WorldWideScience

Sample records for river habitat inventory

  1. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  2. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  3. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  4. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  5. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    development of a 105-foot well for off-stream livestock watering at approximately River Mile 12.0 Wildhorse Creek and construction of an engineered stream ford at approximately River Mile 3.0 Mission Creek. A total of $277,848 in financial cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Environmental Protection Agency, U.S. Department of Agriculture, National Oceanic and Atmospheric Administration, U.S. Workforce Investment Act, Oregon Watershed Enhancement Board, Umatilla County and Pheasants Forever for planning efforts and habitat enhancements. Monitoring continued to quantify baseline conditions and the effects of habitat enhancements in the upper basin. Daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 96 existing and three newly established photo points to document habitat recovery and pre-project conditions. Transects were measured at three stream channel cross sections to assist with engineering and design and to obtain baseline data regarding channel morphology. Biological inventories were conducted at River Mile 3.0 Mission Creek to determine pre-project fish utilization above and below the passage barrier. Post-project inventories were also conducted at River Mile 85.0 of the Umatilla River at a project site completed in 1999. Umatilla Subbasin Watershed Assessment efforts were continued under a subcontract with Eco-Pacific. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs. Water Works Consulting, Duck Creek Associates and Ed Salminen Consulting were subcontracted for watershed assessment and restoration planning in the Meacham Creek Subwatershed. A document detailing current

  6. Breeding bird populations and habitat associations within the Savannah River Site (SRS).

    Energy Technology Data Exchange (ETDEWEB)

    Gauthreaux, Sidney, A.; Steven J. Wagner.

    2005-06-29

    Gauthreaux, Sidney, A., and Steven J. Wagner. 2005. Breeding bird populations and habitat associations within the Savannah River Site (SRS). Final Report. USDA Forest Service, Savannah River, Aiken, SC. 48 pp. Abstract: During the 1970's and 1980's a dramatic decline occurred in the populations of Neotropical migratory birds, species that breed in North America and winter south of the border in Central and South America and in the Caribbean. In 1991 an international initiative was mounted by U. S. governmental land management agencies, nongovernmental conservation agencies, and the academic and lay ornithological communities to understand the decline of Neotropical migratory birds in the Americas. In cooperation with the USDA Forest Service - Savannah River (FS - SR) we began 1992 a project directed to monitoring population densities of breeding birds using the Breeding Bird Census (BBC) methodology in selected habitats within the Savannah River Site SRS. In addition we related point count data on the occurrence of breeding Neotropical migrants and other bird species to the habitat data gathered by the Forest Inventory and Analysis (FIA) program of the USDA Forest Service and data on habitat treatments within forest stands.

  7. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  8. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  9. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  10. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  11. Habitat assessment of non-wadeable rivers in Michigan.

    Science.gov (United States)

    Wilhelm, Jennifer G O; Allan, J David; Wessell, Kelly J; Merritt, Richard W; Cummins, Kenneth W

    2005-10-01

    Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order >or=5, drainage area >or=1600 km2, mainstem lengths >or=100 km, and mean annual discharge >or=15 m3/s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km2. We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000-2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R2 = 0.62) and the catchment (adjusted R2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and

  12. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.

    2015-01-01

    This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

  13. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  14. Transuranic radionuclides in the Columbia River: sources, inventories, and geochemical behavior

    International Nuclear Information System (INIS)

    Beasley, T.M.

    1987-01-01

    The sources, inventories, and geochemical behavior of transuranic and other long-lived radionuclides in the lower Columbia River are summarized. Inventories have been estimated from the measured activities of the different radionuclides in 50 cores raised in 1977 and 1978, while annual export of transuranic radionuclides was determined from monthly water collections in the estuary. Continental shelf inventories of Pu and Am isotopes have been estimated using excess 210 Pb inventories and the mean 210 Pb//sup 239,240/Pu inventory ratio of 100 +/- 19 observed in representative cores raised from the shelf. Despite the substantial past addition of radioactivity to the river from operation of the plutonium production reactors at Hanford, the amounts of reactor-derived radionuclides in river sediments are small relative to fallout-derived nuclides. Erosional processes have mobilized both fallout-derived /sup 239,240/Pu and 137 Cs from the landscape to the river, but the quantities involved represent <1% of their fallout inventories within the river's drainage basin. 36 references, 6 figures, 2 tables

  15. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  16. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Natural Resource Agency — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  17. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  18. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1996-01-01

    . The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  19. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    Science.gov (United States)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  20. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    Science.gov (United States)

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  1. State-of-the-art techniques for inventory of Great Lakes aquatic habitats and resources

    Science.gov (United States)

    Edsall, Thomas A.; Brock, R.H.; Bukata, R.P.; Dawson, J.J.; Horvath, F.J.; Busch, W.-Dieter N.; Sly, Peter G.

    1992-01-01

    This section of the Classification and Inventory of Great Lakes Aquatic Habitat report was prepared as a series of individually authored contributions that describe, in various levels of detail, state-of-the-art techniques that can be used alone or in combination to inventory aquatic habitats and resources in the Laurentian Great Lakes system. No attempt was made to review and evaluate techniques that are used routinely in limnological and fisheries surveys and inventories because it was felt that users of this document would be familiar with them.

  2. Savannah River Plant's Accountability Inventory Management System (AIMS) (Nuclear materials inventory control)

    International Nuclear Information System (INIS)

    Croom, R.G.

    1976-06-01

    The Accountability Inventory Management System (AIMS) is a new computer inventory control system for nuclear materials at the Savannah River Plant, Aiken, South Carolina. The system has two major components, inventory files and system parameter files. AIMS, part of the overall safeguards program, maintains an up-to-date record of nuclear material by location, produces reports required by ERDA in addition to onplant reports, and is capable of a wide range of response to changing input/output requirements through use of user-prepared parameter cards, as opposed to basic system reprogramming

  3. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  4. River Cetaceans and Habitat Change: Generalist Resilience or Specialist Vulnerability?

    Directory of Open Access Journals (Sweden)

    Brian D. Smith

    2012-01-01

    Full Text Available River dolphins are among the world’s most threatened mammals, and indeed the baiji (Lipotes vexillifer, a species endemic to China's Yangtze River, is likely extinct. Exploitation for products such as meat, oil, and skins has been a lesser feature in the population histories of river dolphins compared to most large mammals. Habitat factors are therefore of particular interest and concern. In this paper we attempt to describe the population-level responses of river dolphins to habitat transformation. We find circumstantial but compelling evidence supporting the view that, at a local scale, river dolphins are opportunists (generalists capable of adapting to a wide range of habitat conditions while, at a river basin scale, they are more appropriately viewed as vulnerable specialists. The same evidence implies that the distributional responses of river dolphins to basinwide ecological change can be informative about their extinction risk, while their local behaviour patterns may provide important insights about critical ecological attributes. Empirical studies are needed on the ecology of river cetaceans, both to inform conservation efforts on behalf of these threatened animals and to help address broader concerns related to biodiversity conservation and the sustainability of human use in several of the world's largest river systems.

  5. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran)

    OpenAIRE

    Melahat Hoghoghi; Soheil Eagderi; Bahmen Shams-Esfandabad

    2016-01-01

    A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river s...

  6. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    Science.gov (United States)

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  7. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  8. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Science.gov (United States)

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River... Snake—Asotin 17060103 17060103 17060103 Upper Grande Ronde 17060104 Wallowa 17060105 Lower Grande Ronde...

  9. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  10. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  11. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  12. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  13. An annotated bibliography for lamprey habitat in the White Salmon River, Washington

    Science.gov (United States)

    Allen, M. Brady

    2012-01-01

    The October 2011 decommissioning of Condit Dam on the White Salmon River at river kilometer (rkm) 5.3 removed a significant fish passage barrier from the White Salmon River basin for the first time in nearly a century. This affords an opportunity to regain a potentially important drainage basin for Pacific lamprey (Entosphenus tridentatus) production. In anticipation of Pacific lamprey recolonization or reintroduction, aquatic resource managers, such as the Yakama Nation (YN), are planning to perform surveys in the White Salmon River and its tributaries. The likely survey objectives will be to investigate the presence of lamprey, habitat conditions, and habitat availability. In preparation for this work, a compilation and review of the relevant aquatic habitat and biological information on the White Salmon River was conducted. References specific to the White Salmon River were collected and an annotated bibliography was produced including reports containing:

  14. Habitat Evaluation Procedures (HEP) Report : Priest River, 2004-2005 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Priest River property, an acquisition completed by the Kalispel Tribe of Indians in 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Priest River Project provides a total of 105.41 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 26.95 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Grassland habitat provides 23.78 HUs for Canada goose and mallard. Scmb-shrub vegetation provides 54.68 HUs for mallard, yellow warbler, and white-tailed deer.

  15. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    Science.gov (United States)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  16. Hydro energetic inventory study from Chapecozinho river

    International Nuclear Information System (INIS)

    Pimenta, S.C.; Sureck, M.A.A.; Nascimento, P.R.; Kawasaki, M.; Silva Felipe, R. da.

    1990-01-01

    The Hydro energetic Inventory Study in Chapecozinho River Basin, Brazil is described, comparing the proposed results in 1979 with the actual review in 1989. An analysis for solution the socio-economic and environment problems is also presented. (author)

  17. Missouri River Emergent Sandbar Habitat Monitoring Plan - A Conceptual Framework for Adaptive Management

    Science.gov (United States)

    Sherfy, Mark H.; Stucker, Jennifer H.; Anteau, Michael J.

    2009-01-01

    Habitat conditions are one of the most important factors determining distribution and productivity of least terns (Sternula antillarum) and piping plovers (Charadrius melodus) in the upper Missouri River system (Ziewitz and others, 1992; Kruse and others, 2002). Habitat conditions are known to change within and among seasons in response to variation in river flows, weather conditions, and management actions targeted at providing for the needs of terns and plovers. Although these principles are generally agreed upon, there is little empirical information available on the quantity and quality of tern and plover habitats in this system, particularly with reference to the major life history events that must be supported (egg laying, incubation, and brood rearing). Habitat requirements for these events are composed of two major categories: nesting and foraging habitat. In the case of piping plovers, these two requirements must occur on the same area because plover chicks are constrained to foraging near nesting sites prior to fledging (Knetter and others, 2002; Haffner, 2005). In contrast, least terns chicks are fed by the adults, allowing food procurement for broods to occur outside the immediate nesting area; however, food resources must be close enough to nesting locations to minimize foraging time. The complexity and dynamics of the upper Missouri River system introduce considerable uncertainty into how best to manage tern and plover habitats, and how best to evaluate the effectiveness of this management. An extensive program of habitat monitoring will be needed to address this complexity and support the management of least terns and piping plovers under the Missouri River Recovery Program. These needs are being addressed, in part, through a program of habitat creation and management targeted at improving quality and quantity of habitats for terns and plovers. Given the momentum of these projects and their associated costs, it is imperative that the capacity be

  18. Habitat Evaluation Procedures (HEP) Report; Priest River Project, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Priest River property, an acquisition completed by the Kalispel Tribe of Indians in 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Priest River Project provides a total of 140.73 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 60.05 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Grassland meadow habitat provides 7.39 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 71.13 HUs for mallard, yellow warbler, and white-tailed deer. Open water habitat provides 2.16 HUs for Canada goose and mallard. The objective of using HEP at the Priest River Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  19. Assessing Impacts of Hydropower Regulation on Salmonid Habitat Connectivity to Guide River Restoration

    Science.gov (United States)

    Buddendorf, Bas; Geris, Josie; Malcolm, Iain; Wilkinson, Mark; Soulsby, Chris

    2016-04-01

    Anthropogenic activity in riverine ecosystems has led to a substantial divergence from the natural state of many rivers globally. Many of Scotland's rivers have been regulated for hydropower with increasing intensity since the 1890s. At the same time they sustain substantial populations of Atlantic Salmon (Salmo salar L.), which have a range of requirements in terms of flow and access to habitat, depending on the different life-stages. River barriers for hydropower regulation can change the spatial and temporal connectivity within river networks, the impacts of which on salmon habitat are not fully understood. Insight into such changes in connectivity, and the link with the distribution and accessibility of suitable habitat and areas of high productivity, are essential to aid restoration and/or conservation efforts. This is because they indicate where such efforts might have a higher chance of being successful in terms of providing suitable habitat and increasing river productivity. In this study we applied a graph theory approach to assess historic (natural) and contemporary (regulated) in-stream habitat connectivity of the River Lyon, an important UK salmon river that is moderately regulated for hydropower. Historic maps and GIS techniques were used to construct the two contrasting river networks (i.e., natural vs. regulated). Subsequently, connectivity metrics were used to assess the impacts of hydropower infrastructure on upstream and downstream migration possibilities for adults and juveniles, respectively. A national juvenile salmon production model was used to weight the importance of reaches for juvenile salmon production. Results indicate that the impact of barriers in the Lyon on the connectivity indices depends on the type of barrier and its location within the network, but is generally low for both adults and juveniles, and that compared to the historic river network the reduction in the amount of suitable habitat and juvenile production is most marked

  20. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran

    Directory of Open Access Journals (Sweden)

    Melahat Hoghoghi

    2016-01-01

    Full Text Available A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river slope, velocity, substrate type, average diameter of bed stone, riparian vegetation type and total dissolved solid (TDS and the relative abundance of A. namaki were recorded at each site. The results showed that A. namaki mostly selects upper parts of the river with higher slope, higher depth, lower width, lower velocity, bed rock substrate i.e. bed with boulder cover, TDS of 100-150 ppm, and deciduous forest and residential area riparian type compared with the available ranges. This study provides the habitat use and environmental factors affecting on the distribution of A. namaki in the Jajroud River.

  1. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  2. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  3. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  4. Oldman River Dam wildlife habitat mitigation program, Pincher Creek, Alberta: Final report. Summary of the implementation phase, 1987--1993

    International Nuclear Information System (INIS)

    1998-01-01

    This article summarizes the 1987--1993 implementation phase of the Oldman River Dam Wildlife Habitat Mitigation Program, intended to offset the negative impact of dam construction and operation on plant and animal species. Projects carried out during the program included creation of wetlands, tree and shrub planting, installation of snow and wildlife fences, and installation of replacement nesting sites for birds. Summaries are provided of the process that led to the final program design, the projects undertaken to complete the program, the design strategies, and the proposed habitat mitigation projects. Also included are an inventory of completed projects, an evaluation of the program's success in meeting its objectives and of the mitigation techniques used in the program, and a recommended strategy for future management of the program. Appendices include habitat suitability index models, summaries of related reports, vegetation maps, and a grazing management plan

  5. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Umatilla, Tucannon, Asotin, and Grande Ronde River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960) inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  6. Summer habitat use by Columbia River redband trout in the Kootenai River drainage, Montana

    Science.gov (United States)

    Muhlfeld, Clint C.; Bennett, David H.

    2001-01-01

    The reported decline in the abundance, distribution, and genetic diversity of Columbia River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted fisheries managers to investigate their habitat requirements, identify critical habitat, and develop effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (>=126 mm TL) fish preferred deep microhabitats (>=0.4 m) with low to moderate velocities (thalweg. Conversely, age-0 (<=35 mm) fish selected slow water (<=0.1 m/s) and shallow depths (<=0.2 m) located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their availability. At the macrohabitat scale, density of Columbia River redband trout (35 mm) was positively related to the abundance of pools and negatively related to stream gradient. The pool: riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for the production of Columbia River redband trout. These data will be useful in assessing the impacts of land-use practices on the remaining populations and may assist with habitat restoration or enhancement efforts.

  7. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat

    Science.gov (United States)

    Kukulka, Tobias; Jay, David A.

    2003-09-01

    This is the second part of an investigation that analyzes human alteration of shallow-water habitat (SWH) available to juvenile salmonids in the tidal Lower Columbia River. Part 2 develops a one-dimensional, subtidal river stage model that explains ˜90% of the stage variance in the tidal river. This model and the tidal model developed in part 1 [, 2003] uncouple the nonlinear interaction of river tides and river stage by referring both to external forcing by river discharge, ocean tides, and atmospheric pressure. Applying the two models, daily high-water levels were predicted for a reach from rkm-50 to rkm-90 during 1974 to 1998, the period of contemporary management. Predicted water levels were related to the bathymetry and topography to determine the changes in shallow-water habitat area (SWHA) caused by flood control dikes and altered flow management. Model results suggest that diking and a >40% reduction of peak flows have reduced SWHA by ˜62% during the crucial spring freshet period during which juvenile salmon use of SWHA is maximal. Taken individually, diking and flow cycle alteration reduced spring freshet SWHA by 52% and 29%, respectively. SWHA has been both displaced to lower elevations and modified in its character because tidal range has increased. Our models of these processes are economical for the very long simulations (seasons to centuries) needed to understand historic changes and climate impacts on SWH. Through analysis of the nonlinear processes controlling surface elevation in a tidal river, we have identified some of the mechanisms that link freshwater discharge to SWH and salmonid survival.

  8. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaufmann, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cullinan, Valerie I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thom, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wright, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-03-01

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  9. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  10. Habitat and hydrology: assessing biological resources of the Suwannee River Estuarine System

    Science.gov (United States)

    Raabe, Ellen A.; Edwards, Randy E.; McIvor, Carole C.; Grubbs, Jack W.; Dennis, George D.

    2007-01-01

    The U.S. Geological Survey conducted a pilot integrated-science study during 2002 and 2003 to map, describe, and evaluate benthic and emergent habitats in the Suwannee River Estuary on the Gulf Coast of Florida. Categories of aquatic, emergent, and terrestrial habitats were determined from hyperspectral imagery and integrated with hydrologic data to identify estuarine fish habitats. Maps of intertidal and benthic habitat were derived from 12-band, 4-m resolution hyperspectral imagery acquired in September 2002. Hydrologic data were collected from tidal creeks during the winter of 2002-03 and the summer-fall of 2003. Fish were sampled from tidal creeks during March 2003 using rivulet nets, throw traps, and seine nets. Habitat characteristics, hydrologic data, and fish assemblages were compared for tidal creeks north and south of the Suwannee River. Tidal creeks north of the river had more shoreline edge and shallow habitat than creeks to the south. Tidal creeks south of the river were generally of lower salinity (fresher) and supported more freshwater marsh and submerged aquatic vegetation. The southern creeks tended to be deeper but less sinuous than the northern creeks. Water quality and inundation were evaluated with hydrologic monitoring in the creeks. In-situ gauges, recording pressure and temperature, documented a net discharge of brackish to saline groundwater into the tidal creeks with pronounced flow during low tide. Groundwater flow into the creeks was most prominent north of the river. Combined fish-sampling results showed an overall greater abundance of organisms and greater species richness in the southern creeks, nominally attributed a greater range in water quality. Fish samples were dominated by juvenile spot, grass shrimp, bay anchovy, and silverside. The short time frame for hydrologic monitoring and the one-time fish-sampling effort were insufficient for forming definitive conclusions. However, the combination of hyperspectral imagery and

  11. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  12. Habitat use by 0+ cyprinid fish in the River Great Ouse, East Anglia

    OpenAIRE

    Garner, Paul

    1997-01-01

    This study was designed to examine the habitat use of several species of 0+ cyprinid in the regulated River Great Ouse and to determine the reasons for specific habitat use. In general, all fish species were found associated with the marginal zone, with little diel variation. Use of shallow habitats in the presence of macrophytes correlated well with the distribution of zooplankton in the river channel, the preferred food source of 0+ cyprinids. During the early to late larval phase, all spec...

  13. Wigwam River juvenile bull trout and fish habitat monitoring program : 2001 data report

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.; Bisset, J.E.

    2002-01-01

    The Wigwam River juvenile bull trout and fish habitat monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The Wigwam River has been characterized as the single most important bull trout spawning stream in the Kootenay Region. This report provides a summary of results obtained during the second year (2001) of the juvenile bull trout enumeration and fish habitat assessment program. This project was commissioned in planning for fish habitat protection and forest development within the upper Wigwam River valley. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes in the upper Wigwam River, especially as they relate to spawning and rearing habitat quality. Five permanent sampling sites were established August 2000 in the Wigwam river drainage (one site on Bighorn Creek and four sites on the mainstem Wigwam River). At each site, juvenile (0(sup+), 1(sup+) and 2(sup+) age classes) fish densities and stream habitat conditions were measured over two stream meander wavelengths. Bull trout represented 95.1% of the catch and the mean density of juvenile bull trout was estimated to be 20.7 fish/100m(sup 2) (range 0.9 to 24.0 fish/100m(sup 2)). This compares to 17.2 fish/100m(sup 2) (+20%) for the previous year. Fry (0(sup+)) dominated the catch and this was a direct result of juvenile bull trout ecology and habitat partitioning among life history stages. Site selection was biased towards sample sites which favored high bull trout fry capture success. Comparison of fry density estimates replicated across both the preliminary survey (1997) and the current study (Cope and Morris 2001) illustrate the stable nature of these high densities. Bull trout populations have been shown to be extremely susceptible to habitat degradation and over-harvest and are ecologically

  14. Predicted channel types - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  15. Predicted riparian vegetation - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  16. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    International Nuclear Information System (INIS)

    Geist, D.R.; Oregon State Univ., Corvallis, OR; Dauble, D.D.

    1998-01-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost

  17. River Discharge and Local Scale Habitat Influence LIFE Score Macroinvertebrate LIFE Scores

    DEFF Research Database (Denmark)

    Dunbar, Michael J.; Pedersen, Morten Lauge; Cadman, Dan

    2010-01-01

    Midlands of the U.K., we describe how local-scale habitat features (indexed through River Habitat Survey or Danish Habitat Quality Survey) and changing river flow (discharge) influence the response of a macroinvertebrate community index. The approach has broad applicability in developing regional flow...... Invertebrate index for Flow Evaluation (LIFE), an average of abundance-weighted flow groups which indicate the microhabitat preferences of each taxon for higher velocities and clean gravel/cobble substrata or slow/still velocities and finer substrata. 3. For the Danish fauna, the LIFE score responded to three...... of the channel (negative). In both cases, LIFE responded negatively to features associated with historical channel modification. We suggest that there are several mechanisms for these relationships, including the narrower tolerances of taxa preferring high velocity habitat; these taxa are also continually...

  18. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem 2004-2009

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.

    2011-04-01

    The U.S. Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River Main Stem Reservoir System. Management of the Missouri River has generally reduced peak river flows that form and maintain emergent sandbar habitat. Emergent sandbars provide non-vegetated nesting habitat for the endangered interior least tern (Sternula antillarum athalassos) and the threatened Northern Great Plains piping plover (Charadrius melodus). Since 2000, piping plover nesting habitat within the Gavins Point Reach, Garrison Reach, Lake Oahe, and Lake Sakakawea has fledged the majority of piping plovers produced along the Missouri River system. Habitats within Lewis and Clark Lake have also recently become important plover production areas. Mechanical construction of emergent sandbar habitat (ESH) within some of these reaches within the Missouri River began in 2004. Through 2009, 11 sandbar complexes had been constructed (10 in Gavins Point Reach, 1 in Lewis and Clarke Lake) totaling about 543 ac of piping plover and interior least tern nesting habitat. ESH Construction has resulted in a net gain of tern and plover nesting habitat. Both terns and plovers successfully nest and fledge young on constructed sandbars, and constructed habitats were preferred over natural habitats. Natural processes may limit the viability of constructed sandbars as nesting habitat. Continued research is needed to identify if changes in constructed sandbar engineering and management increase the length of time constructed habitats effectively function as nesting habitat. However, the transfer of information from researchers to planners through technical research reports may not be timely enough to effectively foster the feedback mechanisms of an adaptive management strategy.

  19. Habitat preferences of common native fishes in a tropical river in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Marcus Rodrigues da Costa

    Full Text Available We determined in this study the habitat preferences of seven native fish species in a regulated river in Southeastern Brazil. We tested the hypothesis that fishes differ in habitat preference and that they use stretches of the river differing in hydraulic characteristics and substrate type. We surveyed fishes in four 1-km long river stretches encompassing different habitat traits, where we also measured water depth, velocity, and substrate type. We investigated preference patterns of four Siluriformes (Loricariichthys castaneus, Hoplosternum littorale, Pimelodus maculatus, and Trachelyopterus striatulus and three Characiformes (Astyanax aff. bimaculatus, Oligosarcus hepsetus, and Hoplias malabaricus, representing approximately 70% of the total number of fishes and 64% of the total biomass. We classified fishes into four habitat guilds: (1 a slow-flowing water guild that occupied mud-sand substrate, composed of two Siluriformes in either shallow ( 8 m, L. castaneus waters; (2 a run-dwelling guild that occurs in deep backwaters with clay-mud substrate, composed of the Characiformes A. aff. bimaculatus and O. hepsetus; (3 a run-dwelling guild that occurs in sandy and shallow substrate, composed of T. striatulus; and (4 a fast-flowing guild that occurs primarily along shorelines with shallow mud bottoms, composed of H. malabaricus and P. maculatus. Our hypothesis was confirmed, as different habitat preferences by fishes appear to occur in this regulated river.

  20. Napa River Sediment TMDL Implementation and Habitat Enhancement Project

    Science.gov (United States)

    Information about the SFBWQP Napa River Sediment TMDL Implementation and Habitat Enhancement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  1. Diversity and Community Composition of Vertebrates in Desert River Habitats

    Science.gov (United States)

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  2. Coastal habitat and biological community response to dam removal on the Elwha River

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.

    2017-01-01

    Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.

  3. Design options to minimize tritium inventories at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E., E-mail: james.klein@srnl.doe.gov; Wilson, J.; Heroux, K.J.; Poore, A.S.; Babineau, D.W.

    2016-11-01

    Highlights: • La-Ni-Al alloys are used as tritium storage materials and retain He-3. • La-Ni-Al He-3 effects decrease useable process tritium inventory. • Use of Pd or depleted uranium beds decreases process tritium inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Large quantities of tritium are stored and processed at the Savannah River Site (SRS) Tritium Facilities. In many design basis accidents (DBAs), it is assumed the entire tritium inventory of the in-process vessels are released from the facility and the site for inclusion in public radiological dose calculations. Pending changes in public dose calculation methodologies are driving the need for smaller in-process tritium inventories to be released during DBAs. Reducing the in-process tritium inventory will reduce the unmitigated source term for public dose calculations and will also reduce the production demand for a lower inventory process. This paper discusses process design options to reduce in-process tritium inventories. A Baseline process is defined to illustrate the impact of removing or replacing La-Ni-Al alloy tritium storage beds with palladium (Pd) or depleted uranium (DU) storage beds on facility in-process tritium inventories. Elimination of La-Ni-Al alloy tritium storage beds can reduce in-process tritium inventories by over 1.5 kg, but alternate process technologies may needed to replace some functions of the removed beds.

  4. Design options to minimize tritium inventories at Savannah River

    International Nuclear Information System (INIS)

    Klein, J.E.; Wilson, J.; Heroux, K.J.; Poore, A.S.; Babineau, D.W.

    2016-01-01

    Highlights: • La-Ni-Al alloys are used as tritium storage materials and retain He-3. • La-Ni-Al He-3 effects decrease useable process tritium inventory. • Use of Pd or depleted uranium beds decreases process tritium inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Large quantities of tritium are stored and processed at the Savannah River Site (SRS) Tritium Facilities. In many design basis accidents (DBAs), it is assumed the entire tritium inventory of the in-process vessels are released from the facility and the site for inclusion in public radiological dose calculations. Pending changes in public dose calculation methodologies are driving the need for smaller in-process tritium inventories to be released during DBAs. Reducing the in-process tritium inventory will reduce the unmitigated source term for public dose calculations and will also reduce the production demand for a lower inventory process. This paper discusses process design options to reduce in-process tritium inventories. A Baseline process is defined to illustrate the impact of removing or replacing La-Ni-Al alloy tritium storage beds with palladium (Pd) or depleted uranium (DU) storage beds on facility in-process tritium inventories. Elimination of La-Ni-Al alloy tritium storage beds can reduce in-process tritium inventories by over 1.5 kg, but alternate process technologies may needed to replace some functions of the removed beds.

  5. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b

  6. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota.

    Directory of Open Access Journals (Sweden)

    Jochem Kail

    Full Text Available River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability/ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact

  7. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  8. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.P. [Pacific Northwest National Laboratory

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the

  9. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  10. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2004-12-31

    Franzreb, Kathleen, E. 2004. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 9. Habitat Management and Habitat Relationships. Pp 553-561. Abstract: I constructed a foraging study to examine habitat use of red-cockaded woodpeckers at the Savannah River Site, South Carolina. Because much of the land had been harvested in the late 1940s and early 1950s prior to being sold to the Department of Energy, the available habitat largely consisted of younger trees (e.g., less than 40 years old). From 1992 to 1995, I examined the foraging behavior and reproductive success of 7 groups of red-cockaded woodpeckers.

  11. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    Science.gov (United States)

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  12. Simulating Spawning and Juvenile Rainbow Trout (Oncorhynchus mykiss Habitat in Colorado River Based on High-Flow Effects

    Directory of Open Access Journals (Sweden)

    Weiwei Yao

    2017-02-01

    Full Text Available High flow generates significant alterations in downstream river reaches, resulting in physical condition changes in the downstream regions of the river such as water depth, flow velocity, water temperature and river bed. These alterations will lead to change in fish habitat configuration in the river. This paper proposes a model system to evaluate the high flow effects on river velocity, water depth, substrates changes, temperature distribution and consequently assess the change in spawning and juvenile rainbow trout (Oncorhynchus mykiss habitats in the downstream region of the Glen Canyon Dam. Firstly, based on the 2 dimensional (2D depth-averaged CFD (Computational Fluid Dynamics model and heat transfer equation applied for simulation, three indices were simulated, namely depth, flow velocity and temperature distribution. Then, the spawning and juvenile fish preference curves were obtained based on these three indices and substrates distribution. After that, the habitat model was proposed and used to simulate the high flow effects on juvenile and spawning rainbow trout habitat structure. Finally, the weighted usable area (WUA and overall suitability index (OSI of the spawning and juvenile fish species were quantitatively simulated to estimate the habitat sensitivity. The results illustrate that the high flow effect (HFE increased the juvenile rainbow trout habitat quality but decreased the spawning rainbow trout habitat quality. The juvenile trout were mainly affected by the water depth while the spawning rainbow trout were dominated by the bed elevation.

  13. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA

    Science.gov (United States)

    Hatten, J.R.; Parsley, M.J.

    2009-01-01

    Concerns over the potential effects of in-water placement of dredged materials prompted us to develop a GIS-based model that characterizes in a spatially explicit manner white sturgeon Acipenser transmontanus rearing habitat in the lower Columbia River, USA. The spatial model was developed using water depth, riverbed slope and roughness, fish positions collected in 2002, and Mahalanobis distance (D2). We created a habitat suitability map by identifying a Mahalanobis distance under which >50% of white sturgeon locations occurred in 2002 (i.e., high-probability habitat). White sturgeon preferred relatively moderate to high water depths, and low to moderate riverbed slope and roughness values. The eigenvectors indicated that riverbed slope and roughness were slightly more important than water depth, but all three variables were important. We estimated the impacts that fill might have on sturgeon habitat by simulating the addition of fill to the thalweg, in 3-m increments, and recomputing Mahalanobis distances. Channel filling simulations revealed that up to 9 m of fill would have little impact on high-probability habitat, but 12 and 15 m of fill resulted in habitat declines of ???12% and ???45%, respectively. This is the first spatially explicit predictive model of white sturgeon rearing habitat in the lower Columbia River, and the first to quantitatively predict the impacts of dredging operations on sturgeon habitat. Future research should consider whether water velocity improves the accuracy and specificity of the model, and to assess its applicability to other areas in the Columbia River.

  14. Spawning and nursery habitats of neotropical fish species in the tributaries of a regulated river

    Science.gov (United States)

    Makrakis, Maristela Cavicchioli; da Silva, Patrícia S.; Makrakis, Sergio; de Lima, Ariane F.; de Assumpção, Lucileine; de Paula, Salete; Miranda, Leandro E.; Dias, João Henrique Pinheiro

    2012-01-01

    This chapter provides information on ontogenetic patterns of neotropical fish species distribution in tributaries (Verde, Pardo, Anhanduí, and Aguapeí rivers) of the Porto Primavera Reservoir, in the heavily dammed Paraná River, Brazil, identifying key spawning and nursery habitats. Samplings were conducted monthly in the main channel of rivers and in marginal lagoons from October through March during three consecutive spawning seasons in 2007-2010. Most species spawn in December especially in Verde River. Main river channels are spawning habitats and marginal lagoons are nursery areas for most fish, mainly for migratory species. The tributaries have high diversity of larvae species: a total of 56 taxa representing 21 families, dominated by Characidae. Sedentary species without parental care are more abundant (45.7%), and many long-distance migratory fish species are present (17.4%). Migrators included Prochilodus lineatus, Rhaphiodon vulpinus, Hemisorubim platyrhynchos, Pimelodus maculatus, Pseudoplatystoma corruscans, Sorubim lima, two threatened migratory species: Salminus brasiliensis and Zungaro jahu, and one endangered migratory species: Brycon orbignyanus. Most of these migratory species are vital to commercial and recreational fishing, and their stocks have decreased drastically in the last decades, attributed to habitat alteration, especially impoundments. The fish ladder at Porto Primavera Dam appears to be playing an important role in re-establishing longitudinal connectivity among critical habitats, allowing ascent to migratory fish species, and thus access to upstream reaches and tributaries. Establishment of Permanent Conservation Units in tributaries can help preserve habitats identified as essential spawning and nursery areas, and can be key to the maintenance and conservation of the fish species in the Paraná River basin.

  15. Distribution and habitat use of the Missouri River and Lower Yellowstone River benthic fishes from 1996 to 1998: A baseline for fish community recovery

    Science.gov (United States)

    Wildhaber, M.L.; Gladish, D.W.; Arab, A.

    2011-01-01

    Past and present Missouri River management practices have resulted in native fishes being identified as in jeopardy. In 1995, the Missouri River Benthic Fishes Study was initiated to provide improved information on Missouri River fish populations and how alterations might affect them. The study produced a baseline against which to evaluate future changes in Missouri River operating criteria. The objective was to evaluate population structure and habitat use of benthic fishes along the entire mainstem Missouri River, exclusive of reservoirs. Here we use the data from this study to provide a recent-past baseline for on-going Missouri River fish population monitoring programmes along with a more powerful method for analysing data containing large percentages of zero values. This is carried out by describing the distribution and habitat use of 21 species of Missouri River benthic fishes based on catch-per-unit area data from multiple gears. We employ a Bayesian zero-inflated Poisson model expanded to include continuous measures of habitat quality (i.e. substrate composition, depth, velocity, temperature, turbidity and conductivity). Along with presenting the method, we provide a relatively complete picture of the Missouri River benthic fish community and the relationship between their relative population numbers and habitat conditions. We demonstrate that our single model provides all the information that is often obtained by a myriad of analytical techniques. An important advantage of the present approach is reliable inference for patterns of relative abundance using multiple gears without using gear efficiencies.

  16. Diet composition of age-0 fishes in created habitats of the Lower Missouri River

    Science.gov (United States)

    Starks, Trevor A.; Long, James M.

    2017-01-01

    Channelization of the Missouri River has greatly reduced the availability of shallow water habitats used by many larval and juvenile fishes and contributed to imperilment of floodplain-dependent biota. Creation of small side channels, or chutes, is being used to restore shallow water habitat and reverse negative environmental effects associated with channelization. In the summer of 2012, the U.S. Army Corps of Engineers collected early life stages of fishes from constructed chutes and nearby unrestored shallow habitats at six sites on the Missouri River between Rulo, Nebraska and St. Louis, Missouri. We compared the diets of two abundant species of fishes to test the hypothesis that created shallow chutes provided better foraging habitat for early life stages than nearby unrestored shallow habitats. Graphical analysis of feeding patterns of freshwater drum indicated specialization on chironomid larvae, which were consumed in greater numbers in unrestored mainstem reaches compared to chutes. Hiodon spp. were more generalist feeders with no differences in prey use between habitat types. Significantly greater numbers of individuals with empty stomachs were observed in chute shallow-water habitats, indicating poor foraging habitat. For these two species, constructed chute shallow-water habitat does not appear to provide the hypothesized benefits of higher quality foraging habitat.

  17. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Directory of Open Access Journals (Sweden)

    Johannes Radinger

    Full Text Available Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049 and topological variables (e.g., stream order were included (AUC = +0.014. Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types and assessed longitudinal channel features (e.g., naturalness of river planform were also good predictors. These findings demonstrate (i the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables to predict fish presence, (ii the

  18. Abundances and Habitat Sensitivities of Some River Fishes in ...

    African Journals Online (AJOL)

    Freshwater fishes from a diverse array of 11 families, some dominated by marine species and others containing only a few species, were collected by electrofishing from 84 locations on small rivers in central Thailand and their abundances related to habitat characteristics. Abundances were largest for Channa gachua, ...

  19. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    Science.gov (United States)

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  20. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    Science.gov (United States)

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  1. Habits and Habitats of Fishes in the Upper Mississippi River

    Science.gov (United States)

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  2. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  3. A multiscale investigation of habitat use and within-river distribution of sympatric sand darter species

    Science.gov (United States)

    Thompson, Patricia A.; Welsh, Stuart A.; Strager, Michael P.; Rizzo, Austin A.

    2018-01-01

    The western sand darter Ammocrypta clara, and eastern sand darter Ammocrypta pellucida, are sand-dwelling fishes of conservation concern. Past research has emphasized the importance of studying individual populations of conservation concern, while recent research has revealed the importance of incorporating landscape scale processes that structure habitat mosaics and local populations. We examined habitat use and distributions of western and eastern sand darters in the lower Elk River of West Virginia. At the sandbar habitat use scale, western sand darters were detected in sandbars with greater area, higher proportions of coarse grain sand and faster bottom current velocity, while the eastern sand darter used a wider range of sandbar habitats. The landscape scale analysis revealed that contributing drainage area was an important predictor for both species, while sinuosity, which presumably represents valley type, also contributed to the western sand darter’s habitat suitability. Sandbar quality (area, grain size, and velocity) and fluvial geomorphic variables (drainage area and valley type) are likely key driving factors structuring sand darter distributions in the Elk River. This multiscale study of within-river species distribution and habitat use is unique, given that only a few sympatric populations are known of western and eastern sand darters.

  4. Summary Report for Bureau of Fisheries Stream Habitat Surveys: Cowlitz River Basin, 1934-1942 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was, as described by Rich, [open quotes]to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes[close quotes]. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946. Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin.

  5. Habitat Evaluation Procedures (HEP) Report; Big Island - The McKenzie River, Technical Report 1998-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Sieglitz, Greg

    2001-03-01

    The Big Island site is located in the McKenzie River flood plain, containing remnant habitats of what was once more common in this area. A diverse array of flora and fauna, representing significant wildlife habitats, is present on the site. Stands of undisturbed forested wetlands, along with riparian shrub habitats and numerous streams and ponds, support a diversity of wildlife species, including neotropical migratory songbirds, raptors, mammals, reptiles, and amphibians (including two State-listed Sensitive Critical species). The project is located in eastern Springfield, Oregon (Figure 1). The project area encompasses 187 acres under several ownerships in Section 27 of Township 17S, Range 2W. Despite some invasion of non-native species, the site contains large areas of relatively undisturbed wildlife habitat. Over several site visits, a variety of wildlife and signs of wildlife were observed, including an active great blue heron rookery, red-Legged frog egg masses, signs of beaver, and a bald eagle, Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Bonneville Power Administration's (BPA) Mitigation and Enhancement Plan for the Willamette River Basin. Under this Plan, mitigation goals and objectives were developed as a result of the loss of wildlife habitat due to the construction of Federal hydroelectric facilities in the Willamette River Basin. Results of the Habitat Evaluation Procedures (HEP) will be used to: (1) determine the current habitat status of the study area and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area.

  6. Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel

    Directory of Open Access Journals (Sweden)

    Jiangyu Dai

    2018-06-01

    Full Text Available To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.

  7. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Dawley, Earl M.; Coleman, Andre M.

    2010-08-01

    This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary.

  8. Summary report for Bureau of Fisheries stream habitat surveys: Cowlitz River basin. Final report 1934--1942

    International Nuclear Information System (INIS)

    McIntosh, B.A.; Clark, S.E.; Sedell, J.R.

    1995-07-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938--1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949--1952 by the US Fish and Wildlife Service

  9. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat.

    Directory of Open Access Journals (Sweden)

    Frants H Jensen

    Full Text Available Toothed whales (Cetacea, odontoceti use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica and Irrawaddy dolphins (Orcaella brevirostris within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191 re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

  10. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  11. Vegetation description, rare plant inventory, and vegetation monitoring for Craig Mountain, Idaho

    International Nuclear Information System (INIS)

    Mancuso, M.; Moseley, R.

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals

  12. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    Science.gov (United States)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  13. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., food web, and intra-specific competition would help to better inform the long-term management plan.

  14. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  15. Assessing the impacts of river regulation on native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats in the upper Flathead River, Montana, USA

    Science.gov (United States)

    Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian

    2012-01-01

    Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.

  16. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    Science.gov (United States)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  17. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.; Downs, Janelle L.

    2008-11-06

    Emergent sandbar habitat (ESH) in the Missouri River Mainstem System is a critical habitat element for several federally listed bird species: the endangered interior least tern (Sterna antillarum) and the threatened Northern Great Plains piping plover (Charadrius melodus). The Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River and is responsible under the Endangered Species Act (ESA) to take actions within its authorities to conserve listed species. To comply with the 2000 USFWS BiOp and the 2003 amended USFWS BiOp, the Corps has created habitats below Gavins Point Dam using mechanical means. Initial monitoring indicates that constructed sandbars provide suitable habitat features for nesting and foraging least terns and piping plovers. Terns and plovers are using constructed sandbars and successfully reproducing at or above levels stipulated in the BiOp. However, whether such positive impacts will persist cannot yet be adequately assessed at this time.

  18. The Savannah River Site Waste Inventory Management Program

    International Nuclear Information System (INIS)

    Griffith, J.M.; Holmes, B.R.

    1995-01-01

    Each hazardous and radioactive waste generator that delivers waste to Savannah River Site (SRS) treatment, storage and disposal (TSD) facilities is required to implement a waste certification plan. The waste certification process ensures that waste has been properly identified, characterized, segregated, packaged, and shipped according to the receiving facilities waste acceptance criteria. In order to comply with the rigid acceptance criteria, the Reactor Division developed and implemented the Waste Inventory Management Program (WIMP) to track the generation and disposal of low level radioactive waste. The WIMP system is a relational database with integrated barcode technology designed to track the inventory radioactive waste. During the development of the WIMP several waste minimization tools were incorporated into the design of the program. The inclusion of waste minimization tools as part of the WIMP has resulted in a 40% increase in the amount of waste designated as compactible and an overall volume reduction of 5,000 cu-ft

  19. Habitat Evaluation Procedures (HEP) Report : Oleson Tracts of the Tualatin River National Wildlife Refuge, 2001-2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Donna; Smith, maureen; Schmidt, Peter

    2004-09-01

    Located in the northern Willamette River basin, Tualatin River National Wildlife Refuge (Refuge) was established in 1992 with an approved acquisition boundary to accommodate willing sellers with potentially restorable holdings within the Tualatin River floodplain. The Refuge's floodplain of seasonal and emergent wetlands, Oregon ash riparian hardwood, riparian shrub, coniferous forest, and Garry oak communities are representative of remnant plant communities historically common in the Willamette River valley and offer an opportunity to compensate for wildlife habitat losses associated with the Willamette River basin federal hydroelectric projects. The purchase of the Oleson Units as additions to the Refuge using Bonneville Power Administration (BPA) funds will partially mitigate for wildlife habitat and target species losses incurred as a result of construction and inundation activities at Dexter and Detroit Dams. Lands acquired for mitigation of Federal Columbia River Power System (FCRPS) impacts to wildlife are evaluated using the Habitat Evaluation Procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the FCRPS Loss Assessments and adopted as part of the Northwest Power and Conservation Council's Fish and Wildlife Program as a BPA obligation (NWPCC, 1994 and 2000). There are two basic management scenarios to consider for this evaluation: (1) Habitats can be managed without restoration activities to benefit wildlife populations, or (2) Habitats can be restored using a number of techniques to improve habitat values more quickly. Without restoration, upland and wetland areas may be periodically mowed and disced to prevent invasion of exotic vegetation, volunteer trees and shrubs may grow to expand forested areas, and cooperative farming may be employed to provide forage for migrating and wintering waterfowl. Abandoned cropland

  20. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.

  1. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    Science.gov (United States)

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  2. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    Science.gov (United States)

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  3. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    Science.gov (United States)

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  4. Timber resource statistics for the Copper River inventory unit, Alaska, 1968.

    Science.gov (United States)

    Karl M. Hegg

    1975-01-01

    This first intensive forest inventory of Alaska's Copper River Valley found a commercial forest area of 287,800 acres with 303.8 million cubic feet of growing stock. Additionally, a noncommercial stratum was examined that had substantial standing volume but did not meet the growth criteria for commercial forest land. This stratum contained 152,800 acres with a...

  5. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from

  6. Movement patterns, habitat use, and survival of Lahontan cutthroat trout in the Truckee River

    Science.gov (United States)

    Alexiades, Alexander V.; Peacock, Mary M.; Al-Chokhachy, Robert K.

    2012-01-01

    Habitat fragmentation, hybridization, and competition with nonnative salmonids are viewed as major threats to Lahontan cutthroat trout Oncorhynchus clarkii henshawi. Understanding Lahontan cutthroat trout behavior and survival is a necessary step in the reintroduction and establishment of naturally reproducing populations of Lahontan cutthroat trout. We used weekly radiotelemetry monitoring to examine movement patterns, habitat use, and apparent survival of 42 hatchery-reared Lahontan cutthroat trout in a 16.5-km stretch of the Truckee River, Nevada, across three reaches separated by barriers to upstream movement. We found differences in total movement distances and home range sizes of fish in different reaches within our study area. Fish used pool habitats more than fast water habitats in all reaches. Time of year, stream temperature, and fish standard length covariates had the strongest relationship with apparent survival. Monthly apparent survival was lowest in January, which coincided with the lowest flows and temperatures during the study period. Our results verify the mobility of Lahontan cutthroat trout and indicate that conditions during winter may limit the survival and reintroduction success in the portions of the Truckee River evaluated in this study.

  7. Habitat fragmentation and species extirpation in freshwater ecosystems; causes of range decline of the Indus river dolphin (Platanista gangetica minor.

    Directory of Open Access Journals (Sweden)

    Gill T Braulik

    Full Text Available Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world's most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world's most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin's range decline, influencing 1 the spatial pattern of persistence, 2 the temporal pattern of subpopulation extirpation, and 3 the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin.

  8. Habitat fragmentation and species extirpation in freshwater ecosystems; causes of range decline of the Indus river dolphin (Platanista gangetica minor).

    Science.gov (United States)

    Braulik, Gill T; Arshad, Masood; Noureen, Uzma; Northridge, Simon P

    2014-01-01

    Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world's most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world's most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin's range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin.

  9. Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Glen; Trump, Jeremy; Gembala, Mike

    2003-09-01

    trutta) had low densities, and limited distribution throughout the basin. A large return of adult spring chinook to the Touchet River drainage in 2001 produced higher densities of juvenile chinook in 2002 than have been seen in recent years, especially in the Wolf Fork. The adult return in 2002 was substantially less than what was seen in 2001. Due to poor water conditions and trouble getting personnel hired, spawning surveys were limited in 2002. Surveyors found only one redd in four Walla Walla River tributaries (Cottonwood Ck., East Little Walla Walla, West Little Walla Walla, and Mill Ck.), and 59 redds in Touchet River tributaries (10 in the North Fork Touchet, 30 in the South Fork Touchet, and 19 in the Wolf Fork). Bull trout spawning surveys in the upper Touchet River tributaries found a total of 125 redds and 150 live fish (92 redds and 75 fish in the Wolf Fork, 2 redds and 1 fish in the Burnt Fork, 0 redds and 1 fish in the South Fork Touchet, 29 redds and 71 fish in the North Fork Touchet, and 2 redds and 2 fish in Lewis Ck.). A preliminary steelhead genetics analysis was completed as part of this project. Results indicate differences between naturally produced steelhead and those produced in the hatchery. There were also apparent genetic differences among the naturally produced fish from different areas of the basin. Detailed results are reported in Bumgarner et al. 2003. Recommendations for assessment activities in 2003 included: (1) continue to monitor the Walla Walla River (focusing from the stateline to McDonald Rd.), the Mill Ck system, and the Little Walla Walla System. (2) reevaluate Whiskey Ck. for abundance and distribution of salmonids, and Lewis Ck. for bull trout density and distribution. (3) select or develop a habitat survey protocol and begin to conduct habitat inventory and assessment surveys. (4) summarize bull trout data for Mill Ck, South Fork Touchet, and Lewis Ck. (5) begin to evaluate temperature and flow data to assess if the habitat

  10. Identifying Impacts of Hydropower Regulation on Salmonid Habitats to Guide River Restoration for Existing Schemes and Mitigate Adverse Effects of Future Developments

    Science.gov (United States)

    Buddendorf, B.; Geris, J.; Malcolm, I.; Wilkinson, M.; Soulsby, C.

    2015-12-01

    A decrease in longitudinal connectivity in riverine ecosystems resulting from the construction of transverse barriers has been identified as a major threat to biodiversity. For example, Atlantic Salmon (Salmo salar) have a seasonal variety of hydraulic habitat requirements for their different life stages. However, hydropower impoundments impact the spatial and temporal connectivity of natural habitat along many salmon rivers in ways that are not fully understood. Yet, these changes may affect the sustainability of habitat at local and regional scales and so ultimately the conservation of the species. Research is therefore needed both to aid the restoration and management of rivers impacted by previous hydropower development and guide new schemes to mitigate potentially adverse effects. To this end we assessed the effects of hydropower development on the flow related habitat conditions for different salmon life stages in Scottish rivers at different spatial scales. We used GIS techniques to map the changes in structural connectivity at regional scales, applying a weighting for habitat quality. Next, we used hydrological models to simulate past and present hydrologic conditions that in turn drive reach-scale hydraulic models to assess the impacts of regulation on habitat suitability in both space and time. Preliminary results indicate that: 1) impacts on connectivity depend on the location of the barrier within the river network; 2) multiple smaller barriers may have a potentially lower impact than a single larger barrier; 3) there is a relationship between habitat and connectivity where losing less but more suitable habitat potentially has a disproportionally large impact; 4) the impact of flow regulation can lead to a deterioration of habitat quality, though the effects are spatially variable and the extent of the impact depends on salmon life stage. This work can form a basis for using natural processes to perform targeted and cost-effective restoration of rivers.

  11. Assessment of chevron dikes for the enhancement of physical-aquatic habitat within the Middle Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W. F.; Khanal, Anish; Pinter, Nicholas

    2013-09-01

    Blunt-nosed chevron dikes, a new invention now being widely constructed on the Middle Mississippi River (MMR), have been justified as a tool for enhancing physical-aquatic habitat. Chevron dikes were initially designed to concentrate flow, induce channel scour, and thus facilitate river navigation. More recently, these structures have been justified, in part, for promoting habitat heterogeneity. The ability of chevrons to create and diversify physical-aquatic habitat, however, has not been empirically evaluated. To assess the ability of chevrons to create and diversify physical-aquatic habitat, we compiled hydrologic and geospatial data for three channel reference conditions along a 2.0 km (∼140 ha) reach of the MMR where three chevrons were constructed in late 2007. We used the hydrologic and hydraulic data to construct detailed 2-D hydrodynamic models for three reference condition: historic (circa 1890), pre-chevron, and post-chevron channel conditions. These models documented changes in depths and flow dynamics for a wide range of in-channel discharges. Depth-velocity habitat classes were used to assess change in physical-aquatic habitat patches and spatial statistical tools in order to evaluate the reach-scale habitat patch diversity. Comparisons of pre- and post-chevron conditions revealed increases in deep to very deep (>3.0 m) areas of slow moving (3.0 m], low velocity [<0.6 m/s]). Chevron construction also created some (0.8-3.8 ha) shallow-water habitat (0-1.5 m depth with a 0-0.6 m/s velocity) for flows ⩽2.0 × MAF and contributed to an 8-35% increase in physical-aquatic-habitat diversity compared to pre-chevron channel conditions. However, modeling of the historic reference condition (less engineered channel, circa 1890) revealed that the historical physical-aquatic-habitat mosaic consisted of a wider and shallower channel with: 45-390% more shallow-water habitat (2.4-11.0 ha) and 22-83% more physical-aquatic-habitat diversity, but little over

  12. Evidence of the St. Clair-Detroit River system as a dispersal corridor and nursery habitat for transient larval burbot

    Science.gov (United States)

    McCullough, Darrin E.; Roseman, Edward F.; Keeler, Kevin M.; DeBruyne, Robin L.; Pritt, Jeremy J.; Thompson, Patricia A.; Ireland, Stacey A.; Ross, Jason E.; Bowser, Dustin; Hunter, Robert D.; Castle, Dana Kristina; Fischer, Jason; Provo, Stacy A.

    2015-01-01

    Burbot Lota lota are distributed across the Laurentian Great Lakes where they occupy a top piscivore role. The St. Clair-Detroit River System is known to provide a migration corridor as well as spawning and nursery habitat for many indigenous fishes of economic and ecological significance. However, knowledge is scant of the early life history of burbot and the importance of this system in their dispersal, survival, and recruitment. In order to assess the role of the St. Clair-Detroit River System to burbot ecology, we collected larval burbot during ichthyoplankton surveys in this system from 2010 to 2013 as part of a habitat restoration monitoring program. More and larger burbot larvae were found in the St. Clair River than in the lower Detroit River, although this may be due to differences in sampling methods between the two rivers. Consistent with existing studies, larval burbot exhibited ontogenesis with a distinct transition from a pelagic zooplankton-based diet to a benthic macroinvertebrate-based diet. Our results demonstrate that the St. Clair-Detroit Rivers provide food resources, required habitat, and a migration conduit between the upper and lower Great Lakes, but the contribution of these fish to the lower lakes requires further examination.

  13. Red River Wildlife Management Area HEP Report, Habitat Evaluation Procedures, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2004-11-01

    A habitat evaluation procedures (HEP) analysis conducted on the 314-acre Red River Wildlife Management Area (RRWMA) managed by the Idaho Department of Fish and Game resulted in 401.38 habitat units (HUs). Habitat variables from six habitat suitability index (HSI) models, comprised of mink (Mustela vison), mallard (Anas platyrhynchos), common snipe (Capella gallinago), black-capped chickadee (Parus altricapillus), yellow warbler (Dendroica petechia), and white-tailed deer (Odocoileus virginianus), were measured by Regional HEP Team (RHT) members in August 2004. Cover types included wet meadow, riverine, riparian shrub, conifer forest, conifer forest wetland, and urban. HSI model outputs indicate that the shrub component is lacking in riparian shrub and conifer forest cover types and that snag density should be increased in conifer stands. The quality of wet meadow habitat, comprised primarily of introduced grass species and sedges, could be improved through development of ephemeral open water ponds and increasing the amount of persistent wetland herbaceous vegetation e.g. cattails (Typha spp.) and bulrushes (Scirpus spp.).

  14. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy

  15. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  16. Fish habitat regression under water scarcity scenarios in the Douro River basin

    Science.gov (United States)

    Segurado, Pedro; Jauch, Eduardo; Neves, Ramiro; Ferreira, Teresa

    2015-04-01

    Climate change will predictably alter hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goals of this study are to identify the stream reaches that will undergo more pronounced flow reduction under different climate change scenarios and to assess which fish species will be more affected by the consequent regression of suitable habitats. The interplay between changes in flow and temperature and the presence of transversal artificial obstacles (dams and weirs) is analysed. The results will contribute to river management and impact mitigation actions under climate change. This study was carried out in the Tâmega catchment of the Douro basin. A set of 29 Hydrological, climatic, and hydrogeomorphological variables were modelled using a water modelling system (MOHID), based on meteorological data recorded monthly between 2008 and 2014. The same variables were modelled considering future climate change scenarios. The resulting variables were used in empirical habitat models of a set of key species (brown trout Salmo trutta fario, barbell Barbus bocagei, and nase Pseudochondrostoma duriense) using boosted regression trees. The stream segments between tributaries were used as spatial sampling units. Models were developed for the whole Douro basin using 401 fish sampling sites, although the modelled probabilities of species occurrence for each stream segment were predicted only for the Tâmega catchment. These probabilities of occurrence were used to classify stream segments into suitable and unsuitable habitat for each fish species, considering the future climate change scenario. The stream reaches that were predicted to undergo longer flow interruptions were identified and crossed with the resulting predictive maps of habitat suitability to compute the total area of habitat loss per species. Among the target species, the brown trout was predicted to be the most sensitive to habitat regression due to the

  17. Assessing the suitable habitat for reintroduction of brown trout (Salmo trutta forma fario) in a lowland river: A modeling approach.

    Science.gov (United States)

    Boets, Pieter; Gobeyn, Sacha; Dillen, Alain; Poelman, Eddy; Goethals, Peter L M

    2018-05-01

    Huge efforts have been made during the past decades to improve the water quality and to restore the physical habitat of rivers and streams in western Europe. This has led to an improvement in biological water quality and an increase in fish stocks in many countries. However, several rheophilic fish species such as brown trout are still categorized as vulnerable in lowland streams in Flanders (Belgium). In order to support cost-efficient restoration programs, habitat suitability modeling can be used. In this study, we developed an ensemble of habitat suitability models using metaheuristic algorithms to explore the importance of a large number of environmental variables, including chemical, physical, and hydromorphological characteristics to determine the suitable habitat for reintroduction of brown trout in the Zwalm River basin (Flanders, Belgium), which is included in the Habitats Directive. Mean stream velocity, water temperature, hiding opportunities, and presence of pools or riffles were identified as the most important variables determining the habitat suitability. Brown trout mainly preferred streams with a relatively high mean reach stream velocity (0.2-1 m/s), a low water temperature (7-15°C), and the presence of pools. The ensemble of models indicated that most of the tributaries and headwaters were suitable for the species. Synthesis and applications . Our results indicate that this modeling approach can be used to support river management, not only for brown trout but also for other species in similar geographical regions. Specifically for the Zwalm River basin, future restoration of the physical habitat, removal of the remaining migration barriers and the development of suitable spawning grounds could promote the successful restoration of brown trout.

  18. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    Science.gov (United States)

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  19. Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry.

    Science.gov (United States)

    Capra, Hervé; Plichard, Laura; Bergé, Julien; Pella, Hervé; Ovidio, Michaël; McNeil, Eric; Lamouroux, Nicolas

    2017-02-01

    Modeling individual fish habitat selection in highly variable environments such as hydropeaking rivers is required for guiding efficient management decisions. We analyzed fish microhabitat selection in the heterogeneous hydraulic and thermal conditions (modeled in two-dimensions) of a reach of the large hydropeaking Rhône River locally warmed by the cooling system of a nuclear power plant. We used modern fixed acoustic telemetry techniques to survey 18 fish individuals (five barbels, six catfishes, seven chubs) signaling their position every 3s over a three-month period. Fish habitat selection depended on combinations of current microhabitat hydraulics (e.g. velocity, depth), past microhabitat hydraulics (e.g. dewatering risk or maximum velocities during the past 15days) and to a lesser extent substrate and temperature. Mixed-effects habitat selection models indicated that individual effects were often stronger than specific effects. In the Rhône, fish individuals appear to memorize spatial and temporal environmental changes and to adopt a "least constraining" habitat selection. Avoiding fast-flowing midstream habitats, fish generally live along the banks in areas where the dewatering risk is high. When discharge decreases, however, they select higher velocities but avoid both dewatering areas and very fast-flowing midstream habitats. Although consistent with the available knowledge on static fish habitat selection, our quantitative results demonstrate temporal variations in habitat selection, depending on individual behavior and environmental history. Their generality could be further tested using comparative experiments in different environmental configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    Science.gov (United States)

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  1. Hydraulic modeling of mussel habitat at a bridge-replacement site, Allegheny River, Pennsylvania, USA

    Science.gov (United States)

    Fulton, John W.; Wagner, Chad R.; Rogers, Megan E.; Zimmerman, Gregory F.

    2010-01-01

    The Allegheny River in Pennsylvania supports a large and diverse freshwater-mussel community, including two federally listed endangered species, Pleurobema clava(Clubshell) and Epioblasma torulosa rangiana (Northern Riffleshell). It is recognized that river hydraulics and morphology play important roles in mussel distribution. To assess the hydraulic influences of bridge replacement on mussel habitat, metrics such as depth, velocity, and their derivatives (shear stress, Froude number) were collected or computed.

  2. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-11-01

    Full Text Available This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs, based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI, nutrient pollution index (NPI, and index of biological integrity (IBI in four different longitudinal regions (Groups I–IV. For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM model and the key major stressors in the river were identified by principal component analysis (PCA. Our model scores of integrated health responses (IHRs suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health..

  3. Habitat quality assessment for the Eurasian otter (Lutra lutra on the river Jajrood, Iran

    Directory of Open Access Journals (Sweden)

    Roohallah Mirzaei

    2010-06-01

    Full Text Available Abstract There is little information about the status and ecology of the Eurasian otter (Lutra lutra in Iran. We assessed the habitat suitability for otters of the River Jajrood, Tehran province, measuring, or visually estimating, 12 environmental parameters along 16 600 m long river stretches (sampling sites. The downstream stretches of the river were found to be more suitable for otters with respect to the upper part of its course. Although the assessments of habitat suitability for the otter may be affected by several limits, the current distribution of the species on the river agrees with the results of this study. The preservation of the otter in Tehran province should involve the restoration of the ecosystem of the River Jajrood in order to improve the length of suitable river stretches.
    Riassunto Stima dell’idoneità ambientale per la lontra (Lutra lutra del fiume Jajrood, Iran. Le informazioni relative alla lontra (Lutra lutra in Iran sono scarse. L’idoneità ambientale per la specie del fiume Jajrood, provincia di Tehran, è stata valutata, misurando o stimando 12 parametri ambientali lungo 16 stazioni di campionamento, coincidenti con tratti di fiume della lunghezza di 600 m. I tratti più a valle sono risultati più idonei rispetto al corso superiore del fiume. Malgrado i numerosi limiti del metodo di stima dell’idoneità ambientale adottato, i risultati sono in accordo con l’attuale distribuzione della lontra lungo il fiume Jajrood. La conservazione della lontra nella provincia di Tehran dovrebbe prevedere miglioramenti ambientali volti a incrementare lo sviluppo lineare degli habitat idonei lungo il fiume Jajrood.

    doi:10.4404/hystrix-20.2-4447

  4. Fine-scale habitat preference of green sturgeon (Acipenser medirostris) within three spawning locations in the Sacramento River, California

    Science.gov (United States)

    Wyman, Megan T.; Thomas, Michael J.; McDonald, Richard R.; Hearn, Alexander R.; Battleson, Ryan D.; Chapman, Eric D.; Kinzel, Paul J.; Minear, J. Tobey; Mora, Ethan A.; Nelson, Jonathan M.; Pagel, Matthew D.; Klimley, A. Peter

    2018-01-01

    Vast sections of the Sacramento River have been listed as critical habitat by the National Marine Fisheries Service for green sturgeon spawning (Acipenser medirostris), yet spawning is known to occur at only a few specific locations. This study reveals the range of physical habitat variables selected by adult green sturgeon during their spawning period. We integrated fine-scale fish positions, physical habitat characteristics, discharge, bathymetry, and simulated velocity and depth using a 2-dimensional hydraulic model (FaSTMECH). The objective was to create habitat suitability curves for depth, velocity, and substrate type within three known spawning locations over two years. An overall cumulative habitat suitability score was calculated that averaged the depth, velocity, and substrate scores over all fish, sites, and years. A weighted usable area (WUA) index was calculated throughout the sampling periods for each of the three sites. Cumulative results indicate that the microhabitat characteristics most preferred by green sturgeon in these three spawning locations were velocities between 1.0-1.1 m/s, depths of 8-9 m, and gravel and sand substrate. This study provides guidance for those who may in the future want to increase spawning habitat for green sturgeon within the Sacramento River.

  5. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume III, Appendix B, Fisheries Report; Appendix C, Engineering Alternative Evaluation; Appendix D, Benefit/Cost Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

    1985-06-01

    Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developd to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. This volume contains appendices of habitat survey data, potential production, resident fish population data, upstream passage designs, and benefit/cost calculations. (ACR)

  6. Ecological interdependences between fish fauna and habitat structures of the Elbe river; Oekologische Zusammenhaenge zwischen Fischgemeinschafts- und Lebensraumstrukturen der Elbe

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, R. [Institut fuer Hydrobiologie und Fischereiwissenschaft - Elbelabor, Universitaet Hamburg, Hamburg (Germany); Buslovich, R.; Gerkens, M. [and others

    2000-07-01

    Fluvial fishes are good indicators of the habitat quality in river systems. However, no quantitative data about the relationships between the ecomorphology of the Elbe River and its fish community were available. Therefore, fish ecological assessments or predictions of the development of the fish populations were not possible. Since March 1997, a project financed by the Federal Ministry of Education, Science, Research and Technology focuses on mathematical modelling of the habitat used of all life history stages of the fish fauna. The results of the project shall support decisions in the framework of changing ecomorphology in the Elbe River. (orig.)

  7. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  8. Qualitative inventory of fish fauna from Danube River around Cama Dinu islets

    Directory of Open Access Journals (Sweden)

    NASTASE Aurel

    2006-09-01

    Full Text Available The purpose of fish fauna inventory was to find out scientific grounds that protected species are present and need declaration of Cama Dinu islets as protected area. The inventory was undertaken in June 2004, by fish sampling, questionnaires and fishery observation. A number of 55 out of 65 species reviewed from Romanian and Bulgarian authors have found. The Danube River has valuable ecologically fish species to justify declaration of Cama Dinu islets as protected area according with Romanian Law 462/2001: 12 species which conservation need establish of protected area - annex 3; 4 species that need a strict protection - annex 4; 9 species of European Community interest that need special management measures.

  9. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary and Their Implications for Managing River Flows and Restoring Estuarine Habitat, Physical Sciences Component, Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Jay, David A. [Portland State University

    2009-08-03

    Long-term changes and fluctuations in river flow, water properties, tides, and sediment transport in the Columbia River and its estuary have had a profound effect on Columbia River salmonids and their habitat. Understanding the river-flow, temperature, tidal, and sediment-supply regimes of the Lower Columbia River (LCR) and how they interact with habitat is, therefore, critical to development of system management and restoration strategies. It is also useful to separate management and climate impacts on hydrologic properties and habitat. This contract, part of a larger project led by the National Oceanic and Atmospheric Administration (NOAA), consists of three work elements, one with five tasks. The first work element relates to reconstruction of historic conditions in a broad sense. The second and third elements consist, respectively, of participation in project-wide integration efforts, and reporting. This report focuses on the five tasks within the historic reconstruction work element. It in part satisfies the reporting requirement, and it forms the basis for our participation in the project integration effort. The first task consists of several topics related to historic changes in river stage and tide. Within this task, the chart datum levels of 14 historic bathymetric surveys completed before definition of Columbia River Datum (CRD) were related to CRD, to enable analysis of these surveys by other project scientists. We have also modeled tidal datums and properties (lower low water or LLW, higher high water or HHW, mean water level or MWL, and greater diurnal tidal range or GDTR) as a function of river flow and tidal range at Astoria. These calculations have been carried for 10 year intervals (1940-date) for 21 stations, though most stations have data for only a few time intervals. Longer-term analyses involve the records at Astoria (1925-date) and Vancouver (1902-date). Water levels for any given river flow have decreased substantially (0.3-1.8 m, depending

  10. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  11. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Simenstad, Charles A.; Campbell, Lance [Northwest Fisheries Science Center

    2009-05-15

    In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal

  12. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2

  13. Habitat persistence for sedentary organisms in managed rivers: the case for the federally endangered dwarf wedgemussel (Alasmidonta heterodon) in the Delaware River

    Science.gov (United States)

    Maloney, Kelly O.; Lellis, William A.; Bennett, Randy M.; Waddle, Terry J.

    2012-01-01

    1. To manage the environmental flow requirements of sedentary taxa, such as mussels and aquatic insects with fixed retreats, we need a measure of habitat availability over a variety of flows (i.e. a measure of persistent habitat). Habitat suitability measures in current environmental flow assessments are measured on a ‘flow by flow’ basis and thus are not appropriate for these taxa. Here, we present a novel measure of persistent habitat suitability for the dwarf wedgemussel (Alasmidonta heterodon), listed as federally endangered in the U.S.A., in three reaches of the Delaware River. 2. We used a two-dimensional hydrodynamic model to quantify suitable habitat over a range of flows based on modelled depth, velocity, Froude number, shear velocity and shear stress at three scales (individual mussel, mussel bed and reach). Baseline potentially persistent habitat was quantified as the sum of pixels that met all thresholds identified for these variables for flows ≥40 m3 s−1, and we calculated the loss of persistently suitable habitat by sequentially summing suitable habitat estimates at lower flows. We estimated the proportion of mussel beds exposed at each flow and the amount of change in the size of the mussel bed for one reach. 3. For two reaches, mussel beds occupied areas with lower velocity, shear velocity, shear stress and Froude number than the reach average at all flows. In the third reach, this was true only at higher flows. Together, these results indicate that beds were possible refuge areas from the effects of these hydrological parameters. Two reaches showed an increase in the amount of exposed mussel beds with decreasing flow. 4. Baseline potentially persistent habitat was less than half the areal extent of potentially suitable habitat, and it decreased with decreasing flow. Actually identified beds and modelled persistent habitat showed good spatial overlap, but identified beds occupied only a portion of the total modelled persistent

  14. Biological and Physical Inventory of the Streams within the Nez Perce Reservation; Juvenile Steelhead Survey and Factors that Affect Abundance in Selected Streams in the Lower Clearwater River Basin, Idaho, 1983-1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A.; Johnson, David B. (Nez Perce Tribe, Lapwai, ID)

    1986-08-01

    A biological and physical inventory of selected tributaries in the lower Clearwater River basin was conducted to collect information for the development of alternatives and recommendations for the enhancement of the anadromous fish resources in streams on the Nez Perce Reservation. Five streams within the Reservation were selected for study: Bedrock and Cottonwood Creeks were investigated over a two year period (1983 to 1984) and Big Canyon, Jacks and Mission Creeks were studied for one year (1983). Biological information was collected and analyzed on the density, biomass, production and outmigration of juvenile summer steelhead trout. Physical habitat information was collected on available instream cover, stream discharge, stream velocity, water temperature, bottom substrate, embeddedness and stream width and depth. The report focuses on the relationships between physical stream habitat and juvenile steelhead trout abundance.

  15. Wildlife habitat, range, recreation, hydrology, and related research using Forest Inventory and Analysis surveys: a 12-year compendium

    Science.gov (United States)

    Victor A. Rudis

    1991-01-01

    More than 400 publications are listed for the period 1979 to 1990; these focus on water, range, wildlife habitat, recreation, and related studies derived from U.S. Department of Agriculture, forest Service, Forest Inventory and Analysis unit surveys conducted on private and public land in the continental United States. Included is an overview of problems and progress...

  16. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    Science.gov (United States)

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  17. Habitat use of age 0 Alabama shad in the Pascagoula River drainage, USA

    Science.gov (United States)

    P. F. Mickle; J.F. Schaefer; S.B. Adams; B.R. Kreiser

    2010-01-01

    Alabama shad (Alosa alabamae) is an anadromous species that spawns in Gulf of Mexico drainages and is a NOAA Fisheries Species of Concern. Habitat degradation and barriers to migration are considered contributing factors to range contraction that has left just the Pascagoula River drainage population in Mississippi. We studied juvenile life history and autecology in...

  18. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.

    Science.gov (United States)

    Papadaki, Christina; Soulis, Konstantinos; Muñoz-Mas, Rafael; Martinez-Capel, Francisco; Zogaris, Stamatis; Ntoanidis, Lazaros; Dimitriou, Elias

    2016-01-01

    The climate change in the Mediterranean area is expected to have significant impacts on the aquatic ecosystems and particular in the mountain rivers and streams that often host important species such as the Salmo farioides, Karaman 1938. These impacts will most possibly affect the habitat availability for various aquatic species resulting to an essential alteration of the water requirements, either for dams or other water abstractions, in order to maintain the essential levels of ecological flow for the rivers. The main scope of this study was to assess potential climate change impacts on the hydrological patterns and typical biota for a south-western Balkan mountain river, the Acheloos. The altered flow regimes under different emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were estimated using a hydrological model and based on regional climate simulations over the study area. The Indicators of Hydrologic Alteration (IHA) methodology was then used to assess the potential streamflow alterations in the studied river due to predicted climate change conditions. A fish habitat simulation method integrating univariate habitat suitability curves and hydraulic modeling techniques were used to assess the impacts on the relationships between the aquatic biota and hydrological status utilizing a sentinel species, the West Balkan trout. The most prominent effects of the climate change scenarios depict severe flow reductions that are likely to occur especially during the summer flows, changing the duration and depressing the magnitude of the natural low flow conditions. Weighted Usable Area-flow curves indicated the limitation of suitable habitat for the native trout. Finally, this preliminary application highlighted the potential of science-based hydrological and habitat simulation approaches that are relevant to both biological quality elements (fish) and current EU Water policy to serve as efficient tools for the estimation of possible climate

  19. 1988 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay...

  20. 1992 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay...

  1. 2000 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay...

  2. Heavy Metal Content in Chilean Fish Related to Habitat Use, Tissue Type and River of Origin.

    Science.gov (United States)

    Copaja, S V; Pérez, C A; Vega-Retter, C; Véliz, D

    2017-12-01

    In this study, we analyze the concentration of ten metals in two freshwater fish-the benthic catfish Trichomycterus areolatus and the limnetic silverside Basilichthys microlepidotus-in order to detect possible accumulation differences related to fish habitat (benthic or pelagic), tissue type (gill, liver and muscle), and the river of origin (four different rivers) in central Chile. The MANOVA performed with all variables and metals, revealed independent effects of fish, tissue and river. In the case of the fish factor, Cu, Cr, Mo and Zn showed statistically higher concentrations in catfish compared with silverside for all tissues and in all rivers (p food sources and respiration.

  3. Aquatic habitat modifications in La Plata River basin, Patagonia and associated marine areas.

    Science.gov (United States)

    Mugetti, Ana Cristina; Calcagno, Alberto Tomás; Brieva, Carlos Alberto; Giangiobbe, María Silvia; Pagani, Andrea; Gonzalez, Silvia

    2004-02-01

    This paper describes the environmental characteristics and situation of aquatic habitats and communities in southern continental and maritime areas of southeastern South America (Patagonian Shelf GIWA Subregion), resulting from an overall assessment carried out within the framework of a GIWA project, mostly on the basis of publicly available data. The main focus of the analysis was on the current situation of transboundary water resources and anthropogenic impacts. In the inland waters, habitat and community modifications result, principally, from dams and reservoirs built in the main watercourses for hydroelectric power generation and other uses. The transformation of lotic environments into lentic ones have affected habitats and altered biotic communities. In the La Plata River basin, invasive exotic species have displaced native ones. Habitats in the ocean have been degraded, as their biodiversity becomes affected by overfishing and pollution. This article includes a discussion on the causal chain and the policy options elaborated for the Coastal Ecosystem of Buenos Aires province and the Argentinean-Uruguayan Common Fishing Zone, where fishing resources are shared by both countries.

  4. Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan

    Science.gov (United States)

    Sakata, Masayuki K.; Maki, Nobutaka; Sugiyama, Hideki; Minamoto, Toshifumi

    2017-12-01

    Freshwater biodiversity has been severely threatened in recent years, and to conserve endangered species, their distribution and breeding habitats need to be clarified. However, identifying breeding sites in a large area is generally difficult. Here, by combining the emerging environmental DNA (eDNA) analysis with subsequent traditional collection surveys, we successfully identified a breeding habitat for the critically endangered freshwater fish Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan, which is one of the original habitats of this species. Based on DNA cytochrome B sequences of A. typus and closely related species, we developed species-specific primers and a probe that were used in real-time PCR for detecting A. typus eDNA. After verifying the specificity and applicability of the primers and probe on water samples from known artificial habitats, eDNA analysis was applied to water samples collected at 99 sites along Omono River. Two of the samples were positive for A. typus eDNA, and thus, small fixed nets and bottle traps were set out to capture adult fish and verify egg deposition in bivalves (the preferred breeding substrate for A. typus) in the corresponding regions. Mature female and male individuals and bivalves containing laid eggs were collected at one of the eDNA-positive sites. This was the first record of adult A. typus in Omono River in 11 years. This study highlights the value of eDNA analysis to guide conventional monitoring surveys and shows that combining both methods can provide important information on breeding sites that is essential for species' conservation.

  5. Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan.

    Science.gov (United States)

    Sakata, Masayuki K; Maki, Nobutaka; Sugiyama, Hideki; Minamoto, Toshifumi

    2017-11-14

    Freshwater biodiversity has been severely threatened in recent years, and to conserve endangered species, their distribution and breeding habitats need to be clarified. However, identifying breeding sites in a large area is generally difficult. Here, by combining the emerging environmental DNA (eDNA) analysis with subsequent traditional collection surveys, we successfully identified a breeding habitat for the critically endangered freshwater fish Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan, which is one of the original habitats of this species. Based on DNA cytochrome B sequences of A. typus and closely related species, we developed species-specific primers and a probe that were used in real-time PCR for detecting A. typus eDNA. After verifying the specificity and applicability of the primers and probe on water samples from known artificial habitats, eDNA analysis was applied to water samples collected at 99 sites along Omono River. Two of the samples were positive for A. typus eDNA, and thus, small fixed nets and bottle traps were set out to capture adult fish and verify egg deposition in bivalves (the preferred breeding substrate for A. typus) in the corresponding regions. Mature female and male individuals and bivalves containing laid eggs were collected at one of the eDNA-positive sites. This was the first record of adult A. typus in Omono River in 11 years. This study highlights the value of eDNA analysis to guide conventional monitoring surveys and shows that combining both methods can provide important information on breeding sites that is essential for species' conservation.

  6. The Upper Santa Ynez River as Habitat for a Diverse Riparian Flora and Fauna

    Science.gov (United States)

    M. Violet Gray; James M. Greaves; Thomas E. Olson

    1989-01-01

    The upper Santa Ynez River, Santa Barbara County, provides habitats for a relatively large population of least Bell's vireos (Vireo bellii pusillus), as well as diverse riparian flora and fauna. Of particular interest is the richness of the species within particular guilds. Four species of vireos: least Bell's, warbling (Vireo...

  7. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin of Washington : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Glen Wesley; Karl, David; Coyle, Terrence

    2001-11-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77. 12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000).

  8. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

    2008-03-18

    This document is the first annual report for the study titled “Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River.” Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program.

  9. Natural Propagation and Habitat Improvement, Volume 1, Oregon, Supplement B, White River Falls Fish Passage, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1984-04-01

    White River Falls are located in north central Oregon approximately 25 miles south of the City of The Dalles. The project site is characterized by a series of three natural waterfalls with a combined fall of 180 ft. In the watershed above the falls are some 120 miles of mainstem habitat and an undetermined amount of tributary stream habitat that could be opened to anadromous fish, if passage is provided around the falls. The purpose of this project is to determine feasibility of passage, select a passage scheme, and design and construct passage facilities. This report provides information on possible facilities that would pass adult anadromous fish over the White River Falls. 25 references, 29 figures, 12 tables. (ACR)

  10. Hood River and Pelton Ladder monitoring and evaluation project and Hood River fish habitat project : annual progress report 1999-2000.; ANNUAL

    International Nuclear Information System (INIS)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-01-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat[contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000

  11. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  12. Seasonal changes in caddis larvae assemblages in river-floodplain habitats along a hydrological connectivity gradient

    NARCIS (Netherlands)

    Van den Brink, F.W.B.; Van der Velde, G.; Wijnhoven, S.

    2013-01-01

    In order to assess the impact of seasonality versus connectivity on the ecological quality of the Lower Rhine river-floodplain habitats, we studied the seasonal variation in diversity and species assemblages of caddis larvae by monthly sampling of the littoral zone of four water bodies over a

  13. 1970's Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay...

  14. User's guide to FBASE: Relational database software for managing R1/R4 (Northern/Intermountain Regions) fish habitat inventory data

    Science.gov (United States)

    Sherry P. Wollrab

    1999-01-01

    FBASE is a microcomputer relational database package that handles data collected using the R1/R4 Fish and Fish Habitat Standard Inventory Procedures (Overton and others 1997). FBASE contains standard data entry screens, data validations for quality control, data maintenance features, and summary report options. This program also prepares data for importation into an...

  15. Predicted effects of future climate warming on thermal habitat suitability for Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in rivers in Wisconsin, USA

    Science.gov (United States)

    Lyons, John D.; Stewart, Jana S.

    2015-01-01

    The Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) may be threatened by future climate warming. The purpose of this study was to identify river reaches in Wisconsin, USA, where they might be vulnerable to warming water temperatures. In Wisconsin, A. fulvescens is known from 2291 km of large-river habitat that has been fragmented into 48 discrete river-lake networks isolated by impassable dams. Although the exact temperature tolerances are uncertain, water temperatures above 28–30°C are potentially less suitable for this coolwater species. Predictions from 13 downscaled global climate models were input to a lotic water temperature model to estimate amounts of potential thermally less-suitable habitat at present and for 2046–2065. Currently, 341 km (14.9%) of the known habitat are estimated to regularly exceed 28°C for an entire day, but only 6 km (0.3%) to exceed 30°C. In 2046–2065, 685–2164 km (29.9–94.5%) are projected to exceed 28°C and 33–1056 km (1.4–46.1%) to exceed 30°C. Most river-lake networks have cooler segments, large tributaries, or lakes that might provide temporary escape from potentially less suitable temperatures, but 12 short networks in the Lower Fox and Middle Wisconsin rivers totaling 93.6 km are projected to have no potential thermal refugia. One possible adaptation to climate change could be to provide fish passage or translocation so that riverine Lake Sturgeon might have access to more thermally suitable habitats.

  16. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin within Washington, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Glen Wesley; Trump, Jeremy; Karl, David

    2002-12-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout (Salvelinus confluentus) were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead (Oncorhynchus mykiss) were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about these threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2001 field season (March to November, 2001).

  17. Integrated assessment of river health based on the conditions of water quality,aquatic life and physical habitat

    Institute of Scientific and Technical Information of China (English)

    MENG Wei; ZHANG Nan; ZHANG Yuan; ZHENG Binghui

    2009-01-01

    The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index.Based on the method of cluster analysis (CA) for water quality indices, it reveals that heavily polluted sites of Liao River are located at estuary and mainstream.The aquatic species surveyed were attached algae and benthic invertebrates.The result shows that the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) are degrading as the chemical and physical quality of water bodies deteriorating.Physiochemical parameters, BOD5, CODCr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, were statistically analyzed with principal component analysis and correlation analysis.The statistical results were incorporated into the integrated assessing water quality index, combining fecal coliform count, attached algae diversity, B-IBI and physical habitat quality score, a comprehensive integrated assessing system of river ecological health was established.Based on the systimetic assesment, the assessed sites are categorized into 9 "healthy" and "sub-healthy" sites and 8 "sub-sick" and "sick" sites.

  18. River Floodplains as Habitat and Bio-Corridors for Distribution of Land Snails: Their Past and Present

    Directory of Open Access Journals (Sweden)

    Horáčková Jitka

    2015-12-01

    Full Text Available River floodplains of Czech rivers serve as refugia to woodland or hydrophilous gastropods, in current intensively agriculturally utilised, urbanised and largely fragmented landscape. This habitat often form one of the last refuge and replace the natural habitat of these species. River floodplains also represent linear bio-corridors in landscape and allow gastropods to spread through the landscape in both directions, up and down the stream. We showed based on available fossil mollusc successions that development of the floodplain mollusc fauna took place quite different way in various river floodplains, depending on their specifics and geographical location, because especially the ones situated in the chernozem area of the Czech Republic had very different history in comparison with those in higher altitudes. The species richness and composition of recent floodplain malacofauna arises from historical development of particular area/site and depends also on environmental factors such as an elevation, humidity gradient, vegetation type and its biomass, light conditions of the site and soil reaction. Recently, the invasive plants represent a serious problem for current floodplain ecosystems; species richness and abundances of terrestrial mollusc floodplain assemblages are changing due to their effect. The impact on gastropods is species-specific and was described for the following species: Impatiens glandulifera, Fallopia japonica subsp. japonica, F. sachalinensis, F. ×bohemica.

  19. 76 FR 76337 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Lost River...

    Science.gov (United States)

    2011-12-07

    ... information on the Lost River sucker's and shortnose sucker's biology and habitat, population abundance and... consumed chironomid larvae as well as micro-crustaceans (amphipods, copepods, cladocerans, and ostracods... information above, we identify an abundant food base, including a broad array of chironomids, micro...

  20. Assessment of salmonids and their habitat conditions in the Walla Walla River Basin of Washington : 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Mendel, Glen Wesley; Karl, David; Coyle, Terrence

    2001-01-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000)

  1. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    Science.gov (United States)

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  2. Ship Emission Inventories in Estuary of the Yangtze River Using Terrestrial AIS Data

    Directory of Open Access Journals (Sweden)

    Xin Yao

    2016-12-01

    Full Text Available Estuary forms a transition zone between inland river and open sea. In China, the estuary of the Yangtze River plays a vital role in connecting the inland and oversea shipping, and witnesses heavy vessel traffic in the recent decades. Nowadays, more attentions have been directed to the issue of ship pollution in busy waterways. In order to investigate the ship emission inventory, this paper presents an Automatic Identification System(AIS based method. AIS data is the realistic data of vessel traffic including dynamic information (position, speed, course, etc. and static information (ship type, dimensions, name, etc.. According to ship dimensions, the power of engines is estimated for different ship types. By using AIS based bottom-up approach, ship emission inventories and shares of air pollutants and GHGs (Greenhouse gases are developed. Spatial distribution of ship emissions is illustrated in the form of heat map. As a case study, the emission inventories are analyzed using AIS data of 2010 in the estuary, and following results are made:(1 shares of the emission are cruise ships 6.59%, bulk carriers 5.16%, container ships 52.96%, tankers 15.16%, fishing ships 9.16%, other ships 10.97%; (2 CO2 is the dominant part of the emission. (3 Areas of highest emission intensity are generally clustered around the South Channel, the North Channel and ports in the vicinity. The proposed method is promising because it is derived from the AIS data which contains not only real data of individual ship but also vessel traffic situation in the study area. It can server as a reference for other researchers and policy makers working in this field.

  3. Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America

    Science.gov (United States)

    Boyle, T.P.; Caziani, S.M.; Waltermire, R.G.

    2004-01-01

    The diverse set of wetlands in southern altiplano of South America supports a number of endemic and migratory waterbirds. These species include endangered endemic flamingos and shorebirds that nest in North America and winter in the altiplano. This research developed maps from nine Landsat Thematic Mapper (TM) images (254,300 km2) to provide an inventory of aquatic waterbird habitats. Image processing software was used to produce a map with a classification of wetlands according to the habitat requirements of different types of waterbirds. A hierarchical procedure was used to, first, isolate the bodies of water within the TM image; second, execute an unsupervised classification on the subsetted image to produce 300 signatures of cover types, which were further subdivided as necessary. Third, each of the classifications was examined in the light of field data and personal experience for relevance to the determination of the various habitat types. Finally, the signatures were applied to the entire image and other adjacent images to yield a map depicting the location of the various waterbird habitats in the southern altiplano. The data sets referenced with a global positioning system receiver were used to test the classification system. Multivariate analysis of the bird communities censused at each lake by individual habitats indicated a salinity gradient, and then the depth of the water separated the birds. Multivariate analysis of the chemical and physical data from the lakes showed that the variation in lakes were significantly associated with difference in depth, transparency, latitude, elevation, and pH. The presence of gravel bottoms was also one of the qualities distinguishing a group of lakes. This information will be directly useful to the Flamingo Census Project and serve as an element for risk assessment for future development.

  4. A Bayesian spawning habitat suitability model for American shad in southeastern United States rivers

    Science.gov (United States)

    Hightower, Joseph E.; Harris, Julianne E.; Raabe, Joshua K.; Brownell, Prescott; Drew, C. Ashton

    2012-01-01

    Habitat suitability index models for American shad Alosa sapidissima were developed by Stier and Crance in 1985. These models, which were based on a combination of published information and expert opinion, are often used to make decisions about hydropower dam operations and fish passage. The purpose of this study was to develop updated habitat suitability index models for spawning American shad in the southeastern United States, building on the many field and laboratory studies completed since 1985. We surveyed biologists who had knowledge about American shad spawning grounds, assembled a panel of experts to discuss important habitat variables, and used raw data from published and unpublished studies to develop new habitat suitability curves. The updated curves are based on resource selection functions, which can model habitat selectivity based on use and availability of particular habitats. Using field data collected in eight rivers from Virginia to Florida (Mattaponi, Pamunkey, Roanoke, Tar, Neuse, Cape Fear, Pee Dee, St. Johns), we obtained new curves for temperature, current velocity, and depth that were generally similar to the original models. Our new suitability function for substrate was also similar to the original pattern, except that sand (optimal in the original model) has a very low estimated suitability. The Bayesian approach that we used to develop habitat suitability curves provides an objective framework for updating the model as new studies are completed and for testing the model's applicability in other parts of the species' range.

  5. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  6. Assessing predation risks for small fish in a large river ecosystem between contrasting habitats and turbidity conditions

    Science.gov (United States)

    Dodrill, Michael J.; Yard, Mike; Pine, William E.

    2016-01-01

    This study examined predation risk for juvenile native fish between two riverine shoreline habitats, backwater and debris fan, across three discrete turbidity levels (low, intermediate, high) to understand environmental risks associated with habitat use in a section of the Colorado River in Grand Canyon, AZ. Inferences are particularly important to juvenile native fish, including the federally endangered humpback chub Gila cypha. This species uses a variety of habitats including backwaters which are often considered important rearing areas. Densities of two likely predators, adult rainbow trout Oncorhynchus mykiss and adult humpback chub, were estimated between habitats using binomial mixture models to examine whether higher predator density was associated with patterns of predation risk. Tethering experiments were used to quantify relative predation risk between habitats and turbidity conditions. Under low and intermediate turbidity conditions, debris fan habitat showed higher relative predation risk compared to backwaters. In both habitats the highest predation risk was observed during intermediate turbidity conditions. Density of likely predators did not significantly differ between these habitats. This information can help managers in Grand Canyon weigh flow policy options designed to increase backwater availability or extant turbidity conditions.

  7. The influence of floodplain geomorphology and hydrologic connectivity on alligator gar (Atractosteus spatula) habitat along the embanked floodplain of the Lower Mississippi River

    Science.gov (United States)

    van der Most, Merel; Hudson, Paul F.

    2018-02-01

    The floodplain geomorphology of large lowland rivers is intricately related to aquatic ecosystems dependent upon flood pulse dynamics. The alligator gar (Atractosteus spatula) is native to the Lower Mississippi River and dependent upon floodplain backwater areas for spawning. In this study we utilize a geospatial approach to develop a habitat suitability index for alligator gar that explicitly considers hydrologic connectivity and the floodplain geomorphology along a frequently inundated segment of the Lower Mississippi River. The data sets include Landsat imagery, a high-resolution LiDAR digital elevation model (DEM), National Hydrography Dataset (NHD), and hydrologic and geomorphic data. A habitat suitability index is created based on the extent and frequency of inundation, water depth, temperature, and vegetation. A comparison between the remote sensing approach and the NHD revealed substantial differences in the area and location of water bodies available for alligator gar spawning. The final habitat suitability index indicates that a modest proportion (19%) of the overall embanked floodplain is available for alligator gar spawning. Opportunities exist for management efforts to utilize engineered and natural geomorphic features to facilitate hydrologic connectivity at flow levels below flood stage that would expand the habitat of alligator gar across the floodplain. The study results have direct implications regarding environmental restoration of the Lower Mississippi, an iconic example of an embanked meandering river floodplain.

  8. Effects of Host Phylogeny and Habitats on Gut Microbiomes of Oriental River Prawn (Macrobrachium nipponense)

    Science.gov (United States)

    Chen, Po-Cheng; Weng, Francis Cheng-Hsuan; Jean, Wen Dar; Wang, Daryi

    2015-01-01

    The gut microbial community is one of the richest and most complex ecosystems on earth, and the intestinal microbes play an important role in host development and health. Next generation sequencing approaches, which rapidly produce millions of short reads that enable the investigation on a culture independent basis, are now popular for exploring microbial community. Currently, the gut microbiome in fresh water shrimp is unexplored. To explore gut microbiomes of the oriental river prawn (Macrobrachium nipponense) and investigate the effects of host genetics and habitats on the microbial composition, 454 pyrosequencing based on the 16S rRNA gene were performed. We collected six groups of samples, including M. nipponense shrimp from two populations, rivers and lakes, and one sister species (M. asperulum) as an out group. We found that Proteobacteria is the major phylum in oriental river prawn, followed by Firmicutes and Actinobacteria. Compositional analysis showed microbial divergence between the two shrimp species is higher than that between the two populations of one shrimp species collected from river and lake. Hierarchical clustering also showed that host genetics had a greater impact on the divergence of gut microbiome than host habitats. This finding was also congruent with the functional prediction from the metagenomic data implying that the two shrimp species still shared the same type of biological functions, reflecting a similar metabolic profile in their gut environments. In conclusion, this study provides the first investigation of the gut microbiome of fresh water shrimp, and supports the hypothesis of host species-specific signatures of bacterial community composition. PMID:26168244

  9. Physical habitat predictors of Manayunkia speciosa distribution in the Klamath River and implications for management of Ceratomyxa shasta, a parasite with a complex life cycle

    Science.gov (United States)

    Jordan, M. S.; Alexander, J. D.; Grant, G. E.; Bartholomew, J. L.

    2011-12-01

    Management strategies for parasites with complex life cycles may target not the parasite itself, but one of the alternate hosts. One approach is to decrease habitat for the alternate host, and in river systems flow manipulations may be employed. Two-dimensional hydraulic models can be powerful tools for predicting the relationship between flow alterations and changes in physical habit, however they require a rigorous definition of physical habitat for the organism of interest. We present habitat characterization data for the case of the alternate host of a salmonid parasite and introduce how it will be used in conjunction with a 2-dimensional hydraulic model. Ceratomyxa shasta is a myxozoan parasite of salmonids that requires a freshwater polychaete Manayunkia speciosa to complete its life cycle. Manayunkia speciosa is a small (3mm) benthic filter-feeding worm that attaches itself perpendicularly to substrate through construction of a flexible tube. In the Klamath River, CA/OR, C. shasta causes significant juvenile salmon mortality, imposing social and economic losses on commercial, sport and tribal fisheries. An interest in manipulating habitat for the polychaete host to decrease the abundance of C. shasta has therefore developed. Unfortunately, there are limited data on the habitat requirements of M. speciosa or the influence of streamflow regime and hydraulics on population dynamics and infection prevalence. This work aims to address these data needs by identifying physical habitat variables that influence the distribution of M. speciosa and determining the relationship between those variables, M. speciosa population density, and C. shasta infection prevalence. Biological samples were collected from nine sites representing three river features (runs, pools, and eddies) within the Klamath River during the summer and fall of 2010 and 2011. Environmental data including depth, velocity, and substrate, were collected at each polychaete sampling location. We tested

  10. Physical characteristics of the lower San Joaquin River, California, in relation to white sturgeon spawning habitat, 2011–14

    Science.gov (United States)

    Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Daniel R.; Kinzel, Paul J.

    2017-07-19

    The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.During the first year of data collection (water

  11. Coastal habitats of the Elwha River, Washington- Biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    This report includes chapters that summarize the results of multidisciplinary studies to quantify and characterize the current (2011) status and baseline conditions of the lower Elwha River, its estuary, and the adjacent nearshore ecosystems prior to the historic removal of two long-standing dams that have strongly influenced river, estuary, and nearshore conditions. The studies were conducted as part of the U.S. Geological Survey Multi-disciplinary Coastal Habitats in Puget Sound (MD-CHIPS) project. Chapter 1 is the introductory chapter that provides background and a historical context for the Elwha River dam removal and ecosystem restoration project. In chapter 2, the volume and timing of sediment delivery to the estuary and nearshore are discussed, providing an overview of the sediment stored in the two reservoirs and the expected erosion mechanics of the reservoir sediment deposits after removal of the dams. Chapter 3 describes the geological background of the Olympic Peninsula and the geomorphology of the Elwha River and nearshore. Chapter 4 details a series of hydrological data collected by the MD-CHIPS Elwha project. These include groundwater monitoring, surface water-groundwater interactions in the estuary, an estimated surface-water budget to the estuary, and a series of temperature and salinity measurements. Chapter 5 details the work that has been completed in the nearshore, including the measurement of waves, tides, and currents; the development of a numerical hydrodynamic model; and a description of the freshwater plume entering the Strait of Juan de Fuca. Chapter 6 includes a characterization of the nearshore benthic substrate developed using sonar, which formed a habitat template used to design scuba surveys of the benthic biological communities. Chapter 7 describes the ecological studies conducted in the lower river and estuary and includes characterization of juvenile salmon diets and seasonal estuary utilization patterns using otolith analysis to

  12. Kootenai River fisheries investigations. Chapter 3: Mainstem habitat use and recruitment estimates of rainbow trout in the Kootenai River, Idaho. Annual report 1996

    International Nuclear Information System (INIS)

    Fredericks, J.; Hendricks, S.

    1997-09-01

    The objective of this study was to determine if recruitment is limiting the population of rainbow trout Oncorhynchus mykiss in the mainstem Kootenai River. The authors used snorkeling and electrofishing techniques to estimate juvenile rainbow trout density and total numbers in Idaho tributaries, and they trapped juvenile outmigrants to identify the age at which juvenile trout migrate from tributaries to the Kootenai River. The authors radio and reward-tagged post-spawn adult rainbow trout captured in Deep Creek to identify river reach and habitat used by those fish spawning and rearing in the Deep Creek drainage. They also conducted redd surveys in the Kootenai River to determine the extent of mainstem spawning. Based on the amount of available habitat and juvenile rainbow trout densities, the Deep Creek drainage was the most important area for juvenile production. Population estimates of age 0, age 1+, and age 2+ rainbow trout indicated moderate to high densities in several streams in the Deep Creek drainage whereas other streams, such as Deep Creek, had very low densities of juvenile trout. The total number of age 0, age 1+, and age 2+ rainbow trout in Deep Creek drainage in 1996 was estimated to be 63,743, 12,095, and 3,095, respectively. Radio telemetry efforts were hindered by the limited range of the transmitters, but movements of a radio-tagged trout and a returned reward tag indicated that at least a portion of the trout utilizing the Deep Creek drainage migrated downriver from the mouth of Deep Creek to the meandering section of river. They found no evidence of mainstem spawning by rainbow trout, but redd counting efforts were hindered by high flows from mid-April through June

  13. Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial valley

    Science.gov (United States)

    Lichtenberg, J.S.; King, S.L.; Grace, J.B.; Walls, S.C.

    2006-01-01

    Amphibian populations have declined worldwide. To pursue conservation efforts adequately, land managers need more information concerning amphibian habitat requirements. To address this need, we examined relationships between anurans and habitat characteristics of wetlands in the Lower Mississippi River Alluvial Valley (LMAV). We surveyed chorusing anurans in 31 wetlands in 2000 and 28 wetlands in 2001, and measured microhabitat variables along the shoreline within the week following each survey. We recorded 12 species of anurans during our study. Species richness was significantly lower in 2000 than 2001 (t-test, P < 0.001) and correlated with an ongoing drought. We found species richness to be significantly greater at lake sites compared to impoundment, swale, and riverine sites (ANOVA, P = 0.002). We used stepwise regression to investigate the wetland types and microhabitat characteristics associated with species richness of chorusing anurans. Microhabitat characteristics associated with species richness included dense herbaceous vegetation and accumulated litter along the shoreline. Individual species showed species-specific habitat associations. The bronze frog, American bullfrog, and northern cricket frog were positively associated with lake sites (Fisher's Exact Test, P < 0.05), however wetland type did not significantly influence any additional species. Using bivariate correlations, we found that six of the seven most common species had significant associations with microhabitat variables. Overall, our findings support the view that conservation and enhancement of amphibian communities in the LMAV and elsewhere requires a matrix of diverse wetland types and habitat conditions. ?? 2006, The Society of Wetland Scientists.

  14. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  15. Point and Fixed Plot Sampling Inventory Estimates at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Parresol, Bernard, R.

    2004-02-01

    This report provides calculation of systematic point sampling volume estimates for trees greater than or equal to 5 inches diameter breast height (dbh) and fixed radius plot volume estimates for trees < 5 inches dbh at the Savannah River Site (SRS), Aiken County, South Carolina. The inventory of 622 plots was started in March 1999 and completed in January 2002 (Figure 1). Estimates are given in cubic foot volume. The analyses are presented in a series of Tables and Figures. In addition, a preliminary analysis of fuel levels on the SRS is given, based on depth measurements of the duff and litter layers on the 622 inventory plots plus line transect samples of down coarse woody material. Potential standing live fuels are also included. The fuels analyses are presented in a series of tables.

  16. Factors affecting the reproduction, recruitment, habitat, and population dynamics of pallid sturgeon and shovelnose sturgeon in the Missouri River

    Science.gov (United States)

    Korschgen, Carl E.

    2007-01-01

    For more than a hundred years, human activities have modified the natural forces that control the Missouri River and its native fish fauna. While the ecological effects of regulation and channel engineering are understood in general, the current understanding is not sufficient to guide river restoration and management. The U.S. Geological Survey (USGS) is in the third year of a multiagency research effort to determine the ecological requirements for reproduction and survival of the endangered pallid sturgeon (Scaphirhynchus albus) and shovelnose sturgeon (Scaphirhynchus platorhynchus) in the Missouri River. The multidisciplinary research strategy includes components of behavior, physiology, habitat use, habitat availability, and population modeling of all life stages. Shovelnose sturgeon are used to design the strategy because they are closely related to the pallid sturgeon and are often used as a surrogate species to develop new research tools or to examine the effects of management actions or environmental variables on sturgeon biology and habitat use. During fiscal years 2005 and 2006, the U.S. Army Corps of Engineers (USACE) provided funds to USGS for tasks associated with the Comprehensive Sturgeon Research Program (CSRP) and for tasks associated with evaluation of the Sturgeon Response to Flow Modifications (SRFM). Because work activities of CSRP and SRFM are so integrated, we are providing information on activities that have been consolidated at the task level. These task activities represent chapters in this report.

  17. A Collaborative Geospatial Shoreline Inventory Tool to Guide Coastal Development and Habitat Conservation

    Directory of Open Access Journals (Sweden)

    Peter Gies

    2013-05-01

    Full Text Available We are developing a geospatial inventory tool that will guide habitat conservation, restoration and coastal development and benefit several stakeholders who seek mitigation and adaptation strategies to shoreline changes resulting from erosion and sea level rise. The ESRI Geoportal Server, which is a type of web portal used to find and access geospatial information in a central repository, is customized by adding a Geoinventory tool capability that allows any shoreline related data to be searched, displayed and analyzed on a map viewer. Users will be able to select sections of the shoreline and generate statistical reports in the map viewer to allow for comparisons. The tool will also facilitate map-based discussion forums and creation of user groups to encourage citizen participation in decisions regarding shoreline stabilization and restoration, thereby promoting sustainable coastal development.

  18. 2000 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve, St. Croix, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Program, for Salt River Bay...

  19. 1992 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve, St Croix, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Program, for Salt River Bay...

  20. 1988 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve, St. Croix, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Program, for Salt River Bay...

  1. Channel Morphology and Bed Sediment Characteristics Before and After Habitat Enhancement Activities in the Uridil Property, Platte River, Nebraska, Water Years 2005-2008

    Science.gov (United States)

    Kinzel, Paul J.

    2009-01-01

    Fluvial geomorphic data were collected by the United States Geological Survey from July 2005 to June 2008 (a time period within water years 2005 to 2008) to monitor the effects of habitat enhancement activities conducted in the Platte River Whooping Crane Maintenance Trust's Uridil Property, located along the Platte River, Nebraska. The activities involved the removal of vegetation and sand from the tops of high permanent islands and the placement of the sand into the active river channel. This strategy was intended to enhance habitat for migratory water birds by lowering the elevations of the high islands, thereby eliminating a visual obstruction for roosting birds. It was also thought that the bare sand on the lowered island surfaces could serve as potential habitat for nesting water birds. Lastly, the project supplied a local source of sediment to the river to test the hypothesis that this material could contribute to the formation of lower sandbars and potential nesting sites downstream. Topographic surveys on the islands and along river transects were used to quantify the volume of removed sand and track the storage and movement of the introduced sand downstream. Sediment samples were also collected to map the spatial distribution of river bed sediment sizes before and after the management activities. While the project lowered the elevation of high islands, observations of the sand addition indicated the relatively fine-grained sand that was placed in the active river channel was rapidly transported by the flowing water. Topographic measurements made 3 months after the sand addition along transects in the area of sediment addition showed net aggradation over measurements made in 2005. In the year following the sand addition, 2007, elevated river flows from local rain events generally were accompanied by net degradation along transects within the area of sediment addition. In the spring of 2008, a large magnitude flow event of approximately 360 cubic meters per

  2. Ground beetle habitat templets and riverbank integrity

    OpenAIRE

    Van Looy, Kris; Vanacker, Stijn; Jochems, Hans; De Blust, Geert; Dufrêne, M

    2006-01-01

    The habitat templet approach was used in a scale-sensitive bioindicator assessment for the ecological integrity of riverbanks and for specific responses to river management. Ground beetle habitat templets were derived from a catchment scale sampling, integrating the overall variety of bank types. This coarse-filter analysis was integrated in the reach scale fine-filtering approaches of community responses to habitat integrity and river management impacts. Higher species diversity was associat...

  3. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats of the Lower Columbia River, 2007–2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Storch, Adam; Skalski, J. R.; Bryson, Amanda J.; Mallette, Christine; Borde, Amy B.; Van Dyke, E.; Sobocinski, Kathryn L.; Sather, Nichole K.; Teel, David; Dawley, Earl M.; Ploskey, Gene R.; Jones, Tucker A.; Zimmerman, Shon A.; Kuligowski, D. R.

    2011-03-01

    The TFM study was designed to investigate the ecology and early life history of juvenile salmonids within shallow (<5 m) tidal freshwater habitats of the LCRE. We started collecting field data in June 2007. Since then, monthly sampling has occurred in the vicinity of the Sandy River delta (rkm 192–208) and at other sites and times in lower river reaches of tidal freshwater (rkm 110 to 141). This report provides a comprehensive synthesis of data covering the field period from June 2007 through April 2010.

  4. Distribution and habitat use of king rails in the Illinois and Upper Mississippi River valleys

    Science.gov (United States)

    Darrah, Abigail J.; Krementz, David G.

    2009-01-01

    The migratory population of the king rail (Rallus elegans) has declined dramatically during the past 40 years, emphasizing the need to identify habitat requirements of this species to help guide conservation efforts. To assess distribution and habitat use of king rails along the Illinois and Upper Mississippi valleys, USA, we conducted repeated call-broadcast surveys at 83 locations in 2006 and 114 locations in 2007 distributed among 21 study sites. We detected king rails at 12 survey locations in 2006 and 14 locations in 2007, illustrating the limited distribution of king rails in this region. We found king rails concentrated at Clarence Cannon National Wildlife Refuge, an adjacent private Wetlands Reserve program site, and B. K. Leach Conservation Area, which were located in the Mississippi River floodplain in northeast Missouri. Using Program PRESENCE, we estimated detection probabilities and built models to identify habitat covariates that were important in king rail site occupancy. Habitat covariates included percentage of cover by tall (> 1 m) and short (wetlands that were characterized by high water-vegetation interspersion and little or no cover by woody vegetation. Our results suggest that biologists can improve king rail habitat by implementing management techniques that reduce woody cover and increase vegetation-water interspersion in wetlands.

  5. Snake River Sockeye Salmon Habitat and Limnological Research : 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E.; Griswold, Robert G.; Gilliland, Kim

    2006-07-14

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2005 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee spawning in Fishhook and Alturas Lake creeks; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  6. Habitat use by a freshwater dolphin in the low-water season

    Science.gov (United States)

    Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard

    2012-01-01

    1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.

  7. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2002 Data Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.S. [Westslope Fisheries, Cranbrook, BC, Canada

    2003-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Water, Land, and Air Protection (MWLAP), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenay they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MWLAP applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that were undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  8. Hungry Horse Dam fisheries mitigation program: Fish passage and habitat improvement in the Upper Flathead River basin

    International Nuclear Information System (INIS)

    Knotek, W.L.; Deleray, M.; Marotz, B.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects

  9. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: The transversal floodplain gradient

    NARCIS (Netherlands)

    Aarts, B.G.W.; Van den Brink, F.W.B.; Nienhuis, P.H.

    2004-01-01

    In large European rivers the chemical water quality has improved markedly in recent decades, yet the recovery of the fish fauna is not proceeding accordingly. Important causes are the loss of habitats in the main river channels and their floodplains, and the diminished hydrological connectivity

  10. Landscape-scale Habitat Templates and Life Histories of Endangered and Invasive Fish Species in Large Rivers of the Mid-Continent USA (Invited)

    Science.gov (United States)

    Jacobson, R. B.; Braaten, P. J.; Chapman, D.; DeLonay, A. J.

    2013-12-01

    Many fish species migrate through river systems to complete their life cycles, occupying specific habitats during specific life stages. Regional geomorphology sets a template for their habitat-use patterns and ontogenetic development. In large rivers of the Mid-continent USA, understanding of relations of fish life histories to landscape-scale habitat templates informs recovery of endangered species and prevention of spread of invasive species. The endangered pallid sturgeon has evolved in the Missouri-Mississippi river system over 150 Ma. Its present-day distribution probably results from extensive drainage re-arrangements during the Pleistocene, followed by contemporary fragmentation. The reproductive and early life-stage needs of pallid sturgeon encompass hundreds of km, as adults migrate upstream to spawn and free embryos and larvae disperse downstream. Spawning requires coarse, hard substrate for incubation of adhesive eggs but adult pallid sturgeon are found predominately over sand, indicating that coarse substrate is a critical but transient habitat need. Once hatched, free-embryos initiate 9-17 days of downstream dispersal that distributes them over several hundreds of km. Lotic conditions at the dispersal terminus are required for survival. Persistent recruitment failure has been attributed to dams and channelization, which have fragmented migration and dispersal corridors, altered flow regimes, and diminished rearing habitats. Key elements of the natural history of this species remain poorly understood because adults are rare and difficult to observe, while the earliest life stages are nearly undetectable. Recent understanding has been accelerated using telemetry and hydroacoustics, but such assessments occur in altered systems and may not be indicative of natural behaviors. Restoration activities attempt - within considerable uncertainty -- to restore elements of the habitat template where they are needed. In comparison, invasive Asian carps have been

  11. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yao Wei J

    2009-04-01

    Full Text Available Abstract Background Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48 and isolated lakes (0.50. The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708, and the lowest was between Tangxun and Dongting lakes (0.1807. The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion The

  12. Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Larson, Kyle B.

    2012-04-09

    As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating SWH using four different elevation data

  13. Landslide inventory for the Little North Santiam River Basin, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven

    2010-01-01

    This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  14. Snake River sockeye salmon habitat and limnological research, annual report 1998

    International Nuclear Information System (INIS)

    Lewis, Bert

    2000-01-01

    In March of 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an inter-agency effort to save the Redfish Lake stock of O. nerka from extinction. This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the calendar year of 1998. Project objectives included; (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka released from the captive rearing program into Pettit and Alturas lakes; (2) fertilize Redfish, Pettit, and Alturas lakes; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) control the number of spawning kokanee in Fishhook Creek; (6) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity. Results by objective are summarized

  15. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    Science.gov (United States)

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  16. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    OpenAIRE

    A. K. Basheer; H. Lu; A. Omer; A. B. Ali; A. M. S. Abdelgader

    2016-01-01

    The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River bas...

  17. Remote identification of maternal polar bear (Ursus maritimus) denning habitat on the Colville River Delta, Alaska

    Science.gov (United States)

    Blank, Justin J.

    High resolution digital aerial photographs (1 foot pixel size) of the Colville River Delta, Alaska were examined in 3D, with the use of a digital photogrammetric workstation. Topographic features meeting the criteria required for adequate snow accumulation, and subsequent construction of terrestrial polar bear maternal dens, were identified and digitized into an ArcGIS line shapefile. Effectiveness, efficiency, and accuracy were improved when compared to previous polar bear denning habitat efforts which utilized contact photo prints and a pocket stereoscope in other geographic areas of northern Alaska. Accuracy of photograph interpretation was systematically evaluated visually from the air with the use of a helicopter and physically on the ground. Results show that the mapping efforts were successful in identifying den habitat 91.3% of the time. Knowledge denning habitat can improve and inform decision making by managers and regulators when considering travel and development in the study area. An understanding of polar bear denning habitat extent and location will be a crucial tool for planning activities within the study area in a way that minimizes conflicts with maternal dens.

  18. Impact of habitat diversity on the sampling effort required for the assessment of river fish communities and IBI

    NARCIS (Netherlands)

    Van Liefferinge, C.; Simoens, I.; Vogt, C.; Cox, T.J.S.; Breine, J.; Ercken, D.; Goethals, P.; Belpaire, C.; Meire, P.

    2010-01-01

    The spatial variation in the fish communities of four small Belgian rivers with variable habitat diversity was investigated by electric fishing to define the minimum sampling distance required for optimal fish stock assessment and determination of the Index of Biotic Integrity. This study shows that

  19. 1970's Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve, St. Croix, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Program, for Salt River Bay...

  20. The use of IFIM for evaluating effects of a flow alternative on fish habitat in a river system with competing water demands

    International Nuclear Information System (INIS)

    Miller, W.J.; Chadwick, J.W.; Canton, S.P.; Conklin, D.J. Jr.; Chrisp, E.Y.

    1991-01-01

    This paper reports on the Instream Flow Incremental Methodology (IFIM) which was used to evaluate instream fish habitat in the Platte River in central Nebraska. The IFIM analysis presented herein incorporates water temperature modeling and water quality, fish species composition and distribution, physical habitat data and 43 years of flow records. The Platte River system has competing water demands from hydropower, agricultural irrigation, municipal uses, recreation and most recently from recommended instream flows for fish and wildlife resources. IFIM was the tool used to develop the data base required for a comprehensive instream flow analysis of the system. When compared to the baseline flow regime, and alternative flow regime significantly increased modelled fish habitat area during critical periods of the year. The time series results demonstrated that the flow alternative would be beneficial to the existing fish resources, while still providing water for power production and irrigation

  1. Longitudinal patterns of fish assemblages, aquatic habitat, and water temperature in the Lower Crooked River, Oregon

    Science.gov (United States)

    Torgersen, Christian E.; Hockman-Wert, David P.; Bateman, Douglas S.; Leer, David W.; Gresswell, Robert E.

    2007-01-01

    The Lower Crooked River is a remarkable groundwater-fed stream flowing through vertical basalt canyons in the Deschutes River Valley ecoregion in central Oregon (Pater and others, 1998). The 9-mile section of the river between the Crooked River National Grasslands boundary near Ogden Wayside and river mile (RM) 8 is protected under the National Wild and Scenic Rivers Act (16 U.S.C. 1271-1287) for its outstandingly remarkable scenic, recreational, geologic, hydrologic, wildlife, and botanical values (ORVs), and significant fishery and cultural values. Groundwater springs flow directly out of the canyon walls into the Lower Crooked River and create a unique hydrologic setting for native coldwater fish, such as inland Columbia Basin redband trout (Oncorhynchus mykiss gairdneri). To protect and enhance the ORVs that are the basis for the wild and scenic designation, the Bureau of Land Management (BLM) has identified the need to evaluate, among other conditions, fish presence and habitat use of the Lower Crooked River. The results of this and other studies will provide a scientific basis for communication and cooperation between the BLM, Oregon Water Resources Department, Oregon Department of Fish and Wildlife (ODFW) and all water users within the basin. These biological studies initiated by the BLM in the region reflect a growing national awareness of the impacts of agricultural and municipal water use on the integrity of freshwater ecosystems.

  2. Habitat associations of small mammals in southern Brazil and use of regurgitated pellets of birds of prey for inventorying a local fauna

    Directory of Open Access Journals (Sweden)

    DR. Scheibler

    Full Text Available We inventoried terrestrial small mammals in an agricultural area in southern Brazil by using trapping and prey consumed by Barn Owls (Tyto alba and White-tailed Kites (Elanus leucurus. Small mammals were trapped in three habitat types: corn fields, uncultivated fields ("capoeiras", and native forest fragments. A total of 1,975 small mammal specimens were trapped, another 2,062 identified from the diet of Barn Owls, and 2,066 from the diet of White-tailed Kites. Both trapping and prey in the predators' diet yielded 18 small mammal species: three marsupials (Didelphis albiventris, Gracilinanus agilis, and Monodelphis dimidiata and 15 rodents (Akodon paranaensis, Bruceppatersonius iheringi, Calomys sp., Cavia aperea, Euryzygomatomys spinosus, Holochilus brasiliensis, Mus musculus, Necromys lasiurus, Nectomys squamipes, Oligoryzomys nigripes, Oryzomys angouya, Oxymycterus sp.1, Oxymycterus sp.2, Rattus norvegicus, and Rattus rattus (Linnaeus, 1758. The greatest richness was found in the uncultivated habitat. We concluded that the three methods studied for inventorying small mammals (prey in the diet of Barn Owls, White-tailed Kites, and trapping were complementary, since together, rather than separately, they produced a better picture of local richness.

  3. Effect of habitat improvement on Atlantic salmon in the regulated river Suldalslaagen

    International Nuclear Information System (INIS)

    Raastad, J.E.; Lillehammer, A.; Lillehammer, L.; Eie, J.A.

    1993-01-01

    The River Suldaalslagen, which holds a population of large Atlantic salmon, has been regulated twice for hydropower production. The first regulation occurred in 1968 and the second in 1980. Present problems include the reduced density of benthic fauna, the reduced growth rate of young salmon, the low survival of 0 + fish and the increased time required for smoltification. A programme of habitat restoration includes building a rearing channel system where water flow and the substrate can be controlled. The salmon fry are stocked in the rearing channel and in an adjacent tributary stream. The effects on macrobenthos of introduced dead organic material were also studied. Improvement of physical habitat increased the density of benthic animals, and the survival of 1 + salmon was about 30%. Experiments that included adding 115 g wheat/m 2 resulted in a threefold increase in benthic fauna compared with a control area. The largest increase in numbers was Chironomidae in August-September, when benthic Crustacea also showed a significant increase. An increase in macrobenthos is expected to increase the growth and survival of young salmon fry. (Author)

  4. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.

    2004-12-20

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  5. Fish Community Composition and Habitat Use in the Eg-Uur River System, Mongolia

    Directory of Open Access Journals (Sweden)

    Norman Mercado-Silva

    2008-06-01

    Full Text Available Mongolian rivers and their fi sh communities have suffered severe impacts from anthropogenic activities. However, the remoteness of some systems has allowed for the conservation of unique fi sh faunas, including robust populations of Hucho taimen . Conservation of H. taimen requires understanding the composition and ecology of other fi shes in the community. Using multiple sampling techniques, direct observation, and existing literature, we assessed the composition, relative abundance, and ecological attributes of fi shes in the Eg-Uur watershed (Selenge basin. We collected 6 of 12 species known in the watershed. Phoxinus cf. phoxinus and Lota lota were the most and least abundant species, respectively. We failed to detect H. taimen , indicating low abundance or unknown habitat requirements for juveniles. We compared the effectiveness of different sampling techniques (with electro fi shing producing the highest species richness, constructed length-weight relationships for four species , and identi fi ed ecological attributes (i.e., trophic guild, preferred habitat for resident fi shes.

  6. Does Habitat Restoration Increase Coexistence of Native Stream Fishes with Introduced Brown Trout: A Case Study on the Middle Provo River, Utah, USA

    OpenAIRE

    Mark C. Belk; Eric J. Billman; Craig Ellsworth; Brock R. McMillan

    2016-01-01

    Restoration of altered or degraded habitats is often a key component in the conservation plan of native aquatic species, but introduced species may influence the response of the native community to restoration. Recent habitat restoration of the middle section of the Provo River in central Utah, USA, provided an opportunity to evaluate the effect of habitat restoration on the native fish community in a system with an introduced, dominant predator—brown trout (Salmo trutta). To determine the ch...

  7. Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae, in the upper Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    Laury Cullen Junior

    2013-08-01

    Full Text Available We used data from VHF and GPS radio-tagged jaguars, Panthera onca (Linnaeus, 1758 to quantify jaguar habitat selection and how adult individuals in the Upper Paraná River region selected among the available habitat types. We followed the framework in which animals make decisions about resource use at hierarchical stages, namely selection of home range within a study area (second-order selection and selection of patches within a home range (third-order selection. We quantified habitat preferences at two orders of selection with respect to habitat types and to test the null hypothesis that habitat utilization by jaguars was random at both study sites. Using compositional analysis, we assessed habitat selection by jaguars at second- and third-orders of selection. Jaguars consistently preferred dense marshes and primary forests, and avoided human-dominated areas such as intensively managed open pastures. Although the avoidance of disturbed and developed habitat types by jaguars is not surprising, this is the first study to document it. If small protected areas, such as the ones already existing in the Upper Paraná region, are to sustain jaguar populations they, must include and protect as many primary forests and marshlands as possible, so that jaguars can disperse, hunt wild prey and take care of their cubs without being disturbed. What is urgently needed in these jaguar-protected areas is the creation of larger protected areas that can sustain jaguars in their favored habitat.

  8. The terrestrial carbon inventory on the Savannah River Site: Assessing the change in Carbon pools 1951-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhaohua; Trettin, Carl, C.; Parresol, Bernard, R.

    2011-11-30

    The Savannah River Site (SRS) has changed from an agricultural-woodland landscape in 1951 to a forested landscape during that latter half of the twentieth century. The corresponding change in carbon (C) pools associated land use on the SRS was estimated using comprehensive inventories from 1951 and 2001 in conjunction with operational forest management and monitoring data from the site.

  9. Assessment of Shallow-Water Habitat Availability in Modified Dike Structures, Lower Missouri River, 2004

    Science.gov (United States)

    Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E.

    2004-01-01

    This study documented the effects of wing-dike notching on the availabilit of shallow water habitat in the Lower Missouri River. Five wing dikes were surveyed in late May 2004 after they were notched in early May as part of shallow-water habitat (SWH) rehabilitation activities undertaken by the U.S. Army Corps of Engineers. Surveys included high-resolution hydroacoustic depth, velocity, and substrate mapping. Relations of bottom elevations within the wing dike fields to index discharges and water-surface elevations indicate that little habitat meeting the SWH definition was created immediately following notching. This result is not unexpected, as significant geomorphic adjustment may require large flow events. Depth, velocity, and substrate measurements in the post-rehabilitation time period provide baseline data for monitoring ongoing changes. Differences in elevation and substrate were noted at all sites. Most dike fields showed substantial aggradation and replacement of mud substrate with sandier sediment, although the changes did not result in increased availability of SWH at the index discharge. It is not known how much of the elevation and substrate changes can be attributed directly to notching and how much would result from normal sediment transport variation.

  10. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  11. Wigwam River juvenile bull trout and fish habitat monitoring program: 2000 data report; TOPICAL

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.

    2001-01-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00)

  12. Effect of ice formation and streamflow on salmon incubation habitat in the lower Bradley River, Alaska

    Science.gov (United States)

    Rickman, R.L.

    1996-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate salmon egg incubation habitat. The study that determined this minimum flow did not account for the effects of ice formation on habitat. An investigation was made during periods of ice formation. Hydraulic properties and field water-quality data were measured in winter only from March 1993 to April 1995 at six transects in the lower Bradley River. Discharge in the lower Bradley River ranged from 42.6 to 73.0 cubic feet per second (average 57 cubic feet per second) with ice conditions ranging from near ice free to 100 percent ice cover. Stream water velocity and depth were adequate for habitat protection for all ice conditions and discharges. No relation was found between percent ice cover and mean velocity and depth for any given discharge and no trends were found with changes in discharge for a given ice condition. Velocity distribution within each transect varied significantly from one sampling period to the next. Mean depth and velocity at flows of 40 cubic feet per second or less could not be predicted. No consistent relation was found between the amount of wetted perimeter and percent ice cover. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface and intragravel-water dissolved-oxygen levels were adequate for all flows and ice conditions. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Excellent oxygen exchange was indicated throughout the study reach. Stranding potential of salmon fry was found to be low throughout the study reach. The limiting factors for determining the minimal acceptable flow limit appear to be stream-water velocity and depth, although specific limits could not be estimated because of the high flows that occurred during this study.

  13. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  14. Influence of Partial Dam Removal on Change of Channel Morphology and Physical Habitats: A Case Study of Yu-Sheng River

    Science.gov (United States)

    Hao Weng, Chung; Yeh, Chao Hsien

    2017-04-01

    The rivers in Taiwan have the characteristic of large slope gradient and fast flow velocity caused by rugged terrain. And Taiwan often aces many typhoons which will bring large rainfall in the summer. In early Taiwan, river management was more focus on flood control, flood protection and disaster reduction. In recent years, the rise of ecological conservation awareness for the precious fish species brings spotlight on the Taiwan salmon (Oncorhynchus masou formosanus) which lives in the river section of this study. In order to make sure ecological corridor continuing, dam removal is the frequently discussed measure in recent years and its impact on environmental is also highly concerned. Since the dam removal may causes severe changes to the river channel, the action of dam removal needs careful evaluation. As one of the endangered species, Taiwan salmon is considered a national treasure of Taiwan and it was originally an offshore migration of the Pacific salmon. After the ice age and geographical isolation, it becomes as an unique subspecies of Taiwan and evolved into landlocked salmon. Now the Taiwan salmon habitats only exists in few upstream creeks and the total number of wild Taiwan salmon in 2015 was about 4,300. In order to expand the connectivity of the fish habitats in Chi-Jia-Wan creek basin, several dam removal projects had completed with good results. Therefore, this paper focuses on the dam removal of Yu-Sheng creek dam. In this paper, a digital elevation model (DEM) of about 1 kilometer channel of the Yu-Sheng creek dam is obtained by unmanned aerial vehicle (UAV). Using CCHE2D model, the simulation of dam removal will reveal the impact on channel morphology. After model parameter identification and verification, this study simulated the scenarios of three historical typhoon events with recurrence interval of two years, fifteen years, and three decades under four different patterns of dam removal to identify the the head erosion, flow pattern, and

  15. Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, António M. [Oregon Health & Science University, Science and Technology Center for Coastal Margin Observation and Prediction

    2009-08-02

    This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary

  16. Hydrodynamic simulations of physical aquatic habitat availability for Pallid Sturgeon in the Lower Missouri River, at Yankton, South Dakota, Kenslers Bend, Nebraska, Little Sioux, Iowa, and Miami, Missouri, 2006-07

    Science.gov (United States)

    Jacobson, Robert B.; Johnson, Harold E.; Dietsch, Benjamin J.

    2009-01-01

    The objective of this study was to assess the sensitivity of habitat availability in the Lower Missouri River to discharge variation, with emphasis on habitats that might support spawning of the endangered pallid sturgeon. We constructed computational hydrodynamic models for four reaches that were selected because of evidence that sturgeon have spawned in them. The reaches are located at Miami, Missouri (river mile 259.6–263.5), Little Sioux, Iowa (river mile 669.6–673.5), Kenslers Bend, Nebraska (river mile 743.9–748.1), and Yankton, South Dakota reach (river mile 804.8–808.4). The models were calibrated for a range of measured flow conditions, and run for a range of discharges that might be affected by flow modifications from Gavins Point Dam. Model performance was assessed by comparing modeled and measured water velocities.A selection of derived habitat units was assessed for sensitivity to hydraulic input parameters (drag coefficient and lateral eddy viscosity). Overall, model results were minimally sensitive to varying eddy viscosity; varying lateral eddy viscosity by 20 percent resulted in maximum change in habitat units of 5.4 percent. Shallow-water habitat units were most sensitive to variation in drag coefficient with 42 percent change in unit area resulting from 20 percent change in the parameter value; however, no habitat unit value changed more than 10 percent for a 10 percent variation in drag coefficient. Sensitivity analysis provides guidance for selecting habitat metrics that maximize information content while minimizing model uncertainties.To assess model sensitivities arising from topographic variation from sediment transport on an annual time scale, we constructed separate models from two complete independent surveys in 2006 and 2007. The net topographic change was minimal at each site; the ratio of net topographic change to water volume in the reaches at 95 percent exceedance flow was less than 5 percent, indicating that on a reach

  17. Wildlife Inventory, Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Cassirer, E. Frances

    1995-06-01

    Wildlife distribution/abundance were studied at this location during 1993 and 1994 to establish the baseline as part of the wildlife mitigation agreement for construction of Dworshak reservoir. Inventory efforts were designed to (1) document distribution/abundance of 4 target species: pileated woodpecker, yellow warbler, black-capped chickadee, and river otter, (2) determine distribution/abundance of rare animals, and (3) determine presence and relative abundance of all other species except deer and elk. 201 wildlife species were observed during the survey period; most were residents or used the area seasonally for breeding or wintering. New distribution or breeding records were established for at least 6 species. Pileated woodpeckers were found at 35% of 134 survey points in upland forests; estimated densities were 0-0.08 birds/ha, averaging 0.02 birds/ha. Yellow warblers were found in riparian areas and shrubby draws below 3500 ft elev., and were most abundant in white alder plant communities (ave. est. densities 0.2-2. 1 birds/ha). Black-capped chickadees were found in riparian and mixed tall shrub vegetation at all elevations (ave. est. densities 0-0.7 birds/ha). River otters and suitable otter denning and foraging habitat were observed along the Snake and Salmon rivers. 15 special status animals (threatened, endangered, sensitive, state species of special concern) were observed at Craig Mt: 3 amphibians, 1 reptile, 8 birds, 3 mammals. Another 5 special status species potentially occur (not documented). Ecosystem-based wildlife management issues are identified. A monitoring plant is presented for assessing effects of mitigation activities.

  18. John Day River Subbasin Fish Habitat Enhancement Project, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.; Jerome, James P.

    2002-07-01

    Work undertaken in 2001 included: (1) 3335 structure posts were pounded on six new projects thereby protecting 10 miles of stream (2) Completion of 1000 ft. of barbed wire fence and one watergap on the Middle Fork of the John Day River/ Forrest property. (3) Fence removal of 5010 ft. of barbed wire fence on the Meredith project. (4) Maintenance of all active project fences (66 miles), watergaps (76), spring developments (32) and plantings were checked and repairs performed. (5) Since the initiation of the Fish Habitat Project in 1984 we have 63.74 miles of stream protected using 106.78 miles of fence. With the addition of the Restoration and Enhancement Projects we have 180.64 miles of fence protecting 120.6 miles of stream.

  19. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    Science.gov (United States)

    Basheer, Amir K.; Lu, Haishen; Omer, Abubaker; Ali, Abubaker B.; Abdelgader, Abdeldime M. S.

    2016-04-01

    The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River basin (DRB) and to infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in Sudan. Four global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with a hydrological model (SWAT - the Soil and Water Assessment Tool) were used to project the climate change conditions over the study periods 2020s, 2050s, and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during the 1960s, 1970s, and 1980s, the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration for the habitats of flora and fauna.

  20. Habitat relationships and larval drift of native and nonindigenous fishes in neighboring tributaries of a coastal California river

    Science.gov (United States)

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto

    2002-01-01

    Abstract - Motivated by a particular interest in the distribution of the nonindigenous, piscivorous Sacramento pikeminnow, Ptychocheilus grandis, we examined fish-habitat relationships in small tributaries (draining 20-200 km 2 )in the Eel River drainage of northwestern California.We sampled juvenile and adult fish in 15 tributaries in both the summer and...

  1. Restoring Landform Geodiversity in Modified Rivers and Catchments

    Science.gov (United States)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    Extensive human modification and exploitation has created degraded and simplified systems lacking many of the landforms which would characterise healthy, geodiverse rivers. As awareness of geodiversity grows we must look to ways not only to conserve geodiversity but to also restore or create landforms which contribute to geodiverse environments. River restoration, with lessons learned over the last 30 years and across multiple continents, has much to offer as an exemplar of how to understand, restore or create geodiversity. Although not mentioned explicitly, there is an implicit emphasis in the Water Framework Directive on the importance of landforms and geodiversity, with landform units and assemblages at the reach scale assumed to provide the physical template for a healthy aquatic ecosystem. The focus on hydromorphology has increased the importance of geomorphology within river restoration programmes. The dominant paradigm is to restore landforms in order to increase habitat heterogeneity and improve biodiversity within rivers. However, the process of landform restoration is also a goal in its own right in the context of geodiversity, and extensive compilations of restoration experiences allow an inventory and pattern of landform (re-) creation to be assembled, and an assessment of landform function as well as landform presence/absence to be made. Accordingly, this paper outlines three principal research questions: Which landforms are commonly reinstated in river restoration activities? How do these landforms function compared to natural equivalents and thus contribute to 'functional' geodiversity as compared to the 'aesthetic' geodiversity? How does landform diversity scale from reach to catchment and contribute to larger-scale geodiversity? Data from the UK National River Restoration Inventory and the RHS are combined to assess the frequency and spatial distribution of commonly created landforms in relation to catchment type and more local context. Analysis is

  2. An Ecosystem-Based Approach to Habitat Restoration Projects with Emphasis on Salmonids in the Columbia River Estuary, 2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.; Thom, R.; Whiting, A. (Pacific Northwest National Laboratory)

    2003-11-01

    Habitat restoration in the Columbia River estuary (CRE) is an important off-site mitigation action in the 2000 Biological Opinion (BiOp), an operation of the Federal Columbia River Power System. The CRE, defined as the tidally influenced stretch of river from the mouth to Bonneville Dam 146 miles upstream, is part of the migration pathway for anadromous fish in the Columbia Basin, including salmon listed under the Endangered Species Act (ESA). Salmon in various stages of life, from fry to adults, use tidal channels and wetlands in the CRE to feed, find refuge from predators, and transition physiologically from freshwater to saltwater. Over the last 100 years, however, the area of some wetland habitats has decreased by as much as 70% because of dike and levee building, flow regulation, and other activities. In response to the decline in available habitat, the BiOp's Reasonable and Prudent Alternative (RPA) included mandates to 'develop a plan addressing the habitat needs of juvenile salmon and steelhead in the estuary' (RPA Action 159) and 'develop and implement an estuary restoration program with a goal of protecting and enhancing 10,000 acres of tidal wetlands and other key habitats' (RPA Action 160). To meet Action 159 and support Action 160, this document develops a science-based approach designed to improve ecosystem functions through habitat restoration activities in the CRE. The CRE habitat restoration program's goal and principles focus on habitat restoration projects in an ecosystem context. Since restoration of an entire ecosystem is not generally practical, individual habitat restoration projects have the greatest likelihood of success when they are implemented with an ecosystem perspective. The program's goal is: Implementation of well-coordinated, scientifically sound projects designed to enhance, protect, conserve, restore, and create 10,000 acres of tidal wetlands and other key habitats to aid rebuilding of ESA

  3. Habitats and trophic relationships of Chironomidae insect larvae from the Sepotuba River basin, Pantanal of Mato Grosso, Brazil.

    Science.gov (United States)

    Butakka, C M M; Grzybkowska, M; Pinha, G D; Takeda, A M

    2014-05-01

    Benthic habitats are linked by physical processes and are essential elements in assessing of the distribution dynamics of Chironomidae dipteran insects and their role in aquatic ecosystems. This work presents results of distribution patterns of chironomids larvae in 38 sites that are abundant in the study site, inhabiting the substrate of the main river channel, rapids, tributary brook, floodplain lakes and reservoir along the Sepotuba River from its mouth at the Paraguay River to the headwater region. A total of 1,247 larvae was registered. The most abundant taxa were Polypedilum (Tripodura) sp. (25.2%), Cricotopus sp.3 (23.0%) and Tanytarsus sp. (15.0%). Fissimentum desiccatum were found only in the reservoir; Fissimentum sp.2 and Tanytarsus cf. T. obiriciae sp.2 in floodplain lakes, and Goeldichironomus sp. in the main channel. The low diversity of the sites S06 and S35 is caused by the near-exclusive presence of the species Cricotopus sp.3, alone or together with one or another taxon (Tanytarsus sp., Djalmabatista sp.3). Collectors-filterers represent 16%, collectors-gatherers 15%, predators 11% and scrapers only 1%. The predators dominated in the secondary channel (±88 ind/m2), corresponding to 40% of the total of this group. Cryptochironomus sp.2 (34%) and Ablasbemyia gr. annulata (26%) were the most abundant among the predators. The differences along the river course are decisive for the formation of distinct or discontinuous communities and the limits become obvious though the interrelations between the populations in the community, as for instance, competition for food and habitats.

  4. Diet and habitat use by age-0 deepwater sculpins in northern Lake Huron, Michigan and the Detroit River

    Science.gov (United States)

    Roseman, Edward F.

    2014-01-01

    Deepwater sculpins (Myoxocephalus thompsonii) are an important link in deepwater benthic foodwebs of the Great Lakes. Little information exists about deepwater sculpin spawning habits and early life history ecology due to difficulty in sampling deep offshore habitats. Larval and age-0 deepwater sculpins collected in northern Lake Huron and the Detroit River during 2007 were used to improve our understanding of their habitat use, diet, age, and growth. Peak larval density reached 8.4/1000 m3 in the Detroit River during April and was higher than that in Lake Huron. Offshore bottom trawls at DeTour and Hammond Bay first collected benthic age-0 deepwater sculpins in early September when fish were ≥ 25 mm TL. Otolith analysis revealed that hatch dates for pelagic larvae occurred during late March and larvae remained pelagic for 40 to 60 days. Diet of pelagic larvae (10–21 mm TL) was dominated by calanoid copepods at all sample locations. Diets of benthic age-0 fish varied by location and depth: Mysis and chironomids were prevalent in fish from Hammond Bay and the 91 m site at DeTour, but only chironomids were found in fish from the 37 m DeTour site. This work showed that nearshore epilimnetic sites were important for pelagic larvae and an ontogenetic shift from pelagic planktivore to benthivore occurred at about 25 mm TL in late summer. Age analysis showed that larvae remained pelagic long enough to be transported through the St. Clair–Detroit River system, Lake Erie, and the Niagara River, potentially contributing to populations in Lake Ontario.

  5. Snake River Sockeye salmon habitat and limnological research. Annual report 1993

    International Nuclear Information System (INIS)

    Teuscher, D.; Taki, D.; Wurtsbaugh, W.A.; Luecke, C.; Budy, P.; Gross, H.P.; Steinhart, G.

    1994-06-01

    In 1993 we completed research directed at characterizing the 0. nerka populations and their interactions with other fish species in five Sawtooth Valley Lakes. Historically, Redfish, Alturas, Pettit, Stanley, and Yellow Belly Lakes provided Snake River sockeye (Oncorhynchus nerka) spawning and rearing habitat (Evermann 1896; Bjornn 1968). All of these lakes, with exception to Yellow Belly, still support 0. nerka populations. In chapter 1 of this report we describe 0. nerka spawning locations and densities, tributary fry recruitment, and results from a habitat survey completed in Redfish Lake. In chapter 2 we review foraging habits of fish that may compete with, or prey on 0. nerka populations. Kokanee fry emergence from Fishhook Creek in 1993 was 160,000. Fry emergence increased nearly five fold over that reported in 1992. Interestingly, spawning densities in 1991 and 1992 were somewhat similar (7,200 and 9,600, respectively). Discharge from Fishhook Creek was markedly higher in 1992 and may have caused the better egg to fry survival. 0. nerka spawning on sockeye beach appeared limited (< 100 fish). Additionally, sockeye beach was the only area that wild or residual sockeye were located. Of 24 adult sockeye released into Redfish Lake, from the brood stock program, two were found spawning in the south end of the lake. Results from the habitat survey indicated that substrate composition on sockeye beach is poor. 0. nerka diet patterns shifted from chironomid prey in June zooplankton prey in September. Rainbow trout consumed a broadrange of prey, with few instances of significant diet overlap with 0. nerka. Northern squawfish, bull char, and lake trout preyed on 0. nerka. Utilization of 0. nerka by predators was greatest in September

  6. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    Science.gov (United States)

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2018-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  7. Effect of habitat improvement on Atlantic salmon in the regulated river Suldalslaagen

    Energy Technology Data Exchange (ETDEWEB)

    Raastad, J.E.; Lillehammer, A.; Lillehammer, L. (Oslo Univ. (Norway). Zoological Museum); Kaasa, H. (Statkraft, Hoevik (Norway)); Eie, J.A. (Norwegian Water Resources and Energy Administration, Oslo (Norway))

    1993-05-01

    The River Suldaalslagen, which holds a population of large Atlantic salmon, has been regulated twice for hydropower production. The first regulation occurred in 1968 and the second in 1980. Present problems include the reduced density of benthic fauna, the reduced growth rate of young salmon, the low survival of 0[sup +] fish and the increased time required for smoltification. A programme of habitat restoration includes building a rearing channel system where water flow and the substrate can be controlled. The salmon fry are stocked in the rearing channel and in an adjacent tributary stream. The effects on macrobenthos of introduced dead organic material were also studied. Improvement of physical habitat increased the density of benthic animals, and the survival of 1[sup +] salmon was about 30%. Experiments that included adding 115 g wheat/m[sup 2] resulted in a threefold increase in benthic fauna compared with a control area. The largest increase in numbers was Chironomidae in August-September, when benthic Crustacea also showed a significant increase. An increase in macrobenthos is expected to increase the growth and survival of young salmon fry. (Author)

  8. Use of the RHS method in Golijska Moravica river basin

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available River Habitat Survey (RHS is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC has been developed for reporting purposes. These are based on simple scoring systems which have been agreed by technical experts.

  9. A hierarchical spatial framework and database for the national river fish habitat condition assessment

    Science.gov (United States)

    Wang, L.; Infante, D.; Esselman, P.; Cooper, A.; Wu, D.; Taylor, W.; Beard, D.; Whelan, G.; Ostroff, A.

    2011-01-01

    Fisheries management programs, such as the National Fish Habitat Action Plan (NFHAP), urgently need a nationwide spatial framework and database for health assessment and policy development to protect and improve riverine systems. To meet this need, we developed a spatial framework and database using National Hydrography Dataset Plus (I-.100,000-scale); http://www.horizon-systems.com/nhdplus). This framework uses interconfluence river reaches and their local and network catchments as fundamental spatial river units and a series of ecological and political spatial descriptors as hierarchy structures to allow users to extract or analyze information at spatial scales that they define. This database consists of variables describing channel characteristics, network position/connectivity, climate, elevation, gradient, and size. It contains a series of catchment-natural and human-induced factors that are known to influence river characteristics. Our framework and database assembles all river reaches and their descriptors in one place for the first time for the conterminous United States. This framework and database provides users with the capability of adding data, conducting analyses, developing management scenarios and regulation, and tracking management progresses at a variety of spatial scales. This database provides the essential data needs for achieving the objectives of NFHAP and other management programs. The downloadable beta version database is available at http://ec2-184-73-40-15.compute-1.amazonaws.com/nfhap/main/.

  10. Habitat characteristic of macrozoobenthos in Naborsahan River of Toba Lake, North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Lubis, M. S.; Suryanti, A.

    2018-02-01

    This research described the relative abundance, dominance index, and index of macrozoobenthos equitability in Naborsahan River of Toba Lake, North Sumatra, Indonesia. The purposive random sampling at three stations was used to characterize the biological, chemical, and physical parameters of macrozoobenthos. The highest relative abundance of macrozoobenthos found at station 2 (99.96%). By contrast, the highest dominance index was at station 3 (0.31), and the maximum equitability index found at station 1 (0.94). The present results showed diversity parameters among the stations. A principal component analysis (PCA) was used to determine the habitat characteristics of macrozoobenthos. PCA analysis depicted that six parameters studied, brightness, turbidity, depth, temperature, dissolved oxygen (DO) and biochemical oxygen demand (BOD5) play a significant role on the relative abundance, dominance index, and equitability index. PCA analysis suggested that station 3 was suitable habitat characteristic for the life of macro-zoobenthos indicating of the negative axis. The present study demonstrated the six parameters should be conserved to support the survival of macrozoobenthos.

  11. Spatially explicit habitat models for 28 fishes from the Upper Mississippi River System (AHAG 2.0)

    Science.gov (United States)

    Ickes, Brian S.; Sauer, J.S.; Richards, N.; Bowler, M.; Schlifer, B.

    2014-01-01

    Environmental management actions in the Upper Mississippi River System (UMRS) typically require pre-project assessments of predicted benefits under a range of project scenarios. The U.S. Army Corps of Engineers (USACE) now requires certified and peer-reviewed models to conduct these assessments. Previously, habitat benefits were estimated for fish communities in the UMRS using the Aquatic Habitat Appraisal Guide (AHAG v.1.0; AHAG from hereon). This spreadsheet-based model used a habitat suitability index (HSI) approach that drew heavily upon Habitat Evaluation Procedures (HEP; U.S. Fish and Wildlife Service, 1980) by the U.S. Fish and Wildlife Service (USFWS). The HSI approach requires developing species response curves for different environmental variables that seek to broadly represent habitat. The AHAG model uses species-specific response curves assembled from literature values, data from other ecosystems, or best professional judgment. A recent scientific review of the AHAG indicated that the model’s effectiveness is reduced by its dated approach to large river ecosystems, uncertainty regarding its data inputs and rationale for habitat-species response relationships, and lack of field validation (Abt Associates Inc., 2011). The reviewers made two major recommendations: (1) incorporate empirical data from the UMRS into defining the empirical response curves, and (2) conduct post-project biological evaluations to test pre-project benefits estimated by AHAG. Our objective was to address the first recommendation and generate updated response curves for AHAG using data from the Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) Long Term Resource Monitoring Program (LTRMP) element. Fish community data have been collected by LTRMP (Gutreuter and others, 1995; Ratcliff and others, in press) for 20 years from 6 study reaches representing 1,930 kilometers of river and >140 species of fish. We modeled a subset of these data (28 different

  12. Evaluating methods to establish habitat suitability criteria: A case study in the upper Delaware River Basin, USA

    Science.gov (United States)

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Talbert, Colin; Maloney, Kelly O.

    2016-01-01

    Defining habitat suitability criteria (HSC) of aquatic biota can be a key component to environmental flow science. HSC can be developed through numerous methods; however, few studies have evaluated the consistency of HSC developed by different methodologies. We directly compared HSC for depth and velocity developed by the Delphi method (expert opinion) and by two primary literature meta-analyses (literature-derived range and interquartile range) to assess whether these independent methods produce analogous criteria for multiple species (rainbow trout, brown trout, American shad, and shallow fast guild) and life stages. We further evaluated how these two independently developed HSC affect calculations of habitat availability under three alternative reservoir management scenarios in the upper Delaware River at a mesohabitat (main channel, stream margins, and flood plain), reach, and basin scale. In general, literature-derived HSC fell within the range of the Delphi HSC, with highest congruence for velocity habitat. Habitat area predicted using the Delphi HSC fell between the habitat area predicted using two literature-derived HSC, both at the basin and the site scale. Predicted habitat increased in shallow regions (stream margins and flood plain) using literature-derived HSC while Delphi-derived HSC predicted increased channel habitat. HSC generally favoured the same reservoir management scenario; however, no favoured reservoir management scenario was the most common outcome when applying the literature range HSC. The differences found in this study lend insight into how different methodologies can shape HSC and their consequences for predicted habitat and water management decisions. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    Science.gov (United States)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  14. Use of aquaculture ponds and other habitats by autumn migrating shorebirds along the lower Mississippi river.

    Science.gov (United States)

    Lehnen, Sarah E; Krementz, David G

    2013-08-01

    Populations of many shorebird species are declining; habitat loss and degradation are among the leading causes for these declines. Shorebirds use a variety of habitats along interior migratory routes including managed moist soil units, natural wetlands, sandbars, and agricultural lands such as harvested rice fields. Less well known is shorebird use of freshwater aquaculture facilities, such as commercial cat- and crayfish ponds. We compared shorebird habitat use at drained aquaculture ponds, moist soil units, agricultural areas, sandbars and other natural habitat, and a sewage treatment facility in the in the lower Mississippi River Alluvial Valley (LMAV) during autumn 2009. Six species: Least Sandpiper (Calidris minutilla), Killdeer (Charadrius vociferous), Semipalmated Sandpiper (Calidris pusilla), Pectoral Sandpiper (C. melanotos), Black-necked Stilt (Himantopus himantopus), and Lesser Yellowlegs (Tringa flavipes), accounted for 92 % of the 31,165 individuals observed. Sewage settling lagoons (83.4, 95 % confidence interval [CI] 25.3-141.5 birds/ha), drained aquaculture ponds (33.5, 95 % CI 22.4-44.6 birds/ha), and managed moist soil units on public lands (15.7, CI 11.2-20.3 birds/ha) had the highest estimated densities of shorebirds. The estimated 1,100 ha of drained aquaculture ponds available during autumn 2009 provided over half of the estimated requirement of 2,000 ha by the LMAV Joint Venture working group. However, because of the decline in the aquaculture industry, autumn shorebird habitats in the LMAV may be limited in the near future. Recognition of the current aquaculture habitat trends will be important to the future management activities of federal and state agencies. Should these aquaculture habitat trends continue, there may be a need for wildlife biologists to investigate other habitats that can be managed to offset the current and expected loss of aquaculture acreages. This study illustrates the potential for freshwater aquaculture to

  15. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change

    Science.gov (United States)

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2011-01-01

    We present an approach to modeling potential climate-driven changes in habitat for tree and bird species in the eastern United States. First, we took an empirical-statistical modeling approach, using randomForest, with species abundance data from national inventories combined with soil, climate, and landscape variables, to build abundance-based habitat models for 134...

  16. Butterfly (Papilionoidea and Hesperioidea) assemblages associated with natural, exotic, and restored riparian habitats along the lower Colorado River, USA

    Science.gov (United States)

    Nelson, S.M.; Andersen, D.C.

    1999-01-01

    Butterfly assemblages were used to compare revegetated and natural riparian areas along the lower Colorado River. Species richness and correspondence analyses of assemblages showed that revegetated sites had fewer biological elements than more natural sites along the Bill Williams River. Data suggest that revegetated sites do not provide resources needed by some members of the butterfly assemblage, especially those species historically associated with the cottonwood/willow ecosystem. Revegetated sites generally lacked nectar resources, larval host plants, and closed canopies. The riparian system along the regulated river segment that contains these small revegetated sites also appears to have diminished habitat heterogeneity and uncoupled riparian corridors.Revegetated sites were static environments without the successional stages caused by flooding disturbance found in more natural systems. We hypothesize that revegetation coupled with a more natural hydrology is important for restoration of butterfly assemblages along the lower Colorado River

  17. A novel approach to assessing environmental disturbance based on habitat selection by zebra fish as a model organism.

    Science.gov (United States)

    Araújo, Cristiano V M; Griffith, Daniel M; Vera-Vera, Victoria; Jentzsch, Paul Vargas; Cervera, Laura; Nieto-Ariza, Beatriz; Salvatierra, David; Erazo, Santiago; Jaramillo, Rusbel; Ramos, Luis A; Moreira-Santos, Matilde; Ribeiro, Rui

    2018-04-01

    Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors

  18. Monitoring Natura 2000 habitats: habitat 92A0 in central Italy as an example

    Directory of Open Access Journals (Sweden)

    Emanuela Carli

    2016-10-01

    Full Text Available The evaluation and the subsequent monitoring of the conservation status of habitats is one of the key steps in nature protection. While some European countries have tested suitable methodologies, others, including Italy, lack procedures tested at the national level. The aim of this work is to propose a method to assess the conservation status of habitat 92A0 (Salix alba and Populus alba galleries in central Italy, and to test the method using data from the Molise region. We selected parameters that highlight the conservation status of the flora and vegetation in order to assess habitat structures and functions at the site level. After selecting the parameters, we tested them on a training dataset of 22 unpublished phytosociological relevés taken from the whole dataset, which consists of 119 relevés (49 unpublished relevés for the study area, and 70 published relevés for central Italy. We detected the most serious conservation problems in the middle and lower course of the Biferno river: the past use of river terraces for agriculture and continual human interventions on the river water flow have drastically reduced the riparian forests of Molise. Our results show that in areas in which forest structure and floristic composition have been substantially modified, certain alien plant species, particularly Robinia pseudoacacia, Amorpha fruticosa and Erigeron canadensis, have spread extensively along rivers. In the management of riparian forests, actions aimed at maintaining the stratification of the forest, its uneven-agedness and tree species richness may help to ensure the conservation status, as well as favour the restoration, of habitat 92A0.

  19. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  20. Streambed scour of salmon spawning habitat in a regulated river influenced by management of peak discharge

    Science.gov (United States)

    Gendaszek, Andrew S.; Burton, Karl D.; Magirl, Christopher S.; Konrad, Christopher P.

    2017-01-01

    In the Pacific Northwest of the United States, salmon eggs incubating within streambed gravels are susceptible to scour during floods. The threat to egg-to-fry survival by streambed scour is mitigated, in part, by the adaptation of salmon to bury their eggs below the typical depth of scour. In regulated rivers globally, we suggest that water managers consider the effect of dam operations on scour and its impacts on species dependent on benthic habitats.We instrumented salmon-spawning habitat with accelerometer scour monitors (ASMs) at 73 locations in 11 reaches of the Cedar River in western Washington State of the United States from Autumn 2013 through the Spring of 2014. The timing of scour was related to the discharge measured at a nearby gage and compared to previously published ASM data at 26 locations in two reaches of the Cedar River collected between Autumn 2010 and Spring 2011.Thirteen percent of the recovered ASMs recorded scour during a peak-discharge event in March 2014 (2-to 3-year recurrence interval) compared to 71% of the recovered ASMs during a higher peak-discharge event in January 2011 (10-year recurrence interval). Of the 23 locations where ASMs recorded scour during the 2011 and 2014 deployments, 35% had scour when the discharge was ≤87.3 m3/s (3,082 ft3/s) (2-year recurrence interval discharge) with 13% recording scour at or below the 62.3 m3/s (2,200 ft3/s) operational threshold for peak-discharge management during the incubation of salmon eggs.Scour to the depth of salmon egg pockets was limited during peak discharges with frequent (1.25-year or less) recurrence intervals, which managers can regulate through dam operations on the Cedar River. Pairing novel measurements of the timing of streambed scour with discharge data allows the development of peak-discharge management strategies that protect salmon eggs incubating within streambed gravels during floods.

  1. Nesting habitat use by river chubs in a hydrologically variable Appalachian tailwater

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Brandon K. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); McManamay, Ryan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Orth, Donald J. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Frimpong, Emmanuel A. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2013-07-02

    Hydrologic alteration continues to affect aquatic biodiversity asknowledge of the spawning requirements of fishes, especially keystone or foundation species, becomes more critical for conservation and management. Our objectives are to quantify the spawning micro- and mesohabitat use of river chub Nocomis micropogon, a gravel mound nesting minnow, in a hydrologically regulated river in North Carolina, USA. At the microhabitat scale, substrate sizes on nests were compared with pebble counts in 1-m2 adjacent quadrats. Average depths and current velocities at nests were compared with measurements from paired transects. At the mesohabitat scale, generalised linear mixed models (GLMMs) were used to identify the importance of average bed slope, average depth and percentages of rock outcrops (a measure of flow heterogeneity and velocity shelters) for predicting nest presence and abundance. To relate nesting activities to hydrologic alteration from dam operation, nest dimensions were measured before and after a scheduled discharge event approximately six times that of base flow. In addition, linear regression was used to predict changes in the use of flow refugia and overhead cover with increased fluvial distance from the dam. Microhabitats in which nests were placed had, on average, slower current velocities and shallower depths. Gravel diameters of nests were significantly smaller than substrate particles adjacent to nests. GLMMs revealed that mesohabitats with nests were shallower, had more moderate slopes and greater proportions of rock outcrops than mesohabitats without nests. Finally, the scheduled discharge event significantly flattened nests. Near the dam, nests were built in close proximity ( 2 m) to velocity shelters; this relationship diminished with distance from the dam. River chubs are spawning habitat specialists. Because multiple species rely on river chub nests for reproduction and food, the needs of this species should be considered when managing instream

  2. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    Science.gov (United States)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  3. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.

  4. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from the McNary Dam, 1994-1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beiningen, Kirk T. [Oregon Dept. of Fish and Wildlife, Portland, OR (US)

    1996-03-01

    The author reports on progress from April 1994 through March 1995 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on sub-adult and adult life histories, population dynamics, quantity and quality of habitat, and production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of sub-adult a nd adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River.

  5. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a

  6. Snake River Sockeye Salmon Habitat and Limnological Research; 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-06-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU); The Tribe's long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through their Integrated Fish and Wildlife Program. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2004 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit Lake; (3) reduce the number of mature kokanee salmon spawning in Fishhook Creek; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye salmon and kokanee salmon population surveys; (7) evaluate potential competition and predation

  7. Snake River Sockeye Salmon Habitat and Limnological Research; 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E. (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition, the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power and Conservation Council Fish and Wildlife Program (NPCCFWP). Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2003 calendar year. Project objectives include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) reduce the number of mature kokanee spawning in Fishhook Creek; (3) monitor sockeye salmon smolt migration from the captive rearing program release of juveniles into Pettit and Alturas lakes; (4) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (5) conduct sockeye and kokanee salmon population surveys; (6

  8. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  9. Community structure of age-0 fishes in paired mainstem and created shallow-water habitats in the Lower Missouri River

    Science.gov (United States)

    Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.

    2016-01-01

    Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts. 

  10. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value

    International Nuclear Information System (INIS)

    Pellaud, M.

    2007-05-01

    SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km 2 , a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its applicability. Four

  11. Living in an estuary: Commerson's dolphin (Cephalorhynchus commersonii (Lacépède, 1804, habitat use and behavioural pattern at the Santa Cruz River, Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    Rocio Loizaga de Castro

    2013-11-01

    Full Text Available Commerson's dolphins, Cephalorhynchus commersonii, suffer bycatch in fisheries and are target of dolphin-watching activities along Patagonia. Here we described dolphins' habitat use and behavioural pattern at the estuary of Santa Cruz River. Behavioural observations were made from vantage points using a spotting scope. Boat surveys were conducted randomly from Puerto Santa Cruz to the mouth of the river to analyze the habitat use. The survey area was divided into 1 km² cells and characterized with depth and benthic slope. The described behaviours for the Commerson's dolphin were: travelling, slow travelling, milling, resting, socializing, stationary swimming and diving. A new behavioural context was assigned to diving, a behaviour that showed a high frequency during downing tide, suggesting a benthic foraging strategy. Additionally, we found a strong influence of the tide on Commerson's dolphin behaviour. Habitat use models indicated that dolphins prefer shallow water inside the estuary. The knowledge of the behavioural patterns and the habitat use of these endemic species, in this unexplored area, provide tools for management and conservation purposes.

  12. Habitat Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  13. Bird assemblage patterns in relation to anthropogenic habitat ...

    African Journals Online (AJOL)

    Using habitat stratification, birds were surveyed along transects in tidal and supralittoral sub-habitats using DISTANCE sampling protocol, and along the river by encounter rates to determine abundance and species richness. Indices of human activity as well as habitat structure parameters including ground cover, plant ...

  14. Influence of habitat heterogeneity on anuran diversity in Restinga landscapes of the Parnaíba River delta, northeastern Brazil.

    Science.gov (United States)

    Araújo, Kássio C; Guzzi, Anderson; Ávila, Robson W

    2018-01-01

    Anurans have close associations with environmental conditions and therefore represent an interesting vertebrate group for examining how resource availability and environmental variables influence species diversity. Associations between habitat heterogeneity and anuran species diversity were tested in the Restinga landscapes of the Parnaíba River delta in northeastern Brazil. Twenty-one anuran species were sampled in the rainy season during monthly excursions (December 2015 to June 2016) into areas of Restinga on two islands in the Parnaíba River delta. The fourth highest anuran diversity was found in this type of environment in Brazil and is the third in northeastern Brazil. Microenvironments, characterized by a combination of vernal pools with different vegetational and physical structures, better explained anuran species composition in the Parnaíba River delta.

  15. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  16. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    Science.gov (United States)

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  17. Estuarine Landcover Along the Lower Columbia River Estuary Determined from Compact Ariborne Spectrographic Imager (CASI) Imagery, Technical Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Garono, Ralph; Robinson, Rob

    2003-10-01

    Developing an understanding of the distribution and changes in estuarine and riparian habitats is critical to the management of biological resources in the lower Columbia River. In a recently completed comprehensive ecosystem protection and enhancement plan for the lower Columbia River Estuary (CRE), Jerrick (1999) identified habitat loss and modification as one of the key threats to the integrity of the CRE ecosystem. This management plan called for an inventory of habitats as key first step in the CRE long-term restoration effort. While previous studies have produced useful data sets depicting habitat cover types along portions of the lower CRE (Thomas, 1980; Thomas, 1983; Graves et al., 1995; NOAA, 1997; Allen, 1999), no single study has produced a description of the habitats for the entire CRE. Moreover, the previous studies differed in data sources and methodologies making it difficult to merge data or to make temporal comparisons. Therefore, the Lower Columbia River Estuary Partnership (Estuary Partnership) initiated a habitat cover mapping project in 2000. The goal of this project was to produce a data set depicting the current habitat cover types along the lower Columbia River, from its mouth to the Bonneville Dam, a distance of {approx}230-km (Fig. 1) using both established and emerging remote sensing techniques. For this project, we acquired two types of imagery, Landsat 7 ETM+ and Compact Airborne Spectrographic Imager (CASI). Landsat and CASI imagery differ in spatial and spectral resolution: the Landsat 7 ETM+ sensor collects reflectance data in seven spectral bands with a spatial resolution of 30-m and the CASI sensor collects reflectance data in 19 bands (in our study) with a spatial resolution of 1.5-m. We classified both sets of imagery and produced a spatially linked, hierarchical habitat data set for the entire CRE and its floodplain. Landsat 7 ETM+ classification results are presented in a separate report (Garono et al., 2003). This report

  18. Movements and habitat use locations of manatees within Kings Bay Florida during the Crystal River National Wildlife Refuge winter season (November 15–March 31)

    Science.gov (United States)

    Slone, Daniel H.; Butler, Susan M.; Reid, James P.

    2018-04-06

    Kings Bay, Florida, is one of the most important natural winter habitat locations for the federally threatened Trichechus manatus latirostris (Florida manatee). Crystal River National Wildlife Refuge was established in 1983 specifically to provide protection for manatees and their critical habitat. To aid managers at the refuge and other agencies with this task, spatial analyses of local habitat use locations and travel corridors of manatees in Kings Bay during manatee season (November 15–March 31) are presented based on Global Positioning System telemetry of 41 manatees over a 12-year timespan (2006−18). Local habitat use areas and travel corridors differed spatially when Gulf of Mexico water temperatures were cold (less than or equal to 17 degrees Celsius) versus when they were warm (greater than 17 degrees Celsius). During times of cold water, manatees were found in higher concentrations in the main springs and canals throughout the eastern side of the bay, whereas when waters were warm, they were found more generally throughout the bay and into Crystal River, except for the central open part of the bay and the southwest corner.

  19. 2011 Los Alamos National Laboratory Riparian Inventory Results

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  20. Comparison of two methods for estimating the abundance, diversity and habitat preference of fluvial macroinvertebrates in contrasting habitats

    NARCIS (Netherlands)

    Alonso, A.; Camargo, J.A.

    2010-01-01

    In this research we evaluate the effects of the method used for estimating the potential surface available for benthic macroinvertebrates in macrophyte and unvegetated habitats on several metrics and habitat preference of aquatic macroinvertebrates in the upper catchment of the Henares River

  1. Effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and determine status and habitat requirements of white sturgeon populations in the Columbia and Snake Rivers upstream from the McNary Dam. Annual progress report, April 1994--March 1995

    International Nuclear Information System (INIS)

    Beiningen, K.T.

    1996-03-01

    The author reports on progress from April 1994 through March 1994 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on subadult and adult life histories, population dynamics, quantity and quality of habitat, and production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of subadult and adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River

  2. Project overview: Chapter A in Factors affecting the reproduction, recruitment, habitat, and population dynamics of pallid sturgeon and shovelnose sturgeon in the Missouri River

    Science.gov (United States)

    DeLonay, Aaron J.; Papoulias, Diana M.; Jacobson, Robert B.; Wildhaber, Mark L.; Simpkins, Darin G.; Korschgen, Carl E.

    2007-01-01

    For more than a hundred years, human activities have modified the natural forces that control the Missouri River and its native fish fauna. While the ecological effects of regulation and channel engineering are understood in general, the current understanding is not sufficient to guide river restoration and management. The U.S. Geological Survey (USGS) is in the third year of a multiagency research effort to determine the ecological requirements for reproduction and survival of the endangered pallid sturgeon (Scaphirhynchus albus) and shovelnose sturgeon (Scaphirhynchus platorhynchus) in the Missouri River. The multidisciplinary research strategy includes components of behavior, physiology, habitat use, habitat availability, and population modeling of all life stages. Shovelnose sturgeon are used to design the strategy because they are closely related to the pallid sturgeon and are often used as a surrogate species to develop new research tools or to examine the effects of management actions or environmental variables on sturgeon biology and habitat use. During fiscal years 2005 and 2006, the U.S. Army Corps of Engineers (USACE) provided funds to USGS for tasks associated with the Comprehensive Sturgeon Research Program (CSRP) and for tasks associated with evaluation of the Sturgeon Response to Flow Modifications (SRFM). Because work activities of CSRP and SRFM are so integrated, we are providing information on activities that have been consolidated at the task level. These task activities represent chapters in this report.

  3. Snake River sockeye salmon habitat and limnological research, annual report 1999

    International Nuclear Information System (INIS)

    Griswold, Robert G.

    2001-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity

  4. Habitat connectivity as a metric for aquatic microhabitat quality: Application to Chinook salmon spawning habitat

    Science.gov (United States)

    Ryan Carnie; Daniele Tonina; Jim McKean; Daniel Isaak

    2016-01-01

    Quality of fish habitat at the scale of a single fish, at the metre resolution, which we defined here as microhabitat, has been primarily evaluated on short reaches, and their results have been extended through long river segments with methods that do not account for connectivity, a measure of the spatial distribution of habitat patches. However, recent...

  5. Conserving the Connections: A Nationwide Inventory of State-Based Habitat Connectivity Analysis

    OpenAIRE

    Feinberg, Jesse

    2007-01-01

    Habitat fragmentation is among the most serious threats to species and biological diversity. Highways can divide wildlife habitat into smaller patches, reducing or prohibiting necessary wildlife movement between core habitat areas for foraging, mating, and other life functions. Defenders of Wildlife reviewed all 50 states to identify those that are working to address habitat connectivity in the context of transportation planning. The goal of these plans is to facilitate interagency c...

  6. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  7. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  8. Sandy River Delta Habitat Restoration : Annual Report, January 2008 - March 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Robin [USDA Forest Service, Columbia River Gorge National Scenic Area

    2009-09-11

    During the period 2008-2009, there were 2 contracts with BPA. One (38539) was dealing with the restoration work for 2007 and the other (26198) was an extension on the 2006 contract including the NEPA for Dam removal on the old channel of the Sandy River. For contract 38539, the Sandy River Delta Habitat Restoration project continued its focus on riparian hardwood reforestation with less emphasis on wetlands restoration. Emphasis was placed on Sundial Island again due to the potential removal of the dike and the loss of access in the near future. AshCreek Forest Management was able to leverage additional funding from grants to help finance the restoration effort; this required a mid year revision of work funded by BPA. The revised work not only continued the maintenance of restored hardwood forests, but was aimed to commence the restoration of the Columbia River Banks, an area all along the Columbia River. This would be the final restoration for Sundial Island. The grant funding would help achieve this. Thus by 2011, all major work will have been completed on Sundial Island and the need for access with vehicles would no longer be required. The restored forests continued to show excellent growth and development towards true riparian gallery forests. Final inter-planting was commenced, and will continue through 2010 before the area is considered fully restored. No new wetland work was completed. The wetlands were filled by pumping in early summer to augment the water levels but due to better rainfall, no new fuel was required to augment existing. Monitoring results continued to show very good growth of the trees and the restoration at large was performing beyond expectations. Weed problems continue to be the most difficult issue. The $100,000 from BPA planned for forest restoration in 2008, was augmented by $25,000 from USFS, $120,000 from OR150 grant, $18,000 from LCREP, and the COE continued to add $250,000 for their portion. Summary of the use of these funds are

  9. Geomorphology of the Elwha River and its Delta: Chapter 3 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.

  10. A report on the fisheries resources of the lower Nelson River and the impacts of hydroelectric development, 1988 data

    International Nuclear Information System (INIS)

    Swanson, G.M.; Kansas, K.R.; Matkowski, S.M.

    1990-01-01

    Fisheries studies on the lower Nelson River (Manitoba) system have had the goals of gaining an understanding of the fisheries resources present, assessing current and potential impacts of hydroelectric developments, and investigating enhancement or mitigative options. In 1988, a resource inventory of McMillan and 12-Mile Creeks was conducted to increase understanding of brook trout stocks in the Limestone River system. Results indicate that both streams contain self-sustaining populations. Baseline data collection in the Conawapa Forebay of the Nelson River was initiated in 1988. Inventories of fish populations were conducted, focusing on lake sturgeon. Three long-term monitoring projects were continued in 1988, investigating the populations of spawning brook trout, larval brook trout, and anadromy in brook trout. Four major tributaries to the Nelson River were classified on the basis of physical and chemical characteristics in an attempt to understand brook trout distribution patterns. Ten sturgeon were captured in Angling Lake in 1988 and fitted with radio tags to assess the importance of the Angling Lake-Angling River system to Nelson River lake sturgeon. To investigate the feasibility of enhancing brook trout populations in the Nelson River system, baskets of eggs were planted in previously identified spawning areas in three creeks in 1988. The eggs developed and hatched only in CN Creek. The potential for rehabilitating the Kettle River brook trout population by transfer of fish from other rivers was also investigated in 1988. Radio-tagged fish remained in the Kettle River-Long Spruce system throughout the life of the tags and appear to have found suitable summer and winter habitat. 60 refs., 76 figs., 38 tabs

  11. Explorations on Temperature, Oxygen, Nutrients and Habitat Demands of Fish Species Found in River Coruh

    Directory of Open Access Journals (Sweden)

    Bilal Akbulut

    2009-04-01

    Full Text Available For the protection of our natural resources, fish species being economic and ecological richness of the natural in the basin of the Çoruh to know their request is extremely a vital important issue. In this study, temperature and oxygen demand, food and habitat of 18 fish species in six families found in river Çoruh assessed and discussed with the literature and database. Limiting the impact of water temperature on the reproductive, growth and nutrition emphasized. The fish species in the basin spawn at temperatures between 14-30°C according to database. Three species belonging to a family feed with animal food floating in the water. The species belonging to the other families more feed mixed with plant and animal foods diet in the floor or near the ground. Importance of their environmental demands has clarified for conservation and sustainable use of these fish species inhabiting in Çoruh River.

  12. Effects of water use and land use on streamflow and aquatic habitat in the Sudbury and Assabet River Basins, Massachusetts

    Science.gov (United States)

    Zarriello, Phillip J.; Parker, Gene W.; Armstrong, David S.; Carlson, Carl S.

    2010-01-01

    Water withdrawals from surface-water reservoirs and groundwater have affected streamflow in the Sudbury and Assabet River Basins. These effects are particularly evident in the upper Sudbury River Basin, which prompted the need to improve the understanding of water resources and aquatic habitat in these basins. In 2004, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Conservation and Recreation, developed a precipitation-runoff model that uses Hydrologic Simulation Program-FORTRAN (HSPF) to evaluate the effects of water use and projected future water-use and land-use change on streamflow. As part of this study, the aquatic habitat in the basins and the effects of streamflow alteration also were evaluated. Chapter 1 of the report covers the development of the HSPF model that focuses on the upper Sudbury River Basin (106 square miles) but covers the entire Sudbury and Assabet River Basins (339 square miles). The model was calibrated to an 11-year period (1993-2003) using observed or estimated streamflow at four streamgages. The model was then used to simulate long-term (1960-2004) streamflows to evaluate the effects of average 1993-2003 water use and projected 2030 water-use and land-use change over long-term climatic conditions. Simulations indicate that the average 1993-2003 withdrawals most altered streamflow relative to no withdrawals in small headwater subbasins where the ratios of mean annual withdrawals to mean annual streamflow are the highest. The effects of withdrawals are also appreciable in other parts of the upper Sudbury River Basin as a result of the perpetuation of the effects of large withdrawals in upstream reaches or in subbasins that also have a high ratio of withdrawal to streamflow. The simulated effects of potential 2030 water-use and land-use change indicate small decreases in flows as a result of increased water demands, but these flow alterations were offset as a result of decreased evapotranspiration

  13. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  14. Cost-effectiveness analysis of sandhill crane habitat management

    Science.gov (United States)

    Kessler, Andrew C.; Merchant, James W.; Shultz, Steven D.; Allen, Craig R.

    2013-01-01

    Invasive species often threaten native wildlife populations and strain the budgets of agencies charged with wildlife management. We demonstrate the potential of cost-effectiveness analysis to improve the efficiency and value of efforts to enhance sandhill crane (Grus canadensis) roosting habitat. We focus on the central Platte River in Nebraska (USA), a region of international ecological importance for migrating avian species including sandhill cranes. Cost-effectiveness analysis is a valuation process designed to compare alternative actions based on the cost of achieving a pre-determined objective. We estimated costs for removal of invasive vegetation using geographic information system simulations and calculated benefits as the increase in area of sandhill crane roosting habitat. We generated cost effectiveness values for removing invasive vegetation on 7 land parcels and for the entire central Platte River to compare the cost-effectiveness of management at specific sites and for the central Platte River landscape. Median cost effectiveness values for the 7 land parcels evaluated suggest that costs for creating 1 additional hectare of sandhill crane roosting habitat totaled US $1,595. By contrast, we found that creating an additional hectare of sandhill crane roosting habitat could cost as much as US $12,010 for some areas in the central Platte River, indicating substantial cost savings can be achieved by using a cost effectiveness analysis to target specific land parcels for management. Cost-effectiveness analysis, used in conjunction with geographic information systems, can provide decision-makers with a new tool for identifying the most economically efficient allocation of resources to achieve habitat management goals.

  15. Froude Number is the Single Most Important Hydraulic Parameter for Salmonid Spawning Habitat.

    Science.gov (United States)

    Gillies, E.; Moir, H. J.

    2015-12-01

    Many gravel-bed rivers exhibit historic straightening or embanking, reducing river complexity and the available habitat for key species such as salmon. A defensible method for predicting salmonid spawning habitat is an important tool for anyone engaged in assessing a river restoration. Most empirical methods to predict spawning habitat use lookup tables of depth, velocity and substrate. However, natural site selection is different: salmon must pick a location where they can successfully build a redd, and where eggs have a sufficient survival rate. Also, using dimensional variables, such as depth and velocity, is problematic: spawning occurs in rivers of differing size, depth and velocity range. Non-dimensional variables have proven useful in other branches of fluid dynamics, and instream habitat is no different. Empirical river data has a high correlation between observed salmon redds and Froude number, without insight into why. Here we present a physics based model of spawning and bedform evolution, which shows that Froude number is indeed a rational choice for characterizing the bedform, substrate, and flow necessary for spawning. It is familiar for Froude to characterize surface waves, but Froude also characterizes longitudinal bedform in a mobile bed river. We postulate that these bedforms and their hydraulics perform two roles in salmonid spawning: allowing transport of clasts during redd building, and oxygenating eggs. We present an example of this Froude number and substrate based habitat characterization on a Scottish river for which we have detailed topography at several stages during river restoration and subsequent evolution of natural processes. We show changes to the channel Froude regime as a result of natural process and validate habitat predictions against redds observed during 2014 and 2015 spawning seasons, also relating this data to the Froude regime in other, nearby, rivers. We discuss the use of the Froude spectrum in providing an indicator of

  16. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  17. Extending a prototype knowledge and object based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    Science.gov (United States)

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  18. Extending a prototype knowledge- and object-based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    Science.gov (United States)

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  19. Ecological relations between fish assemblages and their habitats in the Elbe River (ELFI). Final report; Oekologische Zusammenhaenge zwischen Fischgemeinschafts- und Lebensraumstrukturen der Elbe (ELFI). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nellen, W.; Kausch, H.; Thiel, R.; Ginter, R. (eds.)

    2002-12-01

    In the framework of the joint project, extensive data were obtained with regard to ecomorphology and hydro-dynamics of fish habitats, species diversity, age structure, abundance, habitat quality, habitat use, larval drift, migrations, growth, health status and population genetics of the fish fauna of the middle Elbe River. The data were stored in data banks and were used as basis to assess the middle Elbe River, to formulate a fish-ecological guiding view, and to develop predictive habitat models for different life stages of indicatory fish species. The data and results of the joint project will be stored in fish data banks of the ARGE Elbe and of the Federal Institute of Hydrology. The information is useful for the development of decision support systems. (orig.) [German] Im Rahmen des Verbundprojekts wurden umfangreiche Daten zu Oekomorphologie und Hydrodynamik von Fischhabitaten, zu Artendiversitaet, Altersstruktur, Abundanz, Habitatqualitaet und -nutzung, Larvendrift, Wanderungen, Wachstum, Gesundheitsstatus und Populationsgenetik der Fischfauna in der Mittelelbe erhoben und in Datenbanken abgelegt. Darauf aufbauend wurde die Mittelelbe fischoekologisch bewertet, ein fischoekologisches Leitbild formuliert und prognosefaehige Habitatmodelle fuer verschiedene Lebensstadien von Indikatorfischarten entwickelt. Die Daten und Ergebnisse des Verbundprojekts fliessen in die Fischdatenbanken der ARGE Elbe und der Bundesanstalt fuer Gewaesserkunde ein und stehen fuer die Entwicklung von DSS (Decision Support Systems) zur Verfuegung. (orig.)

  20. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    C. Huang

    2011-05-01

    Full Text Available The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2392 kt, 2293 kt, 6697 kt, 3116 kt, 1511 kt, 2767 kt, and 459 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77 % to the total ozone formation potential (OFP. The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around Hangzhou Bay. The industrial sources, including power plants other fuel combustion facilities, and non-combustion processes contribute about 97 %, 86 %, 89 %, 91 %, and 69 % of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3 % and 12.4 % of the NOx and VOC emissions, respectively. Regarding OFPs, the chemical industry, domestic use of paint & printing, and gasoline vehicles contribute 38 %, 24 %, and 12 % to the ozone formation in the YRD region.

  1. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  2. Ecological Flow Assessment to Improve the Spawning Habitat for the Four Major Species of Carp of the Yangtze River: A Study on Habitat Suitability Based on Ultrasonic Telemetry

    Directory of Open Access Journals (Sweden)

    Lixiong Yu

    2018-05-01

    Full Text Available Four major species of Chinese carp, namely black carp (Mylopharyngodon piceus, grass carp (Ctenopharyngodon idellus, silver carp (Hypophthalmichthys molitrix and bighead carp (Hypophthalmichthys nobilis, are important economic freshwater fish varieties in China. They primarily inhabit and breed in the Yangtze River. Unfortunately, the construction and operation of the Gezhouba Dam and the Three Gorges Dam have dramatically changed the hydrodynamic conditions in the middle reaches of the Yangtze River, leading to a sharp decline in the reproduction rates of these carp. The egg abundance of the four species of carp downstream from the Three Gorges Dam reached 8.35 billion in 1965, but abundance during 2005–2012 was only 0.25 billion. One of the main reasons was that the hydrodynamic conditions of the spawning ground could not meet the four species’ breeding requirements. However, due to the limitations of traditional detection tools, the spawning characteristics of these four species of carp were still unclear. In this study, the ultrasonic telemetry and a three–dimensional hydrodynamic model were utilized to build the habitat suitability index (HSI curves for the four species of carp. The habitat suitability model was then built based on HSI curves to assess spawning habitat quantity under different flow conditions. Finally, the habitat suitability model in the Yidu spawning ground was validated using 32 groups of sampling data in 2015 and 2017. The statistical results showed that the most suitable velocity ranged from 0.78 m/s to 0.93 m/s. The most suitable water depth ranged from 14.56 m to 16.35 m, and the most suitable Froude number ranged from 0.049 to 0.129. The habitat suitability model simulation results indicated that when the discharge was between 15,000 m3/s and 21,300 m3/s, the weighted usable area (WUA values in both the Yidu and Zhicheng spawning grounds would remain at a high level. The validation results showed that most

  3. Evaluation of habitat quality for selected wildlife species associated with back channels.

    Science.gov (United States)

    Anderson, James T.; Zadnik, Andrew K.; Wood, Petra Bohall; Bledsoe, Kerry

    2013-01-01

    The islands and associated back channels on the Ohio River, USA, are believed to provide critical habitat features for several wildlife species. However, few studies have quantitatively evaluated habitat quality in these areas. Our main objective was to evaluate the habitat quality of back and main channel areas for several species using habitat suitability index (HSI) models. To test the effectiveness of these models, we attempted to relate HSI scores and the variables measured for each model with measures of relative abundance for the model species. The mean belted kingfisher (Ceryle alcyon) HSI was greater on the main than back channel. However, the model failed to predict kingfisher abundance. The mean reproduction component of the great blue heron (Ardea herodias) HSI, total common muskrat (Ondatra zibethicus) HSI, winter cover component of the snapping turtle (Chelydra serpentina) HSI, and brood-rearing component of the wood duck (Aix sponsa) HSI were all greater on the back than main channel, and were positively related with the relative abundance of each species. We found that island back channels provide characteristics not found elsewhere on the Ohio River and warrant conservation as important riparian wildlife habitat. The effectiveness of using HSI models to predict species abundance on the river was mixed. Modifications to several of the models are needed to improve their use on the Ohio River and, likely, other large rivers.

  4. Effects of the “Run-of-River” Hydro Scheme on Macroinvertebrate Communities and Habitat Conditions in a Mountain River of Northeastern China

    Directory of Open Access Journals (Sweden)

    Haoran Wang

    2016-01-01

    Full Text Available The main objective of this study was to quantify the impacts of the run of river (ROR scheme on the instream habitat and macroinvertebrate community. We sampled the macroinvertebrate assemblages and collected the habitat variables above and below an ROR hydropower plant: Aotou plant in the Hailang River, China. The effects of the ROR scheme on habitat conditions were examined using regulation-related variables, most of which, particularly the hydrological variables and substrate composition, presented spatial variations along the downstream direction, contributing to heterogeneous conditions between reaches. The macroinvertebrate richness, the density and the diversity metrics showed significant decreases in the “depleted” reach compared with the upper and lower reaches. Approximately 75% of reach-averaged densities and 50% of taxa richness suffered decreases in the “depleted” reach compared with the upper reach. Furthermore, functional feeding groups also showed distinct site differences along the channel. The relative abundance of both collector-gatherers and the scrapers reduced considerably at the “depleted” sites, particularly at the site immediately downstream of the weir. The total variance in the the functional feeding group (FFG data explained by Canonical correlation analysis (CCA was more than 81.4% and the high-loadings factors were depth, flow velocity, DO and substrate composition. We demonstrated that flow diversion at the 75% level and an in-channel barrier, due to the ROR scheme, are likely to lead to poor habitat conditions and decrease both the abundance and the diversity of macroinvertebrates in reaches influenced by water diversion.

  5. Natural Propagation and Habitat Improvement, Volume I, Oregon, 1984 Final and Annual Reports.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Rod

    1986-02-01

    This volume contains reports on habitat improvement and fisheries enhancement projects conducted in the following subbasins: (1) Clackamas River; (2) Hood River; :(3) Deschutes River; (4) John Day River; (5) Umatilla River; and (6) Grande Ronde River. (ACR)

  6. Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats

    Directory of Open Access Journals (Sweden)

    Bilal Hussain

    2018-05-01

    Full Text Available This investigation is aimed to study an impact of habitat degradation on proximate composition and amino acid (AAs profile of Catla catla, Labeo rohita and Cirrhinus mrigala collected from polluted, non-polluted area (upstream and a commercial fish farm. The amino acid profile was estimated by the amino acid analyzer. C. catla collected from the polluted environment had highest lipid, protein and ash contents (12.04 ± 0.01, 13.45 ± 0.01 and 0.93 ± 0.03%, respectively. The high protein content (14.73 ± 0.01 and 14.12 ± 0. 01% was recorded in C. catla procured from non-polluted (upstream wild habitat of River Chenab and controlled commercial fish farm. Farmed fish species showed comparatively higher moisture contents followed by upstream and polluted area fishes. C. mrigala showed significant differences in amino acid and proximate composition collected from a polluted site of the river Chenab. C. catla collected from non-polluted site of the river showed an excellent nutrient profile, followed by L. rohita (wild and farmed and C. mrigala (polluted area, respectively. All fishes from the polluted areas of the River Chenab indicated a significant decrease in the concentration of some AAs when compared to farmed and wild (upstream major carps. Omitting of some important AAs was also observed in the meat of fish harvested from polluted habitat of this river. C. mrigala and L. rohita exhibited a significant increase in the concentration of some of non-essential amino acids such as cysteine in their meat. The results indicated that wild fish (upstream and farmed fish species had highest protein contents and amino acid profile and hence appeared to be the best for human consumption. The proximate composition and AAs profiles of fish harvested from the polluted area of the river clearly indicated that efforts shall be made for the restoration of habitat to continue the requirement of high quality fish meat at a low cost to the

  7. An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory

    International Nuclear Information System (INIS)

    Yoshimura, Kazuya; Onda, Yuichi; Sakaguchi, Aya; Yamamoto, Masayoshi; Matsuura, Yuki

    2015-01-01

    An extensive investigation of particulate radiocaesium in suspended solids and dissolved radiocaesium in river water was undertaken at 30 sites in Fukushima and Miyagi Prefectures in December 2012, and their relationships with catchment inventory and the solid/liquid distribution coefficient (K d ) were evaluated. Rivers located in the coastal region on the north side of the Fukushima Dai-ichi Nuclear Power Plant exhibited relatively higher particulate radiocaesium concentrations. Significant correlations were found between concentrations of particulate/dissolved radiocaesium and average catchment inventories, indicating that the concentrations of particulate/dissolved radiocaesium could be approximated from the catchment inventory. Particulate radiocaesium concentration was significantly correlated with dissolved radiocaesium concentration (with the exception of concentrations measured in estuaries), and the geometric mean K d was calculated as 3.6 × 10 5 with a 95% confidence interval of 2.6–5.1 × 10 5 . - Highlights: • Particulate radiocaesium concentration correlated with catchment inventory. • Particulate size can be an important factor of the correlation. • Solid/liquid distribution coefficients were obtained for extensive area

  8. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value[Dissertation 3807

    Energy Technology Data Exchange (ETDEWEB)

    Pellaud, M.

    2007-05-15

    ) general SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km{sup 2}, a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its

  9. NOAA Office for Coastal Management Benthic Habitat Data, Catlett and Goodwin Islands on the York River in Chesapeake Bay, VA, 2002-2004 (NODC Accession 0090253)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a collection of benthic habitat data from studies conducted in the Catlett and Goodwin Islands on the York River in Chesapeake Bay, Virginia in GIS...

  10. Intermittent Rivers and Biodiversity. Large scale analyses between hydrology and ecology in intermittent rivers

    OpenAIRE

    Blanchard, Q.

    2014-01-01

    Intermittent rivers are characterized by a temporary interruption of their flow which can manifest in a variety of ways, as much on a spatial scale as on a temporal one. This particular aspect of intermittent river hydrology gives rise to unique ecosystems, combining both aquatic and terrestrial habitats. Neglected for a long time by scientists and once considered biologically depauperate and ecologically unimportant, these fragile habitats are nowadays acknowledged for their rendered service...

  11. Coastal processes of the Elwha River delta: Chapter 5 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Warrick, Jonathan A.; Stevens, Andrew W.; Miller, Ian M.; Gelfenbaum, Guy; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    To understand the effects of increased sediment supply from dam removal on marine habitats around the Elwha River delta, a basic understanding of the region’s coastal processes is necessary. This chapter provides a summary of the physical setting of the coast near the Elwha River delta, for the purpose of synthesizing the processes that move and disperse sediment discharged by the river. One fundamental property of this coastal setting is the difference between currents in the surfzone with those in the coastal waters offshore of the surfzone. Surfzone currents are largely dictated by the direction and size of waves, and the waves that attack the Elwha River delta predominantly come from Pacific Ocean swell from the west. This establishes surfzone currents and littoral sediment transport that are eastward along much of the delta. Offshore of the surfzone the currents are largely influenced by tidal circulation and the physical constraint to flow provided by the delta’s headland. During both ebbing and flooding tides, the flow separates from the coast at the tip of the delta’s headland, and this produces eddies on the downstream side of the headland. Immediately offshore of the Elwha River mouth, this creates a situation in which the coastal currents are directed toward the east much more frequently than toward the west. This suggests that Elwha River sediment will be more likely to move toward the east in the coastal system.

  12. Shining the light on the loss of rheophilic fish habitat in lowland rivers as a forgotten consequence of barriers and its implications for management

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Aarestrup, Kim; Riis, Torsten M. O.

    2017-01-01

    modified by agriculture and other human activities for centuries, leaving management practitioners wondering how much change is acceptable to maintain sustainable fish populations and fisheries practices. 4. With examples from Denmark, this paper attempts to conceptualize the loss in habitat as a result...... of barriers in lowland streams and rivers, and the repercussions that such alterations may have on rheophilic fish populations. Furthermore, the need for management to address habitat loss and its related consequences concurrently with the improvement of fish passage is emphasized...

  13. Video-Based Electroshocking Platform to Identify Lamprey Ammocoete Habitats: Field Validation and New Discoveries in the Columbia River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Mueller, Robert P.

    2017-05-04

    A deep water electroshocking platform (DEP), developed to characterize larval lampreys (ammocoetes) and associated habitat in depths up to 15 m, was recently tested in the field. The DEP samples 0.55 m2∙min-1 without requiring ammocoete transport to the surface. Searches were conducted at a known rearing location (mouth of the Wind River, WA) and at locations on the Cowlitz River, WA, where ammocoetes had not previously been found. At the mouth of the Wind River, video imaged ammocoetes ranged from 50 to 150 mm in water depths between 1.5 m and 4.5 m and were more common in sediments containing organic silt. Ammocoetes (n=137) were detected at 61% of locations sampled (summer) and 50% of the locations sampled (winter). Following the field verification, the DEP was used on the lower 11.7 km of the Cowlitz River, WA. Ammocoetes (n=41) were found with a detection rate of 26% at specific search locations. Cowlitz River sediment containing ammocoetes was also dominated by silt with organic material, often downstream of alluvial bars in water depths from 0.8 to 1.7 m. Test results indicated a high sampling efficiency, favorable detection rates, and little or no impact to ammocoetes and their surrounding benthic environments.

  14. Emergent Sandbar Construction for Least Terns on the Missouri River: Effects on Forage Fishes in Shallow-Water Habitats

    Science.gov (United States)

    Stucker, J.H.; Buhl, D.A.; Sherfy, M.H.

    2011-01-01

    Emergent sandbars on the Missouri River are actively managed for two listed bird species, piping plovers and interior least terns. As a plunge-diving piscivore, endangered least terns rely on ready access to appropriately sized slender-bodied fish: nesting habitat for plovers and terns, the U.S. Army Corps of Engineers mechanically created several emergent sandbars on the Missouri River. However, it was unknown whether sandbar construction is a benefit or a detriment to forage abundance for least terns. Therefore, we studied the shallowwater (nesting seasons (2006-2008). We sampled every 2 weeks each year from late May to July within 15-16 areas to document the relative abundance, species richness and size classes of fish. Fish relative abundance was negatively related to depth. Catches were dominated by schooling species, including emerald shiner, sand shiner, spotfin shiner and bigmouth buffalo. Significant inter-annual differences in relative abundance were observed, with generally increasing trends in intra-seasonal relative abundance of shiners and the smallest size classes of fish (<34 mm). Significant differences in the fish communities between the sandbar types were not detected in this study. Results suggest that mechanical sandbar habitats host comparable fish communities at similar levels of relative abundance. Further analyses are required to evaluate if the levels of fish relative abundance are adequate to support least tern foraging and reproduction.

  15. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida

    Science.gov (United States)

    Burgess, O.T.; Pine, William E.; Walsh, S.J.

    2013-01-01

    Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.

  16. Status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1991-09-01

    We report on our progress from April 1990 through March 1991 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from NcNary Dam; to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam; to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams; and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights of results of this work in the Dalles, Bonneville and John Day reservoirs are included in the four pages included in this report

  17. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  18. An investigation of Inventory Differences

    International Nuclear Information System (INIS)

    Harvel, C.

    1993-01-01

    The derivation of applicable Limits of Error for Inventory Differences (LEIDs) has been a long-term challenge for some material storage tanks at the Savannah River Site. Several investigations have been unsuccessful in producing usable estimates of the LEIDs. An investigation conducted in November of 1991 revealed some significant inventory characteristics. The corrective action involved the implementation of a multi-case LEID based on historical information and a correction in the use of the tank calibration charts for two storage tanks

  19. Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats.

    Science.gov (United States)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Ahmed, Z; Mahboob, Shahid

    2018-05-01

    This investigation is aimed to study an impact of habitat degradation on proximate composition and amino acid (AAs) profile of Catla catla, Labeo rohita and Cirrhinus mrigala collected from polluted, non-polluted area (upstream) and a commercial fish farm. The amino acid profile was estimated by the amino acid analyzer. C. catla collected from the polluted environment had highest lipid, protein and ash contents (12.04 ± 0.01, 13.45 ± 0.01 and 0.93 ± 0.03%, respectively). The high protein content (14.73 ± 0.01 and 14.12 ± 0. 01%) was recorded in C. catla procured from non-polluted (upstream) wild habitat of River Chenab and controlled commercial fish farm. Farmed fish species showed comparatively higher moisture contents followed by upstream and polluted area fishes. C. mrigala showed significant differences in amino acid and proximate composition collected from a polluted site of the river Chenab. C. catla collected from non-polluted site of the river showed an excellent nutrient profile, followed by L. rohita (wild and farmed) and C. mrigala (polluted area), respectively. All fishes from the polluted areas of the River Chenab indicated a significant decrease in the concentration of some AAs when compared to farmed and wild (upstream) major carps. Omitting of some important AAs was also observed in the meat of fish harvested from polluted habitat of this river. C. mrigala and L. rohita exhibited a significant increase in the concentration of some of non-essential amino acids such as cysteine in their meat. The results indicated that wild fish (upstream) and farmed fish species had highest protein contents and amino acid profile and hence appeared to be the best for human consumption. The proximate composition and AAs profiles of fish harvested from the polluted area of the river clearly indicated that efforts shall be made for the restoration of habitat to continue the requirement of high quality fish meat at a low cost to the human

  20. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.

    Science.gov (United States)

    Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin

    2018-08-15

    The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high

  1. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C.; Arntzen, Evan; Kennedy, David W.; Larget, Bret R.; Roden, Eric E.; Kostka, Joel E.

    2017-06-09

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities (in situcolonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to “cross-feeding” with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection duringin situcolonization would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition.

    IMPORTANCEThe influence of river water

  2. Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009

    Science.gov (United States)

    Kinzel, P.J.; Runge, J.T.

    2010-01-01

    Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated

  3. Inventory and systematization of data on radiation-chemical contamination of rivers running along Bryansk-Belarusian 'cesium spot'

    International Nuclear Information System (INIS)

    Germenchuk, M.G.; Zhukova, O.M.; Bakarykava, Zh.; Popova, E.; Gorbatova, G.

    2005-01-01

    Inventory and systematization of the data on radioactive-chemical contamination of rivers are made. Systematization of the data on chemical and radiation contamination component of rivers was made with using the index of integrated radiation-chemical surface waters contamination (IRCCI=WCI+RCI). Chemical contamination of surface water has been estimated using water contamination index (WCI). It constitutes an integrated magnitude considering ratios of six more significant pollutants to their maximum concentration limits. In dependence on WCI surface water can be attributed to one of seven classes: from 'clean' (with WCI≤1) to 'extremely dirty' (with WCI>10). At present for estimation of radioactive contamination of surface water only comparison with Republican permissible levels are used. But it is not enough for complex estimation of water quality because it does not enable to estimate the extent of radionuclide exceeding over their permissible levels. Therefore for estimation of radioactive pollution level, water radioactive contamination index (RCI) was applied. It is a sum of ratios of main radionuclide concentrations to their permissible levels. Application of RCI enabled to compare radioactive contamination before and after the Chernobyl accident. Application of the index of integrated radiation-chemical surface water contamination enabled to obtain the most complete and impartial estimate of surface water quality of some rivers. Retrospective estimation of the water quality shows that in 1990 surface waters of some rivers should be considered as belonging to more contaminated category of quality if radiation component would have been considered. (authors)

  4. Determining Original Inventory Amount of Radioactive Substances from Unmonitored Radionuclide Emissions

    International Nuclear Information System (INIS)

    Hamilton, J.T.; Blunt, B.C.

    1999-01-01

    The purpose of this document is to determine the air emissions inventory of the Savannah River Site. To satisfy regulatory requirements, a new equation has been developed to determine original inventory amounts from unmonitored radionuclide emissions

  5. Forest inventory, Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final report

    International Nuclear Information System (INIS)

    Narolski, S.W.

    1996-12-01

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area

  6. Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Narolski, Steven W.

    1996-12-01

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.

  7. Bull trout (Salvelinus confluentus) telemetry and associated habitat data collected in a geodatabase from the upper Boise River, southwestern Idaho

    Science.gov (United States)

    MacCoy, Dorene E.; Shephard, Zachary M.; Benjamin, Joseph R.; Vidergar, Dmitri T.; Prisciandaro, Anthony F.

    2017-03-23

    Bull trout (Salvelinus confluentus), listed as threatened under the Endangered Species Act, are among the more thermally sensitive of coldwater species in North America. The Boise River upstream of Arrowrock Dam in southwestern Idaho (including Arrowrock Reservoir) provides habitat for one of the southernmost populations of bull trout. The presence of the species in Arrowrock Reservoir poses implications for dam and reservoir operations. From 2011 to 2014, the Bureau of Reclamation and the U.S. Geological Survey collected fish telemetry data to improve understanding of bull trout distribution and movement in Arrowrock Reservoir and in the upper Boise River tributaries. The U.S. Geological Survey compiled the telemetry (fish location) data, along with reservoir elevation, river discharge, precipitation, and water-quality data in a geodatabase. The geodatabase includes metadata compliant with Federal Geographic Data Committee content standards. The Bureau of Reclamation plans to incorporate the data in a decision‑support tool for reservoir management.

  8. Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of north-western South America.

    Science.gov (United States)

    Jiménez-Segura, L F; Galvis-Vergara, G; Cala-Cala, P; García-Alzate, C A; López-Casas, S; Ríos-Pulgarín, M I; Arango, G A; Mancera-Rodríguez, N J; Gutiérrez-Bonilla, F; Álvarez-León, R

    2016-07-01

    The remarkable fish diversity in the Caribbean rivers of north-western South America evolved under the influences of the dramatic environmental changes of neogene northern South America, including the Quechua Orogeny and Pleistocene climate oscillations. Although this region is not the richest in South America, endemism is very high. Fish assemblage structure is unique to each of the four aquatic systems identified (rivers, streams, floodplain lakes and reservoirs) and community dynamics are highly synchronized with the mono-modal or bi-modal flooding pulse of the rainy seasons. The highly seasonal multispecies fishery is based on migratory species. Freshwater fish conservation is a challenge for Colombian environmental institutions because the Caribbean trans-Andean basins are the focus of the economic development of Colombian society, so management measures must be directed to protect aquatic habitat and their connectivity. These two management strategies are the only way for helping fish species conservation and sustainable fisheries. © 2016 The Fisheries Society of the British Isles.

  9. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1987.

    Energy Technology Data Exchange (ETDEWEB)

    Petrosky, Charles E.; Holubetz, Terry B. (Idaho Dept. of Fish and Game, Boise, ID (USA)

    1988-04-01

    The Idaho Department of Fish and Game has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) in the Clearwater and Salmon River drainages over the last four years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed to use increased smolt production at full seeding as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on presence of adequate numbers of fish to document actual increases in fish production. The depressed nature of upriver anadromous stocks have precluded attainment of full benefit of any habitat project in Idaho. Partial benefit will be credited to the mitigation record in the interim period of run restoration. According to the BPA Work Plan, project implementors have the primary responsibility for measuring physical habitat and estimating habitat change. To date, Idaho habitat projects have been implemented primarily by the US Forest Service (USFS). The Shoshone-Bannock Tribes (SBT) have sponsored three projects (Bear Valley Mine, Yankee Fork, and the proposed East Fork Salmon River projects). IDFG implemented two barrier-removal projects (Johnson Creek and Boulder Creek) that the USFS was unable to sponsor at that time. The role of IDFG in physical habitat monitoring is primarily to link habitat quality and habitat change to changes in actual, or potential, fish production. Individual papers were processed separately for the data base.

  10. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China.

    Directory of Open Access Journals (Sweden)

    Lexuan Gao

    Full Text Available Determination of spatial genetic structure (SGS in natural populations is important for both theoretical aspects of evolutionary genetics and their application in species conservation and ecological restoration. In this study, we examined genetic diversity within and among the natural populations of a cosmopolitan grass Phragmites australis (common reed in the Yellow River Delta (YRD, China, where a mosaic of habitat patches varying in soil salinity was detected. We demonstrated that, despite their close geographic proximity, the common reed populations in the YRD significantly diverged at six microsatellite loci, exhibiting a strong association of genetic variation with habitat heterogeneity. Genetic distances among populations were best explained as a function of environmental difference, rather than geographical distance. Although the level of genetic divergence among populations was relatively low (F'(ST =0.073, weak but significant genetic differentiation, as well as the concordance between ecological and genetic landscapes, suggests spatial structuring of genotypes in relation to patchy habitats. These findings not only provided insights into the population dynamics of common reed in changing environments, but also demonstrated the feasibility of using habitat patches in a mosaic landscape as test systems to identify appropriate genetic sources for ecological restoration.

  11. Habitat Evaluation Procedures (HEP) Report; Sandy River Delta, Technical Report 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Rocklage, Ann; Ratti, John

    2002-02-01

    requisites (e.g., food and nesting cover) for that species. These variables are evaluated with vegetation sampling, and/or through the interpretation of aerial photographs and the like. Variable values are assigned a numerical score. The score may be based on a categorical rating (e.g . , different vegetation types receive different scores based on their importance for that species) or may be the result of a linear relationship (e.g., the score increases with the variable value; Figure 1). Variable scores are then input into a mathematical formula, which results in an HSI score. The HSI score ranges from 0-1, with 0 representing poor-quality habitat and 1 optimal habitat. HSI models assume a positive, linear relationship between wildlife-species density and the HSI score. For example, with an HSI score of 1, we assume that a species will be present at its highest density. Models can be projected into the future by changing variable values and observing the corresponding changes in HSI scores. Most models are relatively simple, but some are complex. These models have come under considerable scrutiny in the last several years, particularly concerning the validity of model assumptions (Van Horne 1983, Laymon and Barrett 1986, Hobbs and Hanley 1990, Kellner et al. 1992). Regardless of criticisms, these models may be used with success when there is an understanding and acceptance of model limitations. Each model should be evaluated as to its applicability in a given situation. Model validation, where results have on-the-ground verification, is highly recommended. Specific objectives of this project were to (1) conduct avian surveys and measure the present vegetation at the Sandy River Delta, (2) input the vegetation data into HSI models for 5 avian species, (3) evaluate the current habitat suitability for these species, and (4) predict species responses to potential changes in vegetation, resulting from the removal of reed canarygrass and/or Himalayan blackberry.

  12. Analysis of in situ water velocity distributions in the lowland river floodplain covered by grassland and reed marsh habitats - a case study of the bypass channel of Warta River (Western Poland

    Directory of Open Access Journals (Sweden)

    Laks Ireneusz

    2017-12-01

    Full Text Available The analysis of in situ measurements of velocity distribution in the floodplain of the lowland river has been carried out. The survey area was located on a bypass channel of the Warta River (West of Poland which is filled with water only in case of flood waves. The floodplain is covered by grassland and reed marsh habitats. The velocity measurements were performed with an acoustic Doppler current profiler (ADCP in a cross-section with a bed reinforced with concrete slabs. The measured velocities have reflected the differentiated impact of various vegetation types on the loss of water flow energy. The statistical analyses have proven a relationship between the local velocities and the type of plant communities.

  13. Hydrologic and water-quality rehabilitation of environments for suitable fish habitat

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-11-01

    estimated and graded, and the priority of habitat factors for rehabilitation was determined. Application of the model to Jinan City, a pilot city for the construction of a civilized and ecological city in China, proved effective, revealing that carbonate is the poorest habitat factor and has the highest priority for ecological rehabilitation. This was tested using two methods: alternative priority models and a dataset of all habitat factors in place of only the principal habitat factors. We also found that hydrological factors have higher priority than the water quality factors at the levels of both the whole city and its subordinate eco-regions and therefore that hydrological factors deserve special attention in the future ecosystem rehabilitation. Further, the current habitat state makes nearly half of the habitats in Jinan City undesirable for fish communities, largely due to long-term agricultural practices. Spatially, rivers in the mountainous region south of Jinan city and adjacent to the urban area and rivers in the agricultural region north of the city should be emphasized in future habitat rehabilitation. All of these findings have substantial ramifications for the rehabilitation of aquatic ecosystems in Jinan City as a reference for river ecological remediation in rivers with scarce ecological data worldwide.

  14. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  15. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    Science.gov (United States)

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T

  16. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  17. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  18. Using forest inventory data to assess fisher resting habitat suitability in California.

    Science.gov (United States)

    William J. Zielinski; Richard L. Truex; Jeffrey R. Dunk; Tom Gaman

    2006-01-01

    The fisher (Martes pennanti) is a forest-dwelling carnivore whose current distribution and association with late-seral forest conditions make it vulnerable to stand-altering human activities or natural disturbances. Fishers select a variety of structures for daily resting bouts. These habitat elements, together with foraging and reproductive (denning) habitat,...

  19. Transferability of habitat suitability criteria for fishes in warmwater streams

    Science.gov (United States)

    Freeman, Mary C.; Bowen, Z.H.; Crance, J.H.

    1997-01-01

    We developed habitat suitability criteria and tested their transferability for nine fishes inhabiting unregulated Piedmont and Coastal Plain streams in Alabama. Cr iteria for optimal habitat were defined as ranges of depth, velocity, substrate type and cover type for which a species' suitability index (proportional abundance divided by proportional habitat availability, scaled from 0 to 1) equalled or exceeded 0.4. We evaluated the transferability of criteria between study sites by testing the null hypothesis that species occurrence in a sample was independent of whether or not the sample was taken in optimal habitat. We also tested criteria transference to a large, flow-regulated river sampled during low flow periods. Depth, velocity and most substrate criteria developed for the bronze darter Percina palmaris successfully transferred between unregulated streams and to the flow-regulated river samples. All criteria developed for a pair of closely related, allopatric darter species, Etheostoma chuckwachattee and E. jordani, transferred sucessfully when applied between species (in the unregulated sites) and to the regulated river samples. In contrast, criteria for the Alabama shiner Cyprinella callistia failed nearly all tests of transferability. Criteria for E. stigmaeum, P. nigrofasciata, an undescribed Percina species, and a pair of related, allopatric Cyprinella species transferred inconsistently. The species with good criteria transference had high suitability indices for shallow depths, fast current velocities and coarse substrates, characteristic of riffle species. We suggest that microhabitat criteria for riffle fishes are more likely to provide a transferable measure of habitat quality than criteria for fishes that, although restricted to fluvial habitats, commonly occupy a variety of pool and riffle habitats.

  20. Methow and Columbia Rivers studies: summary of data collection, comparison of database structure and habitat protocols, and impact of additional PIT tag interrogation systems to survival estimates, 2008-2012

    Science.gov (United States)

    Martens, Kyle D.; Tibbits, Wesley T.; Watson, Grace A.; Newsom, Michael A.; Connolly, Patrick J.

    2014-01-01

    designed to show some initial analysis and to disseminate summary information that could potentially be used in ongoing modeling efforts by USGS, Reclamation, and University of Idaho. The second chapter documents the database of fish and habitat data collected by USGS from 2004 through 2012 and compares USGS habitat protocols to the Columbia Habitat Monitoring Program (CHaMP) protocol. The third chapter is a survival analysis of fish moving through Passive Integrated Transponder (PIT) tag interrogation systems in the Methow and Columbia Rivers. It examines the effects of adding PIT tags and/or PIT tag interrogation systems on survival estimates of juvenile steelhead and Chinook salmon.

  1. Ecohydraulics of Strings and Beads in Bedrock Rivers

    Science.gov (United States)

    Wohl, E.

    2016-12-01

    Twenty years ago, Jack Stanford and others described rivers in bedrock canyons as resembling beads on a string when viewed in planform. The beads are relatively wide, low gradient river segments with floodplains, whereas the strings are the intervening steep, narrow river segments with minimal floodplain development. This pattern of longitudinal variations in channel and valley morphology along bedrock canyon rivers is very common, from small channels to major rivers such as the Colorado. Basic understanding of river ecosystems, as well as limited studies, indicates that the beads are more retentive and biologically productive. Although both strings and beads can provide habitat for diverse organisms, strings are more likely to serve as migration corridors, whereas beads provide spawning and nursery habitat, facilitate lateral (channel-floodplain) and vertical (channel-hyporheic) exchanges and associated habitat diversity, and retain dissolved and particulate organic matter. Recognition of the different characteristics and functions of strings and beads can be used to identify their spatial distribution along a river or within a river network and the hydraulically driven processes that sustain channel form, water quality, and biota within strings and beads. Diverse modeling approaches can then be used to quantify the fluxes of water and sediment needed to maintain these hydraulically driven processes. This conceptual framework is illustrated using examples from mountain streams in the Southern Rockies and canyon rivers in the southwestern United States.

  2. Riparian vegetation interacting with river morphology : modelling long-term ecosystem responses to invasive species, climate change, dams and river restoration

    NARCIS (Netherlands)

    van Oorschot, M.

    2017-01-01

    River systems are amongst the most dynamic and productive ecosystems in the world and provide habitats for numerous fluvial species. River flow and river shape determine the conditions that affect plant growth and survival. In turn, riparian plants can actively influence river flow and sedimentation

  3. Floodplain farm fields provide novel rearing habitat for Chinook salmon.

    Directory of Open Access Journals (Sweden)

    Jacob V E Katz

    Full Text Available When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha. Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g were reared on two hectares for six weeks (Feb-March between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon.

  4. Growth potential and habitat requirements of endangered age-0 pallid sturgeon (Scaphirhynchus albus) in the Missouri River, USA, determined using a individual-based model framework

    Science.gov (United States)

    Deslauriers, David; Heironimus, Laura B.; Rapp, Tobias; Graeb, Brian D. S.; Klumb, Robert A.; Chipps, Steven R.

    2018-01-01

    An individual-based model framework was used to evaluate growth potential of the federally endangered pallid sturgeon (Scaphirhynchus albus) in the Missouri River. The model, developed for age-0 sturgeon, combines information on functional feeding response, bioenergetics and swimming ability to regulate consumption and growth within a virtual foraging arena. Empirical data on water temperature, water velocity and prey density were obtained from three sites in the Missouri River and used as inputs in the model to evaluate hypotheses concerning factors affecting pallid sturgeon growth. The model was also used to evaluate the impacts of environmental heterogeneity and water velocity on individual growth variability, foraging success and dispersal ability. Growth was simulated for a period of 100 days using 100 individuals (first feeding; 19 mm and 0.035 g) per scenario. Higher growth was shown to occur at sites where high densities of Ephemeroptera and Chironomidae larvae occurred throughout the growing season. Highly heterogeneous habitats (i.e., wide range of environmental conditions) and moderate water velocities (0.3 m/s) were also found to positively affect growth rates. The model developed here provides an important management and conservation tool for evaluating growth hypotheses and(or) identifying habitats in the Missouri River that are favourable to age-0 pallid sturgeon growth.

  5. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  6. Upstream migration of Pacific lampreys in the John Day River, Oregon: Behavior, timing, and habitat use

    Science.gov (United States)

    Robinson, T. Craig; Bayer, J.M.

    2005-01-01

    Adult Pacific lamprey migration and habitat preferences for over-winter holding and spawning, and larval rearing in tributaries to the Columbia River are not well understood. The John Day River is one such tributary where larval and adult stages of this species have been documented, and its free-flowing character provided the opportunity to study migration of Pacific lampreys unimpeded by passage constraints. Forty-two adult Pacific lampreys were captured in the John Day River near its mouth during their upstream migration. Pacific lampreys were surgically implanted with radio transmitters and released onsite, and tracked by fixed-site, aerial, and terrestrial telemetry methods for nearly one year. Adults moved upstream exclusively at night, with a mean rate of 11.1 ?? 6.3 km/day. They halted upstream migration by September, and held a single position for approximately six months in the lateral margins of riffles and glides, using boulders for cover. More than half of Pacific lampreys resumed migration in March before ending movement in early May. Pacific lampreys that resumed migration in spring completed a median of 87% of their upstream migration before over-winter holding. Upon completing migration. Pacific lampreys briefly held position before beginning downstream movement at the end of May. Though not directly observed, halting migration and movement downstream were likely the result of spawning and death. Gains in adult Pacific lamprey passage through the Columbia River hydrosystem and tributaries may be made by improvements that would expedite migration during spring and summer and increase the quantity and variety of cover and refuge opportunities. ?? 2005 by the Northwest Scientific Association. All rights reserved.

  7. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Golder Associates, Inc.

    2003-04-22

    The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a

  8. Flathead River Instream Flow Investigation Project : Final Report 1996-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William J. (Miller Ecological Consultants., Fort Collins, CO); Ptacek, Jonathan A. (Miller Ecological Consultants, Inc., Fort Collins, CO)

    2003-09-01

    A modified Instream Flow Incremental Methodology (IFIM) approach was used on the mainstem Flathead River from the South Fork Flathead River downstream to Flathead Lake. The objective of this study was to quantify changes in habitat for the target fish species, bull trout (Salvelinus confluentus) and west slope cutthroat trout (Oncorhynchus clarki lewisi), as a function of discharge in the river. This approach used a combination of georeferenced field data for each study site combined with a two-dimensional hydraulic simulation of river hydraulic characteristics. The hydraulic simulations were combined with habitat suitability criteria in a GIS analysis format to determine habitat area as a function of discharge. Results of the analysis showed that habitat area is more available at lower discharges than higher discharges and that in comparison of the pre-dam hydrology with post-dam hydrology, the stable pre-dam baseflows provided more stable habitat than the highly variable flow regime during both summer and winter baseflow post-dam periods. The variability week to week and day to day under post-dam conditions waters and dewaters stream margins. This forces sub-adult fish, in particular bull trout, to use less productive habitat during the night. There is a distinct difference between daytime and nighttime habitat use for bull trout sub-adults. The marginal areas that are constantly wet and then dried provide little in productivity for lower trophic levels and consequently become unproductive for higher trophic levels, especially bull trout sub-adults that use those areas as flows increase. A stable flow regime would be more productive than flow regimes with high variability week to week. The highly variable flows likely put stress on a bull trout subadult and west slope cutthroat trout, due to the additional movement required to find suitable habitat. The GIS approach presented here provides both a visual characterization of habitat as well as Arcview project data

  9. Post-flood status of the Endangered Ganges River Dolphin Platanista gangetica gangetica (Cetartiodactyla: Platanistidae in the Koshi River, Nepal

    Directory of Open Access Journals (Sweden)

    T.B. Khatri

    2010-12-01

    Full Text Available The breach of the eastern embankment of the Koshi Barrage at Paschim Kusaha Village of Sunsari District on 18 August 2008, created havoc for wildlife and their habitats, as well as people’s livelihood and welfare. The Koshi River flowed through the breach for five months. Following the breach, a population assessment survey of the Endangered Ganges River Dolphin Platanista gangetica gangetica was made between March and November 2009 in the Koshi River main channel starting from Chatara to 2km south of Koshi Barrage to ascertain their status. A direct count survey was conducted by two teams of researchers simultaneously searching for animals by boat from Chatara to the Koshi Barrage including the Triyuga River and on foot along the river banks downstream of Koshi Barrage and along the Mariya River. Standard protocols were followed to record the number of sighted dolphins. A total of 11 dolphins were recorded in the entire 49-km river stretch with an encounter rate of 0.23 dolphins per km. The current result showed an encouraging population of dolphins in the Koshi Tappu Wildlife Reserve and its buffer zone but the threats for conservation still remain challenging. Close monitoring of dolphins and their habitats involving local communities are required for long term conservation of the river dolphins in Nepal. The breach of the eastern embankment of the Koshi Barrage at Paschim Kusaha Village of Sunsari District on 18 August 2008, created havoc for wildlife and their habitats, as well as people’s livelihood and welfare. The Koshi River flowed through the breach for five months. Following the breach, a population assessment survey of the Endangered Ganges River Dolphin Platanista gangetica gangetica was made between March and November 2009 in the Koshi River main channel starting from Chatara to 2km south of Koshi Barrage to ascertain their status. A direct count survey was conducted by two teams of researchers simultaneously searching for

  10. Operation of river systems. The Otra river

    International Nuclear Information System (INIS)

    Harby, A.; Vaskinn, K.A.; Wathne, M.; Heggenes, J.; Saltveit, S.J.

    1993-12-01

    The purpose of the project described in this report was to prepare an operative tool for making decisions about the operation of the power system on the river Otra (Norway) with regard to how this operation might affect the various users of the river system. Above all this affects fish, outdoor life and esthetic values. The connection between water quality and volume of discharge has been examined in a sub project. How suitable parts of the river are as habitats for trout has been simulated on a computer. From field investigation it is concluded that near the Steinfoss power station the physical conditions for trout depend on the operation of the river system. Outdoor life is not much affected downstream Vikeland. 11 refs., 22 figs., 2 tabs

  11. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; Skookumchuck Creek Juvenile Bull Trout and Fish Habitat Monitoring Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.

    2003-06-01

    The Skookumchuck Creek juvenile bull trout (Salvelinus confluentus) and fish habitat-monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. This project was commissioned in planning for fish habitat protection and forest development within the Skookumchuck Creek watershed and was intended to expand upon similar studies initiated within the Wigwam River from 2000 to 2002. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes, especially as they relate to spawning and rearing habitat quality. The 2002 project year represents the first year of a long-term bull trout-monitoring program with current studies focused on collecting baseline information. This report provides a summary of results obtained to date. Bull trout represented 72.4% of the catch. Fry dominated the catch because site selection was biased towards electrofishing sample sites which favored high bull trout fry capture success. The mean density of all juvenile bull trout was estimated to be 6.6 fish/100m{sup 2}. This represents one-half the densities reported for the 2002 Wigwam River enumeration program, even though enumeration of bull trout redds was an order of magnitude higher for the Wigwam River. Typically, areas with combined fry and juvenile densities greater than 1.5 fish per 100 m{sup 2} are cited as critical rearing areas. Trends in abundance appeared to be related to proximity to spawning areas, bed material size, and water depth. Cover components utilized by juvenile and adult bull trout and cutthroat trout were interstices, boulder, depth, overhead vegetation and LWD. The range of morphological stream types encompass the stable and resilient spectrum (C3(1), C3 and B3c). The Skookumchuck can be generalized as a slightly entrenched, meandering, riffle-pool, cobble dominated

  12. Wind River Watershed Restoration 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

    2008-11-10

    During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder

  13. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cochnauer, Tim; Claire, Christopher

    2003-10-01

    In 2002 Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River, Lochsa River, Selway River, and Middle Fork Clearwater River subbasins. Five-hundred forty-one ammocoetes were captured electroshocking 70 sites in the South Fork Clearwater River, Lochsa River, Selway River, Middle Fork Clearwater River, Clearwater River, and their tributaries in 2002. Habitat utilization surveys in Red River support previous work indicating Pacific lamprey ammocoete densities are greater in lateral scour pool habitats compared to riffles and rapids. Presence-absence survey findings in 2002 augmented 2000 and 2001 indicating Pacific lamprey macrothalmia and ammocoetes are not numerous or widely distributed. Pacific lamprey distribution was confined to the lower reaches of Red River below rkm 8.0, the South Fork Clearwater River, Lochsa River (Ginger Creek to mouth), Selway River (Race Creek to mouth), Middle Fork Clearwater River, and the Clearwater River (downstream to Potlatch River).

  14. Assessment and classification of hydromorphological state of the Breń River

    Directory of Open Access Journals (Sweden)

    Borek Łukasz

    2016-09-01

    Full Text Available The paper presents the classification of the hydromorphological condition of the Breń River according to the River Habitat Survey (RHS. The research of the hydromorphological assessment of the Breń River, which is a right-bank tributary of the Vistula River and almost entirely flows through the area of the Dąbrowa Tarnowska district was conducted in June 2015. The research sites were situated on the border of the Tarnów Plateau and the Vistula Lowland. The Breń River in these sections flows through rural areas used for agricultural purposes with low-density housing. The analysis of qualitative parameters describing the morphological characteristics were based on two synthetic indices of stream quality: Habitat Quality Assesment (HQA and Habitat Modification Score (HMS. The calculated numerical values of the two indices proved that the sections of the Breń River correspond with the third and fifth class, which means a moderate (III and very bad (V hydromorphological condition.

  15. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  16. River and river-related drainage area parameters for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L. [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  17. River and river-related drainage area parameters for site investigation program

    International Nuclear Information System (INIS)

    Blomqvist, P.; Brunberg, A.K.; Brydsten, L.

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  18. Wetlands & Deepwater Habitats - MO 2012 East West Gateway Wetlands (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Cowardin’s Classification of Wetlands and Deep Water Habitats of the United States (http://www.npwrc.usgs.gov/resource/wetlands/classwet/index.htm), together with...

  19. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  20. Lower Red River Meadow Stream Restoration Project

    International Nuclear Information System (INIS)

    1996-05-01

    As part of a continuing effort to restore anadromous fish populations in the South Fork Clearwater River basin of Idaho, Bonneville Power Administration (BPA) proposes to fund the Lower Red River Meadow Restoration Project (Project). The Project is a cooperative effort with the Idaho Soil and Water Conservation District, Nez Perce National Forest, Idaho Department of Fish and Game (IDFG), and the Nez Perce Tribe of Idaho. The proposed action would allow the sponsors to perform stream bank stabilization, aquatic and riparian habitat improvement activities on IDFG's Red River Management Area and to secure long-term conservation contracts or agreements for conducting streambank and habitat improvement activities with participating private landowners located in the Idaho County, Idaho, study area. This preliminary Environmental Assessment (EA) examines the potential environmental effects of stabilizing the stream channel, restoring juvenile fish rearing habitat and reestablishing a riparian shrub community along the stream

  1. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream

  2. Salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  3. Hydrography - RIVERS_OUTSTANDING_NRC_IN: Outstanding Rivers in Indiana Listed by the Natural Resource Commission (Bernardin-Lochmueller and Associates, 1:100,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS InventoryRIVERS_OUTSTANDING_NRC_IN represents river and stream segments on the NRC’s Outstanding Rivers list for Indiana. The source data was last updated in October 1997....

  4. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  5. History and Productivity Determine the Spatial Distribution of Key Habitats for Biodiversity in Norwegian Forest Landscapes

    Directory of Open Access Journals (Sweden)

    Magne Sætersdal

    2016-01-01

    Full Text Available Retention forestry, including the retention of woodland key habitats (WKH at the forest stand scale, has become an essential management practice in boreal forests. Here, we investigate the spatial distribution of 9470 habitat patches, mapped according to the Complementary Habitat Inventory method (CHI habitats, as potential WKHs in 10 sample areas in Norway. We ask whether there are parts of the forest landscapes that have consistently low or high density of CHI habitats compared to the surveyed landscape as a whole, and therefore have a low or high degree of conflict with harvesting, respectively. We found that there was a general pattern of clumped distribution of CHI habitats at distances up to a few kilometres. Furthermore, results showed that most types of CHI habitats were approximately two to three times as common in the 25% steepest slopes, lowest altitudes and highest site indices. CHI habitats that are most common in old-growth forests were found at longer distances from roads, whereas habitats rich in deciduous trees were found at shorter distances from roads than expected. Both environmental factors and the history of human impact are needed to explain the spatial distribution of CHI habitats. The overrepresentation of WKHs in parts of the forest landscapes represents a good starting point to develop more efficient inventory methods.

  6. Klawock Lagoon, Alaska Benthic Habitats 2011 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  7. Klawock Lagoon, Alaska Benthic Habitats 2011 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  8. Klawock Lagoon, Alaska Benthic Habitats 2011 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  9. Klawock Lagoon, Alaska Benthic Habitats 2011 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  10. Instream Flows Incremental Methodology :Kootenai River, Montana : Final Report 1990-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Greg; Skaar, Don; Dalbey, Steve (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2002-11-01

    Regulated rivers such as the Kootenai River below Libby Dam often exhibit hydrographs and water fluctuation levels that are atypical when compared to non-regulated rivers. These flow regimes are often different conditions than those which native fish species evolved with, and can be important limiting factors in some systems. Fluctuating discharge levels can change the quantity and quality of aquatic habitat for fish. The instream flow incremental methodology (IFIM) is a tool that can help water managers evaluate different discharges in terms of their effects on available habitat for a particular fish species. The U.S. Fish and Wildlife Service developed the IFIM (Bovee 1982) to quantify changes in aquatic habitat with changes in instream flow (Waite and Barnhart 1992; Baldridge and Amos 1981; Gore and Judy 1981; Irvine et al. 1987). IFIM modeling uses hydraulic computer models to relate changes in discharge to changes in the physical parameters such as water depth, current velocity and substrate particle size, within the aquatic environment. Habitat utilization curves are developed to describe the physical habitat most needed, preferred or tolerated for a selected species at various life stages (Bovee and Cochnauer 1977; Raleigh et al. 1984). Through the use of physical habitat simulation computer models, hydraulic and physical variables are simulated for differing flows, and the amount of usable habitat is predicted for the selected species and life stages. The Kootenai River IFIM project was first initiated in 1990, with the collection of habitat utilization and physical hydraulic data through 1996. The physical habitat simulation computer modeling was completed from 1996 through 2000 with the assistance from Thomas Payne and Associates. This report summarizes the results of these efforts.

  11. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1989-1990 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Anthony A. (Oregon Department of Fish and Wildlife, Portland, OR)

    1990-09-01

    We report on our progress from April 1989 through March 1990 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from McNary Dam, to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam, to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams, and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights from this work is also included. 47 refs., 33 figs., 66 tabs.

  12. Using small unmanned aerial vehicle for instream habitat evaluation and modelling

    Science.gov (United States)

    Astegiano, Luca; Vezza, Paolo; Comoglio, Claudio; Lingua, Andrea; Spairani, Michele

    2015-04-01

    Recent advances in digital image collection and processing have led to the increased use of unmanned aerial vehicles (UAV) for river research and management. In this paper, we assess the capabilities of a small UAV to characterize physical habitat for fish in three river stretches of North-Western Italy. The main aim of the study was identifying the advantages and challenges of this technology for environmental river management, in the context of the increasing river exploitation for hydropower production. The UAV used to acquire overlapping images was a small quadcopter with a two different high-resolution (non-metric) cameras (Nikon J1™ and Go-Pro Hero 3 Black Edition™). The quadcopter was preprogrammed to fly set waypoints using a small tablet PC. With the acquired imagery, we constructed a 5-cm resolution orthomosaic image and a digital surface model (DSM). The two products were used to map the distribution of aquatic and riparian habitat features, i.e., wetted area, morphological unit distributions, bathymetry, water surface gradient, substrates and grain sizes, shelters and cover for fish. The study assessed the quality of collected data and used such information to identify key reach-scale metrics and important aspects of fluvial morphology and aquatic habitat. The potential and limitations of using UAV for physical habitat survey were evaluated and the collected data were used to initialize and run common habitat simulation tools (MesoHABSIM). Several advantages of using UAV-based imagery were found, including low cost procedures, high resolution and efficiency in data collection. However, some challenges were identified for bathymetry extraction (vegetation obstructions, white waters, turbidity) and grain size assessment (preprocessing of data and automatic object detection). The application domain and possible limitation for instream habitat mapping were defined and will be used as a reference for future studies. Ongoing activities include the

  13. The micro-habitat methodology. Application protocols

    Energy Technology Data Exchange (ETDEWEB)

    Sabaton, C; Valentin, S; Souchon, Y

    1995-06-01

    A strong need has been felt for guidelines to help various entities in applying the micro-habitat methodology, particularly in impact studies on hydroelectric installations. CEMAGREF and Electricite de France have developed separately two protocols with five major steps: reconnaissance of the river, selection of representative units to be studied in greater depth, morpho-dynamic measurements at one or more rates of discharge and hydraulic modeling, coupling of hydraulic and biological models, calculation of habitat-quality scores for fish, analysis of results. The two approaches give very comparable results and are essentially differentiated by the hydraulic model used. CEMAGREF uses a one-dimensional model requiring measurements at only one discharge rate. Electricite de France uses a simplified model based on measurements at several rates of discharge. This approach is possible when discharge can be controlled in the study area during data acquisition, as is generally the case downstream of hydroelectric installations. The micro-habitat methodology is now a fully operational tool with which to study changes in fish habitat quality in relation to varying discharge. It provides an element of assessment pertinent to the choice of instreaming flow to be maintained downstream of a hydroelectric installation; this information is essential when the flow characteristics (velocity, depth) and the nature of the river bed are the preponderant factors governing habitat suitability for trout or salmon. The ultimate decision must nonetheless take into account any other potentially limiting factors for the biocenoses on the one hand, and the target water use objectives on the other. In many cases, compromises must be found among different uses, different species and different stages in the fish development cycle. (Abstract Truncated)

  14. Puget Sound Intertidal Habitat Inventory; Puget Sound Ambient Monitoring Program, 1996 (NODC Accession 9900221)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Puget Sound's intertidal areas provide habitat for species of commercial, recreational, biotic, and aesthetic value. Habitat is a critical ecosystem component -- it...

  15. Weaver Bottoms Wildlife Habitat Restoration: A Case Study

    National Research Council Canada - National Science Library

    Davis, Mary M; Damberg, Carol

    1994-01-01

    .... Backwater areas of the Upper Mississippi River provide important feeding and resting areas for migratory waterfowl, and habitat quality deterioration of these highly productive marshes has been a cause of great concern...

  16. Orchids inventory in Sintang Regency, West Kalimantan

    Directory of Open Access Journals (Sweden)

    ESTI ENDAH ARIYANTI

    2008-10-01

    Full Text Available Orchid is one of ornamental plants which have commercial value. Therefore most species are becoming threatened or even endangered because of over exploitation. In addition, its natural habitat is also decreasing. Conservation must be done urgently, both by in situ and ex situ conservation, which can be started by orchid inventory. The orchid inventory was done in TWA Bukit Kelam, TWA Baning and several places in Regency of Sintang, West Kalimantan. The result showed that there were 40 species belonged to 27 genera, which 32 species of them (20 genera were epiphytic orchids and 8 species (7 genera were terrestrial orchids.

  17. Quantifying the role of woody debris in providing bioenergetically favorable habitat for juvenile salmon

    Science.gov (United States)

    Harrison, L.; Hafs, A. W.; Utz, R.; Dunne, T.

    2013-12-01

    The habitat complexity of a riverine ecosystem substantially influences aquatic communities, and especially the bioenergetics of drift feeding fish. We coupled hydrodynamic and bioenergetic models to assess the influence of habitat complexity, generated via large woody debris (LWD) additions, on juvenile Chinook salmon (Oncorhynchus tshawytscha) growth potential in a river that lacked large wood. Model simulations indicated that LWD diversified the flow field, creating pronounced velocity gradients, which enhanced fish feeding and resting activities at the micro-habitat (sub-meter) scale. Fluid drag created by individual wood structures was increased under higher wood loading rates, leading to a 5-19% reduction in the reach-averaged velocity. We found that wood loading was asymptotically related to the reach-scale growth potential, suggesting that the river became saturated with LWD and additional loading would produce minimal benefit. In our study reach, LWD additions could potentially quadruple the potential growth area available before that limit was reached. Wood depletion in the world's rivers has been widely documented, leading to widespread attempts by river managers to reverse this trend by adding wood to simplified aquatic habitats, though systematic prediction of the effects of wood on fish growth has not been previously accomplished. We offer a quantitative, theory-based approach for assessing the role of wood on habitat potential as it affects fish growth at the micro-habitat and reach-scales. Fig. 1. Predicted flow field and salmon growth potential maps produced from model simulations with no woody debris (Graphs A and D), a low density (Graphs B and E), and a high density (Graphs C and E) of woody debris.

  18. Model-Based Evaluation of Urban River Restoration: Conflicts between Sensitive Fish Species and Recreational Users

    Directory of Open Access Journals (Sweden)

    Aude Zingraff-Hamed

    2018-05-01

    Full Text Available Urban rivers are socioecological systems, and restored habitats may be attractive to both sensitive species and recreationists. Understanding the potential conflicts between ecological and recreational values is a critical issue for the development of a sustainable river-management plan. Habitat models are very promising tools for the ecological evaluation of river restoration projects that are already concluded, ongoing, or even to be planned. With our paper, we make a first attempt at integrating recreational user pressure into habitat modeling. The objective of this study was to analyze whether human impact is likely to hinder the re-establishment of a target species despite the successful restoration of physical habitat structures in the case of the restoration of the Isar River in Munich (Germany and the target fish species Chondostroma nasus L. Our analysis combined high-resolution 2D hydrodynamic modeling with mapping of recreational pressure and used an expert-based procedure for modeling habitat suitability. The results are twofold: (1 the restored river contains suitable physical habitats for population conservation but has low suitability for recruitment; (2 densely used areas match highly suitable habitats for C. nasus. In the future, the integrated modeling procedure presented here may allow ecological refuge for sensitive target species to be included in the design of restoration and may help in the development of visitor-management plans to safeguard biodiversity and recreational ecosystem services.

  19. CHaMP metrics - Columbia Habitat Monitoring Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of CHaMP is to generate and implement a standard set of fish habitat monitoring (status and trend) methods in up to 26 watersheds across the Columbia River...

  20. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  1. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-07-01

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  2. Reconnaissance of contaminants in larval Pacific lamprey (Entosphenus tridentatus) tissues and habitats in the Columbia River Basin, Oregon and Washington, USA

    Science.gov (United States)

    Nilsen, Elena B.; Hapke, Whitney B.; McIlraith, Brian; Markovchick, Dennis J.

    2015-01-01

    Pacific lampreys (Entosphenus tridentatus) have resided in the Columbia River Basin for millennia and have great ecological and cultural importance. The role of habitat contamination in the recent decline of the species has rarely been studied and was the main objective of this effort. A wide range of contaminants (115 analytes) was measured in sediments and tissues at 27 sites across a large geographic area of diverse land use. This is the largest dataset of contaminants in habitats and tissues of Pacific lamprey in North America and the first study to compare contaminant bioburden during the larval life stage and the anadromous, adult portion of the life cycle. Bioaccumulation of pesticides, flame retardants, and mercury was observed at many sites. Based on available data, contaminants are accumulating in larval Pacific lamprey at levels that are likely detrimental to organism health and may be contributing to the decline of the species.

  3. Silversides (Odontesthes bonariensis) reside within freshwater and estuarine habitats, not marine environments

    Science.gov (United States)

    Avigliano, Esteban; Miller, Nathan; Volpedo, Alejandra Vanina

    2018-05-01

    Otolith core-to-edge Sr:Ca ratio was determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to analyze the salinity-habitat migration history of the silverside, Odontesthes bonariensis, within the Uruguay River (freshwater) and Río de la Plata Estuary (estuarine water) (Plata Basin, South America). Regular core-to-edge oscillations in Sr:Ca suggest that the silverside makes annual migrations between freshwater (1 PSU) habitats, with no evidence of marine incursion or non-migratory individuals. Empirical equations that represent the relationship between conductivity/salinity and otolith Sr:Ca ratio were used to identify where in an otolith an individual transitioned between freshwater and brackish habitats. In most specimens, the first migration between habitats likely occurred within the first year of life. Average numbers of changes between stable Sr:Ca signatures (sites with different salinities) determined by Change-Point analysis were similar from Uruguay River (8.9 ± 3.7) and Río de la Plata Estuary (7.5 ± 2.5) for comparable age fish (p < 0.05), suggesting that habitat use is similar in both collection sites.

  4. Snake River Fall Chinook Salmon life history investigations

    Science.gov (United States)

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  5. Natural Propagation and Habitat Improvement, Volume 2, Idaho, 1985 Annual and Final Reports.

    Energy Technology Data Exchange (ETDEWEB)

    Hair, Don

    1986-09-01

    The individual reports in this volume have been separately abstracted for inclusion in the data base. The reports describe fish habitat enhancement projects on the Lochsa River, Eldorado and Camas Creeks, and the Clearwater River. (ACR)

  6. Resolving inventory differences

    International Nuclear Information System (INIS)

    Weber, J.H.; Clark, J.P.

    1991-01-01

    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID

  7. Gravel addition as a habitat restoration technique for tailwaters

    Science.gov (United States)

    Ryan McManamay; D. Orth; Charles Dolloff; Mark Cantrell

    2010-01-01

    We assessed the efficacy of passive gravel addition at forming catostomid spawning habitat under various flow regimes in the Cheoah River, a high-gradient tailwater river in North Carolina. The purpose was to provide a case study that included recommendations for future applications. A total of 76.3 m3 (162 tons) of washed gravel (10-50 mm) was passively dumped down...

  8. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    Science.gov (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  9. River restoration - Malaysian/DID perspective

    International Nuclear Information System (INIS)

    Ahmad Darus

    2006-01-01

    Initially the river improvement works in Malaysia was weighted on flood control to convey a certain design flood with the lined and channelized rivers. But in late 2003 did has makes the approaches that conservation and improvement of natural function of river, i.e. river environment and eco-system should be incorporated inside the planning and design process. Generally, river restoration will focus on four approaches that will improve water quality, which is improving the quality of stormwater entering the river, maximizing the quantity of the urban river riparian corridor, stabilizing the riverbank, and improving the habitat within the river. This paper outlined the appropriate method of enhancing impairment of water quality from human activities effluent and others effluent. (Author)

  10. Integrated Analysis of Flow, Form, and Function for River Management and Design Testing

    Science.gov (United States)

    Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.

    2017-12-01

    Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.

  11. Predicting freshwater habitat integrity using land-use surrogates

    CSIR Research Space (South Africa)

    Amis, MA

    2007-04-01

    Full Text Available Freshwater biodiversity is globally threatened due to human disturbances, but freshwater ecosystems have been accorded less protection than their terrestrial and marine counterparts. Few criteria exist for assessing the habitat integrity of rivers...

  12. A low tritium hydride bed inventory estimation technique

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Shanahan, K.L.; Baker, R.A. [Savannah River National Laboratory, Aiken, SC (United States); Foster, P.J. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. The first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.

  13. LCREP catch records - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  14. LCREP prey data - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  15. LCREP growth rates - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  16. Identifying Critical Habitat for Australian Freshwater Turtles in a Large Regulated Floodplain: Implications for Environmental Water Management

    Science.gov (United States)

    Ocock, J. F.; Bino, G.; Wassens, S.; Spencer, J.; Thomas, R. F.; Kingsford, R. T.

    2018-03-01

    Freshwater turtles face many threats, including habitat loss and river regulation reducing occupancy and contributing to population decline. Limited knowledge of hydrological conditions required to maintain viable turtle populations in large floodplain wetlands hinders effective adaptive management of environmental water in regulated rivers. We surveyed three turtle species over 4 years across the Lower Murrumbidgee River floodplain, a large wetland complex with a long history of water resource development. Using site and floodplain metrics and generalized linear models, within a Bayesian Model Averaging framework, we quantified the main drivers affecting turtle abundance. We also used a hierarchical modeling approach, requiring large sample sizes, quantifying possible environmental effects while accounting for detection probabilities of the eastern long-necked turtle ( Chelodina longicollis). The three species varied in their responses to hydrological conditions and connectivity to the main river channel. Broad-shelled turtles ( Chelodina expansa) and Macquarie River turtles ( Emydura macquarii macquarii) had restricted distributions, centered on frequently inundated wetlands close to the river, whereas the eastern long-necked turtles were more widely distributed, indicating an ability to exploit variable habitats. We conclude that turtle communities would benefit from long-term management strategies that maintain a spatiotemporal mosaic of hydrological conditions. More specifically, we identified characteristics of refuge habitats and stress the importance of maintaining their integrity during dry periods. Neighboring habitats can be targeted during increased water availability years to enhance feeding and dispersal opportunities for freshwater turtles.

  17. Improvement of fish habitat in a Norwegian river channelization scheme

    International Nuclear Information System (INIS)

    Brittain, J.E.; Brabrand, A.; Saltveit, S.J.; Heggenes, J.

    1993-01-01

    Techniques for reducing adverse effects of river and lake regulation are being developed and tested within the framework of the Norwegian Biotope Adjustment Programme. The programme is illustrated by studies of a river flowing through the wetland area, Lesjaleirene, which has been drained and channelized to provide additional agricultural land. The channelized river has a homogeneous sand substrate. Experimental placement of rocks and stones increased brown trout densities, especially in areas in contact with the river banks. The new areas of rocks and stones provide cover for fish as well as a greater variation in depth and flow conditions. (Author)

  18. Radwaste inventories and projections: an overview

    International Nuclear Information System (INIS)

    Notz, K.J.

    1982-07-01

    The Integrated Data Base program was set up to provide fully integrated and reconciled inventories, characteristics, and projections for spent nuclear fuel and all categories of radioactive waste. Eight summary papers, six of which were presented at an ANS special session in Los Angeles in June 1982, are included in this report: data base needs and functions: national planning; integrated data base for spent fuel and radwaste: inventories; integrated data base projections; RAWSYM: radioactive waste management system; NWTS program waste projection data needs; low-level waste management data base system; waste sludge composition at the Savannah River Plant; and summary of characteristics of transuranic waste found at DOE sites

  19. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    Science.gov (United States)

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  20. THE CHANGES IN THE POPULATION OF THEODOXUS FLUVIATILIS IN THE RIVER TYWA WESTERN POMERANIA (POMORZE ZACHODNIE IN THE BACKGROUND OF THE ABIOTIC HABITAT

    Directory of Open Access Journals (Sweden)

    Tadeusz Zamkowski

    2014-10-01

    Full Text Available The paper presents the research on the concentration and biomass of the gastropod Theodoxus fluviatilis found in the river Tywa (Western Pomerania. It has been stated that the strongest influence on the size of the concentration of those species had the following elements of habitat: the kind of the bed, amount of food, depth of water, degree of its transformation. However, the interrelation between the concentration of species and their biomass has not been noticed.

  1. 1993 Northern goshawk inventory on portions of Los Alamos National Laboratory, Los Alamos, NM. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, D.T.; Kennedy, P.L. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1994-06-01

    Northern goshawks (Accipiter gentilis) (hereafter referred to as goshawk) is a large forest dwelling hawk. Goshawks may be declining in population and reproduction in the southwestern United States. Reasons for the possible decline in goshawk populations include timber harvesting resulting in the loss of nesting habitat, toxic chemicals, and the effects of drought, fire, and disease. Thus, there is a need to determine their population status and assess impacts of management activities in potential goshawk habitat. Inventory for the goshawk was conducted on 2,254 ha of Los Alamos National Laboratory (LANL) to determine the presence of nesting goshawks on LANL lands. This information can be incorporated into LANL`s environmental management program. The inventory was conducted by Colorado State University personnel from May 12 to July 30, 1993. This report summarizes the results of this inventory.

  2. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  3. Policy change driven by an AIS-assisted marine emission inventory in Hong Kong and the Pearl River Delta

    Science.gov (United States)

    Ng, Simon K. W.; Loh, Christine; Lin, Chubin; Booth, Veronica; Chan, Jimmy W. M.; Yip, Agnes C. K.; Li, Ying; Lau, Alexis K. H.

    2013-09-01

    A new exhaust emission inventory of ocean-going vessels (OGVs) was compiled for Hong Kong by using Automatic Identification System (AIS) data for the first time to determine typical main engine load factors, through vessel speed and operation mode characterization. It was found that in 2007, container vessel was the top emitting vessel type, contributing 9,886, 11,480, 1,173, 521 and 1166 tonnes of SO2, NOx, PM10, VOC and CO, respectively, or about 80%-82% of the emissions. The top five, which also included ocean cruise, oil tanker, conventional cargo vessel and dry bulk carrier, accounted for about 98% of emissions. Emission maps, which add a new spatial dimension to the inventory, show the key emission hot spots in Hong Kong and suggest that a significant portion of emissions were emitted at berth. Scientific evidence about the scale and distribution of ship emissions has contributed in raising public awareness and facilitating stakeholder engagement about the issue. Fair Winds Charter, the world's first industry-led voluntary emissions reduction initiative, is a perfect example of how careful scientific research can be used in public engagement and policy deliberation to help drive voluntary industry actions and then government proposals to control and regulate marine emissions in Hong Kong and the Pearl River Delta region.

  4. Effects of timber harvest on aquatic vertebrates and habitat in the North Fork Caspar Creek

    Science.gov (United States)

    Rodney J. Nakamoto

    1998-01-01

    I examined the relationships between timber harvest, creek habitat, and vertebrate populations in the North and South forks of Caspar Creek. Habitat inventories suggested pool availability increased after the onset of timber harvest activities. Increased large woody debris in the channel was associated with an increase in the frequency of blowdown in the riparian...

  5. Soil loss risk and habitat quality in streams of a meso-scale river basin Risco de perda de solo e qualidade do habitat numa bacia hidrográfica de meso-escala

    Directory of Open Access Journals (Sweden)

    Alexandre Marco da Silva

    2007-08-01

    Full Text Available Soil loss expectation and possible relationships among soil erosion, riparian vegetation and water quality were studied in the São José dos Dourados River basin, State of São Paulo, Brazil. Through Geographic Information System (GIS resources and technology, Soil Loss Expectation (SLE data obtained using the Universal Soil Loss Equation (USLE model were analyzed. For the whole catchment area and for the 30 m buffer strips of the streams of 22 randomly selected catchments, the predominant land use and habitat quality were studied. Owing mainly to the high soil erodibility, the river basin is highly susceptible to erosive processes. Habitat quality analyses revealed that the superficial water from the catchments is not chemically impacted but suffers physical damage. A high chemical purity is observed since there are no urban areas along the catchments. The water is physically poor because of high rates of sediment delivery and the almost nonexistence of riparian vegetation.Expectativa de perda de solo e possíveis relações entre erosão, vegetação ripária e qualidade da água foram estudados na bacia do rio São José dos Dourados (SP. Através de recursos de geoprocessamento e da Equação Universal de Perda de Solos, os dados sobre expectativa de perda de solo foram levantados. Para a área de drenagem total e a faixa tampão dos corpos d'água de 22 sub-bacias aleatoriamente selecionadas, analisou-se a cobertura do solo predominante e qualidade do habitat. Devido principalmente à alta erodibilidade do solo, a área estudada é altamente suscetível ao processo erosivo. As análises de qualidade da água revelaram que as águas superficiais das sub-bacias estão quimicamente não impactadas, mas fisicamente degradadas. A alta pureza química deve-se, possivelmente, à ausência de áreas urbanizadas ao longo das sub-bacias e as alterações nas características físicas são, possivelmente, decorrentes das altas taxas de transfer

  6. Comparison of real-time BTEX flux measurements to reported emission inventories in the Upper Green River Basin, Wyoming.

    Science.gov (United States)

    Edie, R.; Robertson, A.; Murphy, S. M.; Soltis, J.; Field, R. A.; Zimmerle, D.; Bell, C.

    2017-12-01

    Other Test Method 33a (OTM-33a) is an EPA-developed near-source measurement technique that utilizes a Gaussian plume inversion to calculate the flux of a point source 20 to 200 meters away. In 2014, the University of Wyoming mobile laboratory—equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction Time of Flight Mass Spectrometer—measured methane and BTEX fluxes from oil and gas operations in the Upper Green River Basin (UGRB), Wyoming. In this study, OTM-33a BTEX flux measurements are compared to BTEX emissions reported by operators in the Wyoming Department of Environmental Quality (WY-DEQ) emission inventory. On average, OTM-33a measured BTEX fluxes are almost twice as high as those reported in the emission inventory. To further constrain errors in the OTM-33a method, methane test releases were performed at the Colorado State University Methane Emissions Test and Evaluation Center (METEC) in June of 2017. The METEC facility contains decommissioned oil and gas equipment arranged in realistic well pad layouts. Each piece of equipment has a multitude of possible emission points. A Gaussian fit of measurement error from these 29 test releases indicate the median OTM-33a measurement quantified 55% of the metered flowrate. BTEX results from the UGRB campaign and inventory analysis will be presented, along with a discussion of errors associated with the OTM-33a measurement technique. Real-time BTEX and methane mixing ratios at the measurement locations (which show a lack of correlation between VOC and methane sources in 20% of sites sampled) will also be discussed.

  7. Conflicts in River Management: A Conservationist's Perspective on Sacramento River Riparian Habitats—Impacts, Threats, Remedies, Opportunities, and Consensus

    Science.gov (United States)

    Richard Spotts

    1989-01-01

    The Sacramento River's historic riparian habitats have been reduced by over 98 percent due to cumulative, adverse human activities. These activities continue to jeopardize the remaining riparian habitats. The results of these trends is more endangered species conflicts and listings, coupled with less fish, beautiful scenery, and other resource values. This paper...

  8. Managed flood effects on beaver pond habitat in a desert riverine ecosystem, bill williams river, Arizona USA

    Science.gov (United States)

    Andersen, D.C.; Shafroth, P.B.; Pritekel, C.M.; O'Neill, M. W.

    2011-01-01

    The ecological effects of beaver in warm-desert streams are poorly documented, but potentially significant. For example, stream water and sediment budgets may be affected by increased evaporative losses and sediment retention in beaver ponds. We measured physical attributes of beaver pond and adjacent lotic habitats on a regulated Sonoran Desert stream, the Bill Williams River, after ???11 flood-free months in Spring 2007 and Spring 2008. Neither a predicted warming of surface water as it passed through a pond nor a reduction in dissolved oxygen in ponds was consistently observed, but bed sediment sorted to finest in ponds as expected. We observed a river segment-scale downstream rise in daily minimum stream temperature that may have been influenced by the series of ??100 beaver ponds present. Channel cross-sections surveyed before and after an experimental flood (peak flow 65 m3/s) showed net aggradation on nine of 13 cross-sections through ponds and three of seven through lotic reaches. Our results indicate that beaver affect riverine processes in warm deserts much as they do in other biomes. However, effects may be magnified in deserts through the potential for beaver to alter the stream thermal regime and water budget. ?? Society of Wetland Scientists 2011.

  9. Regional prediction of basin-scale brown trout habitat suitability

    Directory of Open Access Journals (Sweden)

    S. Ceola

    2014-09-01

    Full Text Available In this study we propose a novel method for the estimation of ecological indices describing the habitat suitability of brown trout (Salmo trutta. Traditional hydrological tools are coupled with an innovative regional geostatistical technique, aiming at the prediction of the brown trout habitat suitability index where partial or totally ungauged conditions occur. Several methods for the assessment of ecological indices are already proposed in the scientific literature, but the possibility of exploiting a geostatistical prediction model, such as Topological Kriging, has never been investigated before. In order to develop a regional habitat suitability model we use the habitat suitability curve, obtained from measured data of brown trout adult individuals collected in several river basins across the USA. The Top-kriging prediction model is then employed to assess the spatial correlation between upstream and downstream habitat suitability indices. The study area is the Metauro River basin, located in the central part of Italy (Marche region, for which both water depth and streamflow data were collected. The present analysis focuses on discharge values corresponding to the 0.1-, 0.5-, 0.9-empirical quantiles derived from flow-duration curves available for seven gauging stations located within the study area, for which three different suitability indices (i.e. ψ10, ψ50 and ψ90 are evaluated. The results of this preliminary analysis are encouraging showing Nash-Sutcliffe efficiencies equal to 0.52, 0.65, and 0.69, respectively.

  10. Regional prediction of basin-scale brown trout habitat suitability

    Science.gov (United States)

    Ceola, S.; Pugliese, A.

    2014-09-01

    In this study we propose a novel method for the estimation of ecological indices describing the habitat suitability of brown trout (Salmo trutta). Traditional hydrological tools are coupled with an innovative regional geostatistical technique, aiming at the prediction of the brown trout habitat suitability index where partial or totally ungauged conditions occur. Several methods for the assessment of ecological indices are already proposed in the scientific literature, but the possibility of exploiting a geostatistical prediction model, such as Topological Kriging, has never been investigated before. In order to develop a regional habitat suitability model we use the habitat suitability curve, obtained from measured data of brown trout adult individuals collected in several river basins across the USA. The Top-kriging prediction model is then employed to assess the spatial correlation between upstream and downstream habitat suitability indices. The study area is the Metauro River basin, located in the central part of Italy (Marche region), for which both water depth and streamflow data were collected. The present analysis focuses on discharge values corresponding to the 0.1-, 0.5-, 0.9-empirical quantiles derived from flow-duration curves available for seven gauging stations located within the study area, for which three different suitability indices (i.e. ψ10, ψ50 and ψ90) are evaluated. The results of this preliminary analysis are encouraging showing Nash-Sutcliffe efficiencies equal to 0.52, 0.65, and 0.69, respectively.

  11. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  12. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  13. Applications of genetic data to improve management and conservation of river fishes and their habitats

    Science.gov (United States)

    Scribner, Kim T.; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.

    2015-01-01

    Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.

  14. From Natural to Degraded Rivers and Back Again

    DEFF Research Database (Denmark)

    Feld, Christian K.; Birk, Sebastian; Bradley, David C.

    2011-01-01

    —riparian buffer management, instream mesohabitat enhancement and the removal of weirs and small dams—to provide a structured overview of the literature. We distinguish between abiotic effects of restoration (e.g. increasing habitat diversity) and biological recovery (e.g. responses of algae, macrophytes...... the literature review and largely supported our findings. While the large-scale re-meandering and re-establishment of water levels at River Skjern resulted in significant recovery of riverine biota, habitat enhancement schemes at smaller-scales in other rivers were largely ineffective and failed to show long...

  15. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  16. Linking Vegetation Structure and Spider Diversity in Riparian and Adjacent Habitats in Two Rivers of Central Argentina: An Analysis at Two Conceptual Levels.

    Science.gov (United States)

    Griotti, Mariana; Muñoz-Escobar, Christian; Ferretti, Nelson E

    2017-08-01

    The link between vegetation structure and spider diversity has been well explored in the literature. However, few studies have compared spider diversity and its response to vegetation at two conceptual levels: assemblage (species diversity) and ensemble (guild diversity). Because of this, we studied spider diversity in riparian and adjacent habitats of a river system from the Chacoan subregion in central Argentina and evaluated their linkage with vegetation structure at these two levels. To assess vegetation structure, we measured plant species richness and vegetation cover in the herb and shrub - tree layers. We collected spiders for over 6 months by using vacuum netting, sweep netting and pitfall traps. We collected 3,808 spiders belonging to 119 morphospecies, 24 families and 9 guilds. At spider assemblage level, SIMPROF analysis showed significant differences among studied habitats. At spider ensemble level, nevertheless, we found no significant differences among habitats. Concerning the linkage with vegetation structure, BIOENV test showed that spider diversity at either assemblage or ensemble level was not significantly correlated with the vegetation variables assessed. Our results indicated that spider diversity was not affected by vegetation structure. Hence, even though we found a pattern in spider assemblages among habitats, this could not be attributed to vegetation structure. In this study, we show that analyzing a community at two conceptual levels will be useful for recognizing different responses of spider communities to vegetation structure in diverse habitat types. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Baseline vegetation inventory and productivity assessment for the Syncrude Aurora Mine EIA local study area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report presented an inventory and assessment of vegetation communities and forest covers within the proposed Aurora Mine local study area. A field inventory was conducted in the summer of 1995 to ground-truth air photo interpretations and to collect data. The inventory includes a classification of vegetation, forest covers and wetlands. It also includes the documentation of uncommon plants and the vegetation productivity estimates of tree, shrub and herbaceous plants. The study area is located east of the Athabasca River about 35 km northeast of Mildred Lake Oil Sands Plant. The area includes portions of Oil Sands Leases 10, 12, 13, 31, and 34 which includes much of the Muskeg River drainage and all of Kearl Lake. 24 refs., 7 tabs., 3 figs.

  18. Bat habitat research. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, B.L.; Bosworth, W.R.; Doering, R.W.

    1993-12-31

    This progress report describes activities over the current reporting period to characterize the habitats of bats on the INEL. Research tasks are entitled Monitoring bat habitation of caves on the INEL to determine species present, numbers, and seasons of use; Monitor bat use of man-made ponds at the INEL to determine species present and rates of use of these waters; If the Big Lost River is flowing on the INEL and/or if the Big Lost River sinks contain water, determine species present, numbers and seasons of use; Determine the habitat requirement of Townsend`s big-eared bats, including the microclimate of caves containing Townsend`s big-eared bats as compared to other caves that do not contain bats; Determine and describe an economical and efficient bat census technique to be used periodically by INEL scientists to determine the status of bats on the INEL; and Provide a suggestive management and protective plan for bat species on the INEL that might, in the future, be added to the endangered and sensitive list;

  19. LCREP genetic stock ID - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  20. LCREP chemistry and lipids - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  1. Selection of nest-site habitat by interior least terns in relation to sandbar construction

    Science.gov (United States)

    Sherfy, Mark H.; Stucker, Jennifer H.; Buhl, Deborah A.

    2012-01-01

    Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (n = 798) and random points (n = 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns.

  2. Ragweed (Ambrosia) pollen source inventory for Austria.

    Science.gov (United States)

    Karrer, G; Skjøth, C A; Šikoparija, B; Smith, M; Berger, U; Essl, F

    2015-08-01

    This study improves the spatial coverage of top-down Ambrosia pollen source inventories for Europe by expanding the methodology to Austria, a country that is challenging in terms of topography and the distribution of ragweed plants. The inventory combines annual ragweed pollen counts from 19 pollen-monitoring stations in Austria (2004-2013), 657 geographical observations of Ambrosia plants, a Digital Elevation Model (DEM), local knowledge of ragweed ecology and CORINE land cover information from the source area. The highest mean annual ragweed pollen concentrations were generally recorded in the East of Austria where the highest densities of possible growth habitats for Ambrosia were situated. Approximately 99% of all observations of Ambrosia populations were below 745m. The European infection level varies from 0.1% at Freistadt in Northern Austria to 12.8% at Rosalia in Eastern Austria. More top-down Ambrosia pollen source inventories are required for other parts of Europe. A method for constructing top-down pollen source inventories for invasive ragweed plants in Austria, a country that is challenging in terms of topography and ragweed distribution. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  3. Rethinking avian response to Tamarix on the lower Colorado River: A threshold hypothesis

    Science.gov (United States)

    van Riper, Charles; Paxton, K.L.; O'brien, C.; Shafroth, P.B.; McGrath, L.J.

    2008-01-01

    Many of the world's large river systems have been greatly altered in the past century due to river regulation, agriculture, and invasion of introduced Tamarix spp. (saltcedar, tamarisk). These riverine ecosystems are known to provide important habitat for avian communities, but information on responses of birds to differing levels of Tamarix is not known. Past research on birds along the Colorado River has shown that avian abundance in general is greater in native than in non-native habitat. In this article, we address habitat restoration on the lower Colorado River by comparing abundance and diversity of avian communities at a matrix of different amounts of native and non-native habitats at National Wildlife Refuges in Arizona. Two major patterns emerged from this study: (1) Not all bird species responded to Tamarix in a similar fashion, and for many bird species, abundance was highest at intermediate Tamarix levels (40-60%), suggesting a response threshold. (2) In Tamarix-dominated habitats, the greatest increase in bird abundance occurred when small amounts of native vegetation were present as a component of that habitat. In fact, Tamarix was the best vegetation predictor of avian abundance when compared to vegetation density and canopy cover. Our results suggest that to positively benefit avian abundance and diversity, one cost-effective way to rehabilitate larger monoculture Tamarix stands would be to add relatively low levels of native vegetation (???20-40%) within homogenous Tamarix habitat. In addition, this could be much more cost effective and feasible than attempting to replace all Tamarix with native vegetation. ?? 2008 Society for Ecological Restoration International.

  4. Habitat Evaluation Procedures (HEP) Report; Burlington Bottoms, Technical Report 1993-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan

    1993-08-01

    Burlington Bottoms, consisting of approximately 417 acres of riparian and wetland habitat, was purchased by the Bonneville Power Administration in November 1991. The site is located approximately 1/2 mile north of the Sauvie Island Bridge (T2N R1W Sections 20, 21), and is bound on the east side by Multnomah Channel and on the west side by the Burlington Northern Railroad right-of-way and U.S. Highway 30 (Figures 1 and 2). Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Columbia and Willamette River Basin's Fish and Wildlife Program and Amendments. Under this Program, mitigation goals were developed as a result of the loss of wildlife habitat due to the development and operation of Federal hydro-electric facilities in the Columbia and Willamette River Basins. In 1993, an interdisciplinary team was formed to develop and implement quantitative Habitat Evaluation Procedures (HEP) to document the value of various habitats at Burlington Bottoms. Results of the HEP will be used to: (1) determine the current status and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area. HEP participants included; Charlie Craig, BPA; Pat Wright, Larry Rasmussen, and Ron Garst, U. S. Fish and Wildlife Service; John Christy, The Nature Conservancy; and Doug Cottam, Sue Beilke, and Brad Rawls, Oregon Department of Fish and Wildlife.

  5. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  6. Anticipated sediment delivery to the lower Elwha River during and following dam removal: Chapter 2 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.

  7. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    1999-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995-96, triggering widespread flooding, mass erosion, and, possibly altering salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin.

  8. Natural Propagation and Habitat Improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, F.A. Jr.; Lee, Kristine M.

    1991-01-01

    In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin.

  9. Natural propagation and habitat improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest

    International Nuclear Information System (INIS)

    Espinosa, F.A. Jr.; Lee, K.M.

    1991-01-01

    In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the ''Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin

  10. Naragh Suburb, Center of Iran; A Natural Habitat of Hirudo medicinalis

    Directory of Open Access Journals (Sweden)

    Dehghani R.1 PhD,

    2014-08-01

    Full Text Available Aims A very common species of leeches has been named as Hirudo medicinalis. Regarding to the application of leeches in medicine and their fast extinction, this study was performed in aquatic habitats of Kashan aimed to determine the distribution of leeches and to provide information about their regional and habitat characteristics. Materials & Methods This descriptive study was conducted during 2008 to 2010 in three periods and 90 samples from 30 sites were collected, totally. 30 lentic and lotic aquatic habitats located in different regions of Naragh were recognized and selected. Leeches were collected initially in 10% ethanol followed by washing and removing mucus and then maintained in 70% ethanol. The identification keys were used for recognizing the species of leeches. Findings According to the identification key of the leech species, 15 samples from the total samples of 30 locations were Hirudo medicinalis. Total Hirudo medicinalis samples were collected just from Naragh River. These species of leeches were relatively large with 7-10cm and their colors were olive green, brown and greenish brown with a red stripe on the sides. Conclusion Naragh River is one of the habitats of Hirudo medicinalis.

  11. REPTILE SPECIES COMPOSITION IN THE MIDDLE GURGUÉIA AND COMPARISON WITH INVENTORIES IN THE EASTERN PARNAÍBA RIVER BASIN, STATE OF PIAUÍ, BRAZIL

    Directory of Open Access Journals (Sweden)

    CLÁUDIA RENATA MADELLA-AURICCHIO

    Full Text Available ABSTRACT The reptile diversity of the Middle Gurguéia River Basin in southern Piauí, Brazil, is little known. The rapid expansion of agriculture in the region is converting the Cerrado and Caatinga into large farming areas, which threatens biodiversity and hastens its loss. In this study, 68 specimens of reptiles from a university collection were examined, comprising 29 species: ten lizards, one amphisbaenian, 15 snakes, two turtles and one crocodilian. They were collected from five locations in the Middle Gurguéia Basin, a region not previously evaluated for reptiles. The most abundant species is a member of Tropidurus. Comparison with eight other areas in the eastern Parnaíba Basin indicated that the diversity of reptiles in the Middle Gurguéia is similar to that in other Caatinga-Cerrado ecotone areas. The reptile assemblage in the eastern Parnaíba Basin comprises 100 species of reptiles: 39 lizards, five amphisbaenians, 50 snakes, four chelonians and two crocodilians. This study expanded the known distributions of some reptiles and recorded the first occurrence of Helicops leopardinus (Schlegel, 1837 for Piauí. A cluster analysis showed that the reptile composition concords with the habitat where species were found, i.e. Cerrado, Caatinga or ecotone. Studies that associate habitat structure with each species are essential to propose efficient strategies for reptile management and conservation for the entire Parnaíba River Basin, mostly in areas that are not yet protected.

  12. Sixty Years of Geomorphic Change and Restoration Challenges on Two Unchannelized Reaches of the Missouri River

    Science.gov (United States)

    Elliott, C. M.; Jacobson, R. B.; Bulliner, E. A., IV

    2016-12-01

    The Missouri National Recreational River is a National Park Service unit that includes two Missouri River segments that despite considerable alterations to hydrology, retain some aspects of channel complexity similar to conditions present in the pre-dam Missouri River. Complexity has been lost through the construction of five large reservoirs in the Missouri River system and the channelization of the lower 1,200 kilometers of river downstream from the reservoirs. These two river segments on the Nebraska and South Dakota border consist of a 63-km long inter-reservoir segment below Fort Randall Dam and a 95-km segment below Gavins Point Dam, the downstream-most dam in the Missouri River system. We present an analysis from U.S. Army Corps of Engineers cross-section data spanning 60 years. Our analysis quantifies geomorphic adjustment and resultant changes in habitat diversity since 1955, two years prior to the closure of Gavins Point Dam. In the inter-reservoir segment, sedimentation at the confluence of the Niobrara River has created a transition zone from free-flowing river, to delta, to reservoir; this transition is moving upstream as sedimentation progresses. The delta ecosystem provides wetland habitat and recreational areas for fishing and hunting, yet sedimentation threatens infrastructure and reservoir storage. In both reaches, relatively high-elevation bare sandbars are used for nesting by the endangered least tern (Sternula antillarum) and the threatened piping plover (Charadrius melodus). Two large flood events, in 1997 and 2011, created the bulk of new sandbar nesting habitat on these river segments. Sandbars erode and vegetate between flood events, and in recent decades vegetation removal and costly mechanical sandbar construction have been used to maintain bare nesting sandbar habitat. Management decisions in the segment downstream from Gavins Point Dam include evaluating tradeoffs between maintaining sandbar habitat for nesting and allowing some

  13. Snake River sockeye salmon habitat and limnological research. Annual report 1994

    International Nuclear Information System (INIS)

    Teuscher, D.; Taki, D.; Wurtsbaugh, W.; Luecke, C.; Budy, P.; Steinhart, G.

    1995-05-01

    Snake River sockeye salmon were listed as endangered in 1991. Since then, the Shoshone-Bannock Tribes (SBT) have been involved in a multi-agency recovery effort. The purpose of this document is to report activities completed in the rearing environments of the Sawtooth Valley Lakes, central Idaho. SBT objectives for 1995 included: continuing population monitoring and spawning habitat surveys; estimating smolt carrying capacity of the lakes, and supervising limnology and barrier modification studies. Hydroacoustic estimates of O. nerka densities in the Sawtooth Valley lakes ranged from 32 to 339 fish/ha. Densities were greatest in Stanley followed by Redfish (217 fish/ha), Pettit (95 fish/ha), and Alturas. Except for Alturas, population abundance estimates were similar to 1993 results. In Alturas Lake, O. nerka abundance declined by approximately 90%. In 1994, about 142,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lakes was 19,000 and 2,000 fry, respectively. Egg to fry survival was 11%, 13%, and 7% in Fishhook, Alturas and Stanley Lake Creeks. Kokanee spawning in Fishhook Creek was slightly lower than 1993 estimates but similar to the mean escapement since 1991. About 9,200 kokanee entered the creek in 1994 compared to 10,800 in 1993. Escapement for Stanley Lake Creek was only 200, a 68% reduction from 1993. Conversely, O. nerka spawning densities increased to 3,200 in Alturas Lake Creek, up from 200 the previous year

  14. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  15. Pilot Inventory of mammals, reptiles, and amphibians, Golden Gate National Recreation Area, California, 1990-1997

    Science.gov (United States)

    Semenoff-Irving, M.; Howell, J.A.

    2005-01-01

    The United States Geological Survey Golden Gate Field Station conducted a baseline inventory of terrestrial vertebrates within the Golden Gate National Recreation Area (GGNRA), Marin, San Francisco, and San Mateo Counties, California between 1990 and 1997. We established 456 permanent study plots in 6 major park habitats, including grassland, coastal scrub, riparian woodland, coastal wetland, broad-leaved evergreen forest, and needle-leaved evergreen forest. We tested multiple inventory methods, including live traps, track plate stations, and artificial cover boards, across all years and habitats. In most years, sampling occurred in 3?4 primary sampling sessions between July and September. In 1994, additional sampling occurred in February and May in conjunction with an assessment of Hantavirus exposure in deer mice (Peromyscus maniculatus). Overall, we detected 32 mammal, 14 reptile, and 6 amphibian species during 25,222 trap-nights of effort. The deer mouse?the most abundant species detected--accounted for 67% of total captures. We detected the Federal Endangered salt marsh harvest mouse (Reithrodontomys raviventris) at one coastal wetland plot in 1992. This project represents the first phase in the development of a comprehensive terrestrial vertebrate inventory and monitoring program for GGNRA. This report summarizes data on relative abundance, frequency of occurrence, distribution across habitat types, and trap success for terrestrial vertebrates detected during this 7-year effort. It includes comprehensive descriptions of the inventory methods and sampling strategies employed during this survey and is intended to help guide the park in the implementation of future longterm ecological monitoring programs.

  16. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  17. Columbia River ESI: NWI (National Wetlands Inventory - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the wetlands of Columbia River classified according to the Environmental Sensitivity Index (ESI) classification...

  18. Inventory of water objects for purposes of development objectives and design of natural frame of Kazan (Russia)

    Science.gov (United States)

    Mingazova, N. M.

    2018-01-01

    The article is devoted to the results of the inventory and certification of water objects in the city of Kazan in 2007-2017. Inventory of water objects contributes to the formation of the natural framework of the city, improvement of the quality of the environment, preservation of the local gene pool of flora and fauna in urban conditions. During the research, 236 small lakes, rivers and their tributaries, as well as wetlands, were identified. The environmental passports were developed for each of them. Registries of water bodies were developed for administrative regions. The inventory and certification of water objects are an effective measure in the conservation of lakes and rivers in urban conditions.

  19. Burlington Bottoms wildlife mitigation site : five-year habitat management plan, 2001-2005

    International Nuclear Information System (INIS)

    Beilke, Susan G.

    2001-01-01

    Historically the lower Columbia and Willamette River Basins were ecologically rich in both the habitat types and the species diversity they supported. This was due in part to the pattern of floods and periodic inundation of bottomlands that occurred, which was an important factor in creating and maintaining a complex system of wetland, meadow, and riparian habitats. This landscape has been greatly altered in the past 150 years, primarily due to human development and agricultural activities including cattle grazing, logging and the building of hydroelectric facilities for hydropower, navigation, flood control and irrigation in the Columbia and Willamette River Basins. The Burlington Bottoms (BB) wetlands contains some of the last remaining bottomlands in the area, supporting a diverse array of native plant and wildlife species. Located approximately twelve miles northwest of Portland and situated between the Tualatin Mountains to the west and Multnomah Channel and Sauvie Island to the east, the current habitats are remnant of what was once common throughout the region. In order to preserve and enhance this important site, a five-year habitat management plan has been written that proposes a set of actions that will carry out the goals and objectives developed for the site, which includes protecting, maintaining and enhancing wildlife habitat for perpetuity

  20. Coevolution of floodplain and riparian forest dynamics on large, meandering rivers

    Science.gov (United States)

    Stella, J. C.; Riddle, J. D.; Battles, J. J.

    2012-12-01

    On large meandering rivers, riparian forests coevolve with the floodplains that support them. Floodplain characteristics such as local disturbance regime, deposition rates and sediment texture drive plant community dynamics, which in turn feed back to the abiotic processes. We investigated floodplain and riparian forest coevolution along the along the Sacramento River (California, USA), a large, mediterranean-climate river that has been extensively regulated for 70 years, but whose 160-km middle reach (Red Bluff to Colusa) retains some channel mobility and natural forest stands. Guided by maps of floodplain change over time and current vegetation cover, we conducted an extensive forest inventory and chronosequence analysis to quantify how abiotic conditions and forest structural characteristics such as tree density, basal area and biomass vary with floodplain age. We inventoried 285 fixed-area plots distributed across 19 large point bars within vegetation patches ranging in age from 4 to 107 years. Two successional trajectories were evident: (1) shifting species dominance over time within forested areas, from willow to cottonwood to walnut, boxelder and valley oak; and (2) patches of shrub willow (primarily Salix exigua) that maintained dominance throughout time. Sediment accretion was reduced in the persistent willow plots compared to the successional forest stands, suggesting an association between higher flood energy and arrested succession. Forested stands 40-60 years old were the most extensive across the chronosequence in terms of floodplain area, and supported the highest biomass, species diversity, and functional wildlife habitat. These stands were dominated by Fremont cottonwood (Populus fremontii) and reached their maxima in terms of tree size and biomass at age 50 years. The persistent willow stands reached their structural maxima earlier (32 years) and supported lower biomass. Basal area and abundance of large trees decreased in stands >90 years old

  1. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Cochnauer, Tim; Claire, Christopher

    2002-12-01

    Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South

  2. Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows

    Science.gov (United States)

    Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom

    2018-01-01

    The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).

  3. Range estimates and habitat use of invasive Silver Carp (Hypophthalmichthys molitrix): Evidence of sedentary and mobile individuals

    Science.gov (United States)

    Prechtel, Austin R.; Coulter, Alison A.; Etchison, Luke; Jackson, P. Ryan; Goforth, Reuben R.

    2018-01-01

    Unregulated rivers provide unobstructed corridors for the dispersal of both native and invasive species. We sought to evaluate range size and habitat use of an invasive species (Silver Carp, Hypophthalmichthys molitrix) in an unimpounded river reach (Wabash River, IN), to provide insights into the dispersal of invasive species and their potential overlap with native species. We hypothesized that range size would increase with fish length, be similar among sexes, and vary annually while habitats used would be deeper, warmer, lower velocity, and of finer substrate. Silver Carp habitat use supported our hypotheses but range size did not vary with sex or length. 75% home range varied annually, suggesting that core areas occupied by individuals may change relative to climate-based factors (e.g., water levels), whereas broader estimates of range size remained constant across years. Ranges were often centered on landscape features such as tributaries and backwaters. Results of this study indicate habitat and landscape features as potential areas where Silver Carp impacts on native ecosystems may be the greatest. Observed distribution of range sizes indicates the presence of sedentary and mobile individuals within the population. Mobile individuals may be of particular importance as they drive the spread of the invasive species into new habitats.

  4. Metric-Resolution 2D River Modeling at the Macroscale: Computational Methods and Applications in a Braided River

    Directory of Open Access Journals (Sweden)

    Jochen eSchubert

    2015-11-01

    Full Text Available Metric resolution digital terrain models (DTMs of rivers now make it possible for multi-dimensional fluid mechanics models to be applied to characterize flow at fine scales that are relevant to studies of river morphology and ecological habitat, or microscales. These developments are important for managing rivers because of the potential to better understand system dynamics, anthropogenic impacts, and the consequences of proposed interventions. However, the data volumes and computational demands of microscale river modeling have largely constrained applications to small multiples of the channel width, or the mesoscale. This report presents computational methods to extend a microscale river model beyond the mesoscale to the macroscale, defined as large multiples of the channel width. A method of automated unstructured grid generation is presented that automatically clusters fine resolution cells in areas of curvature (e.g., channel banks, and places relatively coarse cells in areas lacking topographic variability. This overcomes the need to manually generate breaklines to constrain the grid, which is painstaking at the mesoscale and virtually impossible at the macroscale. The method is applied to a braided river with an extremely complex channel network configuration and shown to yield an efficient fine resolution model. The sensitivity of model output to grid design and resistance parameters is also examined as it relates to analysis of hydrology, hydraulic geometry and river habitats and the findings reiterate the importance of model calibration and validation.

  5. Influences of deglaciation on the river run-off in Central Asia

    Directory of Open Access Journals (Sweden)

    G. E. Glazyrin

    2013-01-01

    Full Text Available Glaciers form a great deal of runoff of rivers in Central Asia. It is clear that amount of melted water directly depends on total area of glaciers in the river basins – their glaciation. It is well known that at present the area quickly reduces. The complete inventory of glaciers was performed in former Soviet Union in the middle of last century. Airphoto images were used as a basis for our calculations. The inventory was repeated later for several river basins using airphoto- and space images. Unfortunately only three inventories is performed in several river basins for the last half of XX century. Amount of water, coming to a river network from glaciers, can be divided into two parts. The first is usual annual melting. It exists under stationary glaciation condition. The second, being part of the first, is caused by reduction of the glaciation volume. It can be negative in some years when glaciers volume is increasing as a result of favorable meteorological conditions. In these cases the part of water containing in seasonal snow cover does not go to river network. Two components of the glacial feeding were calculated for six rivers located in various regions of Central Asia. It is shown that present day glaciers reduction does not lead to disastrous consequences for river run-off. It leads only to the changes of annual distribution in the run-off. The results should be considered as preliminary because of low accuracy of hydrometeorolological data and number of admissions during calculation.

  6. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Science.gov (United States)

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  7. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology.

    Science.gov (United States)

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes

    2015-09-01

    Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.

  8. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology

    Directory of Open Access Journals (Sweden)

    Jordi Sánchez-Ribas

    2015-09-01

    Full Text Available Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.

  9. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    Science.gov (United States)

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon-rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass.2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free-flowing river system in the Columbia River Basin that contains an upstream expanding population of non-native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel-unit scales.3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co-occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23

  10. Macro-habitat preferences by the African manatee and crocodiles – ecological and conservation implications

    Directory of Open Access Journals (Sweden)

    L. Luiselli

    2012-07-01

    Full Text Available African manatees (Trichechus senegalensis and crocodiles are threatened species in parts of their range. In West Africa, crocodiles may constitute the main predators for manatees apart from humans. Here, we explore the macro-habitat selection of manatees and two species of crocodiles (West African crocodiles Crocodylus suchus and dwarf crocodile Osteolaemus tetraspis in the Niger Delta (Nigeria, testing the hypotheses that (i manatees may avoid crocodiles in order to minimize risks of predation, and (ii the two crocodile species do compete. The study was carried out between 1994 and 2010 with a suite of different field techniques. We observed that the main macro-habitat types were freshwater rivers and coastal lagoons for manatees, mangroves for West African crocodiles, and rivers and creeks for dwarf crocodiles, with (i the three species differing significantly in terms of their macro-habitat type selection, and (ii significant seasonal influence on habitat selection of each species. Null models for niche overlap showed a significantly lower overlap in macro-habitat type use between manatee and crocodiles, whereas the two crocodiles were relatively similar. Null model analyses did not indicate any competitive interactions between crocodiles. On the other hand, manatees avoided macro-habitats where crocodiles, and especially West African crocodiles, are abundant.

  11. Radiocesium concentrations of snakes from contaminated and non-contaminated habitats of the AEC Savannah River Plant

    International Nuclear Information System (INIS)

    Brisbin, I.L. Jr.; Staton, M.A.; Pinder, J.E. III.; Geiger, R.A.

    1974-01-01

    Concentration levels of 134 Cs and 137 Cs were determined for 117 snakes of 19 species collected on the AEC Savannah River Plant near Aiken, South Carolina. Snakes collected from the vicinity of a reactor effluent stream averaged 131.5 pCi radiocesium/g live weight, with a maximum of 1032.6 pCi/g, and represented the highest level of radiocesium concentration reported in the literature for any naturally-occurring wild population of vertebrate predators. These snakes had significantly higher concentrations of radiocesium than those collected in the vicinity of a reactor cooling reservoir which averaged 27.7 pCi/g live weight, with a maximum of 139.3 pCi/g. The radiocesium contents of snakes collected from uncontaminated habitats averaged 2.6 and 2.4 pCi/g live weight, respectively, and did not differ significantly from background radiation levels. Radiocesium concentrations approximated a log-normal frequency distribution, and no significant differences in frequency-distribution patterns could be demonstrated between collection areas. (U.S.)

  12. Compromised Rivers: Understanding Historical Human Impacts on Rivers in the Context of Restoration

    Directory of Open Access Journals (Sweden)

    Ellen Wohl

    2005-12-01

    Full Text Available A river that preserves a simplified and attractive form may nevertheless have lost function. Loss of function in these rivers can occur because hydrologic and geomorphic processes no longer create and maintain the habitat and natural disturbance regimes necessary for ecosystem integrity. Recognition of compromised river function is particularly important in the context of river restoration, in which the public perception of a river's condition often drives the decision to undertake restoration as well as the decision about what type of restoration should be attempted. Determining the degree to which a river has been altered from its reference condition requires a knowledge of historical land use and the associated effects on rivers. Rivers of the Front Range of the Colorado Rocky Mountains in the United States are used to illustrate how historical land uses such as beaver trapping, placer mining, tie drives, flow regulation, and the construction of transportation corridors continue to affect contemporary river characteristics. Ignorance of regional land use and river history can lead to restoration that sets unrealistic goals because it is based on incorrect assumptions about a river's reference condition or about the influence of persistent land-use effects.

  13. Watershed evaluation and habitat response to recent storms : annual report for 1998; ANNUAL

    International Nuclear Information System (INIS)

    Huntington, Charles W.; Rhodes, Jonathan J.

    1999-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995-96, triggering widespread flooding, mass erosion, and, possibly altering salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin

  14. Blanding’s Turtle (Emydoidea blandingii Potential Habitat Mapping Using Aerial Orthophotographic Imagery and Object Based Classification

    Directory of Open Access Journals (Sweden)

    Douglas J. King

    2012-01-01

    Full Text Available Blanding’s turtle (Emydoidea blandingii is a threatened species under Canada’s Species at Risk Act. In southern Québec, field based inventories are ongoing to determine its abundance and potential habitat. The goal of this research was to develop means for mapping of potential habitat based on primary habitat attributes that can be detected with high-resolution remotely sensed imagery. Using existing spring leaf-off 20 cm resolution aerial orthophotos of a portion of Gatineau Park where some Blanding’s turtle observations had been made, habitat attributes were mapped at two scales: (1 whole wetlands; (2 within wetland habitat features of open water, vegetation (used for camouflage and thermoregulation, and logs (used for spring sun-basking. The processing steps involved initial pixel-based classification to eliminate most areas of non-wetland, followed by object-based segmentations and classifications using a customized rule sequence to refine the wetland map and to map the within wetland habitat features. Variables used as inputs to the classifications were derived from the orthophotos and included image brightness, texture, and segmented object shape and area. Independent validation using field data and visual interpretation showed classification accuracy for all habitat attributes to be generally over 90% with a minimum of 81.5% for the producer’s accuracy of logs. The maps for each attribute were combined to produce a habitat suitability map for Blanding’s turtle. Of the 115 existing turtle observations, 92.3% were closest to a wetland of the two highest suitability classes. High-resolution imagery combined with object-based classification and habitat suitability mapping methods such as those presented provide a much more spatially explicit representation of detailed habitat attributes than can be obtained through field work alone. They can complement field efforts to document and track turtle activities and can contribute to

  15. Modeling the Effects of Connecting Side Channels to the Long Tom River, Oregon

    Science.gov (United States)

    Appleby, C.; McDowell, P. F.

    2015-12-01

    The lower Long Tom River is a heavily managed, highly modified stream in the southwestern Willamette Valley with many opportunities for habitat improvements and river restoration. In the 1940s and 1950s, the US Army Corps of Engineers dramatically altered this river system by constructing the Fern Ridge Dam and three, large drop structures, converting the River from a highly sinuous channel to a straight, channelized stream that is interrupted by these grade control structures, and removed the majority of the riparian vegetation. As a result, juvenile spring Chinook salmon are no longer found in the Watershed and the local population of coastal cutthroat trout face limited aquatic habitat. When the river was channelized, long sections of the historical channel were left abandoned on the floodplain. Reconnecting these historical channels as side channels may improve the quality and quantity of aquatic habitat and could allow fish passage around current barriers. However, such construction may also lead to undesirable threats to infrastructure and farmland. This study uses multiple HEC-RAS models to determine the impact of reconnecting two historical channels to the lower Long Tom River by quantifying the change in area of flood inundation and identifying infrastructure in jeapordy given current and post-restoration conditions for 1.5, 5, 10, and 25-year flood discharges. Bathymetric data from ADCP and RTK-GPS surveys has been combined with LiDAR-derived topographic data to create continuous elevation models. Several types of side channel connections are modeled in order to determine which type of connection will result in both the greatest quantity of accessible habitat and the fewest threats to public and private property. In the future, this study will also consider the change in the quantity of physical salmonid habitat and map the areas prone to sedimentation and erosion using CEASAR and PHABSIM tools.

  16. Coupling habitat suitability and ecosystem health with AEHRA to estimate E-flows under intensive human activities

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.

    2017-08-01

    Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.

  17. Applying a two-dimensional morphodynamic model to assess impacts to Chinook salmon spawning habitat from dam removal

    Science.gov (United States)

    Lee, A. A.; Crosato, A.; Omer, A. Y. A.; Bregoli, F.

    2017-12-01

    The need for accurate and robust predictive methods of assessing fluvial ecosystems is highlighted by the accelerating practice of dam removal. Dam removal can be a restorative measure, but the sudden release of impounded sediment and change in flow regime may negatively impact aquatic biota and their habitat. This study assesses the performance of a quasi-three-dimensional morphodynamic numerical model, coupled with habitat suitability indices, to predict short-term impacts to Chinook salmon (Oncorhynchus tshawytscha) spawning habitat from dam removal. The 2007 removal of Marmot Dam on the Sandy River (Oregon, U.S.A.) is used as a case study. Delft3D-FLOW is employed to simulate changes in river channel topography, sediment composition and hydrodynamic conditions for a 20-kilometer reach of the Sandy River. The transport of non-uniform sediment and three-dimensional flow effects are included in the model. Output parameters such as flow depth, velocity and substrate are processed to evaluate habitat quality in the year following the Marmot Dam removal. Impacts are evaluated across four life-stages of Chinook salmon. As a hindcast analysis, the morphodynamic model sufficiently reproduces the evolution of river morphology at the reach-scale while requiring only a low level of calibration. The model performs well in predicting impacts to fish passage, but carries more uncertainty for developing life stages. By coupling flow-sediment-biota interactions, this method shows strong potential for habitat assessment in unsteady and non-uniform environments. Computation time is a primary constraint, as it limits grid-cell resolution, modelling of suspended sediment and capacity to characterize the sediment grain size distribution. Research on the effects of suspended sediment on habitat quality is ongoing, and further research is recommended for modelling reservoir erosion processes numerically.

  18. Down, but not out: Recent decline of Berg–Breede River whitefish (Barbus andrewi in the upper Hex River, South Africa

    Directory of Open Access Journals (Sweden)

    Jeremy M. Shelton

    2017-03-01

    Full Text Available The Berg–Breede River whitefish, Barbus andrewi, an endangered Cape Floristic Region endemic, was once widespread in both the Berg and Breede River catchments. However, its distribution has been strongly reduced, apparently by human-related activities, over the last century, and the Hex River now contains one of the last recruiting populations within its native range. This population was last surveyed by Christie who found that the species occurred in six pools over a 9-km stretch of the upper Hex River. We re-surveyed fish populations at Christie’s sites in 2015 to evaluate differences in the fish community between 2002 and 2015. Our data indicated that the distribution of B. andrewi in the Hex River has declined from six to four pools and that its density in the study area in 2015 (0.57 fish per 100 m2 ± 0.31 fish per 100 m2 was more than fivefold lower than that recorded in 2002 (3.39 fish per 100 m2 ± 1.40 fish per 100 m2 . Moreover, small size classes of B. andrewi (< 10 cm were largely absent in 2015, indicating recruitment failure in recent years. Habitat degradation, exacerbated by a severe flood in 2008, and recent invasions by predatory non-native fishes (smallmouth bass, Micropterus dolomieu and sharptooth catfish, Clarias gariepinus are identified as likely causes of this decline. Cape kurper, Sandelia capensis, another native species, was relatively common in 2002 but not recorded in 2015, whereas the density of native Breede River redfin, Pseudobarbus burchelli, was higher in 2015 than in 2002. Urgent conservation actions including managing non-native fish invasions and mitigating agricultural impacts on aquatic habitat are required to prevent further decline, and possible extirpation, of the Hex River population of B. andrewi. Conservation implications: Urgent conservation actions including preventing further increases in the abundance and distribution of non-native fishes, and improving habitat and water quality through

  19. Fish habitat considerations associated with hydro-electric developments in Quebec region

    International Nuclear Information System (INIS)

    Bain, H.; Stoneman, M.

    2005-01-01

    Alternative approaches for evaluating the effects of 2 large Hydro Quebec proposed facilities on fish habitats were presented. The proposed projects will convert long stretches of river into water reservoirs and reduce the flow in the rivers below the impoundments for parts of the year. Rivers will be transformed into water reservoirs upstream by the dams, and a moderately large river will be transformed downstream into a much smaller river with a regulated flow. Productive capacity of fish populations is difficult to measure in large water bodies, and complications in the evaluation process have posed problems in the application of a traditional no-net-loss policy. It was suggested that estimates of biomass and productivity should be obtained from established methods of electrofishing combined with maps of the river and stream characteristics. For lakes and reservoirs, biomass and production will be estimated from models using a morphoedaphic index and measures of lake reservoir areas. Productivity will be partitioned among species according to surveys of existing lakes and reservoirs. It was also proposed that mitigation and compensation should be considered on a case-by-case basis related to importance of impact on fish production; geographic range of the impacts; regional fisheries management objectives for commercial, recreational, and subsistence fisheries and biodiversity conservation. Special attention will be given to listed species such as Atlantic salmon and lake sturgeon. Additional field sampling was recommended in areas impacted by the developments. Concerns about the technical methods used in sampling and monitoring data were reviewed, as well as issues concerning protected and unprotected species. It was suggested that predictive models of fish population characteristics will need to be parameterized for temperature ranges associated with the projects. It was noted that habitat suitability index methods do not consider the ecological flexibility

  20. Application and utility of a low-cost unmanned aerial system to manage and conserve aquatic resources in four Texas rivers

    Science.gov (United States)

    Birdsong, Timothy W.; Bean, Megan; Grabowski, Timothy B.; Hardy, Thomas B.; Heard, Thomas; Holdstock, Derrick; Kollaus, Kristy; Magnelia, Stephan J.; Tolman, Kristina

    2015-01-01

    Low-cost unmanned aerial systems (UAS) have recently gained increasing attention in natural resources management due to their versatility and demonstrated utility in collection of high-resolution, temporally-specific geospatial data. This study applied low-cost UAS to support the geospatial data needs of aquatic resources management projects in four Texas rivers. Specifically, a UAS was used to (1) map invasive salt cedar (multiple species in the genus Tamarix) that have degraded instream habitat conditions in the Pease River, (2) map instream meso-habitats and structural habitat features (e.g., boulders, woody debris) in the South Llano River as a baseline prior to watershed-scale habitat improvements, (3) map enduring pools in the Blanco River during drought conditions to guide smallmouth bass removal efforts, and (4) quantify river use by anglers in the Guadalupe River. These four case studies represent an initial step toward assessing the full range of UAS applications in aquatic resources management, including their ability to offer potential cost savings, time efficiencies, and higher quality data over traditional survey methods.

  1. Multi-objective Operation Chart Optimization for Aquatic Species Habitat Conservation of Cascaded Hydropower System on Yuan River, Southwestern China

    Science.gov (United States)

    Wen, X.; Lei, X.; Fang, G.; Huang, X.

    2017-12-01

    Extensive cascading hydropower exploitation in southwestern China has been the subject of debate and conflict in recent years. Introducing limited ecological curves, a novel approach for derivation of hydropower-ecological joint operation chart of cascaded hydropower system was proposed, aiming to optimize the general hydropower and ecological benefits, and to alleviate the ecological deterioration in specific flood/dry conditions. The physical habitat simulation model is proposed initially to simulate the relationship between streamflow and physical habitat of target fish species and to determine the optimal ecological flow range of representative reach. The ecological—hydropower joint optimization model is established to produce the multi-objective operation chart of cascaded hydropower system. Finally, the limited ecological guiding curves were generated and added into the operation chart. The JS-MDS cascaded hydropower system on the Yuan River in southwestern China is employed as the research area. As the result, the proposed guiding curves could increase the hydropower production amount by 1.72% and 5.99% and optimize ecological conservation degree by 0.27% and 1.13% for JS and MDS Reservoir, respectively. Meanwhile, the ecological deterioration rate also sees a decrease from 6.11% to 1.11% for JS Reservoir and 26.67% to 3.89% for MDS Reservoir.

  2. The passive river restoration approach as an efficient tool to improve the hydromorphological diversity of rivers - Case study from two river restoration projects in the German lower mountain range

    Science.gov (United States)

    Groll, M.

    2017-09-01

    Intensive use of European rivers during the last hundreds of years has led to profound changes in the physicochemical properties, river morphology, and aquatic faunistic communities. Rectifying these changes and improving the ecological state of all surface water bodies is the central aim of the European Water Frame Directive (WFD), and river restoration measures are the main tool to achieve this goal for many rivers. As the cost-effectiveness of all measures is crucial to the WFD implementation, the approach of the passive river restoration has become very popular over the last decades. But while costs of this approach are minimal, not much is known about the long-term effectiveness of passive river restorations. The research presented here provides essential and in-depth data about the effects of two such restoration measures on the riverbed morphology of a large river of the lower mountain region in Germany (type 9.2). More than 3200 data sets were acquired using the TRiSHa method (Typology of Riverbed Structures and Habitats). The results show a high spatial and temporal diversity and dynamic for all analyzed hydromorphologic parameters - ranging from riverbed sediments, organic structures like dead wood or macrophytes, to the distribution of 32 microhabitat types. The structures and their dynamic depend on the character of the study area (free-flowing or impounded), the location of the study sites within the research area (main channel or restored side channel), and on the occurrence of major flood events (the mapping and sampling were conducted annually from 2006 to 2008 with a 50-year flood event occurring in early 2007). These results show the potential of the passive restoration approach for creating morphologically diverse riverbeds, as habitat diversity and the spatial heterogeneity of the riverbed substrates increased significantly (e.g., more than 40% of all habitat types were only detected in the newly restored side channels). But the results also

  3. 78 FR 5830 - Draft Environmental Assessment and Proposed Habitat Conservation Plan for the Interim Operations...

    Science.gov (United States)

    2013-01-28

    ...-FXES11120800000F2-123-F2] Draft Environmental Assessment and Proposed Habitat Conservation Plan for the Interim Operations of PacifiCorp's Klamath Hydroelectric Project on the Klamath River, Klamath County, OR, and... environmental assessment and proposed habitat conservation plan; request for comment. SUMMARY: We, the U.S. Fish...

  4. Duck Valley Habitat Enhancement and Protection, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, Guy; Pero, Vincent (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2000-01-01

    The Duck Valley Indian Reservations' Habitat Enhancement project is an ongoing project designed to enhance and protect the critical riparian areas, natural springs, and native fish spawning areas on the Reservation. The project was begun in 1997 with the hiring of a fisheries biologist and the creation of a new department for the Tribes. The project's goals are to protect and enhance the springs, Owyhee River, its tributaries, and to develop a database that can be used by other fisheries professionals which includes information on water quality and fish composition, health, abundance, and genetic makeup. One habitat portion of the project is a focus on protection the numerous springs that provide clean, cool water to the Owyhee River. This will be accomplished through enclosure fences of the spring heads and water troughs to provide clean cool drinking water for wildlife and livestock. Another habitat portion of the project involves protecting headwater areas of streams with native fish populations. This is accomplished through enclosure fencing and riparian plantings on any eroded or degraded banks in the enclosure area. Finally, we monitor and evaluate the areas protected and enhanced. This is accomplished through biological sampling for temperature, Oxygen, sedimentation, and measurements of water depth, bank height and undercut, and width of stream. With the habitat and biological indices we will be able to evaluate how well protective measures are doing, and where to focus future efforts.

  5. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

  6. Managing the Mississippi River floodplain: Achieving ecological benefits requires more than hydrological connection to the river: Chapter

    Science.gov (United States)

    Schramm, Harold; Richardson, William B.; Knights, Brent C.

    2015-01-01

    Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the

  7. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    Science.gov (United States)

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.

  8. The Impact of Human Encroachment and River Bank Agricultural ...

    African Journals Online (AJOL)

    The impact of human encroachment and river bank Agricultural activities on the habitat of the manatee (Trichechus Senegalensis) was investigated. The method of data collection involved the use of a structured questionnaire administered to farmers and fishermen. Vegetation survey in three selected sites along the river ...

  9. Assessing the impacts of water abstractions on river ecosystem services: an eco-hydraulic modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Carolli, Mauro, E-mail: mauro.carolli@unitn.it; Geneletti, Davide, E-mail: davide.geneletti@unitn.it; Zolezzi, Guido, E-mail: guido.zolezzi@unitn.it

    2017-03-15

    The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatial and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.

  10. Assessing the impacts of water abstractions on river ecosystem services: an eco-hydraulic modelling approach

    International Nuclear Information System (INIS)

    Carolli, Mauro; Geneletti, Davide; Zolezzi, Guido

    2017-01-01

    The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatial and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.

  11. WHITE-CLAWED CRAYFISH IN MUDDY HABITATS: MONITORING THE POPULATION IN THE RIVER IVEL, BEDFORDSHIRE, UK

    Directory of Open Access Journals (Sweden)

    PEAY S.

    2006-01-01

    Full Text Available White-clawed crayfish Austropotamobius pallipes are usually associated with stony substrates, tree roots, or refuges in submerged banks. The River Ivel has the last known population of white-clawed crayfish in Bedfordshire. Prior to 2005, much of the bed comprised uniform silt, plus leaf-litter. Stands of reedmace Typha latifolia and other emergent vegetation were localised in less shaded areas. Initial survey results suggested a population at low abundance. A low-cost monitoring strategy was started in 2001 and continued three times a year to 2005, using engineering bricks, which offer artificial refuges. Crayfish are counted when bricks are lifted periodically. De-silting of c. 430 m river was carried out in February 2005, to improve habitat and to maintain the flood capacity in the channel upstream of a mill weir. Additional bricks were deployed a few weeks in advance of de-silting, then bricks and crayfish were lifted prior to dredging and were returned the next day. Starting upstream, soft, wet mud was dredged out, placed on the bank and searched manually for crayfish. Banks, tree roots and shallow margins were left undisturbed. In all, 4,142 crayfish were found in dredgings from a 430 m length of the mid channel. Crayfish were strongly associated with emergent vegetation, but many were present below the surface of the silt. Crayfish released in the dredged channel immediately burrowed into the silt retained on the channel margins. Monitoring after dredging showed no change in abundance in the main area with in-bank refuges and lots of bricks, but there was an increase in occupancy of bricks in an area where most crayfish had been in emergent vegetation.

  12. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium—An indicator of large river valleys

    Science.gov (United States)

    Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent. PMID:29543919

  13. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium-An indicator of large river valleys.

    Science.gov (United States)

    Nobis, Agnieszka; Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent.

  14. Birds of the St. Croix River valley: Minnesota and Wisconsin

    Science.gov (United States)

    Faanes, Craig A.

    1981-01-01

    The St. Croix River Valley encompasses nearly 11,550 km2 in east-central Minnesota and northwestern Wisconsin. A wide range of habitats are available for birds including upland oak, lowland deciduous, maple-basswood, lowland and upland coniferous forests, natural basin wetlands, and grasslands. Situated in the north-central region of the United States, the valley is a biological 'crossroads' for many species. Because of the mixed affinities of plant communities, the valley includes the northern and southern range limits for a number of species. Also, because the valley lies near the forest-prairie transition zone, many typical western breeding species (e.g. pintail, western meadowlark, yellow-headed blackbird) breed in proximity to typical eastern species such as tufted titmouse, eastern meadowlark, and cardinal. From 1966 to 1980, I conducted extensive surveys of avian distribution and abundance in the St. Croix River Valley. I have supplemented the results of these surveys with published and unpublished observations contributed by many ornithologists. These additional data include compilations from Christmas Bird Counts sponsored by the National Audubon Society and from the Breeding Bird Survey coordinated by the U.S. Fish and Wildlife Service. Three hundred fourteen species have been recorded in the study area; data are presented on the migration period, nesting season distribution, winter distribution, relative abundance, and habitat use of each species. Recognizing the uniqueness of the area, and its importance not only to wildlife but also to man, the U.S. Congress designated the St. Croix a National Scenic Riverway. This action provided a considerable degree of protection to lands along and directly adjacent to the river. Unfortunately, no similar legal measure exists to protect lands away from the river. With the exception of the northern quarter of the St. Croix River Valley, agricultural interests have made significant inroads into the habitat base. The

  15. Grizzly bears and calving caribou: What is the relation with river corridors?

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.

    1998-01-01

    Researchers have debated the effect of the Trans-Alaska Pipeline (TAP) and associated developments to caribou (Rangifer tarandus) of the central Arctic herd (CAH) since the 1970s. Several studies have demonstrated that cows and calves of the CAH avoided the TAP corridor because of disturbance associated with the pipeline, whereas others have indicated that female caribou of the CAH avoided riparian habitats closely associated with the pipeline. This avoidance was explained as a predator-avoidance strategy. We investigated the relation between female caribou and grizzly bear (Ursus arctos) use of river corridors on the yet undisturbed calving grounds of the Porcupine caribou herd (PCH) in northeastern Alaska. On the coastal plain, caribou were closer to river corridors than expected (P = 0.038), but bear use of river corridors did not differ from expected (P = 0.740). In the foothills, caribou use of river corridors did not differ from expected (P = 0.520), but bears were farther from rivers than expected (P = 0.001). Our results did not suggest an avoidance of river corridors by calving caribou or a propensity for bears to be associated with riparian habitats, presumably for stalking or ambush cover. We propose that PCH caribou reduce the risks of predation to neonates by migrating to a common calving grounds, where predator swamping is the operational antipredator strategy. Consequently, we hypothesize that nutritional demands, not predator avoidance strategies, ultimately regulate habitat use patterns (e.g., use of river corridors) of calving PCH caribou.

  16. Baseline Inventory of amphibians and reptiles of Kurupukari, Guyana

    Science.gov (United States)

    MacCulloch, Ross D.; Reynolds, Robert P.

    2013-01-01

    The habitat in the vicinity of Kurupukari, on the Essequibo River in central Guyana, is tall evergreen lowland forest. The area has suffered some human disturbance from agriculture, road construction and ferry activity. The area was sampled for 10 days in 1990 and 12 days in 1997; seven days in rainy season and 15 in dry season. During this sampling 23 anuran and 17 reptile species were collected. Some differences exist between species collected on either side of the river. Comparisons are made with collections from other locations in Guyana.

  17. Phylogeography of the Patagonian otter Lontra provocax: adaptive divergence to marine habitat or signature of southern glacial refugia?

    Directory of Open Access Journals (Sweden)

    Chehébar Claudio

    2011-02-01

    Full Text Available Abstract Background A number of studies have described the extension of ice cover in western Patagonia during the Last Glacial Maximum, providing evidence of a complete cover of terrestrial habitat from 41°S to 56°S and two main refugia, one in south-eastern Tierra del Fuego and the other north of the Chiloé Island. However, recent evidence of high genetic diversity in Patagonian river species suggests the existence of aquatic refugia in this region. Here, we further test this hypothesis based on phylogeographic inferences from a semi-aquatic species that is a top predator of river and marine fauna, the huillín or Southern river otter (Lontra provocax. Results We examined mtDNA sequences of the control region, ND5 and Cytochrome-b (2151 bp in total in 75 samples of L. provocax from 21 locations in river and marine habitats. Phylogenetic analysis illustrates two main divergent clades for L. provocax in continental freshwater habitat. A highly diverse clade was represented by haplotypes from the marine habitat of the Southern Fjords and Channels (SFC region (43°38' to 53°08'S, whereas only one of these haplotypes was paraphyletic and associated with northern river haplotypes. Conclusions Our data support the hypothesis of the persistence of L. provocax in western Patagonia, south of the ice sheet limit, during last glacial maximum (41°S latitude. This limit also corresponds to a strong environmental change, which might have spurred L. provocax differentiation between the two environments.

  18. RFID-Based Asset Management for Space Habitats

    Science.gov (United States)

    Fink, Patrick W.

    2013-01-01

    Remote habitats are often densely packed - items necessary to sustain life - items necessary to conduct work center dot Inhabitant's time is often quite valuable, if not priceless. Resupply shipments can be infrequent and expensive. Inaccurate inventory knowledge can lead to unnecessary overstocking, which can lead to insufficient work and/or living volume. Not being able to find items when they are needed can present: - safety issues - morale issues. RFID technology has the potential solve a lot of these issues.

  19. Habitat and conservation status of the beaver in the Sierra San Luis Sonora, Mexico

    Science.gov (United States)

    Karla Pelz Serrano; Eduardo Ponce Guevara; Carlos A. Lopez Gonzalez

    2005-01-01

    The status of beaver (Castor canadensis) in northeastern Sonora, Mexico, is uncertain. We surveyed the Cajon Bonito River to assess the beaver’s status and habitat and found five colonies. Limiting factors appear to be pollution due to animal waste, deforestation of riparian trees, and human exploitation. Beavers did not appear to require habitat...

  20. Increased Levels of Harvest and Habitat Law Enforcement and Public Awareness for Anadromous Salmonids and Resident Fish in the Columbia River Basin -- Demonstration Period, 1992--1994, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    NeSmith, Frank (Idaho Department of Fish and Game, Boise, ID); Long, Mack (Montana Department of Fish, Wildlife and Paks, Kalispell, MT); Matthews, Dayne (Washington Department of Fish and Wildlife, Olympia, WA)

    1995-06-01

    This report was funded by the Bonneville Power Administration (BPA), US Department of Energy, as part of BPA`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Illegal harvest and violation of habitat protection regulations are factors affecting the survival of many native species of anadromous and resident fish in the Columbia Basin.

  1. Increased levels of harvest and habitat law enforcement and public awareness for anadromous salmonids and resident fish in the Columbia River Basin - Demonstration period, 1992-1994. Final report

    International Nuclear Information System (INIS)

    1995-06-01

    This report was funded by the Bonneville Power Administration (BPA), US Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Illegal harvest and violation of habitat protection regulations are factors affecting the survival of many native species of anadromous and resident fish in the Columbia Basin

  2. Developing a broader scientific foundation for river restoration: Columbia River food webs

    Science.gov (United States)

    Robert J. Naiman; J. Richard Alldredge; David A. Beauchamp; Peter A. Bisson; James Congleton; Charles J. Henny; Nancy Huntly; Roland Lamberson; Colin Levings; Erik N. Merrill; William G. Pearcy; Bruce E. Rieman; Gregory T. Ruggerone; Dennis Scarnecchia; Peter E. Smouse; Chris C. Wood

    2012-01-01

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure-without explicitly considering food webs-has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on...

  3. Effects of flow dynamics on the aquatic-terrestrial transition zone (ATTZ) of lower Missouri river sandbars with implications for selected biota

    Science.gov (United States)

    Tracy-Smith, Emily; Galat, David L.; Jacobson, Robert B.

    2012-01-01

    Sandbars are an important aquatic terrestrial transition zone (ATTZ) in the active channel of rivers that provide a variety of habitat conditions for riverine biota. Channelization and flow regulation in many large rivers have diminished sandbar habitats and their rehabilitation is a priority. We developed sandbar-specific models of discharge-area relationships to determine how changes in flow regime affect the area of different habitat types within the submerged sandbar ATTZ (depth) and exposed sandbar ATTZ (elevation) for a representative sample of Lower Missouri River sandbars. We defined six different structural habitat types within the sandbar ATTZ based on depth or exposed elevation ranges that are important to different biota during at least part of their annual cycle for either survival or reproduction. Scenarios included the modelled natural flow regime, current managed flow regime and two environmental flow options, all modelled within the contemporary river active channel. Thirteen point and wing-dike sandbars were evaluated under four different flow scenarios to explore the effects of flow regime on seasonal habitat availability for foraging of migratory shorebirds and wading birds, nesting of softshell turtles and nursery of riverine fishes. Managed flows provided more foraging habitat for shorebirds and wading birds and more nursery habitat for riverine fishes within the channelized reach sandbar ATTZ than the natural flow regime or modelled environmental flows. Reduced summer flows occurring under natural and environmental flow alternatives increased exposed sandbar nesting habitat for softshell turtle hatchling emergence. Results reveal how management of channelized and flow regulated large rivers could benefit from a modelling framework that couples hydrologic and geomorphic characteristics to predict habitat conditions for a variety of biota.

  4. Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary: An Overview of Research Results, 2002-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    2008-08-01

    From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities

  5. Mesohabitat mosaic in lowland braided rivers: Short-term variability of macroinvertebrate metacommunities

    Directory of Open Access Journals (Sweden)

    Gemma Burgazzi

    2017-04-01

    Full Text Available Braided rivers are among the most variable and dynamic riverine systems. Changes in these environments are sudden and frequent, driven by the high hydrological variability. They host high levels of local heterogeneity, with many different habitats in close proximity establishing a mosaic of patches. This provides the conditions for high levels of biodiversity, with strong community variability in particular among the different habitats at the stream-reach level. Nevertheless, these systems are still poorly studied and their complexity is often not taken into account in biomonitoring protocols. We applied mixed effects modelling, spatial ordination techniques and beta-diversity partitioning (into nestedness and turnover components with the aim of improving the knowledge of braided rivers, investigating: i the organization of macroinvertebrate communities among the different habitats of a river reach, and ii the temporal variability of this organization (both among seasons and during summer. We predicted a differentiation of macroinvertebrate communities between distinct habitats within rivers, with this differentiation increasing during the low-flow period. We carried out our study in four braided rivers and streams of the Po River basin (Northern Italy sampling three different kinds of mesohabitats (main channel, secondary channel and pool in eight stations during seven campaigns from June 2015 to April 2016. We found a high variability of taxa richness, abundance and community structure among mesohabitats, with marginal ones accounting for the greater part of macroinvertebrate diversity. Secondary channels resulted as being the habitat hosting greater taxa diversity, with 10 exclusive taxa. Surprisingly the mesohabitat communities differed greatly during the seasonal phase, whereas their dissimilarity decreased during summer. This could be explained considering the summer flow reduction as a homogenizing force, leading to a general loss of the

  6. Experimental Gravel Bar Habitat Creation in the Tombigbee River, Mississippi

    National Research Council Canada - National Science Library

    Miller, Andrew C

    2006-01-01

    .... Resource agencies expressed some concerns over the loss of shallow riffle habitat, since large numbers of state-listed endangered organisms, plus fives species of mollusks and three species of fishes...

  7. River reach classification for the Greater Mekong Region at high spatial resolution

    Science.gov (United States)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of

  8. Macroinvertebrate Community responses to gravel addition in a Southeastern regulated river

    Science.gov (United States)

    Ryan A. McManamay; Donald J. Orth; A. Charles. Dolloff

    2013-01-01

    Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread...

  9. 50 CFR 226.214 - Critical habitat for Gulf sturgeon.

    Science.gov (United States)

    2010-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.214... Sound or the Gulf of Mexico. The Withlacoochee River main stem from Florida State Road 6, Madison and...) Unit 11: Florida Nearshore Gulf of Mexico Unit in Escambia, Santa Rosa, Okaloosa, Walton, Bay, and Gulf...

  10. A Three-Year Study of Ichyoplankton in Coastal Plains Reaches of the Savannah River Site and its Tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.

    2007-03-05

    Altering flow regimes of rivers has large effects on native floras and faunas because native species are adapted to the natural flow regime, many species require lateral connectivity with floodplain habitat for feeding or spawning, and the change in regime often makes it possible for invasive species to replace natives (Bunn & Arthington 2002). Floodplain backwaters, both permanent and temporary, are nursery areas for age 0+ fish and stable isotope studies indicate that much of the productivity that supports fish larvae is autochthonous to these habitats (Herwig et al. 2004). Limiting access by fish to floodplain habitat for feeding, spawning and nursery habitat is one of the problems noted with dams that regulate flow in rivers and is considered to be important as an argument to remove dams and other flow regulating structures from rivers (Shuman 1995; Bednarek 2001). While there have been a number of studies in the literature about the use of floodplain habitat for fish reproduction (Copp 1989; Killgore & Baker 1996; Humphries, et al. 1999; Humphries and Lake 2000; Crain et al. 2004; King 2004) there have been only a few studies that examined this aspect of stream ecology in more than a cursory way. The study reported here was originally designed to determine whether the Department of Energy's (DOE) Savannah River Site was having a negative effect on fish reproduction in the Savannah River but its experimental design allowed examination of the interactions between the river, the floodplain and the tributaries entering the Savannah River across this floodplain. This study is larger in length of river covered than most in the literature and because of its landscape scale may be in important indicator of areas where further study is required.

  11. Assessing the Habitat Suitability of Dam Reservoirs: A Quantitative Model and Case Study of the Hantan River Dam, South Korea

    Directory of Open Access Journals (Sweden)

    Hyeongsik Kang

    2016-11-01

    Full Text Available The main objective of this study was to investigate ecologically healthy regions near a dam reservoir. This study developed a model for assessing habitat suitability as a proxy for the ecological value of reservoirs. Three main factors comprising nine assessment variables were selected and classified as having a habitat suitability (HS between 0 and 1: (1 geomorphic factors of altitude, slope steepness, and slope aspect; (2 vegetation factors of forest physiognomy, vegetation type, and tree age; and (3 ecological factors of land cover, ecological quality index, and environmental conservation value assessment. The spatial distribution of the nine HS indices was determined using geographic information systems and combined into one HS index value to determine ecologically healthy regions. The assessment model was applied to areas surrounding the Hantan River Dam, South Korea. To verify the model, wildlife location data from the national ecosystem survey of the Ministry of Environment were used. Areas with an HS index between 0.73 and 1 were found to contain 72% of observed wildlife locations. Ecologically healthy areas were identified by adding the indices of each variable. The methods shown here will be useful for establishing ecological restoration plans for dam reservoirs in South Korea.

  12. Hydrogeomorphic and hydraulic habitats of the Niobrara River, Nebraska-with special emphasis on the Niobrara National Scenic River

    Science.gov (United States)

    Alexander, Jason S.; Zelt, Ronald B.; Schaepe, Nathan J.

    2010-01-01

    The Niobrara River is an ecologically and economically important resource in Nebraska. The Nebraska Department of Natural Resources' recent designation of the hydraulically connected surface- and groundwater resources of the Niobrara River Basin as ?fully appropriated? has emphasized the importance of understanding linkages between the physical and ecological dynamics of the Niobrara River so it can be sustainably managed. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey investigated the hydrogeomorphic and hydraulic attributes of the Niobrara River in northern Nebraska. This report presents the results of an analysis of hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River and its valley for the approximately 330-mile reach from Dunlap Diversion Dam to its confluence with the Missouri River. Two spatial scales were used to examine and quantify the hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River: a basin scale and a reach scale. At the basin scale, digital spatial data and hydrologic data were analyzed to (1) test for differences between 36 previously determined longitudinal hydrogeomorphic segments; (2) quantitatively describe the hydrogeomorphic characteristics of the river and its valley; and (3) evaluate differences in hydraulic microhabitat over a range of flow regimes among three fluvial geomorphic provinces. The statistical analysis of hydrogeomorphic segments resulted in reclassification rates of 3 to 28 percent of the segments for the four descriptive geomorphic elements. The reassignment of classes by discriminant analysis resulted in a reduction from 36 to 25 total hydrogeomorphic segments because several adjoining segments shared the same ultimate class assignments. Virtually all of the segment mergers were in the Canyons and Restricted Bottoms (CRB) fluvial geomorphic province. The most frequent classes among hydrogeomorphic segments, and the dominant classes per unit

  13. Evaluation of osprey habitat suitability and interaction with contaminant exposure

    Science.gov (United States)

    Toschik, P.C.; Christman, M.C.; Rattner, B.A.; Ottinger, M.A.

    2006-01-01

    Ospreys (Pandion haliaetus) have been the focus of conservation efforts since their dramatic population decline attributed to dichlorodiphenyltrichloroethane and related chemicals in the 1960s. Several recent studies of ospreys nesting in the United States have indicated improved reproduction. However, the density of breeding ospreys varies greatly among locations, with some areas seemingly habitable but not occupied. Because of concerns about pollution in the highly industrialized portions of the Delaware River and Bay, USA, we evaluated contaminant exposure and productivity in ospreys nesting on the Delaware River and Bay in 2002. We characterized habitat in the coastal zone of Delaware, USA, and the area around the river in Pennsylvania, USA, using data we collected as well as extant information provided by state and federal sources. We characterized habitat based on locations of occupied osprey nests in Delaware and Pennsylvania. We evaluated water clarity, water depth, land use and land cover, nest availability, and contaminants in sediment for use in a nest-occupancy model. Our results demonstrated that the presence of occupied nests was associated with water depth, water clarity, distance to an occupied osprey nest, and presence of urban land use, whereas a companion study demonstrated that hatching success was associated with the principal components derived from organochlorine-contaminant concentrations in osprey eggs (total polychlorinated biphenyls, p,p'-dichlorodiphenylethylene, chlordane and metabolites, and heptachlor epoxide). Our study provides guidelines for resource managers and local conservation organizations in management of ospreys and in development of habitat models that are appropriate for other piscivorous and marsh-nesting birds.

  14. Spatial and temporal variability in estuary habitat use by American alligators

    Science.gov (United States)

    Fujisaki, Ikuko; Hart, Kristen M.; Cherkiss, Michael S.; Mazzotti, Frank J.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Brandt, Laura A.

    2016-01-01

    Estuarine habitat occupied by Alligator mississippiensis, a primarily freshwater species, is spatially and temporally heterogeneous largely due to a salinity gradient that fluctuates. Using long-term night light survey data, we examined seasonal patterns in alligators’ habitat use by size classes in midstream and downstream estuary zones of Shark River, Everglades National Park, in southern Florida. We observed predominantly large-sized alligators (total length ≥ 1.75 m); observations of alligators in the small size classes (0.5 m ≤ total length freshwater wetlands. Our results indicated high adaptability of alligators to the fluctuating habitat conditions. Use of estuaries by alligators is likely driven in part by physiology and possibly by reproductive cycle, and our results supported their opportunistic use of estuary habitat and ontogenetic niche shifts.

  15. Habitat and food resources of otters (Mustelidae) in Peninsular Malaysia

    Science.gov (United States)

    Abdul-Patah, P.; Nur-Syuhada, N.; Md-Nor, S.; Sasaki, H.; Md-Zain, B. M.

    2014-09-01

    Habitat and food resources of otters were studied in several locations in Peninsular Malaysia. A total of 210 fecal samples were collected from April 2010 to March 2011 believed to be of otter's were analyzed for their diet composition and their habitat preferences. The DNA testing conducted revealed that only 126 samples were identified as Lultrogale perspicillata and Aonyx cinereus with 105 and 21 samples, respectively. Habitat analyses revealed that these two species preferred paddy fields and mangroves as their main habitats but L. perspicillata preferred to hunt near habitat with large water bodies, such as mangroves, rivers, ponds, and lakes. A. cinereus on the other hand, were mainly found near land-based habitat, such as paddy fields, casuarinas forest and oil palms near mangroves. Habitats chosen were influenced by their food preferences where L. perspicillata consumed a variety of fish species with a supplementary diet of prawns, small mammals, and amphibians, compared to A. cinereus which consumed less fish and more non-fish food items, such as insects, crabs, and snails. Since, the most of the otter habitats in this study are not located within the protected areas, conservation effort involving administrations, landowners, private organizations and public are necessary.

  16. Ecogeographical Amplitude and Habitat of Two Species of the ...

    African Journals Online (AJOL)

    A systematic study involving phytogeography was carried out on two species of the genus-Terminalia in the Central Niger Delta Areas in River State. This research was aimed at establishing their biodynamic distribution and habitat in the study areas using the simple random sampling method based on standard procedure ...

  17. Development of fauna of water beetles (Coleoptera in waters bodies of a river valley – habitat factors, landscape and geomorphology

    Directory of Open Access Journals (Sweden)

    Pakulnicka Joanna

    2016-01-01

    Full Text Available The goal of the study was to identify the beetle fauna of a small lowland river valley against its spatial arrangement and the directions of beetle migrations between habitats, as well as to determine which environmental factors affect the characteristics of water beetle populations in a river valley's lentic water bodies. The field studies were carried out in various types of water bodies. 112 species of beetles with various ecological characteristics were identified. It was demonstrated that the diversity of water bodies in the valley is conducive to high local species richness. At the same time, the observed high degree of faunistic individualism may be regarded as a sign of poor symmetry in the directions of fauna propagation, particularly that of stagnobionts. The authors argue that high individualism is the consequence of poor hydrological contact between the water bodies due to topography and rare instances of high tide in the river, which, in turn, is the reason for active overflights remaining the main mean of migration between those water bodies. The factors restricting migration of fauna between the water bodies include certain landscape characteristics of the catchment which form topographical obstacles, mainly numerous and dense forest areas. The character of fauna in the respective types of water bodies is affected also by internal environmental factors, particularly the degree to which they are overgrown with macrophytes, type of bottom, type of mineral and organic matter as well as physical parameters of water, such as saturation, pH, temperature and biological oxygen demand.

  18. Factors affecting the occurrence of saugers in small, high-elevation rivers near the western edge of the species' natural distribution

    Science.gov (United States)

    Amadio, C.J.; Hubert, W.A.; Johnson, Kevin; Oberlie, D.; Dufek, D.

    2005-01-01

    Factors affecting the occurrence of saugers Sander canadensis were studied throughout the Wind River basin, a high-elevation watershed (> 1,440 m above mean sea level) on the western periphery of the species' natural distribution in central Wyoming. Adult saugers appeared to have a contiguous distribution over 170 km of streams among four rivers in the watershed. The upstream boundaries of sauger distribution were influenced by summer water temperatures and channel slopes in two rivers and by water diversion dams that created barriers to upstream movement in the other two rivers. Models that included summer water temperature, maximum water depth, habitat type (pool or run), dominant substrate, and alkalinity accounted for the variation in sauger occurrence across the watershed within the areas of sauger distribution. Water temperature was the most important basin-scale habitat feature associated with sauger occurrence, and maximum depth was the most important site-specific habitat feature. Saugers were found in a larger proportion of pools than runs in all segments of the watershed and occurred almost exclusively in pools in upstream segments of the watershed. Suitable summer water temperatures and deep, low-velocity habitat were available to support saugers over a large portion of the Wind River watershed. Future management of saugers in the Wind River watershed, as well as in other small river systems within the species' native range, should involve (1) preserving natural fluvial processes to maintain the summer water temperatures and physical habitat features needed by saugers and (2) assuring that barriers to movement do not reduce upstream boundaries of populations.

  19. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1985 Annual and Final Reports.

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Ken

    1986-10-01

    The Hot Springs Fork of the Collawash River is a major sub-drainage in the Clackamas River drainage. Emphasis species for natural production are spring chinook, coho salmon, and winter steelhead. Increased natural production appears limited by a lack of quality rearing habitat. Habitat complexity over approximately 70% of accessible area to anadromous fish has been reduced over the last 40 years by numerous factors. Natural passage barriers limit anadromous fish access to over 7 miles of high quality habitat. In the first year of a multi-year effort to improve fish habitat in the Hot Springs Fork drainage, passage enhancement on two tributaries and channel rehabilitation on one of those tributaries was completed. Three waterfalls on Nohorn Creek were evaluated and passage improved on the uppermost waterfall to provide steelhead full access to 2.4 miles of good quality habitat. The work was completed in October 1985 and involved blasting three jump pools and two holding pools into the waterfall. On Pansy Creek, four potential passage barriers were evaluated and passage improvement work conducted on two logjams and one waterfall. Minor modifications were made to a waterfall to increase flow into a side channel which allows passage around the waterfall. Channel rehabilitation efforts on Pansy Creek (RM 0.0 to 0.3) to increase low flow pool rearing habitat and spawning habitat including blasting five pools into areas of bedrock substrate and using a track-mounted backhoe to construct instream structures. On site materials were used to construct three log sills, three boulder berms, a boulder flow deflector, and five log and boulder structures. Also, an alcove was excavated to provide overwinter rearing habitat. Pre-project monitoring consisting of physical and biological data collection was completed in the project area.

  20. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    Science.gov (United States)

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  1. Bathymetric and Velocimetric Survey and Assessment of Habitat for Pallid Sturgeon on the Mississippi River in the Vicinity of the Proposed Interstate 70 Bridge at St. Louis, Missouri

    Science.gov (United States)

    Huizinga, Richard J.; Elliott, Caroline M.; Jacobson, Robert B.

    2010-01-01

    A bathymetric and velocimetry survey was conducted on the Mississippi River in the vicinity of a proposed new bridge for Interstate 70 at St. Louis, Missouri. A multibeam echo sounder mapping system and an acoustic Doppler current profiler were used to obtain channel-bed elevations and vertically averaged and near-bed velocities for a 3,545-foot (1,080-meter) long reach of the Mississippi River approximately 1,935 feet (590 meters) wide from the Illinois to Missouri banks. Data from the 2009 survey were used to determine the conditions of the benthic habitat in the vicinity of the proposed Interstate 70 bridge. The channel-bed elevations ranged from approximately 346 feet (105.46 meters) to 370 feet (112.78 meters) above the North American Vertical Datum of 1988 in a majority of the channel except for the channel banks. Large dune features up to 12.5 feet (3.81 meters) high were present in the middle of the channel, and numerous smaller dunes and many ripples as smaller features were superimposed on the larger dunes. However, it is uncertain if the large dune features present in mid-channel are long-term features or an artifact of the seasonal flooding on the Mississippi River. A substantial scour depression was present on the right descending bank (Missouri side) near the downstream end of the study area, as well as other smaller scour holes near the instream barge mooring structures on the Missouri bank. The vertically averaged velocities acquired with the acoustic Doppler current profiler ranged from approximately 2 feet per second (0.61 meters per second) along the channel margins to approximately 7.0 feet per second (2.13 meters per second) in the main channel, with an average velocity of 5.5 feet per second (1.68 meters per second) in mid-channel. The orientation of the vertically averaged velocity vectors showed flow crossing from the Illinois bank to the Missouri bank from upstream to downstream in the study area, which was confirmed by the orientation of

  2. Habitat Evaluation Procedures (HEP) Report; Steigerwald Lake National Wildlife Refuge, Technical Report 2000-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Donna

    2001-09-01

    Steigenvald Lake National Wildlife Refuge (NWR, refuge) was established as a result of the U. S. Army Corps of Engineers (COE) transferring ownership of the Stevenson tract located in the historic Steigerwald Lake site to the U.S. Fish and Wildlife Service (FWS, Service) for the mitigation of the fish and wildlife losses associated with the construction of a second powerhouse at the Bonneville Dam on the Columbia River and relocation of the town of North Bonneville (Public Law 98-396). The construction project was completed in 1983 and resulted in the loss of approximately 577 acres of habitat on the Washington shore of the Columbia River (USFWS, 1982). The COE determined that acquisition and development of the Steigenvald Lake area, along with other on-site project management actions, would meet their legal obligation to mitigate for these impacts (USCOE, 1985). Mitigation requirements included restoration and enhancement of this property to increase overall habitat diversity and productivity. From 1994 to 1999, 317 acres of additional lands, consisting of four tracts of contiguous land, were added to the original refuge with Bonneville Power Administration (BPA) funds provided through the Washington Wildlife Mitigation Agreement. These tracts comprised Straub (191 acres), James (90 acres), Burlington Northern (27 acres), and Bliss (9 acres). Refer to Figure 1. Under this Agreement, BPA budgeted $2,730,000 to the Service for 'the protection, mitigation, and enhancement of wildlife and wildlife habitat that was adversely affected by the construction of Federal hydroelectric dams on the Columbia River or its tributaries' in the state of Washington (BPA, 1993). Lands acquired for mitigation resulting from BPA actions are evaluated using the habitat evaluation procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the Federal Columbia

  3. Spawning habitat unsuitability: an impediment to cisco rehabilitation in Lake Michigan?

    Science.gov (United States)

    Madenjian, Charles P.; Rutherford, Edward S.; Blouin, Marc A.; Sederberg, Bryan J.; Elliott, Jeff R.

    2011-01-01

    The cisco Coregonus artedi was one of the most important native prey fishes in Lake Michigan and in the other four Laurentian Great Lakes. Most of the cisco spawning in Lake Michigan was believed to have occurred in Green Bay. The cisco population in Lake Michigan collapsed during the 1950s, and the collapse was attributed in part to habitat degradation within Green Bay. Winter water quality surveys of lower Green Bay during the 1950s and 1960s indicated that the bottom dissolved oxygen (DO) concentration was less than 2 mg/L throughout much of the lower bay, and most cisco eggs would not successfully hatch at such low DO concentrations. To determine present-day spawning habitat suitability in lower Green Bay, we compared cisco egg survival in lower Green Bay with survival at a reference site (St. Marys River, Michigan–Ontario) during 2009. We also conducted winter water quality surveys in lower Green Bay and the St. Marys River during 2009 and 2010. Cisco egg survival in lower Green Bay averaged 65.3%, which was remarkably similar to and not significantly different from the mean at the St. Marys River site (64.0%). Moreover, the lowest bottom DO concentrations recorded during the winter surveys were 11.2 mg/L in lower Green Bay and 12.7 mg/L in the St. Marys River. These relatively high DO concentrations would not be expected to have any negative effect on cisco egg survival. We conclude that winter water quality conditions in lower Green Bay were suitable for successful hatching of cisco eggs and that water quality during the egg incubation period did not represent an impediment to cisco rehabilitation in Lake Michigan. Our approach to determining spawning habitat suitability for coregonids would be applicable to other aquatic systems.

  4. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam: Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1997-1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

    1999-02-01

    The authors report on their progress from April 1997 through March 1998 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), National Marine Fisheries Service (NMFS; Report D), U.S. Fish and Wildlife Service (USFWS; Report E), and Columbia River Inter-Tribal Fish Commission (CRITFC; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of the work from April 1997 through March 1998 listed.

  5. Wind River Watershed Restoration, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie [U.S. Geological Survey

    2008-11-10

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  6. Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim

    2004-02-01

    The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions

  7. Anuran community composition along two large rivers in a tropical disturbed landscape

    Directory of Open Access Journals (Sweden)

    Mauricio Almeida-Gomes

    2015-02-01

    Full Text Available In this study we evaluated how anuran species were distributed in riparian habitats along two large rivers. Sampling was carried out between January and March 2012 in the municipality of Cachoeiras de Macacu, state of Rio de Janeiro. We delimited 20 plots along each river, ten in portions inside the forest of the Reserva Ecológica de Guapiaçu (REGUA, and with comparatively greater amount of forest cover, and ten outside REGUA, with comparatively lesser forest cover surrounding the rivers. We recorded 70 individuals from 14 frog species in the Manoel Alexandre River and 63 individuals from 15 frog species in the Guapiaçu River. The most abundant species in both rivers was Cycloramphus brasiliensis (Steindachner, 1864, and it was more abundant in sections with greater amount of forest cover. This information, coupled with the occurrence of species that are more adapted to open and more disturbed habitats in river sections that harbor lesser riparian vegetation, help to explain differences in amphibian species composition between river sections with greater and lesser forest cover. The results of our study highlight the importance of preserving riparian vegetation associated with rivers in the Atlantic Forest for the conservation of amphibians.

  8. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L. (University of Montana, Flathead Lake Biological Station, Poison, MT)

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  9. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  10. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  11. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Mattie H.; Sellman, Jake (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2003-03-01

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  12. Correlated growth and survival of juvenile spectacled eiders: Evidence of habitat limitation?

    Science.gov (United States)

    Flint, Paul L.; Morse, Julie A.; Grand, James B.; Moran, Christine L.

    2006-01-01

    We studied the growth and survival of Spectacled Eider (Somateria fischeri) ducklings to 30 days of age along the lower Kashunuk River on the Yukon-Kuskokwim Delta from 1995 to 2000. We replicated this study at a second site, Kigigak Island, in 1999 and 2000. Age-adjusted estimates of duckling mass and survival at 30 days posthatching were highly variable. Duckling survival was consistently higher on Kigigak Island in 1999 and 2000, averaging 67%, while survival on the Kashunuk River averaged 45% during the same time period. Duckling survival was negatively related to hatching date. At the Kashunuk River site our data supported models that indicated age-adjusted mass varied with habitat type and declined with hatching date. Ducklings from Kashunuk River were heavier in 1999, while ducklings from Kigigak Island were heavier in 2000. However, we found a positive correlation between 30-day duckling survival and age-adjusted mass, suggesting a localized environmental effect on both parameters. We conclude that predation may be the proximate mechanism of mortality, but habitat conditions are likely the ultimate factors influencing duckling survival. Geographic variation in rates of duckling survival and apparent growth suggest that spatial heterogeneity in population vital rates is occurring at multiple levels.

  13. Foraging ecology of least terns and piping plovers nesting on Central Platte River sandpits and sandbars

    Science.gov (United States)

    Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.

    2012-01-01

    Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.

  14. Wetland and floodplain habitats management and solutions in Lower Meadow of Prut Natural Park

    Directory of Open Access Journals (Sweden)

    Florin VARTOLOMEI

    2013-04-01

    Full Text Available The pressure of economic development from the last 50 years in the area of Prut river, the protection measures against floods by building dams in the major river bed and the building of the hydrotechnical knot Stânca-Costeşti have been the causes of the transformation of the typical habitats in the humid areas at the border of Prut river, thus of the flood area favouring the breeding of fish and birds, endangering the ecological integrity of the area eco-system complex.In the past, Romanian Waters National Company the main manager of the water resources from Romania has started the preparation at the request of the Ministry of Water Forest and Environment Protection the inventory of the wetland and floodplains at national level, including the potential for restoration according with the particular case from Romania, where the process of land restitution to the previous owners is one important problem even in present time.In Prut catchment area is presented a large number of existing wetlands with a large restoration potential (about 200 wetlands recorded for whole Prut basin, many of them are less than 1 sqkm surface.It has to be mentioned that several wetlands which in present are in natural stage are included or will be included in the List of Protected Areas under the legislation preservation. In this regard the planning of wetlands and floodplains rehabilitation is underdevelopment and will depend by the finalization of the land restitution action.For all the types of existing habitats housing a large variety of fauna (especially avifauna, sedentary as well as migrating or passing fauna, the Maţa – Rădeanu humid area, with a surface of 386 ha, is similar to the special preservation areas from the Danube Delta.Among the protected areas within lower Prut basin, according to the criteria of habitat identification, three of them (Ostrovul Prut, Lower Prut river meadow and Vlascuta swamp have been indicated to include some wetlands as well

  15. Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 2: Matching Family-Level Indices to Geomorphological Response Units (GRUs

    Directory of Open Access Journals (Sweden)

    Anna Grace Nostbakken Meissner

    2016-03-01

    Full Text Available Many rivers are intensely managed due to anthropogenic influences such as dams, channelization, and water provision for municipalities, agriculture, and industry. With this growing pressure on fluvial systems comes a greater need to evaluate the state of their ecosystems. The purpose of this research is to use a geospatial model of the Qu’Appelle River in Saskatchewan to distinguish instream macroinvertebrate habitats at the family level. River geomorphology was assessed through the use of ArcGIS and digital elevation models; with these tools, the sinuosity, slope, fractal dimension, and stream width of the river were processed. Subsequently, Principal Component Analysis, a clustering technique, revealed areas with similar sets of geomorphological characteristics. These similar typology sequences were then grouped into geomorphological response units (GRUs, designated a color, and mapped into a geospatial model. Macroinvertebrate data was then incorporated to reveal several relationships to the model. For instance, certain GRUs contained more highly sensitive species and healthier diversity levels than others. Future possibilities for expanding on this project include incorporating stable isotope data to evaluate the food-web structure within the river basin. Although GRUs have been very successful in identifying fish habitats in other studies, the macroinvertebrates may be too sessile and their habitat too localized to be identified by such large river units. Units may need to be much shorter (250 m to better identify macroinvertebrate habitat.

  16. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    Science.gov (United States)

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  17. Inventory of armourstone

    Directory of Open Access Journals (Sweden)

    Le Turdu Valéry

    2016-01-01

    Full Text Available Natural armourstone is widely used for hydraulic works, both in the coastal domain and in border of rivers and torrents, especially to protect against flood and the effects of waves and currents. To meet the expectations associated with this resource, an inventory of armourstone quarries was realized on a national scale in France. This inventory informs not only about the localization of quarries but also about the quality and the availability of materials. To fully optimize this inventory in a dynamic format, the association of all actors of the sector was preferred to archival research. This partnership approach led to project deliverables that can constitute durably a shared reference. The database can indeed be updated regularly thanks to the contacts established with the professionals of quarries. The access to this database is offered to a wide public: maritime and fluvial ports, local authorities in charge of planning and managing structures that protect against flood and other hydraulic hazards. This new database was organized considering its importance on the operational plan. This led to a hierarchical organization at two levels for each quarry face: first level, a synthesis sheet brings the essential information to realize choices upstream to the operational phases. Second level, a detailed specification sheet presents the technical characteristics observed in the past on the considered face. The atlas has two information broadcasting formats: a pdf file with browsing functions and a geographical information system that allows remote request of the database. These two media have their own updating rhythms, annual for the first and continue for the second.

  18. Habitat associations of three crayfish endemic to the Ouachita Mountain Ecoregion

    Science.gov (United States)

    Dyer, Joseph J.; Brewer, Shannon K.

    2018-01-01

    Many crayfish are of conservation concern because of their use of unique habitats and often narrow ranges. In this study, we determined fine-scale habitat use by 3 crayfishes that are endemic to the Ouachita Mountains, in Oklahoma and Arkansas. We sampled Faxonius menae (Mena Crayfish), F. leptogonopodus (Little River Creek Crayfish), and Fallicambarus tenuis (Ouachita Mountain Crayfish) from wet and dry erosional channel units of 29 reaches within the Little River catchment. We compared channel-unit and microhabitat selection for each species. Crayfish of all species and life stages selected erosional channel units more often than depositional units, even though these sites were often dry. Accordingly, crayfish at all life stages typically selected the shallowest available microhabitats. Adult crayfish of all species and juvenile Little River Creek Crayfish selected patches of coarse substrate, and all crayfish tended to use the lowest amount of bedrock available. In general, we showed that these endemic crayfish used erosional channel units of streams, even when the channel units were dry. Conservation efforts that protect erosional channel units and mitigate actions that cause channel downcutting to bedrock would benefit these crayfish, particularly during harsh, summer drying periods.

  19. Developing a Model to Assess the Potential Impact of TUM Hydropower Turbines on Small River Ecology

    Directory of Open Access Journals (Sweden)

    Weiwei Yao

    2018-05-01

    Full Text Available Small hydropower is a renewable energy technology that is used for electricity generation worldwide, but still has potential for further development. However, during the installation of small hydropower, the ecological impacts of the power plants need to be thoroughly investigated. In addressing the challenges of energy production and minimizing the environmental impacts of small hydropower installation and operation, this study has applied an ecohydraulic model to investigate river hydrodynamics, hydromorphology, habitat, and the population impacts of small hydropower, and presented the Mum River as a case study. Two scenarios were implemented in this research to simulate the hydrodynamic, sedimentation, habitat, and population status in order to assess the potential effects caused by the TUM plant. At the Mum River, two scenarios were proposed: the TUM plant was not considered in scenario S1, but was considered in scenario S2. The model results for scenario S2 indicated that the habitat was suitable for fish species living in the Mum River, with fish population numbers between 4.6 × 103 and 6.6 × 103. The S2 results indicated that the impacts of the TUM plant were negligible when compared with S1. Although the impact of the TUM plant on the Mum River is relatively large when the discharge is high (19 m3/s, calculations based on stable flow shows that the TUM plant could function well on the river ecosystem when the discharge is low or at normal rates. Therefore, this study shows that the TUM plant would be a good option to meet the needs of energy generation whilst having a minimal impact on river habitats and changes in fish species population in similar small rivers and streams.

  20. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1986 Final and Annual Reports.

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Amy

    1987-01-01

    This report describes activities implemented for fisheries habitat improvement work on priority drainages in the Clackamas and Hood River sub-basins. Separate abstracts have been prepared for the reports on individual projects. (ACR)