WorldWideScience

Sample records for river networks fractals

  1. River networks and ecological corridors: Reactive transport on fractals, migration fronts, hydrochory

    Science.gov (United States)

    Bertuzzo, E.; Maritan, A.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2007-04-01

    Moving from a recent quantitative model of the US colonization in the 19th century that relies on analytical and numerical results of reactive-diffusive transport on fractal river networks, this paper considers its generalization to include an embedded flow direction which biases transport. We explore the properties of biased reaction-dispersal models, in which the reaction rates are described by a logistic equation. The relevance of the work is related to the prediction of the role of hydrologic controls on invasion processes (of species, populations, propagules, or infective agents, depending on the specifics of reaction and transport) occurring in river basins. Exact solutions are obtained along with general numerical solutions, which are applied to fractal constructs like Peano basins and real rivers. We also explore similarities and departures from different one-dimensional invasion models where a bias is added to both the diffusion and the telegraph equations, considering their respective ecological insight. We find that the geometrical constraints imposed by the fractal networks imply strong corrections on the speed of traveling fronts that can be enhanced or smoothed by the bias. Applications to real river networks show that the chief morphological parameters affecting the front speed are those characterizing the node-to-node distances measured along the network structure. The spatial density and number of reactive sites thus prove to be a vital hydrologic control on invasions. We argue that our solutions, currently tied to the validity of the logistic growth, might be relevant to the general study of species' spreading along ecological corridors defined by the river network structure.

  2. Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality

    International Nuclear Information System (INIS)

    Chen Yanguang

    2009-01-01

    A pair of nonlinear programming models is built to explain the fractal structure of systems of cities and those of rivers. The hierarchies of cities can be characterized by a set of exponential functions, which is identical in form to the Horton-Strahler's laws of the river networks. Four power laws can be derived from these exponential functions. The evolution of both systems of cities and rivers are then represented as nonlinear dual programming models: to maximize information entropy subject to a certain energy use or to minimize energy dissipation subject to certain information capacity. The optimal solutions of the programming problems are just the exponential equations associated with scaling relations. By doing so, fractals and the self-organized criticality marked by the power laws are interpreted using the idea from the entropy-maximization principle, which gives further weight to the suggestion that optimality of the system as a whole defines the dynamical origin of fractal forms in both nature and society.

  3. A geometria fractal da rede de drenagem da bacia hidrográfica do Caeté, Alfredo Wagner-SC Fractal geometry of the drainage network of the Caeté river watershed, Alfredo Wagner-SC

    Directory of Open Access Journals (Sweden)

    Leandro Redin Vestena

    2010-08-01

    Full Text Available Os objetivos deste trabalho foram estimar e avaliar a dimensão fractal da rede de drenagem da bacia hidrográfica do Caeté, em Alfredo Wagner, SC, a partir de diferentes métodos, com o propósito de caracterizar as formas geomorfológicas irregulares. A rede de drenagem apresenta propriedades multifractais. As dimensões fractais para os segmentos individuais (df e para a rede de drenagem inteira (Df foram determinadas por métodos que se fundamentaram nas razões de Horton e pelo método da contagem de caixas (Box-Counting. A rede de drenagem tem característica de autoafinidade. A dimensão fractal proveniente da relação de parâmetros obtidos pelas Leis de Horton apresentou resultados dentro dos limiares da teoria da geometria fractal.The objective of the present work was to evaluate the fractal dimensions of the drainage network of the Caeté river watershed, Alfredo Wagner/SC, with different methods in order to characterize the irregular geomorphologic forms. The drainage network possesses multi-fractal properties. That is why the fractal dimensions for the individual segments (df and for the entire network (Df were evaluated with Horton's Laws and the Box-Counting method. The drainage network has self-affinity characteristics. The fractal dimension obtained through the parameters relationship of Horton's Laws showed the results within the thresholds of the fractal geometry theory.

  4. Fractal Analysis of Mobile Social Networks

    International Nuclear Information System (INIS)

    Zheng Wei; Pan Qian; Sun Chen; Deng Yu-Fan; Zhao Xiao-Kang; Kang Zhao

    2016-01-01

    Fractal and self similarity of complex networks have attracted much attention in recent years. The fractal dimension is a useful method to describe the fractal property of networks. However, the fractal features of mobile social networks (MSNs) are inadequately investigated. In this work, a box-covering method based on the ratio of excluded mass to closeness centrality is presented to investigate the fractal feature of MSNs. Using this method, we find that some MSNs are fractal at different time intervals. Our simulation results indicate that the proposed method is available for analyzing the fractal property of MSNs. (paper)

  5. A fractal-like resistive network

    International Nuclear Information System (INIS)

    Saggese, A; De Luca, R

    2014-01-01

    The equivalent resistance of a fractal-like network is calculated by means of approaches similar to those employed in defining the equivalent resistance of an infinite ladder. Starting from an elementary triangular circuit, a fractal-like network, named after Saggese, is developed. The equivalent resistance of finite approximations of this network is measured, and the didactical implications of the model are highlighted. (paper)

  6. Fractal and multifractal analyses of bipartite networks

    Science.gov (United States)

    Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua

    2017-03-01

    Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions.

  7. From Fractal Trees to Deltaic Networks

    Science.gov (United States)

    Cazanacli, D.; Wolinsky, M. A.; Sylvester, Z.; Cantelli, A.; Paola, C.

    2013-12-01

    Geometric networks that capture many aspects of natural deltas can be constructed from simple concepts from graph theory and normal probability distributions. Fractal trees with symmetrical geometries are the result of replicating two simple geometric elements, line segments whose lengths decrease and bifurcation angles that are commonly held constant. Branches could also have a thickness, which in the case of natural distributary systems is the equivalent of channel width. In river- or wave-dominated natural deltas, the channel width is a function of discharge. When normal variations around the mean values for length, bifurcating angles, and discharge are applied, along with either pruning of 'clashing' branches or merging (equivalent to channel confluence), fractal trees start resembling natural deltaic networks, except that the resulting channels are unnaturally straight. Introducing a bifurcation probability fewer, naturally curved channels are obtained. If there is no bifurcation, the direction of each new segment depends on the direction the previous segment upstream (correlated random walk) and, to a lesser extent, on a general direction of growth (directional bias). When bifurcation occurs, the resulting two directions also depend on the bifurcation angle and the discharge split proportions, with the dominant branch following the direction of the upstream parent channel closely. The bifurcation probability controls the channel density and, in conjunction with the variability of the directional angles, the overall curvature of the channels. The growth of the network in effect is associated with net delta progradation. The overall shape and shape evolution of the delta depend mainly on the bifurcation angle average size and angle variability coupled with the degree of dominant direction dependency (bias). The proposed algorithm demonstrates how, based on only a few simple rules, a wide variety of channel networks resembling natural deltas, can be replicated

  8. Morphometric relations of fractal-skeletal based channel network model

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    1998-01-01

    Full Text Available A fractal-skeletal based channel network (F-SCN model is proposed. Four regular sided initiator-basins are transformed as second order fractal basins by following a specific generating mechanism with non-random rule. The morphological skeletons, hereafter referred to as channel networks, are extracted from these fractal basins. The morphometric and fractal relationships of these F-SCNs are shown. The fractal dimensions of these fractal basins, channel networks, and main channel lengths (computed through box counting method are compared with those of estimated length–area measures. Certain morphometric order ratios to show fractal relations are also highlighted.

  9. Fractal geometry of the drainage network of the Caeté river watershed, Alfredo Wagner-SC

    OpenAIRE

    Vestena, Leandro Redin; Kobiyama, Masato

    2010-01-01

    Os objetivos deste trabalho foram estimar e avaliar a dimensão fractal da rede de drenagem da bacia hidrográfica do Caeté, em Alfredo Wagner, SC, a partir de diferentes métodos, com o propósito de caracterizar as formas geomorfológicas irregulares. A rede de drenagem apresenta propriedades multifractais. As dimensões fractais para os segmentos individuais (df) e para a rede de drenagem inteira (Df) foram determinadas por métodos que se fundamentaram nas razões de Horton e pelo método da conta...

  10. Fractal dimension estimations of drainage network in the Carpathian-Pannonian system.

    NARCIS (Netherlands)

    Dombradi, E.; Timar, G.; Bada, G.; Cloetingh, S.A.P.L.; Horvath, F.

    2007-01-01

    The development of drainage network in the intra-Carpathian realm is influenced by a complex Quaternary tectonic evolution manifested with differential vertical motions. The present-day configuration of the left-hand side tributary system of the Tisza river was studied by means of fractal analysis.

  11. a Fractal Network Model for Fractured Porous Media

    Science.gov (United States)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  12. Delay Bound: Fractal Traffic Passes through Network Servers

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Delay analysis plays a role in real-time systems in computer communication networks. This paper gives our results in the aspect of delay analysis of fractal traffic passing through servers. There are three contributions presented in this paper. First, we will explain the reasons why conventional theory of queuing systems ceases in the general sense when arrival traffic is fractal. Then, we will propose a concise method of delay computation for hard real-time systems as shown in this paper. Finally, the delay computation of fractal traffic passing through severs is presented.

  13. Weighted radial dimension: an improved fractal measurement for highway transportation networks distribution

    Science.gov (United States)

    Feng, Yongjiu; Liu, Miaolong; Tong, Xiaohua

    2007-06-01

    An improved fractal measurement, the weighted radial dimension, is put forward for highway transportation networks distribution. The radial dimension (DL), originated from subway investigation in Stuttgart, is a fractal measurement for transportation systems under ideal assumption considering all the network lines to be homogeneous curves, ignoring the difference on spatial structure, quality and level, especially the highway networks. Considering these defects of radial dimension, an improved fractal measurement called weighted radial dimension (D WL) is introduced and the transportation system in Guangdong province is studied in detail using this novel method. Weighted radial dimensions are measured and calculated, and the spatial structure, intensity and connectivity of transportation networks are discussed in Guangdong province and the four sub-areas: the Pearl River Delta area, the East Costal area, the West Costal area and the Northern Guangdong area. In Guangdong province, the fractal spatial pattern characteristics of transportation system vary remarkably: it is the highest in the Pearl River Delta area, moderate in Costal area and lowest in the Northern Guangdong area. With the Pearl River Delta area as the centre, the weighted radial dimensions decrease with the distance increasing, while the decline level is smaller in the costal area and greater in the Northern Guangdong province. By analysis of the conic of highway density, it is recognized that the density decrease with the distance increasing from the calculation centre (Guangzhou), demonstrating the same trend as weighted radial dimensions shown. Evidently, the improved fractal measurement, weighted radial dimension, is an indictor describing the characteristics of highway transportation system more effectively and accurately.

  14. Fractal scale-free networks resistant to disease spread

    International Nuclear Information System (INIS)

    Zhang, Zhongzhi; Zhou, Shuigeng; Zou, Tao; Chen, Guisheng

    2008-01-01

    The conventional wisdom is that scale-free networks are prone to epidemic propagation; in the paper we demonstrate that, on the contrary, disease spreading is inhibited in fractal scale-free networks. We first propose a novel network model and show that it simultaneously has the following rich topological properties: scale-free degree distribution, tunable clustering coefficient, 'large-world' behavior, and fractal scaling. Existing network models do not display these characteristics. Then, we investigate the susceptible–infected–removed (SIR) model of the propagation of diseases in our fractal scale-free networks by mapping it to the bond percolation process. We establish the existence of non-zero tunable epidemic thresholds by making use of the renormalization group technique, which implies that power law degree distribution does not suffice to characterize the epidemic dynamics on top of scale-free networks. We argue that the epidemic dynamics are determined by the topological properties, especially the fractality and its accompanying 'large-world' behavior

  15. Passenger flow analysis of Beijing urban rail transit network using fractal approach

    Science.gov (United States)

    Li, Xiaohong; Chen, Peiwen; Chen, Feng; Wang, Zijia

    2018-04-01

    To quantify the spatiotemporal distribution of passenger flow and the characteristics of an urban rail transit network, we introduce four radius fractal dimensions and two branch fractal dimensions by combining a fractal approach with passenger flow assignment model. These fractal dimensions can numerically describe the complexity of passenger flow in the urban rail transit network and its change characteristics. Based on it, we establish a fractal quantification method to measure the fractal characteristics of passenger follow in the rail transit network. Finally, we validate the reasonability of our proposed method by using the actual data of Beijing subway network. It has been shown that our proposed method can effectively measure the scale-free range of the urban rail transit network, network development and the fractal characteristics of time-varying passenger flow, which further provides a reference for network planning and analysis of passenger flow.

  16. Fractal properties of percolation clusters in Euclidian neural networks

    International Nuclear Information System (INIS)

    Franovic, Igor; Miljkovic, Vladimir

    2009-01-01

    The process of spike packet propagation is observed in two-dimensional recurrent networks, consisting of locally coupled neuron pools. Local population dynamics is characterized by three key parameters - probability for pool connectedness, synaptic strength and neuron refractoriness. The formation of dynamic attractors in our model, synfire chains, exhibits critical behavior, corresponding to percolation phase transition, with probability for non-zero synaptic strength values representing the critical parameter. Applying the finite-size scaling method, we infer a family of critical lines for various synaptic strengths and refractoriness values, and determine the Hausdorff-Besicovitch fractal dimension of the percolation clusters.

  17. Fluvial drainage networks: the fractal approach as an improvement of quantitative geomorphic analyses

    Science.gov (United States)

    Melelli, Laura; Liucci, Luisa; Vergari, Francesca; Ciccacci, Sirio; Del Monte, Maurizio

    2014-05-01

    Drainage basins are primary landscape units for geomorphological investigations. Both hillslopes and river drainage system are fundamental components in drainage basins analysis. As other geomorphological systems, also the drainage basins aim to an equilibrium condition where the sequence of erosion, transport and sedimentation approach to a condition of minimum energy effort. This state is revealed by a typical geometry of landforms and of drainage net. Several morphometric indexes can measure how much a drainage basin is far from the theoretical equilibrium configuration, revealing possible external disarray. In active tectonic areas, the drainage basins have a primary importance in order to highlight style, amount and rate of tectonic impulses, and morphometric indexes allow to estimate the tectonic activity classes of different sectors in a study area. Moreover, drainage rivers are characterized by a self-similarity structure; this promotes the use of fractals theory to investigate the system. In this study, fractals techniques are employed together with quantitative geomorphological analysis to study the Upper Tiber Valley (UTV), a tectonic intermontane basin located in northern Apennines (Umbria, central Italy). The area is the result of different tectonic phases. From Late Pliocene until present time the UTV is strongly controlled by a regional uplift and by an extensional phase with different sets of normal faults playing a fundamental role in basin morphology. Thirty-four basins are taken into account for the quantitative analysis, twenty on the left side of the basin, the others on the right side. Using fractals dimension of drainage networks, Horton's laws results, concavity and steepness indexes, and hypsometric curves, this study aims to obtain an evolutionary model of the UTV, where the uplift is compared to local subsidence induced by normal fault activity. The results highlight a well defined difference between western and eastern tributary basins

  18. Emergence of fractal scale-free networks from stochastic evolution on the Cayley tree

    Energy Technology Data Exchange (ETDEWEB)

    Chełminiak, Przemysław, E-mail: geronimo@amu.edu.pl

    2013-11-29

    An unexpected recognition of fractal topology in some real-world scale-free networks has evoked again an interest in the mechanisms stimulating their evolution. To explain this phenomenon a few models of a deterministic construction as well as a probabilistic growth controlled by a tunable parameter have been proposed so far. A quite different approach based on the fully stochastic evolution of the fractal scale-free networks presented in this Letter counterpoises these former ideas. It is argued that the diffusive evolution of the network on the Cayley tree shapes its fractality, self-similarity and the branching number criticality without any control parameter. The last attribute of the scale-free network is an intrinsic property of the skeleton, a special type of spanning tree which determines its fractality.

  19. An inkjet-printed UWB antenna on paper substrate utilizing a novel fractal matching network

    KAUST Repository

    Cook, Benjamin Stassen; Shamim, Atif

    2012-01-01

    In this work, the smallest reported inkjet-printed UWB antenna is proposed that utilizes a fractal matching network to increase the performance of a UWB microstrip monopole. The antenna is inkjet-printed on a paper substrate to demonstrate

  20. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada: proceedings

    International Nuclear Information System (INIS)

    Barton, C.C.; Larsen, E.

    1985-01-01

    Fracture traces exposed on three 214- to 260-m 2 pavements in the same Miocene ash-flow tuff at Yucca Mountain, southwestern Nevada, have been mapped at a scale of 1:50. The maps are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.20 m were mapped. The distribution of fracture-trace lengths is log-normal. The fractures do not exhibit well-defined sets based on orientation. Since fractal characterization of such complex fracture-trace networks may prove useful for modeling fracture flow and mechanical responses of fractured rock, an analysis of each of the three maps was done to test whether such networks are fractal. These networks proved to be fractal and the fractal dimensions (D) are tightly clustered (1.12, 1.14, 1.16) for three laterally separated pavements, even though visually the fracture networks appear quite different. The fractal analysis also indicates that the network patterns are scale independent over two orders of magnitude for trace lengths ranging from 0.20 to 25 m. 7 refs., 7 figs

  1. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  2. International trade network: fractal properties and globalization puzzle.

    Science.gov (United States)

    Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata

    2014-12-12

    Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.

  3. Long-term Trend and Fractal of Annual Runoff Process in Mainstream of Tarim River

    Institute of Scientific and Technical Information of China (English)

    XU Jianhua; CHEN Yaning; LI Weihong; DONG Shan

    2008-01-01

    Based on the time series data from the Aral hydrological station for the period of 1958-2005, the paper re-veals the long-term trend and fractal of the annual runoff process in the mainstream of the Tarim River by using thewavelet analysis method and the fractal theory. The main conclusions are as follows: 1) From a large time scale pointof view, i.e. the time scale of 16 (24) years, the annual runoff basically shows a slightly decreasing trend as a wholefrom 1958 to 2005. If the time scale is reduced to 8 (23) or 4 (22) years, the annual runoff still displays the basic trendas the large time scale, but it has fluctuated more obviously during the period. 2) The correlation dimension for theannual runoff process is 3.4307, non-integral, which indicates that the process has both fractal and chaotic characteris-tics. The correlation dimension is above 3, which means that at least four independent variables are needed to describethe dynamics of the annual runoff process. 3) The Hurst exponent for the first period (1958-1973) is 0.5036, whichequals 0.5 approximately and indicates that the annual runoff process is in chaos. The Hurst exponents for the second(1974-1989) and third (1990-2005) periods are both greater than 0.50, which indicate that the annual runoff processshowed a long-enduring characteristic in the two periods. The Hurst exponent for the period from 1990 to 2005 indi-cates that the annual runoffwill show a slightly increasing trend in the 16 years after 2005.

  4. An inkjet-printed UWB antenna on paper substrate utilizing a novel fractal matching network

    KAUST Repository

    Cook, Benjamin Stassen

    2012-07-01

    In this work, the smallest reported inkjet-printed UWB antenna is proposed that utilizes a fractal matching network to increase the performance of a UWB microstrip monopole. The antenna is inkjet-printed on a paper substrate to demonstrate the ability to produce small and low-cost UWB antennas with inkjet-printing technology which can enable compact, low-cost, and environmentally friendly wireless sensor network. © 2012 IEEE.

  5. Fractal properties and small-scale structure of cosmic string networks

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Shellard, E.P.S.

    2006-01-01

    We present results from a detailed numerical study of the small-scale and loop production properties of cosmic string networks, based on the largest and highest resolution string simulations to date. We investigate the nontrivial fractal properties of cosmic strings, in particular, the fractal dimension and renormalized string mass per unit length, and we also study velocity correlations. We demonstrate important differences between string networks in flat (Minkowski) spacetime and the two very similar expanding cases. For high resolution matter era network simulations, we provide strong evidence that small-scale structure has converged to 'scaling' on all dynamical length scales, without the need for other radiative damping mechanisms. We also discuss preliminary evidence that the dominant loop production size is also approaching scaling

  6. Analyzing self-similar and fractal properties of the C. elegans neural network.

    Directory of Open Access Journals (Sweden)

    Tyler M Reese

    Full Text Available The brain is one of the most studied and highly complex systems in the biological world. While much research has concentrated on studying the brain directly, our focus is the structure of the brain itself: at its core an interconnected network of nodes (neurons. A better understanding of the structural connectivity of the brain should elucidate some of its functional properties. In this paper we analyze the connectome of the nematode Caenorhabditis elegans. Consisting of only 302 neurons, it is one of the better-understood neural networks. Using a Laplacian Matrix of the 279-neuron "giant component" of the network, we use an eigenvalue counting function to look for fractal-like self similarity. This matrix representation is also used to plot visualizations of the neural network in eigenfunction coordinates. Small-world properties of the system are examined, including average path length and clustering coefficient. We test for localization of eigenfunctions, using graph energy and spacial variance on these functions. To better understand results, all calculations are also performed on random networks, branching trees, and known fractals, as well as fractals which have been "rewired" to have small-world properties. We propose algorithms for generating Laplacian matrices of each of these graphs.

  7. A key heterogeneous structure of fractal networks based on inverse renormalization scheme

    Science.gov (United States)

    Bai, Yanan; Huang, Ning; Sun, Lina

    2018-06-01

    Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.

  8. Continuum Model for River Networks

    Science.gov (United States)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  9. Topological Vulnerability Evaluation Model Based on Fractal Dimension of Complex Networks.

    Directory of Open Access Journals (Sweden)

    Li Gou

    Full Text Available With an increasing emphasis on network security, much more attentions have been attracted to the vulnerability of complex networks. In this paper, the fractal dimension, which can reflect space-filling capacity of networks, is redefined as the origin moment of the edge betweenness to obtain a more reasonable evaluation of vulnerability. The proposed model combining multiple evaluation indexes not only overcomes the shortage of average edge betweenness's failing to evaluate vulnerability of some special networks, but also characterizes the topological structure and highlights the space-filling capacity of networks. The applications to six US airline networks illustrate the practicality and effectiveness of our proposed method, and the comparisons with three other commonly used methods further validate the superiority of our proposed method.

  10. Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension

    International Nuclear Information System (INIS)

    Grizzi, Fabio; Russo, Carlo; Colombo, Piergiuseppe; Franceschini, Barbara; Frezza, Eldo E; Cobos, Everardo; Chiriva-Internati, Maurizio

    2005-01-01

    Modeling the complex development and growth of tumor angiogenesis using mathematics and biological data is a burgeoning area of cancer research. Architectural complexity is the main feature of every anatomical system, including organs, tissues, cells and sub-cellular entities. The vascular system is a complex network whose geometrical characteristics cannot be properly defined using the principles of Euclidean geometry, which is only capable of interpreting regular and smooth objects that are almost impossible to find in Nature. However, fractal geometry is a more powerful means of quantifying the spatial complexity of real objects. This paper introduces the surface fractal dimension (D s ) as a numerical index of the two-dimensional (2-D) geometrical complexity of tumor vascular networks, and their behavior during computer-simulated changes in vessel density and distribution. We show that D s significantly depends on the number of vessels and their pattern of distribution. This demonstrates that the quantitative evaluation of the 2-D geometrical complexity of tumor vascular systems can be useful not only to measure its complex architecture, but also to model its development and growth. Studying the fractal properties of neovascularity induces reflections upon the real significance of the complex form of branched anatomical structures, in an attempt to define more appropriate methods of describing them quantitatively. This knowledge can be used to predict the aggressiveness of malignant tumors and design compounds that can halt the process of angiogenesis and influence tumor growth

  11. Circulating persistent current and induced magnetic field in a fractal network

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Srilekha [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700 064 (India); Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700 108 (India); Karmakar, S.N. [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700 064 (India)

    2016-04-29

    We present the overall conductance as well as the circulating currents in individual loops of a Sierpinski gasket (SPG) as we apply bias voltage via the side attached electrodes. SPG being a self-similar structure, its manifestation on loop currents and magnetic fields is examined in various generations of this fractal and it has been observed that for a given configuration of the electrodes, the physical quantities exhibit certain regularity as we go from one generation to another. Also a notable feature is the introduction of anisotropy in hopping causes an increase in magnitude of overall transport current. These features are a subject of interest in this article. - Highlights: • Voltage driven circular current is analyzed in a fractal network. • Current induced magnetic field is strong enough to flip a spin. • Anisotropy in hopping enhances overall transport current.

  12. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity

    Science.gov (United States)

    Chouzouris, Teresa; Omelchenko, Iryna; Zakharova, Anna; Hlinka, Jaroslav; Jiruska, Premysl; Schöll, Eckehard

    2018-04-01

    Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and incoherent domains and can be observed in networks of coupled oscillators. The interplay of synchrony and asynchrony in complex brain networks is an important aspect in studies of both the brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in complex networks motivated by its potential application to epileptology and epilepsy surgery. We compare two topologies: an empirical structural neural connectivity derived from diffusion-weighted magnetic resonance imaging and a mathematically constructed network with modular fractal connectivity. We analyse the properties of chimeras and partially synchronized states and obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the dynamics of epileptic seizures and study the influence of the removal of nodes on the network synchronizability, which can be useful for applications to epileptic surgery.

  13. An effective fractal-tree closure model for simulating blood flow in large arterial networks.

    Science.gov (United States)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2015-06-01

    The aim of the present work is to address the closure problem for hemodynamic simulations by developing a flexible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure outflow boundary condition. To achieve this goal, we model blood flow in the sub-pixel vasculature by using a non-linear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime (radii [Formula: see text]). We introduce a variable vessel length-to-radius ratio for small arteries and arterioles, while also addressing non-Newtonian blood rheology and arterial wall viscoelasticity effects in small arteries and arterioles. This methodology aims to overcome substantial cut-off radius sensitivities, typically arising in structured tree and linearized impedance models. The proposed model is not sensitive to outflow boundary conditions applied at the end points of the fractal network, and thus does not require calibration of resistance/capacitance parameters typically required for outflow conditions. The proposed model convergences to a periodic state in two cardiac cycles even when started from zero-flow initial conditions. The resulting fractal-trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have scaled up a Discontinuous Galerkin solver that utilizes the MPI/OpenMP hybrid programming paradigm to thousands of computer cores, and can simulate blood flow in networks of millions of arterial segments at the rate of one cycle per 5 min. The proposed model has been extensively tested on a large and complex cranial network with 50 parent, patient-specific arteries and 21 outlets to which fractal trees where attached, resulting to a network of up to 4,392,484 vessels in total, and a detailed network of the arm with 276 parent arteries and 103 outlets (a total of 702,188 vessels

  14. Fast hybrid fractal image compression using an image feature and neural network

    International Nuclear Information System (INIS)

    Zhou Yiming; Zhang Chao; Zhang Zengke

    2008-01-01

    Since fractal image compression could maintain high-resolution reconstructed images at very high compression ratio, it has great potential to improve the efficiency of image storage and image transmission. On the other hand, fractal image encoding is time consuming for the best matching search between range blocks and domain blocks, which limits the algorithm to practical application greatly. In order to solve this problem, two strategies are adopted to improve the fractal image encoding algorithm in this paper. Firstly, based on the definition of an image feature, a necessary condition of the best matching search and FFC algorithm are proposed, and it could reduce the search space observably and exclude most inappropriate domain blocks according to each range block before the best matching search. Secondly, on the basis of FFC algorithm, in order to reduce the mapping error during the best matching search, a special neural network is constructed to modify the mapping scheme for the subblocks, in which the pixel values fluctuate greatly (FNFC algorithm). Experimental results show that the proposed algorithms could obtain good quality of the reconstructed images and need much less time than the baseline encoding algorithm

  15. INTEGRATION OF FRACTAL AND NEURAL NETWORK TECHNOLOGIES IN PEDAGOGICAL MONITORING AND ASSESSMENT OF KNOWLEDGE OF TRAINEES

    Directory of Open Access Journals (Sweden)

    Svetlana N Dvoryatkina

    2017-12-01

    Full Text Available The possibility of statement and solution of the problem of searching of theoretical justification and development of efficient didactic mechanisms of the organization of process of pedagogical monitoring and assessment of level of knowledge of trainees can be based on convergence of the leading psychological and pedagogical, mathematical, and informational technologies with accounting of the modern achievements in science. In the article, the pedagogical expediency of realization of opportunities of means of informational technologies in monitoring and assessment of the composite mathematical knowledge, in the management of cognitive activity of students is proved. The ability to integrate fractal methods and neural network technologies in perfecting of a system of pedagogical monitoring of mathematical knowledge of trainees as a part of the automated training systems (ATS is investigated and realized in practice. It is proved that fractal methods increase the accuracy and depth of estimation of the level of proficiency of students and also complexes of intellectual operations of the integrative qualities allowing to master and apply cross-disciplinary knowledge and abilities in professional activity. Neural network technologies solve a problem of realization of the personal focused tutoring from positions of optimum individualization of mathematical education and self-realization of the person. The technology of projection of integrative system of pedagogical monitoring of knowledge of students includes the following stages: establishment of the required tutoring parameters; definition and preparation of input data for realization of integration of fractal and neural network technologies; development of the diagnostic module as a part of the block of an artificial intelligence of ATS, filling of the databases structured by system; start of system for obtaining the forecast. In development of the integrative automated system of pedagogical

  16. Spatial-temporal data model and fractal analysis of transportation network in GIS environment

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua; Li, Yangdong

    2008-10-01

    How to organize transportation data characterized by multi-time, multi-scale, multi-resolution and multi-source is one of the fundamental problems of GIS-T development. A spatial-temporal data model for GIS-T is proposed based on Spatial-temporal- Object Model. Transportation network data is systemically managed using dynamic segmentation technologies. And then a spatial-temporal database is built to integrally store geographical data of multi-time for transportation. Based on the spatial-temporal database, functions of spatial analysis of GIS-T are substantively extended. Fractal module is developed to improve the analyzing in intensity, density, structure and connectivity of transportation network based on the validation and evaluation of topologic relation. Integrated fractal with GIS-T strengthens the functions of spatial analysis and enriches the approaches of data mining and knowledge discovery of transportation network. Finally, the feasibility of the model and methods are tested thorough Guangdong Geographical Information Platform for Highway Project.

  17. Transport on river networks: A dynamical approach

    OpenAIRE

    Zaliapin, I; Foufoula-Georgiou, E; Ghil, M

    2017-01-01

    This study is motivated by problems related to environmental transport on river networks. We establish statistical properties of a flow along a directed branching network and suggest its compact parameterization. The downstream network transport is treated as a particular case of nearest-neighbor hierarchical aggregation with respect to the metric induced by the branching structure of the river network. We describe the static geometric structure of a drainage network by a tree, referred to as...

  18. Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations

    International Nuclear Information System (INIS)

    Nakayama, T.; Yakubo, K.; Orbach, R.L.

    1994-01-01

    This article describes the advances that have been made over the past ten years on the problem of fracton excitations in fractal structures. The relevant systems to this subject are so numerous that focus is limited to a specific structure, the percolating network. Recent progress has followed three directions: scaling, numerical simulations, and experiment. In a happy coincidence, large-scale computations, especially those involving array processors, have become possible in recent years. Experimental techniques such as light- and neutron-scattering experiments have also been developed. Together, they form the basis for a review article useful as a guide to understanding these developments and for charting future research directions. In addition, new numerical simulation results for the dynamical properties of diluted antiferromagnets are presented and interpreted in terms of scaling arguments. The authors hope this article will bring the major advances and future issues facing this field into clearer focus, and will stimulate further research on the dynamical properties of random systems

  19. Nonlinear random resistor diode networks and fractal dimensions of directed percolation clusters.

    Science.gov (United States)

    Stenull, O; Janssen, H K

    2001-07-01

    We study nonlinear random resistor diode networks at the transition from the nonpercolating to the directed percolating phase. The resistor-like bonds and the diode-like bonds under forward bias voltage obey a generalized Ohm's law V approximately I(r). Based on general grounds such as symmetries and relevance we develop a field theoretic model. We focus on the average two-port resistance, which is governed at the transition by the resistance exponent straight phi(r). By employing renormalization group methods we calculate straight phi(r) for arbitrary r to one-loop order. Then we address the fractal dimensions characterizing directed percolation clusters. Via considering distinct values of the nonlinearity r, we determine the dimension of the red bonds, the chemical path, and the backbone to two-loop order.

  20. Synchronisation and stability in river metapopulation networks.

    Science.gov (United States)

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  1. Fractal Bread.

    Science.gov (United States)

    Esbenshade, Donald H., Jr.

    1991-01-01

    Develops the idea of fractals through a laboratory activity that calculates the fractal dimension of ordinary white bread. Extends use of the fractal dimension to compare other complex structures as other breads and sponges. (MDH)

  2. Fractal cosmology

    International Nuclear Information System (INIS)

    Dickau, Jonathan J.

    2009-01-01

    The use of fractals and fractal-like forms to describe or model the universe has had a long and varied history, which begins long before the word fractal was actually coined. Since the introduction of mathematical rigor to the subject of fractals, by Mandelbrot and others, there have been numerous cosmological theories and analyses of astronomical observations which suggest that the universe exhibits fractality or is by nature fractal. In recent years, the term fractal cosmology has come into usage, as a description for those theories and methods of analysis whereby a fractal nature of the cosmos is shown.

  3. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics

    Directory of Open Access Journals (Sweden)

    Sabyasachi Sen

    2015-03-01

    Full Text Available The intermediate-range packing of SiNxC4−x (0 ≤ x ≤ 4 tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using 29Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN4 tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si3N4 clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiNxC4−x tetrahedra that are inefficiently packed with a mass fractal dimension of Df ~2.5 that is significantly lower than the embedding Euclidean dimension (D = 3. This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiCxN4−x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  4. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics.

    Science.gov (United States)

    Sen, Sabyasachi; Widgeon, Scarlett

    2015-03-17

    The intermediate-range packing of SiN x C 4- x (0 ≤ x ≤ 4) tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using 29 Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR) spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN₄ tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si₃N₄ clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiN x C 4- x tetrahedra that are inefficiently packed with a mass fractal dimension of D f ~2.5 that is significantly lower than the embedding Euclidean dimension ( D = 3). This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiC x N 4- x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  5. Flat electronic bands in fractal-kagomé network and the effect of perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Atanu, E-mail: atanunandy1989@gmail.com; Chakrabarti, Arunava, E-mail: arunava-chakrabarti@yahoo.co.in [Department of Physics, University of Kalyani, Kalyani, West Bengal - 741235 (India)

    2016-05-06

    We demonstrate an analytical prescription of demonstrating the flat band [FB] states in a fractal incorporated kagomé type network that can give rise to a countable infinity of flat non-dispersive eigenstates with a multitude of localization area. The onset of localization can, in principle, be delayed in space by an appropriate choice of energy regime. The length scale, at which the onset of localization for each mode occurs, can be tuned at will following the formalism developed within the framework of real space renormalization group. This scheme leads to an exact determination of energy eigenvalue for which one can have dispersionless flat electronic bands. Furthermore, we have shown the effect ofuniform magnetic field for the same non-translationally invariant network model that has ultimately led to an‘apparent invisibility’ of such staggered localized states and to generate absolutely continuous sub-bands in the energy spectrum and again an interesting re-entrant behavior of those FB states.

  6. Topology of the Italian airport network: A scale-free small-world network with a fractal structure?

    International Nuclear Information System (INIS)

    Guida, Michele; Maria, Funaro

    2007-01-01

    In this paper, for the first time we analyze the structure of the Italian Airport Network (IAN) looking at it as a mathematical graph and investigate its topological properties. We find that it has very remarkable features, being like a scale-free network, since both the degree and the 'betweenness centrality' distributions follow a typical power-law known in literature as a Double Pareto Law. From a careful analysis of the data, the Italian Airport Network turns out to have a self-similar structure. In short, it is characterized by a fractal nature, whose typical dimensions can be easily determined from the values of the power-law scaling exponents. Moreover, we show that, according to the period examined, these distributions exhibit a number of interesting features, such as the existence of some 'hubs', i.e. in the graph theory's jargon, nodes with a very large number of links, and others most probably associated with geographical constraints. Also, we find that the IAN can be classified as a small-world network because the average distance between reachable pairs of airports grows at most as the logarithm of the number of airports. The IAN does not show evidence of 'communities' and this result could be the underlying reason behind the smallness of the value of the clustering coefficient, which is related to the probability that two nearest neighbors of a randomly chosen airport are connected

  7. Computing representative networks for braided rivers

    NARCIS (Netherlands)

    Kleinhans, M.; van Kreveld, M.J.; Ophelders, T.A.E.; Sonke, W.M.; Speckmann, B.; Verbeek, K.A.B.; Aronov, Boris; Katz, Matthew

    Drainage networks on terrains have been studied extensively from an algorithmic perspective. However, in drainage networks water flow cannot bifurcate and hence they do not model braided rivers (multiple channels which split and join, separated by sediment bars). We initiate the algorithmic study of

  8. Computing Representative Networks for Braided Rivers

    NARCIS (Netherlands)

    Kleinhans, Maarten; van Kreveld, M.J.; Ophelders, Tim; Sonke, Willem; Speckmann, Bettina; Verbeek, Kevin

    2017-01-01

    Drainage networks on terrains have been studied extensively from an algorithmic perspective. However, in drainage networks water flow cannot bifurcate and hence they do not model braided rivers (multiple channels which split and join, separated by sediment bars). We initiate the algorithmic study of

  9. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography

    International Nuclear Information System (INIS)

    Guo Jing; Posnansky, Oleg; Hirsch, Sebastian; Scheel, Michael; Taupitz, Matthias; Sack, Ingolf; Braun, Juergen

    2012-01-01

    The dynamics of the complex shear modulus, G*, of soft biological tissue is governed by the rigidity and topology of multiscale mechanical networks. Multifrequency elastography can measure the frequency dependence of G* in soft biological tissue, providing information about the structure of tissue networks at multiple scales. In this study, the viscoelastic properties of structure-mimicking phantoms containing tangled paper stripes embedded in agarose gel are investigated by multifrequency magnetic resonance elastography within the dynamic range of 40–120 Hz. The effective media viscoelastic properties are analyzed in terms of the storage modulus (the real part of G*), the loss modulus (the imaginary part of G*) and the viscoelastic powerlaw given by the two-parameter springpot model. Furthermore, diffusion tensor imaging is used for investigating the effect of network structures on water mobility. The following observations were made: the random paper networks with fractal dimensions between 2.481 and 2.755 had no or minor effects on the storage modulus, whereas the loss modulus was significantly increased about 2.2 kPa per fractal dimension unit (R = 0.962, P < 0.01). This structural sensitivity of the loss modulus was significantly correlated with the springpot powerlaw exponent (0.965, P < 0.01), while for the springpot elasticity modulus, a trend was discernable (0.895, P < 0.05). No effect of the paper network on water diffusion was observed. The gel phantoms with embedded paper stripes presented here are a feasible way for experimentally studying the effect of network topology on soft-tissue viscoelastic parameters. In the dynamic range of in vivo elastography, the fractal network dimension primarily correlates to the loss behavior of soft tissue as can be seen from the loss modulus or the powerlaw exponent of the springpot model. These findings represent the experimental underpinning of structure-sensitive elastography for an improved characterization of

  10. Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network.

    Science.gov (United States)

    Jason, Naveen N; Wang, Stephen J; Bhanushali, Sushrut; Cheng, Wenlong

    2016-09-22

    This work demonstrates a facile "paint-on" approach to fabricate highly stretchable and highly sensitive strain sensors by combining one-dimensional copper nanowire networks with two-dimensional graphite microflakes. This paint-on approach allows for the fabrication of electronic skin (e-skin) patches which can directly replicate with high fidelity the human skin surface they are on, regardless of the topological complexity. This leads to high accuracy for detecting biometric signals for applications in personalised wearable sensors. The copper nanowires contribute to high stretchability and the graphite flakes offer high sensitivity, and their hybrid coating offers the advantages of both. To understand the topological effects on the sensing performance, we utilized fractal shaped elastomeric substrates and systematically compared their stretchability and sensitivity. We could achieve a high stretchability of up to 600% and a maximum gauge factor of 3000. Our simple yet efficient paint-on approach enabled facile fine-tuning of sensitivity/stretchability simply by adjusting ratios of 1D vs. 2D materials in the hybrid coating, and the topological structural designs. This capability leads to a wide range of biomedical sensors demonstrated here, including pulse sensors, prosthetic hands, and a wireless ankle motion sensor.

  11. Automatic River Network Extraction from LIDAR Data

    Science.gov (United States)

    Maderal, E. N.; Valcarcel, N.; Delgado, J.; Sevilla, C.; Ojeda, J. C.

    2016-06-01

    National Geographic Institute of Spain (IGN-ES) has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI) within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network) and hydrological criteria (flow accumulation river network), and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files), and process; using local virtualization and the Amazon Web Service (AWS), which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri) and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.

  12. AUTOMATIC RIVER NETWORK EXTRACTION FROM LIDAR DATA

    Directory of Open Access Journals (Sweden)

    E. N. Maderal

    2016-06-01

    Full Text Available National Geographic Institute of Spain (IGN-ES has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network and hydrological criteria (flow accumulation river network, and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files, and process; using local virtualization and the Amazon Web Service (AWS, which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.

  13. Emergence of complex networks from diffusion on fractal lattices. A special case of the Sierpinski gasket and tetrahedron

    International Nuclear Information System (INIS)

    Chełminiak, Przemysław

    2012-01-01

    A new approach to the assemblage of complex networks displaying the scale-free architecture is proposed. While the growth and the preferential attachment of incoming nodes assure an emergence of such networks according to the Barabási–Albert model, it is argued here that the preferential linking condition needs not to be a principal rule. To assert this statement a simple computer model based on random walks on fractal lattices is introduced. It is shown that the model successfully reproduces the degree distributions, the ultra-small-worldness and the high clustering arising from the topology of scale-free networks. -- Highlights: ► A new mechanism of evolution for scale-free complex networks is proposed. ► The preferential attachment rule is not necessary to construct such networks. ► It is shown that they reveal some basic properties of classical scale-free nets.

  14. Infrastructural Fractals

    DEFF Research Database (Denmark)

    Bruun Jensen, Casper

    2007-01-01

    . Instead, I outline a fractal approach to the study of space, society, and infrastructure. A fractal orientation requires a number of related conceptual reorientations. It has implications for thinking about scale and perspective, and (sociotechnical) relations, and for considering the role of the social...... and a fractal social theory....

  15. [Soil particle size distribution and its fractal dimension among degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China].

    Science.gov (United States)

    Wei, Mao-Hong; Lin, Hui-Long

    2014-03-01

    The alpine meadow in the source region of the Yangtze and Yellow River is suffering serious deterioration. Though great efforts have been put into, the restoration for the degraded grassland is far from being effective, mainly due to poor understanding of the degradation mechanism of alpine meadow in this region. In order to clarify the formation mechanism of degradation grassland and provide the new ideas for restoration, degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River were taken as target systems to analyze the soil particle size distribution, the fractal dimension of the soil particle size, and the relationship between soil erosion modulus and fractal dimension. The results showed that, with increasing grassland degradation, the percentage contents of clay increased while the percentage contents of silt sand and very fine sand showed a decreasing trend. The fractal dimension presented a positive correlation with clay among the degradation sequences while negative correlations were found with very fine sand and silt sand. The curvilinear regression of fractal dimension and erosion modulus fitted a quadratic function. Judged by the function, fractal dimension 2.81 was the threshold value of soil erosion. The threshold value has an indicative meaning on predicting the breakout of grazing-induced erosion and on restoration of the degraded grassland. Taking fractal dimension of 2.81 as the restoration indicator, adoption of corresponding measures to make fractal dimension less than 2.81, would an effective way to restore the degradation grassland.

  16. Helicalised fractals

    OpenAIRE

    Saw, Vee-Liem; Chew, Lock Yue

    2013-01-01

    We formulate the helicaliser, which replaces a given smooth curve by another curve that winds around it. In our analysis, we relate this formulation to the geometrical properties of the self-similar circular fractal (the discrete version of the curved helical fractal). Iterative applications of the helicaliser to a given curve yields a set of helicalisations, with the infinitely helicalised object being a fractal. We derive the Hausdorff dimension for the infinitely helicalised straight line ...

  17. Fractal Branching in Vascular Trees and Networks by VESsel GENeration Analysis (VESGEN)

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.

    2016-01-01

    Vascular patterning offers an informative multi-scale, fractal readout of regulatory signaling by complex molecular pathways. Understanding such molecular crosstalk is important for physiological, pathological and therapeutic research in Space Biology and Astronaut countermeasures. When mapped out and quantified by NASA's innovative VESsel GENeration Analysis (VESGEN) software, remodeling vascular patterns become useful biomarkers that advance out understanding of the response of biology and human health to challenges such as microgravity and radiation in space environments.

  18. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    Science.gov (United States)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  19. Fecal Coliform Removal by River Networks

    Science.gov (United States)

    Huang, T.; Wollheim, W. M.; Stewart, R. J.

    2015-12-01

    Bacterial pathogens are a major cause of water quality impairment in the United States. Freshwater ecosystems provide the ecosystem service of reducing pathogen levels by diluting and removing pathogens as water flows from source areas through the river network. However, the integration of field-scale monitoring data and watershed-scale hydrologic models to estimate pathogen loads and removal in varied aquatic ecosystems is still limited. In this study we applied a biogeochemical river network model (the Framework for Aquatic Modeling in the Earth System or FrAMES) and utilized available field data the Oyster R. watershed, a small (51.7 km2) draining coastal New Hampshire (NH, USA), to quantify pathogen removal at the river network scale, using fecal coliform as an indicator. The Oyster R. Watershed is comprised of various land use types, and has had its water quality monitored for fecal coliform, dissolved oxygen, and turbidity since 2001. Water samples were also collected during storm events to account for storm responses. FrAMES was updated to incorporate the dominant processes controlling fecal coliform concentrations in aquatic ecosystems: spatially distributed terrestrial loading, in-stream removal, dilution, and downstream transport. We applied an empirical loading function to estimate the terrestrial loading of fecal coliform across flow conditions. Data was collected from various land use types across a range of hydrologic conditions. The loading relationship includes total daily precipitation, antecedent 24-hour rainfall, air temperature, and catchment impervious surface percentage. Attenuation is due to bacterial "die-off" and dilution processes. Results show that fecal coliform input loads varied among different land use types. At low flow, fecal coliform concentrations were similar among watersheds. However, at high flow the concentrations were significantly higher in urbanized watersheds than forested watersheds. The mainstem had lower fecal coliform

  20. Design of Gravity Survey Network using Fractal Theory to Delineate Hydrocarbon bearing Jabera Structure, Vindhyan Basin, Central India

    Science.gov (United States)

    Dimri, V. P.; Srivastava, R. P.; Vedanti, N.

    2006-12-01

    A gravity survey network was designed using fractal dimension analysis to delineate a domal structure (Jabera dome) reported in southeastern part of the Vindhyan basin, Central India. This area is also regarded as a `high risk-high reward' frontier area for hydrocarbon exploration in previous studies, hence our aim was to delineate shape and lateral extent of the reported domal structure. Based on the synthetic grid, designed using the concept of fractal dimension, gravity data is collected in Jabera-Damoh area of Vindhyan basin. The collected data is random, but the data density is significant, hence the data points are sorted in a way so that they are close to the synthetic grid points of given grid interval. After sorting the data, again the fractal dimension analysis using box counting method has been carried out to avoid the aliasing in the data due to interpolation and also to know the optimum number of data points sufficient for desired quality of Bouguer anomaly maps. Optimization of number of stations takes care of time and cost involved in the survey and the detectibility limit ensures that the data collected is good enough to resolve the target body under study. The fractal dimension analysis gives clue to select these parameters. It showed that it is always preferable to have well distributed station locations instead of clustering the observation points at some geologically known feature because clustering of data points below required station spacing is not going to add much information where as equally distributed observation points add the information. The study area lies in a difficult terrain of Vindhayn basin, hence according to the accessibility, fractal dimension analysis of the real data sorted approximately at regular grid intervals on 2,3, and 4 km has been done and using the concept of optimum gridding interval Bouguer anomaly maps of the region are prepared. The preliminary depth values of the major interfaces in the area were obtained

  1. Fractals everywhere

    CERN Document Server

    Barnsley, Michael F

    2012-01-01

    ""Difficult concepts are introduced in a clear fashion with excellent diagrams and graphs."" - Alan E. Wessel, Santa Clara University""The style of writing is technically excellent, informative, and entertaining."" - Robert McCartyThis new edition of a highly successful text constitutes one of the most influential books on fractal geometry. An exploration of the tools, methods, and theory of deterministic geometry, the treatment focuses on how fractal geometry can be used to model real objects in the physical world. Two sixteen-page full-color inserts contain fractal images, and a bonus CD of

  2. Fractal actors and infrastructures

    DEFF Research Database (Denmark)

    Bøge, Ask Risom

    2011-01-01

    -network-theory (ANT) into surveillance studies (Ball 2002, Adey 2004, Gad & Lauritsen 2009). In this paper, I further explore the potential of this connection by experimenting with Marilyn Strathern’s concept of the fractal (1991), which has been discussed in newer ANT literature (Law 2002; Law 2004; Jensen 2007). I...... under surveillance. Based on fieldwork conducted in 2008 and 2011 in relation to my Master’s thesis and PhD respectively, I illustrate fractal concepts by describing the acts, actors and infrastructure that make up the ‘DNA surveillance’ conducted by the Danish police....

  3. Dynamic hydro-climatic networks in pristine and regulated rivers

    Science.gov (United States)

    Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.

    2014-12-01

    Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes

  4. Fluid temperatures: Modeling the thermal regime of a river network

    Science.gov (United States)

    Rhonda Mazza; Ashley Steel

    2017-01-01

    Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...

  5. Upper Colorado River Basin Climate Effects Network

    Science.gov (United States)

    Belnap, Jayne; Campbell, Donald; Kershner, Jeff

    2011-01-01

    The Upper Colorado River Basin (UCRB) Climate Effects Network (CEN) is a science team established to provide information to assist land managers in future decision making processes by providing a better understanding of how future climate change, land use, invasive species, altered fire cycles, human systems, and the interactions among these factors will affect ecosystems and the services they provide to human communities. The goals of this group are to (1) identify science needs and provide tools to assist land managers in addressing these needs, (2) provide a Web site where users can access information pertinent to this region, and (3) provide managers technical assistance when needed. Answers to the team's working science questions are intended to address how interactions among climate change, land use, and management practices may affect key aspects of water availability, ecosystem changes, and societal needs within the UCRB.

  6. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  7. Dynamic network expansion, contraction, and connectivity in the river corridor of mountain stream network

    Science.gov (United States)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.

    2017-12-01

    River networks are broadly recognized to expand and contract in response to hydrologic forcing. Additionally, the individual controls on river corridor dynamics of hydrologic forcing and geologic setting are well recognized. However, we currently lack tools to integrate our understanding of process dynamics in the river corridor and make predictions at the scale of river networks. In this study, we develop a perceptual model of the river corridor in mountain river networks, translate this into a reduced-complexity mechanistic model, and implement the model in a well-studied headwater catchment. We found that the river network was most sensitive to hydrologic dynamics under the lowest discharges (Qgauge managers of water resources who need to estimate connectivity and flow initiation location along the river corridor over broad, unstudied catchments.

  8. Variation of the fractal dimension anisotropy of two major Cenozoic normal fault systems over space and time around the Snake River Plain, Idaho and SW Montana

    Science.gov (United States)

    Davarpanah, A.; Babaie, H. A.

    2012-12-01

    The interaction of the thermally induced stress field of the Yellowstone hotspot (YHS) with existing Basin and Range (BR) fault blocks, over the past 17 m.y., has produced a new, spatially and temporally variable system of normal faults around the Snake River Plain (SRP) in Idaho and Wyoming-Montana area. Data about the trace of these new cross faults (CF) and older BR normal faults were acquired from a combination of satellite imageries, DEM, and USGS geological maps and databases at scales of 1:24,000, 1:100,000, 1:250,000, 1:1000, 000, and 1:2,500, 000, and classified based on their azimuth in ArcGIS 10. The box-counting fractal dimension (Db) of the BR fault traces, determined applying the Benoit software, and the anisotropy intensity (ellipticity) of the fractal dimensions, measured with the modified Cantor dust method applying the AMOCADO software, were measured in two large spatial domains (I and II). The Db and anisotropy of the cross faults were studied in five temporal domains (T1-T5) classified based on the geologic age of successive eruptive centers (12 Ma to recent) of the YHS along the eastern SRP. The fractal anisotropy of the CF system in each temporal domain was also spatially determined in the southern part (domain S1), central part (domain S2), and northern part (domain S3) of the SRP. Line (fault trace) density maps for the BR and CF polylines reveal a higher linear density (trace length per unit area) for the BR traces in the spatial domain I, and a higher linear density of the CF traces around the present Yellowstone National Park (S1T5) where most of the seismically active faults are located. Our spatio-temporal analysis reveals that the fractal dimension of the BR system in domain I (Db=1.423) is greater than that in domain II (Db=1.307). It also shows that the anisotropy of the fractal dimension in domain I is less eccentric (axial ratio: 1.242) than that in domain II (1.355), probably reflecting the greater variation in the trend of the BR

  9. Disruption of River Networks in Nature and Models

    Science.gov (United States)

    Perron, J. T.; Black, B. A.; Stokes, M.; McCoy, S. W.; Goldberg, S. L.

    2017-12-01

    Many natural systems display especially informative behavior as they respond to perturbations. Landscapes are no exception. For example, longitudinal elevation profiles of rivers responding to changes in uplift rate can reveal differences among erosional mechanisms that are obscured while the profiles are in equilibrium. The responses of erosional river networks to perturbations, including disruption of their network structure by diversion, truncation, resurfacing, or river capture, may be equally revealing. In this presentation, we draw attention to features of disrupted erosional river networks that a general model of landscape evolution should be able to reproduce, including the consequences of different styles of planetary tectonics and the response to heterogeneous bedrock structure and deformation. A comparison of global drainage directions with long-wavelength topography on Earth, Mars, and Saturn's moon Titan reveals the extent to which persistent and relatively rapid crustal deformation has disrupted river networks on Earth. Motivated by this example and others, we ask whether current models of river network evolution adequately capture the disruption of river networks by tectonic, lithologic, or climatic perturbations. In some cases the answer appears to be no, and we suggest some processes that models may be missing.

  10. Modelling and predicting biogeographical patterns in river networks

    Directory of Open Access Journals (Sweden)

    Sabela Lois

    2016-04-01

    Full Text Available Statistical analysis and interpretation of biogeographical phenomena in rivers is now possible using a spatially explicit modelling framework, which has seen significant developments in the past decade. I used this approach to identify a spatial extent (geostatistical range in which the abundance of the parasitic freshwater pearl mussel (Margaritifera margaritifera L. is spatially autocorrelated in river networks. I show that biomass and abundance of host fish are a likely explanation for the autocorrelation in mussel abundance within a 15-km spatial extent. The application of universal kriging with the empirical model enabled precise prediction of mussel abundance within segments of river networks, something that has the potential to inform conservation biogeography. Although I used a variety of modelling approaches in my thesis, I focus here on the details of this relatively new spatial stream network model, thus advancing the study of biogeographical patterns in river networks.

  11. The River Network of Montenegro in the GIS Database

    Directory of Open Access Journals (Sweden)

    Goran Barović

    2017-06-01

    Full Text Available The subject of this paper is the systematization and precise identification of the structure of river networks in Montenegro in both planimetric and hypsometric dimensions, using cartometry. This includes the precise determination of the morphometric parameters of river flows, their numerical display, graphical display, and documentation. This allows for a number of analyses, for example, of individual catchments, the mutual relations of individual watercourses within a higher order catchment, and the classification of flows according to river and sea basins and their relationship to the environment. In addition, there is the potential for expanding the database further, with a view to continuous, systematic, scientific and practical follow-up in all or part of the geographic space. The cartometric analysis of the river network in Montenegro has a special scientific, and also a social value. In the geographical structure of all countries, including Montenegro, rivers occupy a central place as individual elements and integral parts of the whole. There is almost no human activity which is not related to river flows, or related phenomena and processes. The river network as part of a geographic space continues to gain in importance, and therefore studying it must connect with the other structural elements within which it functions. These are the basic relief characteristics, climate, and certain hydrographic characteristics. A complete theoretical and methodological approach to this problem forms the basis for a scientific understanding of the significance of the river network of Montenegro.

  12. L-system fractals

    CERN Document Server

    Mishra, Jibitesh

    2007-01-01

    The book covers all the fundamental aspects of generating fractals through L-system. Also it provides insight to various researches in this area for generating fractals through L-system approach & estimating dimensions. Also it discusses various applications of L-system fractals. Key Features: - Fractals generated from L-System including hybrid fractals - Dimension calculation for L-system fractals - Images & codes for L-system fractals - Research directions in the area of L-system fractals - Usage of various freely downloadable tools in this area - Fractals generated from L-System including hybrid fractals- Dimension calculation for L-system fractals- Images & codes for L-system fractals- Research directions in the area of L-system fractals- Usage of various freely downloadable tools in this area

  13. Chimera states in complex networks: interplay of fractal topology and delay

    Science.gov (United States)

    Sawicki, Jakub; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2017-06-01

    Chimera states are an example of intriguing partial synchronization patterns emerging in networks of identical oscillators. They consist of spatially coexisting domains of coherent (synchronized) and incoherent (desynchronized) dynamics. We analyze chimera states in networks of Van der Pol oscillators with hierarchical connectivities, and elaborate the role of time delay introduced in the coupling term. In the parameter plane of coupling strength and delay time we find tongue-like regions of existence of chimera states alternating with regions of existence of coherent travelling waves. We demonstrate that by varying the time delay one can deliberately stabilize desired spatio-temporal patterns in the system.

  14. Inter-relationship between scaling exponents for describing self-similar river networks

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock

    2015-04-01

    Natural river networks show well-known self-similar characteristics. Such characteristics are represented by various power-law relationships, e.g., between upstream length and drainage area (exponent h) (Hack, 1957), and in the exceedance probability distribution of upstream area (exponent ɛ) (Rodriguez-Iturbe et al., 1992). It is empirically revealed that these power-law exponents are within narrow ranges. Power-law is also found in the relationship between drainage density (the total stream length divided by the total basin area) and specified source area (the minimum drainage area to form a stream head) (exponent η) (Moussa and Bocquillon, 1996). Considering that above three scaling relationships all refer to fundamental measures of 'length' and 'area' of a given drainage basin, it is natural to hypothesize plausible inter-relationship between these three scaling exponents. Indeed, Rigon et al. (1996) demonstrated the relationship between ɛ and h. In this study, we expand this to a more general ɛ-η-h relationship. We approach ɛ-η relationship in an analytical manner while η-h relationship is demonstrated for six study basins in Korea. Detailed analysis and implications will be presented. References Hack, J. T. (1957). Studies of longitudinal river profiles in Virginia and Maryland. US, Geological Survey Professional Paper, 294. Moussa, R., & Bocquillon, C. (1996). Fractal analyses of tree-like channel networks from digital elevation model data. Journal of Hydrology, 187(1), 157-172. Rigon, R., Rodriguez-Iturbe, I., Maritan, A., Giacometti. A., Tarboton, D. G., & Rinaldo, A. (1996). On Hack's Law. Water Resources Research, 32(11), 3367-3374. Rodríguez-Iturbe, I., Ijjasz-Vasquez, E. J., Bras, R. L., & Tarboton, D. G. (1992). Power law distributions of discharge mass and energy in river basins. Water Resources Research, 28(4), 1089-1093.

  15. Improving Multidimensional Wireless Sensor Network Lifetime Using Pearson Correlation and Fractal Clustering.

    Science.gov (United States)

    Almeida, Fernando R; Brayner, Angelo; Rodrigues, Joel J P C; Maia, Jose E Bessa

    2017-06-07

    An efficient strategy for reducing message transmission in a wireless sensor network (WSN) is to group sensors by means of an abstraction denoted cluster. The key idea behind the cluster formation process is to identify a set of sensors whose sensed values present some data correlation. Nowadays, sensors are able to simultaneously sense multiple different physical phenomena, yielding in this way multidimensional data. This paper presents three methods for clustering sensors in WSNs whose sensors collect multidimensional data. The proposed approaches implement the concept of multidimensional behavioral clustering . To show the benefits introduced by the proposed methods, a prototype has been implemented and experiments have been carried out on real data. The results prove that the proposed methods decrease the amount of data flowing in the network and present low root-mean-square error (RMSE).

  16. Fractal Nanotechnology

    Directory of Open Access Journals (Sweden)

    Amato P

    2008-01-01

    Full Text Available Abstract Self-similar patterns are frequently observed in Nature. Their reproduction is possible on a length scale 102–105 nm with lithographic methods, but seems impossible on the nanometer length scale. It is shown that this goal may be achieved via a multiplicative variant of the multi-spacer patterning technology, in this way permitting the controlled preparation of fractal surfaces.

  17. Mapping the temporary and perennial character of whole river networks

    Science.gov (United States)

    González-Ferreras, A. M.; Barquín, J.

    2017-08-01

    Knowledge of the spatial distribution of temporary and perennial river channels in a whole catchment is important for effective integrated basin management and river biodiversity conservation. However, this information is usually not available or is incomplete. In this study, we present a statistically based methodology to classify river segments from a whole river network (Deva-Cares catchment, Northern Spain) as temporary or perennial. This method is based on an a priori classification of a subset of river segments as temporary or perennial, using field surveys and aerial images, and then running Random Forest models to predict classification membership for the rest of the river network. The independent variables and the river network were derived following a computer-based geospatial simulation of riverine landscapes. The model results show high values of overall accuracy, sensitivity, and specificity for the evaluation of the fitted model to the training and testing data set (≥0.9). The most important independent variables were catchment area, area occupied by broadleaf forest, minimum monthly precipitation in August, and average catchment elevation. The final map shows 7525 temporary river segments (1012.5 km) and 3731 perennial river segments (662.5 km). A subsequent validation of the mapping results using River Habitat Survey data and expert knowledge supported the validity of the proposed maps. We conclude that the proposed methodology is a valid method for mapping the limits of flow permanence that could substantially increase our understanding of the spatial links between terrestrial and aquatic interfaces, improving the research, management, and conservation of river biodiversity and functioning.

  18. Geometry of river networks. I. Scaling, fluctuations, and deviations

    International Nuclear Information System (INIS)

    Dodds, Peter Sheridan; Rothman, Daniel H.

    2001-01-01

    This paper is the first in a series of three papers investigating the detailed geometry of river networks. Branching networks are a universal structure employed in the distribution and collection of material. Large-scale river networks mark an important class of two-dimensional branching networks, being not only of intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling laws are uniformly observed. Reported values of scaling exponents vary, suggesting that no unique set of scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a fuller description of branching network structure, here we report a theoretical and empirical study of fluctuations about and deviations from scaling. We examine data for continent-scale river networks such as the Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We center our investigations on the scaling of the length of a subbasin's dominant stream with its area, a characterization of basin shape known as Hack's law. We generalize this relationship to a joint probability density, and provide observations and explanations of deviations from scaling. We show that fluctuations about scaling are substantial, and grow with system size. We find strong deviations from scaling at small scales which can be explained by the existence of a linear network structure. At intermediate scales, we find slow drifts in exponent values, indicating that scaling is only approximately obeyed and that universality remains indeterminate. At large scales, we observe a breakdown in scaling due to decreasing sample space and correlations with overall basin shape. The extent of approximate scaling is significantly restricted by these deviations, and will not be improved by increases in network resolution

  19. Denitrification in the Mississippi River network controlled by flow through river bedforms

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian

    2015-01-01

    Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters1, 2, 3, 4. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions5, 6, 7, 8, 9, 10. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones8, 11, 12. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering. 

  20. River network and watershed morphology analysis with potential implications towards basin classification

    Science.gov (United States)

    Bugaets, Andrey; Gartsman, Boris; Bugaets, Nadezhda

    2013-04-01

    Generally, the investigation of river network composition and watersheds morphology (fluvial geomorphology), constituting one of the key patterns of land surface, is a fundamental question of Earth Sciences. Recent ideas in this research field are the equilibrium and optimal, in the sense of minimum energy expenditure, river network evolution under constant or slowly varying conditions (Rodriguez-Iturbe, Rinaldo, 1997). It follows to such network behavior as self-similarity, self-affinity and self-organization. That is to say, under relatively stable conditions the river systems tend to some "good composed" form and vice-versa. Lately appearing global free available detailed DEM covers involve new possibilities in this research field. We develop new methodology and program package for river network structure and watershed morphology detailed analysis on the base of ArcMap tools. Different characteristics of river network (e.g. ordering, coefficients of Horton's laws, Shannon entropy, fractal dimension) and basin morphology (e.g. diagrams of average elevation, slope, width and energy index against distance to outlet along streams) could be calculated to find a good indicators of intensity and non-equilibrium of watershed evolution. Watersheds are non-conservative systems in which energy is dissipated by transporting water and sediment in geomorphic adjustment of the slopes and channels. The problem of estimating the amount of energy expenditure associated with overcoming surface and system resistance is extremely complicated to solve. A simplification on a river network scale is to consider energy expenditure to be primarily associated with friction of the fluid. We propose a new technique to analyze the catchment landforms based on so-called "energy function" that is a distribution of total energy index against distance from outlet. As potential energy of water on the hillslopes is transformed into kinetic energy of the flowing fluid-sediment mixture in the runoff

  1. Geometry of river networks. III. Characterization of component connectivity

    International Nuclear Information System (INIS)

    Dodds, Peter Sheridan; Rothman, Daniel H.

    2001-01-01

    Essential to understanding the overall structure of river networks is a knowledge of their detailed architecture. Here we explore the presence of randomness in river network structure and the details of its consequences. We first show that an averaged view of network architecture is provided by a proposed self-similarity statement about the scaling of drainage density, a local measure of stream concentration. This scaling of drainage density is shown to imply Tokunaga's law, a description of the scaling of side branch abundance along a given stream, as well as a scaling law for stream lengths. We then consider fluctuations in drainage density and consequently the numbers of side branches. Data are analyzed for the Mississippi River basin and a model of random directed networks. Numbers of side streams are found to follow exponential distributions, as are intertributary distances along streams. Finally, we derive a joint variation of side stream abundance with stream length, affording a full description of fluctuations in network structure. Fluctuations in side stream numbers are shown to be a direct result of fluctuations in stream lengths. This is the last paper in a series of three on the geometry of river networks

  2. Optimal river monitoring network using optimal partition analysis: a case study of Hun River, Northeast China.

    Science.gov (United States)

    Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao

    2018-01-09

    River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.

  3. Nitrous oxide emission from denitrification in stream and river networks

    OpenAIRE

    Beaulieu, Jake J.; Tank, Jennifer L.; Hamilton, Stephen K.; Wollheim, Wilfred M.; Hall, Robert O.; Mulholland, Patrick J.; Peterson, Bruce J.; Ashkenas, Linda R.; Cooper, Lee W.; Dahm, Clifford N.; Dodds, Walter K.; Grimm, Nancy B.; Johnson, Sherri L.; McDowell, William H.; Poole, Geoffrey C.

    2010-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowi...

  4. Fractal vector optical fields.

    Science.gov (United States)

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.

  5. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification which converts N to N2O and dinitrog...

  6. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  7. Fractal analysis of urban environment: land use and sewer system

    Science.gov (United States)

    Gires, A.; Ochoa Rodriguez, S.; Van Assel, J.; Bruni, G.; Murla Tulys, D.; Wang, L.; Pina, R.; Richard, J.; Ichiba, A.; Willems, P.; Tchiguirinskaia, I.; ten Veldhuis, M. C.; Schertzer, D. J. M.

    2014-12-01

    Land use distribution are usually obtained by automatic processing of satellite and airborne pictures. The complexity of the obtained patterns which are furthermore scale dependent is enhanced in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. A parameter commonly analysed in urban hydrology is the coefficient of imperviousness, which reflects the proportion of rainfall that will be immediately active in the catchment response. This coefficient is strongly scale dependent with a rasterized representation. This complex behaviour is well grasped with the help of the scale invariant notion of fractal dimension which enables to quantify the space occupied by a geometrical set (here the impervious areas) not only at a single scale but across all scales. This fractal dimension is also compared to the ones computed on the representation of the catchments with the help of operational semi-distributed models. Fractal dimensions of the corresponding sewer systems are also computed and compared with values found in the literature for natural river networks. This methodology is tested on 7 pilot sites of the European NWE Interreg IV RainGain project located in France, Belgium, Netherlands, United-Kingdom and Portugal. Results are compared between all the case study which exhibit different physical features (slope, level of urbanisation, population density...).

  8. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  9. A fractal analysis of the public transportation system of Paris

    OpenAIRE

    L Benguigui

    1995-01-01

    An analysis of the railway networks of the public transportation system of Paris, based on the notion of fractals, is presented. The two basic networks, (metropolitan and suburban) which have different functions, have also a different fractal dimension: 1.8 for the metropolitan network, and 1.5 for the suburban network. By means of computer simulation, it is concluded that the true dimension of the metro network is probably 2.0. A fractal model of the suburban network, with the same features ...

  10. Mapping mean annual and monthly river discharges: geostatistical developments for incorporating river network dependencies

    International Nuclear Information System (INIS)

    Sauquet, Eric

    2004-01-01

    Regional hydrology is one topic that shows real improvement in partly due to new statistical development and computation facilities. Nevertheless theoretical difficulties for mapping river regime characteristics or recover these features at un gauged location remain because of the nature of the variable under study: river flows are related to a specific area that is defined by the drainage basin, are spatially organised by the river network with upstream-downstream dependencies. Estimations of hydrological descriptors are required for studying links with ecological processes at different spatial scale, from local site where biological or/and water quality data are available to large scale for sustainable development purposes. This presentation aims at describing a method for runoff pattern along the main river network. The approach dedicated to mean annual runoff is based on geostatistical interpolation procedures to which a constraint of water budget has been added. Expansion in Empirical Orthogonal Function has been considered in combination with kriging for interpolating mean monthly discharges. The methodologies are implemented within a Geographical Information System and illustrated by two study cases (two large basins in France). River flow regime descriptors are estimated for basins of more than 50km 2 . Opportunities of collaboration with a partition of France into hydro-eco regions derived from geology and climate considerations is discussed. (Author)

  11. THE FRACTAL MARKET HYPOTHESIS

    OpenAIRE

    FELICIA RAMONA BIRAU

    2012-01-01

    In this article, the concept of capital market is analysed using Fractal Market Hypothesis which is a modern, complex and unconventional alternative to classical finance methods. Fractal Market Hypothesis is in sharp opposition to Efficient Market Hypothesis and it explores the application of chaos theory and fractal geometry to finance. Fractal Market Hypothesis is based on certain assumption. Thus, it is emphasized that investors did not react immediately to the information they receive and...

  12. Fractal nature of hydrocarbon deposits. 2. Spatial distribution

    International Nuclear Information System (INIS)

    Barton, C.C.; Schutter, T.A; Herring, P.R.; Thomas, W.J.; Scholz, C.H.

    1991-01-01

    Hydrocarbons are unevenly distributed within reservoirs and are found in patches whose size distribution is a fractal over a wide range of scales. The spatial distribution of the patches is also fractal and this can be used to constrain the design of drilling strategies also defined by a fractal dimension. Fractal distributions are scale independent and are characterized by a power-law scaling exponent termed the fractal dimension. The authors have performed fractal analyses on the spatial distribution of producing and showing wells combined and of dry wells in 1,600-mi 2 portions of the Denver and Powder River basins that were nearly completely drilled on quarter-mile square-grid spacings. They have limited their analyses to wells drilled to single stratigraphic intervals so that the map pattern revealed by drilling is representative of the spatial patchiness of hydrocarbons at depth. The fractal dimensions for the spatial patchiness of hydrocarbons in the two basins are 1.5 and 1.4, respectively. The fractal dimension for the pattern of all wells drilled is 1.8 for both basins, which suggests a drilling strategy with a fractal dimension significantly higher than the dimensions 1.5 and 1.4 sufficient to efficiently and economically explore these reservoirs. In fact, the fractal analysis reveals that the drilling strategy used in these basins approaches a fractal dimension of 2.0, which is equivalent to random drilling with no geologic input. Knowledge of the fractal dimension of a reservoir prior to drilling would provide a basis for selecting and a criterion for halting a drilling strategy for exploration whose fractal dimension closely matches that of the spatial fractal dimension of the reservoir, such a strategy should prove more efficient and economical than current practice

  13. Fractal description of fractures

    International Nuclear Information System (INIS)

    Lung, C.W.

    1991-06-01

    Recent studies on the fractal description of fractures are reviewed. Some problems on this subject are discussed. It seems hopeful to use the fractal dimension as a parameter for quantitative fractography and to apply fractal structures to the development of high toughness materials. (author). 28 refs, 7 figs

  14. Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems

    Science.gov (United States)

    Ashley M. Helton; Geoffrey C. Poole; Judy L. Meyer; Wilfred M. Wollheim; Bruce J. Peterson; Patrick J. Mulholland; Emily S. Bernhardt; Jack A. Stanford; Clay Arango; Linda R. Ashkenas; Lee W. Cooper; Walter K. Dodds; Stanley V. Gregory; Robert O. Hall; Stephen K. Hamilton; Sherri L. Johnson; William H. McDowell; Jody D. Potter; Jennifer L. Tank; Suzanne M. Thomas; H. Maurice Valett; Jackson R. Webster; Lydia Zeglin

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate...

  15. THE FRACTAL MARKET HYPOTHESIS

    Directory of Open Access Journals (Sweden)

    FELICIA RAMONA BIRAU

    2012-05-01

    Full Text Available In this article, the concept of capital market is analysed using Fractal Market Hypothesis which is a modern, complex and unconventional alternative to classical finance methods. Fractal Market Hypothesis is in sharp opposition to Efficient Market Hypothesis and it explores the application of chaos theory and fractal geometry to finance. Fractal Market Hypothesis is based on certain assumption. Thus, it is emphasized that investors did not react immediately to the information they receive and of course, the manner in which they interpret that information may be different. Also, Fractal Market Hypothesis refers to the way that liquidity and investment horizons influence the behaviour of financial investors.

  16. Statistical Characterization of River and Channel Network Formation in Intermittently Flowing Vortex Systems.

    Science.gov (United States)

    Olson, C. J.; Reichhardt, C.; Nori, F.

    1997-03-01

    Vortices moving in dirty superconductors can form intricate flow patterns, resembling fluid rivers, as they interact with the pinning landscape (F. Nori, Science 271), 1373 (1996).. Weaker pinning produces relatively straight nori>vortex channels, while stronger pinning results in the formation of one or more winding channels that carry all flow. This corresponds to a crossover from elastic flow to plastic flow as the pinning strength is increased. For several pinning parameters, we find the fractal dimension of the channels that form, the vortex trail density, the distance travelled by vortices as they pass through the sample, the branching ratio, the sinuosity, and the size distribution of the rivers, and we compare our rivers with physical rivers that follow Horton's laws.

  17. Species turnover and geographic distance in an urban river network

    DEFF Research Database (Denmark)

    Rouquette, James R.; Dallimer, Martin; Armsworth, Paul R.

    2013-01-01

    AimUnderstanding the relationships between species turnover, environmental features and the geographic distance between sites can provide important insights into the processes driving species diversity. This is particularly relevant where the effective distance between sites may be a function...... patterns of species turnover and to determine whether these patterns differ between different taxonomic groups. LocationSheffield area, UK. MethodsAquatic (macroinvertebrates, diatoms) and terrestrial (birds, plants, butterflies) organisms were surveyed at 41 sites across an urban river network. We...... of the geographic distance measures, although network distance remained significant for birds and some plant groups after removing the effect of environmental distance. Water-dispersed and neophyte plant groups were significantly related to network and flow distance. Main conclusionsThe results suggest that aquatic...

  18. Estimating extreme river discharges in Europe through a Bayesian network

    Science.gov (United States)

    Paprotny, Dominik; Morales-Nápoles, Oswaldo

    2017-06-01

    Large-scale hydrological modelling of flood hazards requires adequate extreme discharge data. In practise, models based on physics are applied alongside those utilizing only statistical analysis. The former require enormous computational power, while the latter are mostly limited in accuracy and spatial coverage. In this paper we introduce an alternate, statistical approach based on Bayesian networks (BNs), a graphical model for dependent random variables. We use a non-parametric BN to describe the joint distribution of extreme discharges in European rivers and variables representing the geographical characteristics of their catchments. Annual maxima of daily discharges from more than 1800 river gauges (stations with catchment areas ranging from 1.4 to 807 000 km2) were collected, together with information on terrain, land use and local climate. The (conditional) correlations between the variables are modelled through copulas, with the dependency structure defined in the network. The results show that using this method, mean annual maxima and return periods of discharges could be estimated with an accuracy similar to existing studies using physical models for Europe and better than a comparable global statistical model. Performance of the model varies slightly between regions of Europe, but is consistent between different time periods, and remains the same in a split-sample validation. Though discharge prediction under climate change is not the main scope of this paper, the BN was applied to a large domain covering all sizes of rivers in the continent both for present and future climate, as an example. Results show substantial variation in the influence of climate change on river discharges. The model can be used to provide quick estimates of extreme discharges at any location for the purpose of obtaining input information for hydraulic modelling.

  19. Discovery of cosmic fractals

    CERN Document Server

    Baryshev, Yuri

    2002-01-01

    This is the first book to present the fascinating new results on the largest fractal structures in the universe. It guides the reader, in a simple way, to the frontiers of astronomy, explaining how fractals appear in cosmic physics, from our solar system to the megafractals in deep space. It also offers a personal view of the history of the idea of self-similarity and of cosmological principles, from Plato's ideal architecture of the heavens to Mandelbrot's fractals in the modern physical cosmos. In addition, this invaluable book presents the great fractal debate in astronomy (after Luciano Pi

  20. Quantum waveguide theory of a fractal structure

    International Nuclear Information System (INIS)

    Lin Zhiping; Hou Zhilin; Liu Youyan

    2007-01-01

    The electronic transport properties of fractal quantum waveguide networks in the presence of a magnetic field are studied. A Generalized Eigen-function Method (GEM) is used to calculate the transmission and reflection coefficients of the studied systems unto the fourth generation Sierpinski fractal network with node number N=123. The relationship among the transmission coefficient T, magnetic flux Φ and wave vector k is investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux Φ are observed and discussed, and compared with the results of the tight-binding model

  1. River networks as ecological corridors: A coherent ecohydrological perspective

    Science.gov (United States)

    Rinaldo, Andrea; Gatto, Marino; Rodriguez-Iturbe, Ignacio

    2018-02-01

    This paper draws together several lines of argument to suggest that an ecohydrological framework, i.e. laboratory, field and theoretical approaches focused on hydrologic controls on biota, has contributed substantially to our understanding of the function of river networks as ecological corridors. Such function proves relevant to: the spatial ecology of species; population dynamics and biological invasions; the spread of waterborne disease. As examples, we describe metacommunity predictions of fish diversity patterns in the Mississippi-Missouri basin, geomorphic controls imposed by the fluvial landscape on elevational gradients of species' richness, the zebra mussel invasion of the same Mississippi-Missouri river system, and the spread of proliferative kidney disease in salmonid fish. We conclude that spatial descriptions of ecological processes in the fluvial landscape, constrained by their specific hydrologic and ecological dynamics and by the ecosystem matrix for interactions, i.e. the directional dispersal embedded in fluvial and host/pathogen mobility networks, have already produced a remarkably broad range of significant results. Notable scientific and practical perspectives are thus open, in the authors' view, to future developments in ecohydrologic research.

  2. Categorization of fractal plants

    International Nuclear Information System (INIS)

    Chandra, Munesh; Rani, Mamta

    2009-01-01

    Fractals in nature are always a result of some growth process. The language of fractals which has been created specifically for the description of natural growth process is called L-systems. Recently, superior iterations (essentially, investigated by Mann [Mann WR. Mean value methods in iteration. Proc Am Math Soc 1953;4:506-10 [MR0054846 (14,988f)

  3. Quantum Fractal Eigenstates

    OpenAIRE

    Casati, Giulio; Maspero, Giulio; Shepelyansky, Dima L.

    1997-01-01

    We study quantum chaos in open dynamical systems and show that it is characterized by quantum fractal eigenstates located on the underlying classical strange repeller. The states with longest life times typically reveal a scars structure on the classical fractal set.

  4. Thermodynamics for Fractal Statistics

    OpenAIRE

    da Cruz, Wellington

    1998-01-01

    We consider for an anyon gas its termodynamics properties taking into account the fractal statistics obtained by us recently. This approach describes the anyonic excitations in terms of equivalence classes labeled by fractal parameter or Hausdorff dimension $h$. An exact equation of state is obtained in the high-temperature and low-temperature limits, for gases with a constant density of states.

  5. Recognition of fractal graphs

    NARCIS (Netherlands)

    Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM

    1999-01-01

    Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems

  6. Forecasting of Groundwater Level using Artificial Neural Network by incorporating river recharge and river bank infiltration

    Directory of Open Access Journals (Sweden)

    Nizar Shamsuddin Mohd Khairul

    2017-01-01

    Full Text Available Groundwater tables forecasting during implemented river bank infiltration (RBI method is important to identify adequate storage of groundwater aquifer for water supply purposes. This study illustrates the development and application of artificial neural networks (ANNs to predict groundwater tables in two vertical wells located in confined aquifer adjacent to the Langat River. ANN model was used in this study is based on the long period forecasting of daily groundwater tables. ANN models were carried out to predict groundwater tables for 1 day ahead at two different geological materials. The input to the ANN models consider of daily rainfall, river stage, water level, stream flow rate, temperature and groundwater level. Two different type of ANNs structure were used to predict the fluctuation of groundwater tables and compared the best forecasting values. The performance of different models structure of the ANN is used to identify the fluctuation of the groundwater table and provide acceptable predictions. Dynamics prediction and time series of the system can be implemented in two possible ways of modelling. The coefficient correlation (R, Mean Square Error (MSE, Root Mean Square Error (RMSE and coefficient determination (R2 were chosen as the selection criteria of the best model. The statistical values for DW1 are 0.8649, 0.0356, 0.01, and 0.748 respectively. While for DW2 the statistical values are 0.7392, 0.0781, 0.0139, and 0.546 respectively. Based on these results, it clearly shows that accurate predictions can be achieved with time series 1-day ahead of forecasting groundwater table and the interaction between river and aquifer can be examine. The findings of the study can be used to assist policy marker to manage groundwater resources by using RBI method.

  7. Fractal physiology and the fractional calculus: a perspective.

    Science.gov (United States)

    West, Bruce J

    2010-01-01

    This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a

  8. The fractal nature of the european network for airborne radioactivity monitoring and its implications for the detectability of radioactive clouds

    International Nuclear Information System (INIS)

    Raes, F.; Graziani, G.

    1990-01-01

    Both the European Communities (EC) and the International Atomic Energy Agency (IAEA) have agreed upon a rapid exchange of radiological data among their member states, in case of nuclear emergencies. This will happen through an information network operated by the Commission of the European Communities (CEC) and/or through the Global Telecommunications System of WMO. Data coming from nation wide on-line monitoring networks will be among the very first to be exchanged. They will constitute an important source of information for the real-time assessment of the situation after large accidents with national and international impact. In particular when data on airborne radioactivity are availably early after an accidental release, they might be used to update long range transport model predictions for the period to follow. It is therefore important to analyze the national networks in an international context, to see what information they can offer and what limitations exist

  9. COMPLEX NETWORK SIMULATION OF FOREST NETWORK SPATIAL PATTERN IN PEARL RIVER DELTA

    Directory of Open Access Journals (Sweden)

    Y. Zeng

    2017-09-01

    Full Text Available Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network’s power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network’s degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network’s main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc. for networking a standard and base datum.

  10. Electromagnetic fields in fractal continua

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Mena, Baltasar [Instituto de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico); Patiño, Julián [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Morales, Daniel [Instituto Mexicano del Petróleo, México D.F., 07730 Mexico (Mexico)

    2013-04-01

    Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Φ{sub D}{sup 3}⊂E{sup 3} with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F{sup α} accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.

  11. Envisioning, quantifying, and managing thermal regimes on river networks

    Science.gov (United States)

    Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.

  12. The virtual education fractality: nature and organization

    Directory of Open Access Journals (Sweden)

    Osbaldo Turpo Gebera

    2013-04-01

    Full Text Available  The potential generated by ICT in education raises reflect on the underlying frameworks. In this sense, the fractal is an opportunity to explain how it organizes and manages virtual education.This approach recognizes that educational dynamics are recursive and iterative processes instituted as progressive sequences, by way of fractals. This understanding enables becoming as mediated and articulated successive levels. In each dimension are embodied own activities and in turn, involves the recurrence of subsequent levels as possible solving of problem situations. Thus, the knowledge built in response to a collaborative action, participation in networks, ranging from autonomous to the cultural level or conversely.

  13. Teaching about Fractals.

    Science.gov (United States)

    Willson, Stephen J.

    1991-01-01

    Described is a course designed to teach students about fractals using various teaching methods including the computer. Discussed are why the course drew students, prerequisites, clientele, textbook, grading, computer usage, and the syllabus. (KR)

  14. Fractals and foods.

    Science.gov (United States)

    Peleg, M

    1993-01-01

    Fractal geometry and related concepts have had only a very minor impact on food research. The very few reported food applications deal mainly with the characterization of the contours of agglomerated instant coffee particles, the surface morphology of treated starch particles, the microstructure of casein gels viewed as a product limited diffusion aggregation, and the jagged mechanical signatures of crunchy dry foods. Fractal geometry describes objects having morphological features that are scale invariant. A demonstration of the self-similarity of fractal objects can be found in the familiar morphology of cauliflower and broccoli, both foods. Processes regulated by nonlinear dynamics can exhibit a chaotic behavior that has fractal characteristics. Examples are mixing of viscous fluids, turbulence, crystallization, agglomeration, diffusion, and possibly food spoilage.

  15. Methane emissions from a human-dominated lowland coastal river network (Shanghai, China)

    Science.gov (United States)

    Wang, D.; Yu, Z.

    2017-12-01

    Evasion of methane (CH4) in streams and rivers play a critical role in global carbon (C) cycle, offsetting the C uptake by terrestrial ecosystems. However, little is known about CH4 emissions from lowland coastal rivers profoundly modified by anthropogenic perturbations. Here, we report results from a long-term, large-scale study of CH4 partial pressures (pCH4) and evasion rates in the Shanghai river network. The spatiotemporal variability of pCH4 was examined along a land-use gradient and the annual CH4 evasion were estimated to assess its role in regional C budget. During the study period, the median pCH4 from 87 surveyed rivers was 241 μatm. CH4 was oversaturated throughout the river network, CH4 hotpots were concentrated in the small urban rivers and highly discharge-dependent. The annual median fCH4 for each site ranged from 3.1 mg C•m-2•d-1 to 296.6 mg C•m-2•d-1. The annual CH4 evasion were 105 Gg CO2-eq•yr-1 and 96 Gg CO2-eq•yr-1 for the entire river network and the mainland rivers, respectively. Given the rapid urbanization in global coastal areas, more research is needed to quantify the role of lowland coastal rivers as a major landscape C source in global C budget.

  16. Fractal physiology and the fractional calculus: a perspective

    Directory of Open Access Journals (Sweden)

    Bruce J West

    2010-10-01

    Full Text Available This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. We review the allometric aggregation approach to the processing of physiologic time series as a way of determining the fractal character of the underlying phenomena. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. Fractional operators acting on fractal functions yield fractal functions, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine. Allometric control incorporates long-time memory, inverse power-law (IPL correlations, and long-range interactions in complex phenomena as manifest by IPL distributions. We hypothesize that allometric control, rather than homeostatic control, maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can be described using the fractional calculus to capture the dynamics of complex physiologic networks. This hypothesis is supported by a number of physiologic time series data.

  17. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    Science.gov (United States)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  18. Fractals for Geoengineering

    Science.gov (United States)

    Oleshko, Klaudia; de Jesús Correa López, María; Romero, Alejandro; Ramírez, Victor; Pérez, Olga

    2016-04-01

    The effectiveness of fractal toolbox to capture the scaling or fractal probability distribution, and simply fractal statistics of main hydrocarbon reservoir attributes, was highlighted by Mandelbrot (1995) and confirmed by several researchers (Zhao et al., 2015). Notwithstanding, after more than twenty years, it's still common the opinion that fractals are not useful for the petroleum engineers and especially for Geoengineering (Corbett, 2012). In spite of this negative background, we have successfully applied the fractal and multifractal techniques to our project entitled "Petroleum Reservoir as a Fractal Reactor" (2013 up to now). The distinguishable feature of Fractal Reservoir is the irregular shapes and rough pore/solid distributions (Siler, 2007), observed across a broad range of scales (from SEM to seismic). At the beginning, we have accomplished the detailed analysis of Nelson and Kibler (2003) Catalog of Porosity and Permeability, created for the core plugs of siliciclastic rocks (around ten thousand data were compared). We enriched this Catalog by more than two thousand data extracted from the last ten years publications on PoroPerm (Corbett, 2012) in carbonates deposits, as well as by our own data from one of the PEMEX, Mexico, oil fields. The strong power law scaling behavior was documented for the major part of these data from the geological deposits of contrasting genesis. Based on these results and taking into account the basic principles and models of the Physics of Fractals, introduced by Per Back and Kan Chen (1989), we have developed new software (Muukíl Kaab), useful to process the multiscale geological and geophysical information and to integrate the static geological and petrophysical reservoir models to dynamic ones. The new type of fractal numerical model with dynamical power law relations among the shapes and sizes of mesh' cells was designed and calibrated in the studied area. The statistically sound power law relations were established

  19. Fractal Electrochemical Microsupercapacitors

    KAUST Repository

    Hota, Mrinal Kanti

    2017-08-17

    The first successful fabrication of microsupercapacitors (μ-SCs) using fractal electrode designs is reported. Using sputtered anhydrous RuO thin-film electrodes as prototypes, μ-SCs are fabricated using Hilbert, Peano, and Moore fractal designs, and their performance is compared to conventional interdigital electrode structures. Microsupercapacitor performance, including energy density, areal and volumetric capacitances, changes with fractal electrode geometry. Specifically, the μ-SCs based on the Moore design show a 32% enhancement in energy density compared to conventional interdigital structures, when compared at the same power density and using the same thin-film RuO electrodes. The energy density of the Moore design is 23.2 mWh cm at a volumetric power density of 769 mW cm. In contrast, the interdigital design shows an energy density of only 17.5 mWh cm at the same power density. We show that active electrode surface area cannot alone explain the increase in capacitance and energy density. We propose that the increase in electrical lines of force, due to edging effects in the fractal electrodes, also contribute to the higher capacitance. This study shows that electrode fractal design is a viable strategy for improving the performance of integrated μ-SCs that use thin-film electrodes at no extra processing or fabrication cost.

  20. Fractal Electrochemical Microsupercapacitors

    KAUST Repository

    Hota, Mrinal Kanti; Jiang, Qiu; Mashraei, Yousof; Salama, Khaled N.; Alshareef, Husam N.

    2017-01-01

    The first successful fabrication of microsupercapacitors (μ-SCs) using fractal electrode designs is reported. Using sputtered anhydrous RuO thin-film electrodes as prototypes, μ-SCs are fabricated using Hilbert, Peano, and Moore fractal designs, and their performance is compared to conventional interdigital electrode structures. Microsupercapacitor performance, including energy density, areal and volumetric capacitances, changes with fractal electrode geometry. Specifically, the μ-SCs based on the Moore design show a 32% enhancement in energy density compared to conventional interdigital structures, when compared at the same power density and using the same thin-film RuO electrodes. The energy density of the Moore design is 23.2 mWh cm at a volumetric power density of 769 mW cm. In contrast, the interdigital design shows an energy density of only 17.5 mWh cm at the same power density. We show that active electrode surface area cannot alone explain the increase in capacitance and energy density. We propose that the increase in electrical lines of force, due to edging effects in the fractal electrodes, also contribute to the higher capacitance. This study shows that electrode fractal design is a viable strategy for improving the performance of integrated μ-SCs that use thin-film electrodes at no extra processing or fabrication cost.

  1. Random walk through fractal environments

    OpenAIRE

    Isliker, H.; Vlahos, L.

    2002-01-01

    We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is ...

  2. Positron annihilation near fractal surfaces

    International Nuclear Information System (INIS)

    Lung, C.W.; Deng, K.M.; Xiong, L.Y.

    1991-07-01

    A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs

  3. Fractal THz metamaterials

    DEFF Research Database (Denmark)

    Malureanu, Radu; Jepsen, Peter Uhd; Xiao, S.

    2010-01-01

    applications. THz radiation can be employed for various purposes, among them the study of vibrations in biological molecules, motion of electrons in semiconductors and propagation of acoustic shock waves in crystals. We propose here a new THz fractal MTM design that shows very high transmission in the desired...... frequency range as well as a clear differentiation between one polarisation and another. Based on theoretical predictions we fabricated and measured a fractal based THz metamaterial that shows more than 60% field transmission at around 1THz for TE polarized light while the TM waves have almost 80% field...... transmission peak at 0.6THz. One of the main characteristics of this design is its tunability by design: by simply changing the length of the fractal elements one can choose the operating frequency window. The modelling, fabrication and characterisation results will be presented in this paper. Due to the long...

  4. Random a-adic groups and random net fractals

    Energy Technology Data Exchange (ETDEWEB)

    Li Yin [Department of Mathematics, Nanjing University, Nanjing 210093 (China)], E-mail: Lyjerry7788@hotmail.com; Su Weiyi [Department of Mathematics, Nanjing University, Nanjing 210093 (China)], E-mail: suqiu@nju.edu.cn

    2008-08-15

    Based on random a-adic groups, this paper investigates the relationship between the existence conditions of a positive flow in a random network and the estimation of the Hausdorff dimension of a proper random net fractal. Subsequently we describe some particular random fractals for which our results can be applied. Finally the Mauldin and Williams theorem is shown to be very important example for a random Cantor set with application in physics as shown in E-infinity theory.

  5. Fractal dimension of cantori

    International Nuclear Information System (INIS)

    Li, W.; Bak, P.

    1986-01-01

    At a critical point the golden-mean Kolmogorov-Arnol'd-Moser trajectory of Chirikov's standard map breaks up into a fractal orbit called a cantorus. The transition describes a pinning of the incommensurate phase of the Frenkel-Kontorowa model. We find that the fractal dimension of the cantorus is D = 0 and that the transition from the Kolmogorov-Arnol'd-Moser trajectory with dimension D = 1 to the cantorus is governed by an exponent ν = 0.98. . . and a universal scaling function. It is argued that the exponent is equal to that of the Lyapunov exponent

  6. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  7. Fractals and chaos

    CERN Document Server

    Earnshow, R; Jones, H

    1991-01-01

    This volume is based upon the presentations made at an international conference in London on the subject of 'Fractals and Chaos'. The objective of the conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors and the authors, revised and updated papers were produced. These papers are contained in the present volume. We thank all those who contributed to this effort by way of planning and organisation, and also all those who helped in the production of this volume. In particular, we wish to express our appreciation to Gerhard Rossbach, Computer Science Editor, Craig Van Dyck, Production Director, and Nancy A. Rogers, who did the typesetting. A. J. Crilly R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word 'fractal' was coined by Benoit Mandelbrot i...

  8. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.

    2014-09-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  9. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson

    2014-01-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  10. Biological signatures of dynamic river networks from a coupled landscape evolution and neutral community model

    Science.gov (United States)

    Stokes, M.; Perron, J. T.

    2017-12-01

    Freshwater systems host exceptionally species-rich communities whose spatial structure is dictated by the topology of the river networks they inhabit. Over geologic time, river networks are dynamic; drainage basins shrink and grow, and river capture establishes new connections between previously separated regions. It has been hypothesized that these changes in river network structure influence the evolution of life by exchanging and isolating species, perhaps boosting biodiversity in the process. However, no general model exists to predict the evolutionary consequences of landscape change. We couple a neutral community model of freshwater organisms to a landscape evolution model in which the river network undergoes drainage divide migration and repeated river capture. Neutral community models are macro-ecological models that include stochastic speciation and dispersal to produce realistic patterns of biodiversity. We explore the consequences of three modes of speciation - point mutation, time-protracted, and vicariant (geographic) speciation - by tracking patterns of diversity in time and comparing the final result to an equilibrium solution of the neutral model on the final landscape. Under point mutation, a simple model of stochastic and instantaneous speciation, the results are identical to the equilibrium solution and indicate the dominance of the species-area relationship in forming patterns of diversity. The number of species in a basin is proportional to its area, and regional species richness reaches its maximum when drainage area is evenly distributed among sub-basins. Time-protracted speciation is also modeled as a stochastic process, but in order to produce more realistic rates of diversification, speciation is not assumed to be instantaneous. Rather, each new species must persist for a certain amount of time before it is considered to be established. When vicariance (geographic speciation) is included, there is a transient signature of increased

  11. Evaluation of statistical methods for quantifying fractal scaling in water-quality time series with irregular sampling

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2018-02-01

    Full Text Available River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. Fractal scaling presents challenges to the identification of deterministic trends because (1 fractal scaling has the potential to lead to false inference about the statistical significance of trends and (2 the abundance of irregularly spaced data in water-quality monitoring networks complicates efforts to quantify fractal scaling. Traditional methods for estimating fractal scaling – in the form of spectral slope (β or other equivalent scaling parameters (e.g., Hurst exponent – are generally inapplicable to irregularly sampled data. Here we consider two types of estimation approaches for irregularly sampled data and evaluate their performance using synthetic time series. These time series were generated such that (1 they exhibit a wide range of prescribed fractal scaling behaviors, ranging from white noise (β  =  0 to Brown noise (β  =  2 and (2 their sampling gap intervals mimic the sampling irregularity (as quantified by both the skewness and mean of gap-interval lengths in real water-quality data. The results suggest that none of the existing methods fully account for the effects of sampling irregularity on β estimation. First, the results illustrate the danger of using interpolation for gap filling when examining autocorrelation, as the interpolation methods consistently underestimate or overestimate β under a wide range of prescribed β values and gap distributions. Second, the widely used Lomb–Scargle spectral method also consistently underestimates β. A previously published modified form, using only the lowest 5 % of the frequencies for spectral slope estimation, has very poor precision, although the overall bias is small. Third, a recent wavelet-based method, coupled with an aliasing filter, generally has the smallest bias and root-mean-squared error among

  12. Evaluation of statistical methods for quantifying fractal scaling in water-quality time series with irregular sampling

    Science.gov (United States)

    Zhang, Qian; Harman, Ciaran J.; Kirchner, James W.

    2018-02-01

    River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. Fractal scaling presents challenges to the identification of deterministic trends because (1) fractal scaling has the potential to lead to false inference about the statistical significance of trends and (2) the abundance of irregularly spaced data in water-quality monitoring networks complicates efforts to quantify fractal scaling. Traditional methods for estimating fractal scaling - in the form of spectral slope (β) or other equivalent scaling parameters (e.g., Hurst exponent) - are generally inapplicable to irregularly sampled data. Here we consider two types of estimation approaches for irregularly sampled data and evaluate their performance using synthetic time series. These time series were generated such that (1) they exhibit a wide range of prescribed fractal scaling behaviors, ranging from white noise (β = 0) to Brown noise (β = 2) and (2) their sampling gap intervals mimic the sampling irregularity (as quantified by both the skewness and mean of gap-interval lengths) in real water-quality data. The results suggest that none of the existing methods fully account for the effects of sampling irregularity on β estimation. First, the results illustrate the danger of using interpolation for gap filling when examining autocorrelation, as the interpolation methods consistently underestimate or overestimate β under a wide range of prescribed β values and gap distributions. Second, the widely used Lomb-Scargle spectral method also consistently underestimates β. A previously published modified form, using only the lowest 5 % of the frequencies for spectral slope estimation, has very poor precision, although the overall bias is small. Third, a recent wavelet-based method, coupled with an aliasing filter, generally has the smallest bias and root-mean-squared error among all methods for a wide range of

  13. Artificial Neural Networks (ANNs for flood forecasting at Dongola Station in the River Nile, Sudan

    Directory of Open Access Journals (Sweden)

    Sulafa Hag Elsafi

    2014-09-01

    Full Text Available Heavy seasonal rains cause the River Nile in Sudan to overflow and flood the surroundings areas. The floods destroy houses, crops, roads, and basic infrastructure, resulting in the displacement of people. This study aimed to forecast the River Nile flow at Dongola Station in Sudan using an Artificial Neural Network (ANN as a modeling tool and validated the accuracy of the model against actual flow. The ANN model was formulated to simulate flows at a certain location in the river reach, based on flow at upstream locations. Different procedures were applied to predict flooding by the ANN. Readings from stations along the Blue Nile, White Nile, Main Nile, and River Atbara between 1965 and 2003 were used to predict the likelihood of flooding at Dongola Station. The analysis indicated that the ANN provides a reliable means of detecting the flood hazard in the River Nile.

  14. Generating hierarchical scale free-graphs from fractals

    NARCIS (Netherlands)

    Komjáthy, J.; Simon, K.

    2011-01-01

    Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabási, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal ¿. With rigorous mathematical results we verify that our model captures some of the most important features of

  15. Predicting the distribution of bed material accumulation using river network sediment budgets

    Science.gov (United States)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  16. Improving Watershed-Scale Hydrodynamic Models by Incorporating Synthetic 3D River Bathymetry Network

    Science.gov (United States)

    Dey, S.; Saksena, S.; Merwade, V.

    2017-12-01

    Digital Elevation Models (DEMs) have an incomplete representation of river bathymetry, which is critical for simulating river hydrodynamics in flood modeling. Generally, DEMs are augmented with field collected bathymetry data, but such data are available only at individual reaches. Creating a hydrodynamic model covering an entire stream network in the basin requires bathymetry for all streams. This study extends a conceptual bathymetry model, River Channel Morphology Model (RCMM), to estimate the bathymetry for an entire stream network for application in hydrodynamic modeling using a DEM. It is implemented at two large watersheds with different relief and land use characterizations: coastal Guadalupe River basin in Texas with flat terrain and a relatively urban White River basin in Indiana with more relief. After bathymetry incorporation, both watersheds are modeled using HEC-RAS (1D hydraulic model) and Interconnected Pond and Channel Routing (ICPR), a 2-D integrated hydrologic and hydraulic model. A comparison of the streamflow estimated by ICPR at the outlet of the basins indicates that incorporating bathymetry influences streamflow estimates. The inundation maps show that bathymetry has a higher impact on flat terrains of Guadalupe River basin when compared to the White River basin.

  17. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  18. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  19. Using Geoscience and Geostatistics to Optimize Groundwater Monitoring Networks at the Savannah River Site

    International Nuclear Information System (INIS)

    Tuckfield, R.C.

    2001-01-01

    A team of scientists, engineers, and statisticians was assembled to review the operation efficiency of groundwater monitoring networks at US Department of Energy Savannah River Site (SRS). Subsequent to a feasibility study, this team selected and conducted an analysis of the A/M area groundwater monitoring well network. The purpose was to optimize the number of groundwater wells requisite for monitoring the plumes of the principal constituent of concern, viz., trichloroethylene (TCE). The project gathered technical expertise from the Savannah River Technology Center (SRTC), the Environmental Restoration Division (ERD), and the Environmental Protection Department (EPD) of SRS

  20. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed antenna to date, and a fourth-order Koch Snowflake monopole, which utilises a Sierpinski gasket fractal for ink reduction, are demonstrated. It is shown that fractals prove to be a successful method of reducing fabrication costs in inkjet-printed antennas, while retaining or enhancing printed antenna performance. © 2012 The Institution of Engineering and Technology.

  1. Fractals and humor

    Science.gov (United States)

    Martin, Demetri

    2015-03-01

    Demetri Maritn prepared this palindromic poem as his project for Michael Frame's fractal geometry class at Yale. Notice the first, fourth, and seventh words in the second and next-to-second lines are palindromes, the first two and last two lines are palindromes, the middle line, "Be still if I fill its ebb" minus its last letter is a palindrome, and the entire poem is a palindrome...

  2. Categorization of new fractal carpets

    International Nuclear Information System (INIS)

    Rani, Mamta; Goel, Saurabh

    2009-01-01

    Sierpinski carpet is one of the very beautiful fractals from the historic gallery of classical fractals. Carpet designing is not only a fascinating activity in computer graphics, but it has real applications in carpet industry as well. One may find illusionary delighted carpets designed here, which are useful in real designing of carpets. In this paper, we attempt to systematize their generation and put them into categories. Each next category leads to a more generalized form of the fractal carpet.

  3. Bilipschitz embedding of homogeneous fractals

    OpenAIRE

    Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng

    2014-01-01

    In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.

  4. Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China

    Directory of Open Access Journals (Sweden)

    C. W. Dawson

    2002-01-01

    Full Text Available While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron (MLP, and the radial basis function network (RBF. Using six-hourly rainfall-runoff data for the River Yangtze at Yichang (upstream of the Three Gorges Dam for the period 1991 to 1993, it is shown that both neural network types can simulate river flows beyond the range of the training set. In addition, an evaluation of alternative RBF transfer functions demonstrates that the popular Gaussian function, often used in RBF networks, is not necessarily the ‘best’ function to use for river flow forecasting. Comparisons are also made between these neural networks and conventional statistical techniques; stepwise multiple linear regression, auto regressive moving average models and a zero order forecasting approach. Keywords: Artificial neural network, multilayer perception, radial basis function, flood forecasting

  5. Delay/Disruption Tolerant Network-Based Message Forwarding for a River Pollution Monitoring Wireless Sensor Network Application.

    Science.gov (United States)

    Velásquez-Villada, Carlos; Donoso, Yezid

    2016-03-25

    Communications from remote areas that may be of interest is still a problem. Many innovative projects applied to remote sites face communications difficulties. The GOLDFISH project was an EU-funded project for river pollution monitoring in developing countries. It had several sensor clusters, with floating WiFi antennas, deployed along a downstream river's course. Sensor clusters sent messages to a Gateway installed on the riverbank. This gateway sent the messages, through a backhaul technology, to an Internet server where data was aggregated over a map. The communication challenge in this scenario was produced by the antennas' movement and network backhaul availability. Since the antennas were floating on the river, communications could be disrupted at any time. Also, 2G/3G availability near the river was not constant. For non-real-time applications, we propose a Delay/Disruption Tolerant Network (DTN)-based solution where all nodes have persistent storage capabilities and DTN protocols to be able to wait minutes or hours to transmit. A mechanical backhaul will periodically visit the river bank where the gateway is installed and it will automatically collect sensor data to be carried to an Internet-covered spot. The proposed forwarding protocol delivers around 98% of the messages for this scenario, performing better than other well-known DTN routing protocols.

  6. FONT DISCRIMINATIO USING FRACTAL DIMENSIONS

    Directory of Open Access Journals (Sweden)

    S. Mozaffari

    2014-09-01

    Full Text Available One of the related problems of OCR systems is discrimination of fonts in machine printed document images. This task improves performance of general OCR systems. Proposed methods in this paper are based on various fractal dimensions for font discrimination. First, some predefined fractal dimensions were combined with directional methods to enhance font differentiation. Then, a novel fractal dimension was introduced in this paper for the first time. Our feature extraction methods which consider font recognition as texture identification are independent of document content. Experimental results on different pages written by several font types show that fractal geometry can overcome the complexities of font recognition problem.

  7. Reengineering through natural structures: the fractal factory

    Science.gov (United States)

    Sihn, Wilfried

    1995-08-01

    Many branches of European industry have had to recognize that their lead in the world market has been caught up with, particularly through Asian competition. In many cases a deficit of up to 30% in costs and productivity already exists. The reasons are rigid, Tayloristic company structures. The companies are not in a position to react flexibly to constantly changing environmental conditions. This article illustrates the methods of the `fractal company' which are necessary to solve the structure crisis. The fractal company distinguishes itself through its dynamics and its vitality, as well as its independent reaction to the changing circumstances. The developed methods, procedures, and framework conditions such as company structuring, human networking, hierarchy formation, and models for renumeration and working time are explained. They are based on practical examples from IPA's work with the automobile industry, their suppliers, and the engineering industry.

  8. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez; Cook, Benjamin Stassen; Jabbour, Ghassan E.; Shamim, Atif

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed

  9. mizuRoute version 1: A river network routing tool for a continental domain water resources applications

    Science.gov (United States)

    Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.

  10. The ordered network structure and its prediction for the big floods of the Changjiang River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Men, Ke-Pei; Zhao, Kai; Zhu, Shu-Dan [Nanjing Univ. of Information Science and Technology, Nanjing (China). College of Mathematics and Statistics

    2013-12-15

    According to the latest statistical data of hydrology, a total of 21 floods took place over the Changjiang (Yangtze) River Basins from 1827 to 2012 and showed an obvious commensurable orderliness. In the guidance of the information forecasting theory of Wen-Bo Weng, based on previous research results, combining ordered analysis with complex network technology, we focus on the summary of the ordered network structure of the Changjiang floods, supplement new information, further optimize networks, construct the 2D- and 3D-ordered network structure and make prediction research. Predictions show that the future big deluges will probably occur over the Changjiang River Basin around 2013-2014, 2020-2021, 2030, 2036, 2051, and 2058. (orig.)

  11. The ordered network structure and its prediction for the big floods of the Changjiang River Basins

    International Nuclear Information System (INIS)

    Men, Ke-Pei; Zhao, Kai; Zhu, Shu-Dan

    2013-01-01

    According to the latest statistical data of hydrology, a total of 21 floods took place over the Changjiang (Yangtze) River Basins from 1827 to 2012 and showed an obvious commensurable orderliness. In the guidance of the information forecasting theory of Wen-Bo Weng, based on previous research results, combining ordered analysis with complex network technology, we focus on the summary of the ordered network structure of the Changjiang floods, supplement new information, further optimize networks, construct the 2D- and 3D-ordered network structure and make prediction research. Predictions show that the future big deluges will probably occur over the Changjiang River Basin around 2013-2014, 2020-2021, 2030, 2036, 2051, and 2058. (orig.)

  12. “Yonne River Corridor” Network of Yonne Cities: the River as Tourist Route

    Directory of Open Access Journals (Sweden)

    Christina Matika

    2014-12-01

    Full Text Available Long living space for many animal and plant species, the river system and its tributaries represent a principal wealth, always valid for human settlements in the Yonne valley, France. In my case study the major questions raised as starting points are: 1. How the infrastructure is related to the landscape of Yonne. 2. Which could be the possibilities and potentialities to treat this local resource. 3. How local authorities could start a project of exploitation and valorization of the water region. 4. Which interventions could enforce the dynamics of the region. 5. How to articulate cities in discontinuity around the Yonne river, taking into account the flood threat, but in a sustainable way. 6. And last but not least, how can we face the problem of rupture between the banks of the river and the urban space, regaining the docks.

  13. Fractal differential equations and fractal-time dynamical systems

    Indian Academy of Sciences (India)

    like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation ... involving scaling and memory effects. But most of ..... begin by recalling the definition of the Riemann integral in ordinary calculus [33]. Let g: [a ...

  14. Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River

    International Nuclear Information System (INIS)

    Zhang, D.; Yan, X.P.; Yang, Z.L.; Wall, A.; Wang, J.

    2013-01-01

    Formal safety assessment (FSA), as a structured and systematic risk evaluation methodology, has been increasingly and broadly used in the shipping industry around the world. Concerns have been raised as to navigational safety of the Yangtze River, China's largest and the world's busiest inland waterway. Over the last few decades, the throughput of ships in the Yangtze River has increased rapidly due to the national development of the Middle and Western parts of China. Accidents such as collisions, groundings, contacts, oil-spills and fires occur repeatedly, often causing serious consequences. In order to improve the navigational safety in the Yangtze River, this paper estimates the navigational risk of the Yangtze River using the FSA concept and a Bayesian network (BN) technique. The navigational risk model is established by considering both probability and consequences of accidents with respect to a risk matrix method, followed by a scenario analysis to demonstrate the application of the proposed model

  15. Effect of watershed urbanization on N2O emissions from the Chongqing metropolitan river network, China

    Science.gov (United States)

    He, Yixin; Wang, Xiaofeng; Chen, Huai; Yuan, Xingzhong; Wu, Ning; Zhang, Yuewei; Yue, Junsheng; Zhang, Qiaoyong; Diao, Yuanbin; Zhou, Lilei

    2017-12-01

    Watershed urbanization, an integrated anthropogenic perturbation, is another considerable global concern in addition to that of global warming and may significantly enrich the N loadings of watersheds, which then greatly influences the nitrous oxide (N2O) production and fluxes of these aquatic systems. However, little is known about the N2O dynamics in human-dominated metropolitan river networks. In this study, we present the temporal and spatial variations in N2O saturation and emission in the Chongqing metropolitan river network, which is undergoing intensified urbanization. The N2O saturation and fluxes at 84 sampling sites ranged from 126% to 10536% and from 4.5 to 1566.8 μmol N2O m-2 d-1, with means of 1780% and 261 μmol N2O m-2 d-1. The riverine N2O saturation and fluxes increased along with the urbanization gradient and urbanization rate, with disproportionately higher values in urban rivers due to the N2O-rich sewage inputs and enriched in situ N substrates. We found a clear seasonal pattern of N2O saturation, which was co-regulated by both water temperature and precipitation. Regression analysis indicated that the N substrates and dissolved oxygen (DO) that controlled nitrogen metabolism acted as good predictors of the N2O emissions of urban river networks. Particularly, phosphorus (P) and hydromorphological factors (water velocity, river size and bottom substrate) had stronger relationships with the N2O saturation and could also be used to predict the N2O emission hotspots in regions with rapid urbanization. In addition, the default emission factors (EF5-r) used in the Intergovernmental Panel on Climate Change (IPCC) methodology may need revision given the differences among the physical and chemical factors in different rivers, especially urban rivers.

  16. Interaction of Aquifer and River-Canal Network near Well Field.

    Science.gov (United States)

    Ghosh, Narayan C; Mishra, Govinda C; Sandhu, Cornelius S S; Grischek, Thomas; Singh, Vikrant V

    2015-01-01

    The article presents semi-analytical mathematical models to asses (1) enhancements of seepage from a canal and (2) induced flow from a partially penetrating river in an unconfined aquifer consequent to groundwater withdrawal in a well field in the vicinity of the river and canal. The nonlinear exponential relation between seepage from a canal reach and hydraulic head in the aquifer beneath the canal reach is used for quantifying seepage from the canal reach. Hantush's (1967) basic solution for water table rise due to recharge from a rectangular spreading basin in absence of pumping well is used for generating unit pulse response function coefficients for water table rise in the aquifer. Duhamel's convolution theory and method of superposition are applied to obtain water table position due to pumping and recharge from different canal reaches. Hunt's (1999) basic solution for river depletion due to constant pumping from a well in the vicinity of a partially penetrating river is used to generate unit pulse response function coefficients. Applying convolution technique and superposition, treating the recharge from canal reaches as recharge through conceptual injection wells, river depletion consequent to variable pumping and recharge is quantified. The integrated model is applied to a case study in Haridwar (India). The well field consists of 22 pumping wells located in the vicinity of a perennial river and a canal network. The river bank filtrate portion consequent to pumping is quantified. © 2014, National GroundWater Association.

  17. River Networks As Ecological Corridors for Species, Populations and Pathogens of Water-Borne Disease

    Science.gov (United States)

    Rinaldo, A.

    2014-12-01

    River basins are a natural laboratory for the study of the integration of hydrological, ecological and geomorphological processes. Moving from morphological and functional analyses of dendritic geometries observed in Nature over a wide range of scales, this Lecture addresses essential ecological processes that take place along dendritic structures, hydrology-driven and controlled, like e.g.: population migrations and human settlements, that historically proceeded along river networks to follow water supply routes; riparian ecosystems composition that owing to their positioning along streams play crucial roles in their watersheds and in the loss of biodiversity proceeding at unprecedented rates; waterborne disease spreading, like epidemic cholera that exhibits epidemic patterns that mirror those of watercourses and of human mobility and resurgences upon heavy rainfall. Moreover, the regional incidence of Schistosomiasis, a parasitic waterborne disease, and water resources developments prove tightly related, and proliferative kidney disease in fish thrives differently in pristine and engineered watercourses: can we establish quantitatively the critical linkages with hydrologic drivers and controls? How does connectivity within a river network affect community composition or the spreading mechanisms? Does the river basin act as a template for biodiversity or for species' persistence? Are there hydrologic controls on epidemics of water-borne disease? Here, I shall focus on the noteworthy scientific perspectives provided by spatially explicit eco-hydrological studies centered on river networks viewed as ecological corridors for species, populations and pathogens of waterborne disease. A notable methodological coherence is granted by the mathematical description of river networks as the support for reactive transport. The Lecture overviews a number of topics idiosyncratically related to my own research work but ideally aimed at a coherent body of materials and methods. A

  18. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.

    Science.gov (United States)

    Servais, Pierre; Garcia-Armisen, Tamara; George, Isabelle; Billen, Gilles

    2007-04-01

    The Seine river watershed (France) is a deeply anthropogenically impacted area, due to the high population density, intense industrial activities and intensive agriculture. The water quality and ecological functioning of the different rivers of the Seine drainage network have been extensively studied during the last fifteen years within the framework of a large French multidisciplinary scientific program (PIREN Seine program). This paper presents a synthesis of the main data gained in the scope of this program concerning the microbiological water contamination of the rivers of the Seine drainage network. The more common indicator of fecal contamination (fecal coliforms) was mainly used; some complementary works used E. coli and intestinal enterococci as alternative fecal indicators. Point sources (outfall of wastewater treatment plants) and non point sources (surface runoff and soil leaching) of fecal pollution to the rivers of the watershed were quantified. Results showed that, at the scale of a large urbanised watershed as the Seine basin, the input of fecal micro-organisms by non-point sources is much lower than the inputs by point sources. However, the local impact of diffuse non-human sources (especially surface runoff of pastured fields) can be of major importance on the microbiological quality of small headwater rivers. Fecal contamination of the main rivers of the Seine watershed (Seine, Marne, Oise rivers) was studied showing high level of microbiological pollution when compared to European guidelines for bathing waters. The strong negative impact of treated wastewater effluents outfall on the microbiological quality of receiving rivers was observed in different areas of the watershed. Once released in rivers, culturable fecal bacteria disappeared relatively rapidly due to mortality (protozoan grazing, lysis) or loss of culturability induced by stress conditions (sunlight effect, nutrient concentration, temperature). Mortality rates of E. coli were studied

  19. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  20. Fractals and multifractals in physics

    International Nuclear Information System (INIS)

    Arcangelis, L. de.

    1987-01-01

    We present a general introduction to the world of fractals. The attention is mainly devoted to stress how fractals do indeed appear in the real world and to find quantitative methods for characterizing their properties. The idea of multifractality is also introduced and it is presented in more details within the framework of the percolation problem

  1. A Double-Minded Fractal

    Science.gov (United States)

    Simoson, Andrew J.

    2009-01-01

    This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)

  2. Turbulent wakes of fractal objects

    NARCIS (Netherlands)

    Staicu, A.D.; Mazzi, B.; Vassilicos, J.C.; Water, van de W.

    2003-01-01

    Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are

  3. Ghost quintessence in fractal gravity

    Indian Academy of Sciences (India)

    In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost dark energy model which was recently suggested to explain the present acceleration of the cosmic expansion. Next, we establish a connection between the quintessence scalar field and fractal ghost dark energy density.

  4. Contour fractal analysis of grains

    Science.gov (United States)

    Guida, Giulia; Casini, Francesca; Viggiani, Giulia MB

    2017-06-01

    Fractal analysis has been shown to be useful in image processing to characterise the shape and the grey-scale complexity in different applications spanning from electronic to medical engineering (e.g. [1]). Fractal analysis consists of several methods to assign a dimension and other fractal characteristics to a dataset describing geometric objects. Limited studies have been conducted on the application of fractal analysis to the classification of the shape characteristics of soil grains. The main objective of the work described in this paper is to obtain, from the results of systematic fractal analysis of artificial simple shapes, the characterization of the particle morphology at different scales. The long term objective of the research is to link the microscopic features of granular media with the mechanical behaviour observed in the laboratory and in situ.

  5. Encounters with chaos and fractals

    CERN Document Server

    Gulick, Denny

    2012-01-01

    Periodic Points Iterates of Functions Fixed Points Periodic Points Families of Functions The Quadratic Family Bifurcations Period-3 Points The Schwarzian Derivative One-Dimensional Chaos Chaos Transitivity and Strong Chaos Conjugacy Cantor Sets Two-Dimensional Chaos Review of Matrices Dynamics of Linear FunctionsNonlinear Maps The Hénon Map The Horseshoe Map Systems of Differential Equations Review of Systems of Differential Equations Almost Linearity The Pendulum The Lorenz System Introduction to Fractals Self-Similarity The Sierpiński Gasket and Other "Monsters"Space-Filling Curves Similarity and Capacity DimensionsLyapunov Dimension Calculating Fractal Dimensions of Objects Creating Fractals Sets Metric Spaces The Hausdorff Metric Contractions and Affine Functions Iterated Function SystemsAlgorithms for Drawing Fractals Complex Fractals: Julia Sets and the Mandelbrot Set Complex Numbers and Functions Julia Sets The Mandelbrot Set Computer Programs Answers to Selected Exercises References Index.

  6. Delay/Disruption Tolerant Network-Based Message Forwarding for a River Pollution Monitoring Wireless Sensor Network Application

    Directory of Open Access Journals (Sweden)

    Carlos Velásquez-Villada

    2016-03-01

    Full Text Available Communications from remote areas that may be of interest is still a problem. Many innovative projects applied to remote sites face communications difficulties. The GOLDFISH project was an EU-funded project for river pollution monitoring in developing countries. It had several sensor clusters, with floating WiFi antennas, deployed along a downstream river’s course. Sensor clusters sent messages to a Gateway installed on the riverbank. This gateway sent the messages, through a backhaul technology, to an Internet server where data was aggregated over a map. The communication challenge in this scenario was produced by the antennas’ movement and network backhaul availability. Since the antennas were floating on the river, communications could be disrupted at any time. Also, 2G/3G availability near the river was not constant. For non-real-time applications, we propose a Delay/Disruption Tolerant Network (DTN-based solution where all nodes have persistent storage capabilities and DTN protocols to be able to wait minutes or hours to transmit. A mechanical backhaul will periodically visit the river bank where the gateway is installed and it will automatically collect sensor data to be carried to an Internet-covered spot. The proposed forwarding protocol delivers around 98% of the messages for this scenario, performing better than other well-known DTN routing protocols.

  7. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  8. Fractals: Giant impurity nonlinearities in optics of fractal clusters

    International Nuclear Information System (INIS)

    Butenko, A.V.; Shalaev, V.M.; Stockman, M.I.

    1988-01-01

    A theory of nonlinear optical properties of fractals is developed. Giant enhancement of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement occurs if the exciting radiation frequency lies within the absorption band of the fractal. The giant optical nonlinearities are due to existence of high local electric fields in the sites of impurity locations. Such fields are due to the inhomogeneously broadened character of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming particles (monomers). The field enhancement is proportional to the Q-factor of the resonance of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase conjugation (PC) of light waves are enhanced to a much greater degree than generation of higher harmonics. In a general case the susceptibility of a higher-order is enhanced in the maximum way if the process includes ''subtraction'' of photons (at least one of the strong field frequencies enters the susceptibility with the minus sign). Alternatively, enhancement for the highest-order harmonic generation (when all the photons are ''accumulated'') is minimal. The predicted phenomena bear information on spectral properties of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow (with the natural width) resonant structure, which is proper to an isolated monomer of a fractal, is predicted to be observed. (orig.)

  9. USING ARTIFICIAL NEURAL NETWORKS (ANNs FOR SEDIMENT LOAD FORECASTING OF TALKHEROOD RIVER MOUTH

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2009-01-01

    Full Text Available Without a doubt the carried sediment load by a river is the most important factor in creating and formation of the related Delta in the river mouth. Therefore, accurate forecasting of the river sediment load can play a significant role for study on the river Delta. However considering the complexity and non-linearity of the phenomenon, the classic experimental or physical-based approaches usually could not handle the problem so well. In this paper, Artificial Neural Network (ANN as a non-linear black box interpolator tool is used for modeling suspended sediment load which discharges to the Talkherood river mouth, located in northern west Iran. For this purpose, observed time series of water discharge at current and previous time steps are used as the model input neurons and the model output neuron will be the forecasted sediment load at the current time step. In this way, various schemes of the ANN approach are examined in order to achieve the best network as well as the best architecture of the model. The obtained results are also compared with the results of two other classic methods (i.e., linear regression and rating curve methods in order to approve the efficiency and ability of the proposed method.

  10. Consistent initial conditions for the Saint-Venant equations in river network modeling

    Directory of Open Access Journals (Sweden)

    C.-W. Yu

    2017-09-01

    Full Text Available Initial conditions for flows and depths (cross-sectional areas throughout a river network are required for any time-marching (unsteady solution of the one-dimensional (1-D hydrodynamic Saint-Venant equations. For a river network modeled with several Strahler orders of tributaries, comprehensive and consistent synoptic data are typically lacking and synthetic starting conditions are needed. Because of underlying nonlinearity, poorly defined or inconsistent initial conditions can lead to convergence problems and long spin-up times in an unsteady solver. Two new approaches are defined and demonstrated herein for computing flows and cross-sectional areas (or depths. These methods can produce an initial condition data set that is consistent with modeled landscape runoff and river geometry boundary conditions at the initial time. These new methods are (1 the pseudo time-marching method (PTM that iterates toward a steady-state initial condition using an unsteady Saint-Venant solver and (2 the steady-solution method (SSM that makes use of graph theory for initial flow rates and solution of a steady-state 1-D momentum equation for the channel cross-sectional areas. The PTM is shown to be adequate for short river reaches but is significantly slower and has occasional non-convergent behavior for large river networks. The SSM approach is shown to provide a rapid solution of consistent initial conditions for both small and large networks, albeit with the requirement that additional code must be written rather than applying an existing unsteady Saint-Venant solver.

  11. 'HYDROTELERAY-MINITEL', the French national network for the radiological survey of the rivers

    International Nuclear Information System (INIS)

    Linden, G.

    1998-01-01

    The HYDROTELERAY network allows the continuous measurement of radioactivity in the rivers stream. It currently comprises five measuring stations. Each one includes: an autonomous measuring line; a probe immersed in a 25-litre stainless steel tank; the tank is supplied with water from the river; an hydro-collector allowing to take a sample of water directly from the tank if an alarm happens; a PC containing an 'ACCUSPEC INa PLUS' data acquisition card for the INa measurements as well as a MODEM card to transmit data to the central managing unit. (R.P.)

  12. Fractal analysis of sulphidic mineral

    Directory of Open Access Journals (Sweden)

    Miklúšová Viera

    2002-03-01

    Full Text Available In this paper, the application of fractal theory in the characterization of fragmented surfaces, as well as the mass-size distributions are discussed. The investigated mineral-chalcopyrite of Slovak provenience is characterised after particle size reduction processes-crushing and grinding. The problem how the different size reduction methods influence the surface irregularities of obtained particles is solved. Mandelbrot (1983, introducing the fractal geometry, offered a new way of characterization of surface irregularities by the fractal dimension. The determination of the surface fractal dimension DS consists in measuring the specific surface by the BET method in several fractions into which the comminuted chalcopyrite is sieved. This investigation shows that the specific surface of individual fractions were higher for the crushed sample than for the short-term (3 min ground sample. The surface fractal dimension can give an information about the adsorption sites accessible to molecules of nitrogen and according to this, the value of the fractal dimension is higher for crushed sample.The effect of comminution processes on the mass distribution of particles crushed and ground in air as well as in polar liquids is also discussed. The estimation of fractal dimensions of particles mass distribution is done on the assumption that the particle size distribution is described by the power-law (1. The value of fractal dimension for the mass distribution in the crushed sample is lower than in the sample ground in air, because it is influenced by the energy required for comminution.The sample of chalcopyrite was ground (10min in ethanol and i-butanol [which according to Ikazaki (1991] are characterized by the parameter µ /V, where µ is its dipole moment and V is the molecular volume. The values of µ /V for the used polar liquids are of the same order. That is why the expressive differences in particle size distributions as well as in the values of

  13. Naturaleza fractal en redes de cristales de grasas

    Directory of Open Access Journals (Sweden)

    Gómez Herrera, C.

    2004-06-01

    Full Text Available The determination of the mechanical and rheological characteris­tics of several plastic fats requires a detailed understanding of the microstructure of the fat crystal network aggregates. The (or A fractal approach is useful for the characterization of this micros­tructure. This review begins with information on fractality and statistical self-similar structure. Estimations for fractal dimension by means of equations relating the volume fraction of solid fat to shear elastic modulus G' in linear region are described. The influence of interesterification on fractal dimension decrease (from 2, 46 to 2 ,15 for butterfat-canola oil blends is notable . This influence is not significant for fat blends without butterfat. The need for an increase in research concerning the relationship between fractality and rheology in plastic fats is emphasized.La determinación de las características mecánicas y reológicas de ciertas grasas plásticas requiere conocimientos detallados sobre las microestructuras de los agregados que forman la red de cristales grasos. El estudio de la naturaleza fractal de estas microestructuras resulta útil para su carac­terización. Este artículo de información se inicia con descripciones de la dimensión fractal y de la "autosimilitud estadística". A continuación se describe el cálculo de la dimensión fractal mediante ecuaciones que relacionan la fracción en volumen de grasa sólida con el módulo de recuperación (G' dentro de un comportamiento viscoelástico lineal. Se destaca la influencia que la interesterificación ejerce sobre la dimensión fractal de una mezcla de grasa láctea y aceite de canola (que pasa de 2,64 a 2,15. Esta influencia no se presenta en mezclas sin grasa láctea. Se insiste sobre la necesidad de incrementar las investi­gaciones sobre la relación entre reología y estructura fractal en grasas plásticas.

  14. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study

    Science.gov (United States)

    Lee, Bum Han; Lee, Sung Keun

    2013-07-01

    Despite the importance of understanding and quantifying the microstructure of porous networks in diverse geologic settings, the effects of the specific surface area and porosity on the key structural parameters of the networks have not been fully understood. We performed cube-counting fractal dimension (Dcc) and lacunarity analyses of 3D porous networks of model sands and configurational entropy analysis of 2D cross sections of model sands using random packing simulations and nuclear magnetic resonance (NMR) micro-imaging. We established relationships among porosity, specific surface area, structural parameters (Dcc and lacunarity), and the corresponding macroscopic properties (configurational entropy and permeability). The Dcc of the 3D porous networks increases with increasing specific surface area at a constant porosity and with increasing porosity at a constant specific surface area. Predictive relationships correlating Dcc, specific surface area, and porosity were also obtained. The lacunarity at the minimum box size decreases with increasing porosity, and that at the intermediate box size (∼0.469 mm in the current model sands) was reproduced well with specific surface area. The maximum configurational entropy increases with increasing porosity, and the entropy length of the pores decreases with increasing specific surface area and was used to calculate the average connectivity among the pores. The correlation among porosity, specific surface area, and permeability is consistent with the prediction from the Kozeny-Carman equation. From the relationship between the permeability and the Dcc of pores, the permeability can be expressed as a function of the Dcc of pores and porosity. The current methods and these newly identified correlations among structural parameters and properties provide improved insights into the nature of porous media and have useful geophysical and hydrological implications for elasticity and shear viscosity of complex composites of rock

  15. An Efficient Method for Mapping High-Resolution Global River Discharge Based on the Algorithms of Drainage Network Extraction

    Directory of Open Access Journals (Sweden)

    Jiaye Li

    2018-04-01

    Full Text Available River discharge, which represents the accumulation of surface water flowing into rivers and ultimately into the ocean or other water bodies, may have great impacts on water quality and the living organisms in rivers. However, the global knowledge of river discharge is still poor and worth exploring. This study proposes an efficient method for mapping high-resolution global river discharge based on the algorithms of drainage network extraction. Using the existing global runoff map and digital elevation model (DEM data as inputs, this method consists of three steps. First, the pixels of the runoff map and the DEM data are resampled into the same resolution (i.e., 0.01-degree. Second, the flow direction of each pixel of the DEM data (identified by the optimal flow path method used in drainage network extraction is determined and then applied to the corresponding pixel of the runoff map. Third, the river discharge of each pixel of the runoff map is calculated by summing the runoffs of all the pixels in the upstream of this pixel, similar to the upslope area accumulation step in drainage network extraction. Finally, a 0.01-degree global map of the mean annual river discharge is obtained. Moreover, a 0.5-degree global map of the mean annual river discharge is produced to display the results with a more intuitive perception. Compared against the existing global river discharge databases, the 0.01-degree map is of a generally high accuracy for the selected river basins, especially for the Amazon River basin with the lowest relative error (RE of 0.3% and the Yangtze River basin within the RE range of ±6.0%. However, it is noted that the results of the Congo and Zambezi River basins are not satisfactory, with RE values over 90%, and it is inferred that there may be some accuracy problems with the runoff map in these river basins.

  16. Contextualizing Wetlands Within a River Network to Assess Nitrate Removal and Inform Watershed Management

    Science.gov (United States)

    Czuba, Jonathan A.; Hansen, Amy T.; Foufoula-Georgiou, Efi; Finlay, Jacques C.

    2018-02-01

    Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network-based model that quantifies nitrate-nitrogen and organic carbon concentrations through a wetland-river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data-rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013-2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed-scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.

  17. Psicodiagnóstico fractal

    OpenAIRE

    Moghilevsky, Débora Estela

    2011-01-01

    A lo largo de los últimos años del siglo veinte se ha desarrollado la teoría de la complejidad. Este modelo relaciona las ciencias duras tales como la matemática, la teoría del caos, la física cuántica y la geometría fractal con las llamadas seudo ciencias. Dentro de este contexto podemos definir la Psicología Fractal como la ciencia que estudia los aspectos psíquicos como dinámicamente fractales.

  18. Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Science.gov (United States)

    Wollheim, W.M.; Stewart, R. J.; Aiken, George R.; Butler, Kenna D.; Morse, Nathaniel B.; Salisbury, J.

    2015-01-01

    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.

  19. Metapopulation modelling of riparian tree species persistence in river networks under climate change.

    Science.gov (United States)

    Van Looy, Kris; Piffady, Jérémy

    2017-11-01

    Floodplain landscapes are highly fragmented by river regulation resulting in habitat degradation and flood regime perturbation, posing risks to population persistence. Climate change is expected to pose supplementary risks in this context of fragmented landscapes, and especially for river systems adaptation management programs are developed. The association of habitat quality and quantity with the landscape dynamics and resilience to human-induced disturbances is still poorly understood in the context of species survival and colonization processes, but essential to prioritize conservation and restoration actions. We present a modelling approach that elucidates network connectivity and landscape dynamics in spatial and temporal context to identify vital corridors and conservation priorities in the Loire river and its tributaries. Alteration of flooding and flow regimes is believed to be critical to population dynamics in river ecosystems. Still, little is known of critical levels of alteration both spatially and temporally. We applied metapopulation modelling approaches for a dispersal-limited tree species, white elm; and a recruitment-limited tree species, black poplar. In different model steps the connectivity and natural dynamics of the river landscape are confronted with physical alterations (dams/dykes) to species survival and then future scenarios for climatic changes and potential adaptation measures are entered in the model and translated in population persistence over the river basin. For the two tree species we highlighted crucial network zones in relation to habitat quality and connectivity. Where the human impact model already shows currently restricted metapopulation development, climate change is projected to aggravate this persistence perspective substantially. For both species a significant drawback to the basin population is observed, with 1/3 for elm and ¼ for poplar after 25 years already. But proposed adaptation measures prove effective to even

  20. Comparison of the Gen Expression Programming, Nonlinear Time Series and Artificial Neural Network in Estimating the River Daily Flow (Case Study: The Karun River

    Directory of Open Access Journals (Sweden)

    R. Zamani

    2015-06-01

    Full Text Available Today, the daily flow forecasting of rivers is an important issue in hydrology and water resources and thus can be used the results of daily river flow modeling in water resources management, droughts and floods monitoring. In this study, due to the importance of this issue, using nonlinear time series models and artificial intelligence (Artificial Neural Network and Gen Expression Programming, the daily flow modeling has been at the time interval (1981-2012 in the Armand hydrometric station on the Karun River. Armand station upstream basin is one of the most basins in the North Karun basin and includes four sub basins (Vanak, Middle Karun, Beheshtabad and Kohrang.The results of this study shown that artificial intelligence models have superior than nonlinear time series in flow daily simulation in the Karun River. As well as, modeling and comparison of artificial intelligence models showed that the Gen Expression Programming have evaluation criteria better than artificial neural network.

  1. Map of fluid flow in fractal porous medium into fractal continuum flow.

    Science.gov (United States)

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2012-05-01

    This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.

  2. Potential interaction between transport and stream networks over the lowland rivers in Eastern India.

    Science.gov (United States)

    Roy, Suvendu; Sahu, Abhay Sankar

    2017-07-15

    Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Analysis of the influence of tectonics on the evolution of valley networks based on SRTM DEM, Jemma River basin, Ethiopia

    Czech Academy of Sciences Publication Activity Database

    Kusák, Michal; Kropáček, J.; Vilímek, V.; Schillaci, C.

    2016-01-01

    Roč. 39, č. 1 (2016), 37-50 ISSN 1724-4757 Institutional support: RVO:67985891 Keywords : valley network * tectonic lineaments * Jemma River basin * Ethiopian Highlands Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  4. Fractal geometry and computer graphics

    CERN Document Server

    Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele

    1992-01-01

    Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...

  5. Thermal transport in fractal systems

    DEFF Research Database (Denmark)

    Kjems, Jørgen

    1992-01-01

    Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...

  6. Fractal analysis in oral leukoplakia

    Directory of Open Access Journals (Sweden)

    Prashant Bhai Pandey

    2015-01-01

    Full Text Available Introduction: Fractal analysis (FA quantifies complex geometric structures by generating a fractal dimension (FD, which can measure the complexity of mucosa. FA is a quantitative tool used to measure the complexity of self-similar or semi-self-similar structures. Aim and Objective: The study was done to perform the FA of oral mucosa with keratotic changes, as it is also made up of self-similar tissues, and thus, its FD can be calculated. Results: In oral leukoplakia, keratinization increases the complexity of mucosa, which denotes fractal geometry. We evaluated and compared pretreated and post-treated oral leukoplakia in 50 patients with clinically proven oral leukoplakia and analyzed the normal oral mucosa and lesional or keratinized mucosa in oral leukoplakia patients through FA using box counting method. Conclusion: FA using the fractal geometry is an efficient, noninvasive prediction tool for early detection of oral leukoplakia and other premalignant conditions in patients.

  7. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    Aguilar Martinez, O.

    1994-01-01

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  8. Potential of commercial microwave link network derived rainfall for river runoff simulations

    Science.gov (United States)

    Smiatek, Gerhard; Keis, Felix; Chwala, Christian; Fersch, Benjamin; Kunstmann, Harald

    2017-03-01

    Commercial microwave link networks allow for the quantification of path integrated precipitation because the attenuation by hydrometeors correlates with rainfall between transmitter and receiver stations. The networks, operated and maintained by cellphone companies, thereby provide completely new and country wide precipitation measurements. As the density of traditional precipitation station networks worldwide is significantly decreasing, microwave link derived precipitation estimates receive increasing attention not only by hydrologists but also by meteorological and hydrological services. We investigate the potential of microwave derived precipitation estimates for streamflow prediction and water balance analyses, exemplarily shown for an orographically complex region in the German Alps (River Ammer). We investigate the additional value of link derived rainfall estimations combined with station observations compared to station and weather radar derived values. Our river runoff simulation system employs a distributed hydrological model at 100 × 100 m grid resolution. We analyze the potential of microwave link derived precipitation estimates for two episodes of 30 days with typically moderate river flow and an episode of extreme flooding. The simulation results indicate the potential of this novel precipitation monitoring method: a significant improvement in hydrograph reproduction has been achieved in the extreme flooding period that was characterized by a large number of local strong precipitation events. The present rainfall monitoring gauges alone were not able to correctly capture these events.

  9. Are Equilibrium Multichannel Networks Predictable? the Case of the Indus River, Pakistan

    Science.gov (United States)

    Darby, S. E.; Carling, P. A.

    2017-12-01

    Focusing on the specific case of the Indus River, we argue that the equilibrium planform network structure of large, multi-channel, rivers is predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264 km long multiple-channel reach. Remote sensing imagery, including a period of time that encompasses the occurrence of major floods in 2007 and 2010, shows that Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the monsoon. We show that the network structure, if not detailed planform, remains stable, even for the record 2010 flood (27,100 m3s-1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6,000 m3s-1 ( 80% of mean annual flow). Maximum Flow Efficiency (MFE) principle demonstrates the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3s-1. Rather, the network is in near-equilibrium with the mean annual flood (7,530 m3s-1). MFE principle indicates stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the time-scale for network adjustment is much longer than the time-scale of the monsoon hydrograph, with the annual excess water being stored on floodplains, rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.

  10. Random walk through fractal environments

    International Nuclear Information System (INIS)

    Isliker, H.; Vlahos, L.

    2003-01-01

    We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations

  11. Assessing Local Communities’ Willingness to Pay for River Network Protection: A Contingent Valuation Study of Shanghai, China

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2012-10-01

    Full Text Available River networks have experienced serious degradation because of rapid urbanization and population growth in developing countries such as China, and the protection of these networks requires the integration of evaluation with ecology and economics. In this study, a structured questionnaire survey of local residents in Shanghai (China was conducted in urban and suburban areas. The study examined residents’ awareness of the value of the river network, sought their attitude toward the current status, and employed a logistic regression analysis based on the contingent valuation method (CVM to calculate the total benefit and explain the socioeconomic factors influencing the residents’ willingness to pay (WTP. The results suggested that residents in Shanghai had a high degree of recognition of river network value but a low degree of satisfaction with the government’s actions and the current situation. The study also illustrated that the majority of respondents were willing to pay for river network protection. The mean WTP was 226.44 RMB per household per year. The number of years lived in Shanghai, the distance from the home to the nearest river, and the amount of the bid were important factors that influenced the respondents’ WTP. Suggestions for comprehensive management were proposed for the use of policy makers in river network conservation.

  12. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  13. Comprehensive model-based prediction of micropollutants from diffuse sources in the Swiss river network

    Science.gov (United States)

    Strahm, Ivo; Munz, Nicole; Braun, Christian; Gälli, René; Leu, Christian; Stamm, Christian

    2014-05-01

    Water quality in the Swiss river network is affected by many micropollutants from a variety of diffuse sources. This study compares, for the first time, in a comprehensive manner the diffuse sources and the substance groups that contribute the most to water contamination in Swiss streams and highlights the major regions for water pollution. For this a simple but comprehensive model was developed to estimate emission from diffuse sources for the entire Swiss river network of 65 000 km. Based on emission factors the model calculates catchment specific losses to streams for more than 15 diffuse sources (such as crop lands, grassland, vineyards, fruit orchards, roads, railways, facades, roofs, green space in urban areas, landfills, etc.) and more than 130 different substances from 5 different substance groups (pesticides, biocides, heavy metals, human drugs, animal drugs). For more than 180 000 stream sections estimates of mean annual pollutant loads and mean annual concentration levels were modeled. This data was validated with a set of monitoring data and evaluated based on annual average environmental quality standards (AA-EQS). Model validation showed that the estimated mean annual concentration levels are within the range of measured data. Therefore simulations were considered as adequately robust for identifying the major sources of diffuse pollution. The analysis depicted that in Switzerland widespread pollution of streams can be expected. Along more than 18 000 km of the river network one or more simulated substances has a concentration exceeding the AA-EQS. In single stream sections it could be more than 50 different substances. Moreover, the simulations showed that in two-thirds of small streams (Strahler order 1 and 2) at least one AA-EQS is always exceeded. The highest number of substances exceeding the AA-EQS are in areas with large fractions of arable cropping, vineyards and fruit orchards. Urban areas are also of concern even without considering

  14. Insights and issues with simulating terrestrial DOC loading of Arctic river networks.

    Science.gov (United States)

    Kicklighter, David W; Hayes, Daniel J; McClelland, James W; Peterson, Bruce J; McGuire, A David; Melillo, Jerry M

    2013-12-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  15. Insights and issues with simulating terrestrial DOC loading of Arctic river networks

    Science.gov (United States)

    Kicklighter, David W.; Hayes, Daniel J.; McClelland, James W.; Peterson, Bruce J.; McGuire, A. David; Melillo, Jerry M.

    2013-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  16. Where and why hyporheic exchange is important: Inferences from a parsimonious, physically-based river network model

    Science.gov (United States)

    Gomez-Velez, J. D.; Harvey, J. W.

    2014-12-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data as well as models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically-based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). At the core of NEXSS is a characterization of the channel geometry, geomorphic features, and related hydraulic drivers based on scaling equations from the literature and readily accessible information such as river discharge, bankfull width, median grain size, sinuosity, channel slope, and regional groundwater gradients. Multi-scale hyporheic flow is computed based on combining simple but powerful analytical and numerical expressions that have been previously published. We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bedforms dominates hyporheic fluxes and turnover rates along the river corridor. Moreover, the hyporheic zone's potential for biogeochemical transformations is comparable across stream orders, but the abundance of lower-order channels results in a considerably higher cumulative effect for low-order streams. Thus, vertical exchange beneath submerged bedforms has more potential for biogeochemical transformations than lateral exchange beneath banks, although lateral exchange through meanders may be important in large rivers. These results have implications for predicting outcomes of river and basin management practices.

  17. Testing statistical self-similarity in the topology of river networks

    Science.gov (United States)

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2010-01-01

    Recent work has demonstrated that the topological properties of real river networks deviate significantly from predictions of Shreve's random model. At the same time the property of mean self-similarity postulated by Tokunaga's model is well supported by data. Recently, a new class of network model called random self-similar networks (RSN) that combines self-similarity and randomness has been introduced to replicate important topological features observed in real river networks. We investigate if the hypothesis of statistical self-similarity in the RSN model is supported by data on a set of 30 basins located across the continental United States that encompass a wide range of hydroclimatic variability. We demonstrate that the generators of the RSN model obey a geometric distribution, and self-similarity holds in a statistical sense in 26 of these 30 basins. The parameters describing the distribution of interior and exterior generators are tested to be statistically different and the difference is shown to produce the well-known Hack's law. The inter-basin variability of RSN parameters is found to be statistically significant. We also test generator dependence on two climatic indices, mean annual precipitation and radiative index of dryness. Some indication of climatic influence on the generators is detected, but this influence is not statistically significant with the sample size available. Finally, two key applications of the RSN model to hydrology and geomorphology are briefly discussed.

  18. Faecal contamination of water and sediment in the rivers of the Scheldt drainage network.

    Science.gov (United States)

    Ouattara, Nouho Koffi; Passerat, Julien; Servais, Pierre

    2011-12-01

    The Scheldt watershed is characterized by a high population density, intense industrial activities and intensive agriculture and breeding. A monthly monitoring (n = 16) of the abundance of two faecal indicator bacteria (FIB), Escherichia coli and intestinal enterococci (IE), showed that microbiological water quality of the main rivers of the Scheldt drainage network was poor (median values ranging between 1.4 × 10(3) and 4.0 × 10(5) E. coli (100 mL)( -1) and between 3.4 × 10(2) and 7.6 × 10(4) IE (100 mL)( -1)). The Zenne River downstream from Brussels was particularly contaminated. Glucuronidase activity was measured in parallel and was demonstrated to be a valid surrogate for a rapid evaluation of E. coli concentration in the river waters. FIB were also investigated in the river sediments; their abundance was sometimes high (average values ranging between 2.1 × 10(2) and 3.3 × 10(5) E. coli g( -1) and between 1.0 × 10(2) and 1.7 × 10(5) IE g( -1)) but was not sufficient to contribute significantly to the river water contamination during resuspension events, except for the Scheldt and the Nethe Rivers. FIB were also quantified in representative point sources (wastewater treatment plants) and non-point sources (runoff water and soil leaching on different types of land use) of faecal contamination. The comparison of the respective contribution of point and non-point sources at the scale of the Scheldt watershed showed that point sources were largely predominant.

  19. Metadata Modelling of the IPv6 Wireless Sensor Network in the Heihe River Watershed

    Directory of Open Access Journals (Sweden)

    Wanming Luo

    2013-03-01

    Full Text Available Environmental monitoring in ecological and hydrological watershed-scale research is an important and promising area of application for wireless sensor networks. This paper presents the system design of the IPv6 wireless sensor network (IPv6WSN in the Heihe River watershed in the Gansu province of China to assist ecological and hydrological scientists collecting field scientific data in an extremely harsh environment. To solve the challenging problems they face, this paper focuses on the key technologies adopted in our project, metadata modeling for the IPv6WSN. The system design introduced in this paper provides a solid foundation for effective use of a self-developed IPv6 wireless sensor network by ecological and hydrological scientists.

  20. Delineation and validation of river network spatial scales for water resources and fisheries management.

    Science.gov (United States)

    Wang, Lizhu; Brenden, Travis; Cao, Yong; Seelbach, Paul

    2012-11-01

    Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.

  1. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers.

    Science.gov (United States)

    Rank, Dieter; Wyhlidal, Stefan; Schott, Katharina; Weigand, Silvia; Oblin, Armin

    2018-05-01

    The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3 H values were around 8 TU in 2015, short-term 3 H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006-2015 supplement adding to the Danube isotope set published earlier.

  2. Hydro-geomorphological characterization and classification of Chilean river networks using horizontal, vertical and climatological properties

    Science.gov (United States)

    Pereira, A. A.; Gironas, J. A.; Passalacqua, P.; Mejia, A.; Niemann, J. D.

    2017-12-01

    Previous work has shown that lithological, tectonic and climatic processes have a major influence in shaping the geomorphology of river networks. Accordingly, quantitative classification methods have been developed to identify and characterize network types (dendritic, parallel, pinnate, rectangular and trellis) based solely on the self-affinity of their planform properties, computed from available Digital Elevation Model (DEM) data. In contrast, this research aim is to include both horizontal and vertical properties to evaluate a quantitative classification method for river networks. We include vertical properties to consider the unique surficial conditions (e.g., large and steep height drops, volcanic activity, and complexity of stream networks) of the Andes Mountains. Furthermore, the goal of the research is also to explain the implications and possible relations between the hydro-geomorphological properties and climatic conditions. The classification method is applied to 42 basins in the southern Andes in Chile, ranging in size from 208 Km2 to 8,000 Km2. The planform metrics include the incremental drainage area, stream course irregularity and junction angles, while the vertical metrics include the hypsometric curve and the slope-area relationship. We introduce new network structures (Brush, Funnel and Low Sinuosity Rectangular), possibly unique to the Andes, that can be quantitatively differentiated from previous networks identified in other geographic regions. Then, this research evaluates the effect that excluding different Strahler order streams has on the horizontal properties and therefore in the classification. We found that climatic conditions are not only linked to horizontal parameters, but also to vertical ones, finding significant correlation between climatic variables (average near-surface temperature and rainfall) and vertical measures (parameters associated with the hypsometric curve and slope-area relation). The proposed classification shows

  3. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-01-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array

  4. Fractal Structures For Mems Variable Capacitors

    KAUST Repository

    Elshurafa, Amro M.; Radwan, Ahmed Gomaa Ahmed; Emira, Ahmed A.; Salama, Khaled N.

    2014-01-01

    In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape

  5. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.; Radwan, Ahmed Gomaa; Abdel Haleem, Sherif H.; Barakat, Mohamed L.

    2014-01-01

    single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved

  6. Generating hierarchial scale-free graphs from fractals

    Energy Technology Data Exchange (ETDEWEB)

    Komjathy, Julia, E-mail: komyju@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary); Simon, Karoly, E-mail: simonk@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary)

    2011-08-15

    Highlights: > We generate deterministic scale-free networks using graph-directed self similar IFS. > Our model exhibits similar clustering, power law decay properties to real networks. > The average length of shortest path and the diameter of the graph are determined. > Using this model, we generate random graphs with prescribed power law exponent. - Abstract: Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabasi, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal {Lambda}. With rigorous mathematical results we verify that our model captures some of the most important features of many real networks: the scale-free and the high clustering properties. We also prove that the diameter is the logarithm of the size of the system. We point out a connection between the power law exponent of the degree distribution and some intrinsic geometric measure theoretical properties of the underlying fractal. Using our (deterministic) fractal {Lambda} we generate random graph sequence sharing similar properties.

  7. Monitoring Isotopes in Rivers: Creation of the Global Network of Isotopes in Rivers (GNIR). Results of a Coordinated Research Project 2002-2006

    International Nuclear Information System (INIS)

    2012-03-01

    River runoff plays a key role in human development in all societies through the provision of water for agriculture, industry and domestic use. Although the monitoring of water availability and our understanding of the main hydrological processes at the catchment scale are relatively good, many important aspects, especially those related to the interaction of runoff and groundwater, remain poorly understood. Additionally, the impact of human activities - such as the construction of large reservoirs and diversions, and the redirection of rivers to supply drinking water or water for irrigation or hydropower - are highly relevant and, together with the predicted impact of climate change, are likely to heavily impact local water cycles. The effects of such changes include: limited availability of water; changes in flood or drought frequency; changes in water quality, sediment load and groundwater recharge; and biodiversity loss in riparian environments. Additionally, political disputes may result as water resources become affected in terms of availability and/or quality. In most instances, stable isotopes and other water tracers provide a deeper insight into hydrological processes, especially in aspects related to water pathways, interconnections, transport of water and pollutants, and the transit time of water. To explore the contribution of these techniques in more detail, the IAEA has launched a monitoring programme, the Global Network of Isotopes in Rivers (GNIR), aimed at regular analysis of the isotope composition of runoff in large rivers. This isotope monitoring network complements an earlier precipitation network, the Global Network of Isotopes in Precipitation (GNIP). To prepare for GNIR, the IAEA launched a coordinated research project (CRP) called Design Criteria for a Network to Monitor Isotope Compositions of Runoff in Large Rivers. The main aim of the CRP was to develop a scientific rationale and a protocol for the operation of such a network, as well as

  8. Effects of fractal pore on coal devolatilization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongli; He, Rong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Wang, Xiaoliang; Cao, Liyong [Dongfang Electric Corporation, Chengdu (China). Centre New Energy Inst.

    2013-07-01

    Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.

  9. Fractal Structures For Fixed Mems Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.

  10. Enhanced Graphene Photodetector with Fractal Metasurface

    DEFF Research Database (Denmark)

    Fan, Jieran; Wang, Di; DeVault, Clayton

    2016-01-01

    We designed and fabricated a broadband, polarization-independent photodetector by integrating graphene with a fractal Cayley tree metasurface. Our measurements show an almost uniform, tenfold enhancement in photocurrent generation due to the fractal metasurface structure.......We designed and fabricated a broadband, polarization-independent photodetector by integrating graphene with a fractal Cayley tree metasurface. Our measurements show an almost uniform, tenfold enhancement in photocurrent generation due to the fractal metasurface structure....

  11. Fractal Structures For Fixed Mems Capacitors

    KAUST Repository

    Elshurafa, Amro M.; Radwan, Ahmed Gomaa Ahmed; Emira, Ahmed A.; Salama, Khaled N.

    2014-01-01

    An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.

  12. Research of processes of eutrophication of Teteriv river reservoir based on neural networks mass

    Directory of Open Access Journals (Sweden)

    Yelnikova T.A.

    2016-12-01

    Full Text Available Methods of process control of eutrophication in water are based on water sampling, handling them in the laboratory and calculation of indexes of pond ecosystem. However, these methods have some significant drawbacks associated with using manual labor. The method of determining of the geometric parameters of phytoplankton through the use of neural networks for processing water samples is developed. Due to this method eutrophic processes of reservoirs of river Teteriv are investigated. A comparative analysis of eutrophic processes of reservoirs "Denyshi" and “Vidsichne” intake during 2014-2015 years are given. The differences between qualitative and quantitative composition of phytoplankton algae in two reservoirs of the river Teteriv used for water supply of Zhitomir city area are found out. The influence of exogenous and endogenous factors on the expansion of phytoplankton is researched. Research results can be used for monitoring and forecasting of ecological state of water for household purposes, used for water supply of cities.

  13. Potential denitrification and nitrous oxide production in the sediments of the Seine River Drainage Network (France).

    Science.gov (United States)

    Garnier, Josette A; Mounier, Emmanuelle M; Laverman, Anniet M; Billen, Gilles F

    2010-01-01

    To investigate bottom sediment denitrification at the scale of the Seine drainage network, a semi-potential denitrification assay was used in which river sediments (and riparian soils) were incubated for a few hours under anaerobic conditions with non limiting nitrate concentrations. This method allowed the nitrous oxide (N(2)O) concentration in the headspace, as well as the nitrate, nitrite, and ammonium concentrations to be determined during incubation. The rates at which nitrate decreased and N(2)O increased were then used to assess the potential denitrification activity and associated N(2)O production in the Seine River Basin. We observed a longitudinal pattern characterized by a significant increase of the potential rate of denitrification from upstream sectors to large downstream rivers (orders 7-8), from approximately 3.3 to 9.1 microg NO(3)(-)-N g(-1) h(-1), respectively, while the N(2)O production rates was the highest both in headwaters and in large order rivers (0.14 and 0.09 N(2)O-N g(-1) h(-1), respectively) and significantly lower in the intermediate sectors (0.01 and 0.03 N(2)O-N g(-1) h(-1)). Consequently, the ratio N(2)O production:NO(3) reduction was found to reach 5% in headstreams, whereas it averaged 1.2% in the rest of the drainage network, an intermediate percentage being found for the riparian soils. Finally, the ignition loss of sediments, together with other redundant variables (particulate organic carbon content: g C 100 g(-1) dry weight [dw], moisture: g water 100 g(-1) dw, sediment size production.

  14. Fractal Structures For Mems Variable Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape separated by a vertical distance from a lower first metal plate with a complementary fractal shape; and a substrate above which the capacitor body is suspended.

  15. An enhanced fractal image denoising algorithm

    International Nuclear Information System (INIS)

    Lu Jian; Ye Zhongxing; Zou Yuru; Ye Ruisong

    2008-01-01

    In recent years, there has been a significant development in image denoising using fractal-based method. This paper presents an enhanced fractal predictive denoising algorithm for denoising the images corrupted by an additive white Gaussian noise (AWGN) by using quadratic gray-level function. Meanwhile, a quantization method for the fractal gray-level coefficients of the quadratic function is proposed to strictly guarantee the contractivity requirement of the enhanced fractal coding, and in terms of the quality of the fractal representation measured by PSNR, the enhanced fractal image coding using quadratic gray-level function generally performs better than the standard fractal coding using linear gray-level function. Based on this enhanced fractal coding, the enhanced fractal image denoising is implemented by estimating the fractal gray-level coefficients of the quadratic function of the noiseless image from its noisy observation. Experimental results show that, compared with other standard fractal-based image denoising schemes using linear gray-level function, the enhanced fractal denoising algorithm can improve the quality of the restored image efficiently

  16. Steady laminar flow of fractal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)

    2017-02-12

    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.

  17. Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...

    African Journals Online (AJOL)

    In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...

  18. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    Purpose: To determine the genetic contribution to the pattern of retinal vascular branching expressed by its fractal dimension. Methods: This was a cross-sectional study of 50 monozygotic and 49 dizygotic, same-sex twin pairs aged 20 to 46 years. In 50°, disc-centered fundus photographs, the reti...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0.......0002) in monozygotic twins than in dizygotic twins (0.108, P = 0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, dominant genetic effects explained 54% of the variation and 46% was individually environmentally determined. Conclusions: In young adult twins...

  19. Towards thermomechanics of fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2007-11-01

    Hans Ziegler’s thermomechanics [1,2,3], established half a century ago, is extended to fractal media on the basis of a recently introduced continuum mechanics due to Tarasov [14,15]. Employing the concept of internal (kinematic) variables and internal stresses, as well as the quasiconservative and dissipative stresses, a field form of the second law of thermodynamics is derived. In contradistinction to the conventional Clausius Duhem inequality, it involves generalized rates of strain and internal variables. Upon introducing a dissipation function and postulating the thermodynamic orthogonality on any lengthscale, constitutive laws of elastic-dissipative fractal media naturally involving generalized derivatives of strain and stress can then be derived. This is illustrated on a model viscoelastic material. Also generalized to fractal bodies is the Hill condition necessary for homogenization of their constitutive responses.

  20. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    Directory of Open Access Journals (Sweden)

    P. Servais

    2007-09-01

    Full Text Available The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC, the most usual faecal contamination indicator. The model is able to calculate the distribution of FC concentrations in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the european water framework directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms

  1. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    Science.gov (United States)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included

  2. Characterisation of human non-proliferativediabetic retinopathy using the fractal analysis

    Directory of Open Access Journals (Sweden)

    Carmen Alina Lupaşcu

    2015-08-01

    Full Text Available AIM:To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method.METHODS:This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images and pathological (148 images states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software.RESULTS:It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions is slightly lower than the corresponding values of mild non-proliferative DR (NPDR images (segmented and skeletonized versions. The average of fractal dimensions D for the normal images (segmented and skeletonized versions is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions. The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions.CONCLUSION:The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with

  3. The carbon commute: Effects of urbanization on dissolved organic carbon quality on a suburban New England river network

    Science.gov (United States)

    Balch, E.; Robison, A.; Wollheim, W. M.

    2017-12-01

    Understanding anthropogenic influence on the sources and fluxes of carbon is necessary for interpreting the carbon cycle and contaminant transport throughout a river system. As urbanization increases worldwide, it is critical to understand how urbanization affects the carbon cycle so that we may be able to predict future changes. Rivers act as both transporters of terrestrial dissolved organic carbon (DOC) to coastal regions, and active transformers of DOC. The character (lability) of the carbon found within a river network is influenced by its sources and fluxes, as determined by the ecological processes, land use, and discharge, which vary throughout the network. We have characterized DOC quantity and quality throughout a suburban New England river network (Ipswich River, MA) in an attempt to provide a detailed picture of how DOC quality varies within a network, and how urbanization influences these changes. We conducted a synoptic survey of 45 sites over two hydrologically similar days in the Ipswich River network in northeast Massachusetts, USA. We collected discrete grab samples for DOC quantity and quality analyses. We also collected dissolved oxygen, conductivity, and nutrients (major anions and cations) as an extension of the synoptic survey. We plan to determine the source of the DOC by using excitation-emission matrices (EEMs), and specific UV absorption (SUVA) at 254 nm. These analyses will provide us with a detailed picture of how DOC quality varies within a network, and how urbanization influences these changes. Using land use data of the Ipswich River watershed, we are able to model the changes in DOC quality throughout the network. In highly urbanized headwaters, through the progressively more forested and wetland dominated main stem reaches, we expect to see the imprint of urbanization throughout the network due to its decreased lability. Studying the imprint of urbanization on DOC throughout a river network helps us complete our understanding of

  4. Establishing of monitoring network on Kosovo Rivers: preliminary measurements on the four main rivers (Drini i Bardhë, Morava e Binqës, Lepenc and Sitnica).

    Science.gov (United States)

    Gashi, Fatbardh; Frančišković-Bilinski, Stanislav; Bilinski, Halka; Troni, Naser; Bacaj, Mustafë; Jusufi, Florim

    2011-04-01

    The main goal of this work was to suggest to authorities concerned a monitoring network on main rivers of Kosovo. We aim to suggest application of WFD (Water Framework Directive) in Kosovo as soon as possible. Our present chemical research could be the first step towards it, giving an opportunity to plan the monitoring network in which pollution locations will be highlighted. In addition to chemical, future ecological studies could be performed. Waters of the rivers Drini i Bardhë, Morava e Binçës, Lepenc and Sitnica, which are of supra-regional interest, are investigated systematically along the river course. Sediments of these rivers were also investigated at the same monitoring points and results have recently been published by us. In this paper we present results of mass concentrations of eco-toxic metals: Cu(II), Pb(II), Cd(II), Zn(II) and Mn(II) in waters of four main rivers of Kosovo, using Anodic Stripping Voltammetry (ASV), Atomic Absorption Spectrophotometry (AAS) and Ultraviolet-Visible (UV-VIS) Spectrometry. Also some physico-chemical parameters are determined: water temperature, electrical conductivity, pH, alkalinity, total hardness and temporary hardness. Results of concentrations of eco-toxic metals in water are compared with concentrations found in sediments at the same locations. Statistical methods are applied to determine anomalous regions Classification of waters at each sampling station of our work was tentatively performed based on metal indicators, using Croatian standards. Our results are showing that concentrations of Zn in all waters are low and pose no risk for living organisms. Exception is water at S5 station, where concentration is above permanent toxic level. Concentrations of Pb and Mn are high at D5 station on Drini i Bardhë River (14 km from boarder to Albania) and at all stations along Sitnica River. Cadmium in high concentrations which is above permanent toxic level is measured in water only at two stations, one (M1) on

  5. Fractal universe and quantum gravity.

    Science.gov (United States)

    Calcagni, Gianluca

    2010-06-25

    We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.

  6. Fractals control in particle's velocity

    International Nuclear Information System (INIS)

    Zhang Yongping; Liu Shutang; Shen Shulan

    2009-01-01

    Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.

  7. Taylor dispersion on a fractal

    International Nuclear Information System (INIS)

    Mazo, R.M.

    1998-01-01

    Taylor dispersion is the greatly enhanced diffusion in the direction of a fluid flow caused by ordinary diffusion in directions orthogonal to the flow. It is essential that the system be bounded in space in the directions orthogonal to the flow. We investigate the situation where the medium through which the flow occurs has fractal properties so that diffusion in the orthogonal directions is anomalous and non-Fickian. The effective diffusion in the flow direction remains normal; its width grows proportionally with the time. However, the proportionality constant depends on the fractal dimension of the medium as well as its walk dimension. (author)

  8. Applications of fractals in ecology.

    Science.gov (United States)

    Sugihara, G; M May, R

    1990-03-01

    Fractal models describe the geometry of a wide variety of natural objects such as coastlines, island chains, coral reefs, satellite ocean-color images and patches of vegetation. Cast in the form of modified diffusion models, they can mimic natural and artificial landscapes having different types of complexity of shape. This article provides a brief introduction to fractals and reports on how they can be used by ecologists to answer a variety of basic questions, about scale, measurement and hierarchy in, ecological systems. Copyright © 1990. Published by Elsevier Ltd.

  9. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    , the retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficients. Falconer's formula and quantitative genetic models were used to determine the genetic component of variation. Results: The mean...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0...

  10. Synergetics and fractals in tribology

    CERN Document Server

    Janahmadov, Ahad Kh

    2016-01-01

    This book examines the theoretical and practical aspects of tribological process using synergy, fractal and multifractal methods, and the fractal and multifractal models of self-similar tribosystems developed on their basis. It provides a comprehensive analysis of their effectiveness, and also considers the method of flicker noise spectroscopy with detailed parameterization of surface roughness friction. All models, problems and solutions are taken and tested on the set of real-life examples of oil-gas industry. The book is intended for researchers, graduate students and engineers specialising in the field of tribology, and also for senior students of technical colleges.

  11. A Coupled Model of the 1D River Network and 3D Estuary Based on Hydrodynamics and Suspended Sediment Simulation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available River networks and estuaries are very common in coastal areas. Runoff from the upper stream interacts with tidal current from open sea in these two systems, leading to a complex hydrodynamics process. Therefore, it is necessary to consider the two systems as a whole to study the flow and suspended sediment transport. Firstly, a 1D model is established in the Pearl River network and a 3D model is applied in its estuary. As sufficient mass exchanges between the river network and its estuary, a strict mathematical relationship of water level at the interfaces can be adopted to couple the 1D model with the 3D model. By doing so, the coupled model does not need to have common nested grids. The river network exchanges the suspended sediment with its estuary by adding the continuity conditions at the interfaces. The coupled model is, respectively, calibrated in the dry season and the wet season. The results demonstrate that the coupled model works excellently in simulating water level and discharge. Although there are more errors in simulating suspended sediment concentration due to some reasons, the coupled model is still good enough to evaluate the suspended sediment transport in river network and estuary systems.

  12. Are equilibrium multichannel networks predictable? The case of the regulated Indus River, Pakistan

    Science.gov (United States)

    Carling, P. A.; Trieu, H.; Hornby, D. D.; Huang, He Qing; Darby, S. E.; Sear, D. A.; Hutton, C.; Hill, C.; Ali, Z.; Ahmed, A.; Iqbal, I.; Hussain, Z.

    2018-02-01

    Arguably, the current planform behaviour of the Indus River is broadly predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264-km-long multiple-channel reach. Remote sensing imagery, encompassing major floods in 2007 and 2010, shows that the Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the annual monsoon. Thus, the network structure, if not detailed planform, remains stable even for the record 2010 flood (27,100 m3 s- 1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6000 m3 s- 1 ( 80% of mean annual flood). The Maximum Flow Efficiency (MFE) principle demonstrates that the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3 s- 1. Rather, the network is in near-equilibrium with the mean annual flood (7530 m3 s- 1). The MFE principle indicates that stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the timescale for network adjustment is much longer than the timescale of the monsoon hydrograph, with the annual excess water being stored on floodplains rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.

  13. Fractal systems of central places based on intermittency of space-filling

    International Nuclear Information System (INIS)

    Chen Yanguang

    2011-01-01

    Highlights: → The idea of intermittency is introduced into central place model. → The revised central place model suggests incomplete space filling. → New central place fractals are presented for urban analysis. → The average nearest distance is proposed to estimate the fractal dimension. → The concept of distance-based space is replaced by that of dimension-based space. - Abstract: The central place models are fundamentally important in theoretical geography and city planning theory. The texture and structure of central place networks have been demonstrated to be self-similar in both theoretical and empirical studies. However, the underlying rationale of central place fractals in the real world has not yet been revealed so far. This paper is devoted to illustrating the mechanisms by which the fractal patterns can be generated from central place systems. The structural dimension of the traditional central place models is d = 2 indicating no intermittency in the spatial distribution of human settlements. This dimension value is inconsistent with empirical observations. Substituting the complete space filling with the incomplete space filling, we can obtain central place models with fractional dimension D < d = 2 indicative of spatial intermittency. Thus the conventional central place models are converted into fractal central place models. If we further integrate the chance factors into the improved central place fractals, the theory will be able to explain the real patterns of urban places very well. As empirical analyses, the US cities and towns are employed to verify the fractal-based models of central places.

  14. Improved visibility graph fractality with application for the diagnosis of Autism Spectrum Disorder

    Science.gov (United States)

    Ahmadlou, Mehran; Adeli, Hojjat; Adeli, Amir

    2012-10-01

    Recently, the visibility graph (VG) algorithm was proposed for mapping a time series to a graph to study complexity and fractality of the time series through investigation of the complexity of its graph. The visibility graph algorithm converts a fractal time series to a scale-free graph. VG has been used for the investigation of fractality in the dynamic behavior of both artificial and natural complex systems. However, robustness and performance of the power of scale-freeness of VG (PSVG) as an effective method for measuring fractality has not been investigated. Since noise is unavoidable in real life time series, the robustness of a fractality measure is of paramount importance. To improve the accuracy and robustness of PSVG to noise for measurement of fractality of time series in biological time-series, an improved PSVG is presented in this paper. The proposed method is evaluated using two examples: a synthetic benchmark time series and a complicated real life Electroencephalograms (EEG)-based diagnostic problem, that is distinguishing autistic children from non-autistic children. It is shown that the proposed improved PSVG is less sensitive to noise and therefore more robust compared with PSVG. Further, it is shown that using improved PSVG in the wavelet-chaos neural network model of Adeli and c-workers in place of the Katz fractality dimension results in a more accurate diagnosis of autism, a complicated neurological and psychiatric disorder.

  15. A regional neural network model for predicting mean daily river water temperature

    Science.gov (United States)

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  16. A distributed water level network in ephemeral river reaches to identify hydrological processes within anthropogenic catchments

    Science.gov (United States)

    Sarrazin, B.; Braud, I.; Lagouy, M.; Bailly, J. S.; Puech, C.; Ayroles, H.

    2009-04-01

    In order to study the impact of land use change on the water cycle, distributed hydrological models are more and more used, because they have the ability to take into account the land surface heterogeneity and its evolution due to anthropogenic pressure. These models provide continuous distributed simulations of streamflow, runoff, soil moisture, etc, which, ideally, should be evaluated against continuous distributed measurements, taken at various scales and located in nested sub-catchments. Distributed network of streamflow gauging stations are in general scarce and very expensive to maintain. Furthermore, they can hardly be installed in the upstream parts of the catchments where river beds are not well defined. In this paper, we present an alternative to these standard streamflow gauging stations network, based on self powered high resolution water level sensors using a capacitive water height data logger. One of their advantages is that they can be installed even in ephemeral reaches and from channel head locations to high order streams. Furthermore, these innovative and easily adaptable low cost sensors offer the possibility to develop in the near future, a wireless network application. Such a network, including 15 sensors has been set up on nested watersheds in small and intermittent streams of a 7 km² catchment, located in the mountainous "Mont du Lyonnais" area, close to the city of Lyon, France. The land use of this catchment is mostly pasture, crop and forest, but the catchment is significantly affected by human activities, through the existence of a dense roads and paths network and urbanized areas. The equipment provides water levels survey during precipitation events in the hydrological network with a very accurate time step (2 min). Water levels can be related to runoff production and catchment response as a function of scale. This response will depend, amongst other, on variable soil water storage capacity, physiographic data and characteristics of

  17. Ghost quintessence in fractal gravity

    Indian Academy of Sciences (India)

    In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost ... Here a(t) is the cosmic scale factor and it measures the expansion of the Universe. ..... effectively appear as self-conserved dark energy, with a non-trivial ...

  18. Fractals in DNA sequence analysis

    Institute of Scientific and Technical Information of China (English)

    Yu Zu-Guo(喻祖国); Vo Anh; Gong Zhi-Min(龚志民); Long Shun-Chao(龙顺潮)

    2002-01-01

    Fractal methods have been successfully used to study many problems in physics, mathematics, engineering, finance,and even in biology. There has been an increasing interest in unravelling the mysteries of DNA; for example, how can we distinguish coding and noncoding sequences, and the problems of classification and evolution relationship of organisms are key problems in bioinformatics. Although much research has been carried out by taking into consideration the long-range correlations in DNA sequences, and the global fractal dimension has been used in these works by other people, the models and methods are somewhat rough and the results are not satisfactory. In recent years, our group has introduced a time series model (statistical point of view) and a visual representation (geometrical point of view)to DNA sequence analysis. We have also used fractal dimension, correlation dimension, the Hurst exponent and the dimension spectrum (multifractal analysis) to discuss problems in this field. In this paper, we introduce these fractal models and methods and the results of DNA sequence analysis.

  19. Estimating westslope cutthroat trout (Oncorhynchus clarkii lewisi) movements in a river network using strontium isoscapes

    Science.gov (United States)

    Muhlfeld, Clint C.; Simon R. Thorrold,; Thomas E. McMahon,; Marotz, Brian

    2012-01-01

    We used natural variation in the strontium concentration (Sr:Ca) and isotope composition (87Sr:86Sr) of stream waters and corresponding values recorded in otoliths of westslope cutthroat trout (Oncorhynchus clarkii lewisi) to examine movements during their life history in a large river network. We found significant spatial differences in Sr:Ca and 87Sr:86Sr values (strontium isoscapes) within and among numerous spawning and rearing streams that remained relatively constant seasonally. Both Sr:Ca and 87Sr:86Sr values in the otoliths of juveniles collected from nine natal streams were highly correlated with those values in the ambient water. Strontium isoscapes measured along the axis of otolith growth revealed that almost half of the juveniles had moved at least some distance from their natal streams. Finally, otolith Sr profiles from three spawning adults confirmed homing to natal streams and use of nonoverlapping habitats over their migratory lifetimes. Our study demonstrates that otolith geochemistry records movements of cutthroat trout through Sr isoscapes and therefore provides a method that complements and extends the utility of conventional tagging techniques in understanding life history strategies and conservation needs of freshwater fishes in river networks.

  20. DISSOLVED OXYGEN MODELLING USING ARTIFICIAL NEURAL NETWORK: A CASE OF RIVER NZOIA, LAKE VICTORIA BASIN, KENYA

    Directory of Open Access Journals (Sweden)

    Edwin Kimutai Kanda

    2016-11-01

    Full Text Available River Nzoia in Kenya, due to its role in transporting industrial and municipal wastes in addition to agricultural runoff to Lake Victoria, is vulnerable to pollution. Dissolved oxygen is one of the most important indicators of water pollution. Artificial neural network (ANN has gained popularity in water quality forecasting. This study aimed at assessing the ability of ANN to predict dissolved oxygen using four input variables of temperature, turbidity, pH and electrical conductivity. Multilayer perceptron network architecture was used in this study. The data consisted of 113 monthly values for the input variables and output variable from 2009–2013 which were split into training and testing datasets. The results obtained during training and testing were satisfactory with R2 varying from 0.79 to 0.94 and RMSE values ranging from 0.34 to 0.64 mg/l which imply that ANN can be used as a monitoring tool in the prediction of dissolved oxygen for River Nzoia considering the non-correlational relationship of the input and output variables. The dissolved oxygen values follow seasonal trend with low values during dry periods.

  1. PREDICTION OF WATER QUALITY INDEX USING BACK PROPAGATION NETWORK ALGORITHM. CASE STUDY: GOMBAK RIVER

    Directory of Open Access Journals (Sweden)

    FARIS GORASHI

    2012-08-01

    Full Text Available The aim of this study is to enable prediction of water quality parameters with conjunction to land use attributes and to find a low-end alternative for water quality monitoring techniques, which are typically expensive and tedious. It also aims to ensure sustainable development, which is essentially has effects on water quality. The research approach followed in this study is via using artificial neural networks, and geographical information system to provide a reliable prediction model. Back propagation network algorithm was used for the purpose of this study. The proposed approach minimized most of anomalies associated with prediction methods and provided water quality prediction with precision. The study used 5 hidden nodes in this network. The network was optimized to complete 23145 cycles before it reaches the best error of 0.65. Stations 18 had shown the greatest fluctuation among the three stations as it reflects an area of on-going rapid development of Gombak river watershed. The results had shown a very close prediction with best error of 0.67 in a sensitivity test that was carried afterwards.

  2. Fractal nature of humic materials

    International Nuclear Information System (INIS)

    Rice, J.A.

    1992-01-01

    Fractals are geometric representatives of strongly disordered systems whose structure is described by nonintegral dimensions. A fundamental tenet of fractal geometry is that disorder persists at any characterization scale-length used to describe the system. The nonintegral nature of these fractal dimensions is the result of the realization that a disordered system must possess more structural detail than an ordered system with classical dimensions of 1, 2, or 3 in order to accommodate this ''disorder within disorder.'' Thus from a fractal perspective, disorder is seen as an inherent characteristic of the system rather than as a perturbative phenomena forced upon it. Humic materials are organic substances that are formed by the profound alteration of organic matter in a natural environment. They can be operationally divided into 3 fractions; humic acid (soluble in base), fulvic acid (soluble in acid or base), and humin (insoluble in acid or base). Each of these fraction has been shown to be an extremely heterogeneous mixture. These mixtures have proven so intractable that they may represent the ultimate in molecular disorder. In fact, based on the characteristics that humic materials must possess in order to perform their functions in natural systems, it has been proposed that the fundamental chemical characteristic of a humic material is not a discrete chemical structure but a pronounced lack of order on a molecular level. If the fundamental chemical characteristic of a humic material is a strongly disordered nature, as has been proposed, then humic materials should be amenable to characterization by fractal geometry. The purpose of this paper is to test this hypothesis

  3. The Impact of The Fractal Paradigm on Geography

    Science.gov (United States)

    De Cola, L.

    2001-12-01

    Being itself somewhat fractal, Benoit Mandelbrot's magnum opus THE FRACTAL GEOMETRY OF NATURE may be deconstructed in many ways, including geometrically, systematically, and epistemologically. Viewed as a work of geography it may be used to organize the major topics of interest to scientists preoccupied with the understanding of real-world space in astronomy, geology, meteorology, hydrology, and biology. We shall use it to highlight such recent geographic accomplishments as automated feature detection, understanding urban growth, and modeling the spread of disease in space and time. However, several key challenges remain unsolved, among them: 1. It is still not possible to move continuously from one map scale to another so that objects change their dimension smoothly. I.e. as a viewer zooms in on a map the zero-dimensional location of a city should gradually become a 2-dimensional polygon, then a network of 1-dimensional streets, then 3-dimensional buildings, etc. 2. Spatial autocorrelation continues to be regarded more as an econometric challenge than as a problem of scaling. Similarities of values among closely-spaced observation is not so much a problem to be overcome as a source of information about spatial structure. 3. Although the fractal paradigm is a powerful model for data analysis, its ideas and techniques need to be brought to bear on the problems of understanding such hierarchies as ecosystems (the flow networks of energy and matter), taxonomies (biological classification), and knowledge (hierarchies of bureaucratic information, networks of linked data, etc).

  4. The patterns of organisation and structure of interactions in a fish-parasite network of a neotropical river.

    Science.gov (United States)

    Bellay, Sybelle; Oliveira, Edson F de; Almeida-Neto, Mário; Abdallah, Vanessa D; Azevedo, Rodney K de; Takemoto, Ricardo M; Luque, José L

    2015-07-01

    The use of the complex network approach to study host-parasite interactions has helped to improve the understanding of the structure and dynamics of ecological communities. In this study, this network approach is applied to evaluate the patterns of organisation and structure of interactions in a fish-parasite network of a neotropical Atlantic Forest river. The network includes 20 fish species and 73 metazoan parasite species collected from the Guandu River, Rio de Janeiro State, Brazil. According to the usual measures in studies of networks, the organisation of the network was evaluated using measures of host susceptibility, parasite dependence, interaction asymmetry, species strength and complementary specialisation of each species as well as the network. The network structure was evaluated using connectance, nestedness and modularity measures. Host susceptibility typically presented low values, whereas parasite dependence was high. The asymmetry and species strength were correlated with host taxonomy but not with parasite taxonomy. Differences among parasite taxonomic groups in the complementary specialisation of each species on hosts were also observed. However, the complementary specialisation and species strength values were not correlated. The network had a high complementary specialisation, low connectance and nestedness, and high modularity, thus indicating variability in the roles of species in the network organisation and the expected presence of many specialist species. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones.

    Science.gov (United States)

    Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri

    2015-01-01

    Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and

  6. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2014

    Science.gov (United States)

    Thomas, Judith C.

    2015-10-07

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Thirty wells total were installed for this project: 10 in 2012 (DS 923, http://dx.doi.org/10.3133/ds923), and 20 monitoring wells were installed during April and June 2014 which are presented in this report. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system can provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  7. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems

    Science.gov (United States)

    Brown, B.L.; Swan, C.M.; Auerbach, D.A.; Campbell, Grant E.H.; Hitt, N.P.; Maloney, K.O.; Patrick, C.

    2011-01-01

    Explaining the mechanisms underlying patterns of species diversity and composition in riverine networks is challenging. Historically, community ecologists have conceived of communities as largely isolated entities and have focused on local environmental factors and interspecific interactions as the major forces determining species composition. However, stream ecologists have long embraced a multiscale approach to studying riverine ecosystems and have studied both local factors and larger-scale regional factors, such as dispersal and disturbance. River networks exhibit a dendritic spatial structure that can constrain aquatic organisms when their dispersal is influenced by or confined to the river network. We contend that the principles of metacommunity theory would help stream ecologists to understand how the complex spatial structure of river networks mediates the relative influences of local and regional control on species composition. From a basic ecological perspective, the concept is attractive because new evidence suggests that the importance of regional processes (dispersal) depends on spatial structure of habitat and on connection to the regional species pool. The role of local factors relative to regional factors will vary with spatial position in a river network. From an applied perspective, the long-standing view in ecology that local community composition is an indicator of habitat quality may not be uniformly applicable across a river network, but the strength of such bioassessment approaches probably will depend on spatial position in the network. The principles of metacommunity theory are broadly applicable across taxa and systems but seem of particular consequence to stream ecology given the unique spatial structure of riverine systems. By explicitly embracing processes at multiple spatial scales, metacommunity theory provides a foundation on which to build a richer understanding of stream communities.

  8. Combining Biometric Fractal Pattern and Particle Swarm Optimization-Based Classifier for Fingerprint Recognition

    Directory of Open Access Journals (Sweden)

    Chia-Hung Lin

    2010-01-01

    Full Text Available This paper proposes combining the biometric fractal pattern and particle swarm optimization (PSO-based classifier for fingerprint recognition. Fingerprints have arch, loop, whorl, and accidental morphologies, and embed singular points, resulting in the establishment of fingerprint individuality. An automatic fingerprint identification system consists of two stages: digital image processing (DIP and pattern recognition. DIP is used to convert to binary images, refine out noise, and locate the reference point. For binary images, Katz's algorithm is employed to estimate the fractal dimension (FD from a two-dimensional (2D image. Biometric features are extracted as fractal patterns using different FDs. Probabilistic neural network (PNN as a classifier performs to compare the fractal patterns among the small-scale database. A PSO algorithm is used to tune the optimal parameters and heighten the accuracy. For 30 subjects in the laboratory, the proposed classifier demonstrates greater efficiency and higher accuracy in fingerprint recognition.

  9. Order-fractal transitions in abstract paintings

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, E.M. de la, E-mail: elsama79@gmail.com [Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970, Porto Alegre, RS (Brazil); Cervantes, F. [Department of Applied Physics, CINVESTAV-IPN, Carr. Antigua a Progreso km.6, Cordemex, C.P.97310, Mérida, Yucatán (Mexico); Calleja, J. de la [Department of Informatics, Universidad Politécnica de Puebla, 72640 (Mexico)

    2016-08-15

    In this study, we determined the degree of order for 22 Jackson Pollock paintings using the Hausdorff–Besicovitch fractal dimension. Based on the maximum value of each multi-fractal spectrum, the artworks were classified according to the year in which they were painted. It has been reported that Pollock’s paintings are fractal and that this feature was more evident in his later works. However, our results show that the fractal dimension of these paintings ranges among values close to two. We characterize this behavior as a fractal-order transition. Based on the study of disorder-order transition in physical systems, we interpreted the fractal-order transition via the dark paint strokes in Pollock’s paintings as structured lines that follow a power law measured by the fractal dimension. We determined self-similarity in specific paintings, thereby demonstrating an important dependence on the scale of observations. We also characterized the fractal spectrum for the painting entitled Teri’s Find. We obtained similar spectra for Teri’s Find and Number 5, thereby suggesting that the fractal dimension cannot be rejected completely as a quantitative parameter for authenticating these artworks. -- Highlights: •We determined the degree of order in Jackson Pollock paintings using the Hausdorff–Besicovitch dimension. •We detected a fractal-order transition from Pollock’s paintings between 1947 and 1951. •We suggest that Jackson Pollock could have painted Teri’s Find.

  10. Investigating the Performance of One- and Two-dimensional Flood Models in a Channelized River Network: A Case Study of the Obion River System

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Thornton, J. C.; Auld, L. A.

    2015-12-01

    Obion River, is located in the northwestern Tennessee region, and discharges into the Mississippi River. In the past, the river system was largely channelized for agricultural purposes that resulted in increased erosion, loss of wildlife habitat and downstream flood risks. These impacts are now being slowly reversed mainly due to wetland restoration. The river system is characterized by a large network of "loops" around the main channels that hold water either from excess flows or due to flow diversions. Without data on each individual channel, levee, canal, or pond it is not known where the water flows from or to. In some segments along the river, the natural channel has been altered and rerouted by the farmers for their irrigation purposes. Satellite imagery can aid in identifying these features, but its spatial coverage is temporally sparse. All the alterations that have been done to the watershed make it difficult to develop hydraulic models, which could predict flooding and droughts. This is especially true when building one-dimensional (1D) hydraulic models compared to two-dimensional (2D) models, as the former cannot adequately simulate lateral flows in the floodplain and in complex terrains. The objective of this study therefore is to study the performance of 1D and 2D flood models in this complex river system, evaluate the limitations of 1D models and highlight the advantages of 2D models. The study presents the application of HEC-RAS and HEC-2D models developed by the Hydrologic Engineering Center (HEC), a division of the US Army Corps of Engineers. The broader impacts of this study is the development of best practices for developing flood models in channelized river systems and in agricultural watersheds.

  11. Fractal structures and fractal functions as disease indicators

    Science.gov (United States)

    Escos, J.M; Alados, C.L.; Emlen, J.M.

    1995-01-01

    Developmental instability is an early indicator of stress, and has been used to monitor the impacts of human disturbance on natural ecosystems. Here we investigate the use of different measures of developmental instability on two species, green peppers (Capsicum annuum), a plant, and Spanish ibex (Capra pyrenaica), an animal. For green peppers we compared the variance in allometric relationship between control plants, and a treatment group infected with the tomato spotted wilt virus. The results show that infected plants have a greater variance about the allometric regression line than the control plants. We also observed a reduction in complexity of branch structure in green pepper with a viral infection. Box-counting fractal dimension of branch architecture declined under stress infection. We also tested the reduction in complexity of behavioral patterns under stress situations in Spanish ibex (Capra pyrenaica). Fractal dimension of head-lift frequency distribution measures predator detection efficiency. This dimension decreased under stressful conditions, such as advanced pregnancy and parasitic infection. Feeding distribution activities reflect food searching efficiency. Power spectral analysis proves to be the most powerful tool for character- izing fractal behavior, revealing a reduction in complexity of time distribution activity under parasitic infection.

  12. Assessment of the environmental significance of nutrients and heavy metal pollution in the river network of Serbia.

    Science.gov (United States)

    Dević, Gordana; Sakan, Sanja; Đorđević, Dragana

    2016-01-01

    In this paper, the data for ten water quality variables collected during 2009 at 75 monitoring sites along the river network of Serbia are considered. The results are alarming because 48% of the studied sites were contaminated by Ni, Mn, Pb, As, and nutrients, which are key factors impairing the water quality of the rivers in Serbia. Special attention should be paid to Zn and Cu, listed in the priority toxic pollutants of US EPA for aquatic life protection. The employed Q-model cluster analysis grouped the data into three major pollution zones (low, moderate, and high). Most sites classified as "low pollution zones" (LP) were in the main rivers, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) were in the large and small tributaries/hydro-system. Principal component analysis/factor analysis (PCA/FA) showed that the dissolved metals and nutrients in the Serbian rivers varied depending on the river, the heterogeneity of the anthropogenic activities in the basins (influenced primarily by industrial wastewater, agricultural activities, and urban runoff pollution), and natural environmental variability, such as geological characteristics. In LP dominated non-point source pollution, such as agricultural and urban runoff, whereas mixed source pollution dominated in the MP and HP zones. These results provide information to be used for developing better pollution control strategies for the river network of Serbia.

  13. Nitrous oxide emissions in the Shanghai river network: implications for the effects of urban sewage and IPCC methodology.

    Science.gov (United States)

    Yu, Zhongjie; Deng, Huanguang; Wang, Dongqi; Ye, Mingwu; Tan, Yongjie; Li, Yangjie; Chen, Zhenlou; Xu, Shiyuan

    2013-10-01

    Global nitrogen (N) enrichment has resulted in increased nitrous oxide (N(2)O) emission that greatly contributes to climate change and stratospheric ozone destruction, but little is known about the N(2)O emissions from urban river networks receiving anthropogenic N inputs. We examined N(2)O saturation and emission in the Shanghai city river network, covering 6300 km(2), over 27 months. The overall mean saturation and emission from 87 locations was 770% and 1.91 mg N(2)O-N m(-2) d(-1), respectively. Nitrous oxide (N(2)O) saturation did not exhibit a clear seasonality, but the temporal pattern was co-regulated by both water temperature and N loadings. Rivers draining through urban and suburban areas receiving more sewage N inputs had higher N(2)O saturation and emission than those in rural areas. Regression analysis indicated that water ammonium (NH(4)(+)) and dissolved oxygen (DO) level had great control on N(2)O production and were better predictors of N(2)O emission in urban watershed. About 0.29 Gg N(2)O-N yr(-1) N(2)O was emitted from the Shanghai river network annually, which was about 131% of IPCC's prediction using default emission values. Given the rapid progress of global urbanization, more study efforts, particularly on nitrification and its N(2)O yielding, are needed to better quantify the role of urban rivers in global riverine N(2)O emission. © 2013 John Wiley & Sons Ltd.

  14. Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA

    Science.gov (United States)

    Clayton, J.A.; Kean, J.W.

    2010-01-01

    Investigating the routing of streamflow through a large drainage basin requires the determination of discharge at numerous locations in the channel network. Establishing a dense network of stream gages using conventional methods is both cost-prohibitive and functionally impractical for many research projects. We employ herein a previously tested, fluid-mechanically based model for generating rating curves to establish a stream gaging network in the Whitewater River basin in south-central Kansas. The model was developed for the type of channels typically found in this watershed, meaning that it is designed to handle deep, narrow geomorphically stable channels with irregular planforms, and can model overbank flow over a vegetated floodplain. We applied the model to ten previously ungaged stream reaches in the basin, ranging from third- to sixth-order channels. At each site, detailed field measurements of the channel and floodplain morphology, bed and bank roughness, and vegetation characteristics were used to quantify the roughness for a range of flow stages, from low flow to overbank flooding. Rating curves that relate stage to discharge were developed for all ten sites. Both fieldwork and modeling were completed in less than 2 years during an anomalously dry period in the region, which underscores an advantage of using theoretically based (as opposed to empirically based) discharge estimation techniques. ?? 2010 Springer Science+Business Media B.V.

  15. Conference on Fractals and Related Fields III

    CERN Document Server

    Seuret, Stéphane

    2017-01-01

    This contributed volume provides readers with an overview of the most recent developments in the mathematical fields related to fractals, including both original research contributions, as well as surveys from many of the leading experts on modern fractal theory and applications. It is an outgrowth of the Conference of Fractals and Related Fields III, that was held on September 19-25, 2015 in île de Porquerolles, France. Chapters cover fields related to fractals such as harmonic analysis, multifractal analysis, geometric measure theory, ergodic theory and dynamical systems, probability theory, number theory, wavelets, potential theory, partial differential equations, fractal tilings, combinatorics, and signal and image processing. The book is aimed at pure and applied mathematicians in these areas, as well as other researchers interested in discovering the fractal domain.

  16. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    Science.gov (United States)

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of

  17. Chaos, Fractals and Their Applications

    Science.gov (United States)

    Thompson, J. Michael T.

    2016-12-01

    This paper gives an up-to-date account of chaos and fractals, in a popular pictorial style for the general scientific reader. A brief historical account covers the development of the subject from Newton’s laws of motion to the astronomy of Poincaré and the weather forecasting of Lorenz. Emphasis is given to the important underlying concepts, embracing the fractal properties of coastlines and the logistics of population dynamics. A wide variety of applications include: NASA’s discovery and use of zero-fuel chaotic “superhighways” between the planets; erratic chaotic solutions generated by Euler’s method in mathematics; atomic force microscopy; spontaneous pattern formation in chemical and biological systems; impact mechanics in offshore engineering and the chatter of cutting tools; controlling chaotic heartbeats. Reference is made to a number of interactive simulations and movies accessible on the web.

  18. Fractals, malware, and data models

    Science.gov (United States)

    Jaenisch, Holger M.; Potter, Andrew N.; Williams, Deborah; Handley, James W.

    2012-06-01

    We examine the hypothesis that the decision boundary between malware and non-malware is fractal. We introduce a novel encoding method derived from text mining for converting disassembled programs first into opstrings and then filter these into a reduced opcode alphabet. These opcodes are enumerated and encoded into real floating point number format and used for characterizing frequency of occurrence and distribution properties of malware functions to compare with non-malware functions. We use the concept of invariant moments to characterize the highly non-Gaussian structure of the opcode distributions. We then derive Data Model based classifiers from identified features and interpolate and extrapolate the parameter sample space for the derived Data Models. This is done to examine the nature of the parameter space classification boundary between families of malware and the general non-malware category. Preliminary results strongly support the fractal boundary hypothesis, and a summary of our methods and results are presented here.

  19. The fractal dimension of architecture

    CERN Document Server

    Ostwald, Michael J

    2016-01-01

    Fractal analysis is a method for measuring, analysing and comparing the formal or geometric properties of complex objects. In this book it is used to investigate eighty-five buildings that have been designed by some of the twentieth-century’s most respected and celebrated architects. Including designs by Le Corbusier, Eileen Gray, Frank Lloyd Wright, Robert Venturi, Frank Gehry, Peter Eisenman, Richard Meier and Kazuyo Sejima amongst others, this book uses mathematics to analyse arguments and theories about some of the world’s most famous designs. Starting with 625 reconstructed architectural plans and elevations, and including more than 200 specially prepared views of famous buildings, this book presents the results of the largest mathematical study ever undertaken into architectural design and the largest single application of fractal analysis presented in any field. The data derived from this study is used to test three overarching hypotheses about social, stylistic and personal trends in design, along...

  20. Dimensional analysis, scaling and fractals

    International Nuclear Information System (INIS)

    Timm, L.C.; Reichardt, K.; Oliveira Santos Bacchi, O.

    2004-01-01

    Dimensional analysis refers to the study of the dimensions that characterize physical entities, like mass, force and energy. Classical mechanics is based on three fundamental entities, with dimensions MLT, the mass M, the length L and the time T. The combination of these entities gives rise to derived entities, like volume, speed and force, of dimensions L 3 , LT -1 , MLT -2 , respectively. In other areas of physics, four other fundamental entities are defined, among them the temperature θ and the electrical current I. The parameters that characterize physical phenomena are related among themselves by laws, in general of quantitative nature, in which they appear as measures of the considered physical entities. The measure of an entity is the result of its comparison with another one, of the same type, called unit. Maps are also drawn in scale, for example, in a scale of 1:10,000, 1 cm 2 of paper can represent 10,000 m 2 in the field. Entities that differ in scale cannot be compared in a simple way. Fractal geometry, in contrast to the Euclidean geometry, admits fractional dimensions. The term fractal is defined in Mandelbrot (1982) as coming from the Latin fractus, derived from frangere which signifies to break, to form irregular fragments. The term fractal is opposite to the term algebra (from the Arabic: jabara) which means to join, to put together the parts. For Mandelbrot, fractals are non topologic objects, that is, objects which have as their dimension a real, non integer number, which exceeds the topologic dimension. For the topologic objects, or Euclidean forms, the dimension is an integer (0 for the point, 1 for a line, 2 for a surface, and 3 for a volume). The fractal dimension of Mandelbrot is a measure of the degree of irregularity of the object under consideration. It is related to the speed by which the estimate of the measure of an object increases as the measurement scale decreases. An object normally taken as uni-dimensional, like a piece of a

  1. Fuzzy fractals, chaos, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Zardecki, A.

    1997-05-01

    To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.

  2. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics

  3. River Network Reorganization along the Upper Yangzte, Eastern Tibet: Insights from Thermochronology and Sedimentology.

    Science.gov (United States)

    Gourbet, L.; Yang, R.; Fellin, M. G.; Maden, C.; Gong, J.; Jean-Louis, P.

    2017-12-01

    The high relief and high elevation of the southeastern margin of the Tibetan Plateau are related to tectonic uplift and the fluvial incision of the Salween, Mekong, and Yangtze rivers. The upper Yangtze is the subject of numerous debates on the evolution of its drainage area, particularly in regards to the timing and geodynamic processes, and therefore has an impact on models of the Tibetan plateau evolution. Today, portions of the course of the Yangtze are controlled by active strike-slip faults. In order to study the evolution of the Cenozoic paleoriver network, we use low-temperature thermochronometry to estimate fluvial incision and palaeoenvironmental information derived from the detrital record. The Jianchuan basin, between the Yangtze and the Red River, contains late Eocene fluvial sediments that may correspond to an ancient connection between these rivers. Sediments located further north (DongWang formation, Yunnan-Sichuan boundary) consist of unsorted conglomerates and sandstones. They are exposed on the flanks of deep valleys. These sediments do not correspond to a large riverbed such as the Yangtze but rather indicate an episode of intense sedimentation with a significant contribution from talus, followed by a >1.2 km incision by a tributary of the upper Yangtze. In the same area, we performed apatite and zircon (U-Th)/He dating on a granitic pluton that is offset by an active sinistral strike-slip fault. Mean ZHe cooling ages range from 50 to 70 Ma. Samples located above 3870 m yield mean apatite (U-Th)/He ages ranging from 30 to 40 Ma. AHe ages for samples at lower elevation range from 8 to 15 Ma. Given the crystallization age of the pluton (83 Ma, U/Pb, zircon), cooling ages reflect exhumation, not post-intrusion cooling. Further research will use thermal modeling to infer incision rates and compare results with published data.

  4. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    Science.gov (United States)

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  5. Fractals via iterated functions and multifunctions

    International Nuclear Information System (INIS)

    Singh, S.L.; Prasad, Bhagwati; Kumar, Ashish

    2009-01-01

    Fractals have wide applications in biology, computer graphics, quantum physics and several other areas of applied sciences (see, for instance [Daya Sagar BS, Rangarajan Govindan, Veneziano Daniele. Preface - fractals in geophysics. Chaos, Solitons and Fractals 2004;19:237-39; El Naschie MS. Young double-split experiment Heisenberg uncertainty principles and cantorian space-time. Chaos, Solitons and Fractals 1994;4(3):403-09; El Naschie MS. Quantum measurement, information, diffusion and cantorian geodesics. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995. p. 191-205; El Naschie MS. Iterated function systems, information and the two-slit experiment of quantum mechanics. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995. p. 185-9; El Naschie MS, Rossler OE, Prigogine I. Forward. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995; El Naschie MS. A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals 2004;19:209-36; El Naschie MS. Fractal black holes and information. Chaos, Solitons and Fractals 2006;29:23-35; El Naschie MS. Superstring theory: what it cannot do but E-infinity could. Chaos, Solitons and Fractals 2006;29:65-8). Especially, the study of iterated functions has been found very useful in the theory of black holes, two-slit experiment in quantum mechanics (cf. El Naschie, as mentioned above). The intent of this paper is to give a brief account of recent developments of fractals arising from IFS. We also discuss iterated multifunctions.

  6. Node insertion in Coalescence Fractal Interpolation Function

    International Nuclear Information System (INIS)

    Prasad, Srijanani Anurag

    2013-01-01

    The Iterated Function System (IFS) used in the construction of Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) depends on the interpolation data. The insertion of a new point in a given set of interpolation data is called the problem of node insertion. In this paper, the effect of insertion of new point on the related IFS and the Coalescence Fractal Interpolation Function is studied. Smoothness and Fractal Dimension of a CHFIF obtained with a node are also discussed

  7. Fractional hydrodynamic equations for fractal media

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2005-01-01

    We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the 'fractional' continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered

  8. Comparison of two fractal interpolation methods

    Science.gov (United States)

    Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo

    2017-03-01

    As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has

  9. Power Load Prediction Based on Fractal Theory

    OpenAIRE

    Jian-Kai, Liang; Cattani, Carlo; Wan-Qing, Song

    2015-01-01

    The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and...

  10. Generalizing a nonlinear geophysical flood theory to medium-sized river networks

    Science.gov (United States)

    Gupta, Vijay K.; Mantilla, Ricardo; Troutman, Brent M.; Dawdy, David; Krajewski, Witold F.

    2010-01-01

    The central hypothesis of a nonlinear geophysical flood theory postulates that, given space-time rainfall intensity for a rainfall-runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self-similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400-km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall-runoff events. Scaling in peak discharges would hold in a non-stationary climate due to global warming but its slope and intercept would change.

  11. A New U.S. West Coast Network of Atmospheric River Observatories

    Science.gov (United States)

    White, A. B.; Wilczak, J. M.; Ayers, T. E.; King, C. W.; Jordan, J. R.; Shaw, W. J.; Flaherty, J. E.; Morris, V. R.

    2015-12-01

    The West Coast of North America is the gateway to winter storms forming over the Pacific Ocean that deliver most of the precipitation and water supply to the region. Satellites are capable of detecting the concentrated water vapor in these storms (a.k.a. atmospheric rivers) over the oceans, but because of the complex emissivity of land surfaces, fail to do so over land. In addition, these storms often are accompanied by a baroclinically induced low-level jet that drives the moisture up the windward slopes of coastal and inland mountain ranges and produces orographically enhanced precipitation. To date, satellites cannot resolve this important feature. NOAA's Hydrometeorology Testbed (HMT; hmt.noaa.gov) has developed the concept of an atmospheric river observatory (ARO); a collection of ground-based instruments capable of detecting and monitoring the water vapor transport in the low-level jet region. With funding provided by the California Department of Water Resources and U.S. Department of Energy, HMT has installed a picket fence of AROs along the U.S. West Coast. In addition, HMT has developed an award-winning water vapor flux tool that takes advantage of the data collected by the AROs to provide situational awareness and decision support for end users. This tool recently has been updated to include operational weather prediction output. The ARO network and water vapor flux tool will be described in this presentation.

  12. Fractal Metrology for biogeosystems analysis

    Directory of Open Access Journals (Sweden)

    V. Torres-Argüelles

    2010-11-01

    Full Text Available The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc. while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM. We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  13. Fractal Geometry and Stochastics V

    CERN Document Server

    Falconer, Kenneth; Zähle, Martina

    2015-01-01

    This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott,  Michał Rams, Pablo Shmerkin, and András Te...

  14. Zipf’s law, 1/f noise, and fractal hierarchy

    International Nuclear Information System (INIS)

    Chen Yanguang

    2012-01-01

    Highlights: ► I developed a general scaling method based on hierarchies of cites. ► Hierarchy is classified into three types based on monofractal and multifractals. ► Zipf’s law can be used to estimate the capacity dimension of a multifractal set. ► I derive the self-similar hierarchy from the rank-size distribution. ► The hierarchical scaling method can be applied to the 1/f spectra. - Abstract: Fractals, 1/f noise, and Zipf’s laws are frequently observed within the natural living world as well as in social institutions, representing three signatures of complex systems. All these observations are associated with scaling laws and therefore have created much research interest in many diverse scientific circles. However, the inherent relationships between these scaling phenomena are not yet clear. In this paper, theoretical demonstration and mathematical experiments based on urban studies are employed to reveal the analogy between fractal patterns, 1/f spectra, and the Zipf distribution. First, the multifractal process empirically suggests the Zipf distribution. Second, a 1/f spectrum is mathematically identical to Zipf’s law. Third, both 1/f spectra and Zipf’s law can be converted into a self-similar hierarchy. Fourth, fractals, 1/f spectra, Zipf’s law can be rescaled with similar exponential laws and power laws. The self-similar hierarchy is a more general scaling method which can be used to unify different scaling phenomena and rules in both physical and social systems such as cities, rivers, earthquakes, fractals, 1/f noise, and rank-size distributions. The mathematical laws of this hierarchical structure can provide us with a holistic perspective of looking at complexity and complex systems.

  15. Fractal geometry mathematical foundations and applications

    CERN Document Server

    Falconer, Kenneth

    2013-01-01

    The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals.  The book introduces and develops the general theory and applica

  16. Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory.

    Science.gov (United States)

    Shi, Bin; Jiang, Jiping; Sivakumar, Bellie; Zheng, Yi; Wang, Peng

    2018-05-01

    Field monitoring strategy is critical for disaster preparedness and watershed emergency environmental management. However, development of such is also highly challenging. Despite the efforts and progress thus far, no definitive guidelines or solutions are available worldwide for quantitatively designing a monitoring network in response to river chemical spill incidents, except general rules based on administrative divisions or arbitrary interpolation on routine monitoring sections. To address this gap, a novel framework for spatial-temporal network design was proposed in this study. The framework combines contaminant transport modelling with discrete entropy theory and spectral analysis. The water quality model was applied to forecast the spatio-temporal distribution of contaminant after spills and then corresponding information transfer indexes (ITIs) and Fourier approximation periodic functions were estimated as critical measures for setting sampling locations and times. The results indicate that the framework can produce scientific preparedness plans of emergency monitoring based on scenario analysis of spill risks as well as rapid design as soon as the incident happened but not prepared. The framework was applied to a hypothetical spill case based on tracer experiment and a real nitrobenzene spill incident case to demonstrate its suitability and effectiveness. The newly-designed temporal-spatial monitoring network captured major pollution information at relatively low costs. It showed obvious benefits for follow-up early-warning and treatment as well as for aftermath recovery and assessment. The underlying drivers of ITIs as well as the limitations and uncertainty of the approach were analyzed based on the case studies. Comparison with existing monitoring network design approaches, management implications, and generalized applicability were also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    Science.gov (United States)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models

  18. A variational principle for the Hausdorff dimension of fractal sets

    DEFF Research Database (Denmark)

    Olsen, Lars; Cutler, Colleen D.

    1994-01-01

    Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)......Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)...

  19. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-05-01

    In this work, Paper-based inkjet-printed Ultra-wide band (UWB) fractal antennas are presented. Three new designs, a combined UWB fractal monopole based on the fourth order Koch Snowflake fractal which utilizes a Sierpinski Gasket fractal for ink reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics. It is shown that fractals prove to be a successful method of reducing fabrication cost in inkjet printed antennas while retaining or enhancing printed antenna performance.

  20. Modelling the Transfer and Retention of Nutrients in the Drainage Network of the Danube River

    Science.gov (United States)

    Garnier, J.; Billen, G.; Hannon, E.; Fonbonne, S.; Videnina, Y.; Soulie, M.

    2002-03-01

    The Danube catchment basin (817 000 km 2, 76×10 6 inhabitants) is the major freshwater contributor to the Black Sea (6300 m 3 s -1, 80% of the annual river discharge into the north-western Black Sea). The aim of the modelling approach developed for the Danube River, is to establish how land use and management of the whole watershed are linked to nutrient (N, P, Si) delivery and retention by the river. The approach uses an adaptation of the RIVERSTRAHLER model, which is based on a schematic representation of the drainage network deduced from geomorphological analysis by stream orders. The whole catchment was divided into 10 sub-basins and one branch, to provide a description satisfying both the need to take into account the heterogeneity of the system and the availability of constraints and validation data. On the basis of this description, a hydrological model was developed, which adequately simulated the seasonal variations of the discharge measured at the outlet of the basin. The model itself resulted from the coupling of the hydrological model with a biogeochemical model (RIVE), which takes into account the main ecological processes. It established a link between microscopic processes, their controlling factors and their macroscopic manifestations in terms of nutrient cycling and ecological functioning at the scale of the whole drainage network. The model was validated for the period from 1988 to 1991 on the basis of available observations of the major water-quality variables involved in the eutrophication processes (inorganic nutrients, phytoplankton biomass, dissolved oxygen, etc.). A reasonable agreement was found between the simulations of the model and the observations. Nutrient fluxes to the Black Sea, calculated for our reference period, are in the same range as those obtained via other approaches. Si/P and N/P ratios suggest silicon, rather than phosphorus, limitation for diatoms and phosphorus, rather than nitrogen, limitation for overall phytoplankton

  1. [Formation and changes of regulated trihalomethanes and haloacetic acids in raw water of Yangtze River, Huangpu River and different treatment processes and pipelines network].

    Science.gov (United States)

    Chen, Xin; Zhang, Dong; Lu, Yin-hao; Zheng, Wei-wei; Wu, Yu-xin; Wei, Xiao; Tian, Da-jun; Wang, Xia; Zhang, Hao; Guo, Shuai; Jiang, Song-hui; Qu, Wei-dong

    2010-10-01

    To investigate the pollutant levels of regulated disinfection by-products trihalomethanes (THMs) and haloacetic acids (HAAs) in raw water from the Huangpu River, the Yangtze River and different treatment processes and finished water, and to explore the changes tendency in transmission and distribution pipeline network. A total of 65 ml water samples with two replicates were collected from different raw water, corresponding treatment processes, finished water and six national surveillance points in main network of transmission and distribution, water source for A water plant and B, C water plant was the Huangpu River and the Yangtze River, respectively. Regulated THMs and HAAs above water samples were detected by gas chromatography. The total trihalomethanes (THM(4)) concentration in different treatment processes of A water plant was ND-9.64 µg/L, dichlorobromomethane was the highest (6.43 µg/L). The THM(4) concentration in B and C water plant was ND to 38.06 µg/L, dibromochloromethane (12.24 µg/L) and bromoform (14.07 µg/L) were the highest in the B and the C water plant respectively. In addition to trichloroacetic acid in A water plant from the raw water, the other HAAs came from different treatment processes. The total haloacetic acids (HAA(6)) concentration of different treated processes in A water plant was 3.21 - 22.97 µg/L, mobromoacetic acid (10.40 µg/L) was the highest. Dibromoacetic acid was the highest both in B (8.25 µg/L) and C (8.84 µg/L) water plant, HAA(6) concentration was ND to 27.18 µg/L. The highest and the lowest concentration of THM(4) were found from the main distribution network of C and A water plant respectively, but the concentration of HAA(6) in the main water pipes network of A water plant was the highest, and the lowest in C water plant. The THMs concentration was 21.11 - 31.18 µg/L in C water plant and 6.72 - 8.51 µg/L in A water plant. The concentration of HAA(6) was 25.02 - 37.31 µg/L in A water plant and 18.69 - 23

  2. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    sufficiently accurate estimates of sediment loads. Finally, conventional suspended-sediment measurements are both labor and cost intensive and may not be possible at the resolution required to resolve discharge-independent changes in suspended-sediment concentration, especially in more remote locations. For these reasons, the U.S. Geological Survey has pursued the use of surrogate technologies (such as acoustic and laser diffraction) for providing higher-resolution measurements of suspended-sediment concentration and grain size than are possible by using conventional suspended-sediment measurements alone. These factors prompted the U.S. Geological Survey's Grand Canyon Monitoring and Research Center to design and construct a network to automatically measure suspended-sediment transport at 15-minute intervals by using acoustic and laser-diffraction surrogate technologies at remote locations along the Colorado River within Marble and Grand Canyons in Grand Canyon National Park. Because of the remoteness of the Colorado River in this reach, this network also included the design of a broadband satellite-telemetry system to communicate with the instruments deployed at each station in this network. Although the sediment-transport monitoring network described in this report was developed for the Colorado River in Grand Canyon National Park, the design of this network can easily be adapted for use on other rivers, no matter how remote. In the Colorado River case-study example described in this report, suspended-sediment concentration and grain size are measured at five remote stations. At each of these stations, surrogate measurements of suspended-sediment concentration and grain size are made at 15-minute intervals using an array of different single-frequency acoustic-Doppler side-looking profilers. Laser-diffraction instruments are also used at two of these stations to measure both suspended-sediment concentrations and grain-size distributions. Cross-section calibrations of these

  3. The Global Network of Isotopes in Rivers (GNIR): Integration of Stable Water Isotopes in Riverine Research and Management

    International Nuclear Information System (INIS)

    Halder, J.; Terzer, S.; Wassenaar, L.; Araguas, L.; Aggarwal, P.

    2015-01-01

    Rivers play a crucial role in the global water cycle as watershed-integrating hydrological conduits for returning terrestrial precipitation, runoff, surface and groundwater, as well as melting snow and ice back to the world’s oceans. The IAEA Global Network of Isotopes in Rivers (GNIR) is the coherent extension of the IAEA Global Network for Isotopes in Precipitation (GNIP) and aims to fill the informational data gaps between rainfall and river discharge. Whereas the GNIP has been surveying the stable hydrogen and oxygen isotopes, and tritium composition in precipitation, the objective of GNIR is to accumulate and disseminate riverine isotope data. We introduce the new global database of riverine water isotopes and evaluate its current long-term data holdings with the objective to improve the application of water isotopes and to inform water managers and researchers. An evaluation of current GNIR database holdings confirmed that seasonal variations of the stable water isotope composition in rivers are closely coupled to precipitation and snow-melt water run-off on a global scale. Rivers could be clustered on the basis of seasonal variations in their isotope composition and latitude. Results showed furthermore, that there were periodic phases within each of these groupings and additional modelling exercises allowed a priori prediction of the seasonal variability as well as the isotopic composition of stable water isotopes in rivers. This predictive capacity will help to improve existing and new sampling strategies, help to validate and interpret riverine isotope data, and identify important catchment processes. Hence, the IAEA promulgates and supports longterm hydrological isotope observation networks and the application of isotope studies complementary with conventional hydrological, water quality, and ecological studies. (author)

  4. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    Science.gov (United States)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  5. A new information dimension of complex networks

    International Nuclear Information System (INIS)

    Wei, Daijun; Wei, Bo; Hu, Yong; Zhang, Haixin; Deng, Yong

    2014-01-01

    Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.

  6. A new information dimension of complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Daijun [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Science, Hubei University for Nationalities, Enshi 445000 (China); Wei, Bo [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Hu, Yong [Institute of Business Intelligence and Knowledge Discovery, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhang, Haixin [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Deng, Yong, E-mail: ydeng@swu.edu.cn [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Engineering, Vanderbilt University, TN 37235 (United States)

    2014-03-01

    Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.

  7. Fractal analysis of polar bear hairs

    Directory of Open Access Journals (Sweden)

    Wang Qing-Li

    2015-01-01

    Full Text Available Hairs of a polar bear (Ursus maritimus are of superior properties such as the excellent thermal protection. Why do polar bears can resist such cold environment? The paper concludes that its fractal porosity plays an important role, and its fractal dimensions are very close to the golden mean, 1.618, revealing the possible optimal structure of polar bear hair.

  8. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  9. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  10. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP; SCHWARZ, UJ

    1991-01-01

    To study the structure of interstellar clouds we used the so-called perimeter-area relation to estimate fractal dimensions. We studied the reliability of the method by applying it to artificial fractals and discuss some of the problems and pitfalls. Results for two different cloud types

  11. Fractal Image Coding with Digital Watermarks

    Directory of Open Access Journals (Sweden)

    Z. Klenovicova

    2000-12-01

    Full Text Available In this paper are presented some results of implementation of digitalwatermarking methods into image coding based on fractal principles. Thepaper focuses on two possible approaches of embedding digitalwatermarks into fractal code of images - embedding digital watermarksinto parameters for position of similar blocks and coefficients ofblock similarity. Both algorithms were analyzed and verified on grayscale static images.

  12. Chaos and fractals an elementary introduction

    CERN Document Server

    Feldman, David P

    2012-01-01

    For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata.

  13. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    1994-01-01

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  14. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  15. Chaos and fractals. Applications to nuclear engineering

    International Nuclear Information System (INIS)

    Clausse, A.; Delmastro, D.F.

    1990-01-01

    This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author) [es

  16. Fractal Analysis of Rock Joint Profiles

    Science.gov (United States)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.

  17. A random walk through fractal dimensions

    CERN Document Server

    Kaye, Brian H

    2008-01-01

    Fractal geometry is revolutionizing the descriptive mathematics of applied materials systems. Rather than presenting a mathematical treatise, Brian Kaye demonstrates the power of fractal geometry in describing materials ranging from Swiss cheese to pyrolytic graphite. Written from a practical point of view, the author assiduously avoids the use of equations while introducing the reader to numerous interesting and challenging problems in subject areas ranging from geography to fine particle science. The second edition of this successful book provides up-to-date literature coverage of the use of fractal geometry in all areas of science.From reviews of the first edition:''...no stone is left unturned in the quest for applications of fractal geometry to fine particle problems....This book should provide hours of enjoyable reading to those wishing to become acquainted with the ideas of fractal geometry as applied to practical materials problems.'' MRS Bulletin

  18. Classification and prediction of river network ephemerality and its relevance for waterborne disease epidemiology

    Science.gov (United States)

    Perez-Saez, Javier; Mande, Theophile; Larsen, Joshua; Ceperley, Natalie; Rinaldo, Andrea

    2017-12-01

    The transmission of waterborne diseases hinges on the interactions between hydrology and ecology of hosts, vectors and parasites, with the long-term absence of water constituting a strict lower bound. However, the link between spatio-temporal patterns of hydrological ephemerality and waterborne disease transmission is poorly understood and difficult to account for. The use of limited biophysical and hydroclimate information from otherwise data scarce regions is therefore needed to characterize, classify, and predict river network ephemerality in a spatially explicit framework. Here, we develop a novel large-scale ephemerality classification and prediction methodology based on monthly discharge data, water and energy availability, and remote-sensing measures of vegetation, that is relevant to epidemiology, and maintains a mechanistic link to catchment hydrologic processes. Specifically, with reference to the context of Burkina Faso in sub-Saharan Africa, we extract a relevant set of catchment covariates that include the aridity index, annual runoff estimation using the Budyko framework, and hysteretical relations between precipitation and vegetation. Five ephemerality classes, from permanent to strongly ephemeral, are defined from the duration of 0-flow periods that also accounts for the sensitivity of river discharge to the long-lasting drought of the 70's-80's in West Africa. Using such classes, a gradient-boosted tree-based prediction yielded three distinct geographic regions of ephemerality. Importantly, we observe a strong epidemiological association between our predictions of hydrologic ephemerality and the known spatial patterns of schistosomiasis, an endemic parasitic waterborne disease in which infection occurs with human-water contact, and requires aquatic snails as an intermediate host. The general nature of our approach and its relevance for predicting the hydrologic controls on schistosomiasis occurrence provides a pathway for the explicit inclusion of

  19. Fractal behaviour of the seismicity in the Southern Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    X. Lana

    2005-01-01

    Full Text Available The fractal behaviour of the seismicity in the Southern Iberian Peninsula is analysed by considering two different series of data: the distance and the elapsed time between consecutive seismic events recorded by the seismic network of the Andalusian Institute of Geophysics (AIG. The fractal analyses have been repeated by considering four threshold magnitudes of 2.5, 3.0, 3.5 and 4.0. The re-scaled analysis lets to determine if the seismicity shows strong randomness or if it is characterised by time-persistence and the cluster dimension indicates the degree of time and spatial clustering of the seismicity. Another analysis, based on the reconstruction theorem, permits to evaluate the minimum number of nonlinear equations describing the dynamical mechanism of the seismicity, its 'loss of memory', its chaotic character and the instability of a possible predicting algorithm. The results obtained depict some differences depending on distances or elapsed times and the different threshold levels of magnitude also lead to slightly different results. Additionally, only a part of the fractal tools, the re-scaled analysis, have been applied to five seismic crises in the same area.

  20. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier.

    Science.gov (United States)

    Sharma, Vijay

    2009-09-10

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts.

  1. Graph Theory-Based Technique for Isolating Corrupted Boundary Conditions in Continental-Scale River Network Hydrodynamic Simulation

    Science.gov (United States)

    Yu, C. W.; Hodges, B. R.; Liu, F.

    2017-12-01

    Development of continental-scale river network models creates challenges where the massive amount of boundary condition data encounters the sensitivity of a dynamic nu- merical model. The topographic data sets used to define the river channel characteristics may include either corrupt data or complex configurations that cause instabilities in a numerical solution of the Saint-Venant equations. For local-scale river models (e.g. HEC- RAS), modelers typically rely on past experience to make ad hoc boundary condition adjustments that ensure a stable solution - the proof of the adjustment is merely the sta- bility of the solution. To date, there do not exist any formal methodologies or automated procedures for a priori detecting/fixing boundary conditions that cause instabilities in a dynamic model. Formal methodologies for data screening and adjustment are a critical need for simulations with a large number of river reaches that draw their boundary con- dition data from a wide variety of sources. At the continental scale, we simply cannot assume that we will have access to river-channel cross-section data that has been ade- quately analyzed and processed. Herein, we argue that problematic boundary condition data for unsteady dynamic modeling can be identified through numerical modeling with the steady-state Saint-Venant equations. The fragility of numerical stability increases with the complexity of branching in river network system and instabilities (even in an unsteady solution) are typically triggered by the nonlinear advection term in Saint-Venant equations. It follows that the behavior of the simpler steady-state equations (which retain the nonlin- ear term) can be used to screen the boundary condition data for problematic regions. In this research, we propose a graph-theory based method to isolate the location of corrupted boundary condition data in a continental-scale river network and demonstrate its utility with a network of O(10^4) elements. Acknowledgement

  2. Pre-Service Teachers' Concept Images on Fractal Dimension

    Science.gov (United States)

    Karakus, Fatih

    2016-01-01

    The analysis of pre-service teachers' concept images can provide information about their mental schema of fractal dimension. There is limited research on students' understanding of fractal and fractal dimension. Therefore, this study aimed to investigate the pre-service teachers' understandings of fractal dimension based on concept image. The…

  3. Dendritic network models: Improving isoscapes and quantifying influence of landscape and in-stream processes on strontium isotopes in rivers

    Science.gov (United States)

    Brennan, Sean R.; Torgersen, Christian E.; Hollenbeck, Jeff P.; Fernandez, Diego P.; Jensen, Carrie K.; Schindler, Daniel E.

    2016-05-01

    A critical challenge for the Earth sciences is to trace the transport and flux of matter within and among aquatic, terrestrial, and atmospheric systems. Robust descriptions of isotopic patterns across space and time, called "isoscapes," form the basis of a rapidly growing and wide-ranging body of research aimed at quantifying connectivity within and among Earth's systems. However, isoscapes of rivers have been limited by conventional Euclidean approaches in geostatistics and the lack of a quantitative framework to apportion the influence of processes driven by landscape features versus in-stream phenomena. Here we demonstrate how dendritic network models substantially improve the accuracy of isoscapes of strontium isotopes and partition the influence of hydrologic transport versus local geologic features on strontium isotope ratios in a large Alaska river. This work illustrates the analytical power of dendritic network models for the field of isotope biogeochemistry, particularly for provenance studies of modern and ancient animals.

  4. The national stream quality accounting network: A flux-basedapproach to monitoring the water quality of large rivers

    Science.gov (United States)

    Hooper, R.P.; Aulenbach, Brent T.; Kelly, V.J.

    2001-01-01

    Estimating the annual mass flux at a network of fixed stations is one approach to characterizing water quality of large rivers. The interpretive context provided by annual flux includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean. Since 1995, the US Geological Survey's National Stream Quality Accounting Network (NASQAN) has employed this approach at a network of 39 stations in four of the largest river basins of the USA: The Mississippi, the Columbia, the Colorado and the Rio Grande. In this paper, the design of NASQAN is described and its effectiveness at characterizing the water quality of these rivers is evaluated using data from the first 3 years of operation. A broad range of constituents was measured by NASQAN, including trace organic and inorganic chemicals, major ions, sediment and nutrients. Where possible, a regression model relating concentration to discharge and season was used to interpolate between chemical observations for flux estimation. For water-quality network design, the most important finding from NASQAN was the importance of having a specific objective (that is, estimating annual mass flux) and, from that, an explicitly stated data analysis strategy, namely the use of regression models to interpolate between observations. The use of such models aided in the design of sampling strategy and provided a context for data review. The regression models essentially form null hypotheses for concentration variation that can be evaluated by the observed data. The feedback between network operation and data collection established by the hypothesis tests places the water-quality network on a firm scientific footing.

  5. The Role of Small Impoundments on Flow Alteration Within River Networks

    Science.gov (United States)

    Brogan, C. O.; Keys, T.; Scott, D.; Burgholzer, R.; Kleiner, J.

    2017-12-01

    Numerous water quality and quantity models have been established to illustrate the ecologic and hydrologic effects of large reservoirs. Smaller, unregulated ponds are often assumed to have a negligible impact on watershed flow regimes even though they overwhelmingly outnumber larger waterbodies. Individually, these small impoundments impart merely a fraction of the flow alteration larger reservoirs do; however, a network of ponds may act cumulatively to alter the flow regime. Many models have attempted to study smaller impoundments but rely on selectively available rating curves or bathymetry surveys. This study created a generalized process to model impoundments of varying size across a 58 square mile watershed exclusively using satellite imagery and publicly available information as inputs. With information drawn from public Army Corps of Engineers databases and LiDAR surveys, it was found that impoundment surface and drainage area served as useful explanatory variables, capable of predicting both pond bathymetry and outlet structure area across the 37 waterbodies modeled within the study area. Working within a flow routing model with inputs from the Chesapeake Bay HSPF model and verified with USGS gauge data, flow simulations were conducted with increasing number of impoundments to quantify how small ponds affect the overall flow regime. As the total impounded volume increased, simulations showed a notable reduction in both low and peak flows. Medium-sized floods increased as the network of ponds and reservoirs stabilized the catchment's streamflow. The results of this study illustrate the importance of including ponded waters into river corridor models to improve downstream management of both water quantity and quality.

  6. Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks

    OpenAIRE

    Edia E.O.; Gevrey M.; Ouattara A.; Brosse S.; Gourène G.; Lek S.

    2010-01-01

    Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM), an unsupervised Artificial Neural Networks (ANN) method. This metho...

  7. A weighted higher-order network analysis of fine particulate matter (PM2.5) transport in Yangtze River Delta

    Science.gov (United States)

    Wang, Yufang; Wang, Haiyan; Zhang, Shuhua

    2018-04-01

    Specification of PM2.5 transmission characteristics is important for pollution control, policymaking and prediction. In this paper, we propose weights for motif instances, thereby to implement a weighted higher-order clustering algorithm for a weighted, directed PM2.5 network in the Yangtze River Delta (YRD) of China. The weighted, directed network we create in this paper includes information on meteorological conditions of wind speed and wind direction, plus data on geographic distance and PM2.5 concentrations. We aim to reveal PM2.5 mobility between cities in the YRD. Major potential PM2.5 contributors and closely interacted clusters are identified in the network of 178 air quality stations in the YRD. To our knowledge, it is the first work to incorporate weight information into the higher-order network analysis to study PM2.5 transport.

  8. Joint optimization scheduling for water conservancy projects in complex river networks

    Directory of Open Access Journals (Sweden)

    Qin Liu

    2017-01-01

    Full Text Available In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.

  9. A Study on Regional Frequency Analysis using Artificial Neural Network - the Sumjin River Basin

    Science.gov (United States)

    Jeong, C.; Ahn, J.; Ahn, H.; Heo, J. H.

    2017-12-01

    Regional frequency analysis means to make up for shortcomings in the at-site frequency analysis which is about a lack of sample size through the regional concept. Regional rainfall quantile depends on the identification of hydrologically homogeneous regions, hence the regional classification based on hydrological homogeneous assumption is very important. For regional clustering about rainfall, multidimensional variables and factors related geographical features and meteorological figure are considered such as mean annual precipitation, number of days with precipitation in a year and average maximum daily precipitation in a month. Self-Organizing Feature Map method which is one of the artificial neural network algorithm in the unsupervised learning techniques solves N-dimensional and nonlinear problems and be shown results simply as a data visualization technique. In this study, for the Sumjin river basin in South Korea, cluster analysis was performed based on SOM method using high-dimensional geographical features and meteorological factor as input data. then, for the results, in order to evaluate the homogeneity of regions, the L-moment based discordancy and heterogeneity measures were used. Rainfall quantiles were estimated as the index flood method which is one of regional rainfall frequency analysis. Clustering analysis using SOM method and the consequential variation in rainfall quantile were analyzed. This research was supported by a grant(2017-MPSS31-001) from Supporting Technology Development Program for Disaster Management funded by Ministry of Public Safety and Security(MPSS) of the Korean government.

  10. Statistical comparisons of Savannah River anemometer data applied to quality control of instrument networks

    International Nuclear Information System (INIS)

    Porch, W.M.; Dickerson, M.H.

    1976-08-01

    Continuous monitoring of extensive meteorological instrument arrays is a requirement in the study of important mesoscale atmospheric phenomena. The phenomena include pollution transport prediction from continuous area sources, or one time releases of toxic materials and wind energy prospecting in areas of topographic enhancement of the wind. Quality control techniques that can be applied to these data to determine if the instruments are operating within their prescribed tolerances were investigated. Savannah River Plant data were analyzed with both independent and comparative statistical techniques. The independent techniques calculate the mean, standard deviation, moments about the mean, kurtosis, skewness, probability density distribution, cumulative probability and power spectra. The comparative techniques include covariance, cross-spectral analysis and two dimensional probability density. At present the calculating and plotting routines for these statistical techniques do not reside in a single code so it is difficult to ascribe independent memory size and computation time accurately. However, given the flexibility of a data system which includes simple and fast running statistics at the instrument end of the data network (ASF) and more sophisticated techniques at the computational end (ACF) a proper balance will be attained. These techniques are described in detail and preliminary results are presented

  11. Fractal dimension of turbulent black holes

    Science.gov (United States)

    Westernacher-Schneider, John Ryan

    2017-11-01

    We present measurements of the fractal dimension of a turbulent asymptotically anti-de Sitter black brane reconstructed from simulated boundary fluid data at the perfect fluid order using the fluid-gravity duality. We argue that the boundary fluid energy spectrum scaling as E (k )˜k-2 is a more natural setting for the fluid-gravity duality than the Kraichnan-Kolmogorov scaling of E (k )˜k-5 /3, but we obtain fractal dimensions D for spatial sections of the horizon H ∩Σ in both cases: D =2.584 (1 ) and D =2.645 (4 ), respectively. These results are consistent with the upper bound of D =3 , thereby resolving the tension with the recent claim in Adams et al. [Phys. Rev. Lett. 112, 151602 (2014), 10.1103/PhysRevLett.112.151602] that D =3 +1 /3 . We offer a critical examination of the calculation which led to their result, and show that their proposed definition of the fractal dimension performs poorly as a fractal dimension estimator on one-dimensional curves with known fractal dimension. Finally, we describe how to define and in principle calculate the fractal dimension of spatial sections of the horizon H ∩Σ in a covariant manner, and we speculate on assigning a "bootstrapped" value of fractal dimension to the entire horizon H when it is in a statistically quasisteady turbulent state.

  12. Classification of radar echoes using fractal geometry

    International Nuclear Information System (INIS)

    Azzaz, Nafissa; Haddad, Boualem

    2017-01-01

    Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.

  13. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

    Science.gov (United States)

    Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael

    2016-02-01

    One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

  14. Application of chaos and fractals to computer vision

    CERN Document Server

    Farmer, Michael E

    2014-01-01

    This book provides a thorough investigation of the application of chaos theory and fractal analysis to computer vision. The field of chaos theory has been studied in dynamical physical systems, and has been very successful in providing computational models for very complex problems ranging from weather systems to neural pathway signal propagation. Computer vision researchers have derived motivation for their algorithms from biology and physics for many years as witnessed by the optical flow algorithm, the oscillator model underlying graphical cuts and of course neural networks. These algorithm

  15. Undergraduate experiment with fractal diffraction gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Furlan, Walter D; Pons, Amparo; Barreiro, Juan C; Gimenez, Marcos H

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results.

  16. fractales

    Directory of Open Access Journals (Sweden)

    María Eugenia Torres

    2007-01-01

    Full Text Available En este trabajo comparamos tres métodos diferentes utilizados para estimar el exponente de Hurst, y analizamos su eficiencia cuando son aplicados a series de datos de diferentes longitudes. Se analizan series temporales de fBm sintetizada pura y con tendencias sinusoidales superpuestas. Mostraremos que los tres métodos aquí discutidos, DFA, basado en wavelets y de variaciones discretas, no sólo son altamente dependientes de la longitud de la señal, sino también del orden o número de los momentos (polinómico, regularidad wavelet o variaciones discretas. Para longitudes de datos suficientemente grandes (superiores a 212, los métodos basados en wavelets y de variaciones discretas mostraron ser menos sesgados y más estables para señales fBm simuladas. Mostraremos que el método de DFA, más utilizado en el ambiente biomédico, es el que proporciona peores estimaciones, arrojando resultados ambiguos cuando son aplicados a señales biológicas de diferentes longitudes o con diferentes parámetros de estimación, sin que pueda considerarse a ninguno de los otros dos como métodos confiables en el momento de desear obtener resultados de relevancia física o fisiológica. Los resultados obtenidos indican que debería procederse con más cautela cuando se trata de obtener conclusiones fisiológicas a partir de estimaciones realizadas a partir de señales reales.

  17. The global relationship between chromatin physical topology, fractal structure, and gene expression

    DEFF Research Database (Denmark)

    Almassalha, Luay M; Tiwari, A; Ruhoff, P T

    2017-01-01

    in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D...... show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating...

  18. Connectivity of Multi-Channel Fluvial Systems: A Comparison of Topology Metrics for Braided Rivers and Delta Networks

    Science.gov (United States)

    Tejedor, A.; Marra, W. A.; Addink, E. A.; Foufoula-Georgiou, E.; Kleinhans, M. G.

    2016-12-01

    Advancing quantitative understanding of the structure and dynamics of complex networks has transformed research in many fields as diverse as protein interactions in a cell to page connectivity in the World Wide Web and relationships in human societies. However, Geosciences have not benefited much from this new conceptual framework, although connectivity is at the center of many processes in hydro-geomorphology. One of the first efforts in this direction was the seminal work of Smart and Moruzzi (1971), proposing the use of graph theory for studying the intricate structure of delta channel networks. In recent years, this preliminary work has precipitated in a body of research that examines the connectivity of multiple-channel fluvial systems, such as delta networks and braided rivers. In this work, we compare two approaches recently introduced in the literature: (1) Marra et al. (2014) utilized network centrality measures to identify important channels in a braided section of the Jamuna River, and used the changes of bifurcations within the network over time to explain the overall river evolution; and (2) Tejedor et al. (2015a,b) developed a set of metrics to characterize the complexity of deltaic channel networks, as well as defined a vulnerability index that quantifies the relative change of sediment and water delivery to the shoreline outlets in response to upstream perturbations. Here we present a comparative analysis of metrics of centrality and vulnerability applied to both braided and deltaic channel networks to depict critical channels in those systems, i.e., channels where a change would contribute more substantially to overall system changes, and to understand what attributes of interest in a channel network are most succinctly depicted in what metrics. Marra, W. A., Kleinhans, M. G., & Addink, E. A. (2014). Earth Surface Processes and Landforms, doi:10.1002/esp.3482Smart, J. S., and V. L. Moruzzi (1971), Quantitative properties of delta channel networks

  19. The Indigenous Observation Network: Collaborative, Community-Based Monitoring in the Yukon River Basin

    Science.gov (United States)

    Herman-Mercer, N. M.; Mutter, E. A.; Wilson, N. J.; Toohey, R.; Schuster, P. F.

    2017-12-01

    The Indigenous Observation Network (ION) is a collaborative Community-Based Monitoring (CBM) program with both permafrost and water-quality monitoring components operating in the Yukon River Basin (YRB) of Alaska and Canada. ION is jointly facilitated by the Yukon River Inter-Tribal Watershed Council (YRITWC), an indigenous non-profit organization, and the US Geological Survey (USGS), a federal agency. The YRB is the fourth largest drainage basin in North America encompassing 855,000 square kilometers in northwestern Canada and central Alaska and is essential to the ecosystems of the Bering and Chuckchi Seas. Water is also fundamental to the subsistence and culture of the 76 Tribes and First Nations that live in the YRB providing sustenance in the form of drinking water, fish, wildlife, and vegetation. Despite the ecological and cultural significance of the YRB, the remote geography of sub-Arctic and Arctic Alaska and Canada make it difficult to collect scientific data in these locations and led to a lack of baseline data characterizing this system until recently. In response to community concerns about the quality of the YR and a desire by USGS scientists to create a long term water-quality database, the USGS and YRITWC collaborated to create ION in 2005. Surface water samples are collected by trained community technicians from Tribal Environmental Programs or First Nation Lands and Resources staff from over 35 Alaska Native Tribes and First Nations that reside along the YR and/or one of the major tributaries. Samples are analyzed at USGS laboratories in Boulder, CO and results are disseminated to participating YRB communities and the general public. This presentation will focus on the factors that have enabled the longevity and success of this program over the last decade, as well as the strategies ION uses to ensure the credibility of the data collected by community members and best practices that have facilitated the collection of surface water data in remote

  20. Dynamics of riverine CO2 in the Yangtze River fluvial network and their implications for carbon evasion

    Science.gov (United States)

    Ran, Lishan; Lu, Xi Xi; Liu, Shaoda

    2017-04-01

    Understanding riverine carbon dynamics is critical for not only better estimates of various carbon fluxes but also evaluating their significance in the global carbon budget. As an important pathway of global land-ocean carbon exchange, the Yangtze River has received less attention regarding its vertical carbon evasion compared with lateral transport. Using long-term water chemistry data, we calculated CO2 partial pressure (pCO2) from pH and alkalinity and examined its spatial and temporal dynamics and the impacts of environmental settings. With alkalinity ranging from 415 to > 3400 µeq L-1, the river waters were supersaturated with dissolved CO2, generally 2-20-fold the atmospheric equilibrium (i.e., 390 µatm). Changes in pCO2 were collectively controlled by carbon inputs from terrestrial ecosystems, hydrological regime, and rock weathering. High pCO2 values were observed spatially in catchments with abundant carbonate presence and seasonally in the wet season when recently fixed organic matter was exported into the river network. In-stream processing of organic matter facilitated CO2 production and sustained the high pCO2, although the alkalinity presented an apparent dilution effect with water discharge. The decreasing pCO2 from the smallest headwater streams through tributaries to the mainstem channel illustrates the significance of direct terrestrial carbon inputs in controlling riverine CO2. With a basin-wide mean pCO2 of 2662 ± 1240 µatm, substantial CO2 evasion from the Yangtze River fluvial network is expected. Future research efforts are needed to quantify the amount of CO2 evasion and assess its biogeochemical implications for watershed-scale carbon cycle. In view of the Yangtze River's relative importance in global carbon export, its CO2 evasion would be significant for global carbon budget.

  1. Analyzing Collaborative Governance Through Social Network Analysis: A Case Study of River Management Along the Waal River in The Netherlands.

    Science.gov (United States)

    Fliervoet, J M; Geerling, G W; Mostert, E; Smits, A J M

    2016-02-01

    Until recently, governmental organizations played a dominant and decisive role in natural resource management. However, an increasing number of studies indicate that this dominant role is developing towards a more facilitating role as equal partner to improve efficiency and create a leaner state. This approach is characterized by complex collaborative relationships between various actors and sectors on multiple levels. To understand this complexity in the field of environmental management, we conducted a social network analysis of floodplain management in the Dutch Rhine delta. We charted the current interorganizational relationships between 43 organizations involved in flood protection (blue network) and nature management (green network) and explored the consequences of abolishing the central actor in these networks. The discontinuation of this actor will decrease the connectedness of actors within the blue and green network and may therefore have a large impact on the exchange of ideas and decision-making processes. Furthermore, our research shows the dependence of non-governmental actors on the main governmental organizations. It seems that the Dutch governmental organizations still have a dominant and controlling role in floodplain management. This challenges the alleged shift from a dominant government towards collaborative governance and calls for detailed analysis of actual governance.

  2. Fractal statistics of brittle fragmentation

    Directory of Open Access Journals (Sweden)

    M. Davydova

    2013-04-01

    Full Text Available The study of fragmentation statistics of brittle materials that includes four types of experiments is presented. Data processing of the fragmentation of glass plates under quasi-static loading and the fragmentation of quartz cylindrical rods under dynamic loading shows that the size distribution of fragments (spatial quantity is fractal and can be described by a power law. The original experimental technique allows us to measure, apart from the spatial quantity, the temporal quantity - the size of time interval between the impulses of the light reflected from the newly created surfaces. The analysis of distributions of spatial (fragment size and temporal (time interval quantities provides evidence of obeying scaling laws, which suggests the possibility of self-organized criticality in fragmentation.

  3. Study of capillary experiments and hydrologic factors under subsurface drip irrigation with fractal theory

    International Nuclear Information System (INIS)

    Zhou, W; Cao, L

    2012-01-01

    Soil spatial variability is one of the primary environmental factors that influences the hydraulic factors and technical indicators of subsurface drip irrigation (SDI), whose emitters are buried in the soil. This paper aimed at evaluating these effects of soil spatial variability on hydrologic factors under SDI. And some SDI emitter and capillary experiments were designed to obtain test data and distribution of pressure and emitter discharge. First, The results of labyrinth non-turbulent mosaic drip emitter test and fractal theory were used to research the fractal and quantitative relationship between single emitter hydrologic factors and soil physical parameters; and then, the capillary experiments and the relationship among hydrologic factors of capillary were used to analyze the fractal and quantitative relationship between hydrologic factors of capillary and soil physical parameters, which explained the inner relationship between spatial variability of soil and hydrologic factors of filed pipeline network under SDI, and provide theory support for the plan, design, management and production of SDI.

  4. Model of fractal aggregates induced by shear

    Directory of Open Access Journals (Sweden)

    Wan Zhanhong

    2013-01-01

    Full Text Available It is an undoubted fact that particle aggregates from marine, aerosol, and engineering systems have fractal structures. In this study, fractal geometry is used to describe the morphology of irregular aggregates. The mean-field theory is employed to solve coagulation kinetic equation of aggregates. The Taylor-expansion method of moments in conjunction with the self-similar fractal characteristics is used to represent the particulate field. The effect of the target fractal dimensions on zeroth-order moment, second-order moment, and geometric standard deviation of the aggregates is explored. Results show that the developed moment method is an efficient and powerful approach to solving such evolution equations.

  5. A Parallel Approach to Fractal Image Compression

    OpenAIRE

    Lubomir Dedera

    2004-01-01

    The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.

  6. Random walks of oriented particles on fractals

    International Nuclear Information System (INIS)

    Haber, René; Prehl, Janett; Hoffmann, Karl Heinz; Herrmann, Heiko

    2014-01-01

    Random walks of point particles on fractals exhibit subdiffusive behavior, where the anomalous diffusion exponent is smaller than one, and the corresponding random walk dimension is larger than two. This is due to the limited space available in fractal structures. Here, we endow the particles with an orientation and analyze their dynamics on fractal structures. In particular, we focus on the dynamical consequences of the interactions between the local surrounding fractal structure and the particle orientation, which are modeled using an appropriate move class. These interactions can lead to particles becoming temporarily or permanently stuck in parts of the structure. A surprising finding is that the random walk dimension is not affected by the orientation while the diffusion constant shows a variety of interesting and surprising features. (paper)

  7. Designing a fractal antenna of 2400 MHz

    International Nuclear Information System (INIS)

    Miranda Hamburger, Fabio

    2012-01-01

    The design of a fractal antenna with 2400 MHz of frequency has been studied. The fractal used is described by Waclaw Spierpi.ski. The initial figure, also known as seed, is divided using equilateral triangles with the aim of obtaining a perimeter similar to a meaningful portion of wave length. The use of λ to establish an ideal perimeter has reduced the radiation resistance. The adequate number of iterations needed to design the antenna is calculated based on λ. (author) [es

  8. Fractal effects on excitations in diluted ferromagnets

    International Nuclear Information System (INIS)

    Kumar, D.

    1981-08-01

    The low energy spin-wave like excitations in diluted ferromagnets near percolation threshold are studied. For this purpose an explicit use of the fractal model for the backbone of the infinite percolating cluster due to Kirkpatrick is made. Three physical effects are identified, which cause the softening of spin-waves as the percolation point is approached. The importance of fractal effects in the calculation of density of states and the low temperature thermodynamics is pointed out. (author)

  9. Heat kernels and zeta functions on fractals

    International Nuclear Information System (INIS)

    Dunne, Gerald V

    2012-01-01

    On fractals, spectral functions such as heat kernels and zeta functions exhibit novel features, very different from their behaviour on regular smooth manifolds, and these can have important physical consequences for both classical and quantum physics in systems having fractal properties. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

  10. Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings

    Science.gov (United States)

    Ravindranath, A.; Devineni, N.

    2016-12-01

    Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.

  11. Design of a water quality monitoring network for the Limpopo River Basin in Mozambique

    Science.gov (United States)

    Chilundo, M.; Kelderman, P.; O´keeffe, J. H.

    The measurement of chemical, physical and biological parameters is important for the characterization of streams health. Thus, cost-effective and targeted water quality (WQ) monitoring programmes are required for proper assessment, restoration and protection of such systems. This research proposes a WQ monitoring network for the Limpopo River Basin (LRB) in Mozambique located in Southern Africa, a region prone to severe droughts. In this Basin both anthropogenic and natural driven processes, exacerbated by the increased water demand by the four riparian countries (Botswana, South Africa, Zimbabwe and Mozambique) are responsible for the degradation of surface waters, impairing their downstream use, either for aquatic ecosystem, drinking, industrial or irrigation. Hence, physico-chemical, biological and microbiological characteristics at 23 sites within the basin were studied in November 2006 and January 2007. The physico-chemical and microbiological samples were analyzed according to American Public Health Association (APHA) standard methods, while the biological monitoring working party method (BMWP) was used for biological assessment. The assessment of the final WQ condition at sampled points was done taking into account appropriate indexes, the Mozambican standards for receiving waters and the WHO guidelines for drinking WQ. The assessed data indicated that sites located at proximities to the border with upstream countries were contaminated with heavy metals. The Elephants subcatchment was found with a relatively better WQ, whereas the Changane subcatchment together with the effluent point discharges in the basin were found polluted as indicated by the low dissolved oxygen and high total dissolved solids, electric conductivity, total hardness, sodium adsorption ratio and low benthic macroinvertebrates taxa. Significant differences ( p < 0.05) were found for some parameters when the concentrations recorded in November and January were tested, therefore, indicating

  12. Pulse regime in formation of fractal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gas flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10{sup –3}–10{sup –4} for transient metals under consideration. A typical energy flux (~10{sup 6} W/cm{sup 2}), a typical surface temperature (~3000 K), and a typical pulse duration (~1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.

  13. Measuring Spatial Distribution Characteristics of Heavy Metal Contaminations in a Network-Constrained Environment: A Case Study in River Network of Daye, China

    Directory of Open Access Journals (Sweden)

    Zhensheng Wang

    2017-06-01

    Full Text Available Measuring the spatial distribution of heavy metal contaminants is the basis of pollution evaluation and risk control. Considering the cost of soil sampling and analysis, spatial interpolation methods have been widely applied to estimate the heavy metal concentrations at unsampled locations. However, traditional spatial interpolation methods assume the sample sites can be located stochastically on a plane and the spatial association between sample locations is analyzed using Euclidean distances, which may lead to biased conclusions in some circumstances. This study aims to analyze the spatial distribution characteristics of copper and lead contamination in river sediments of Daye using network spatial analysis methods. The results demonstrate that network inverse distance weighted interpolation methods are more accurate than planar interpolation methods. Furthermore, the method named local indicators of network-constrained clusters based on local Moran’ I statistic (ILINCS is applied to explore the local spatial patterns of copper and lead pollution in river sediments, which is helpful for identifying the contaminated areas and assessing heavy metal pollution of Daye.

  14. Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus, Neanderthals, and modern humans.

    Science.gov (United States)

    Bruner, Emiliano; Mantini, Simone; Perna, Agostino; Maffei, Carlotta; Manzi, Giorgio

    2005-01-01

    The middle meningeal vascular network leaves its traces on the endocranial surface because of the tight relationship between neurocranial development and brain growth. Analysing the endocast of fossil specimens, it is therefore possible to describe the morphology of these structures, leading inferences on the cerebral physiology and metabolism in extinct human groups. In this paper, general features of the meningeal vascular traces are described for specimens included in the Homo erectus, Homo neanderthalensis, and Homo sapiens hypodigms. The complexity of the arterial network is quantified by its fractal dimension, calculated through the box-counting method. Modern humans show significant differences from the other two taxa because of the anterior vascular dominance and the larger fractal dimension. Neither the fractal dimension nor the anterior development are merely associated with cranial size increase. Considering the differences between Neanderthals and modern humans, these results may be interpreted in terms of phylogeny, cerebral functions, or cranial structural network.

  15. Providing Undergraduate Research Opportunities Through the World Rivers Observatory Collaborative Network

    Science.gov (United States)

    Gillies, S. L.; Marsh, S. J.; Janmaat, A.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.

    2013-12-01

    Successful research collaboration exists between the University of the Fraser Valley (UFV), a primarily undergraduate-serving university located on the Fraser River in British Columbia, and the World Rivers Observatory that is coordinated through the Woods Hole Oceanographic Institution (WHOI) and the Woods Hole Research Center (WHRC). The World Rivers Observatory coordinates time-series sampling of 15 large rivers, with particular focus on the large Arctic rivers, the Ganges-Brahmaputra, Congo, Fraser, Yangtze (Changjiang), Amazon, and Mackenzie River systems. The success of this international observatory critically depends on the participation of local collaborators, such as UFV, that are necessary in order to collect temporally resolved data from these rivers. Several faculty members and undergraduate students from the Biology and Geography Departments of UFV received on-site training from the lead-PIs of the Global Rivers Observatory. To share information and ensure good quality control of sampling methods, WHOI and WHRC hosted two international workshops at Woods Hole for collaborators. For the past four years, faculty and students from UFV have been collecting a variety of bi-monthly water samples from the Fraser River for the World Rivers Observatory. UFV undergraduate students who become involved learn proper sampling techniques and are given the opportunity to design and conduct their own research. Students have collected, analyzed and presented data from this project at regional, national, and international scientific meetings. UFV undergraduate students have also been hosted by WHOI and WHRC as guest students to work on independent research projects. While at WHOI and WHRC, students are able to conduct research using state-of-the-art specialized research facilities not available at UFV.

  16. On the Lipschitz condition in the fractal calculus

    International Nuclear Information System (INIS)

    Golmankhaneh, Alireza K.; Tunc, Cemil

    2017-01-01

    In this paper, the existence and uniqueness theorems are proved for the linear and non-linear fractal differential equations. The fractal Lipschitz condition is given on the F"α-calculus which applies for the non-differentiable function in the sense of the standard calculus. More, the metric spaces associated with fractal sets and about functions with fractal supports are defined to build fractal Cauchy sequence. Furthermore, Picard iterative process in the F"α-calculus which have important role in the numerical and approximate solution of fractal differential equations is explored. We clarify the results using the illustrative examples.

  17. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  18. Fractal geometry and number theory complex dimensions of fractal strings and zeros of zeta functions

    CERN Document Server

    Lapidus, Michael L

    1999-01-01

    A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo­ metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di­ mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref­ erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap­ pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which ...

  19. Multielemental characterization of sediments from rivers and reservoirs of a sediment quality monitoring network of Sao Paulo state, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Walace A.A.; Quinaglia, Gilson A., E-mail: wasoares@sp.gov.br, E-mail: gquinaglia@sp.gov.br [Companhia Ambiental do Estado de Sao Paulo (CETESB), SP (Brazil). Setor de Analises Toxicologicas; Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (LAN/CRPq/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica

    2013-07-01

    The Environment Company of the State of Sao Paulo (CETESB) by means of its quality monitoring network does, systematically, the assessment of water and sediment quality in rivers and reservoirs in the Sao Paulo state. The quality evaluation is done by means 50 parameters in water and 63 for sediment that are considered the more representative for CETESB monitoring. In 2011 the network monitoring analyzed 420 points being 24 in sediments. In the present study the multielemental characterization (total concentration) of 13 sediment samples from 24 rivers and reservoirs belonging to the CETESB monitoring network were analyzed by instrumental neutron activation analysis (INAA). The analytical validation according to precision and accuracy was checked through certified reference materials analyzes BEN (Basalt-IWG-GIT), SL-1 (Lake Sediment - IAEA) and Soil-5 (IAEA), that presents certified concentration values for all elements analyzed. The results obtained for multielemental characterization were compared to NASC values (North American Shale Composite) and the enrichment factor (EF) by using Sc as a normalizer element was calculated. The results showed higher enrichment values for As, Br, Cr, Hf, Ta, Th , U and Zn and rare earth elements (REE) Ce, Eu, La, Nd, Sm, Tb and Yb in many of the tested sediment samples indicating that there may be an anthropogenic contribution for these elements. The multielemental results were also compared to the granulometric composition of the sediment samples. Factorial and Cluster Analysis were applied and indicated that the elements distribution is controlled, mainly by the granulometric fractions of the sediments. (author)

  20. Multielemental characterization of sediments from rivers and reservoirs of a sediment quality monitoring network of Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Soares, Walace A.A.; Quinaglia, Gilson A.; Favaro, Deborah I.T.

    2013-01-01

    The Environment Company of the State of Sao Paulo (CETESB) by means of its quality monitoring network does, systematically, the assessment of water and sediment quality in rivers and reservoirs in the Sao Paulo state. The quality evaluation is done by means 50 parameters in water and 63 for sediment that are considered the more representative for CETESB monitoring. In 2011 the network monitoring analyzed 420 points being 24 in sediments. In the present study the multielemental characterization (total concentration) of 13 sediment samples from 24 rivers and reservoirs belonging to the CETESB monitoring network were analyzed by instrumental neutron activation analysis (INAA). The analytical validation according to precision and accuracy was checked through certified reference materials analyzes BEN (Basalt-IWG-GIT), SL-1 (Lake Sediment - IAEA) and Soil-5 (IAEA), that presents certified concentration values for all elements analyzed. The results obtained for multielemental characterization were compared to NASC values (North American Shale Composite) and the enrichment factor (EF) by using Sc as a normalizer element was calculated. The results showed higher enrichment values for As, Br, Cr, Hf, Ta, Th , U and Zn and rare earth elements (REE) Ce, Eu, La, Nd, Sm, Tb and Yb in many of the tested sediment samples indicating that there may be an anthropogenic contribution for these elements. The multielemental results were also compared to the granulometric composition of the sediment samples. Factorial and Cluster Analysis were applied and indicated that the elements distribution is controlled, mainly by the granulometric fractions of the sediments. (author)

  1. Simulation of extreme ground water flow in the fractal crack structure of Earth's crust - impact on catastrophic floods

    Science.gov (United States)

    Bukharov, Dmitriy; Aleksey, Kucherik; Tatyana, Trifonova

    2014-05-01

    Recently, the contribution of groundwater in catastrophic floods is the question under discussion [1,2]. The principal problem in such an approach - to analyze the transportation ways for groundwater in dynamics, and especially - the reasons of exit it on land surface. The crackness, being a characteristic property for all rocks, should be associated with the process in respect of unified dynamic system as a river water basin is, taking into account fundamental phenomena of the 3D-crack network development/modification (up to faults) as a transport groundwater system [3]. 2. In the system of fractal cracks (connected with the main channel for groundwater) the formation of extreme flow is possible, i.e. a devastating case occurs by instantaneous flash mechanism. The development of such a process is related to two factors. First, within the main channel of propagation of the groundwater when a motion is turbulent. In accordance with the theory of Kolmogorov [4], we assume that such a turbulence is isotropic. The fact means that both velocity and pressure fields in the water flow have pulsations related to the non-linear energy transfer between the vortices. This approach allows us to determine both that a maximum possible size of the vortices defined by characteristic dimensions of the underground channel and another - a minimum size of their due to process of dissipation. Energy transfer in the eddies formed near a border, is a complex nonlinear process, which we described by using a modernized Prandtl semi-empirical model [5]. Second, the mechanism of groundwater propagation in the system of cracks extending from the main underground channel is described in the frames of the fractal geometry methods [6]. The approach allows to determine the degree of similarity in the crack system, i.e. the ratio of mean diameters and lengths of cracks/faults for each step of decomposition. The fact results in integrated quantitative characteristics of 3D-network in all, by fractal

  2. Fractals as objects with nontrivial structures at all scales

    International Nuclear Information System (INIS)

    Lacan, Francis; Tresser, Charles

    2015-01-01

    Toward the middle of 2001, the authors started arguing that fractals are important when discussing the operational resilience of information systems and related computer sciences issues such as artificial intelligence. But in order to argue along these lines it turned out to be indispensable to define fractals so as to let one recognize as fractals some sets that are very far from being self similar in the (usual) metric sense. This paper is devoted to define (in a loose sense at least) fractals in ways that allow for instance all the Cantor sets to be fractals and that permit to recognize fractality (the property of being fractal) in the context of the information technology issues that we had tried to comprehend. Starting from the meta-definition of a fractal as an “object with non-trivial structure at all scales” that we had used for long, we ended up taking these words seriously. Accordingly we define fractals in manners that depend both on the structures that the fractals are endowed with and the chosen sets of structure compatible maps, i.e., we approach fractals in a category-dependent manner. We expect that this new approach to fractals will contribute to the understanding of more of the fractals that appear in exact and other sciences than what can be handled presently

  3. Organization of complex networks

    Science.gov (United States)

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how

  4. Study on multi-fractal fault diagnosis based on EMD fusion in hydraulic engineering

    International Nuclear Information System (INIS)

    Lu, Shibao; Wang, Jianhua; Xue, Yangang

    2016-01-01

    Highlights: • The measured shafting vibration data signal of the hydroelectric generating set is acquired through EMD. • The vibration signal waveform is identified and purified with EMD to obtain approximation coefficient of various fault signals. • The multi-fractal spectrum provides the distributed geometrical or probabilistic information of point. • EMD provides the real information for the next subsequent analysis and recognition. - Abstract: The vibration signal analysis of the hydraulic turbine unit aims at extracting the characteristic information of the unit vibration. The effective signal processing and information extraction are the key to state monitoring and fault diagnosis of the hydraulic turbine unit. In this paper, the vibration fault diagnosis model is established, which combines EMD, multi-fractal spectrum and modified BP neural network; the vibration signal waveform is identified and purified with EMD to obtain approximation coefficient of various fault signals; the characteristic vector of the vibration fault is acquired with the multi-fractal spectrum algorithm, which is classified and identified as input vector of BP neural network. The signal characteristics are extracted through the waveform, the diagnosis and identification are carried out in combination of the multi-fractal spectrum to provide a new method for fault diagnosis of the hydraulic turbine unit. After the application test, the results show that the method can improve the intelligence and humanization of diagnosis, enhance the man–machine interaction, and produce satisfactory identification result.

  5. Fractal Interfaces for Stimulating and Recording Neural Implants

    Science.gov (United States)

    Watterson, William James

    From investigating movement in an insect to deciphering cognition in a human brain to treating Parkinson's disease, hearing loss, or even blindness, electronic implants are an essential tool for understanding the brain and treating neural diseases. Currently, the stimulating and recording resolution of these implants remains low. For instance, they can record all the neuron activity associated with movement in an insect, but are quite far from recording, at an individual neuron resolution, the large volumes of brain tissue associated with cognition. Likewise, there is remarkable success in the cochlear implant restoring hearing due to the relatively simple anatomy of the auditory nerves, but are failing to restore vision to the blind due to poor signal fidelity and transmission in stimulating the more complex anatomy of the visual nerves. The critically important research needed to improve the resolution of these implants is to optimize the neuron-electrode interface. This thesis explores geometrical and material modifications to both stimulating and recording electrodes which can improve the neuron-electrode interface. First, we introduce a fractal electrode geometry which radically improves the restored visual acuity achieved by retinal implants and leads to safe, long-term operation of the implant. Next, we demonstrate excellent neuron survival and neurite outgrowth on carbon nanotube electrodes, thus providing a safe biomaterial which forms a strong connection between the electrode and neurons. Additional preliminary evidence suggests carbon nanotubes patterned into a fractal geometry will provide further benefits in improving the electrode-neuron interface. Finally, we propose a novel implant based off field effect transistor technology which utilizes an interconnecting fractal network of semiconducting carbon nanotubes to record from thousands of neurons simutaneously at an individual neuron resolution. Taken together, these improvements have the potential to

  6. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    Science.gov (United States)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  7. Fractal analysis of cervical intraepithelial neoplasia.

    Directory of Open Access Journals (Sweden)

    Markus Fabrizii

    Full Text Available INTRODUCTION: Cervical intraepithelial neoplasias (CIN represent precursor lesions of cervical cancer. These neoplastic lesions are traditionally subdivided into three categories CIN 1, CIN 2, and CIN 3, using microscopical criteria. The relation between grades of cervical intraepithelial neoplasia (CIN and its fractal dimension was investigated to establish a basis for an objective diagnosis using the method proposed. METHODS: Classical evaluation of the tissue samples was performed by an experienced gynecologic pathologist. Tissue samples were scanned and saved as digital images using Aperio scanner and software. After image segmentation the box counting method as well as multifractal methods were applied to determine the relation between fractal dimension and grades of CIN. A total of 46 images were used to compare the pathologist's neoplasia grades with the predicted groups obtained by fractal methods. RESULTS: Significant or highly significant differences between all grades of CIN could be found. The confusion matrix, comparing between pathologist's grading and predicted group by fractal methods showed a match of 87.1%. Multifractal spectra were able to differentiate between normal epithelium and low grade as well as high grade neoplasia. CONCLUSION: Fractal dimension can be considered to be an objective parameter to grade cervical intraepithelial neoplasia.

  8. From dendrimers to fractal polymers and beyond

    Directory of Open Access Journals (Sweden)

    Charles N. Moorefield

    2013-01-01

    Full Text Available The advent of dendritic chemistry has facilitated materials research by allowing precise control of functional component placement in macromolecular architecture. The iterative synthetic protocols used for dendrimer construction were developed based on the desire to craft highly branched, high molecular weight, molecules with exact mass and tailored functionality. Arborols, inspired by trees and precursors of the utilitarian macromolecules known as dendrimers today, were the first examples to employ predesigned, 1 → 3 C-branched, building blocks; physical characteristics of the arborols, including their globular shapes, excellent solubilities, and demonstrated aggregation, combined to reveal the inherent supramolecular potential (e.g., the unimolecular micelle of these unique species. The architecture that is a characteristic of dendritic materials also exhibits fractal qualities based on self-similar, repetitive, branched frameworks. Thus, the fractal design and supramolecular aspects of these constructs are suggestive of a larger field of fractal materials that incorporates repeating geometries and are derived by complementary building block recognition and assembly. Use of terpyridine-M2+-terpyridine (where, M = Ru, Zn, Fe, etc connectivity in concert with mathematical algorithms, such as forms the basis for the Seirpinski gasket, has allowed the beginning exploration of fractal materials construction. The propensity of the fractal molecules to self-assemble into higher order architectures adds another dimension to this new arena of materials and composite construction.

  9. Multirate diversity strategy of fractal modulation

    International Nuclear Information System (INIS)

    Yuan Yong; Shi Si-Hong; Luo Mao-Kang

    2011-01-01

    Previous analyses of fractal modulation were carried out mostly from a signle perspective or a subband, but the analyses from the perspective of multiscale synthesis have not been found yet; while multiscale synthesis is just the essence of the mutlirate diversity which is the most important characteristic of fractal modulation. As for the mutlirate diversity of fractal modulation, previous studies only dealt with the general outspread of its concept, lacked the thorough and intensive quantitative comparison and analysis. In light of the above fact, from the perspective of multiscale synthesis, in this paper we provide a comprehensive analysis of the multirate diversity of fractal modulation and corresponding quantitative analysis. The results show that mutlirate diversity, which is a fusion of frequency diversity and time diversity, pays an acceptable price in spectral efficiency in exchange for a significant improvement in bit error rate. It makes fractal modulation particularly suitable for the channels whose bandwidth and duration parameters are unknown or cannot be predicted to the transmitter. Surely it is clearly of great significance for reliable communications. Moreover, we also attain the ability to flexibly make various rate-bandwidth tradeoffs between the transmitter and the receiver, to freely select the reception time and to expediently control the total bandwidth. Furthermore, the acquisitions or improvements of these fine features could provide support of the technical feasibility for the electromagnetic spectrum control technology in a complex electromagnetic environment. (general)

  10. Assessment of the water quality monitoring network of the Piabanha River experimental watersheds in Rio de Janeiro, Brazil, using autoassociative neural networks.

    Science.gov (United States)

    Villas-Boas, Mariana D; Olivera, Francisco; de Azevedo, Jose Paulo S

    2017-09-01

    Water quality monitoring is a complex issue that requires support tools in order to provide information for water resource management. Budget constraints as well as an inadequate water quality network design call for the development of evaluation tools to provide efficient water quality monitoring. For this purpose, a nonlinear principal component analysis (NLPCA) based on an autoassociative neural network was performed to assess the redundancy of the parameters and monitoring locations of the water quality network in the Piabanha River watershed. Oftentimes, a small number of variables contain the most relevant information, while the others add little or no interpretation to the variability of water quality. Principal component analysis (PCA) is widely used for this purpose. However, conventional PCA is not able to capture the nonlinearities of water quality data, while neural networks can represent those nonlinear relationships. The results presented in this work demonstrate that NLPCA performs better than PCA in the reconstruction of the water quality data of Piabanha watershed, explaining most of data variance. From the results of NLPCA, the most relevant water quality parameter is fecal coliforms (FCs) and the least relevant is chemical oxygen demand (COD). Regarding the monitoring locations, the most relevant is Poço Tarzan (PT) and the least is Parque Petrópolis (PP).

  11. On the arithmetic of fractal dimension using hyperhelices

    International Nuclear Information System (INIS)

    Toledo-Suarez, Carlos D.

    2009-01-01

    A hyperhelix is a fractal curve generated by coiling a helix around a rect line, then another helix around the first one, a third around the second... an infinite number of times. A way to generate hyperhelices with any desired fractal dimension is presented, leading to the result that they have embedded an algebraic structure that allows making arithmetic with fractal dimensions and to the idea of an infinitesimal of fractal dimension

  12. Poiseuille equation for steady flow of fractal fluid

    Science.gov (United States)

    Tarasov, Vasily E.

    2016-07-01

    Fractal fluid is considered in the framework of continuous models with noninteger dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a description of fractal fluid flow in pipes with circular cross-sections. The Navier-Stokes equations of fractal incompressible viscous fluids are used to derive a generalization of the Poiseuille equation of steady flow of fractal media in pipe.

  13. A new generic method for the semi-automatic extraction of river and road networks in low and mid-resolution satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Grazzini, Jacopo [Los Alamos National Laboratory; Dillard, Scott [PNNL; Soille, Pierre [EC JRC

    2010-10-21

    This paper addresses the problem of semi-automatic extraction of road or hydrographic networks in satellite images. For that purpose, we propose an approach combining concepts arising from mathematical morphology and hydrology. The method exploits both geometrical and topological characteristics of rivers/roads and their tributaries in order to reconstruct the complete networks. It assumes that the images satisfy the following two general assumptions, which are the minimum conditions for a road/river network to be identifiable and are usually verified in low- to mid-resolution satellite images: (i) visual constraint: most pixels composing the network have similar spectral signature that is distinguishable from most of the surrounding areas; (ii) geometric constraint: a line is a region that is relatively long and narrow, compared with other objects in the image. While this approach fully exploits local (roads/rivers are modeled as elongated regions with a smooth spectral signature in the image and a maximum width) and global (they are structured like a tree) characteristics of the networks, further directional information about the image structures is incorporated. Namely, an appropriate anisotropic metric is designed by using both the characteristic features of the target network and the eigen-decomposition of the gradient structure tensor of the image. Following, the geodesic propagation from a given network seed with this metric is combined with hydrological operators for overland flow simulation to extract the paths which contain most line evidence and identify them with the target network.

  14. 2-D Fractal Carpet Antenna Design and Performance

    Science.gov (United States)

    Barton, C. C.; Tebbens, S. F.; Ewing, J. J.; Peterman, D. J.; Rizki, M. M.

    2017-12-01

    A 2-D fractal carpet antenna uses a fractal (self-similar) pattern to increase its perimeter by iteration and can receive or transmit electromagnetic radiation within its perimeter-bounded surface area. 2-D fractals are shapes that, at their mathematical limit (infinite iterations) have an infinite perimeter bounding a finite surface area. The fractal dimension describes the degree of space filling and lacunarity which quantifies the size and spatial distribution of open space bounded by a fractal shape. A key aspect of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that are very compact, wideband and multiband. As the number of iterations increases, the antenna operates at higher and higher frequencies. Manifestly different from traditional antenna designs, a fractal antenna can operate at multiple frequencies simultaneously. We have created a MATLAB code to generate deterministic and stochastic modes of Sierpinski carpet fractal antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, number of iterations, and lacunarities have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance

  15. Investigation into How 8th Grade Students Define Fractals

    Science.gov (United States)

    Karakus, Fatih

    2015-01-01

    The analysis of 8th grade students' concept definitions and concept images can provide information about their mental schema of fractals. There is limited research on students' understanding and definitions of fractals. Therefore, this study aimed to investigate the elementary students' definitions of fractals based on concept image and concept…

  16. Generalized Warburg impedance on realistic self-affine fractals ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals.

  17. Fractal tomography and its application in 3D vision

    Science.gov (United States)

    Trubochkina, N.

    2018-01-01

    A three-dimensional artistic fractal tomography method that implements a non-glasses 3D visualization of fractal worlds in layered media is proposed. It is designed for the glasses-free 3D vision of digital art objects and films containing fractal content. Prospects for the development of this method in art galleries and the film industry are considered.

  18. Constructing and applying the fractal pied de poule (houndstooth)

    NARCIS (Netherlands)

    Feijs, L.M.G.; Toeters, M.J.; Hart, G.; Sarhangi, R.

    2013-01-01

    Time is ready for a fractal version of pied de poule; it is almost "in the air". Taking inspiration from the Cantor set, and using the analysis of the classical pattern, we obtain a family of elegant new fractal Pied de Poules. We calculate the fractal dimension and develop an attractive fashion

  19. Monitoring of dry sliding wear using fractal analysis

    NARCIS (Netherlands)

    Zhang, Jindang; Regtien, Paulus P.L.; Korsten, Maarten J.

    2005-01-01

    Reliable online monitoring of wear remains a challenge to tribology research as well as to the industry. This paper presents a new method for monitoring of dry sliding wear using digital imaging and fractal analysis. Fractal values, namely fractal dimension and intercept, computed from the power

  20. Fractal characterization of the compaction and sintering of ferrites

    NARCIS (Netherlands)

    Glass, H.J.; With, de G.

    2001-01-01

    A novel parameter, the fractal exponent DE, is derived using the concept of fractal scaling. The fractal exponent DE relates the development of a feature within a material to the development of the size of the material. As an application, structural changes during the compaction and sintering of

  1. Generalized Warburg impedance on realistic self-affine fractals

    Indian Academy of Sciences (India)

    We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals. The information about the ...

  2. Lectures on fractal geometry and dynamical systems

    CERN Document Server

    Pesin, Yakov

    2009-01-01

    Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular "chaotic" motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory--Cantor sets, Hausdorff dimension, box dimension--using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples o...

  3. Computer Security: The dilemma of fractal defence

    CERN Multimedia

    Stefan Lueders, Computer Security Team

    2015-01-01

    Aren’t mathematical fractals just beautiful? The Mandelbrot set and the Julia set, the Sierpinski gasket, the Menger sponge, the Koch curve (see here)… Based on very simple mathematical rules, they quickly develop into a mosaic of facets slightly different from each other. More and more features appear the closer you zoom into a fractal and expose similar but not identical features of the overall picture.   Computer security is like these fractals, only much less pretty: simple at first glance, but increasingly complex and complicated when you look more closely at the details. The deeper you dig, the more and more possibilities open up for malicious people as the attack surface grows, just like that of “Koch’s snowflakes”, where the border length grows exponentially. Consequently, the defensive perimeter also increases when we follow the bits and bytes layer by layer from their processing in the CPU, trickling up the software stack thro...

  4. Fractal design concepts for stretchable electronics.

    Science.gov (United States)

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  5. On Nonextensive Statistics, Chaos and Fractal Strings

    CERN Document Server

    Castro, C

    2004-01-01

    Motivated by the growing evidence of universality and chaos in QFT and string theory, we study the Tsallis non-extensive statistics ( with a non-additive $ q$-entropy ) of an ensemble of fractal strings and branes of different dimensionalities. Non-equilibrium systems with complex dynamics in stationary states may exhibit large fluctuations of intensive quantities which are described in terms of generalized statistics. Tsallis statistics is a particular representative of such class. The non-extensive entropy and probability distribution of a canonical ensemble of fractal strings and branes is studied in terms of their dimensional spectrum which leads to a natural upper cutoff in energy and establishes a direct correlation among dimensions, energy and temperature. The absolute zero temperature ( Kelvin ) corresponds to zero dimensions (energy ) and an infinite temperature corresponds to infinite dimensions. In the concluding remarks some applications of fractal statistics, quasi-particles, knot theory, quantum...

  6. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.

    2014-12-01

    This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.

  7. Fractal design concepts for stretchable electronics

    Science.gov (United States)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  8. Fractales para la arqueología: un nuevo lenguaje

    Directory of Open Access Journals (Sweden)

    Rodríguez Alcalde, Angel

    1995-06-01

    Full Text Available In this paper we propose an evolutionary model of systems in which their elements are articulated through the relationships that involve an exchange of information. When analysing these relationships we use the concept of percolation. The result is a set of dynamic systems self-organized towards a critical state, as the consequence of the iteration of time-space events at a small scale. The network of relationships follows a fractal structure. As an example we tackle the problem of the expansion of domestic species in the Mediterranean basin, proposing an alternative model to that of demic diffusion.

    Se propone un modelo de evolución de sistemas en los que sus elementos se articulan mediante relaciones que implican intercambio de información. Éstas se analizan a partir del concepto de percolación. El resultado son sistemas dinámicos que se auto-organizan hacia un estado crítico. como consecuencia de la iteración de sucesos espacio-temporales a pequeña escala. La red de relaciones presenta estructura fractal. Como ejemplo se aborda el problema de la expansión de las especies domésticas en la cuenca mediterránea, proponiendo un modelo alternativo a la difusión démica.

  9. Incomplete information and fractal phase space

    International Nuclear Information System (INIS)

    Wang, Qiuping A.

    2004-01-01

    The incomplete statistics for complex systems is characterized by a so called incompleteness parameter ω which equals unity when information is completely accessible to our treatment. This paper is devoted to the discussion of the incompleteness of accessible information and of the physical signification of ω on the basis of fractal phase space. ω is shown to be proportional to the fractal dimension of the phase space and can be linked to the phase volume expansion and information growth during the scale refining process

  10. Transport properties of electrons in fractal magnetic-barrier structures

    Science.gov (United States)

    Sun, Lifeng; Fang, Chao; Guo, Yong

    2010-09-01

    Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.

  11. Fractal dimensions the digital art of Eric Hammel

    CERN Document Server

    Hammel, Eric

    2014-01-01

    The concept behind fractal geometry is extremely difficult to explain . . . but easy to see and enjoy. Eric Hammel, a professional author of military history books, is unable to explain fractals in a way that will be clear to anyone else, but most mathematicians can't explain fractals in language most people can understand. The simplest explanation is that fractals are graphic representations of high-order mathematical formulas that repeat patterns to infinity.Don't get hung up on the math. It's really all in the seeing. Like Volume 1 of Eric Hammel's Fractal Dimensions, Volume 2 is filled wit

  12. Fractal dimensions the digital art of Eric Hammel

    CERN Document Server

    Hammel, Eric

    2014-01-01

    The concept behind fractal geometry is extremely difficult to explain . . . but easy to see and enjoy. Eric Hammel, a professional author of military history books, is unable to explain fractals in a way that will be clear to anyone else, but most mathematicians can't explain fractals in language most people can understand. The simplest explanation is that fractals are graphic representations of high-order mathematical formulas that repeat patterns to infinity.Don't get hung up on the math. It's really all in the seeing. Like Volumes 1, 2, and 3 of Eric Hammel's Fractal Dimensions, Volume 4 is

  13. Fractal dimensions the digital art of Eric Hammel

    CERN Document Server

    Hammel, Eric

    2014-01-01

    The concept behind fractal geometry is extremely difficult to explain . . . but easy to see and enjoy. Eric Hammel, a professional author of military history books, is unable to explain fractals in a way that will be clear to anyone else, but most mathematicians can't explain fractals in language most people can understand. The simplest explanation is that fractals are graphic representations of high-order mathematical formulas that repeat patterns to infinity.Don't get hung up on the math. It's really all in the seeing. Like Volumes 1 and 2 of Eric Hammel's Fractal Dimensions, Volume 3 is fil

  14. Evaluation of water resources monitoring networks: study applied to surface waters in the Macaé River Basin

    Directory of Open Access Journals (Sweden)

    Carolina Cloris Lopes Benassuly

    2012-04-01

    Full Text Available Knowledge of hydrological phenomena is required in water resources monitoring, in order to structure the water management, focusing on ensuring its multiple uses while allowing that resource´s control and conservation. The effectiveness of monitoring depends on adequate information systems design and proper operation conditions. Data acquisition, treatment and analysis are vital for establishing management strategies, thus monitoring systems and networks shall be conceived according to their main objectives, and be optimized in terms of location of data stations. The generated data shall also model hydrological behavior of the studied basin, so that data interpolation can be applied to the whole basin. The present work aimed to join concepts and methods that guide the structuring of hydrologic monitoring networks of surface waters. For evaluating historical series characteristics as well as work stations redundancy, the entropy method was used. The Macaé River Basin’s importance is related to the public and industrial uses of water in the region that is responsible for more than 80% of Brazilian oil and gas production, what justifies the relevance of the research made. This study concluded that despite of its relatively short extension, the Macaé River Basin should have higher monitoring network density, in order to provide more reliable management data. It also depicted the high relevancy of stations located in its upper course.

  15. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    Science.gov (United States)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial

  16. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  17. Chaos and fractals. Applications to nuclear engineering; Caos y fractales. Aplicaciones en ingenieria nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, A; Delmastro, D F

    1991-12-31

    This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author). [Espanol] En este trabajo se presenta una descripcion de las lineas de investigacion que los autores estan llevando a cabo en teoria de caos y fractales orientadas al campo nuclear. Es de especial importancia las posibilidades que se abren en el area de la seguridad nuclear, en donde la informacion proveniente de las tecnicas de caos y fractales pueden ayudar al desarrollo de mejores criterios y disenos mas confiables. (Autor).

  18. Spatial Statistical Network Models for Stream and River Temperatures in the Chesapeake Bay Watershed

    Science.gov (United States)

    Numerous metrics have been proposed to describe stream/river thermal regimes, and researchers are still struggling with the need to describe thermal regimes in a parsimonious fashion. Regional temperature models are needed for characterizing and mapping current stream thermal re...

  19. An approach to study of methods for urban analysis and urban fabric renewal in observation of a city as a multiple fractal structure

    Directory of Open Access Journals (Sweden)

    Bogdanov Ana

    2007-01-01

    Full Text Available Urban forms and processes can be observed as fractal structures since in their seemingly chaotic development and complexity it can be noticed an internal order and regularity, which could be quantified and described by the methods of fractal analysis. With determination of fractal dimension it is possible to quantify the level of irregularity, the complexity and hierarchy of the urban structures, as well as the level of urban transformations in various time intersections. The fractal geometry method has been used in analyses of spatial distribution of population, networks and utilities because it corresponds more than deterministic methods to the nature of urban settlements as open, non-linear and dynamic systems. In that sense, fractal geometry becomes the means to grasp a complex morphological urban structure of urban settlements in general, the interrelationships between the inner spatial elements, and to predict future development possibilities. Moreover on the basis of urban pattern analysis by means of fractal geometry, it is possible to evaluate the growth and development process and to perform a comparative analysis of development in spatially and temporarily different settlement settings. Having in view that complex urban fabric presumes tight connections and diversity, which is in contrast to sprawl and monotony which increasingly characterize urban growth and development, this paper is a contribution to research of potential for modern urban settlements to regain the spirit of spontaneity and human dimension through application of development models that are fractal geometry based.

  20. 2-D Fractal Wire Antenna Design and Performance

    Science.gov (United States)

    Tebbens, S. F.; Barton, C. C.; Peterman, D. J.; Ewing, J. J.; Abbott, C. S.; Rizki, M. M.

    2017-12-01

    A 2-D fractal wire antenna uses a fractal (self-similar) pattern to increase its length by iteration and can receive or transmit electromagnetic radiation. 2-D fractals are shapes that, at their mathematical limit (of infinite iterations) have an infinite length. The fractal dimension describes the degree of space filling. A fundamental property of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that can be very compact, wideband and multiband. As the number of iterations increases, the antenna tends to have additional frequencies that minimize far field return loss. This differs from traditional antenna designs in that a single fractal antenna can operate well at multiple frequencies. We have created a MATLAB code to generate deterministic and stochastic modes of fractal wire antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, and number of iterations have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance.

  1. Fractal Structure and Entropy Production within the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Andrew J. E. Seely

    2014-08-01

    Full Text Available Our goal is to explore the relationship between two traditionally unrelated concepts, fractal structure and entropy production, evaluating both within the central nervous system (CNS. Fractals are temporal or spatial structures with self-similarity across scales of measurement; whereas entropy production represents the necessary exportation of entropy to our environment that comes with metabolism and life. Fractals may be measured by their fractal dimension; and human entropy production may be estimated by oxygen and glucose metabolism. In this paper, we observe fractal structures ubiquitously present in the CNS, and explore a hypothetical and unexplored link between fractal structure and entropy production, as measured by oxygen and glucose metabolism. Rapid increase in both fractal structures and metabolism occur with childhood and adolescent growth, followed by slow decrease during aging. Concomitant increases and decreases in fractal structure and metabolism occur with cancer vs. Alzheimer’s and multiple sclerosis, respectively. In addition to fractals being related to entropy production, we hypothesize that the emergence of fractal structures spontaneously occurs because a fractal is more efficient at dissipating energy gradients, thus maximizing entropy production. Experimental evaluation and further understanding of limitations and necessary conditions are indicated to address broad scientific and clinical implications of this work.

  2. Efficient RF energy harvesting by using a fractal structured rectenna system

    Science.gov (United States)

    Oh, Sechang; Ramasamy, Mouli; Varadan, Vijay K.

    2014-04-01

    A rectenna system delivers, collects, and converts RF energy into direct current to power the electronic devices or recharge batteries. It consists of an antenna for receiving RF power, an input filter for processing energy and impedance matching, a rectifier, an output filter, and a load resistor. However, the conventional rectenna systems have drawback in terms of power generation, as the single resonant frequency of an antenna can generate only low power compared to multiple resonant frequencies. A multi band rectenna system is an optimal solution to generate more power. This paper proposes the design of a novel rectenna system, which involves developing a multi band rectenna with a fractal structured antenna to facilitate an increase in energy harvesting from various sources like Wi-Fi, TV signals, mobile networks and other ambient sources, eliminating the limitation of a single band technique. The usage of fractal antennas effects certain prominent advantages in terms of size and multiple resonances. Even though, a fractal antenna incorporates multiple resonances, controlling the resonant frequencies is an important aspect to generate power from the various desired RF sources. Hence, this paper also describes the design parameters of the fractal antenna and the methods to control the multi band frequency.

  3. Fractal characteristic in the wearing of cutting tool

    Science.gov (United States)

    Mei, Anhua; Wang, Jinghui

    1995-11-01

    This paper studies the cutting tool wear with fractal geometry. The wearing image of the flank has been collected by machine vision which consists of CCD camera and personal computer. After being processed by means of preserving smoothing, binary making and edge extracting, the clear boundary enclosing the worn area has been obtained. The fractal dimension of the worn surface is calculated by the methods called `Slit Island' and `Profile'. The experiments and calciating give the conclusion that the worn surface is enclosed by a irregular boundary curve with some fractal dimension and characteristics of self-similarity. Furthermore, the relation between the cutting velocity and the fractal dimension of the worn region has been submitted. This paper presents a series of methods for processing and analyzing the fractal information in the blank wear, which can be applied to research the projective relation between the fractal structure and the wear state, and establish the fractal model of the cutting tool wear.

  4. Fractal electrodynamics via non-integer dimensional space approach

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  5. Fractals and spectra related to fourier analysis and function spaces

    CERN Document Server

    Triebel, Hans

    1997-01-01

    Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) ...

  6. Statistical and Fractal Processing of Phase Images of Human Biological Fluids

    Directory of Open Access Journals (Sweden)

    MARCHUK, Y. I.

    2010-11-01

    Full Text Available Performed in this work are complex statistical and fractal analyses of phase properties inherent to birefringence networks of liquid crystals consisting of optically-thin layers prepared from human bile. Within the framework of a statistical approach, the authors have investigated values and ranges for changes of statistical moments of the 1-st to 4-th orders that characterize coordinate distributions for phase shifts between orthogonal components of amplitudes inherent to laser radiation transformed by human bile with various pathologies. Using the Gramm-Charlie method, ascertained are correlation criteria for differentiation of phase maps describing pathologically changed liquid-crystal networks. In the framework of the fractal approach, determined are dimensionalities of self-similar coordinate phase distributions as well as features of transformation of logarithmic dependences for power spectra of these distributions for various types of human pathologies.

  7. Turbulence Enhancement by Fractal Square Grids: Effects of the Number of Fractal Scales

    Science.gov (United States)

    Omilion, Alexis; Ibrahim, Mounir; Zhang, Wei

    2017-11-01

    Fractal square grids offer a unique solution for passive flow control as they can produce wakes with a distinct turbulence intensity peak and a prolonged turbulence decay region at the expense of only minimal pressure drop. While previous studies have solidified this characteristic of fractal square grids, how the number of scales (or fractal iterations N) affect turbulence production and decay of the induced wake is still not well understood. The focus of this research is to determine the relationship between the fractal iteration N and the turbulence produced in the wake flow using well-controlled water-tunnel experiments. Particle Image Velocimetry (PIV) is used to measure the instantaneous velocity fields downstream of four different fractal grids with increasing number of scales (N = 1, 2, 3, and 4) and a conventional single-scale grid. By comparing the turbulent scales and statistics of the wake, we are able to determine how each iteration affects the peak turbulence intensity and the production/decay of turbulence from the grid. In light of the ability of these fractal grids to increase turbulence intensity with low pressure drop, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.

  8. A Parallel Approach to Fractal Image Compression

    Directory of Open Access Journals (Sweden)

    Lubomir Dedera

    2004-01-01

    Full Text Available The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.

  9. Fractal structures and intermittency in QCD

    International Nuclear Information System (INIS)

    Gustafson, Goesta.

    1990-04-01

    New results are presented for fractal structures and intermittency in QCD parton showers. A geometrical interpretation of the anomalous dimension in QCD is given. It is shown that model predications for factorial moments in the PEP-PETRA energy range are increased. if the properties of directly produced pions are more carefully taken into account

  10. Flames in fractal grid generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: p.lindstedt@imperial.ac.uk [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)

    2013-12-15

    Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration. (paper)

  11. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  12. Effect of noise on fractal structure

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Demitre [Division of Neurosurgery, Hospital for Sick Children, 1504-555 University Avenue, Toronto, Ont., M5G 1X8 (Canada)], E-mail: demitre.serletis@utoronto.ca

    2008-11-15

    In this paper, I investigate the effect of dynamical noise on the estimation of the Hurst exponent and the fractal dimension of time series. Recently, Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on estimation of Lyapunov exponents from a time series. Chaos, Solitons and Fractals, forthcoming] have shown that dynamical noise can make the detection of chaotic dynamics very difficult, and Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on the bifurcation behavior of dynamical systems. Chaos, Solitons and Fractals, forthcoming] have shown that dynamical noise can also shift bifurcation points and produce noise-induced transitions, making the determination of bifurcation boundaries difficult. Here I apply the detrending moving average (DMA) method, recently developed by Alessio et al. [Alessio E, Carbone A, Castelli G, Frappietro V. Second-order moving average and scaling of stochastic time series. The Eur Phys J B 2002;27:197-200] and Carbone et al. [Carbone A, Castelli G, Stanley HE. Time-dependent Hurst exponent in financial time series. Physica A 2004;344:267-71; Carbone A, Castelli G, Stanley HE. Analysis of clusters formed by the moving average of a long-range correlated time series. Phys Rev E 2004;69:026105], to estimate the Hurst exponent of a Brownian walk with a Hurst exponent of 0.5, coupled with low and high intensity noise, and show that dynamical noise has no effect on fractal structure.

  13. Fractal geometry of high temperature superconductors

    International Nuclear Information System (INIS)

    Mosolov, A.B.

    1989-01-01

    Microstructural geometry of superconducting structural composites of Ag-Yba 2 Cu 3 O x system with a volumetric shave of silver from 0 to 60% is investigated by light and electron microscopy methods. It is ascertained that the structure of cermets investigated is characterized by fractal geometry which is sufficient for describing the electrical and mechanical properties of these materials

  14. Fractality and the law of the wall

    Science.gov (United States)

    Xu, Haosen H. A.; Yang, X. I. A.

    2018-05-01

    Fluid motions in the inertial range of isotropic turbulence are fractal, with their space-filling capacity slightly below regular three-dimensional objects, which is a consequence of the energy cascade. Besides the energy cascade, the other often encountered cascading process is the momentum cascade in wall-bounded flows. Despite the long-existing analogy between the two processes, many of the thoroughly investigated aspects of the energy cascade have so far received little attention in studies of the momentum counterpart, e.g., the possibility of the momentum-transferring scales in the logarithmic region being fractal has not been considered. In this work, this possibility is pursued, and we discuss one of its implications. Following the same dimensional arguments that lead to the D =2.33 fractal dimension of wrinkled surfaces in isotropic turbulence, we show that the large-scale momentum-carrying eddies may also be fractal and non-space-filling, which then leads to the power-law scaling of the mean velocity profile. The logarithmic law of the wall, on the other hand, corresponds to space-filling eddies, as suggested by Townsend [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1980)]. Because the space-filling capacity is an integral geometric quantity, the analysis presented in this work provides us with a low-order quantity, with which, one would be able to distinguish between the logarithmic law and the power law.

  15. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2012-01-01

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  16. Mitered fractal trees: constructions and properties

    NARCIS (Netherlands)

    Verhoeff, T.; Verhoeff, K.; Bosch, R.; McKenna, D.; Sarhangi, R.

    2012-01-01

    Tree-like structures, that is, branching structures without cycles, are attractive for artful expression. Especially interesting are fractal trees, where each subtree is a scaled and possibly otherwise transformed version of the entire tree. Such trees can be rendered in 3D by using beams with a

  17. Geological mapping using fractal technique | Lawal | Nigerian ...

    African Journals Online (AJOL)

    In this work the use of fractal scaling exponents for geological mapping was first investigated using theoretical models, and results from the analysis showed that the scaling exponents mapped isolated bodies but did not properly resolve bodies close to each other. However application on real data (the Mamfe basin, the ...

  18. Geological mapping using fractal technique | Lawal | Nigerian ...

    African Journals Online (AJOL)

    ... in Nigeria) showed good correlation with the geological maps of the areas. The results also indicated that basement rocks can generally be represented by scaling exponents with values ranging between -3.0 and -2.0. Keywords: Fractal, dimension, susceptibility, spectra, scaling exponent. Nigerian Journal of Physics Vol.

  19. Tests of peak flow scaling in simulated self-similar river networks

    Science.gov (United States)

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  20. CHNTRN: a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1983-09-01

    This report presents the development of a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network. A particular feature of the model is its capability to deal with the network system that may consist of any number of joined and branched streams/rivers of comparable size. The model employs a numerical method - an integrated compartment method (ICM) - which greatly facilitates the setup of the matrix equation for the discrete field approximating the corresponding continuous field. Most of the possible boundary conditions that may be anticipated in real-world problems are considered. These include junctions, prescribed concentration, prescribed dispersive flux, and prescribed total flux. The model is applied to two case studies: (1) a single river and (2) a five-segment river in a watershed. Results indicate that the model can realistically simulate the behavior of the sediment and chemical variations in a stream/river network. 11 references, 10 figures, 3 tables.

  1. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  2. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  3. Algal-mediated ecosystem exchanges in the Eel River drainage network: towards photogrammetric mapping of color to function

    Science.gov (United States)

    Power, M. E.; Welter, J.; Furey, P.; Lowe, R.; Finlay, J. C.; Hondzo, M.; Limm, M.; Bode, C.; Dietrich, W. E.

    2009-12-01

    Seasonal algal proliferations in river networks are typically short-lived (weeks-months) but spatially extensive. They mediate important ecological and biogeochemical exchanges within and between ecosystems. We are investigating correspondence of assemblage color with ecosystem function in the nitrogen-limited Eel River of northern California. During summer base flow following winter floods, Eel algal assemblages are dominated by the green macroalga Cladophora glomerata. New growths are green, but blooms turn yellow as Cladophora filaments are colonized by epiphytic diatoms (Cocconeis spp.). Later, proliferations turn rust colored as epiphytic assemblages became dominated by Epithemia spp., diatoms that contain nitrogen-fixing cyanobacterial endosymbionts. Epithemia-encrusted Cladophora occurs at and downstream of reaches draining > 100 km2 (where summer inundated average channel widths > 25 m), coinciding with a threshold increase in concentration of total dissolved nitrogen. Areal nitrogen fixation rates are 14x higher in rusty algal proliferations than in green, and 3-4x higher than in yellow Cladophora mats. Corresponding increases in insect emergence suggest that nitrogen fixed by cyanobacterial endosymbionts is highly edible. Rates of biomass emergence from rusty Cladophora mats are 12-17 times greater than from green mats, and 8-10 times greater from rusty than from yellow Cladophora mats, because larger taxa emerge from rusty mats (Chironominae versus Ceratopogonidae in yellow mats). Photogrammetric detection of spatial coverage and color changes in algal proliferations may help us track nitrogen fluxes they mediate (riverine loading from the atmosphere via fixation, river to the watershed return via insect emergence) that link riverine to aerial, watershed, and potentially nearshore marine ecosystems at reach to basin scales.

  4. Use of sEMG in identification of low level muscle activities: features based on ICA and fractal dimension.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Arjunan, Sridhar

    2009-01-01

    This paper has experimentally verified and compared features of sEMG (Surface Electromyogram) such as ICA (Independent Component Analysis) and Fractal Dimension (FD) for identification of low level forearm muscle activities. The fractal dimension was used as a feature as reported in the literature. The normalized feature values were used as training and testing vectors for an Artificial neural network (ANN), in order to reduce inter-experimental variations. The identification accuracy using FD of four channels sEMG was 58%, and increased to 96% when the signals are separated to their independent components using ICA.

  5. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    Science.gov (United States)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  6. Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China

    Science.gov (United States)

    Li, Zhanjie; Yu, Jingshan; Xu, Xinyi; Sun, Wenchao; Pang, Bo; Yue, Jiajia

    2018-06-01

    Hydrological models are important and effective tools for detecting complex hydrological processes. Different models have different strengths when capturing the various aspects of hydrological processes. Relying on a single model usually leads to simulation uncertainties. Ensemble approaches, based on multi-model hydrological simulations, can improve application performance over single models. In this study, the upper Yalongjiang River Basin was selected for a case study. Three commonly used hydrological models (SWAT, VIC, and BTOPMC) were selected and used for independent simulations with the same input and initial values. Then, the BP neural network method was employed to combine the results from the three models. The results show that the accuracy of BP ensemble simulation is better than that of the single models.

  7. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa

    Science.gov (United States)

    Yang, X.; Jin, W.

    2010-01-01

    Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.

  8. Innovation in monitoring: The U.S. Geological Survey Sacramento–San Joaquin River Delta, California, flow-station network

    Science.gov (United States)

    Burau, Jon; Ruhl, Cathy; Work, Paul A.

    2016-01-29

    The U.S. Geological Survey (USGS) installed the first gage to measure the flow of water into California’s Sacramento–San Joaquin River Delta from the Sacramento River in the late 1800s. Today, a network of 35 hydro-acoustic meters measure flow throughout the delta. This region is a critical part of California’s freshwater supply and conveyance system. With the data provided by this flow-station network—sampled every 15 minutes and updated to the web every hour—state and federal water managers make daily decisions about how much freshwater can be pumped for human use, at which locations, and when. Fish and wildlife scientists, working with water managers, also use this information to protect fish species affected by pumping and loss of habitat. The data are also used to help determine the success or failure of efforts to restore ecosystem processes in what has been called the “most managed and highly altered” watershed in the country.

  9. FRACTAL ANALYSIS OF TRABECULAR BONE: A STANDARDISED METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Ian Parkinson

    2011-05-01

    Full Text Available A standardised methodology for the fractal analysis of histological sections of trabecular bone has been established. A modified box counting method has been developed for use on a PC based image analyser (Quantimet 500MC, Leica Cambridge. The effect of image analyser settings, magnification, image orientation and threshold levels, was determined. Also, the range of scale over which trabecular bone is effectively fractal was determined and a method formulated to objectively calculate more than one fractal dimension from the modified Richardson plot. The results show that magnification, image orientation and threshold settings have little effect on the estimate of fractal dimension. Trabecular bone has a lower limit below which it is not fractal (λ<25 μm and the upper limit is 4250 μm. There are three distinct fractal dimensions for trabecular bone (sectional fractals, with magnitudes greater than 1.0 and less than 2.0. It has been shown that trabecular bone is effectively fractal over a defined range of scale. Also, within this range, there is more than 1 fractal dimension, describing spatial structural entities. Fractal analysis is a model independent method for describing a complex multifaceted structure, which can be adapted for the study of other biological systems. This may be at the cell, tissue or organ level and compliments conventional histomorphometric and stereological techniques.

  10. Closed contour fractal dimension estimation by the Fourier transform

    International Nuclear Information System (INIS)

    Florindo, J.B.; Bruno, O.M.

    2011-01-01

    Highlights: → A novel fractal dimension concept, based on Fourier spectrum, is proposed. → Computationally simple. Computational time smaller than conventional fractal methods. → Results are closer to Hausdorff-Besicovitch than conventional methods. → The method is more accurate and robustness to geometric operations and noise addition. - Abstract: This work proposes a novel technique for the numerical calculus of the fractal dimension of fractal objects which can be represented as a closed contour. The proposed method maps the fractal contour onto a complex signal and calculates its fractal dimension using the Fourier transform. The Fourier power spectrum is obtained and an exponential relation is verified between the power and the frequency. From the parameter (exponent) of the relation, is obtained the fractal dimension. The method is compared to other classical fractal dimension estimation methods in the literature, e.g., Bouligand-Minkowski, box-counting and classical Fourier. The comparison is achieved by the calculus of the fractal dimension of fractal contours whose dimensions are well-known analytically. The results showed the high precision and robustness of the proposed technique.

  11. Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.

    Science.gov (United States)

    Rhea, Christopher K; Kiefer, Adam W; D'Andrea, Susan E; Warren, William H; Aaron, Roy K

    2014-08-01

    Fractal patterns characterize healthy biological systems and are considered to reflect the ability of the system to adapt to varying environmental conditions. Previous research has shown that fractal patterns in gait are altered following natural aging or disease, and this has potential negative consequences for gait adaptability that can lead to increased risk of injury. However, the flexibility of a healthy neurological system to exhibit different fractal patterns in gait has yet to be explored, and this is a necessary step toward understanding human locomotor control. Fifteen participants walked for 15min on a treadmill, either in the absence of a visual stimulus or while they attempted to couple the timing of their gait with a visual metronome that exhibited a persistent fractal pattern (contained long-range correlations) or a random pattern (contained no long-range correlations). The stride-to-stride intervals of the participants were recorded via analog foot pressure switches and submitted to detrended fluctuation analysis (DFA) to determine if the fractal patterns during the visual metronome conditions differed from the baseline (no metronome) condition. DFA α in the baseline condition was 0.77±0.09. The fractal patterns in the stride-to-stride intervals were significantly altered when walking to the fractal metronome (DFA α=0.87±0.06) and to the random metronome (DFA α=0.61±0.10) (both p<.05 when compared to the baseline condition), indicating that a global change in gait dynamics was observed. A variety of strategies were identified at the local level with a cross-correlation analysis, indicating that local behavior did not account for the consistent global changes. Collectively, the results show that a gait dynamics can be shifted in a prescribed manner using a visual stimulus and the shift appears to be a global phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fractal analysis of fractures and microstructures in rocks

    International Nuclear Information System (INIS)

    Merceron, T.; Nakashima, S.; Velde, B.; Badri, A.

    1991-01-01

    Fractal geometry was used to characterize the distribution of fracture fields in rocks, which represent main pathways for material migration such as groundwater flow. Fractal investigations of fracture distribution were performed on granite along Auriat and Shikoku boreholes. Fractal dimensions range between 0.3 and 0.5 according to the different sets of fracture planes selected for the analyses. Shear, tension and compressional modes exhibit different fractal values while the composite fracture patterns are also fractal but with a different, median, fractal value. These observations indicate that the fractal method can be used to distinguish fracture types of different origins in a complex system. Fractal results for Shikoku borehole also correlate with geophysical parameters recorded along, drill-holes such as resistivity and possibly permeability. These results represent the first steps of the fractal investigation along drill-holes. Future studies will be conducted to verify relationships between fractal dimensions and permeability by using available geophysical data. Microstructures and microcracks were analysed in the Inada granite. Microcrack patterns are fractal but fractal dimensions values vary according to both mineral type and orientations of measurement within the mineral. Microcracks in quartz are characterized by more irregular distribution (average D = 0.40) than those in feldspars (D = 0.50) suggesting a different mode of rupture. Highest values of D are reported along main cleavage planes for feldspars or C axis for quartz. Further fractal investigations of microstructure in granite will be used to characterize the potential pathways for fluid migration and diffusion in the rock matrix. (author)

  13. Demonstrating the use of web analytics and an online survey to understand user groups of a national network of river level data

    Science.gov (United States)

    Macleod, Christopher Kit; Braga, Joao; Arts, Koen; Ioris, Antonio; Han, Xiwu; Sripada, Yaji; van der Wal, Rene

    2016-04-01

    The number of local, national and international networks of online environmental sensors are rapidly increasing. Where environmental data are made available online for public consumption, there is a need to advance our understanding of the relationships between the supply of and the different demands for such information. Understanding how individuals and groups of users are using online information resources may provide valuable insights into their activities and decision making. As part of the 'dot.rural wikiRivers' project we investigated the potential of web analytics and an online survey to generate insights into the use of a national network of river level data from across Scotland. These sources of online information were collected alongside phone interviews with volunteers sampled from the online survey, and interviews with providers of online river level data; as part of a larger project that set out to help improve the communication of Scotland's online river data. Our web analytics analysis was based on over 100 online sensors which are maintained by the Scottish Environmental Protection Agency (SEPA). Through use of Google Analytics data accessed via the R Ganalytics package we assessed: if the quality of data provided by Google Analytics free service is good enough for research purposes; if we could demonstrate what sensors were being used, when and where; how the nature and pattern of sensor data may affect web traffic; and whether we can identify and profile these users based on information from traffic sources. Web analytics data consists of a series of quantitative metrics which capture and summarize various dimensions of the traffic to a certain web page or set of pages. Examples of commonly used metrics include the number of total visits to a site and the number of total page views. Our analyses of the traffic sources from 2009 to 2011 identified several different major user groups. To improve our understanding of how the use of this national

  14. Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century

    Science.gov (United States)

    Vilmin, Lauriane; Mogollón, José M.; Beusen, Arthur H. W.; Bouwman, Alexander F.

    2018-04-01

    Nitrogen (N) and phosphorus (P) play a major role in the biogeochemical functioning of aquatic systems. N and P transfer to surface freshwaters has amplified during the 20th century, which has led to widespread eutrophication problems. The contribution of different sources, natural and anthropogenic, to total N and P loading to river networks has recently been estimated yearly using the Integrated Model to Assess the Global Environment - Global Nutrient Model (IMAGE-GNM). However, eutrophic events generally result from a combination of physicochemical conditions governed by hydrological dynamics and the availability of specific nutrient forms that vary at subyearly timescales. In the present study, we define for each simulated nutrient source: i) its speciation, and ii) its subannual temporal pattern. Thereby, we simulate the monthly loads of different N (ammonium, nitrate + nitrite, and organic N) and P forms (dissolved and particulate inorganic P, and organic P) to global river networks over the whole 20th century at a half-degree spatial resolution. Results indicate that, together with an increase in the delivery of all nutrient forms to global rivers, the proportion of inorganic forms in total N and P inputs has risen from 30 to 43% and from 56 to 65%, respectively. The high loads originating from fertilized agricultural lands and the increasing proportion of sewage inputs have led to a greater proportion of DIN forms (ammonium and nitrate), that are usually more bioavailable. Soil loss from agricultural lands, which delivers large amounts of particle-bound inorganic P to surface freshwaters, has become the dominant P source, which is likely to lead to an increased accumulation of legacy P in slow flowing areas (e.g., lakes and reservoirs). While the TN:TP ratio of the loads has remained quite stable, the DIN:DIP molar ratio, which is likely to affect algal development the most, has increased from 18 to 27 globally. Human activities have also affected the

  15. Comparing various artificial neural network types for water temperature prediction in rivers

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Maciej J.; Napiorkowski, Jaroslaw J.; Osuch, Marzena

    2015-10-01

    A number of methods have been proposed for the prediction of streamwater temperature based on various meteorological and hydrological variables. The present study shows a comparison of few types of data-driven neural networks (multi-layer perceptron, product-units, adaptive-network-based fuzzy inference systems and wavelet neural networks) and nearest neighbour approach for short time streamwater temperature predictions in two natural catchments (mountainous and lowland) located in temperate climate zone, with snowy winters and hot summers. To allow wide applicability of such models, autoregressive inputs are not used and only easily available measurements are considered. Each neural network type is calibrated independently 100 times and the mean, median and standard deviation of the results are used for the comparison. Finally, the ensemble aggregation approach is tested. The results show that simple and popular multi-layer perceptron neural networks are in most cases not outperformed by more complex and advanced models. The choice of neural network is dependent on the way the models are compared. This may be a warning for anyone who wish to promote own models, that their superiority should be verified in different ways. The best results are obtained when mean, maximum and minimum daily air temperatures from the previous days are used as inputs, together with the current runoff and declination of the Sun from two recent days. The ensemble aggregation approach allows reducing the mean square error up to several percent, depending on the case, and noticeably diminishes differences in modelling performance obtained by various neural network types.

  16. Spatio-temporal variability in movement, age, and growth of mountain whitefish (Prosopium williamsoni) in a river network based upon PIT tagging and otolith chemistry

    Science.gov (United States)

    Benjamin, Joseph R.; Wetzel, Lisa A.; Martens, Kyle D.; Larsen, Kimberly; Connolly, Patrick J.

    2013-01-01

    Connectivity of river networks and the movements among habitats can be critical for the life history of many fish species, and understanding of the patterns of movement is central to managing populations, communities, and the landscapes they use. We combined passive integrated transponder tagging over 4 years and strontium isotopes in otoliths to demonstrate that 25% of the mountain whitefish (Prosopium williamsoni) sampled moved between the Methow and Columbia rivers, Washington, USA. Seasonal migrations downstream from the Methow River to the Columbia River to overwinter occurred in autumn and upstream movements in the spring. We observed migration was common during the first year of life, with migrants being larger than nonmigrants. However, growth between migrants and nonmigrants was similar. Water temperature was positively related to the proportion of migrants and negatively related to the timing of migration, but neither was related to discharge. The broad spatio-temporal movements we observed suggest mountain whitefish, and likely other nonanadromous fish, require distant habitats and also suggests that management and conservation strategies to keep connectivity of large river networks are imperative.

  17. Fractal zeta functions and fractal drums higher-dimensional theory of complex dimensions

    CERN Document Server

    Lapidus, Michel L; Žubrinić, Darko

    2017-01-01

    This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the f...

  18. MULTI-TEMPORAL LAND USE ANALYSIS OF AN EPHEMERAL RIVER AREA USING AN ARTIFICIAL NEURAL NETWORK APPROACH ON LANDSAT IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Aquilino

    2014-01-01

    The historical archive of LANDSAT imagery dating back to the launch of ERTS in 1972 provides a comprehensive and permanent data source for tracking change on the planet‟s land surface. In this study case the imagery acquisition dates of 1987, 2002 and 2011 were selected to cover a time trend of 24 years. Land cover categories were based on classes outlined by the Curve Number method with the aim of characterizing land use according to the level of surface imperviousness. After comparing two land use classification methods, i.e. Maximum Likelihood Classifier (MLC and Multi-Layer Perceptron (MLP neural network, the Artificial Neural Networks (ANN approach was found the best reliable and efficient method in the absence of ground reference data. The ANN approach has a distinct advantage over statistical classification methods in that it is non-parametric and requires little or no a priori knowledge on the distribution model of input data. The results quantify land cover change patterns in the river basin area under study and demonstrate the potential of multitemporal LANDSAT data to provide an accurate and cost-effective means to map and analyse land cover changes over time that can be used as input in land management and policy decision-making.

  19. Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Edia E.O.

    2010-10-01

    Full Text Available Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM, an unsupervised Artificial Neural Networks (ANN method. This method was applied to pattern the samples based on the richness of five major orders of aquatic insects (Diptera, Ephemeroptera, Coleoptera, Trichoptera and Odonata. This permitted to identify three clusters that were mainly related to the local environmental status of sampling sites. Then, we used the environmental characteristics of the sites to predict, using a multilayer perceptron neural network (MLP, trained by BackPropagation algorithm (BP, a supervised ANN, the richness of the five insect orders. The BP showed high predictability (0.90 for both Diptera and Trichoptera, 0.84 for both Coleoptera and Odonata, 0.69 for Ephemeroptera. The most contributing variables in predicting the five insect order richness were pH, conductivity, total dissolved solids, water temperature, percentage of rock and the canopy. This underlines the crucial influence of both instream characteristics and riparian context.

  20. Water quality monitoring protocol for wadeable streams and rivers in the Northern Great Plains Network

    Science.gov (United States)

    Wilson, Marcia H.; Rowe, Barbara L.; Gitzen, Robert A.; Wilson, Stephen K.; Paintner-Green, Kara J.

    2014-01-01

    Preserving the national parks unimpaired for the enjoyment of future generations is a fundamental purpose of the National Park Service (NPS). To address growing concerns regarding the overall physical, chemical, and biological elements and processes of park ecosystems, the NPS implemented science-based management through “Vital Signs” monitoring in 270 national parks (NPS 2007). The Northern Great Plains Network (NGPN) is among the 32 National Park Service Networks participating in this monitoring effort. The NGPN will develop protocols over the next several years to determine the overall health or condition of resources within 13 parks located in Nebraska, North Dakota, South Dakota, and Wyoming.

  1. Fractal dimension analysis of complexity in Ligeti piano pieces

    Science.gov (United States)

    Bader, Rolf

    2005-04-01

    Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.

  2. A new numerical approximation of the fractal ordinary differential equation

    Science.gov (United States)

    Atangana, Abdon; Jain, Sonal

    2018-02-01

    The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

  3. Evaluation of 3D Printer Accuracy in Producing Fractal Structure.

    Science.gov (United States)

    Kikegawa, Kana; Takamatsu, Kyuuichirou; Kawakami, Masaru; Furukawa, Hidemitsu; Mayama, Hiroyuki; Nonomura, Yoshimune

    2017-01-01

    Hierarchical structures, also known as fractal structures, exhibit advantageous material properties, such as water- and oil-repellency as well as other useful optical characteristics, owing to its self-similarity. Various methods have been developed for producing hierarchical geometrical structures. Recently, fractal structures have been manufactured using a 3D printing technique that involves computer-aided design data. In this study, we confirmed the accuracy of geometrical structures when Koch curve-like fractal structures with zero to three generations were printed using a 3D printer. The fractal dimension was analyzed using a box-counting method. This analysis indicated that the fractal dimension of the third generation hierarchical structure was approximately the same as that of the ideal Koch curve. These findings demonstrate that the design and production of fractal structures can be controlled using a 3D printer. Although the interior angle deviated from the ideal value, the side length could be precisely controlled.

  4. Enhancing the Predicting Accuracy of the Water Stage Using a Physical-Based Model and an Artificial Neural Network-Genetic Algorithm in a River System

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Liu

    2014-06-01

    Full Text Available Accurate simulations of river stages during typhoon events are critically important for flood control and are necessary for disaster prevention and water resources management in Taiwan. This study applies two artificial neural network (ANN models, including the back propagation neural network (BPNN and genetic algorithm neural network (GANN techniques, to improve predictions from a one-dimensional flood routing hydrodynamic model regarding the water stages during typhoon events in the Danshuei River system in northern Taiwan. The hydrodynamic model is driven by freshwater discharges at the upstream boundary conditions and by the water levels at the downstream boundary condition. The model provides a sound physical basis for simulating water stages along the river. The simulated results of the hydrodynamic model show that the model cannot reproduce the water stages at different stations during typhoon events for the model calibration and verification phases. The BPNN and GANN models can improve the simulated water stages compared with the performance of the hydrodynamic model. The GANN model satisfactorily predicts water stages during the training and verification phases and exhibits the lowest values of mean absolute error, root-mean-square error and peak error compared with the simulated results at different stations using the hydrodynamic model and the BPNN model. Comparison of the simulated results shows that the GANN model can be successfully applied to predict the water stages of the Danshuei River system during typhoon events.

  5. Generation of fractals from complex logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Mamta [Galgotias College of Engg. and Technology, Greater Noida (India)], E-mail: mamtarsingh@rediffmail.com; Agarwal, Rashi [IEC College of Engg. and Tech., Greater Noida (India)], E-mail: agarwal_rashi@yahoo.com

    2009-10-15

    Remarkably benign looking logistic transformations x{sub n+1} = r x{sub n}(1 - x{sub n}) for choosing x{sub 0} between 0 and 1 and 0 < r {<=} 4 have found a celebrated place in chaos, fractals and discrete dynamics. The strong physical meaning of Mandelbrot and Julia sets is broadly accepted and nicely connected by Christian Beck [Beck C. Physical meaning for Mandelbrot and Julia sets. Physica D 1999;125(3-4):171-182. Zbl0988.37060] to the complex logistic maps, in the former case, and to the inverse complex logistic map, in the latter case. The purpose of this paper is to study the bounded behavior of the complex logistic map using superior iterates and generate fractals from the same. The analysis in this paper shows that many beautiful properties of the logistic map are extendable for a larger value of r.

  6. Static friction between rigid fractal surfaces.

    Science.gov (United States)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  7. Fractal Adaptive Web Service for Mobile Learning

    Directory of Open Access Journals (Sweden)

    Ichraf Tirellil

    2006-06-01

    Full Text Available This paper describes our proposition for adaptive web services which is based on configurable, re-usable adaptive/personalized services. To realize our ideas, we have developed an approach for designing, implementing and maintaining personal service. This approach enables the user to accomplish an activity with a set of services answering to his preferences, his profiles and to a personalized context. In this paper, we describe the principle of our approach that we call fractal adaptation approach, and we discuss the implementation of personalization services in the context of mobile and collaborative scenario of learning. We have realized a platform in this context -a platform for mobile and collaborative learning- based on fractal adaptable web services. The platform is tested with a population of students and tutors, in order to release the gaps and the advantages of the approach suggested.

  8. Fractal Analysis of Stealthy Pathfinding Aesthetics

    Directory of Open Access Journals (Sweden)

    Ron Coleman

    2009-01-01

    Full Text Available This paper uses a fractal model to analyze aesthetic values of a new class of obstacle-prone or “stealthy” pathfinding which seeks to avoid detection, exposure, openness, and so forth in videogames. This study is important since in general the artificial intelligence literature has given relatively little attention to aesthetic outcomes in pathfinding. The data we report, according to the fractal model, suggests that stealthy paths are statistically significantly unique in relative aesthetic value when compared to control paths. We show furthermore that paths generated with different stealth regimes are also statistically significantly unique. These conclusions are supported by statistical analysis of model results on experimental trials involving pathfinding in randomly generated, multiroom virtual worlds.

  9. A TUTORIAL INTRODUCTION TO ADAPTIVE FRACTAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Michael A Riley

    2012-09-01

    Full Text Available The authors present a tutorial description of adaptive fractal analysis (AFA. AFA utilizes an adaptive detrending algorithm to extract globally smooth trend signals from the data and then analyzes the scaling of the residuals to the fit as a function of the time scale at which the fit is computed. The authors present applications to synthetic mathematical signals to verify the accuracy of AFA and demonstrate the basic steps of the analysis. The authors then present results from applying AFA to time series from a cognitive psychology experiment on repeated estimation of durations of time to illustrate some of the complexities of real-world data. AFA shows promise in dealing with many types of signals, but like any fractal analysis method there are special challenges and considerations to take into account, such as determining the presence of linear scaling regions.

  10. Enhanced Graphene Photodetector with Fractal Metasurface

    DEFF Research Database (Denmark)

    Fang, Jieran; Wang, Di; DeVault, Clayton T

    2017-01-01

    Graphene has been demonstrated to be a promising photodetection material because of its ultrabroadband optical absorption, compatibility with CMOS technology, and dynamic tunability in optical and electrical properties. However, being a single atomic layer thick, graphene has intrinsically small...... optical absorption, which hinders its incorporation with modern photodetecting systems. In this work, we propose a gold snowflake-like fractal metasurface design to realize broadband and polarization-insensitive plasmonic enhancement in graphene photodetector. We experimentally obtain an enhanced...... photovoltage from the fractal metasurface that is an order of magnitude greater than that generated at a plain gold-graphene edge and such an enhancement in the photovoltage sustains over the entire visible spectrum. We also observed a relatively constant photoresponse with respect to polarization angles...

  11. Generation of fractals from complex logistic map

    International Nuclear Information System (INIS)

    Rani, Mamta; Agarwal, Rashi

    2009-01-01

    Remarkably benign looking logistic transformations x n+1 = r x n (1 - x n ) for choosing x 0 between 0 and 1 and 0 < r ≤ 4 have found a celebrated place in chaos, fractals and discrete dynamics. The strong physical meaning of Mandelbrot and Julia sets is broadly accepted and nicely connected by Christian Beck [Beck C. Physical meaning for Mandelbrot and Julia sets. Physica D 1999;125(3-4):171-182. Zbl0988.37060] to the complex logistic maps, in the former case, and to the inverse complex logistic map, in the latter case. The purpose of this paper is to study the bounded behavior of the complex logistic map using superior iterates and generate fractals from the same. The analysis in this paper shows that many beautiful properties of the logistic map are extendable for a larger value of r.

  12. Tumor cells diagnostic through fractal dimensions

    International Nuclear Information System (INIS)

    Timbo, Christiano dos Santos

    2004-01-01

    This method relies on the application of an algorithm for the quantitative and statistic differentiation of a sample of cells stricken by a certain kind of pathology and a sample of healthy cells. This differentiation is made by applying the principles of fractal dimension to digital images of the cells. The algorithm was developed using the the concepts of Object- Oriented Programming, resulting in a simple code, divided in 5 distinct procedures, and a user-friendly interface. To obtain the fractal dimension of the images of the cells, the program processes the image, extracting its border, and uses it to characterize the complexity of the form of the cell in a quantitative way. In order to validate the code, it was used a digitalized image found in an article by W. Bauer, developer of an analog method. The result showed a difference of 6% between the value obtained by Bauer and the value obtained the algorithm developed in this work. (author)

  13. a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution

    Science.gov (United States)

    Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin

    Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.

  14. A Fractal Perspective on Scale in Geography

    Directory of Open Access Journals (Sweden)

    Bin Jiang

    2016-06-01

    Full Text Available Scale is a fundamental concept that has attracted persistent attention in geography literature over the past several decades. However, it creates enormous confusion and frustration, particularly in the context of geographic information science, because of scale-related issues such as image resolution and the modifiable areal unit problem (MAUP. This paper argues that the confusion and frustration arise from traditional Euclidean geometric thinking, in which locations, directions, and sizes are considered absolute, and it is now time to revise this conventional thinking. Hence, we review fractal geometry, together with its underlying way of thinking, and compare it to Euclidean geometry. Under the paradigm of Euclidean geometry, everything is measurable, no matter how big or small. However, most geographic features, due to their fractal nature, are essentially unmeasurable or their sizes depend on scale. For example, the length of a coastline, the area of a lake, and the slope of a topographic surface are all scale-dependent. Seen from the perspective of fractal geometry, many scale issues, such as the MAUP, are inevitable. They appear unsolvable, but can be dealt with. To effectively deal with scale-related issues, we present topological and scaling analyses illustrated by street-related concepts such as natural streets, street blocks, and natural cities. We further contend that one of the two spatial properties, spatial heterogeneity, is de facto the fractal nature of geographic features, and it should be considered the first effect among the two, because it is global and universal across all scales, which should receive more attention from practitioners of geography.

  15. FRACTAL DIMENSIONALITY ANALYSIS OF MAMMARY GLAND THERMOGRAMS

    Directory of Open Access Journals (Sweden)

    Yu. E. Lyah

    2016-06-01

    Full Text Available Thermography may enable early detection of a cancer tumour within a mammary gland at an early, treatable stage of the illness, but thermogram analysis methods must be developed to achieve this goal. This study analyses the feasibility of applying the Hurst exponent readings algorithm for evaluation of the high dimensionality fractals to reveal any possible difference between normal thermograms (NT and malignant thermograms (MT.

  16. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  17. A short history of fractal-Cantorian space-time

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2009-01-01

    The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.

  18. Enhancement of critical temperature in fractal metamaterial superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Smolyaninov, Igor I., E-mail: smoly@umd.edu [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); Smolyaninova, Vera N. [Department of Physics Astronomy and Geosciences, Towson University, 8000 York Road, Towson, MD 21252 (United States)

    2017-04-15

    Fractal metamaterial superconductor geometry has been suggested and analyzed based on the recently developed theoretical description of critical temperature increase in epsilon near zero (ENZ) metamaterial superconductors. Considerable enhancement of critical temperature has been predicted in such materials due to appearance of large number of additional poles in the inverse dielectric response function of the fractal. Our results agree with the recent observation (Fratini et al. Nature 466, 841 (2010)) that fractal defect structure promotes superconductivity.

  19. Hybrid 3D Fractal Coding with Neighbourhood Vector Quantisation

    Directory of Open Access Journals (Sweden)

    Zhen Yao

    2004-12-01

    Full Text Available A hybrid 3D compression scheme which combines fractal coding with neighbourhood vector quantisation for video and volume data is reported. While fractal coding exploits the redundancy present in different scales, neighbourhood vector quantisation, as a generalisation of translational motion compensation, is a useful method for removing both intra- and inter-frame coherences. The hybrid coder outperforms most of the fractal coders published to date while the algorithm complexity is kept relatively low.

  20. Optical diffraction from fractals with a structural transition

    International Nuclear Information System (INIS)

    Perez Rodriguez, F.; Canessa, E.

    1994-04-01

    A macroscopic characterization of fractals showing up a structural transition from dense to multibranched growth is made using optical diffraction theory. Such fractals are generated via the numerical solution of the 2D Poisson and biharmonic equations and are compared to more 'regular' irreversible clusters such as diffusion limited and Laplacian aggregates. The optical diffraction method enables to identify a decrease of the fractal dimension above the structural point. (author). 19 refs, 6 figs

  1. Password Authentication Based on Fractal Coding Scheme

    Directory of Open Access Journals (Sweden)

    Nadia M. G. Al-Saidi

    2012-01-01

    Full Text Available Password authentication is a mechanism used to authenticate user identity over insecure communication channel. In this paper, a new method to improve the security of password authentication is proposed. It is based on the compression capability of the fractal image coding to provide an authorized user a secure access to registration and login process. In the proposed scheme, a hashed password string is generated and encrypted to be captured together with the user identity using text to image mechanisms. The advantage of fractal image coding is to be used to securely send the compressed image data through a nonsecured communication channel to the server. The verification of client information with the database system is achieved in the server to authenticate the legal user. The encrypted hashed password in the decoded fractal image is recognized using optical character recognition. The authentication process is performed after a successful verification of the client identity by comparing the decrypted hashed password with those which was stored in the database system. The system is analyzed and discussed from the attacker’s viewpoint. A security comparison is performed to show that the proposed scheme provides an essential security requirement, while their efficiency makes it easier to be applied alone or in hybrid with other security methods. Computer simulation and statistical analysis are presented.

  2. Fractal analysis of Xylella fastidiosa biofilm formation

    Science.gov (United States)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  3. Fractal theory of radon emanation from solids

    International Nuclear Information System (INIS)

    Semkow, T.M.

    1991-01-01

    The author developed a fractal theory of Rn emanation from solids, based on α recoil from the α decay of Ra. Range straggling of the recoiling Rn atoms in the solid state is included and the fractal geometry is used to describe the roughness of the emanating surface. A fractal dimension D of the surface and the median projected range become important parameters in calculating the radon emanating power E R from solids. A relation between E R and the specific surface area measured by the gas adsorption is derived for the first time, assuming a uniform distribution of the precursor Ra throughout the samples. It is suggested that the E R measurements can be used to determine D of the surfaces on the scale from tens to hundreds of nm. One obtains, for instance, D = 2.17 ± 0.06 for Lipari volcanic glass and D = 2.83 ± 0.03 for pitchblende. In addition, the author suggests a new process of penetrating recoil and modify the role of indirect recoil. The penetrating recoil may be important for rough surfaces, in which case Rn loses its kinetic energy by penetrating a large number of small surface irregularities. The indirect recoil may be important at the very last stage of energy-loss process, for kinetic energies below ∼ 5 keV

  4. Aero-acoustic performance of Fractal Spoilers

    Science.gov (United States)

    Nedic, J.; Ganapathisubramani, B.; Vassilicos, C.; Boree, J.; Brizzi, L.; Spohn, A.

    2010-11-01

    One of the major environmental problems facing the aviation industry is that of aircraft noise. The work presented in this paper, done as part of the OPENAIR Project, looks at reducing spoiler noise through means of large-scale fractal porosity. It is hypothesised that the highly turbulent flow generated by these grids, which have multi-length-scales, would remove the re-circulation region and with it, the low frequency noise it generates. In its place, a higher frequency noise is introduced which is susceptible to atmospheric attenuation, and would be deemed less offensive to the human ear. A total of nine laboratory scaled spoilers were looked at, seven of which had a fractal design, one conventionally porous and one solid for reference. All of the spoilers were mounted on a flat plate and inclined at 30^o to the horizontal. Far-field, microphone array and PIV measurements were taken in an anechoic chamber to determine the acoustic performance and to study the flow coming through the spoilers. A significant reduction in sound pressure level is recorded and is found to be very sensitive to small changes in fractal grid parameters. Wake and drag force measurements indicated that the spoilers increase the drag whilst having minimal effect on the lift.

  5. International Conference on Advances of Fractals and Related Topics

    CERN Document Server

    Lau, Ka-Sing

    2014-01-01

    This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.   

  6. Fractal-Based Image Analysis In Radiological Applications

    Science.gov (United States)

    Dellepiane, S.; Serpico, S. B.; Vernazza, G.; Viviani, R.

    1987-10-01

    We present some preliminary results of a study aimed to assess the actual effectiveness of fractal theory and to define its limitations in the area of medical image analysis for texture description, in particular, in radiological applications. A general analysis to select appropriate parameters (mask size, tolerance on fractal dimension estimation, etc.) has been performed on synthetically generated images of known fractal dimensions. Moreover, we analyzed some radiological images of human organs in which pathological areas can be observed. Input images were subdivided into blocks of 6x6 pixels; then, for each block, the fractal dimension was computed in order to create fractal images whose intensity was related to the D value, i.e., texture behaviour. Results revealed that the fractal images could point out the differences between normal and pathological tissues. By applying histogram-splitting segmentation to the fractal images, pathological areas were isolated. Two different techniques (i.e., the method developed by Pentland and the "blanket" method) were employed to obtain fractal dimension values, and the results were compared; in both cases, the appropriateness of the fractal description of the original images was verified.

  7. FAST TRACK COMMUNICATION: Weyl law for fat fractals

    Science.gov (United States)

    Spina, María E.; García-Mata, Ignacio; Saraceno, Marcos

    2010-10-01

    It has been conjectured that for a class of piecewise linear maps the closure of the set of images of the discontinuity has the structure of a fat fractal, that is, a fractal with positive measure. An example of such maps is the sawtooth map in the elliptic regime. In this work we analyze this problem quantum mechanically in the semiclassical regime. We find that the fraction of states localized on the unstable set satisfies a modified fractal Weyl law, where the exponent is given by the exterior dimension of the fat fractal.

  8. Electro-chemical manifestation of nanoplasmonics in fractal media

    Science.gov (United States)

    Baskin, Emmanuel; Iomin, Alexander

    2013-06-01

    Electrodynamics of composite materials with fractal geometry is studied in the framework of fractional calculus. This consideration establishes a link between fractal geometry of the media and fractional integrodifferentiation. The photoconductivity in the vicinity of the electrode-electrolyte fractal interface is studied. The methods of fractional calculus are employed to obtain an analytical expression for the giant local enhancement of the optical electric field inside the fractal composite structure at the condition of the surface plasmon excitation. This approach makes it possible to explain experimental data on photoconductivity in the nano-electrochemistry.

  9. Fractal characteristic study of shearer cutter cutting resistance curves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Heilongjiang Scientific and Technical Institute, Haerbin (China). Dept of Mechanical Engineering

    2004-02-01

    The cutting resistance curve is the most useful tool for reflecting the overall cutting performance of a cutting machine. The cutting resistance curve is influenced by many factors such as the pick structure and arrangement, the cutter operation parameters, coal quality and geologic conditions. This paper discusses the use of fractal geometry to study the properties of the cutting resistance curve, and the use of fractal dimensions to evaluate cutting performance. On the basis of fractal theory, the general form and calculation method of fractal characteristics are given. 4 refs., 3 figs., 1 tab.

  10. Fractal-based exponential distribution of urban density and self-affine fractal forms of cities

    International Nuclear Information System (INIS)

    Chen Yanguang; Feng Jian

    2012-01-01

    Highlights: ► The model of urban population density differs from the common exponential function. ► Fractal landscape influences the exponential distribution of urban density. ► The exponential distribution of urban population suggests a self-affine fractal. ► Urban space can be divided into three layers with scaling and non-scaling regions. ► The dimension of urban form with characteristic scale can be treated as 2. - Abstract: Urban population density always follows the exponential distribution and can be described with Clark’s model. Because of this, the spatial distribution of urban population used to be regarded as non-fractal pattern. However, Clark’s model differs from the exponential function in mathematics because that urban population is distributed on the fractal support of landform and land-use form. By using mathematical transform and empirical evidence, we argue that there are self-affine scaling relations and local power laws behind the exponential distribution of urban density. The scale parameter of Clark’s model indicating the characteristic radius of cities is not a real constant, but depends on the urban field we defined. So the exponential model suggests local fractal structure with two kinds of fractal parameters. The parameters can be used to characterize urban space filling, spatial correlation, self-affine properties, and self-organized evolution. The case study of the city of Hangzhou, China, is employed to verify the theoretical inference. Based on the empirical analysis, a three-ring model of cities is presented and a city is conceptually divided into three layers from core to periphery. The scaling region and non-scaling region appear alternately in the city. This model may be helpful for future urban studies and city planning.

  11. The fourth dimension of life: fractal geometry and allometric scaling of organisms.

    Science.gov (United States)

    West, G B; Brown, J H; Enquist, B J

    1999-06-04

    Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by maximizing the scaling of exchange surface areas, and internal efficiency, by minimizing the scaling of transport distances and times. These design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.

  12. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    Science.gov (United States)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  13. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors

    Science.gov (United States)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun

    2017-04-01

    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was

  14. Soil erosion and sediment yield, a double barrel problem in South Africa's only large river network without a dam

    Science.gov (United States)

    Le Roux, Jay

    2016-04-01

    Soil erosion not only involves the loss of fertile topsoil but is also coupled with sedimentation of dams, a double barrel problem in semi-arid regions where water scarcity is frequent. Due to increasing water requirements in South Africa, the Department of Water and Sanitation is planning water resource development in the Mzimvubu River Catchment, which is the only large river network in the country without a dam. Two dams are planned including a large irrigation dam and a hydropower dam. However, previous soil erosion studies indicate that large parts of the catchment is severely eroded. Previous studies, nonetheless, used mapping and modelling techniques that represent only a selection of erosion processes and provide insufficient information about the sediment yield. This study maps and models the sediment yield comprehensively by means of two approaches over a five-year timeframe between 2007 and 2012. Sediment yield contribution from sheet-rill erosion was modelled with ArcSWAT (a graphical user interface for SWAT in a GIS), whereas gully erosion contributions were estimated using time-series mapping with SPOT 5 imagery followed by gully-derived sediment yield modelling in a GIS. Integration of the sheet-rill and gully results produced a total sediment yield map, with an average of 5 300 t km-2 y-1. Importantly, the annual average sediment yield of the areas where the irrigation dam and hydropower dam will be built is around 20 000 t km-2 y-1. Without catchment rehabilitation, the life expectancy of the irrigation dam and hydropower dam could be 50 and 40 years respectively.

  15. Fractal characteristics investigation on electromagnetic scattering from 2-D Weierstrass fractal dielectric rough surface

    International Nuclear Information System (INIS)

    Ren Xincheng; Guo Lixin

    2008-01-01

    A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scattering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing. (classical areas of phenomenology)

  16. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    Science.gov (United States)

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  17. Pore Structure and Fractal Characteristics of Niutitang Shale from China

    Directory of Open Access Journals (Sweden)

    Zhaodong Xi

    2018-04-01

    Full Text Available A suite of shale samples from the Lower Cambrian Niutitang Formation in northwestern Hunan Province, China, were investigated to better understand the pore structure and fractal characteristics of marine shale. Organic geochemistry, mineralogy by X-ray diffraction, porosity, permeability, mercury intrusion and nitrogen adsorption and methane adsorption experiments were conducted for each sample. Fractal dimension D was obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH model. The relationships between total organic carbon (TOC content, mineral compositions, pore structure parameters and fractal dimension are discussed, along with the contributions of fractal dimension to shale gas reservoir evaluation. Analysis of the results showed that Niutitang shale samples featured high TOC content (2.51% on average, high thermal maturity (3.0% on average, low permeability and complex pore structures, which are highly fractal. TOC content and mineral compositions are two major factors affecting pore structure but they have different impacts on the fractal dimension. Shale samples with higher TOC content had a larger specific surface area (SSA, pore volume (PV and fractal dimension, which enhanced the heterogeneity of the pore structure. Quartz content had a relatively weak influence on shale pore structure, whereas SSA, PV and fractal dimension decreased with increasing clay mineral content. Shale with a higher clay content weakened pore structure heterogeneity. The permeability and Langmuir volume of methane adsorption were affected by fractal dimension. Shale samples with higher fractal dimension had higher adsorption capacity but lower permeability, which is favorable for shale gas adsorption but adverse to shale gas seepage and diffusion.

  18. Effect of slope failures on river-network pattern: A river piracy case study from the flysch belt of the Outer Western Carpathians

    Science.gov (United States)

    Baroň, Ivo; Bíl, Michal; Bábek, Ondřej; Smolková, Veronika; Pánek, Tomáš; Macur, Lukáš

    2014-06-01

    Landslides are important geomorphic agents in various mountainous settings. We document here a case of river piracy from the upper part of the Malá Brodská Valley in the Vsetínské Mts., Czech Republic (Rača Unit of the flysch Magura Group of Nappes, flysch belt of the Outer Western Carpathians) controlled by mass movement processes. Based on the field geological, geomorphological and geophysical data, we found out that the landslide accumulations pushed the more active river of out of two subparallel river channels with different erosion activity westwards and forced intensive lateral erosion towards the recently abandoned valley. Apart from the landslide processes, the presence of the N-striking fault, accentuated by higher flow rates of the eastern channel as a result of its larger catchment area, were the most critical factors of the river piracy. As a consequence of the river piracy, intensive retrograde erosion in the elbow of capture and also within the upper portion of the western catchment occurred. Deposits of two landslide dams document recent minimum erosion rates to be 18.8 mm.ky- 1 in the western (captured) catchment, and 3.6 mm.ky- 1 in the eastern catchment respectively. The maximum age of the river piracy is estimated to be of the late Glacial and/or the early Holocene.

  19. Yosemite Hydroclimate Network: Distributed stream and atmospheric data for the Tuolumne River watershed and surroundings

    Science.gov (United States)

    Lundquist, Jessica D.; Roche, James W.; Forrester, Harrison; Moore, Courtney; Keenan, Eric; Perry, Gwyneth; Cristea, Nicoleta; Henn, Brian; Lapo, Karl; McGurk, Bruce; Cayan, Daniel R.; Dettinger, Michael D.

    2016-01-01

    Regions of complex topography and remote wilderness terrain have spatially varying patterns of temperature and streamflow, but due to inherent difficulties of access, are often very poorly sampled. Here we present a data set of distributed stream stage, streamflow, stream temperature, barometric pressure, and air temperature from the Tuolumne River Watershed in Yosemite National Park, Sierra Nevada, California, USA, for water years 2002–2015, as well as a quality-controlled hourly meteorological forcing time series for use in hydrologic modeling. We also provide snow data and daily inflow to the Hetch Hetchy Reservoir for 1970–2015. This paper describes data collected using low-visibility and low-impact installations for wilderness locations and can be used alone or as a critical supplement to ancillary data sets collected by cooperating agencies, referenced herein. This data set provides a unique opportunity to understand spatial patterns and scaling of hydroclimatic processes in complex terrain and can be used to evaluate downscaling techniques or distributed modeling. The paper also provides an example methodology and lessons learned in conducting hydroclimatic monitoring in remote wilderness.

  20. A Research Plan for Assessing the Power and Energy Capability of a River Network Under an Integrated Wind/Hydro-Electric Dispatchable Regime

    Science.gov (United States)

    Banka, John Czeslaw

    The world strives for more clean and renewable energy, but the amount of dispatchable energy in river networks is not accurately known and difficult to assess. When wind is integrated with water, the dispatchable yield can be greatly increased, but the uncertainty of the wind further degrades predictability. This thesis demonstrates how simulating the flows is a river network integrated with wind over a long time domain yields a solution. Time-shifting the freshet and pumped storage will ameliorate the seasonal summer drought; the risk of ice jams and uncontrolled flooding is reduced. An artificial market eliminates the issue of surplus energy from wind at night. Furthermore, this thesis shows how the necessary infrastructure can be built to accomplish the goals of the intended research. While specific to Northern Ontario and sensitive to the lives of the Native peoples living there, it indicates where the research might be applicable elsewhere in the world.

  1. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    Science.gov (United States)

    Alexander, Richard B.; Böhlke, John Karl; Boyer, Elizabeth W.; David, Mark B.; Harvey, Judson W.; Mulholland, Patrick J.; Seitzinger, Sybil P.; Tobias, Craig R.; Tonitto, Christina; Wollheim, Wilfred M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  2. The role of a dambo in the hydrology of a catchment and the river network downstream

    Directory of Open Access Journals (Sweden)

    C. J. von der Heyden

    2003-01-01

    Full Text Available Dambos are shallow, seasonally inundated wetlands and are a widespread landform in Central and Southern Africa. Owing to their importance in local agriculture and as a water resource, the hydrology of dambos is of considerable interest: varied, and sometimes contradictory, hydrological characteristics have been described in the literature. The issues in contention focus on the role of the dambo in (i the catchment evapotranspiration (ET budget, (ii flood flow retardation and attenuation, and (iii sustaining dry season flow to the river down-stream. In addition, both rainfall and groundwater have been identified as the dominant source of water to the dambo and various hydrogeological models have been proposed to describe the hydrological functions of the landform. In this paper, hydrological and geochemical data collected over a full hydrological year are used to investigate and describe the hydrological functions of a dambo in north-western Zambia. The Penman estimate of wetland ET was less than the ET from the miombo-wooded interfluve and the wetland has been shown to have little effect on flood flow retardation or attenuation. Discharge of water stored within the wetland contributed little to the dry season flow from the dambo, which was sustained primarily by groundwater discharge. Flow in a perched aquifer within the catchment soils contributed a large portion of baseflow during the rains and early dry season. This source ceased by the mid dry season, implying that the sustained middle to late dry season streamflow from the wetland is through discharge of a deeper aquifer within the underlying regolith or bedrock. This hypothesis is tested through an analysis of groundwater and wetland geochemistry. Various physical parameters, PHREEQC model results and end member mixing analysis (EMMA suggest strongly that the deep Upper Roan dolomite aquifer is the source of sustained discharge from the wetland. Keywords: dambo, hydrology, hydrogeology

  3. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    Science.gov (United States)

    Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.

  4. Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems

    Science.gov (United States)

    Hunter, Jason M.; Maier, Holger R.; Gibbs, Matthew S.; Foale, Eloise R.; Grosvenor, Naomi A.; Harders, Nathan P.; Kikuchi-Miller, Tahali C.

    2018-05-01

    Salinity modelling in river systems is complicated by a number of processes, including in-stream salt transport and various mechanisms of saline accession that vary dynamically as a function of water level and flow, often at different temporal scales. Traditionally, salinity models in rivers have either been process- or data-driven. The primary problem with process-based models is that in many instances, not all of the underlying processes are fully understood or able to be represented mathematically. There are also often insufficient historical data to support model development. The major limitation of data-driven models, such as artificial neural networks (ANNs) in comparison, is that they provide limited system understanding and are generally not able to be used to inform management decisions targeting specific processes, as different processes are generally modelled implicitly. In order to overcome these limitations, a generic framework for developing hybrid process and data-driven models of salinity in river systems is introduced and applied in this paper. As part of the approach, the most suitable sub-models are developed for each sub-process affecting salinity at the location of interest based on consideration of model purpose, the degree of process understanding and data availability, which are then combined to form the hybrid model. The approach is applied to a 46 km reach of the Murray River in South Australia, which is affected by high levels of salinity. In this reach, the major processes affecting salinity include in-stream salt transport, accession of saline groundwater along the length of the reach and the flushing of three waterbodies in the floodplain during overbank flows of various magnitudes. Based on trade-offs between the degree of process understanding and data availability, a process-driven model is developed for in-stream salt transport, an ANN model is used to model saline groundwater accession and three linear regression models are used

  5. Fractal dimension of the fractured surface of materials

    International Nuclear Information System (INIS)

    Lung, C.W.; Zhang, S.Z.

    1989-05-01

    Fractal dimension of the fractured surface of materials is discussed to show that the origin of the negative correlation between D F and toughness lies in the method of fractal dimension measurement with perimeter-area relation and also in the physical mechanism of crack propagation. (author). 8 refs, 4 figs, 1 tab

  6. Three-dimensional fractal geometry for gas permeation in microchannels

    NARCIS (Netherlands)

    Malankowska, Magdalena; Schlautmann, Stefan; Berenschot, Erwin J.W.; Tiggelaar, Roald M.; Pina, Maria Pilar; Mallada, Reyes; Tas, Niels R.; Gardeniers, Han

    2018-01-01

    The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The

  7. The fractal nature of vacuum arc cathode spots

    International Nuclear Information System (INIS)

    Anders, Andre

    2005-01-01

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion

  8. Fractal sets generated by chemical reactions discrete chaotic dynamics

    International Nuclear Information System (INIS)

    Gontar, V.; Grechko, O.

    2007-01-01

    Fractal sets composed by the parameters values of difference equations derived from chemical reactions discrete chaotic dynamics (DCD) and corresponding to the sequences of symmetrical patterns were obtained in this work. Examples of fractal sets with the corresponding symmetrical patterns have been presented

  9. Fractal Dimension analysis for seismicity spatial and temporal ...

    Indian Academy of Sciences (India)

    23

    The research can further promote the application of fractal theory in the study ... spatial-temporal propagation characteristics of seismic activities, fractal theory is not ... provide a theoretical basis for the prevention and control of earthquakes. 2. ... random self-similar structure of the earthquake in the time series and the spatial.

  10. Experiencia en el aula de secundaria con fractales

    OpenAIRE

    Gallardo, Sandra; Martínez-Santaolalla, Manuel José; Molina, Marta; Peñas, María; Cañadas, María C.; Crisóstomo, Edson

    2006-01-01

    Presentamos una experiencia docente en un aula de 2º ESO en la que trabajamos los fractales mediante el uso de material de carácter manipulativo. La metodología seguida se basa en la construcción de casos particulares con el fin de llegar al concepto de fractal.

  11. Growth of fractal structures in flames with silicon admixture

    NARCIS (Netherlands)

    Smirnov, B. M.; Dutka, M.; van Essen, V. M.; Gersen, S.; Visser, P.; Vainchtein, D.; De Hosson, J. Th. M.; Levinsky, H. B.; Mokhov, A. V.

    Transmission electron microscopy (TEM) measurements and theoretical analysis are combined to construct the physical picture of formation of SiO2 fractal aggregates in a methane/hexamethyldisiloxane/air atmospheric pressure flame. The formation of SiO2 fractal aggregates is described as a multistage

  12. Evaluation of surface quality by Fractal Dimension and Volume ...

    African Journals Online (AJOL)

    Experimental and simulation results have enabled to show than the large diameter ball under low loads and medium feed speeds, favors the elimination of peaks and reduction of fractal dimension whence quality improvement of surface. Keywords: burnishing, volume parameters, fractal dimension, experimental designs ...

  13. Bouguer correction density determination from fractal analysis using ...

    African Journals Online (AJOL)

    In this work, Bouguer density is determined using the fractal approach. This technique was applied to the gravity data of the Kwello area of the Basement Complex, north-western Nigeria. The density obtained using the fractal approach is 2500 kgm which is lower than the conventional value of 2670 kgm used for average ...

  14. Fractal analysis of rainfall occurrence observed in the synoptic ...

    African Journals Online (AJOL)

    Fractal analysis is important for characterizing and modeling rainfall's space-time variations in hydrology. The purpose of this study consists on determining, in a mono-fractal framework, the scale invariance of rainfall series in Benin synopticstations located in two main geographical area: Cotonou, Bohicon , Savè in a sub ...

  15. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  16. Usefulness of fractal analysis for the diagnosis of periodontitis

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sang Yun; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2001-03-15

    To evaluate the usefulness of fractal analysis for diagnosis of periodontitis. Each 30 cases of periapical films of male mandibular molar were selected in normal group and patient group which had complete furcation involvement. They were digitized at 300 dpi, 256 gray levels and saved with gif format. Rectangular ROIs (10 X 20 pixel) were selected at furcation, interdental crest, and interdental middle 1/3 area. Fractal dimensions were calculated three times at each area by mass radius method and were determined using a mean of three measurements. We computed fractal dimensions at furcation and interdental crest area of normal group with those of patient group. And then we compared ratio of fractal dimensions at furcation area, interdental crest area to interdental middle 1/3 area. Fractal dimension at interdental crest area of normal group was 1.979{+-}0.018 (p<0.05). The radio of fractal dimension at furcation area to interdental middle 1/3 of normal group was 1.006{+-}0.018 and that of patient group 0.9940.018 (p<0.05). The radio of fractal dimension at interdental crest and furcation area to interdental middle 1/3 area showed a statistically significant difference between normal and patient group. In conclusion, it is thought that fractal analysis might be useful for the diagnosis of periodontitis.

  17. Separation in Data Mining Based on Fractal Nature of Data

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel; Jiřina jr., M.

    2013-01-01

    Roč. 3, č. 1 (2013), s. 44-60 ISSN 2225-658X Institutional support: RVO:67985807 Keywords : nearest neighbor * fractal set * multifractal * IINC method * correlation dimension Subject RIV: JC - Computer Hardware ; Software http://sdiwc.net/digital-library/separation-in-data-mining-based-on-fractal-nature-of-data.html

  18. Fractal Dimension Of CT Images Of Normal Parotid Glands

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Heo, Min Suk; You, Dong Soo

    1999-01-01

    This study was to investigate the age and sex differences of the fractal dimension of the normal parotid glands in the digitized CT images. The six groups, which were composed of 42 men and women from 20's, 40's and 60's and over were picked. Each group contained seven people of the same sex. The normal parotid CT images were digitized, and their fractal dimensions were calculated using Scion Image PC program. The mean of fractal dimensions in males was 1.7292 (+/-0.0588) and 1.6329 (+/-0.0425) in females. The mean of fractal dimensions in young males was 1.7617, 1.7328 in middle males, and 1.6933 in old males. The mean of fractal dimensions in young females was 1.6318, 1.6365 in middle females, and 1.6303 in old females. There was no statistical difference in fractal dimension between left and right parotid gland of the same subject (p>0.05). Fractal dimensions in male were decreased in older group (p 0.05). The fractal dimension of parotid glands in the digitized CT images will be useful to evaluate the age and sex differences.

  19. Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems

    NARCIS (Netherlands)

    Buffle, J.; Leeuwen, van H.P.

    2008-01-01

    This book aims to provide the scientific community with a novel and valuable approach based on fractal geometry concepts on the important properties and processes of diverse environmental systems. The interpretation of complex environmental systems using modern fractal approaches is compared and

  20. Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA.

    Science.gov (United States)

    Heddam, Salim

    2016-09-01

    This paper proposes multilayer perceptron neural network (MLPNN) to predict phycocyanin (PC) pigment using water quality variables as predictor. In the proposed model, four water quality variables that are water temperature, dissolved oxygen, pH, and specific conductance were selected as the inputs for the MLPNN model, and the PC as the output. To demonstrate the capability and the usefulness of the MLPNN model, a total of 15,849 data measured at 15-min (15 min) intervals of time are used for the development of the model. The data are collected at the lower Charles River buoy, and available from the US Environmental Protection Agency (USEPA). For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The performances of the models are evaluated using a set of widely used statistical indices. The performance of the MLPNN and MLR models is compared with the measured data. The obtained results show that (i) the all proposed MLPNN models are more accurate than the MLR models and (ii) the results obtained are very promising and encouraging for the development of phycocyanin-predictive models.

  1. The current threat level of fish in river network of individual sea-drainage areas in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Lusk Stanislav

    2015-12-01

    Full Text Available The assessment of changes in the population spread of individual ichthyofauna species (lampreys and fishes as well as the identification of unfavourable impacts is the necessary prerequisite for the correct selection of corrective measures. The river network in the Czech Republic belongs to the three sea-drainage areas (North Sea, Baltic Sea, and Black Sea. The species composition of the original ichthyofauna and the extent of the threat to some species differs in the individual sea-drainage areas. The original ichthyofauna in the Czech Republic consists of 4 lamprey species and 55 fish species. Out of this, only one lamprey species and 31 fish species originate in all three sea-drainage areas. There are 37 fish species considered as the original ones in the North Sea drainage area, there of 4 species are EX, 1 species EW, and 11 species (29.7% are threatened. In the Baltic Sea drainage area, there are 4 species EX, 1 species EW, and 8 species (22.8% threatened out of the total 35 assessed species. Out of 49 species in the Black Sea drainage area, there are 4 species EX and 23 species (46.9 % threatened.

  2. The Alaska Water Isotope Network (AKWIN): Precipitation, lake, river and stream dynamics

    Science.gov (United States)

    Rogers, M.; Welker, J. M.; Toohey, R.

    2011-12-01

    The hydrologic cycle is central to the structure and function of northern landscapes. The movement of water creates interactions between terrestrial, aquatic, marine and atmospheric processes. Understanding the processes and the spatial patterns that govern the isotopic (δ18O & δD) characteristics of the hydrologic cycle is especially important today as: a) modern climate/weather-isotope relations allow for more accurate interpretation of climate proxies and the calibration of atmospheric models, b) water isotopes facilitate understanding the role of storm tracks in regulating precipitation isotopic variability, c) water isotopes allow for estimates of glacial melt water inputs into aquatic systems, d) water isotopes allow for quantification of surface and groundwater interactions, e) water isotopes allow for quantification of permafrost meltwater use by plant communities, f) water isotopes aid in migratory bird forensics, g) water isotopes are critical to estimating field metabolic rates, h) water isotopes allow for crop and diet forensics and i) water isotopes can provide insight into evaporation and transpiration processes. As part of a new NSF MRI project at the Environment and Natural Resources Institute (ENRI) at the University of Alaska Anchorage and as an extension of the US Network for Isotopes in Precipitation (USNIP); we are forming AKWIN. The network will utilize long-term weekly sampling at Denali National Park and Caribou Poker Creek Watershed (USNIP sites-1989 to present), regular sampling across Alaska involving land management agencies (USGS, NPS, USFWS, EPA), educators, volunteers and citizen scientists, UA extended campuses, individual research projects, opportunistic sampling and published data to construct isoscapes and time series databases and information packages. We will be using a suite of spatial and temporal analysis methods to characterize water isotopes across Alaska and will provide web portals for data products. Our network is

  3. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou City, China

    Directory of Open Access Journals (Sweden)

    J. J. Lian

    2013-02-01

    Full Text Available Coastal cities are particularly vulnerable to flood under multivariable conditions, such as heavy precipitation, high sea levels, and storms. The combined effect of multiple sources and the joint probability of extremes should be considered to assess and manage flood risk better. This paper aims to study the combined effect of rainfall and the tidal level of the receiving water body on flood probability and severity in Fuzhou City, which has a complex river network. Flood severity under a range of precipitation intensities, with return periods (RPs of 5 yr to 100 yr, and tidal levels was assessed through a hydrodynamic model verified by data observed during Typhoon Longwang in 2005. According to the percentages of the river network where flooding occurred, the threshold conditions for flood severity were estimated in two scenarios: with and without working pumps. In Fuzhou City, working pumps efficiently reduce flood risk from precipitation within a 20-yr RP. However, the pumps may not work efficiently when rainfall exceeds a 100-yr RP because of the limited conveyance capacity of the river network. Joint risk probability was estimated through the optimal copula. The joint probability of rainfall and tidal level both exceeding their threshold values is very low, and the greatest threat in Fuzhou comes from heavy rainfall. However, the tidal level poses an extra risk of flood. Given that this extra risk is ignored in the design of flood defense in Fuzhou, flood frequency and severity may be higher than understood during design.

  4. Large-Scale, Multi-Temporal Remote Sensing of Palaeo-River Networks: A Case Study from Northwest India and its Implications for the Indus Civilisation

    Directory of Open Access Journals (Sweden)

    Hector A. Orengo

    2017-07-01

    Full Text Available Remote sensing has considerable potential to contribute to the identification and reconstruction of lost hydrological systems and networks. Remote sensing-based reconstructions of palaeo-river networks have commonly employed single or limited time-span imagery, which limits their capacity to identify features in complex and varied landscape contexts. This paper presents a seasonal multi-temporal approach to the detection of palaeo-rivers over large areas based on long-term vegetation dynamics and spectral decomposition techniques. Twenty-eight years of Landsat 5 data, a total of 1711 multi-spectral images, have been bulk processed using Google Earth Engine© Code Editor and cloud computing infrastructure. The use of multi-temporal data has allowed us to overcome seasonal cultivation patterns and long-term visibility issues related to recent crop selection, extensive irrigation and land-use patterns. The application of this approach on the Sutlej-Yamuna interfluve (northwest India, a core area for the Bronze Age Indus Civilisation, has enabled the reconstruction of an unsuspectedly complex palaeo-river network comprising more than 8000 km of palaeo-channels. It has also enabled the definition of the morphology of these relict courses, which provides insights into the environmental conditions in which they operated. These new data will contribute to a better understanding of the settlement distribution and environmental settings in which this, often considered riverine, civilisation operated.

  5. Spatial variation and sources of polycyclic aromatic hydrocarbons influenced by intensive land use in an urbanized river network of East China.

    Science.gov (United States)

    Bi, Chunjuan; Wang, Xueping; Jia, Jinpu; Chen, Zhenlou

    2018-06-15

    The concentrations and distribution of polycyclic aromatic hydrocarbons (PAHs) in urbanized river networks are strongly influenced by intensive land use, industrial activities and population density. The spatial variations and their influencing factors of 16 priority PAHs were investigated in surface water, suspended particulate matter (SPM) and sediments among areas under different intensive land uses (industrial areas, agricultural areas, inner city, suburban towns and island areas) in the Shanghai river network, East China. Source apportionment was carried out using isomer ratios of PAHs and Positive Matrix Factorization (PMF). Total concentrations of 16 PAHs ranged from 105.2 to 400.5 ng/L, 108.1 to 1058.8 ng/L and 104.4 to 19,480.0 ng/g in water, SPM and sediments, respectively. The concentrations of PAHs in SPM and sediments varied significantly among areas (p natural gas combustion in water and SPM, and vehicular emissions in sediments. Vehicular emissions were the strongest contributors in SPM and sediments of the inner city, indicating the strong influence of vehicular transportation to PAHs pollution in the urbanized river network. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fractal ventilation enhances respiratory sinus arrhythmia

    Directory of Open Access Journals (Sweden)

    Girling Linda G

    2005-05-01

    Full Text Available Abstract Background Programming a mechanical ventilator with a biologically variable or fractal breathing pattern (an example of 1/f noise improves gas exchange and respiratory mechanics. Here we show that fractal ventilation increases respiratory sinus arrhythmia (RSA – a mechanism known to improve ventilation/perfusion matching. Methods Pigs were anaesthetised with propofol/ketamine, paralysed with doxacurium, and ventilated in either control mode (CV or in fractal mode (FV at baseline and then following infusion of oleic acid to result in lung injury. Results Mean RSA and mean positive RSA were nearly double with FV, both at baseline and following oleic acid. At baseline, mean RSA = 18.6 msec with CV and 36.8 msec with FV (n = 10; p = 0.043; post oleic acid, mean RSA = 11.1 msec with CV and 21.8 msec with FV (n = 9, p = 0.028; at baseline, mean positive RSA = 20.8 msec with CV and 38.1 msec with FV (p = 0.047; post oleic acid, mean positive RSA = 13.2 msec with CV and 24.4 msec with FV (p = 0.026. Heart rate variability was also greater with FV. At baseline the coefficient of variation for heart rate was 2.2% during CV and 4.0% during FV. Following oleic acid the variation was 2.1 vs. 5.6% respectively. Conclusion These findings suggest FV enhances physiological entrainment between respiratory, brain stem and cardiac nonlinear oscillators, further supporting the concept that RSA itself reflects cardiorespiratory interaction. In addition, these results provide another mechanism whereby FV may be superior to conventional CV.

  7. A fractal nature for polymerized laminin.

    Directory of Open Access Journals (Sweden)

    Camila Hochman-Mendez

    Full Text Available Polylaminin (polyLM is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM, scanning electron microscopy (SEM and atomic force microscopy (AFM to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  8. A fractal nature for polymerized laminin.

    Science.gov (United States)

    Hochman-Mendez, Camila; Cantini, Marco; Moratal, David; Salmeron-Sanchez, Manuel; Coelho-Sampaio, Tatiana

    2014-01-01

    Polylaminin (polyLM) is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM) was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  9. Determining Effective Thermal Conductivity of Fabrics by Using Fractal Method

    Science.gov (United States)

    Zhu, Fanglong; Li, Kejing

    2010-03-01

    In this article, a fractal effective thermal conductivity model for woven fabrics with multiple layers is developed. Structural models of yarn and plain woven fabric are derived based on the fractal characteristics of macro-pores (gap or channel) between the yarns and micro-pores inside the yarns. The fractal effective thermal conductivity model can be expressed as a function of the pore structure (fractal dimension) and architectural parameters of the woven fabric. Good agreement is found between the fractal model and the thermal conductivity measurements in the general porosity ranges. It is expected that the model will be helpful in the evaluation of thermal comfort for woven fabric in the whole range of porosity.

  10. Fractal analysis for heat extraction in geothermal system

    Directory of Open Access Journals (Sweden)

    Shang Xiaoji

    2017-01-01

    Full Text Available Heat conduction and convection play a key role in geothermal development. These two processes are coupled and influenced by fluid seepage in hot porous rock. A number of integer dimension thermal fluid models have been proposed to describe this coupling mechanism. However, fluid flow, heat conduction and convection in porous rock are usually non-linear, tortuous and fractal, thus the integer dimension thermal fluid flow models can not well describe these phenomena. In this study, a fractal thermal fluid coupling model is proposed to describe the heat conduction and flow behaviors in fractal hot porous rock in terms of local fractional time and space derivatives. This coupling equation is analytically solved through the fractal travelling wave transformation method. Analytical solutions of Darcy’s velocity, fluid temperature with fractal time and space are obtained. The solutions show that the introduction of fractional parameters is essential to describe the mechanism of heat conduction and convection.

  11. International Conference and Workshop on Fractals and Wavelets

    CERN Document Server

    Barnsley, Michael; Devaney, Robert; Falconer, Kenneth; Kannan, V; PB, Vinod

    2014-01-01

    Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.

  12. Vibration modes of 3n-gaskets and other fractals

    Energy Technology Data Exchange (ETDEWEB)

    Bajorin, N; Chen, T; Dagan, A; Emmons, C; Hussein, M; Khalil, M; Mody, P; Steinhurst, B; Teplyaev, A [Department of Mathematics, University of Connecticut, Storrs CT 06269 (United States)

    2008-01-11

    We rigorously study eigenvalues and eigenfunctions (vibration modes) on the class of self-similar symmetric finitely ramified fractals, which include the Sierpinski gasket and other 3n-gaskets. We consider the classical Laplacian on fractals which generalizes the usual one-dimensional second derivative, is the generator of the self-similar diffusion process, and has possible applications as the quantum Hamiltonian. We develop a theoretical matrix analysis, including analysis of singularities, which allows us to compute eigenvalues, eigenfunctions and their multiplicities exactly. We support our theoretical analysis by symbolic and numerical computations. Our analysis, in particular, allows the computation of the spectral zeta function on fractals and the limiting distribution of eigenvalues (i.e., integrated density of states). We consider such examples as the level-3 Sierpinski gasket, a fractal 3-tree, and the diamond fractal.

  13. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  14. Determination of fish gender using fractal analysis of ultrasound images

    DEFF Research Database (Denmark)

    McEvoy, Fintan J.; Tomkiewicz, Jonna; Støttrup, Josianne

    2009-01-01

    The gender of cod Gadus morhua can be determined by considering the complexity in their gonadal ultrasonographic appearance. The fractal dimension (DB) can be used to describe this feature in images. B-mode gonadal ultrasound images in 32 cod, where gender was known, were collected. Fractal...... by subjective analysis alone. The mean (and standard deviation) of the fractal dimension DB for male fish was 1.554 (0.073) while for female fish it was 1.468 (0.061); the difference was statistically significant (P=0.001). The area under the ROC curve was 0.84 indicating the value of fractal analysis in gender...... result. Fractal analysis is useful for gender determination in cod. This or a similar form of analysis may have wide application in veterinary imaging as a tool for quantification of complexity in images...

  15. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  16. A Tutorial Review on Fractal Spacetime and Fractional Calculus

    Science.gov (United States)

    He, Ji-Huan

    2014-11-01

    This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.

  17. Using Peano Curves to Construct Laplacians on Fractals

    Science.gov (United States)

    Molitor, Denali; Ott, Nadia; Strichartz, Robert

    2015-12-01

    We describe a new method to construct Laplacians on fractals using a Peano curve from the circle onto the fractal, extending an idea that has been used in the case of certain Julia sets. The Peano curve allows us to visualize eigenfunctions of the Laplacian by graphing the pullback to the circle. We study in detail three fractals: the pentagasket, the octagasket and the magic carpet. We also use the method for two nonfractal self-similar sets, the torus and the equilateral triangle, obtaining appealing new visualizations of eigenfunctions on the triangle. In contrast to the many familiar pictures of approximations to standard Peano curves, that do no show self-intersections, our descriptions of approximations to the Peano curves have self-intersections that play a vital role in constructing graph approximations to the fractal with explicit graph Laplacians that give the fractal Laplacian in the limit.

  18. Insulator Contamination Forecasting Based on Fractal Analysis of Leakage Current

    Directory of Open Access Journals (Sweden)

    Bing Luo

    2012-07-01

    Full Text Available In this paper, an artificial pollution test is carried out to study the leakage current of porcelain insulators. Fractal theory is adopted to extract the characteristics hidden in leakage current waveforms. Fractal dimensions of the leakage current for the security, forecast and danger zones are analyzed under four types of degrees of contamination. The mean value and the standard deviation of the fractal dimension in the forecast zone are calculated to characterize the differences. The analysis reveals large differences in the fractal dimension of leakage current under different contamination discharge stages and degrees. The experimental and calculation results suggest that the fractal dimension of a leakage current waveform can be used as a new indicator of the discharge process and contamination degree of insulators. The results provide new methods and valid indicators for forecasting contamination flashovers.

  19. Fractal solutions of recirculation tubular chemical reactors

    International Nuclear Information System (INIS)

    Berezowski, Marek

    2003-01-01

    Three kinds of fractal solutions of model of recirculation non-adiabatic tubular chemical reactors are presented. The first kind concerns the structure of Feigenbaum's diagram on the limit of chaos. The second kind and the third one concern the effect of initial conditions on the dynamic solutions of models. In the course of computations two types of recirculation were considered, viz. the recirculation of mass (return of a part of products' stream) and recirculation of heat (heat exchange in the external heat exchanger)

  20. Fractal characteristics of an asphaltene deposited heterogeneous surface

    International Nuclear Information System (INIS)

    Amin, J. Sayyad; Ayatollahi, Sh.; Alamdari, A.

    2009-01-01

    Several methods have been employed in recent years to investigate homogeneous surface topography based on image analysis, such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Fractal analysis of the images provides fractal dimension of the surface which is used as one of the most common surface indices. Surface topography has generally been considered to be mono-fractal. On the other hand, precipitation of organic materials on a rough surface and its irregular growth result in morphology alteration and converts a homogeneous surface to a heterogeneous one. In this case a mono-fractal description of the surface does not completely describe the nature of the altered surface. This work aims to investigate the topography alteration of a glass surface as a result of asphaltene precipitation and its growth at various pressures using a bi-fractal approach. The experimental results of the deposited surfaces were clearly indicating two regions of micro- and macro-asperities namely, surface types I and II, respectively. The fractal plots were indicative of bi-fractal behavior and for each surface type one fractal dimension was calculated. The topography information of the surfaces was obtained by two image analyses, AFM and SEM imaging techniques. Results of the bi-fractal analysis demonstrated that topography alteration in surface type II (macro-asperities) is more evident than that in surface type I (micro-asperities). Compared to surface type II, a better correlation was observed between the fractal dimensions inferred from the AFM images (D A ) and those of the SEM images (D S ) in surface type I.