends in the data. Initial results suggest there are two primary processes occurring. First, statistical analysis reveals significant upward trends in temperatures and downward trends in streamflow. However, there appears to be no trend in precipitation data. These trends in streamflow and temperature speak to

  6. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    NARCIS (Netherlands)

    Lauri, H.; de Moel, H.; Ward, P.J.; Räsänen, T.A.; Keskinen, M.; Kummu, M.S.

    2012-01-01

    The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected

  7. Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82

    Science.gov (United States)

    Thompson, K.R.

    1985-01-01

    The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)

  8. Long-term Trend and Fractal of Annual Runoff Process in Mainstream of Tarim River

    Institute of Scientific and Technical Information of China (English)

    XU Jianhua; CHEN Yaning; LI Weihong; DONG Shan

    2008-01-01

    Based on the time series data from the Aral hydrological station for the period of 1958-2005, the paper re-veals the long-term trend and fractal of the annual runoff process in the mainstream of the Tarim River by using thewavelet analysis method and the fractal theory. The main conclusions are as follows: 1) From a large time scale pointof view, i.e. the time scale of 16 (24) years, the annual runoff basically shows a slightly decreasing trend as a wholefrom 1958 to 2005. If the time scale is reduced to 8 (23) or 4 (22) years, the annual runoff still displays the basic trendas the large time scale, but it has fluctuated more obviously during the period. 2) The correlation dimension for theannual runoff process is 3.4307, non-integral, which indicates that the process has both fractal and chaotic characteris-tics. The correlation dimension is above 3, which means that at least four independent variables are needed to describethe dynamics of the annual runoff process. 3) The Hurst exponent for the first period (1958-1973) is 0.5036, whichequals 0.5 approximately and indicates that the annual runoff process is in chaos. The Hurst exponents for the second(1974-1989) and third (1990-2005) periods are both greater than 0.50, which indicate that the annual runoff processshowed a long-enduring characteristic in the two periods. The Hurst exponent for the period from 1990 to 2005 indi-cates that the annual runoffwill show a slightly increasing trend in the 16 years after 2005.

  9. Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects.

    Science.gov (United States)

    Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Birane, Niane; de Alencastro, Luiz Felippe; Grandjean, Dominique; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2014-09-01

    This paper discusses the occurrence and spatial distribution of metals and persistent organic pollutants (POPs: including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in sediments from a river-reservoir system. Surface sediments were sampled from thirteen sites of the Congo River Basin and Lake Ma Vallée, both situated in the vicinity of the capital city Kinshasa (Congo Democratic Republic). Sediment qualities were evaluated using toxicity test based on exposing Ostracods to the sediment samples. The highest metal concentrations were observed in sediments subjected to anthropogenic influences, urban runoff and domestic and industrial wastewaters, discharge into the Congo River basin. Ostracods exposed to the sediments resulted in 100% mortality rates after 6d of incubation, indicating the ultimate toxicity of these sediments as well as potential environmental risks. The POPs and PAHs levels in all sediment samples were low, with maximum concentration found in the sediments (area of pool Malebo): OCP value ranged from 0.02 to 2.50 with ∑OCPs: 3.3μgkg(-1); PCB ranged from 0.07 to 0.99 with Total PCBs (∑7×4.3): 15.31μgkg(-1); PAH value ranged from 0.12 to 9.39 with ∑PAHs: 63.89μgkg(-1). Our results indicate that the deterioration of urban river-reservoir water quality result mainly from urban stormwater runoff, untreated industrial effluents which discharge into the river-reservoirs, human activities and uncontrolled urbanization. This study represents useful tools incorporated to evaluate sediment quality in river-reservoir systems which can be applied to similar aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; McMichael, Geoffrey A. [Pacific Northwest National Laboratory

    2009-08-21

    In 2007, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. Monthly releases of radio-tagged fish ({approx}95/month) were made from May through October and releases of 122-149/month acoustic-tagged fish per month were made from August through October. We compared the size at release of our tagged fish to that which could have been obtained at the same time from in-river, beach seine collections made by the Nez Perce Tribe. Had we relied on in-river collections to obtain our fish, we would have obtained very few in June from the free-flowing river but by late July and August over 90% of collected fish in the transition zone were large enough for tagging. Detection probabilities of radio-tagged subyearlings were generally high ranging from 0.60 (SE=0.22) to 1.0 (SE=0) in the different study reaches and months. Lower detection probabilities were observed in the confluence and upper reservoir reaches where fewer fish were detected. Detection probabilities of acoustic-tagged subyearlings were also high and ranged from 0.86 (SE=0.09) to 1.0 (SE=0) in the confluence and upper reservoir reaches during August through October. Estimates of the joint probability of migration and survival generally declined in a downstream direction for fish released from June through August. Estimates were lowest in the transition zone (the lower 7 km of the Clearwater River) for the June release and lowest in the confluence area for July and August releases. The joint probability of migration and survival in these reaches was higher for the September and October releases, and were similar to those of fish released in May. Both fish weight and length at tagging were significantly correlated with the joint probability of migrating and surviving for both radio-tagged and acoustic-tagged fish. For both tag types, fish that were heavier at tagging had a

  11. A stacking ensemble learning framework for annual river ice breakup dates

    Science.gov (United States)

    Sun, Wei; Trevor, Bernard

    2018-06-01

    River ice breakup dates (BDs) are not merely a proxy indicator of climate variability and change, but a direct concern in the management of local ice-caused flooding. A framework of stacking ensemble learning for annual river ice BDs was developed, which included two-level components: member and combining models. The member models described the relations between BD and their affecting indicators; the combining models linked the predicted BD by each member models with the observed BD. Especially, Bayesian regularization back-propagation artificial neural network (BRANN), and adaptive neuro fuzzy inference systems (ANFIS) were employed as both member and combining models. The candidate combining models also included the simple average methods (SAM). The input variables for member models were selected by a hybrid filter and wrapper method. The performances of these models were examined using the leave-one-out cross validation. As the largest unregulated river in Alberta, Canada with ice jams frequently occurring in the vicinity of Fort McMurray, the Athabasca River at Fort McMurray was selected as the study area. The breakup dates and candidate affecting indicators in 1980-2015 were collected. The results showed that, the BRANN member models generally outperformed the ANFIS member models in terms of better performances and simpler structures. The difference between the R and MI rankings of inputs in the optimal member models may imply that the linear correlation based filter method would be feasible to generate a range of candidate inputs for further screening through other wrapper or embedded IVS methods. The SAM and BRANN combining models generally outperformed all member models. The optimal SAM combining model combined two BRANN member models and improved upon them in terms of average squared errors by 14.6% and 18.1% respectively. In this study, for the first time, the stacking ensemble learning was applied to forecasting of river ice breakup dates, which appeared

  12. A history match of the 1993 ESAGD pilot performance in the Peace River reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ding, M.; Whale, L. [Shell Canada Ltd., Calgary, AB (Canada)

    2006-07-01

    This paper described a history matching procedure conducted to examine the performance of an enhanced steam assisted gravity drainage (ESAGD) pilot project originally initiated in 1993. The ESAGD process began as a conventional SAGD process, but when the steam chambers were fully developed, a pressure differential between the chambers was added to increase the steam drive component. A numerical planning simulation predicted cumulative average bitumen production rates of between 80 m{sup 3} per day per well pair. However, the actual average day bitumen rate was 22.5 m{sup 3} per day. The oil to steam ratio was 0.1. Final estimated recovery efficiency rates were estimated at 10 per cent. The simulated history match deviated in its predictions after the application of the pressure differential between the 2 well pairs during the ESAGD process. Results from a series of sensitivity studies demonstrated that well performance relied on the presence of high water saturation zones and on the petrophysical properties assigned within the model for horizontal and vertical permeability. The history match demonstrated that the majority of the bitumen produced during the pilot scheme came from the highly permeable bottom zone of the reservoir. It was concluded that steam zones did not rise far above the basal zone, and was limited by the vertical permeability of the reservoir. 6 refs., 2 tabs., 13 figs.

  13. Optimal and centralized reservoir management for drought and flood protection via Stochastic Dual Dynamic Programming on the Upper Seine-Aube River system

    Science.gov (United States)

    Chiavico, Mattia; Raso, Luciano; Dorchies, David; Malaterre, Pierre-Olivier

    2015-04-01

    Seine river region is an extremely important logistic and economic junction for France and Europe. The hydraulic protection of most part of the region relies on four controlled reservoirs, managed by EPTB Seine-Grands Lacs. Presently, reservoirs operation is not centrally coordinated, and release rules are based on empirical filling curves. In this study, we analyze how a centralized release policy can face flood and drought risks, optimizing water system efficiency. The optimal and centralized decisional problem is solved by Stochastic Dual Dynamic Programming (SDDP) method, minimizing an operational indicator for each planning objective. SDDP allows us to include into the system: 1) the hydrological discharge, specifically a stochastic semi-distributed auto-regressive model, 2) the hydraulic transfer model, represented by a linear lag and route model, and 3) reservoirs and diversions. The novelty of this study lies on the combination of reservoir and hydraulic models in SDDP for flood and drought protection problems. The study case covers the Seine basin until the confluence with Aube River: this system includes two reservoirs, the city of Troyes, and the Nuclear power plant of Nogent-Sur-Seine. The conflict between the interests of flood protection, drought protection, water use and ecology leads to analyze the environmental system in a Multi-Objective perspective.

  14. The costs of uncoordinated infrastructure management in multi-reservoir river basins

    International Nuclear Information System (INIS)

    Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume

    2014-01-01

    Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3–12% (or US$12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources. (paper)

  15. GestAqua.AdaPT - Mediterranean river basin modeling and reservoir operation strategies for climate change adaptation

    Science.gov (United States)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Marco, Machado; Aal, Carlo; Carmona Rodrigues, António; Beça, Pedro; Casanova Lino, Rafael; Rocha, João; Carvalho Santos, Cláudia

    2016-04-01

    Climate change (CC) scenarios for the Mediterranean region include an increase in the frequency and intensity of extreme weather events such as drought periods. higher average temperatures and evapotranspiration, combined with the decrease of annual precipitation may strongly affect the sustainability of water resources. In face of these risks, improving water management actions? by anticipating necessary operational measures is required to insure water quantity and quality according to the needs of the populations and irrigation in agriculture. This is clearly the case of the Alentejo region, southern Portugal, where present climatic conditions already pose significant challenges to water resources stakeholders, mainly from the agricultural and the urban supply sectors. With this in mind, the GestAqua.AdaPT project is underway during 2015 and 2016, aiming at analyzing CC impacts until 2100 and develop operational procedures to ensure water needs are adequately satisfied in the Monte Novo and Vigia reservoirs, which supply water for the city of Évora and nearby irrigation systems. Specific project objectives include: a) defining management and operational adaptation strategies aiming to ensure resource sustainability, both quantitatively and qualitatively; b) evaluate future potential costs and available alternatives to the regional water transfer infrastructure linked with the large Alqueva reservoir implemented in 2011; c) defining CC adaptation strategies to reduce irrigation water needs and d) identification of CC adaptation strategies which can be suitable also to other similar water supply systems. The methodology is centered on the implementation of a cascade of modeling tools, allowing the integrated simulation of the multiple variables under analysis. The project is based on CC scenarios resulting from the CORDEX project for 10 combinations of Global and regional climate models (GCMs and RCMs). The study follows by using two of these combinations

  16. Modeling a complex system of multipurpose reservoirs under prospective scenarios (hydrology, water uses, water management): the case of the Durance River basin (South Eastern France, 12 800 km2)

    Science.gov (United States)

    Monteil, Céline; Hendrickx, Frédéric; Samie, René; Sauquet, Eric

    2015-04-01

    The Durance River and its main tributary, the Verdon River, are two major rivers located in the Southern part of France. Three large dams (Serre-Ponçon, Castillon and Sainte-Croix) were built on their streams during the second half of the 20th century for multiple purposes. Stored water is used for hydropower, recreational, industry, drinking water and irrigation. Flows are partly diverted to feed areas outside the basin. On average 30 plants located in the Durance and Verdon valleys currently produce a total of 600 million kWh per year, equal to the annual residential consumption of a city with over 2.5 million inhabitants. The Southern part of France has been recently affected by severe droughts (2003, 2007 and 2011) and the rules for water allocation and reservoir management are now questioned particularly in the light of global change. The objective of the research project named "R²D²-2050" was to assess water availability and risks of water shortage in the mid-21st century by taking into account changes in both climate and water management. Therefore, a multi-model multi-scenario approach was considered to simulate regional climate, water resources and water demands under present-day (over the 1980-2009 baseline period) and under future conditions (over the 2036-2065 period). In addition, a model of water management was developed to simulate reservoir operating rules of the three dams. This model was calibrated to simulate water released from reservoir under constraints imposed by current day water allocation rules (e.g. downstream water requirements for irrigation, minimum water levels in the reservoirs during summer time for recreational purposes). Four territorial socio-economic scenarios were also elaborated with the help of stake holders to project water needs in the 2050s for the areas supplied with water from the Durance River basin. Results suggest an increase of the average air temperature with consequences on snow accumulation, snowmelt processes

  17. Water-quality assessment of White River between Lake Sequoyah and Beaver Reservoir, Washington County, Arkansas

    Science.gov (United States)

    Terry, J.E.; Morris, E.E.; Bryant, C.T.

    1982-01-01

    The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)

  18. Impacts of land use change and climate variations on annual inflow into the Miyun Reservoir, Beijing, China

    Science.gov (United States)

    Jiangkun Zheng; Ge Sun; Wenhong Li; Xinxiao Yu; Chi Zhang; Yuanbo Gong; Lihua Tu

    2016-01-01

    The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate...

  19. Stationarity of annual flood peaks during 1951-2010 in the Pearl River basin, China

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Xiao, Mingzhong; Xu, Chong-Yu

    2014-11-01

    The assumption of stationarity of annual peak flood (APF) records at 28 hydrological stations across the Pearl River basin, China, is tested. Abrupt changes in mean and variance are tested using the Pettitt technique and the Loess method. Trends of APFs are analyzed using the Mann-Kendall method and the Spearman technique. And then the stationarity of the APF series is further investigated by GAMLSS models and long-term persistence. Results indicate that: (1) abrupt changes in mean and variance have similar influences on the changing properties of APFs, such as stationarity. Abrupt changes in mean and variance are only field significant in the East River basin; (2) the change points have a considerable impact on the detection of trends, and these may be attributed to the fact that a abrupt increase or decrease in mean values will affect the trend variations. Besides, for the APF series being free of change points and trend, the GAMLSS models also corroborate stationarity of the APF series; (3) the nonstationarity in the Pearl River basin is mainly due to the existence of the change point. However, the APF series with change points in mean and/or variance are also characterized by long-term persistence, and thus it is infeasible to assert that the abrupt behaviors and/or trends of the APF series are the result of human activities or long-term persistence, especially in the East River basin. Results of this study will provide information for management of water resources and design of hydraulic facilities in the Pearl River basin in a changing environment.

  20. Interactions between walleyes and smallmouth bass in a Missouri River reservoir with consideration of the influence of temperature and prey

    Science.gov (United States)

    Wuellner, Melissa R.; Chipps, Steven R.; Willis, David W.; Adams, Wells E.

    2010-01-01

    Walleyes Sander vitreus are the most popular fish among South Dakota anglers, but smallmouth bass Micropterus dolomieu were introduced to provide new angling opportunities. Some walleye anglers have reported reductions in the quality of walleye fisheries since the introduction of smallmouth bass and attribute this to the consumption of young walleyes by smallmouth bass and competition for shared prey resources. We quantified the diets of walleyes and smallmouth bass in the lower reaches of Lake Sharpe (a Missouri River reservoir), calculated the diet overlap between the two predators, and determined whether they partitioned shared prey based on size. We also quantified walleye diets in the upper reach of the reservoir, which has a different prey base and allowed us to compare the growth rates of walleyes within Lake Sharpe. Age-0 gizzard shad Dorosoma cepedianum composed a substantial proportion of the diets of both predators, regardless of location, for most of the growing season; the patterns in shad vulnerability appeared to drive the observed patterns in diet overlap. Smallmouth bass appeared to consume a smaller size range of gizzard shad than did walleyes, which consumed a wide range. Smallmouth bass consumed Sander spp. in some months, but in very low quantities. Given that global climate change is expected to alter the population and community dynamics in Great Plains reservoirs, we also used a bioenergetics approach to predict the potential effects of limiting prey availability (specifically, the absence of gizzard shad and rainbow smelt Osmerus mordax) and increased water temperatures (as projected from global climate change models) on walleye and smallmouth bass growth. The models indicated that the absence of rainbow smelt from the diets of walleyes in upper Lake Sharpe would reduce growth but that the absence of gizzard shad would have a more marked negative effect on both predators at both locations. The models also indicated that higher

  1. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell [Pacific States Marine Fisheries Commission].

    2009-09-10

    This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional

  2. Ecological risk assessment in a large river-reservoir. 2: Fish community

    International Nuclear Information System (INIS)

    Suter, G.W. II; Barnthouse, L.W.; Efroymson, R.A.; Jager, H.

    1999-01-01

    This paper summarizes the assessment of risks to fishes in the Clinch River Operable Unit due to contaminants released by the US Department of Energy's activities on its Oak Ridge Reservation in Tennessee. This paper focuses on the most contaminated area, the Poplar Creek (PC) embayment. The assessment is of interest because of its use of five distinct lines of evidence: fish community surveys, fish body burdens, toxicity tests of ambient waters, suborganismal bioindicators, and single chemical toxicity tests. None of these lines of evidence provided unambiguous evidence of a significant risk, but the surveys indicated that the fish community in PC was depauperate, polychlorinated biphenyl body burdens may have been at toxic levels in catfish, one of the three tests of ambient water showed clear toxicity, some of the indicators were indicative of toxic effects, and concentrations that have been toxic in the laboratory were detected periodically. Interpretation was further complicated by upstream contamination of both the Clinch River and PC. The risk characterization was performed by evaluating each line of evidence separately and then weighing the evidence using an ecoepidemiological approach

  3. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Dan; Schwabe, Lawrence; Wenick, Jess (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

    2001-08-01

    The Malheur basin lies within southeastern Oregon. The Malheur River is a tributary to the Snake River, entering at about River Kilometer (RK) 595. The hydrological drainage area of the Malheur River is approximately 12,950 km{sup 2} and is roughly 306 km in length. The headwaters of the Malheur River originate in the Blue Mountains at elevations of 6,500 to 7,500 feet, and drops to an elevation of 2000 feet at the confluence with the Snake River near Ontario, Oregon. The climate of the Malheur basin is characterized by hot dry summers, occasionally exceeding 38 C and cold winters that may drop below -29 C. Average annual precipitation is 300 centimeters and ranges from 100 centimeters in the upper mountains to less than 25 centimeters in the lower reaches (Gonzalez 1999). Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2000. The Burns Paiute Tribe (BPT), United States Forest Service (USFS), and Oregon Department of Fish and Wildlife (ODFW), have been working cooperatively to achieve this common goal. Bull trout ''Salvenlinus confluentus'' have specific environmental requirements and complex life histories making them especially susceptible to human activities that alter their habitat (Howell and Buchanan 1992). Bull trout are considered to be a cold-water species and are temperature dependent. This presents a challenge for managers, biologists, and private landowners in the Malheur basin. Because of the listing of bull trout under the Endangered Species Act as threatened and the current health of the landscape, a workgroup was formed to develop project objectives related to bull trout. This report will reflect work completed during the Bonneville Power contract period starting 1 April 2000 and ending 31 March 2001. The

  4. Walla Walla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P.; Duke, Bill; Loffink, Ken

    2008-12-30

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. Migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage and trapping facility design, operation, and criteria. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. Beginning in March of 2007, two work elements from the Walla Walla Fish Passage Operations Project were transferred to other projects. The work element Enumeration of Adult Migration at Nursery Bridge Dam is now conducted under the Walla Walla Basin Natural Production Monitoring and Evaluation Project and the work element Provide Transportation Assistance is conducted under the Umatilla Satellite Facilities Operation and Maintenance Project. Details of these activities can be found in those project's respective annual reports.

  5. Global estimation of long-term persistence in annual river runoff

    Science.gov (United States)

    Markonis, Y.; Moustakis, Y.; Nasika, C.; Sychova, P.; Dimitriadis, P.; Hanel, M.; Máca, P.; Papalexiou, S. M.

    2018-03-01

    Long-term persistence (LTP) of annual river runoff is a topic of ongoing hydrological research, due to its implications to water resources management. Here, we estimate its strength, measured by the Hurst coefficient H, in 696 annual, globally distributed, streamflow records with at least 80 years of data. We use three estimation methods (maximum likelihood estimator, Whittle estimator and least squares variance) resulting in similar mean values of H close to 0.65. Subsequently, we explore potential factors influencing H by two linear (Spearman's rank correlation, multiple linear regression) and two non-linear (self-organizing maps, random forests) techniques. Catchment area is found to be crucial for medium to larger watersheds, while climatic controls, such as aridity index, have higher impact to smaller ones. Our findings indicate that long-term persistence is weaker than found in other studies, suggesting that enhanced LTP is encountered in large-catchment rivers, were the effect of spatial aggregation is more intense. However, we also show that the estimated values of H can be reproduced by a short-term persistence stochastic model such as an auto-regressive AR(1) process. A direct consequence is that some of the most common methods for the estimation of H coefficient, might not be suitable for discriminating short- and long-term persistence even in long observational records.

  6. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael P.; Bumgarner, Joseph D.

    2002-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW volitionally

  7. Tucannon River Spring Chinook Salmon Captive Brood Program, FY 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-06-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  8. Air–water CO2 and CH4 fluxes along a river–reservoir continuum: Case study in the Pengxi River, a tributary of the Yangtze River in the Three Gorges Reservoir, China

    Science.gov (United States)

    Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river–reservoir continuum will create distinctiv...

  9. Hydrologic-agronomic-economic model for the optimal operation of the Yaqui river reservoir system using genetic algorithms; Modelo hidrologico-agronomico-economico para la operacion optima del sistema de presas del rio Yaqui, usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Minjares-Lugo, Jose Luis; Salmon-Castelo, Roberto Fernando; Oroz-Ramos, Lucas Antonio [Comision Nacional del Agua (Mexico); Cruz-Medina, Isidro Roberto [Instituto Tecnologico de Sonora (Mexico)

    2008-07-15

    The objective of this study is to develop an integrated hydrologic-agronomic-economic annual model for the optimal operation of the Yaqui River reservoir system to support irrigation and urban water supply in the watershed. The model solves for each year's water allocations by crop, maximizing annual agricultural income for a specified risk of reservoir shortages and spills. It accounts for adjustments in water supply arising from changes in precipitation and runoff uncertainty and from changes in water demand arising from variations in crop prices and production costs. Model predictions for the agricultural year 2000-2001 are compared with observed results to test the model's predictive ability. Results demonstrate that the model can be used to optimize and analyze reservoir system operation and for water resources management in the Irrigation District No. 041, providing a framework for improving the operation of a reservoir system, selecting an optimal cropping pattern according to its maximum economic benefits, and in the optimal monthly water releases from the reservoir system. The model considers the simultaneous operation of three dams and it is applied to the Irrigation District No. 041, Rio Yaqui. [Spanish] El objetivo de este estudio es desarrollar un modelo integral de optimizacion anual para definir la operacion del sistema de presas del rio Yaqui y la asignacion del volumen mensual de agua para la irrigacion de diferentes cultivos, asi como para satisfacer los requerimientos de uso urbano basado en las condiciones hidrologicas, agronomicas y economicas en la cuenca. El modelo maximiza los beneficios anuales netos del sector agricola, minimizando el riesgo de deficit o derrames en el sistema de presas; incluye cambios en el suministro de agua debido a la incertidumbre de las precipitaciones y del escurrimiento del rio y cambios en la demanda de agua provocados por la incertidumbre de los precios y costos de los cultivos. Se utilizaron datos del

  10. Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Norm [Kootenai Tribe of Idaho

    2009-02-18

    The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is known as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to

  11. Assessing potential impacts of climate change on hydropower generation of three reservoirs in the Tagus River Basin under ensemble of climate projections

    Science.gov (United States)

    Lobanova, Anastasia; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina

    2015-04-01

    The Tagus River basin is an important strategic water and energy source for Portugal and Spain. With an extensive network of 40 reservoirs with more than 15 hm3 capacity and numerous abstraction channels it is ensuring water supply for domestic and industrial usage, irrigation and hydropower production in Spain and Portugal. Growing electricity and water supply demands, over-regulation and construction of new dams, and large inter-basin water transfers aggravated by strong natural variability of climate and aridity of the catchment have already imposed significant pressures on the river. The substantial reduction of discharge, dropping during some months to zero in some parts of the catchment, is observed already now, and projected climatic change is expected to alter the water budget of the catchment further. As the water inflow is a fundamental defining factor in a reservoir operation and hydropower production, the latter are highly sensitive to shifts in water balance of the catchment, and hence to changes in climate. In this study we aim to investigate the effects of projected climate change on water inflows and hydropower generation of the three large reservoirs in the Tagus River Basin, and by that to assess their ability to cover electricity power demands and provide water supply under changed conditions, assuming present management strategies; hydropower and abstraction demands. The catchment scale, process-based eco-hydrological model SWIM was set up, calibrated and validated up to the Santarem gauge at the Tagus outlet, with the implementation of a reservoir module. The reservoir module is able to represent three reservoir operation management options, simulate water abstraction and provide rates of generated hydropower. In total, fifteen largest reservoirs in the Tagus River Basin were included in the model, calibrated and validated against observed inflow, stored water and outflow water volumes. The future climate projections were selected from the

  12. Willingness to pay for non angler recreation at the lower Snake River reservoirs

    Science.gov (United States)

    McKean, J.R.; Johnson, D.; Taylor, R.G.; Johnson, Richard L.

    2005-01-01

    This study applied the travel cost method to estimate demand for non angler recreation at the impounded Snake River in eastern Washington. Net value per person per recreation trip is estimated for the full non angler sample and separately for camping, boating, water-skiing, and swimming/picnicking. Certain recreation activities would be reduced or eliminated and new activities would be added if the dams were breached to protect endangered salmon and steelhead. The effect of breaching on non angling benefits was found by subtracting our benefits estimate from the projected non angling benefits with breaching. Major issues in demand model specification and definition of the price variables are discussed. The estimation method selected was truncated negative binomial regression with adjustment for self selection bias.

  13. Fate and transport of cyanobacteria and associated toxins and taste-and-odor compounds from upstream reservoir releases in the Kansas River, Kansas, September and October 2011

    Science.gov (United States)

    Graham, Jennifer L.; Ziegler, Andrew C.; Loving, Brian L.; Loftin, Keith A.

    2012-01-01

    Cyanobacteria cause a multitude of water-quality concerns, including the potential to produce toxins and taste-and-odor compounds. Toxins and taste-and-odor compounds may cause substantial economic and public health concerns and are of particular interest in lakes, reservoirs, and rivers that are used for drinking-water supply, recreation, or aquaculture. The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Water released from Milford Lake to the Kansas River during a toxic cyanobacterial bloom in late August 2011 prompted concerns about cyanobacteria and associated toxins and taste-and-odor compounds in downstream drinking-water supplies. During September and October 2011 water-quality samples were collected to characterize the transport of cyanobacteria and associated compounds from upstream reservoirs to the Kansas River. This study is one of the first to quantitatively document the transport of cyanobacteria and associated compounds during reservoir releases and improves understanding of the fate and transport of cyanotoxins and taste-and-odor compounds downstream from reservoirs. Milford Lake was the only reservoir in the study area with an ongoing cyanobacterial bloom during reservoir releases. Concentrations of cyanobacteria and associated toxins and taste-and-odor compounds in Milford Lake (upstream from the dam) were not necessarily indicative of outflow conditions (below the dam). Total microcystin concentrations, one of the most commonly occurring cyanobacterial toxins, in Milford Lake were 650 to 7,500 times higher than the Kansas Department of Health and Environment guidance level for a public health warning (20 micrograms per liter) for most of September 2011. By comparison, total microcystin concentrations in the Milford Lake outflow generally were less than 10 percent of the concentrations in surface accumulations, and never exceeded 20 micrograms per liter. The Republican River, downstream from

  14. Impact of damming on the Chironomidae of the upper zone of a tropical run-of-the-river reservoir.

    Science.gov (United States)

    Brandimarte, A L; Anaya, M; Shimizu, G Y

    2016-06-01

    We examined the effects of the Mogi-Guaçu river damming (São Paulo State, Brazil) on the Chironomidae fauna. Pre, during, and post-filling sampling was carried out in the main channel and margins of one site in the upper zone of the reservoir, using a modified Petersen grab (325 cm2). We evaluated the total, subfamily, and tribe densities and also their relative abundance. Analysis of genera included densities, relative abundance, richness, and dominance. The Rosso's ecological value index (EVI) determined the ecological importance of each genus. There was a tendency of decrease of the total Chironomidae density, increase in the percentage of Chironomini, and decrease in densities and percentages of Orthocladiinae and Tanytarsini. These changes in percentage were respectively related to Polypedilum, Lopescladius, and Rheotanytarsus, the genera with the highest EVI values. After-filling richness was lower in the margins and dominance of genera did not change significantly. Chironomidae in the margins was more sensitive to damming than in the main channel. This difference in sensibility sustains the use of Chironomidae as bioindicators. Damming impact was indicated by the reduction of both genera richness in the margins and relative abundance of groups typical of faster waters. The results have highlighted the need for multi-habitat analysis combined with a before-after sampling approach in the environmental impact studies concerning the damming impact on the benthic fauna.

  15. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Erik

    2009-09-01

    1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al. (1995), Olsen and French (1996), Olsen et al. (1996), Olsen and French (1999), and Olsen and French (2000). The annual progress reports document information collected on (1) rearing densities of indigenous fish, (2) subbasin steelhead smolt production, (3) post-release survival of acclimated and direct released hatchery summer and winter steelhead smolts, (4) smolt to adult anadromous salmonid survival rates, (5) jack and adult anadromous salmonid escapements and harvest, (6) spatial distribution of adult anadromous salmonid holding in the Hood River subbasin, (7) selected life history patterns and morphological and meristic characteristics of wild, natural, and hatchery resident and anadromous salmonids, and (8) summer streamflows.

  16. Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil

    Directory of Open Access Journals (Sweden)

    M. M. Molisani

    Full Text Available This paper reports on a study to determine the Hg content in the five most abundant aquatic macrophyte species (Elodea densa, Sagittaria montevidensis, Salvinia auriculata, Pistia stratiotes and Eichhornia crassipes in two artificial reservoirs flooded by water diverted from the Paraíba do Sul river, SE Brazil. The potential of these species for Hg accumulation and their role in Hg transport along the river system due to macrophyte management were evaluated. Mercury concentrations were higher in free-floating than in rooted species. Roots were also richer in Hg than were leaves. Dry weight Hg concentrations in leaves and roots from all species varied from 46-246 ng.g-1 to 37-314 ng.g-1, respectively. These values are higher than those reported for uncontaminated lakes in Brazil and in other tropical areas and similar to those reported for moderately contaminated sites. Mercury concentrations can be attributed to fluvial transport from the heavily industrialized Paraíba do Sul river basin. Intensive sampling of Pistia stratiotes from two sites in the Vigário reservoir was performed to evaluate the capacity of Hg incorporation in short periods of time. The results showed a significant negative correlation between Hg content and size class of individual plants, demonstrating the importance of juveniles, fast growing plants in absorbing Hg. The foremost impact related to Hg contents in the studied area concerns the periodic removal of macrophytes for reservoir management, followed by disposal in nearby areas. This results in the mobilization of 0.52 to 1.3 Kg of Hg per year, a significant fraction of the Hg burden present in reservoir waters. Disposal of such material may result in Hg leaching to river systems, affecting the Hg transfer throughout the basin.

  17. Drawdown flushing of a hydroelectric reservoir on the Rhône River: Impacts on the fish community and implications for the sediment management.

    Science.gov (United States)

    Grimardias, David; Guillard, Jean; Cattanéo, Franck

    2017-07-15

    Sediment flushings of hydropower reservoirs are commonly performed to maintain water resource uses and ecosystem services, but may have strong impacts on fish communities. Despite the worldwide scope of this issue, very few studies report quantitative in situ evaluations of these impacts. In June 2012, the drawdown flushing of the Verbois reservoir (Rhône River) was performed and subsequent impacts on the fish community were assessed, both inside the reservoir (fish densities by hydroacoustic surveys) and downstream (short-term movement and survival of radio tracked adult fish). Results showed that after the flushing fish acoustic density decreased by 57% in the reservoir, and no recolonization process was observed over the following 16 months. Downstream of the dam, the global apparent survival of fish to the flushing was estimated at 74%, but differed between species. The nine-year delay from the previous flushing and thus the amount of sediments to remove were too stressful for the low-resilience fish community of the Rhône River. Alternative flushing schedules are discussed to reduce these impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Thom, Ronald M.; Borde, Amy B.; Roegner, G. C.; Whiting, Allan H.; Johnson, Gary E.; Dawley, Earl; Skalski, John R.; Vavrinec, John; Ebberts, Blaine D.

    2006-12-20

    This report is the second annual report of a six-year project to evaluate the cumulative effects of habitat restoration projects in the Columbia River Estuary, conducted by Pacific Northwest National Laboratory's Marine Sciences Laboratory, NOAA's National Marine Fisheries Service Pt. Adams Biological Field Station, and the Columbia River Estuary Study Taskforce for the US Army Corps of Engineers. In 2005, baseline data were collected on two restoration sites and two associated reference sites in the Columbia River estuary. The sites represent two habitat types of the estuary--brackish marsh and freshwater swamp--that have sustained substantial losses in area and that may play important roles for salmonids. Baseline data collected included vegetation and elevation surveys, above and below-ground biomass, water depth and temperature, nutrient flux, fish species composition, and channel geometry. Following baseline data collection, three kinds of restoration actions for hydrological reconnection were implemented in several locations on the sites: tidegate replacements (2) at Vera Slough, near the city of Astoria in Oregon State, and culvert replacements (2) and dike breaches (3) at Kandoll Farm in the Grays River watershed in Washington State. Limited post-restoration data were collected: photo points, nutrient flux, water depth and temperature, and channel cross-sections. In subsequent work, this and additional post-restoration data will be used in conjunction with data from other sites to estimate net effects of hydrological reconnection restoration projects throughout the estuary. This project is establishing methods for evaluating the effectiveness of individual projects and a framework for assessing estuary-wide cumulative effects including a protocol manual for monitoring restoration and reference sites.

  19. Methods to estimate annual mean spring discharge to the Snake River between Milner Dam and King Hill, Idaho

    Science.gov (United States)

    Kjelstrom, L.C.

    1995-01-01

    Many individual springs and groups of springs discharge water from volcanic rocks that form the north canyon wall of the Snake River between Milner Dam and King Hill. Previous estimates of annual mean discharge from these springs have been used to understand the hydrology of the eastern part of the Snake River Plain. Four methods that were used in previous studies or developed to estimate annual mean discharge since 1902 were (1) water-budget analysis of the Snake River; (2) correlation of water-budget estimates with discharge from 10 index springs; (3) determination of the combined discharge from individual springs or groups of springs by using annual discharge measurements of 8 springs, gaging-station records of 4 springs and 3 sites on the Malad River, and regression equations developed from 5 of the measured springs; and (4) a single regression equation that correlates gaging-station records of 2 springs with historical water-budget estimates. Comparisons made among the four methods of estimating annual mean spring discharges from 1951 to 1959 and 1963 to 1980 indicated that differences were about equivalent to a measurement error of 2 to 3 percent. The method that best demonstrates the response of annual mean spring discharge to changes in ground-water recharge and discharge is method 3, which combines the measurements and regression estimates of discharge from individual springs.

  20. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs; ANNUAL

    International Nuclear Information System (INIS)

    Grigg, Reid B.; Schechter, David S.

    1999-01-01

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results)

  1. Kootenai River White Sturgeon Investigations; White Sturgeon Spawning and Recruitment Evaluation, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rust, Pete; Wakkinen, Virginia (Idaho Department of Fish and Game, Boise, ID)

    2005-06-01

    The objective of this research was to determine the environmental requirements for successful spawning and recruitment of the Kootenai River white sturgeon Acipenser transmontanus population. Annual tasks include monitoring and evaluating the various life stages of Kootenai River white sturgeon. Sampling for adult Kootenai River white sturgeon in 2003 began in March and continued through April. Eighty-one adult white sturgeon were captured with 3,576 hours of angling and set-lining effort in the Kootenai River. Discharge from Libby Dam and river stage at Bonners Ferry in 2003 peaked in May and early June. Flows remained above 500 m{sup 3}/s throughout June, decreased rapidly through mid July, and increased back to near 500 m{sup 3}/s after mid July and through mid August. By late August, flows had decreased to below 400 m{sup 3}/s. We monitored the movements of 24 adult sturgeon in Kootenay Lake, British Columbia (BC) and the Kootenai River from March 15, 2003 to August 31, 2003. Some of the fish were radio or sonic tagged in previous years. Twelve adult white sturgeon were moved upstream to the Hemlock Bar reach (rkm 260.0) and released as part of the Set and Jet Program. Transmitters were attached to seven of these fish, and their movements were monitored from the time of release until they moved downstream of Bonners Ferry. Eight additional radio-tagged white sturgeon adults were located in the traditional spawning reach (rkm 228-240) during May and June. Sampling with artificial substrate mats began May 21, 2003 and ended June 30, 2003. We sampled 717 mat d (a mat d is one 24 h set) during white sturgeon spawning. Three white sturgeon eggs were collected near Shortys Island on June 3, 2003, and five eggs were collected from the Hemlock Bar reach on June 5, 2003. Prejuvenile sampling began June 17, 2003 and continued until July 31, 2003. Sampling occurred primarily at Ambush Rock (rkm 244.0) in an attempt to document any recruitment that might have occurred from

  2. Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonaradian Age) Reservoirs, West Texas and New Mexico, Semi-Annual; SEMIANNUAL

    International Nuclear Information System (INIS)

    Ruppel, Stephen C.; Jennings, James W.; Laubach, Stephen E.

    2001-01-01

    Outcrop studies include stratigraphic and petrophysical analysis. Analysis of the detailed sequence- and cycle-scale architecture of the Clear Fork reservoir-equivalent outcrops in Apache Canyon is nearly complete. This work reveals two high-frequency transgressive-regressive sequences (HFS) in the lower Clear Fork composite depositional sequence and three HFS in the basal middle Clear Fork composite depositional sequence. A 1,800-ft transect of 1-inch-diameter samples was collected from one cycle at the Apache Canyon outcrop. The transect was sampled with 5-ft spacing, but there were some gaps due to cover and cliff, resulting in 181 samples. Permeability, porosity, and grain density were measured, and the spatial statistics are being analyzed geostatistically

  3. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  4. Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow

    Science.gov (United States)

    Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.

    2017-12-01

    Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.

  5. Continuous real-time water-quality monitoring and regression analysis to compute constituent concentrations and loads in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999–2012

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    would not be possible otherwise. In general, model forms and the amount of variance explained by the models was similar between the original and updated models. The amount of variance explained by the updated models changed by 10 percent or less relative to the original models. Total nitrogen, nitrate, organic nitrogen, E. coli bacteria, and total organic carbon models were newly developed for this report. Additional data collection over a wider range of hydrological conditions facilitated the development of these models. The nitrate model is particularly important because it allows for comparison to Cheney Reservoir Task Force goals. Mean hourly computed total suspended solids concentration during 1999 through 2012 was 54 milligrams per liter (mg/L). The total suspended solids load during 1999 through 2012 was 174,031 tons. On an average annual basis, the Cheney Reservoir Task Force runoff (550 mg/L) and long-term (100 mg/L) total suspended solids goals were never exceeded, but the base flow goal was exceeded every year during 1999 through 2012. Mean hourly computed nitrate concentration was 1.08 mg/L during 1999 through 2012. The total nitrate load during 1999 through 2012 was 1,361 tons. On an annual average basis, the Cheney Reservoir Task Force runoff (6.60 mg/L) nitrate goal was never exceeded, the long-term goal (1.20 mg/L) was exceeded only in 2012, and the base flow goal of 0.25 mg/L was exceeded every year. Mean nitrate concentrations that were higher during base flow, rather than during runoff conditions, suggest that groundwater sources are the main contributors of nitrate to the North Fork Ninnescah River above Cheney Reservoir. Mean hourly computed phosphorus concentration was 0.14 mg/L during 1999 through 2012. The total phosphorus load during 1999 through 2012 was 328 tons. On an average annual basis, the Cheney Reservoir Task Force runoff goal of 0.40 mg/L for total phosphorus was exceeded in 2002, the year with the largest yearly mean turbidity, and

  6. Prediction of radionuclide migration in the Pripyat river and Dnieper reservoirs and decision support of water protection measures on the basis of mathematical modelling

    International Nuclear Information System (INIS)

    Morozov, A.A.; Zheleznyak, M.J.; Voitsekhovich, O.; Aliev, K.A.; Bilotkach, U.V.

    1997-01-01

    Since May 1986 in Kiev in the Institute of Mathematical Machines and System Problems, Cybernetics Center of the National Academy of Sciences of Ukraine has been started the development of the computerised system for processing of Dniper basin radiological monitoring data and modelling of radionuclide dispersion in rivers and reservoirs. For this work it was established the Interdisciplinary Working Group that joints the specialists from the State Committee of Water Resources, State Committee of Hydrometeorology, National Academy of Sciences and other Ukrainian institutions. The objectives of the computerized system development were formulated by the State Emergency Commission and later by the Ukrainian Minchernobyl as follows: reliable evaluation of the surface water contamination at Pripyat River and Dnieper River on the basis of monitoring data from the different institutions; seasonal and long-term prediction of the surface water radioactive contamination; decision support for the aquatic post-accidental countermeasures, directed to diminish the radionuclides fluxes from the Chernobyl area through the Pripyat River and Dnieper Reservoirs; decision support for the countermeasures directed on changes in the water assumption

  7. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    An extensive surveillance program has been continuously maintained since 1951 to determine the concentrations of radonuclides in a 1200-square-mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. The results of this monitoring program are reported annually to the public. This document summarizes the 1980 results. The radiation dose at the plant perimeter and the population dose in the region from SRP operations is very small relative to the dose received from naturally occurring radiation. The annual average dose in 1980 from atmospheric releases of radioactive materials from SRP was 0.7 millirem at the plant perimeter. The maximum dose at the plant perimeter was 1.01 mrem, which is 0.2% of the Department of Energy limit for offsite exposures. The population dose to people living within 80 km of the center of SRP was 99.7 man-rems. During 1980, this same population received a radiation dose of 54,400 man-rems from natural radiation and an additional dose of 47,000 man-rems from medical x-rays. An individual consuming river water downstream from SRP would receive a maximum calculated dose in 1980 of 0.22 mrem which includes dose contributions from consumer products produced using Savannah River water. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment that may conceivably be affected by these emissions were monitored to ensure a safe environment. Releases of radioactivity from SRP had an inconsequential effect on living plants and animals. With a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests

  8. Analysis on biomass and productivity of epilithic algae and their relations to environmental factors in the Gufu River basin, Three Gorges Reservoir area, China.

    Science.gov (United States)

    Ge, Jiwen; Wu, Shuyuan; Touré, Dado; Cheng, Lamei; Miao, Wenjie; Cao, Huafen; Pan, Xiaoying; Li, Jianfeng; Yao, Minmin; Feng, Liang

    2017-12-01

    The main purpose of this study conducted from August 2010 was to find biomass and productivity of epilithic algae and their relations to environmental factors and try to explore the restrictive factors affecting the growth of algae in the Gufu River, the one of the branches of Xiangxi River located in the Three Gorges Reservoir of the Yangtze River, Hubei Province, Central China. An improved method of in situ primary productivity measurement was utilized to estimate the primary production of the epilithic algae. It was shown that in rivers, lakes, and reservoirs, algae are the main primary producers and have a central role in the ecosystem. Chlorophyll a concentration and ash-free dry mass (AFDM) were estimated for epilithic algae of the Gufu River basin in Three Gorges Reservoir area. Environmental factors in the Gufu River ecosystem highlighted differences in periphyton chlorophyll a ranging from 1.49 mg m -2 (origin) to 69.58 mg m -2 (terminal point). The minimum and maximum gross primary productivity of epilithic algae were 96.12 and 1439.89 mg C m -2  day -1 , respectively. The mean net primary productivity was 290.24 mg C m -2  day -1 . The mean autotrophic index (AFDM:chlorophyll a) was 407.40. The net primary productivity, community respiration ratio (P/R ratio) ranged from 0.98 to 9.25 with a mean of 2.76, showed that autotrophic productivity was dominant in the river. Relationship between physicochemical characteristics and biomass was discussed through cluster and stepwise regression analysis which indicated that altitude, total nitrogen (TN), NO 3 - -N, and NH 4 + -N were significant environmental factors affecting the biomass of epilithic algae. However, a negative logarithmic relationship between altitude and the chlorophyll a of epilithic algae was high. The results also highlighted the importance of epilithic algae in maintaining the Gufu River basin ecosystems health.

  9. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael; Varney, Michelle

    2003-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River Spring Chinook Captive Broodstock Program during 2002. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program collected fish from five (1997-2001) brood years (BY). As of January 1, 2003, WDFW has approximately 11 BY 1998, 194 BY 1999, 314 BY 2000, 447 BY 2001, and 300 BY 2002 (for extra males) fish on hand at LFH. The 2002 eggtake from the 1997 brood year (Age 5) was 13,176 eggs from 10 ripe females. Egg survival was 22%. Mean fecundity based on the 5 fully spawned females was 1,803 eggs/female. The 2002 eggtake from the 1998 brood year (Age 4) was 143,709 eggs from 93 ripe females. Egg survival was 29%. Mean fecundity based on the 81 fully spawned females was 1,650 eggs/female. The 2002 eggtake from the 1999 brood year (Age 3) was 19,659 eggs from 18 ripe females. Egg survival was 55%. Mean fecundity based on the 18 fully spawned fish was 1,092 eggs/female. The total 2002 eggtake from the captive brood program was 176,544 eggs. A total of 120,833 dead eggs (68%) were removed with 55,711 live eggs remaining for the program. As of May 1, 2003 we had 46,417 BY 2002 captive brood progeny on hand A total of 20,592 excess BY 01 fish were marked as parr (AD/CWT) and

  10. Evaluating the coefficients of autocorrelation in a series of annual run-off of the Far East rivers

    Energy Technology Data Exchange (ETDEWEB)

    Sakharyuk, A V

    1981-01-01

    An evaluation is made of the coefficients of autocorrelation in series of annual river run-off based on group analysis using data on the distribution law of sampling correlation coefficients of temporal series subordinate to the III type Pearson's distribution.

  11. ANNUAL ACTIVITY OF THE NOBLE CRAYFISH (ASTACUS ASTACUS IN THE ORLJAVA RIVER (CROATIA

    Directory of Open Access Journals (Sweden)

    FALLER M.

    2006-07-01

    Full Text Available We studied the annual activity of the noble crayfish (Astacus astacus at three sites along the Orljava River, in the continental part of Croatia, between August 2003 and September 2004. Each site represented the typical characteristics of the upper, middle and lower section of the river (5, 24 and 37 km from the spring, respectively. The biggest population size was recorded on the most upstream site, with greatest structural variability of bottom, high biotic index, and the lowest mean water temperature. Males dominated in catch during the whole research period (total sex ratio was 1.77 males: 1 female. The number of caught crayfish fluctuated during the year and their activity was positively correlated with the water temperature. The crayfish catch within the two downstream sites was dramatically lower in the autumn 2004 then the year before. No obvious reason could be found; therefore we concluded that this was probably result of natural fluctuations in population. Males were significantly longer than females on all three sites. Males and females had similar percentages of injuries, mainly on claws and antennae. Crayfish were active during the whole year, even when water temperature was just 1°C. Phases of life cycle (moulting, active cement glands, mating, hatchlings occurred a month later in our population than in the Northern Europe populations, probably as a consequence of differences in the climate.

  12. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    International Nuclear Information System (INIS)

    Smith, M.H.

    1996-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory's research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL)

  13. Kootenai River Fisheries Investigation : Stock Status of Burbot : Project Progress Report 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Paragamian, Valughn L.; Laude Dorothy C.

    2008-12-26

    Objectives of this investigation were to (1) monitor the population status and recruitment of burbot Lota lota in the Kootenai River, Idaho and British Columbia, Canada during the winter of 2006-2007; (2) evaluate the selective withdrawal system in place at Libby Dam to maintain the river temperature near Bonners Ferry between 1-4 C (November-December) to improve burbot migration and spawning activity; and (3) determine if a hatching success of 10% of eyed burbot embryos could be achieved through extensive rearing and produce fingerlings averaging 9.8 cm in six months. Water temperature did not fall below the upper limit (4 C) until mid-January but was usually maintained between 1-4 C January through February and was acceptable. Snowpack was characterized by a 101% of normal January runoff forecast. Adult burbot were sampled with hoop nets and slat traps. Only three burbot were captured in hoop nets, all at Ambush Rock (rkm 244.5). No burbot were caught in either slat traps or juvenile sampling gear, indicating the population is nearly extirpated. Burbot catch per unit effort in hoop nets was 0.003 fish/net d. Extensive rearing was moved to a smaller private pond and will be reported in the 2008-2009 annual report.

  14. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  15. Snake River Sockeye Salmon Habitat and Limnological Research; 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, David (Shoshone-Bannock Tribes, Fort Hall, ID); Wurtsbaugh, Wayne A. (Utah State University, Department of Fisheries and Wildlife, Ecology Center and Watershed Science Unit); Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID)

    1994-06-01

    In 1990 the Shoshone-Bannock Tribes (SBT) petitioned the National Marine Fisheries Service (NMFS) to list Snake River Sockeye salmon as endangered. As a result, Snake River Sockeye were listed and the Bonneville Power Administration (BPA) began funding efforts to enhance sockeye stocks. Recovery efforts include development of a brood stock program, genetics work, describing fish community dynamics in rearing lakes, and completing limnology studies. The SBT, in cooperation with Idaho Department of Fish and Game (IDFG), are directing fish community and limnology studies. IDFG is managing the brood stock program. The University of Idaho and NMFS are completing genetics work. Part I of this document is the SBT 1993' annual report that describes findings related to fish community research. Part II is a document completed by Utah State University (USU). The SBT subcontracted USU to complete a limnology investigation on the Sawtooth Valley Lakes. Management suggestions in Part II are those of USU and are not endorsed by the SBT and may not reflect the opinions of SBT biologists.

  16. Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for fiscal year 1992

    International Nuclear Information System (INIS)

    1991-09-01

    The Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan (AIWP) for Fiscal Year (FY) 1992 presents Bonneville Power Administration's (BPA) plans for implementing the Columbia River Basin Fish and Wildlife Program (Program) in FY 1992. The AIWP focuses on individual Action Items found in the 1987 Program for which BPA has determined that it has authority and responsibility to implement. Each of the entries in the AIWP includes objectives, background, progress to date in achieving the objectives, and a summary of plans for implementation in FY 1992. Most Action Items are implemented through one or more BPA-funded projects. Each Action Item entry is followed by a list of completed, ongoing, and planned projects, along with objectives, results, schedules, and milestones for each project. In October 1988, BPA and the Columbia Basin Fish and Wildlife Authority (CBFWA) initiated a collaborative and cooperative Implementation Planning Process (IPP). The IPP provided opportunities in FY 1991 for the fish and wildlife agencies. Tribes, and other interested parties to be involved in planning FY 1992 Program implementation. This planing process contributed to the development of this year's AIWP. The joint BPA/CBFWA IPP is expected to continue in FY 1992. The FY 1992 AIWP emphasizes continuation of 143 ongoing, or projected ongoing Program projects, tasks, or task orders, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. The FY 1992 AIWP also contains 10 new Program projects or tasks that are planned to start in FY 1992

  17. Walla Walla River Fish Passage Operations Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2004-2005 project year, there were 590 adult summer steelhead, 31 summer steelhead kelts (Oncorhynchus mykiss), 70 adult bull trout (Salvelinus confluentus); 80 adult and 1 jack spring Chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 13, 2004, and June 16, 2005. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by ODFW in order to enumerate fish passage. Of the total, 143 adult summer steelhead and 15 summer steelhead kelts were enumerated at the west ladder at Nursery Bridge Dam during the video efforts between February 4 and May 23, 2005. Operation of the Little Walla Walla River

  18. Walla Walla River Fish Passage Operations Program, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-03-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2002-2003 project year, there were 545 adult summer steelhead (Oncorhynchus mykiss), 29 adult bull trout (Salvelinus confluentus); 1 adult and 1 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway adult trap between January 1 and June 23, 2003. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported 21 adult spring chinook from Ringold Springs Hatchery and 281 from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. Of these, 290 were outplanted in August for natural spawning in the basin.

  19. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China.

    Science.gov (United States)

    Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei

    2016-05-01

    Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia

    Directory of Open Access Journals (Sweden)

    C. L. Curry

    2018-04-01

    Full Text Available The Fraser River Basin (FRB of British Columbia is one of the largest and most important watersheds in western North America, and home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in May–July. Nevertheless, while annual peak daily streamflow (APF during the spring freshet in the FRB is historically well correlated with basin-averaged, 1 April snow water equivalent (SWE, there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute nearly 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax, soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO and the El Niño–Southern Oscillation – ENSO on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (univariate Spearman correlation with APF of ρ ^   =  0.64; 0.70 (observations; VIC simulation, the snowmelt rate (ρ ^   =  0.43 in VIC, the

  1. Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia

    Science.gov (United States)

    Curry, Charles L.; Zwiers, Francis W.

    2018-04-01

    The Fraser River Basin (FRB) of British Columbia is one of the largest and most important watersheds in western North America, and home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in May-July. Nevertheless, while annual peak daily streamflow (APF) during the spring freshet in the FRB is historically well correlated with basin-averaged, 1 April snow water equivalent (SWE), there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute nearly 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax), soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB) and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation - ENSO) on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (univariate Spearman correlation with APF of ρ ^ = 0.64; 0.70 (observations; VIC simulation)), the snowmelt rate (ρ ^ = 0.43 in VIC), the ENSO and PDO indices (ρ ^ = -0.40; -0.41) and (

  2. Sedimentation and Its Impacts/Effects on River System and Reservoir Water Quality: case Study of Mazowe Catchment, Zimbabwe

    Science.gov (United States)

    Tundu, Colleta; Tumbare, Michael James; Kileshye Onema, Jean-Marie

    2018-04-01

    Sediment delivery into water sources and bodies results in the reduction of water quantity and quality, increasing costs of water purification whilst reducing the available water for various other uses. The paper gives an analysis of sedimentation in one of Zimbabwe's seven rivers, the Mazowe Catchment, and its impact on water quality. The Revised Universal Soil Loss Equation (RUSLE) model was used to compute soil lost from the catchment as a result of soil erosion. The model was used in conjunction with GIS remotely sensed data and limited ground observations. The estimated annual soil loss in the catchment indicates soil loss ranging from 0 to 65 t ha yr-1. Bathymetric survey at Chimhanda Dam showed that the capacity of the dam had reduced by 39 % as a result of sedimentation and the annual sediment deposition into Chimhanda Dam was estimated to be 330 t with a specific yield of 226 t km-2 yr-1. Relationship between selected water quality parameters, TSS, DO, NO3, pH, TDS, turbidity and sediment yield for selected water sampling points and Chimhanda Dam was analyzed. It was established that there is a strong positive relationship between the sediment yield and the water quality parameters. Sediment yield showed high positive correlation with turbidity (0.63) and TDS (0.64). Water quality data from Chimhanda treatment plant water works revealed that the quality of water is deteriorating as a result of increase in sediment accumulation in the dam. The study concluded that sedimentation can affect the water quality of water sources.

  3. Constructing development and integrated coastal zone management in the conditions of the landslide slopes of Cheboksary water reservoir (Volga River)

    Science.gov (United States)

    Nikonorova, I. V.

    2018-01-01

    Uncontrolled construction and insufficient accounting of engineering-geological and hydro-geological conditions of the coastal zone, intensified technogenic impact on sloping surfaces and active urbanization led to the emergence of serious problems and emergency situations on the coasts of many Volga reservoirs, including the Cheboksary reservoir, within Cheboksary urban district and adjacent territories of Chuvashia. This article is devoted to substantiation of the possibility of rational construction development of landslide slopes of the Cheboksary water reservoir.

  4. Spatial Distribution of Annual and Monthly Rainfall Erosivity in the Jaguarí River Basin

    Directory of Open Access Journals (Sweden)

    Lucas Machado Pontes

    2017-11-01

    Full Text Available ABSTRACT The Jaguarí River Basin forms the main water supply sources for the São Paulo Metropolitan Region and other cities in the state. Since the kinetic energy of rainfall is the driving force of water erosion, the main cause of land and water degradation, we tested the hypothesis of correlation between the erosive potential of rainfall (erosivity and geographical coordinates and altitude for the purpose of predicting the spatial and temporal distribution of the rainfall erosivity index (EI30 in the basin. An equation was used to estimate the (EI30 in accordance with the average monthly and total annual rainfall at rainfall stations with data available for the study area. In the regression kriging technique, the deterministic part was modeled using multiple linear regression between the dependent variable (EI30 and environmental predictor variables: latitude, longitude, and altitude. From the result of equations and the maps generated, a direct correlation between erosivity and altitude could be observed. Erosivity has a markedly seasonal behavior in accordance with the rainy season from October to March. This season concentrates 86 % of the estimated EI30 values, with monthly maximum values of up to 2,342 MJ mm ha-1 h-1 month-1 between December and January, and minimum of 34 MJ mm ha-1 h-1 month-1 in August. The highest values were found in the Mantiqueira Range region (annual average of up to 12,000 MJ mm ha-1 h-1, a region that should be prioritized in soil and water conservation efforts. From this validation, good precision and accuracy of the model was observed for the long period of the annual average, which is the main factor used in soil loss prediction models.

  5. Flow-duration-frequency behaviour of British rivers based on annual minima data

    Science.gov (United States)

    Zaidman, Maxine D.; Keller, Virginie; Young, Andrew R.; Cadman, Daniel

    2003-06-01

    A comparison of different probability distribution models for describing the flow-duration-frequency behaviour of annual minima flow events in British rivers is reported. Twenty-five catchments were included in the study, each having stable and natural flow records of at least 30 years in length. Time series of annual minima D-day average flows were derived for each record using durations ( D) of 1, 7, 30, 60, 90, and 365 days and used to construct low flow frequency curves. In each case the Gringorten plotting position formula was used to determine probabilities (of non-exceedance). Four distribution types—Generalised Extreme Value (GEV), Generalised Logistic (GL), Pearson Type-3 (PE3) and Generalised Pareto (GP)—were used to model the probability distribution function for each site. L-moments were used to parameterise individual models, whilst goodness-of-fit tests were used to assess their match to the sample data. The study showed that where short durations (i.e. 60 days or less) were considered, high storage catchments tended to be best represented by GL and GEV distribution models whilst low storage catchments were best described by PE3 or GEV models. However, these models produced reasonable results only within a limited range (e.g. models for high storage catchments did not produce sensible estimates of return periods where the prescribed flow was less than 10% of the mean flow). For annual minima series derived using long duration flow averages (e.g. more than 90 days), GP and GEV models were generally more applicable. The study suggests that longer duration minima do not conform to the same distribution types as short durations, and that catchment properties can influence the type of distribution selected.

  6. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Hong-Yi; Leung, Lai-Yung; Yigzaw, Wondmagegn Y.; Zhao, Jianshi; Lu, Hui; Deng, Zhiqun; Demissie, Yonas; Bloschl, Gunter

    2017-10-01

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximum flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.

  7. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    Science.gov (United States)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face

  8. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas

    Science.gov (United States)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens

    2010-05-01

    area, depth and shape. Depth was measured using a stadia rod or a manual echosounder. For reservoirs in the sub-set, estimated surface area was used as an input into the triangulated irregular network model. With the surface area and depth, measured volume was calculated. Comparisons were made between estimates of surface area from field surveys and estimates of surface area from remote sensing. A linear regression analysis was carried out to establish the relationship between surface area and storage capacities. Within geomorphologically homogenous regions, one may expect a good correlation between the surface area, which may be determined through satellite observations, and the stored volume. Such a relation depends on the general shape of the slopes (convex, through straight, to concave). The power relationships between remotely sensed surface areas (m^2) and storage capacities of reservoirs (m^3) obtained were - Limpopo basin (Lower Mzingwane sub-catchment): Volume = 0.023083 x Area^1.3272 (R2 = 95%); Bandama basin (North of the basin in Ivory Coast): Volume = 0.00405 x Area^1.4953 (R2 = 88.9%); Volta basin (Upper East region of the Volta Basin in Ghana): Volume = 0.00857 × Area^1.43 (R2 = 97.5%); São Francisco basin (Preto river sub-catchment): Volume = 0.2643 x Area^1.1632 (R2 = 92.1%). Remote sensing was found to be a suitable means to detect small reservoirs and accurately measure their surface areas. The general relationship between measured reservoir volumes and their remotely sensed surface areas showed good accuracy for all four basins. Combining such relationships with periodical satellite-based reservoir area measurements may allow hydrologists and planners to have clear picture of water resource system in the Basins, especially in ungauged sub-basins.

  9. Mercury mass balance study in Wujiangdu and Dongfeng Reservoirs, Guizhou, China

    International Nuclear Information System (INIS)

    Feng Xinbin; Jiang Hongmei; Qiu Guangle; Yan Haiyu; Li Guanghui; Li Zhonggen

    2009-01-01

    From October 2003 to September 2004, we conducted a detailed study on the mass balance of total mercury (THg) and methylmercury (MeHg) of Dongfeng (DF) and Wujiangdu (WJD) reservoirs, which were constructed in 1992 and 1979, respectively. Both reservoirs were net sinks for THg on an annual scale, absorbing 3319.5 g km -2 for DF Reservoir, and 489.2 g km -2 for WJD Reservoirs, respectively. However, both reservoirs were net sources of MeHg to the downstream ecosystems. DF Reservoir provided a source of 32.9 g MeHg km -2 yr -1 , yielding 10.3% of the amount of MeHg that entered the reservoir, and WJD Reservoir provided 140.9 g MeHg km -2 yr -1 , yielding 82.5% of MeHg inputs. Our results implied that water residence time is an important variable affecting Hg methylation rate in the reservoirs. Our study shows that building a series of reservoirs in line along a river changes the riverine system into a natural Hg methylation factory which markedly increases the %MeHg in the downstream reservoirs; in effect magnifying the MeHg buildup problem in reservoirs. - Reservoirs are the sink of total mercury but source of methylmercury to the aquatic systems.

  10. Spatial and temporal distribution of the zoobenthos community during the filling up period of Porto Primavera Reservoir (Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    A. Jorcin

    Full Text Available This study is part of the limnological monitoring undertaken by the Energy Company of the State of São Paulo (CESP during the filling up process of the Porto Primavera Reservoir (Hydroelectric Power Plant Engenheiro Sérgio Motta. This reservoir, located in the high Paraná River between the States of São Paulo and Mato Grosso do Sul, is the fourth largest in the country. The first filling up phase started in December 1998 and the second phase in March 2001. Samples for benthic community and sediment characteristics analysis were quarterly collected between August of 1999 and November 2001 and also in August of 2002 (11 sampling campaigns. Samplings were carried out at 13 stations distributed in the reservoir, and at one point located downstream of the dam. 128 invertebrate taxa were identified, being Mollusca, Annelida, Insecta and Nematoda the dominant groups during almost the whole study period. Insecta was the best represented class (9 different orders, and Diptera contributed with higher number of taxa, 63. The exotic species of bivalve Corbicula fluminea was recorded in all sampling stations showing its great capacity to colonize new habitats in the neotropical region. Noticeable variations in the fauna density were observed, considering both different periods and locations. The maximum density of organisms (mean value of 7812 ind.m-2 was recorded in the center of the reservoir, and the minimum (mean value 9 ind.m-2 in the more lacustrine area near the dam. The greatest species richness per sample (24 taxa was observed in the reservoir upstream (fluvial zone. The maximum diversity (Shannon-Wiener Index per station/period, 3.82 and 3.86 bits.ind-1, were calculated in the transitional river/reservoir zone during the beginning (August 1999 and in the reservoir central zones in the end (August 2002 of the filling up period, respectively. There was no clear relation between the distribution of the different faunistic groups and the sediment

  11. The potential of GRACE gravimetry to detect the heavy rainfall-induced impoundment of a small reservoir in the upper Yellow River

    Science.gov (United States)

    Yi, Shuang; Song, Chunqiao; Wang, Qiuyu; Wang, Linsong; Heki, Kosuke; Sun, Wenke

    2017-08-01

    Artificial reservoirs are important indicators of anthropogenic impacts on environments, and their cumulative influences on the local water storage will change the gravity signal. However, because of their small signal size, such gravity changes are seldom studied using satellite gravimetry from the Gravity Recovery and Climate Experiment (GRACE). Here we investigate the ability of GRACE to detect water storage changes in the Longyangxia Reservoir (LR), which is situated in the upper main stem of the Yellow River. Three different GRACE solutions from the CSR, GFZ, and JPL with three different processing filters are compared here. We find that heavy precipitation in the summer of 2005 caused the LR water storage to increase by 37.9 m in height, which is equivalent to 13.0 Gt in mass, and that the CSR solutions with a DDK4 filter show the best performance in revealing the synthetic gravity signals. We also obtain 109 pairs of reservoir inundation area measurements from satellite imagery and water level changes from laser altimetry and in situ observations to derive the area-height ratios for the LR. The root mean square of GRACE series in the LR is reduced by 39% after removing synthetic signals caused by mass changes in the LR or by 62% if the GRACE series is further smoothed. We conclude that GRACE data show promising potential in detecting water storage changes in this ˜400 km2 reservoir and that a small signal size is not a restricting factor for detection using GRACE data.

  12. Bull trout population assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington; ANNUAL fiscal year 2001 annual report

    International Nuclear Information System (INIS)

    Thiesfield, Steven L.

    2002-01-01

    We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River

  13. Long-term variation analysis of a tropical river's annual streamflow regime over a 50-year period

    Science.gov (United States)

    Seyam, Mohammed; Othman, Faridah

    2015-07-01

    Studying the long-term changes of streamflow is an important tool for enhancing water resource and river system planning, design, and management. The aim of this work is to identify the long-term variations in annual streamflow regime over a 50-year period from 1961 to 2010 in the Selangor River, which is one of the main tropical rivers in Malaysia. Initially, the data underwent preliminary independence, normality, and homogeneity testing using the Pearson correlation coefficient and Shapiro-Wilk and Pettitt's tests, respectively. The work includes a study and analysis of the changes through nine variables describing the annual streamflow and variations in the yearly duration of high and low streamflows. The analyses were conducted via two time scales: yearly and sub-periodic. The sub-periods were obtained by segmenting the 50 years into seven sub-periods by two techniques, namely the change-point test and direct method. Even though analysis revealed nearly negligible changes in mean annual flow over the study period, the maximum annual flow generally increased while the minimum annual flow significantly decreased with respect to time. It was also observed that the variables describing the dispersion in streamflow continually increased with respect to time. An obvious increase was detected in the yearly duration of danger level of streamflow, a slight increase was noted in the yearly duration of warning and alert levels, and a slight decrease in the yearly duration of low streamflow was found. The perceived changes validate the existence of long-term changes in annual streamflow regime, which increase the probability of floods and droughts occurring in future. In light of the results, attention should be drawn to developing water resource management and flood protection plans in order to avert the harmful effects potentially resulting from the expected changes in annual streamflow regime.

  14. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cochnauer, Tim; Claire, Christopher

    2003-10-01

    In 2002 Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River, Lochsa River, Selway River, and Middle Fork Clearwater River subbasins. Five-hundred forty-one ammocoetes were captured electroshocking 70 sites in the South Fork Clearwater River, Lochsa River, Selway River, Middle Fork Clearwater River, Clearwater River, and their tributaries in 2002. Habitat utilization surveys in Red River support previous work indicating Pacific lamprey ammocoete densities are greater in lateral scour pool habitats compared to riffles and rapids. Presence-absence survey findings in 2002 augmented 2000 and 2001 indicating Pacific lamprey macrothalmia and ammocoetes are not numerous or widely distributed. Pacific lamprey distribution was confined to the lower reaches of Red River below rkm 8.0, the South Fork Clearwater River, Lochsa River (Ginger Creek to mouth), Selway River (Race Creek to mouth), Middle Fork Clearwater River, and the Clearwater River (downstream to Potlatch River).

  15. Economic and social importance of dam reservoirs – a study of the Soła River cascade

    Directory of Open Access Journals (Sweden)

    Andrzej Jaguś

    2018-02-01

    Full Text Available The paper is devoted to the functions of dam reservoirs in terms of their socioeconomic usefulness. Three dam reservoirs of the Soła cascade were chosen (Tresna, Porąbka, Czaniec as the example that are located in the southern part of Silesian Provence. The cascade is an integrated retention system, but particular reservoirs have different functions. The role of reservoirs in flood protection (Tresna, Porąbka, drinking water supply (Czaniec, electricity production (Porąbka/Porąbka-Żar, recreation (Porąbka, Tresna, supply of rock aggregate (Tresna was depicted as well. The high importance of the cascade for economic development of the region was demonstrated. Finally, the controversies about the construction and utility of dam reservoirs were discussed.

  16. Predicting spread of invasive exotic plants into de-watered reservoirs following dam removal on the Elwha River, Olympic National Park, Washington

    Science.gov (United States)

    Woodward, Andrea; Torgersen, Christian E.; Chenoweth, Joshua; Beirne, Katherine; Acker, Steve

    2011-01-01

    The National Park Service is planning to start the restoration of the Elwha River ecosystem in Olympic National Park by removing two high head dams beginning in 2011. The potential for dispersal of exotic plants into dewatered reservoirs following dam removal, which would inhibit restoration of native vegetation, is of great concern. We focused on predicting long-distance dispersal of invasive exotic plants rather than diffusive spread because local sources of invasive species have been surveyed. We included the long-distance dispersal vectors: wind, water, birds, beavers, ungulates, and users of roads and trails. Using information about the current distribution of invasive species from two surveys, various geographic information system techniques and models, and statistical methods, we identified high-priority areas for Park staff to treat prior to dam removal, and areas of the dewatered reservoirs at risk after dam removal.

  17. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  18. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs.

    Science.gov (United States)

    Roberto, M C; Santana, N N; Thomaz, S M

    2009-06-01

    Knowledge of abiotic limnological factors is important to monitor changes caused by humans, and to explain the structure and dynamics of populations and communities in a variety of inland water ecosystems. In this study, we used a long term data-set (eight years) collected in 10 habitats with different features (river channels, and connected and isolated lakes) to describe the spatial and temporal patterns of some of the principal limnological factors. In general, the degree of connectivity of the lakes, together with the rivers to which the lakes are connected, were important determinants of their limnological characteristics. These differences are expected, because rivers entering the floodplain come from different geological regions and are subject to different human impacts. At large spatial scales, these differences contribute to the increased habitat diversity of the floodplain and thus to its high biodiversity. With regard to temporal variation, Secchi-disk transparency increased, and total phosphorus decreased in the Paraná River main channel during the last 20 years. Although these changes are directly attributed to the several reservoir cascades located upstream, the closing of the Porto Primavera dam in 1998 enhanced this effect. The increase in water transparency explains biotic changes within the floodplain. The lower-phosphorus Paraná River water probably dilutes concentrations of this element in the floodplain waterbodies during major floods, with future consequences for their productivity.

  19. Source Apportionment of Annual Water Pollution Loads in River Basins by Remote-Sensed Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-08-01

    Full Text Available In this study, in order to determine the efficiency of estimating annual water pollution loads from remote-sensed land cover classification and ground-observed hydrological data, an empirical model was investigated. Remote sensing data imagery from National Oceanic and Atmospheric Administration (NOAA Advanced Very High Resolution Radiometer were applied to an 11 year (1994–2004 water quality dataset for 30 different rivers in Japan. Six water quality indicators—total nitrogen (TN, total phosphorus (TP, biochemical oxygen demand (BOD, chemical oxygen demand (COD, and dissolved oxygen (DO—were examined by using the observed river water quality data and generated land cover map. The TN, TP, BOD, COD, and DO loads were estimated for the 30 river basins using the empirical model. Calibration (1994–1999 and validation (2000–2004 results showed that the proposed simulation technique was useful for predicting water pollution loads in the river basins. We found that vegetation land cover had a larger impact on TP export into all rivers. Urban areas had a very small impact on DO export into rivers, but a relatively large impact on BOD and TN export. The results indicate that the application of land cover data generated from the remote-sensed imagery could give a useful interpretation about the river water quality.

  20. ANTHROPOGENIC EUTROPHICATION IN THE RESERVOIR CASCADE OF THE MIDDLE PART OF KURA RIVER AS A RESULT OF WATER POLLUTION WITHIN GEORGIA

    Directory of Open Access Journals (Sweden)

    M. A. Salmanov

    2016-01-01

    Full Text Available Aim. Environmental effects of long-term fixed-pressure on ecosystem of the middle course of stability Kur in within Georgia it was noted by us 50 years ago in the first of the 4 reservoirs - Mingachevir, created in 1956. In 1959-1960. We noted the rapid development of phyto-bacterial, in the waters mouth of the rr. Kura Alazan (Ganikh and Iora (Gabyrry and later (after 9-11 years, in the area of the water. In the same time, anthropogenic eutrophication in the Shamkir reservoir which established upstream, occurred in the first years of the filling.Methods. To find out the reasons, causing intense phytoplankton, increasing the biological oxygen demand of water have been used methods determining the concentration of nutrient, the floristic composition of the dominant forms of phytoplankton, the value of its primary products, the degree of oxygen consumption in the form of the daily BOD.Results. Many years of research have shown, in all the reservoirs 4 causes of anthropogenic eutrophication are biostok of Kura River and increasing concentrations of allochthonous organic matter, which are the source of the waste water of cities and towns, industries located in the catchment area in Georgia.Conclusions. A result of receipt the river water, nutrients wore the stationary character, easily mineralized allochthonous origin of organic matter reservoir contributes to the generation of phyto-bacterial. This, adequately strengthened oxygen consumption of water microbiota, arise processes of hypoxia, which in coastal, relatively quiet areas leads to sustainable anaerobios.

  1. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, S.C.

    1995-05-01

    It is anticipated that this project will show that the application of the CO{sub 2} Huff-n-Puff process in shallow shelf carbonates can be economically implemented to recover appreciable volumes of light oil. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. The selected site for the demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Work is nearing completion on the reservoir characterization components of the project. The near-term emphasis is to, (1) provide an accurate distribution of original oil-in-place on a waterflood pattern entity level, (2) evaluate past recovery efficiencies, (3) perform parametric simulations, and (4) forecast performance for a site specific field demonstration of the proposed technology. Macro zonation now exists throughout the study area and cross-sections are available. The Oil-Water Contact has been defined. Laboratory capillary pressure data was used to define the initial water saturations within the pay horizon. The reservoir`s porosity distribution has been enhanced with the assistance of geostatistical software. Three-Dimensional kriging created the spatial distributions of porosity at interwell locations. Artificial intelligence software was utilized to relate core permeability to core porosity, which in turn was applied to the 3-D geostatistical porosity gridding. An Equation-of-State has been developed and refined for upcoming compositional simulation exercises. Options for local grid-refinement in the model are under consideration. These tasks will be completed by mid-1995, prior to initiating the field demonstrations in the second budget period.

  2. Analysis of artisanal fisheries in two reservoirs of the upper Paraná River basin (Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    José Luís Costa Novaes

    Full Text Available We compared the artisanal fisheries, in terms of catch strategies, productivity, and gross per capita income, at two reservoirs: the Barra Bonita (an eutrophic reservoir with some introduced species, and the Jurumirim (an oligotrophic reservoir, with no introduced species. Published data and structured interviews with fishers were used to evaluate fishing activity, fish biomass, and the financial performance of the fisheries. In the Barra Bonita Reservoir we analysed data from 745 fishing trips, from which 86,691.9 kg of fish were landed, with a mean CPUE of 62.4 kg/fisher-1 day-1. The main type of fish caught was tilapia (71,513.5 kg; CPUE of 51.5 kg/fisher-1 day-1, which constituted 82.5% of the biomass caught. In the Jurumirim Reservoir, we analysed data from 2,401 fishing trips, from which 25,093.6 kg of fish were landed, with a mean CPUE of 10.4 kg/fisher-1 day-1. The main type of fish caught was "traíra" (6,158.6 kg; CPUE of 2.6 kg/fisher-1 day-1, which constituted 24.5% of the biomass caught. Ordination analysis (PCA indicated that there was a difference in composition between the fishing reservoirs and ANCOVA showed that there was a significant difference in fish production between the reservoirs. A Student's t-test showed that fishers in the Barra Bonita Reservoir had a significantly higher gross per capita income than those from the Jurumirim Reservoir. Although the Barra Bonita Reservoir has a higher fish production and the fishers earn a higher gross per capita income, we recommend the Jurumirim Reservoir as a model for artisanal fishery management because fishing activity in this reservoir is viable in the long term and such a model would promote conservation and sustainability. This contrasts with the Barra Bonita Reservoir, in which the fishery is not viable in the long term, due to environmental problems caused by artificial eutrophication and the introduction of alien species. It is also noted that in many countries, management

  3. Hood River production program monitoring and evaluation. Report B: Hood River and Pelton Ladder. Annual report 1996

    International Nuclear Information System (INIS)

    Lambert, M.B.; Jennings, M.; McCanna, J.P.

    1996-01-01

    The Hood River Production Program (HRPP) is jointly implemented by the Confederated Tribes of the Warm Springs Reservation of Oregon (CTWS) and the Oregon Department of Fish and Wildlife (ODFW). The primary goals of the HRPP are (1) to re-establish naturally sustaining spring chinook salmon using Deschutes River stock in the Hood River subbasin, (2) rebuild naturally sustaining runs of summer and winter steelhead in the Hood River subbasin, (3) maintain the genetic characteristics of the populations, and (4) contribute to tribal and non-tribal fisheries, ocean fisheries, and the Northwest Power Planning Council's (NPPC) interim goal of doubling salmon runs

  4. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss

    Science.gov (United States)

    Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva

    2016-08-01

    The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.

  5. Walla Walla River Fish Passage Operations Program, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian C. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-02-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow measures, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2000-2001 project year, there were 624 summer steelhead (Oncorhynchus mykiss), 24 bull trout (Salvelinus confluentus), and 47 spring chinook (O. tshawytscha) counted at the Nursery Bridge Dam adult trap between December 27, 2000 and June 7, 2001. The Little Walla Walla River juvenile trap was not operated this year. The project transported 1600 adult spring chinook from Ringold Springs Hatchery to the South Fork Walla Walla Brood Holding Facility and outplanted 1156 for natural spawning in the basin. The project also provided equipment for transportation of juveniles captured during the construction fish salvage at Nursery Bridge Dam.

  6. River flood seasonality in the Northeast United States and trends in annual timing

    Science.gov (United States)

    Collins, M. J.

    2017-12-01

    The New England and Mid-Atlantic regions of the Northeast United States have experienced climate-associated increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood-generating mechanisms operating in a basin and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and floodplains. Changes in flood seasonality may indicate changes in flood-generating mechanisms, and their interactions, with important implications for habitats, floodplain infrastructure, and human communities. For example, changes in spring or fall flood timing may negatively or positively affect a vulnerable life stage for a migratory fish (e.g., egg setting) depending on whether floods occur more frequently before or after the life history event. In this study I apply an objective, probabilistic method for identifying flood seasons at a monthly resolution for 90 climate-sensitive watersheds in New England and the Mid-Atlantic (Hydrologic Unit Codes 01 and 02). Historical trends in flood timing during the year are also investigated. The analyses are based on partial duration flood series that are an average of 85 years long. The seasonality of flooding in these regions, and any historical changes, are considered in the context of other ongoing or expected phenological changes in the Northeast U.S. environment that affect flood generation—e.g., the timing of leaf-off/leaf-out for deciduous plants. How these factors interact will affect whether and how flood magnitudes and frequencies change in the future and associated impacts.

  7. Integration into JRODOS the models of radionuclide transport in rivers, reservoirs and coastal waters to support the emergency response in early accidental stages

    Energy Technology Data Exchange (ETDEWEB)

    Zheleznyak, M.; Bezhenar, R.; Boyko, O.; Ievdin, I.; Koshebutsky, V.; Maderich, V. [Institute of Mathematical Machines and Systems, National Academy of Sciences of Ukraine (Ukraine); Raskob, W.; Trybushnyi, D. [Karlsruhe Institute of Technology, Institut fuer Kern- und Energietechnik (Germany)

    2014-07-01

    The decision support system for offsite nuclear emergency management RODOS (Real-time on-line decision support), developed under several EC RTD Framework Programs, contains many models related to support decision making in case of a nuclear or radiological emergency. Based on the request of the end users, it was re-engineered based on the JAVA technology and further named JRODOS. The consequences of the Fukushima Daiichi Nuclear Power Plant accident clearly demonstrated the importance of modeling tools predicting the radionuclide transport in marine and freshwater environment and assessing the doses to the public via the aquatic food chain to improve decision making in general. As a consequence, such an activity was launched as part of the European project PREPARE aiming to integrate the 3-dimensional model THREETOX for the radionuclide transport in coastal waters, estuaries, deep lakes, and reservoirs into hydrological model chain of JRODOS - JHDM (JRODOS Hydrological Dispersion Module). So far JHDM contains several aquatic radionuclide transport models describing the sequence of the processes 'atmospheric fallout to watershed' - 'radionuclide inflow to a river net' - 'radionuclide transport in river' - 'doses via aquatic pathways'. The implementation of the THREETOX model into this chain by developing also a user friendly interface will extend the applicability of JRODOS to deep fresh water bodies and marine coastal waters. This paper describes the assessment capabilities of this advanced model chain for two examples of the JRODOS implementation in Ukraine. JRODOS is installed in the emergency centers for two Ukrainian Nuclear Power Plants (NPP) - Zaporizzhya NPP (ZNPP) and Rivne NPP (RNPP). The different models of the JHDM were customized for these NPPs taking into account the characteristics of the water bodies in the surroundings of the NPPs. For the RNPP, located at the bank of the Sozh River which is a tributary of the

  8. US Department of Energy, Savannah River Plant environmental report. Annual report, 1985. Volume 1

    International Nuclear Information System (INIS)

    Zeigler, C.C.; Lawrimore, I.B.; Heath, E.M.; Till, J.E.

    1985-01-01

    In 1985, as in previous years, the radiological impact of SRP operations on public health was insignificant. The radiation dose commitment to a hypothetical individual on the SRP boundary from 1985 SRP atmospheric releases of radioactive materials was 0.9 millirem (mrem) (0.009 mSv) maximum and 0.35 mrem (0.0035 mSv) average. To obtain the maximum dose commitment, this individual would have had to reside on the SRP boundary at the location of highest dose commitment for 24 hours per day, 365 days per year. The average dose commitment from SRP atmospheric releases to persons living within 50 miles (80 km) of SRP was 0.08 mrem (0.0008 mSv) per year. The maximum radiation dose commitment to an individual downriver of SRP who consumed Savannah River water was 0.14 mrem (0.0014 mSv) at the Cherokee Hill water treatment plant at Port Wentworth, GA (near Savannah), and at the Beaufort-Jasper County water treatment plant near Beaufort, SC. These radiation dose commitments from SRP operations are small compared with the annual dose from natural radiation, which averages 93 mrem (0.93 mSv) per year near SRP. Additionally, dose commitments from SRP operations are small compared to the geographical differences in natural radiation. The annual natural radiation dose to Georgia and South Carolina residents within 100 miles of SRP varies from place to place by as much as 55 mrem (0.55 mSv). This expanded report provides a broader discussion of environmental protection programs at SRP and includes both onsite and offsite data. This 1985 report contians monitoring data from routine radiological and nonradiological environmental surveillance activities, summaries of environmental research and management programs, a summary of national Environmental Policy Act (NEPA) activities, and a listing and status of environmental permits, orders, and notices issued by regulatory sgencies

  9. Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2004-12-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla

  10. CHARACTERIZATION OF SANDSTONE RESERVOIRS FOR ENHANCED OIL RECOVERY: THE PERMIAN UPPER MINNELUSA FORMATION, POWDER RIVER BASIN, WYOMING.

    Science.gov (United States)

    Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.

    1986-01-01

    Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.

  11. Impact assessment of the introduction of Cichla kelberi in a large Neotropical reservoir and its lateral lagoons (Upper Paraná River Basin, Brazil

    Directory of Open Access Journals (Sweden)

    M. Ferrareze

    Full Text Available Abstract This study aimed to understand how the introduction of Cichla kelberi in Rosana Reservoir (Paranapanema River affected the native ichthyofauna. Data on the structure of the small fish fauna assemblage were obtained before and after the introduction of this carnivorous species. Samplings were carried out in February and September of 2004, previously to the register of Cichla kelberi in the reservoir, and after its introduction, November of 2004, January, March, May and August of 2005, February and June of 2006, February and July of 2007, February and October of 2008 and February of 2009. A total of 4,693 fish, belonging to 43 different species was sampled between 2004 and 2009. The order Characiformes was the most abundant, followed by Perciformes and Siluriformes. Comparative analyses, before and after the introduction, could not demonstrate significant changes in composition, richness, abundance, biomass, mean length and diversity of fish. Aquatic insects were the main feeding item of C. kelberi, followed by tetragonopterinae fish. Cannibalism was recorded during the whole study period. The results showed that Cichla cannot deeply affect the ichthyofauna assemblages of a large Neotropical reservoir, at least in a short or medium term period after its introduction. The results also allowed concluding that the introduction of C. kelberi in the reservoir is in the phase 3. In this phase, the specie can survive and reproduce in the new environment; however it is not totally established and disseminated. The reasons for the fact that Cichla is still not dominant in Rosana Reservoir could be related to feeding competition, high rate of cannibalism and the presence of large amount of aquatic macrophytes (refuge zones. In spite of the results, the continuous monitoring of the role of non-native species on the local fish fauna is absolutely necessary because the impacts caused by colonization of this undesirable species can be magnified by

  12. Bull Trout Population Assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thiesfeld, Steven L.; McPeak, Ronald H.; McNamara, Brian S. (Washington Department of Fish and Wildlife); Honanie, Isadore (Confederated Tribes and Bands, Yakama Nation)

    2002-01-01

    We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River.

  13. Effects of the Upper Taum Sauk Reservoir Embankment Breach on the Surface-Water Quality and Sediments of the East Fork Black River and the Black River, Southeastern Missouri - 2006-07

    Science.gov (United States)

    Barr, Miya N.

    2009-01-01

    On December 14, 2005, a 680-foot wide section of the upper reservoir embankment of the Taum Sauk pump-storage hydroelectric powerplant located in Reynolds County, Missouri, suddenly failed. This catastrophic event sent approximately 1.5 billion gallons of water into the Johnson's Shut-Ins State Park and into the East Fork Black River, and deposited enormous quantities of rock, soil, and vegetation in the flooded areas. Water-quality data were collected within and below the impacted area to study and document the changes to the riverene system. Data collection included routine, event-based, and continuous surface-water quality monitoring as well as suspended- and streambed-sediment sampling. Surface water-quality samples were collected and analyzed for a suite of physical and chemical constituents including: turbidity; nutrients; major ions such as calcium, magnesium, and potassium; total suspended solids; total dissolved solids; trace metals such as aluminum, iron, and lead; and suspended-sediment concentrations. Suspended-sediment concentrations were used to calculate daily sediment discharge. A peculiar blue-green coloration on the water surface of the East Fork Black River and Black River was evident downstream from the lower reservoir during the first year of the study. It is possible that this phenomenon was the result of 'rock flour' occurring when the upper reservoir embankment was breached, scouring the mountainside and producing extremely fine sediment particles, or from the alum-based flocculent used to reduce turbidity in the lower reservoir. It also was determined that no long-term effects of the reservoir embankment breach are expected as the turbidity and concentrations of trace metals such as total recoverable aluminum, dissolved aluminum, dissolved iron, and suspended-sediment concentration graphically decreased over time. Larger concentrations of these constituents during the beginning of the study also could be a direct result of the alum

  14. Primary productivity C-14 and algal assay in the study of water pollution effects in the Citarum River and Jatiluhur Reservoir

    International Nuclear Information System (INIS)

    Mahbub, B.

    1983-01-01

    Water quality of the Citarum River and the Jatiluhur Reservoir in Indonesia was evaluated using C-14 radioisotope. A close relationship between the abiotic (physical and chemical) and the biotic (algal growth potential, primary productivity, chlorophylla and diversity index of planktonic and benthic macroinvertebrate) parameters was obtained. Algal growth potential to abiotic parameters relationship has the highest correlation coefficient and can be used as a pollution indicator. The other biotic parameters do not show clear relationship with the abiotic parameters. The Citarum water quality is the lowest in those locations which receive human and industrial waste from Bandung and its environment. This water cannot be used for drinking purposes and fishery. The water quality in other locations of the river, however, meets the criteria for agriculture. Agricultural waste does not show any drastic effect on the water quality profile due to non-polluted characteristics of its sources

  15. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.

  16. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report for 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The environmental surveillance activities at and in the vicinity of the Savannah River Plant (SRP) comprise the most comprehensive environmental monitoring program at any site in the United States. The results of this program have been reported to the public since 1959. In 1982, as in previous years, the impact of SRP operations on public health was insignificant. The highest radiation dose to a hypothetical individual on the SRP boundary from 1982 releases of radioactive materials was 1.4 millirems. The average radiation dose that a person at the SRP boundary received from atmospheric releases was 0.4 millirem per year. For persons living within 50 miles of SRP, the average dose was 0.12 millirem per year. The maximum radiation dose to people downstream of SRP who consumed water from the Port Wentworth water treatment plant near Savannah, GA, was 0.27 millirem in 1982. The maximum dose from consuming water from the Beaufort-Jasper, SC, water treatment plant was 0.19 millirem. These radiation doses from SRP operations are small compared to the dose from natural radiation, which averages 93 millirems per year near SRP. Additionally, doses from SRP are small compared to the geographical differences in natural radiation. The annual natural radiation dose to Georgia and South Carolina residents within 100 miles of SRP varies from place to place by as much as 60 millirems. The concentrations of nonradioactive materials of SRP origin in offsite air and water continued to be well within federal and state limits

  17. Impacts of boreal hydroelectric reservoirs on seasonal climate and precipitation recycling as simulated by the CRCM5: a case study of the La Grande River watershed, Canada

    Science.gov (United States)

    Irambona, C.; Music, B.; Nadeau, D. F.; Mahdi, T. F.; Strachan, I. B.

    2018-02-01

    Located in northern Quebec, Canada, eight hydroelectric reservoirs of a 9782-km2 maximal area cover 6.4% of the La Grande watershed. This study investigates the changes brought by the impoundment of these reservoirs on seasonal climate and precipitation recycling. Two 30-year climate simulations, corresponding to pre- and post-impoundment conditions, were used. They were generated with the fifth-generation Canadian Regional Climate Model (CRCM5), fully coupled to a 1D lake model (FLake). Seasonal temperatures and annual energy budget were generally well reproduced by the model, except in spring when a cold bias, probably related to the overestimation of snow cover, was seen. The difference in 2-m temperature shows that reservoirs induce localized warming in winter (+0.7 ± 0.02 °C) and cooling in the summer (-0.3 ± 0.02 °C). The available energy at the surface increases throughout the year, mostly due to a decrease in surface albedo. Fall latent and sensible heat fluxes are enhanced due to additional energy storage and availability in summer and spring. The changes in precipitation and runoff are within the model internal variability. At the watershed scale, reservoirs induce an additional evaporation of only 5.9 mm year-1 (2%). We use Brubaker's precipitation recycling model to estimate how much of the precipitation is recycled within the watershed. In both simulations, the maximal precipitation recycling occurs in July (less than 6%), indicating weak land-atmosphere coupling. Reservoirs do not seem to affect this coupling, as precipitation recycling only decreased by 0.6% in July.

  18. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2002-03-01

    In 1998 white sturgeon (Acipenser transmontanus) were captured, marked, and population data were collected in the Snake River between Lower Granite Dam and the mouth of the Salmon River. A total of 13,785 hours of setline effort and 389 hours of hook-and-line effort was employed in 1998. Of the 278 white sturgeon captured in the Snake River, 238 were marked for future identification. Three sturgeon were captured in the Salmon River and none were captured in the Clearwater River. Since 1997, 6.9% of the tagged fish have been recovered. Movement of recaptured white sturgeon ranged from 98.5 kilometers downstream to 60.7 kilometers upstream, however, less than 25% of the fish moved more than 16 kilometers (10 miles). In the Snake River, white sturgeon ranged in total length from 51.5 cm to 286 cm and averaged 118.9 cm. Differences were detected in the length frequency distributions of sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). In addition, the proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 37% since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River.

  19. A systematic procedure for reservoir characterization: Annual report for the period October 1, 1985-September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Lake, L.W.; Kocurek, G.A.; Miller, M.A.

    1987-12-01

    This report deals with a variety of topics all centered around the main goal of making numerical reservoir simulation results conform more closely with geologic descriptions. The first part of the report discusses results on conditional simulations of miscible displacements in randomly heterogeneous permeable media. The focus here is on local or macroscopic dispersion, the dispersion experienced at a fixed point in the medium. Macroscopic dispersivity has many of the same dependencies on reservoir properties as does megascopic dispersivity, but it seems to be less time dependent and is always smaller. We have not discovered a mathematical model to describe its behavior. A major portion of the report deals with statistical descriptions. We investigate the bias and precision of standard measures of heterogeneity, the Lorenz and Dykstra-Parsons coefficient. After this, the work explores the benefits of using a distribution type characterization parameter in exploring heterogeneity. The final major protion of the report describes our mapping efforts on the Page sandstone outcrop in northern Arizona. The mapping is to be used in generating both deterministic descriptions and in calibrating the stochastic descriptions discussed above. 128 refs., 95 figs., 10 tabs.

  20. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam Report C, Annual Progress Report April 2003 - March 2004

    Science.gov (United States)

    Parsley, Michael J.; Gadomski, Dena M.; Kofoot, Pete

    2005-01-01

    River discharge and water temperatures that occurred during April through July 2003 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Although optimal spawning temperatures in the four tailraces occurred for less than two weeks, they coincided with a period of relatively high river discharge. Bottom-trawl sampling in Bonneville and The Dalles Reservoirs revealed the presence of young-of-the-year (YOY) white sturgeon in Bonneville Reservoir, but none were captured in The Dalles Reservoir. A comparison of five years of indices of abundance of YOY sturgeon from sampling done by ODFW with gillnets and the USGS with bottom trawls was completed. Despite obvious differences in gear sampling characteristics (e.g. one gear is actively fished, one passively fished), it appears that either gear can be used to assess relative trends in YOY white sturgeon abundance. The analyses suffered due to poor catches of YOY fish, as YOY were only captured in The Dalles Reservoir during three of the five years of comparison sampling, and during only one of four years in John Day Reservoir. However, both gears detected the presence or absence of YOY white sturgeon within a reservoir equally. That is, if any YOY white sturgeon were captured in any year in a reservoir, both gears captured at least one fish, and if one gear failed to collect any YOY white sturgeon, both gears failed. Concerns have been raised that the Wang et al. (1985) egg development relationships for Sacramento River white sturgeon may not be applicable to Columbia Basin stocks. However, using laboratory experiments with white sturgeon eggs incubated at 10, 12, 15, and 18o C, we found no significant differences in development rates of eggs of Columbia, Kootenai, Snake, and Sacramento river fish.

  1. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam, Annual Progress Report April 2006 - March 2007. Report C

    Science.gov (United States)

    Parsley, M.J.; Kofoot, P.

    2008-01-01

    Describe reproduction and early life history characteristics of white sturgeon populations in the Columbia River between Bonneville and Priest Rapids dams. Define habitat requirements for spawning and rearing white sturgeon and quantify the extent of habitat available in the Columbia River between Bonneville and Priest Rapids dams. Progress updates on young-of-the-year recruitment in Bonneville Reservoir and indices of white sturgeon spawning habitat for 2006 for McNary, John Day, The Dalles, and Bonneville dam tailrace spawning areas.

  2. Hood River production program monitoring and evaluation. Report A: Hood River and Pelton Ladder evaluation studies. Annual report for 1996

    International Nuclear Information System (INIS)

    Olsen, E.A.; French, R.A.

    1996-01-01

    In 1992, the Northwest Power Planning Council approved the Hood River and Pelton Ladder master plans within the framework of the Columbia River Basin Fish and Wildlife Program. The master plans define an approach for implementing a hatchery supplementation program in the Hood River subbasin. The hatchery program, as defined in the master plans, is called the Hood River Production Program (HRPP). The HRPP will be implemented at a reduced hatchery production level until (1) the construction of all proposed hatchery facilities has been completed and (2) numbers of returning wild jack and adult fish are sufficient to meet broodstock collection goals. It is anticipated that construction on the hatchery production facilities will be completed by the spring of 1998. The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Warm Springs (CTWS) Reservation

  3. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, Lawrence; Tiley, Mark (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR); Perkins, Raymond R. (Oregon Department of Fish and Wildlife, Ontario, OR)

    2000-11-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

  4. Mercury concentrations in water, and mercury and selenium concentrations in fish from Brownlee Reservoir and selected sites in Boise and Snake Rivers, Idaho and Oregon, 2013

    Science.gov (United States)

    MacCoy, Dorene E.

    2014-01-01

    Mercury (Hg) analyses were conducted on samples of sport fish and water collected from six sampling sites in the Boise and Snake Rivers, and Brownlee Reservoir to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho. A water sample was collected from each site during October and November 2013 by the City of Boise personnel and was analyzed by the Boise City Public Works Water Quality Laboratory. Total Hg concentrations in unfiltered water samples ranged from 0.73 to 1.21 nanograms per liter (ng/L) at five river sites; total Hg concentration was highest (8.78 ng/L) in a water sample from Brownlee Reservoir. All Hg concentrations in water samples were less than the EPA Hg chronic aquatic life criterion in Idaho (12 ng/L). The EPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). MeHg residue in fish tissue is considered to be equivalent to total Hg in fish muscle tissue and is referred to as Hg in this report. The Idaho Department of Environmental Quality adopted the EPA’s fish-tissue criterion and a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg wet weight Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to

  5. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Baker, Dan J.; Heindel, Jeff A. (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2002 and December 31, 2002 for the hatchery element of the program are presented in this report. n 2002, 22 anadromous sockeye salmon returned to the Sawtooth Valley. Fifteen of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Seven of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on September 30, 2002). All adult returns were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Sixty-six females from brood year 1999 and 28 females from brood year 2000 captive broodstock groups were spawned at the Eagle Hatchery in 2002. Spawn pairings produced approximately 65

  6. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah; ANNUAL

    International Nuclear Information System (INIS)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-01-01

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah

  7. Longitudinal variability of phosphorus fractions in sediments of a canyon reservoir due to cascade dam construction: a case study in Lancang River, China.

    Directory of Open Access Journals (Sweden)

    Qi Liu

    Full Text Available Dam construction causes the accumulation of phosphorus in the sediments of reservoirs and increases the release rate of internal phosphorus (P loading. This study investigated the longitudinal variability of phosphorus fractions in sediments and the relationship between the contents of phosphorus fractions and its influencing factors of the Manwan Reservoir, Lancang River, Yunnan Province, China. Five sedimentary phosphorus fractions were quantified separately: loosely bound P (ex-P; reductant soluble P (BD-P; metal oxide-bound P (NaOH-P; calcium-bound P (HCl-P, and residual-P. The results showed that the total phosphorus contents ranged from 623 to 899 µg/g and were correlated positively with iron content in the sediments of the reservoir. The rank order of P fractions in sediments of the mainstream was HCl-P>NaOH-P>residual-P>BD-P>ex-P, while it was residual-P>HCl-P>NaOH-P>BD-P>ex-P in those of the tributaries. The contents of bio-available phosphorus in the tributaries, including ex-P, BD-P and NaOH-P, were significantly lower than those in the mainstream. The contents of ex-P, BD-P, NaOH-P showed a similar increasing trend from the tail to the head of the Manwan Reservoir, which contributed to the relatively higher content of bio-available phosphorus, and represents a high bio-available phosphorus releasing risk within a distance of 10 km from Manwan Dam. Correlation and redundancy analyses showed that distance to Manwan Dam and the silt/clay fraction of sediments were related closely to the spatial variation of bio-available phosphorus.

  8. The Impact of Impoundment on Mercury Bioaccumulation in Fish Downstream from a Newly Constructed Reservoir, Wujiang River, Southwest China.

    Science.gov (United States)

    Li, Sixin; Zhou, Lianfeng; Chang, Jianbo; Yang, Zhi; Hu, Juxiang; Hongjun, Wang

    2017-11-01

    Mercury concentrations in fish were investigated downstream from a newly impounded subtropical reservoir in August 2008. After 6-7 months of reservoir impoundment, mean mercury concentration in fish from downstream is significantly increased by 1.9 times. Not only carnivorous fish but also benthic fish had significantly higher total mercury concentrations than others. No significant correlation was found between total mercury concentrations and body length or weight of 13 fish species. Compared with the pre-impoundment, total mercury in fish from downstream is significantly increased by reservoir impoundment, but the increased rate is lower than those in subarctic and temperate areas. Fish samples surpassed the Chinese hygienic standard for tolerances of mercury in foods increased by 4.3%. More attention should be given to fish mercury levels from downstream sites to prevent possible adverse effects on the health of local people.

  9. Using the example of Istanbul to outline general aspects of protecting reservoirs, rivers and lakes used for drinking water abstraction.

    Science.gov (United States)

    Tanik, A

    2000-01-01

    The six main drinking water reservoirs of Istanbul are under the threat of pollution due to rapid population increase, unplanned urbanisation and insufficient infrastructure. In contrast to the present land use profile, the environmental evaluation of the catchment areas reveals that point sources of pollutants, especially of domestic origin, dominate over those from diffuse sources. The water quality studies also support these findings, emphasising that if no substantial precautions are taken, there will be no possibility of obtaining drinking water from them. In this paper, under the light of the present status of the reservoirs, possible and probable short- and long-term protective measures are outlined for reducing the impact of point sources. Immediate precautions mostly depend on reducing the pollution arising from the existing settlements. Long-term measures mainly emphasise the preparation of new land use plans taking into consideration the protection of unoccupied lands. Recommendations on protection and control of the reservoirs are stated.

  10. Ensemble hydrological forecast efficiency evolution over various issue dates and lead-time: case study for the Cheboksary reservoir (Volga River)

    Science.gov (United States)

    Gelfan, Alexander; Moreido, Vsevolod

    2017-04-01

    Ensemble hydrological forecasting allows for describing uncertainty caused by variability of meteorological conditions in the river basin for the forecast lead-time. At the same time, in snowmelt-dependent river basins another significant source of uncertainty relates to variability of initial conditions of the basin (snow water equivalent, soil moisture content, etc.) prior to forecast issue. Accurate long-term hydrological forecast is most crucial for large water management systems, such as the Cheboksary reservoir (the catchment area is 374 000 sq.km) located in the Middle Volga river in Russia. Accurate forecasts of water inflow volume, maximum discharge and other flow characteristics are of great value for this basin, especially before the beginning of the spring freshet season that lasts here from April to June. The semi-distributed hydrological model ECOMAG was used to develop long-term ensemble forecast of daily water inflow into the Cheboksary reservoir. To describe variability of the meteorological conditions and construct ensemble of possible weather scenarios for the lead-time of the forecast, two approaches were applied. The first one utilizes 50 weather scenarios observed in the previous years (similar to the ensemble streamflow prediction (ESP) procedure), the second one uses 1000 synthetic scenarios simulated by a stochastic weather generator. We investigated the evolution of forecast uncertainty reduction, expressed as forecast efficiency, over various consequent forecast issue dates and lead time. We analyzed the Nash-Sutcliffe efficiency of inflow hindcasts for the period 1982 to 2016 starting from 1st of March with 15 days frequency for lead-time of 1 to 6 months. This resulted in the forecast efficiency matrix with issue dates versus lead-time that allows for predictability identification of the basin. The matrix was constructed separately for observed and synthetic weather ensembles.

  11. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report for 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The radiation dose at the plant perimeter or the population dose in the region from SRP operations is very small relative to the dose received from naturally occurring radiation. The annual average dose in 1978 from atmospheric releases of radioactive materials from SRP was 0.76 millirem (mrem) at the plant perimeter (approximately 1% of natural background). The maximum dose at the plant perimeter was 1.05 mrems, which is 0.2% of the Department of Energy limit for offsite exposures. The total radiation exposure at the plant perimeter from SRP releases and natural background radiation (98 mrems) was substantially less than the exposure of a person living in Columbia, SC (111 mrems), or Atlanta, GA (124 mrems). These differences are due to variation in natural radiation. The population dose to people living within 80 km (50 mi) of the center of SRP (population: 465,000) was 110 man-rems. During 1978, this same population received a radiation dose of 54,400 man-rems from natural radiation and an additional dose of 47,000 man-rems from medical x rays. An individual consuming river water downstream from SRP would receive a maximum calculated dose of 0.32 mrem. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment that may conceivably be affected by these emissions were monitored to ensure a safe environment. Releases of radioactivity from SRP had very small effect on living plants and animals and were too minute to be detectable, and with a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests

  12. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.; Heindel, Jeff A.; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1997 and December 31, 1997 are presented in this report. One hundred twenty-six female sockeye salmon from one captive broodstock group were spawned at the Eagle Fish Hatchery in 1997. Successful spawn pairings produced approximately 148,781 eyed-eggs with a cumulative mean survival to eyed-egg rate of 57.3%. Approximately 361,600 sockeye salmon were released to Sawtooth basin waters in 1997. Reintroduction strategies included eyed-eggs (brood year 1997), presmolts (brood year 1996), and prespawn adults for volitional spawning (brood year 1994). Release locations included Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, four broodstocks and two unique production groups were in culture at the Eagle Fish Hatchery. Two of the four broodstocks were incorporated into the 1997 spawning design, and one broodstock was terminated following

  13. Assessment of salmonids and their habitat conditions in the Walla Walla River Basin of Washington : 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Mendel, Glen Wesley; Karl, David; Coyle, Terrence

    2001-01-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000)

  14. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy (Idaho Department of Fish and Game, Boise, ID)

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to

  15. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions.

    Science.gov (United States)

    Miller, Benjamin L; Arntzen, Evan V; Goldman, Amy E; Richmond, Marshall C

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  16. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions

    Science.gov (United States)

    Miller, Benjamin L.; Arntzen, Evan V.; Goldman, Amy E.; Richmond, Marshall C.

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  17. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    Science.gov (United States)

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  18. Annual budget of Gd and related Rare Earth Elements in a river basin heavily disturbed by anthropogenic activities.

    Science.gov (United States)

    Hissler, Christophe; Stille, Peter; Guignard, Cédric; François Iffly, Jean; Pfister, Laurent

    2014-05-01

    The real environmental impact of micropollutants in river systems can be difficult to assess, essentially due to uncertainties in the estimation of the relative significance of both anthropogenic and natural sources. The natural geochemical background is characterized by important variations at global, regional or local scales. Moreover, elements currently considered to be undisturbed by human activities and used as tracers of continental crust derived material have become more and more involved in industrial or agricultural processes. The global production of lanthanides (REE), used in industry, medicine and agriculture, for instance, has increased exponentially from a few tons in 1950 to projected 185 kt in 2015. Consequently, these new anthropogenic contributions impact the natural cycle of the REE. Gd and related REE are now worldwide recognized as emergent micropollutants in river systems. Nevertheless, there is still a gap concerning their temporal dynamics in rivers and especially the quantification of both the anthropogenic and natural contributions in surface water. The acquisition of such quantitative information is of primordial interest because elements from both origins may present different bioavailability and toxicity levels. Working at the river basin scale allows for quantifying micropollutant fluxes. For this reason, we monitored water quality and discharge of the Alzette River (Luxembourg, Europe) over two complete hydrological cycles (2010-2013). The substantial contamination, is principally due to the steel industry in the basin, which has been active from 1875 until now, and to the related increase of urban areas. The particulate and dissolved fractions of river water were monitored using a multitracer approach (standard parameters for water quality including REE concentrations, Pb, Sr, Nd radiogenic isotopes) with two sampling setups (bi-weekly and flood event based sampling). This extensive sampling design allowed quantifying the annual

  19. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Cochnauer, Tim; Claire, Christopher

    2002-12-01

    Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South

  20. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b

  1. The River Valleys as Biodiversity Reservoirs for Land Snails in Highly Anthropic Areas – The Case of Cisnădie River (Romania

    Directory of Open Access Journals (Sweden)

    Gheoca Voichiţa

    2016-12-01

    Full Text Available This study focuses on the snail fauna of a river valley passing through two closely located settlements. Thirty six species of terrestrial gastropods were identified. Species such as Macrogastra borealis, Alinda fallax, Alinda viridana, Bulgarica vetusta, Monachoides vicinus, Drobacia banatica, are present along the river and abundant in the sampling stations downstream of Cisnădie town. The high specific diversity and the presence of typical forest species demonstrate the presence of fragments of habitat that can preserve populations of terrestrial gastropods, underlining the importance of river valleys in conservation and dispersion of these species.

  2. Feeding Activity, Rate of Consumption, Daily Ration and Prey Selection of Major Predators in John Day Reservoir, 1985: Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Douglas E.; United States. Bonneville Power Administration; U.S. Fish and Wildlife Service; National Fishery Research Center (U.S.)

    1986-10-01

    This report summarizes activities in 1985 to determine the extent of predation on juvenile salmonids in John Day Reservoir. To estimate consumption of juvenile salmonids we used the composition of the natural diet of predators and in the laboratory determined rate of gastric evacuation by predators. Salmonids were the single most important food item for northern squawfish (Ptychocheilus oregonensis) at McNary tailrace during all sampling periods and at John Day forebay during July. Salmonids accounted for 11.6% of the diet of walleye (Stizostedion vitreum vitreum) in 1985 which was about twice that found in previous years. Salmonids contributed little to smallmouth bass (Micropterus dolomieui) diet but comprised about 25% of the diet of channel catfish (Ictalurus punctatus). Composition of prey taxa in beach seine catches in 1985 was similar to 1983 and 1984 with chinook salmon (Oncorhynchus tschawytscha), northern squawfish, largescale sucker (Catostomus macrocheilus), and sand roller (Percopsis transmontana) dominating the catch at main channel stations and crappies (Pomoxis spp.) and largescale sucker dominating at backwater stations. Preliminary results of beach seine efficiency studies suggest that seine efficiency varied significantly among prey species and between substrate types in 1985. Results of digestion rate experiments indicate that gastric evacuation in northern squawfish can be predicted using water temperature, prey weight, predator weight and time. 19 refs., 19 figs., 13 tabs.

  3. An Integrated Approach to Characterizing Bypassed Oil in Heterogeneous and Fractured Reservoirs Using Partitioning Tracers. Annual Report

    International Nuclear Information System (INIS)

    Akhil Datta-Gupta

    2006-01-01

    This report presents an efficient trajectory-based approach to integrate transient pressure data into high-resolution reservoir and aquifer models. The method involves alternating travel time and peak amplitude matching of pressure response using inverse modeling and is particularly well-suited for high resolution subsurface characterization using hydraulic tomography or pressure interference tests. Compared to travel time inversion only, our proposed approach results in a significantly improved match of the pressure response at the wells and also better estimates of subsurface properties. This is accomplished with very little increase in computational cost. Utilizing the concept of a ''diffusive'' time of flight derived from an asymptotic solution of the diffusivity equation, we develop analytical approaches to estimate the sensitivities for travel time and peak amplitude of pressure response to subsurface properties. The sensitivities are then used in an iterative least-squared minimization to match the pressure data. We illustrate our approach using synthetic and field examples. In the field application at a fractured limestone formation, the predominant fracture patterns emerging from the inversion are shown to be consistent with independent geophysical experiments and borehole data

  4. Quantification of Linkages between Large-Scale Climate Patterns and Annual Precipitation for the Colorado River Basin

    Science.gov (United States)

    Kalra, A.; Ahmad, S.

    2010-12-01

    Precipitation is regarded as one of the key variables driving various hydrologic processes and the future precipitation information can be useful to better understand the long-term climate dynamics. In this paper, a simple, robust, and parsimonious precipitation forecast model, Support Vector Machine (SVM) is proposed which uses large-scale climate information and predict annual precipitation 1-year in advance. SVM’s are a novel class of neural networks (NNs) which are based on the statistical learning theory. The SVM’s has three main advantages over the traditional NNs: 1) better generalization ability, 2) the architecture and weights of SVM’s are guaranteed to be unique and globally optimum, and 3) SVM’s are trained more rapidly than the corresponding NN. With these advantages, an application of SVM incorporating large-scale climate information is developed and applied to seventeen climate divisions encompassing the Colorado River Basin in the western United States. Annual oceanic-atmospheric indices, comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino-Southern Oscillations (ENSO) for a period of 1900-2007 are used to generate annual precipitation estimates with 1-year lead time. The results from the present study indicate that long-term precipitation predictions for the Upper Colorado River Basin can be successfully obtained using a combination of NAO and ENSO indices whereas coupling PDO and AMO results in improved precipitation predictions for the Lower Colorado River Basin. Precipitation predictions from the SVM model are found to be better when compared with the predictions obtained from feed-forward back propagation Artificial Neural Network and Multivariate Linear Regression models. The overall results of this study revealed that the annual precipitation of the Colorado River Basin was significantly influenced by oceanic-atmospheric oscillations and the proposed SVM

  5. Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads.

    Science.gov (United States)

    Elwan, Ahmed; Singh, Ranvir; Patterson, Maree; Roygard, Jon; Horne, Dave; Clothier, Brent; Jones, Geoffrey

    2018-01-11

    Better management of water quality in streams, rivers and lakes requires precise and accurate estimates of different contaminant loads. We assessed four sampling frequencies (2 days, weekly, fortnightly and monthly) and five load calculation methods (global mean (GM), rating curve (RC), ratio estimator (RE), flow-stratified (FS) and flow-weighted (FW)) to quantify loads of nitrate-nitrogen (NO 3 - -N), soluble inorganic nitrogen (SIN), total nitrogen (TN), dissolved reactive phosphorus (DRP), total phosphorus (TP) and total suspended solids (TSS), in the Manawatu River, New Zealand. The estimated annual river loads were compared to the reference 'true' loads, calculated using daily measurements of flow and water quality from May 2010 to April 2011, to quantify bias (i.e. accuracy) and root mean square error 'RMSE' (i.e. accuracy and precision). The GM method resulted into relatively higher RMSE values and a consistent negative bias (i.e. underestimation) in estimates of annual river loads across all sampling frequencies. The RC method resulted in the lowest RMSE for TN, TP and TSS at monthly sampling frequency. Yet, RC highly overestimated the loads for parameters that showed dilution effect such as NO 3 - -N and SIN. The FW and RE methods gave similar results, and there was no essential improvement in using RE over FW. In general, FW and RE performed better than FS in terms of bias, but FS performed slightly better than FW and RE in terms of RMSE for most of the water quality parameters (DRP, TP, TN and TSS) using a monthly sampling frequency. We found no significant decrease in RMSE values for estimates of NO 3 - N, SIN, TN and DRP loads when the sampling frequency was increased from monthly to fortnightly. The bias and RMSE values in estimates of TP and TSS loads (estimated by FW, RE and FS), however, showed a significant decrease in the case of weekly or 2-day sampling. This suggests potential for a higher sampling frequency during flow peaks for more precise

  6. Survival estimates - Survival estimates for the passage of juvenile salmonids through Snake and Columbia River dams and reservoirs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This BPA-funded study provides estimates of smolt survival and travel time through individual reaches and reaches combined in the Snake and Columbia Rivers...

  7. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  8. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 in order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  9. Sediment problems in reservoirs. Control of sediment deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Tom

    1997-12-31

    When a reservoir is formed on a river, sediment will deposit in the reservoir. Such processes are unfortunate, for instance, for the implementation of hydroelectric energy. This thesis studies the problem of reservoir sedimentation and discusses methods of removing the sediments. Various aspects of reservoir sedimentation are discussed. Anthropogenic impacts seem to greatly affect the erosion processes. Temporal distribution is uneven, mainly because of the very large flood events. A world map showing the Reservoir Capacity: Annual Sediment Inflow ratio for reservoirs with volume equal to 10% of annual inflow has been prepared. The map shows that sedimentation is severe in the western parts of North and South America, eastern, southern and northern Africa, parts of Australia and most of Asia. The development of medium-sized reservoirs is difficult, as they are too large for conventional flushing technique and too small to store the sediment that accumulates during their economic lifetime. A computer model, SSIIM, was used with good results in a case study of two flood drawdown trials in Lake Roxburg, New Zealand. Two techniques have been developed that permits controlled suction of sediment and water into a pipe: the Slotted Pipe Sediment Sluicer (SPSS) and the Saxophone Sediment Sluicer (SSS). The techniques exploit the inflow pattern in through a slot in a pipe. An equation describing this inflow pattern was derived and verified experimentally. The SPSS is fixed near the reservoir bed, and sediment that deposits on top of it is removed in the sluicing process. The SSS sluices sediment from the surface of the sediment deposits. Some technical and economic conditions affecting the economics of sediment removal from reservoirs have been identified and studied. 79 refs., 112 figs., 14 tabs.

  10. Analysis of artisanal fisheries in two reservoirs of the upper Paraná River basin (Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    José Luís Costa Novaes

    Full Text Available We compared the artisanal fisheries, in terms of catch strategies, productivity, and gross per capita income, at two reservoirs: the Barra Bonita (an eutrophic reservoir with some introduced species, and the Jurumirim (an oligotrophic reservoir, with no introduced species. Published data and structured interviews with fishers were used to evaluate fishing activity, fish biomass, and the financial performance of the fisheries. In the Barra Bonita Reservoir we analysed data from 745 fishing trips, from which 86,691.9 kg of fish were landed, with a mean CPUE of 62.4 kg/fisher-1 day-1. The main type of fish caught was tilapia (71,513.5 kg; CPUE of 51.5 kg/fisher-1 day-1, which constituted 82.5% of the biomass caught. In the Jurumirim Reservoir, we analysed data from 2,401 fishing trips, from which 25,093.6 kg of fish were landed, with a mean CPUE of 10.4 kg/fisher-1 day-1. The main type of fish caught was "traíra" (6,158.6 kg; CPUE of 2.6 kg/fisher-1 day-1, which constituted 24.5% of the biomass caught. Ordination analysis (PCA indicated that there was a difference in composition between the fishing reservoirs and ANCOVA showed that there was a significant difference in fish production between the reservoirs. A Student's t-test showed that fishers in the Barra Bonita Reservoir had a significantly higher gross per capita income than those from the Jurumirim Reservoir. Although the Barra Bonita Reservoir has a higher fish production and the fishers earn a higher gross per capita income, we recommend the Jurumirim Reservoir as a model for artisanal fishery management because fishing activity in this reservoir is viable in the long term and such a model would promote conservation and sustainability. This contrasts with the Barra Bonita Reservoir, in which the fishery is not viable in the long term, due to environmental problems caused by artificial eutrophication and the introduction of alien species. It is also noted that in many countries, management

  11. Annual compilation and analysis of hydrologic data for Escondido Creek, San Antonio River basin, Texas

    Science.gov (United States)

    Reddy, D.R.

    1971-01-01

    IntroductionHistory of Small Watershed Projects in TexasThe U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of the "Flood Control Act of 1936 and 1944" and "Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. The Soil Conservation Service has found a total of approximately 3,500 floodwater-retarding structures to be physically and economically feasible in Texas. As of September 30, 1970, 1,439 of these structures had been built.This watershed-development program will have varying but important effects on the surface and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data under natural and developed conditions are needed to appraise the effects of the structures on the yield and mode of occurrence of runoff.Hydrologic investigations of these small watersheds were begun by the Geological Survey in 1951 and are now being made in 12 study areas (fig. 1). These investigations are being made in cooperation with the Texas Water Development Board, the Soil Conservation Service, the San Antonio River Authority, the city of Dallas, and the Tarrant County Water Control and Improvement District No. 1. The 12 study areas were chosen to sample watershed having different rainfall, topography, geology, and soils. In five of the study areas, (North, Little Elm, Mukewater, little Pond-North Elm, and Pin Oak Creeks), streamflow and rainfall records were collected prior to construction of the floodwater-retarding structures, thus affording the opportunity for analyses of the conditions "before and after" development. A summary of the development of the floodwater-retarding structures in each study areas of September 30, 1970, is shown in table 1.Objectives of the Texas Small Watersheds ProjectThe purpose of these investigations is to collect sufficient data to meeting the

  12. Ecological risk assessment in a large river-reservoir. 8: Experimental study of the effects of polychlorinated biphenyls on reproductive success in mink

    International Nuclear Information System (INIS)

    Halbrook, R.S.; Aulerich, R.J.; Bursian, S.J.; Lewis, L.

    1999-01-01

    As a component of an ecological risk assessment of Poplar Creek (located on the Oak Ridge Reservation [ORR]) and