WorldWideScience

Sample records for river formation wyoming

  1. Origin of uraniferous phosphate beds in Wilkins Peak member of Green River Formation, Wyoming

    International Nuclear Information System (INIS)

    Mott, L.V.; Drever, J.I.

    1983-01-01

    The distribution of uranium and phosphorus was studied in four drill cores from the Wilkins Peak Member of the Green River Formation in Wyoming. Of the studied occurrences of anomalously high uranium concentrations, 13% were associated with localized organic matter, and the remainder were associated with stratiform phosphate-rich beds. The uranium probably substitutes for calcium in apatite in these beds. It is proposed that the apatite forms by replacement of calcite during times of flooding of the normally highly saline lake. The flood waters bring in phosphorus and cause a decrease in both pH and ratio of bicarbonate to phosphate, which favors the replacement. Uranium is incorporated in the apatite as the apatite forms or soon after. No special source, other than weathering of volcanic ash, is required for the phosphorus or the uranium. The uraniferous phosphatic beds do not appear to have any economic potential at the present time. Misleadingly high concentrations of both uranium and phosphorus are observed in outcrop samples as a result of selective leaching of other components

  2. Coalbed methane potential of the Upper Cretaceous Mesaverde and Meeteetse formations, Wind River Reservation, Wyoming

    Science.gov (United States)

    Johnson, R.C.; Clark, A.C.; Barker, C.E.; Crysdale, B.L.; Higley, D.K.; Szmajter, R.J.; Finn, T.M.

    1993-01-01

    The environments of deposition of the uppermost part of the Cody Shale and the Mesaverde and Meeteetse Formations of Late Cretaceous age were studied on outcrop in the Shotgun Butte area in the north-central part of the Wind River Reservation. A shoreface sandstone occurs in the lower part of the Mesaverde Formation at all localities studied, and is directly overlain by a coaly interval. Repetitive coarsening-upward cycles of mudstone, siltstone, and sandstone occur in the 200 ft interval of the upper part of the Cody Shale below the shoreface sandstone. These Cody sandstones are typically hummocky cross stratified with symmetrical ripples near the top, indicating that they are largely storm surge deposits that were later reworked. Channel-form sandstones from 10 to 20 ft thick, with abundant locally derived clayey clasts, occur in a 75 ft thick interval below the shoreface at one locality. These unusual sandstones are largely confined to a narrow area of the outcrop and grade laterally into more typical storm surge deposits. They may be unusually large storm surge channels created when high-energy flow conditions were localized to a limited area of the shelf.The Mesaverde Formation above the shoreface sandstone is divided into a middle member and the Teapot Sandstone Member. The lower part of the middle member is everywhere coaly. Erosional-based sandstones in this coaly interval are highly variable in thickness and architecture. Thin, single channel sandstone bodies were deposited by moderate to high sinuosity streams, and thick, multistory channel sandstone bodies were deposited by rapidly switching fluvial channel systems that remained relatively stationary for extended periods of time. The architecture of the fluvial channel sandstones in the overlying noncoaly interval appears to be highly variable as well, with complex multistory sandstones occurring at different stratigraphic levels at different localities. This distribution may be explained by long term

  3. Geomorphic Drainage Capture Recorded by Oxygen Isotopes of Green River Formation Lacustrine Mudstone, Eocene, Wyoming

    Science.gov (United States)

    Doebbert, A. C.; Booth, A. L.; Carroll, A.; Chamberlain, C.; Rhodes, M.

    2005-12-01

    The isotopic composition of cement and other meteoric precipitates are increasingly being used to interpret orogenic uplift histories, based on the relationship between altitude and rainwater δ18O. However, other variables such as changing regional drainage patterns may also affect the downstream composition of surface waters, especially when multiple drainages commingle in a lake. The Green River Formation contains some of the best documented lacustrine deposits in the world, making it ideal for examining such issues. Carbonate mudstone in balanced-fill facies of the lower LaClede Bed averages 3.41‰ (PDB), and records a deep, saline to brackish lake that fluctuated near its sill. In contrast, overfilled facies of the upper LaClede Bed record a freshwater lake, and δ18O reaches values as low as -9.72‰. This transition occurred shortly after deposition of the Analcite Tuff at 48.94 ± 0.12 Ma (Smith et al., 2003), and was geologically abrupt. Based on 40Ar/39Ar-calibrated sediment accumulation rates it required no more than 200-300 ky. An almost identical transition occurs in two cores separated by about 30 km, making local diagenesis an unlikely cause. The magnitude of δ18O change is similar to that in some uplift studies, but its rapidity virtually excludes uplift as a controlling mechanism. Instead, we propose that both the change in sedimentation and the sharp decrease in δ18O are the result of a drainage capture event. The addition of a new drainage to the basin may have adjusted isotopic values in two ways: by introducing runoff with relatively low δ18O, and by decreasing residence time (and therefore evaporation) of lake water. Decreasing 87Sr/86Sr across the same transition suggests that the newly added waters may have been sourced from rising volcanic topography to the north in the Absaroka province. Although this rising topography allows for the possibility of some uplift component, the rate of change in lacustrine δ18O is consistent with

  4. Late Quaternary stream piracy and strath terrace formation along the Belle Fourche and lower Cheyenne Rivers, South Dakota and Wyoming

    Science.gov (United States)

    Stamm, John F.; Hendricks, Robert R.; Sawyer, J. Foster; Mahan, Shannon A.; Zaprowski, Brent J.; Geibel, Nicholas M.; Azzolini, David C.

    2013-09-01

    Stream piracy substantially affected the geomorphic evolution of the Missouri River watershed and drainages within, including the Little Missouri, Cheyenne, Belle Fourche, Bad, and White Rivers. The ancestral Cheyenne River eroded headward in an annular pattern around the eastern and southern Black Hills and pirated the headwaters of the ancestral Bad and White Rivers after ~ 660 ka. The headwaters of the ancestral Little Missouri River were pirated by the ancestral Belle Fourche River, a tributary to the Cheyenne River that currently drains much of the northern Black Hills. Optically stimulated luminescence (OSL) dating techniques were used to estimate the timing of this piracy event at ~ 22-21 ka. The geomorphic evolution of the Cheyenne and Belle Fourche Rivers is also expressed by regionally recognized strath terraces that include (from oldest to youngest) the Sturgis, Bear Butte, and Farmingdale terraces. Radiocarbon and OSL dates from fluvial deposits on these terraces indicate incision to the level of the Bear Butte terrace by ~ 63 ka, incision to the level of the Farmingdale terrace at ~ 40 ka, and incision to the level of the modern channel after ~ 12-9 ka. Similar dates of terrace incision have been reported for the Laramie and Wind River Ranges. Hypothesized causes of incision are the onset of colder climate during the middle Wisconsinan and the transition to the full-glacial climate of the late-Wisconsinan/Pinedale glaciation. Incision during the Holocene of the lower Cheyenne River is as much as ~ 80 m and is 3 to 4 times the magnitude of incision at ~ 63 ka and ~ 40 ka. The magnitude of incision during the Holocene might be due to a combined effect of three geomorphic processes acting in concert: glacial isostatic rebound in lower reaches (~ 40 m), a change from glacial to interglacial climate, and adjustments to increased watershed area resulting from piracy of the ancestral headwaters of the Little Missouri River.

  5. Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste

    International Nuclear Information System (INIS)

    1975-05-01

    Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements

  6. Field guide to Muddy Formation outcrops, Crook County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Rawn-Schatzinger, V.

    1993-11-01

    The objectives of this research program are to (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline bamer reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. This report contains the data and analyses collected from outcrop exposures of the Muddy Formation, located in Crook County, Wyoming, 40 miles south of Bell Creek oil field. The outcrop data set contains permeability, porosity, petrographic, grain size and geologic data from 1-inch-diameter core plugs chilled from the outcrop face, as well as geological descriptions and sedimentological interpretations of the outcrop exposures. The outcrop data set provides information about facies characteristics and geometries and the spatial distribution of permeability and porosity on interwell scales. Appendices within this report include a micropaleontological analyses of selected outcrop samples, an annotated bibliography of papers on the Muddy Formation in the Powder River Basin, and over 950 permeability and porosity values measured from 1-inch-diameter core plugs drilled from the outcrop. All data contained in this resort are available in electronic format upon request. The core plugs drilled from the outcrop are available for measurement.

  7. Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2015-01-01

    The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.

  8. Airborne geophysical survey, Wind River Basin area, Wyoming

    International Nuclear Information System (INIS)

    1974-01-01

    Results are reported of AEC-sponsored, high sensitivity, reconnaisance airborne gamma-ray survey of the Wind River Basin area, Wyoming. The objective of the survey was to define those areas showing surface indications of a generally higher uranium content (uraniferous provinces) and where detailed exploration for uranium would most likely be successful. For the data collection tasks, a TI high sensitivity gamma-ray system consisting of seven large-volume NaI detectors, two 400-channel analyzers, and ancillary geophysical and electronic equipment was used. Gamma-ray spectrometric data were processed to correct for variations in atmospheric and flight conditions and statistically evaluated to remove the effect of surface geologic variations. Data were then compared to regional geomorphic lineaments derived from ERTS-1 imagery. Aeromagnetic data were collected simultaneously with the airborne gamma-ray survey and interpreted in terms of regional structure. Ten major anomalous uranium areas and ten less strong anomalous areas were defined within the region surveyed. These anomalies and the known mining districts and uranium occurrences demonstrated good correlation with the ERTS lineaments. The basins were defined by the aeromagnetic data. It is suggested that gamma-ray spectrometer data be supplemented by both the ERTS and aeromagnetic data to best define the targets of greatest potential for further exploration. (U.S.)

  9. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    International Nuclear Information System (INIS)

    Seeland, D.A.

    1978-01-01

    Paleocurrent maps of the fluvial lower Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium- and hydrocarbon-exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains, as in the channel-sandstone bodies deposited in Eocene time by a 40-kilometer segment of the eastward-flowing paleo-Wind River that exended westward from near the town of Powder River on the east edge of the basin. Channel-sandstone bodies with a Granite Mountains source occur south of this segment of the paleo-Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district, but the channel-sandstone bodies between the Gas Hills district and the 40-kilometer segment of the paleo-Wind River may also be mineralized. This area includes the southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel-sandstone bodies derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the paleo-Wind River in Paleocene time flowed eastward and had approximately the same location as the eastward-flowing paleo-Wind River of Eocene time. The channel-sandstone bodies of the paleo-Wind Rivers are potential hydrocarbon reservoirs, particularly where they are underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation. If leaks of sulfur-containing gas have created a reducing environment in the Eocene paleo-Wind River channel-sandstone bodies, then I speculate that the areas of overlap of the channel-sandstone bodies and natural-gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits

  10. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    International Nuclear Information System (INIS)

    Seeland, D.A.

    1975-01-01

    Paleocurrent maps of the fluvial early Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium and hydrocarbon exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains as in the channel sandstones deposited by the 25-mile segment of the Eocene Wind River extending westward from near the town of Powder River on the east edge of the basin. Channel sandstones with a Granite Mountain source occur south of this segment of the Eocene Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district but channel sandstones between the Gas Hills district and the 25-mile segment of the Eocene Wind River are potentially mineralized. This area includes the entire southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel sandstones derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the Paleocene Wind River flowed eastward and had approximately the same location as the eastward-flowing Eocene Wind River. If leaks of sulfur-containing gas have created a reducing environment in the Eocene Wind River channel sandstones, then I speculate that the areas of overlap of the channel sandstones and natural gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits. The channel sandstones of the Paleocene and Eocene Wind Rivers are potential hydrocarbon reservoirs, particularly where underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation

  11. Exploration and discovery of the Pine Ridge uranium deposits, Powder River Basin, Wyoming, USA

    International Nuclear Information System (INIS)

    Doelger, M.

    2014-01-01

    The Pine Ridge uranium deposits are named for a newly identified area between the Pumpkin Buttes and Southern Powder River Basin (PRB) mining districts. This regional prospect, covering nine contiguous townships, is northwest of the Cameco Smith Ranch mine and west of the Uranium One Allemand-Ross project in Converse County, Wyoming. Surface mapping and 350+ measured sections of well exposed outcrops have identified 250 target sandstones and contributed to a model of the complex braided stream channel architecture within the Eocene Watsatch and Paleocene Fort Union Formations. The uranium-bearing sandstones occur in 3- D bundles of vertically aggrading river systems flowing into the PRB from distant uranium source areas of the Granite Mountains to the west and the northern Laramie Range to the south. Large volumes of mudstone overbank and swamp facies separate the individual river systems laterally, resulting in greater vertical reservoir continuity from sandstones stacking. At least five major paleo river systems have been identified and named. High organic content, within the host formations, and rising veils of hydrocarbon gases from underlying oil and gas deposits have resulted in classic roll front uranium deposits in individual sandstones and intervals. Mineralization in stacked sandstone bundles several hundred feet thick show a crescent-shaped distribution within the shallow mineralized interval “attic”, the “cellar” at the base of the alteration cell, and the furthest basin-ward “front door”. World-class uranium resource potential has been identified along 208 miles of redox boundary string length mapped from the 1522 control points consisting of outcrop data, pre-existing uranium drilling, oil and gas wells, and proprietary drilling in 2012 and 2013 by Stakeholder. All data is managed in ARC VIEW GIS with 3-D capability, which will be demonstrated. Very few restrictions apply to the project area. Uranium holes are permitted solely by the

  12. Aerial gamma ray and magnetic survey: Powder River II Project, Gillette Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly define the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features

  13. Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, S.R.; Rawn-Schatzinger, V.

    1993-12-01

    The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

  14. Geology of the Pumpkin Buttes Area of the Powder River Basin, Campbell and Johnson Counties, Wyoming

    Science.gov (United States)

    Sharp, William Neil; White, Amos McNairy

    1956-01-01

    About 200 uranium occurrences have been examined in the Pumpkin Buttes area, Wyoming. Uranium minerals are visible at most of these places and occur in red and buff sandstone lenses in the Wasatch formation of Eocene age. The uranium minerals are disseminated in buff sandstone near red sandstone, and also occur in red sandstone in manganese oxide concretions and uraninite concretions.

  15. Biogeochemistry of Produced Water from Unconventional Wells in the Powder River Basin, Wyoming

    Science.gov (United States)

    Drogos, D. L.; Nye, C.; Quillinan, S.; Urynowicz, M. A.; Wawrousek, K.

    2017-12-01

    Microbial activity in waters associated with unconventional oil and gas reservoirs is poorly described but can profoundly affect management strategies for produced water (PW), frac fluids, and biocides. Improved identification of microbial communities is required to develop targeted solutions for detrimental microbial activity such as biofouling and to exploit favorable activity such as microbial induced gas production. We quantified the microbial communities and inorganic chemistry in PW samples from cretaceous formations in six unconventional oil and gas wells in the Powder River Basin in northeast Wyoming. The wells are horizontal completions in the Frontier, Niobrara, Shannon, and Turner formations at depths of 10,000 to 12,000 feet, with PW temperatures ranging from 93oF to 130oF. Biocides utilized in frac fluids primarily included glutaraldehyde and Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC), with first production occurring in 2013. Geochemical results for PW are: pH 6.5 to 6.9; alkalinity (as CaCO3) 219 to 519 ppm; salinity 13,200 to 22,300 ppm; and TDS 39,364 to 62,725 ppm. Illumina MiSeq 16S rRNA sequencing identified the majority of communities in PW are related to anaerobic, thermophilic, halophilic, chemoheterotrophic, and chemoorganotrophic bacteria, including Thermotoga, Clostridiaceae, Thermoanaerobacter, Petrotoga, Anaerobaculum, Clostridiales, Desulfomicrobium, and Halanaerobiaceae. These findings are important for identification of biogeochemical reactions that affect the organic-inorganic-microbial interactions among reservoir rocks, formation waters, and frac fluids. Better understanding of these biogeochemical reactions would allow producers to formulate frac fluids and biocides to encourage beneficial microbial phenomena such as biogenic gas production while discouraging detrimental effects such as biofouling.

  16. A crocodylian trace from the Lance Formation (Upper Cretaceous) of Wyoming

    DEFF Research Database (Denmark)

    Falkingham, Peter L; Milàn, Jesper; Manning, Philip L

    2010-01-01

    A 1.5-m-long double sinusoidal trace from the Lance Formation of Wyoming, U.S.A, is attributed a crocodylian origin. The trace forms part of a diverse tracksite containing dinosaur and bird tracks. The double sinusoidal nature of the trace is suggested to have originated from the dual undulatory...

  17. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  18. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    Science.gov (United States)

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  19. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    Science.gov (United States)

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy

  20. Study of airborne gamma-ray spectrometer data procedures: Wind River Basin, Wyoming, Thermopolis Quadrangle

    International Nuclear Information System (INIS)

    1979-01-01

    This volume contains the following data from the Thermopolis Quadrangle, Wind River Basin, Wyoming: statistical summary tables; flight-line averages; geologic map units; geologic map with record locations; uranium mines and occurrences, uranium location map; eU symbol anomaly map; eU/eTh symbol anomaly map; eU/K symbol anomaly map; eTh symbol anomaly map; K symbol anomaly map; eU profile anomaly map; eU/eTh profile anomaly map; eU/K profile anomaly map; eTh profile anomaly map; K profile anomaly map; eTh/K profile anomaly map; preferred anomaly maps (4- and 7-point), combined 4- and 7-point preferred anomaly map; and stacked significance factor profiles

  1. Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming

    Science.gov (United States)

    Wentz, Dennis A.; Steele, Timothy Doak

    1980-01-01

    Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)

  2. Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming

    Science.gov (United States)

    Bliss, A. K.; Stamper, B.

    2017-12-01

    Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.

  3. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  4. Precipitation Reconstructions and Periods of Drought in the Upper Green River Basin, Wyoming, USA

    Science.gov (United States)

    Follum, M.; Barnett, A.; Bellamy, J.; Gray, S.; Tootle, G.

    2008-12-01

    Due to recent drought and stress on water supplies in the Colorado River Compact States, more emphasis has been placed on the study of water resources in the Upper Green River Basin (UGRB) of Wyoming, Utah, and Colorado. The research described here focuses on the creation of long-duration precipitation records for the UGRB using tree-ring chronologies. When combined with existing proxy streamflow reconstructions and drought frequency analysis, these records offer a detailed look at hydrologic variability in the UGRB. Approximately thirty-three existing tree ring chronologies were analyzed for the UGRB area. Several new tree ring chronologies were also developed to enhance the accuracy and the geographical diversity of the resulting tree-ring reconstructions. In total, three new Douglas-fir (Pseudotsuga menziesii) and four new limber pine (Pinus flexilis) sites were added to the available tree-ring chronologies in this area. Tree-ring based reconstructions of annual (previous July through current June) precipitation were then created for each of the seventeen sub-watersheds in the UGRB. Reconstructed precipitation records extend back to at least 1654 AD, with reconstructions for some sub-basins beginning pre-1500. Variance explained (i.e. adjusted R2) ranged from 0.41 to 0.74, and the reconstructions performed well in a variety of verification tests. Additional analyses focused on stochastic estimation of drought frequency and return period, and detailed comparisons between reconstructed records and instrumental observations. Overall, this work points to the prevalence of severe, widespread drought in the UGRB. These analyses also highlight the relative wetness and lack of sustained dry periods during the instrumental period (1895-Present). Such long- term assessments are, in turn, vital tools as the Compact States contemplate the "Law of the River" in the face of climate change and ever-growing water demands.

  5. Study of carbonate concretions using imaging spectroscopy in the Frontier Formation, Wyoming

    Science.gov (United States)

    de Linaje, Virginia Alonso; Khan, Shuhab D.; Bhattacharya, Janok

    2018-04-01

    Imaging spectroscopy is applied to study diagenetic processes of the Wall Creek Member of the Cretaceous Frontier Formation, Wyoming. Visible Near-Infrared and Shortwave-Infrared hyperspectral cameras were used to scan near vertical and well-exposed outcrop walls to analyze lateral and vertical geochemical variations. Reflectance spectra were analyzed and compared with high-resolution laboratory spectral and hyperspectral imaging data. Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering (MTMF) classification algorithms were applied to quantify facies and mineral abundances in the Frontier Formation. MTMF is the most effective and reliable technique when studying spectrally similar materials. Classification results show that calcite cement in concretions associated with the channel facies is homogeneously distributed, whereas the bar facies was shown to be interbedded with layers of non-calcite-cemented sandstone.

  6. 78 FR 23951 - Powder River Regional Coal Team Activities: Notice of Public Meeting in Casper, Wyoming

    Science.gov (United States)

    2013-04-23

    ... meeting is open to the public. ADDRESSES: The meeting will be held at the Wyoming Oil and Gas Conservation... Right Lease Applications in New Mexico held by Ark Land Company, for competitive bidding rights in Wyoming, pursuant to 43 CFR part 3435. 5. Discussion on updating the Data Adequacy Standards for the...

  7. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  8. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

    1997-08-01

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  9. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    Science.gov (United States)

    Johnson, Ronald C.

    2007-01-01

    Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the

  10. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    Science.gov (United States)

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic

  11. Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain, Wind River Mountains, western Wyoming (US)

    Science.gov (United States)

    Hausel, W. D.

    1986-01-01

    The South Pass granite-greenstone terrain lies near the southern tip of the Wind River Mountains of western Wyoming. This Archean supracrustal pile has been Wyoming's most prolific source of gold and iron ore. From 1962 to 1983, more than 90 million tons of iron ore were recovered from oxide-facies banded iron formation, and an estimated 325,000 ounces of gold were mined from metagreywacke-hosted shears and associated placers. Precambrian rocks at South Pass are unconformably overlain by Paleozoic sediments along the northeast flank, and a Tertiary pediment buries Archean supracrustals on the west and south. To the northwest, the supracrustals terminate against granodiorite of the Louis Lake batholith; to the east, the supracrustals terminate against granite of the Granite Mountains batholith. The Louis Lake granodiorite is approximately 2,630 + or - 20 m.y. old, and the Granite Mountains granite averages 2,600 m.y. old. The geometry of the greenstone belt is best expressed as a synform that has been modified by complex faulting and folding. Metamorphism is amphibolite grade surrounding a small island of greenschist facies rocks. The younger of the Archean supracrustal successions is the Miners Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. A sample of galena from the Snowbird Mine within the Miners Delight Formation yielded a model age averaging 2,750 m.y. The Snowbird mineralization appears to be syngenetic and is hosted by metavolcanics of calc-alkaline affinity. Discussion follows.

  12. Evolution of tertiary intermontane fluvial system of Powder River Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Flores, R.M.; Ethridge, F.G.

    1985-01-01

    Exploration and development of economic coal and uranium deposits of the Tertiary Fort Union and Wasatch Formations provided data related to the evolution of depositional systems in the Powder River Basin. In ascending order, the Paleocene Fort Union Formation consists of the Tullock, Lebo, and Tongue River Members. The overlying Eocene Wasatch Formation consists of the conglomeratic Kingsbury and Moncrief Members and laterally equivalent finer grained deposits. Evolution of fluvial deposition in the basin was determined from sandstone percent maps. A high proportion of sandstones in the Tullock Member and combined Tongue River Member and Wasatch Formation formed in interconnected east-west and north-south belts. The east-west belts represent alluvial fans, as well as braided and meandering tributary streams. The north-south belts reflect meandering and anastomosing trunk streams fed by basin margin tributaries. The sandstones of the Lebo Shale show east-west trends and represent deposits of fluvio-deltaic systems that filled a western, closed-lacustrine basin. The lake in this basin may have formed during localized subsidence along the Buffalo deep fault. These contrasting styles of fluvial deposition were largely controlled by extrabasinal and intrabasinal tectonics associated with Laramide orogeny

  13. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  14. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  15. Comparison of real-time BTEX flux measurements to reported emission inventories in the Upper Green River Basin, Wyoming.

    Science.gov (United States)

    Edie, R.; Robertson, A.; Murphy, S. M.; Soltis, J.; Field, R. A.; Zimmerle, D.; Bell, C.

    2017-12-01

    Other Test Method 33a (OTM-33a) is an EPA-developed near-source measurement technique that utilizes a Gaussian plume inversion to calculate the flux of a point source 20 to 200 meters away. In 2014, the University of Wyoming mobile laboratory—equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction Time of Flight Mass Spectrometer—measured methane and BTEX fluxes from oil and gas operations in the Upper Green River Basin (UGRB), Wyoming. In this study, OTM-33a BTEX flux measurements are compared to BTEX emissions reported by operators in the Wyoming Department of Environmental Quality (WY-DEQ) emission inventory. On average, OTM-33a measured BTEX fluxes are almost twice as high as those reported in the emission inventory. To further constrain errors in the OTM-33a method, methane test releases were performed at the Colorado State University Methane Emissions Test and Evaluation Center (METEC) in June of 2017. The METEC facility contains decommissioned oil and gas equipment arranged in realistic well pad layouts. Each piece of equipment has a multitude of possible emission points. A Gaussian fit of measurement error from these 29 test releases indicate the median OTM-33a measurement quantified 55% of the metered flowrate. BTEX results from the UGRB campaign and inventory analysis will be presented, along with a discussion of errors associated with the OTM-33a measurement technique. Real-time BTEX and methane mixing ratios at the measurement locations (which show a lack of correlation between VOC and methane sources in 20% of sites sampled) will also be discussed.

  16. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    Science.gov (United States)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  17. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  18. Aerial gamma ray and magnetic survey: Powder River II Project, Newcastle Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstones of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest

  19. Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming: new constraints on the location of Paleocene/Eocene boundary

    Science.gov (United States)

    Tauxe, L.; Gee, J.; Gallet, Y.; Pick, T.; Bown, T.

    1994-01-01

    The lower Eocene Willwood Formation in the Bighorn Basin of Wyoming preserves a rich and diverse mammalian and floral record. The paleomagnetic behavior of the sequence of floodplain paleosols of varying degrees of maturation ranges from excellent to poor. We present a magnetostratigraphic section for a composite section near Worland, Wyoming, by using a set of strict criteria for interpreting the step-wise alternating field and thermal demagnetization data of 266 samples from 90 sites throughout the composite section. Correlation to the geomagnetic reversal time scale was achieved by combining magnetostratigraphic and biostratigraphic data from this section, from a section in the Clark's Fork Basin in northern Wyoming, and from DSDP Site 550, with the isotopic data determined on a tuff near the top of our section. Our correlation suggests that the Bighorn Basin composite section in the Worland area spans from within Chron C24r to near the top of Chron C24n, or from approximately 55 to 52 Ma. This correlation places the Paleocene/Eocene boundary within the vicinity of the base of the section. Cryptochron C24r.6 of Cande and Kent is tentatively identified some 100 m above the base of the section. The temporal framework provided here enables correlation of the mammalian biostratigraphy of the Bighorn Basin to other continental sequences as well as to marine records. It also provides independent chronological information for the calculation of sediment accumulation rates to constrain soil maturation rates. We exclude an age as young as 53 Ma for the Paleocene/Eocene boundary and support older ages, as recommended in recent time scales. The location of a tuff dated at 52.8 ?? 0.3 Ma at the older boundary C24n.1 is consistent with the age of 52.5 Ma estimated by Cande and Kent and inconsistent with that of 53.7 Ma, from Harland et al. ?? 1994.

  20. Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Riihimaki, C.A.; Reiners, P.W.; Heffern, E.L. [Drew University, Madison, NJ (USA). Dept. of Biology

    2009-03-15

    Late Cenozoic stream incision and basin excavation have strongly influenced the modern Rocky Mountain landscape, but constraints on the timing and rates of erosion are limited. The geology of the Powder River basin provides an unusually good opportunity to address spatial and temporal patterns of stream incision. Numerous coal seams in the Paleocene Fort Union and Eocene Wasatch Formations within the basin have burned during late Cenozoic incision, as coal was exposed to dry and oxygen-rich near-surface conditions. The topography of this region is dominated by hills capped with clinker, sedimentary rocks metamorphosed by burning of underlying coal beds. We use (U-Th)/He ages of clinker to determine times of relatively rapid erosion, with the assumption that coal must be near Earth's surface to burn. Ages of 55 in situ samples range from 0.007 to 1.1 Ma. Clinker preferentially formed during times in which eccentricity of the Earth's orbit was high, times that typically but not always correlate with interglacial periods. Our data therefore suggest that rates of landscape evolution in this region are affected by climate fluctuations. Because the clinker ages correlate better with eccentricity time series than with an oxygen isotope record of global ice volume, we hypothesize that variations in solar insolation modulated by eccentricity have a larger impact on rates of landscape evolution in this region than do glacial-interglacial cycles.

  1. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Surdam, Ronald C. [Univ. of Wyoming, Laramie, WY (United States); Bentley, Ramsey [Univ. of Wyoming, Laramie, WY (United States); Campbell-Stone, Erin [Univ. of Wyoming, Laramie, WY (United States); Dahl, Shanna [Univ. of Wyoming, Laramie, WY (United States); Deiss, Allory [Univ. of Wyoming, Laramie, WY (United States); Ganshin, Yuri [Univ. of Wyoming, Laramie, WY (United States); Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States); Kaszuba, John [Univ. of Wyoming, Laramie, WY (United States); Mallick, Subhashis [Univ. of Wyoming, Laramie, WY (United States); McLaughlin, Fred [Univ. of Wyoming, Laramie, WY (United States); Myers, James [Univ. of Wyoming, Laramie, WY (United States); Quillinan, Scott [Univ. of Wyoming, Laramie, WY (United States)

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  2. Beaver assisted river valley formation

    Science.gov (United States)

    Westbrook, Cherie J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  3. A new Cretaceous-Tertiary boundary locality in the western powder River basin, Wyoming: biological and geological implications

    Science.gov (United States)

    Nichols, D.J.; Brown, J.L.; Attrep, M.; Orth, C.J.

    1992-01-01

    A newly discovered Cretaceous-Tertiary (K-T) boundary locality in the western Powder River basin, Wyoming, is characterized by a palynologically defined extinction horizon, a fern-spore abundance anomaly, a strong iridium anomaly, and shock-metamorphosed quartz grains. Detailed microstratigraphic analyses show that about one third of the palynoflora (mostly angiosperm pollen) disappeared abruptly, placing the K-T boundary within a distinctive, 1- to 2-cm-thick claystone layer. Shocked quartz grains are concentrated at the top of this layer, and although fern-spore and iridium concentrations are high in this layer, they reach their maximum concentrations in a 2-cm-thick carbonaceous claystone that overlies the boundary claystone layer. The evidence supports the theory that the K-T boundary event was associated with the impact of an extraterrestrial body or bodies. Palynological analyses of samples from the K-T boundary interval document extensive changes in the flora that resulted from the boundary event. The palynologically and geochemically defined K-T boundary provides a unique time-line of use in regional basin analysis. ?? 1992.

  4. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  5. Geologic implications of large-scale trends in well-log response, northern Green River Basin, Wyoming

    International Nuclear Information System (INIS)

    Prensky, S.E.

    1986-01-01

    Well-log response in lower Tertiary and Upper Cretaceous rocks in the northern Green River basin, Wyoming, is examined. Digitally recorded well-log data for selected wells located throughout the basin were processed by computer and displayed as highly compressed depth-scale plots for examining large-scale geologic trends. Stratigraphic units, formed under similar depositional conditions, are distinguishable by differing patterns on these plots. In particular, a strong lithologic contrast between Tertiary and underlying Upper Cretaceous non-marine clastic rocks is revealed and correlated through the study area. Laboratory analysis combined with gamma-ray spectrometry log data show that potassium feldspars in the arkosic Tertiary sandstones cause the contrast. The nature and extent of overpressuring has been examined. Data shift on shale conductivity and shale acoustic transit-time plots, previously ascribed to changes in pore pressure, correspond to stratigraphic changes and not necessarily with changes in pore pressure as indicated by drilling-mud weights. Gulf Coast well-log techniques for detecting overpressuring are unreliable and ineffectual in this basin, which has experienced significantly different geologic depositional and tectonic conditions

  6. Whirling disease among snake river cutthroat trout in two spring streams in Wyoming

    Science.gov (United States)

    Hubert, W.A.; Joyce, M.P.; Gipson, R.; Zafft, D.; Money, D.; Hawk, D.; Taro, B.

    2002-01-01

    We assessed endemic age-0 cutthroat trout Oncorhynchus clarki for evidence of pathology associated with Myxobolus cerebralis in two streams formed by springs in western Wyoming. We hypothesized that the location of spawning sites in spring streams would affect the extent of exposure of cutthroat trout fry to M. cerebralis triactinomyxons (tams), occurrence of the parasite in their bodies, and clinical signs of whirling disease. The spring streams were warm relative to nearby streams flowing from the mountains or spawning and emergence of fry was early compared with fish in mountain streams. Tams were abundant early in the summer and clinical signs of whirling disease among age-0 fish were seen as early as mid-June in one stream. There were high densities of tams in one stream, and densities declined with upstream progression from May through July, whereas in the other stream, low densities of tams were observed in the downstream portion early in the summer, and they were not detected in July and August. Age-0 cutthroat trout were abundant; clinical signs of whirling disease were evident, and histological evidence of whirling disease was common in the stream where tams were abundant. Low densities of age-0 cutthroat trout and no clinical signs of whirling disease were observed in the stream where tams were not abundant. Among sentinel fish in the stream with abundant tams, we found extensive occurrence of M. cerebralis, with many fish showing clinical signs and histological evidence of pathology associated with M. cerebralis. The proportion of sentinel fish with clinical and histological signs of whirling disease decreased with upstream progression. In the stream with low tam, densities sentinel fish became infected with M. cerebralis, but there were essentially no clinical signs or histological indications of whirling disease. ?? 2002 by the American Fisheries Society.

  7. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge

  8. Distributions of air pollutants associated with oil and natural gas development measured in the Upper Green River Basin of Wyoming

    Directory of Open Access Journals (Sweden)

    R.A. Field

    2015-10-01

    Full Text Available Abstract Diffusive sampler monitoring techniques were employed during wintertime studies from 2009 to 2012 to assess the spatial distribution of air pollutants associated with the Pinedale Anticline and Jonah Field oil and natural gas (O&NG developments in the Upper Green River Basin, Wyoming. Diffusive sampling identified both the extent of wintertime ozone (O3 episodes and the distributions of oxides of nitrogen (NOx, and a suite of 13 C5+ volatile organic compounds (VOC, including BTEX (benzene, toluene, ethylbenzene and xylene isomers, allowing the influence of different O&NG emission sources to be determined. Concentration isopleth mapping of both diffusive sampler and continuous O3 measurements show the importance of localized production and advective transport. As for O3, BTEX and NOx mixing ratios within O&NG development areas were elevated compared to background levels, with localized hotspots also evident. One BTEX hotspot was related to an area with intensive production activities, while a second was located in an area influenced by emissions from a water treatment and recycling facility. Contrastingly, NOx hotspots were at major road intersections with relatively high traffic flows, indicating influence from vehicular emissions. Comparisons of observed selected VOC species ratios at a roadside site in the town of Pinedale with those measured in O&NG development areas show that traffic emissions contribute minimally to VOCs in these latter areas. The spatial distributions of pollutant concentrations identified by diffusive sampling techniques have potential utility for validation of emission inventories that are combined with air quality modeling.

  9. Competitive effects of introduced annual weeds on some native and reclamation species in the Powder River Basin, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Knight, D.H.

    1980-01-01

    Four experiments were conducted to examine the competitive effects of introduced annual weeds on certain native and reclamation species. The first experiment was initiated by discing three sites in the Powder River Basin, Wyoming, at three distances from introduced weed seed sources. Introduced weed colonization was greatest when a seed source was located nearby. Higher weed cover resulted in reductions of percent cover, density, and richness of the native species. The second experiment was conducted in the greenhouse and was designed to determine if there are changes in response of S. kali and the native grasses Agropyron smithii and Bouteloua gracilis to competition and water regime. Both grass species had lower biomass and higher stomatal resistance when growing in mixed culture with S. kali than in pure culture in the dry regime, but there were no significant differences in the wet regime. In general, the difference in plant response between mixed and pure cultures was more pronounced in the dry than in the wet regime. The third study was a greenhouse experiment on germination and competition of S. kali (a C/sub 4/ species) with native species Lepidium densiflorum (C/sub 3/), Chenopodium pratericola (C/sub 3/), A. smithii (C/sub 3/), and B. gracilis (C/sub 4/) under May, June, and July temperature regimes. Salsola kali germinated equally well in all three regimes, but the other C/sub 4/ species had highest germination in the July regime and the C/sub 3/ species in the May and June regimes. The fourth study was designed to examine the effect of weed colonization on the success of mine reclamation. Little effect was observed, but colonization by introduced annuals was very low. (ERB)

  10. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  11. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING; FINAL

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general-and the Riverton Dome area specially-is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi(sup 2) and 30 mi(sup 2)) and a variety of other necessary geological and

  12. Analysis of Eocene depositional environments - Preliminary TM and TIMS results, Wind River Basin, Wyoming

    Science.gov (United States)

    Stucky, Richard K.; Krishtalka, Leonard; Redline, Andrew D.; Lang, Harold R.

    1987-01-01

    Both Landsat TM and aircraft Thermal IR Multispectral Scanner (TIMS) data have been used to map the lithofacies of the Wind River Basin's Eocene physical and biological environments. Preliminary analyses of these data have furnished maps of a fault contact boundary and a complex network of fluvial ribbon channel sandstones. The synoptic view thereby emerging for Eocene fluvial facies clarifies the relationships of ribbon channel sandstones to fossil-bearing overbank/floodplain facies and certain peleosols. The utility of TM and TIMS data is thereby demonstrated.

  13. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth and Hardin, Montana, and the Sheridan, Arminto, Newcastle, and Gillette, Wyoming Quadrangles. Final report

    International Nuclear Information System (INIS)

    1979-05-01

    During the months of August through September, 1978, geoMetrics, Inc. flew approximately 1520 line miles of high sensitivity airborne radiometric and magnetic data in Wyoming and southern Montana within four 1 0 x 2 0 NTMS quadrangles (Arminto, Sheridan, Hardin and Forsyth), and 1390 lines miles in the detail area in eastern Wyoming, as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as three volumes (one Volume I and two Volume II's) in this report. The survey area lies largely within the northern Great Plains Physiographic Province. The deep Powder River Basin is the dominant structure in the area. Portions of the Casper Arch, Big Horn Uplift, and Porcupine Dome fall within the western limits of the area. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Epigenetic uranium deposits lie primarily in the Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 62 groups of statistical values for the R and D area and 127 for the Arminto Detail in the uranium window meet the criteria for valid anomalies and are discussed in their respective interpretation sections. Most anomalies lie in the Tertiary sediments of the Powder River Basin. Some of the anomalies in the Arminto Detail are clearly related to mines or prospects

  14. Evaluating controls on fluvial sand-body clustering in the Ferris Formation (Cretaceous/Paleogene, Wyoming, USA)

    Science.gov (United States)

    Hajek, E. A.; Heller, P.

    2009-12-01

    A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.

  15. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends

  16. Aerial gamma ray and magnetic survey: Powder River R and D Project, Arminto Detail, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-05-01

    The small detail area, 18 miles by 18 miles, lying near the center of the Powder River Basin, is covered entirely by sediments of the Eocene Wasatch Formation. Historically economic uranium deposits have been worked in the southeast corner of the area which includes the northern extremity of the Pumpkin Buttes district. 127 statistical uranium anomalies were generated for the study area, based on area wide statistics

  17. Groundwater well inventory and assessment in the area of the proposed Normally Pressured Lance natural gas development project, Green River Basin, Wyoming, 2012

    Science.gov (United States)

    Sweat, Michael J.

    2013-01-01

    During May through September 2012, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, inventoried and assessed existing water wells in southwestern Wyoming for inclusion in a possible groundwater-monitor network. Records were located for 3,282 wells in the upper Green River Basin, which includes the U.S. Geological Survey study area and the proposed Normally Pressured Lance natural gas development project area. Records for 2,713 upper Green River Basin wells were determined to be unique (not duplicated) and to have a Wyoming State Engineers Office permit. Further, 376 of these wells were within the U.S. Geological Survey Normally Pressured Lance study area. Of the 376 wells in the U.S. Geological Survey Normally Pressured Lance study area, 141 well records had sufficient documentation, such as well depth, open interval, geologic log, and depth to water, to meet many, but not always all, established monitor well criteria. Efforts were made to locate each of the 141 wells and to document their current condition. Field crews were able to locate 121 of the wells, and the remaining 20 wells either were not located as described, or had been abandoned and the site reclaimed. Of the 121 wells located, 92 were found to meet established monitor well criteria. Results of the field efforts during May through September 2012, and specific physical characteristics of the 92 wells, are presented in this report.

  18. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    Science.gov (United States)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  19. Aerial gamma ray and magnetic survey, Powder River II Project: the Newcastle and Gillette Quadrangles of Wyoming and South Dakota; the Ekalaka Quadrangle of Montana, South and North Dakota. Volume I. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1 0 x 2 0 NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin and the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures

  20. Aerial gamma ray and magnetic survey, Powder River II Project: the Newcastle and Gillette Quadrangles of Wyoming and South Dakota; the Ekalaka Quadrangle of Montana, South and North Dakota. Volume I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1/sup 0/ x 2/sup 0/ NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin and the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures.

  1. Preliminary report on the geology of uranium deposits in the Browns Park Formation in Moffat County, Colorado, and Carbon County, Wyoming

    International Nuclear Information System (INIS)

    Ormond, A.

    1957-06-01

    Uranium was first discovered in the Browns Park Formation in 1951 in the Miller Hill area of south-central Wyoming. Since that time economically important deposits in this formation have been discovered and developed in the Poison Basin of south-central Wyoming and in the Maybell area of northwest Colorado. The Browns Park is the youngest formation (Miocene) in the region and overlies older rocks with angular unconformity. The formation consists of a basal conglomerate, fluviatile, lacustrine, and eolian sandstones, and locally a few thin beds of clay, tuff, and algal limestone. The sandstones are predominantly fine- to medium-grained and consist of quartz grains, scattered black chert grains, and interstitial clay. The uranium deposits are of the sandstone-impregnation type and are not confined to specific stratigraphic horizons. The important ore minerals are autunite and uranophane in oxidized sandstones, and uraninite and coffinite in unoxidized sandstones. Uranium is often associated with limonite and calcium carbonate in concretionary forms. Woody material, thought to play an important part in the deposition of uranium in many sandstone-type deposits, is not present in the deposits of the Browns Park Formation. However, organic carbon in the form of petroleum and petroleum residues has been observed in association with uranium in both the Poison Basin and the Maybell areas

  2. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone

  3. Application of near-surface geophysics as part of a hydrologic study of a subsurface drip irrigation system along the Powder River floodplain near Arvada, Wyoming

    Science.gov (United States)

    Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.

    2014-01-01

    Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near

  4. Geohydrology and potential effects of coal mining in 12 coal-lease areas, Powder River structural basin, northeastern Wyoming. Water Resources Investigation

    International Nuclear Information System (INIS)

    Fogg, J.L.; Martin, M.W.; Daddow, P.B.

    1991-01-01

    The purpose of the report is to describe the geohydrology of 12 coal-lease areas in the Powder River structural basin in relation to the mining proposed for each area. The description of the geohydrology of each of the lease areas focuses on the shallow ground-water system and includes identification of recharge and discharge areas, directions of ground-water movement, and potential effects of mining. The shallow ground-water system in the Powder River structural basin is not well defined because of the discontinuous nature of the aquifers in the basin. Understanding the ground-water hydrology of these 12 coal-lease areas will improve understanding of the shallow ground-water system in the basin. The first part of the report is a description of the general geohydrology of the Wyoming part of the Powder River structural basin. The second part of the report is a general discussion of the effects of coal mining on ground-water hydrology. The third part of the report contains site-specific discussions of the ground-water hydrology and potential effects of mining for each of the 12 coal-lease areas

  5. Toxicity of Sodium Bicarbonate to Fish from Coal-Bed Natural Gas Production in the Tongue and Powder River Drainages, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.

  6. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    Science.gov (United States)

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  7. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  8. Snowmelt-induced subsurface and overland flows in a hillslope in Noname Watershed, Laramie River Basin, Wyoming

    Science.gov (United States)

    Rogers, T.; Ohara, N.

    2015-12-01

    Only few field observations have been implemented using surface and sub-surface trenches to investigate snowmelt-induced hillslope runoffs in mountainous regions. Hillslope trenches may be one of the most direct ways to measure subsurface and overland flow during winter and spring seasons. In July 2014, a 10 meter long trench was constructed with hand tools through glacial till on a south facing hillslope in the Noname Watershed, Medicine Bow National Forest, Wyoming, where heavy equipment and motorized vehicles were restricted. This trench measures subsurface and overland flow for a 610 square meters catchment which has an average slope of 25 degrees. This water-collecting trench is equipped with 4 soil-moisture and temperature sensors to detect the presence of unsaturated flow. Field observations from the trench showed that diurnal oscillation of snowmelt seemed to control the overland flow between the snow and soil surface. The water inputs to the hillslope, including rainfall, evaporation, and snowmelt rates, were estimated from the energy balance computations using the observed meteorological data at the site. Using the water input data, the lateral flow component through the deeper soil or weathered bedrock layer was also quantified by the mass balance in the catchment. This study provides one of key field activities for Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) project.

  9. Mouth Bar Formation in Yangtze River Estuary

    NARCIS (Netherlands)

    Wei, C.

    2002-01-01

    The periodic shifting of the bifurcation point of the North Channel and South Channel of the Yangtze river is very important in the estuary. The North Channel is bifurcated from the South Branch by cutting a channel through the submerged sandbanks. Once a bifurcation channel is formed, the

  10. Geochemistry of inorganic nitrogen in waters released from coal-bed natural gas production wells in the Powder River Basin, Wyoming

    Science.gov (United States)

    Smith, Richard L.; Repert, Deborah A.; Hart, Charles P.

    2009-01-01

    Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 μM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, of total dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n = 13), DIN concentrations were >300 μM, with pH > 8.5, after 5 km of transport. Ammonium represented 25−30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day−1entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.

  11. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    International Nuclear Information System (INIS)

    Damp, J.N.; Jennings, M.D.

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated

  12. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  13. Combining genetic, isotopic, and field data to better describe the influence of dams and diversions on Burbot Movement in the Wind River Drainage, Wyoming

    Science.gov (United States)

    Hooley-Underwood, Zachary; Mandeville, Elizabeth G.; Gerrity, Paul C.; Deromedi, J. W.; Johnson, Kevin; Walters, Annika W.

    2018-01-01

    Dams and water diversions fragment habitat, entrain fish, and alter fish movement. Many Burbot Lota lota populations are declining, with dams and water diversions thought to be a major threat. We used multiple methods to identify Burbot movement patterns and assess entrainment into an irrigation system in the Wind River, Wyoming. We assessed seasonal movement of Burbot with a mark–recapture (PIT tagging) study, natal origins of entrained fish with otolith microchemistry, and historic movement with genotyping by sequencing. We found limited evidence of entrainment in irrigation waters across all approaches. The mark–recapture study indicated that out‐migration from potential source populations could be influenced by flow regime but was generally low. Otolith and genomic results suggested the presence of a self‐sustaining population within the irrigation network. We conclude that emigration from natural tributary populations is not the current source of the majority of Burbot found in irrigation waters. Instead, reservoir and irrigation canal construction has created novel habitat in which Burbot have established a population. Using a multi‐scale approach increased our inferential abilities and mechanistic understanding of movement patterns between natural and managed systems.

  14. Capacitively Coupled Resistivity Survey of Selected Irrigation Canals Within the North Platte River Valley, Western Nebraska and Eastern Wyoming, 2004 and 2007-2009

    Science.gov (United States)

    Burton, Bethany L.; Johnson, Michaela R.; Vrabel, Joseph; Imig, Brian H.; Payne, Jason; Tompkins, Ryan E.

    2009-01-01

    Due to water resources of portions of the North Platte River basin being designated as over-appropriated by the State of Nebraska Department of Natural Resources (DNR), the North Platte Natural Resources District (NPNRD), in cooperation with the DNR, is developing an Integrated Management Plan (IMP) for groundwater and surface water in the NPNRD. As part of the IMP, a three-dimensional numerical finite difference groundwater-flow model is being developed to evaluate the effectiveness of using leakage of water from selected irrigation canal systems to manage groundwater recharge. To determine the relative leakage potential of the upper 8 m of the selected irrigation canals within the North Platte River valley in western Nebraska and eastern Wyoming, the U.S. Geological Survey performed a land-based capacitively coupled (CC) resistivity survey along nearly 630 km of 13 canals and 2 laterals in 2004 and from 2007 to 2009. These 13 canals were selected from the 27 irrigation canals in the North Platte valley due to their location, size, irrigated area, and relation to the active North Platte valley flood plain and related paleochannels and terrace deposits where most of the saturated thickness in the alluvium exists. The resistivity data were then compared to continuous cores at 62 test holes down to a maximum depth of 8 m. Borehole electrical conductivity (EC) measurements at 36 of those test holes were done to correlate resistivity values with grain sizes in order to determine potential vertical leakage along the canals as recharge to the underlying alluvial aquifer. The data acquired in 2004, as well as the 25 test hole cores from 2004, are presented elsewhere. These data were reprocessed using the same updated processing and inversion algorithms used on the 2007 through 2009 datasets, providing a consistent and complete dataset for all collection periods. Thirty-seven test hole cores and borehole electrical conductivity measurements were acquired based on the 2008

  15. Assessment of in-place oil shale resources of the Eocene Green River Formation, a foundation for calculating recoverable resources

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracy

    2011-01-01

    The recently completed assessment of in-place resources of the Eocene Green River Formation in the Piceance Basin, Colorado; the Uinta Basin, Utah and Colorado; and the Greater Green River Basin Wyoming, Colorado, and Utah and their accompanying ArcGIS projects will form the foundation for estimating technically-recoverable resources in those areas. Different estimates will be made for each of the various above-ground and in-situ recovery methodologies currently being developed. Information required for these estimates include but are not limited to (1) estimates of the amount of oil shale that exceeds various grades, (2) overburden calculations, (3) a better understanding of oil shale saline facies, and (4) a better understanding of the distribution of various oil shale mineral facies. Estimates for the first two are on-going, and some have been published. The present extent of the saline facies in all three basins is fairly well understood, however, their original extent prior to ground water leaching has not been studied in detail. These leached intervals, which have enhanced porosity and permeability due to vugs and fractures and contain significant ground water resources, are being studied from available core descriptions. A database of all available xray mineralogy data for the oil shale interval is being constructed to better determine the extents of the various mineral facies. Once these studies are finished, the amount of oil shale with various mineralogical and physical properties will be determined.

  16. Assessment of impacts of proposed coal-resource and related economic development on water resources, Yampa River basin, Colorado and Wyoming; a summary

    Science.gov (United States)

    Steele, Timothy Doak; Hillier, Donald E.

    1981-01-01

    Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated

  17. Precession-scale cyclicity in the lower Eocene fluvial Willwood Formation of the Bighorn Basin, Wyoming (USA)

    NARCIS (Netherlands)

    Abels, H.A.; Kraus, M.J.; Gingerich, P.D.

    2013-01-01

    Little is known about controls on river avulsion at geological time scales longer than 104 years, primarily because it is difficult to link observed changes in alluvial architecture to well-defined allogenic mechanisms and to disentangle allogenic from autogenic processes. Recognition of

  18. The Postcranial Skeleton of an Exceptionally Complete Individual of the Plated Dinosaur Stegosaurus stenops (Dinosauria: Thyreophora from the Upper Jurassic Morrison Formation of Wyoming, U.S.A.

    Directory of Open Access Journals (Sweden)

    Susannah Catherine Rose Maidment

    Full Text Available Although Stegosaurus is one of the most iconic dinosaurs, well-preserved fossils are rare and as a consequence there is still much that remains unknown about the taxon. A new, exceptionally complete individual affords the opportunity to describe the anatomy of Stegosaurus in detail for the first time in over a century, and enables additional comparisons with other stegosaurian dinosaurs. The new specimen is from the Red Canyon Ranch Quarry, near Shell Wyoming, and appears to have been so well preserved because it was buried rapidly in a pond or body of standing water immediately after death. The quarry is probably located in the middle part of the Morrison Formation, which is believed to be Tithonian in age in this area. The specimen is referable to Stegosaurus stenops based on the possession of an edentulous anterior portion of the dentary and elevated postzygapophyses on the cervical vertebrae. New information provided by the specimen concerns the morphology of the vertebrae, the iliosacral block and dermal armor. Several aspects of its morphology indicate the individual was not fully skeletally mature at the time of death, corroborating a previous histological study.

  19. The Postcranial Skeleton of an Exceptionally Complete Individual of the Plated Dinosaur Stegosaurus stenops (Dinosauria: Thyreophora) from the Upper Jurassic Morrison Formation of Wyoming, U.S.A.

    Science.gov (United States)

    Maidment, Susannah Catherine Rose; Brassey, Charlotte; Barrett, Paul Michael

    2015-01-01

    Although Stegosaurus is one of the most iconic dinosaurs, well-preserved fossils are rare and as a consequence there is still much that remains unknown about the taxon. A new, exceptionally complete individual affords the opportunity to describe the anatomy of Stegosaurus in detail for the first time in over a century, and enables additional comparisons with other stegosaurian dinosaurs. The new specimen is from the Red Canyon Ranch Quarry, near Shell Wyoming, and appears to have been so well preserved because it was buried rapidly in a pond or body of standing water immediately after death. The quarry is probably located in the middle part of the Morrison Formation, which is believed to be Tithonian in age in this area. The specimen is referable to Stegosaurus stenops based on the possession of an edentulous anterior portion of the dentary and elevated postzygapophyses on the cervical vertebrae. New information provided by the specimen concerns the morphology of the vertebrae, the iliosacral block and dermal armor. Several aspects of its morphology indicate the individual was not fully skeletally mature at the time of death, corroborating a previous histological study.

  20. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The

  1. Seismic, magnetic, and geotechnical properties of a landslide and clinker deposits, Powder River basin, Wyoming and Montana

    Science.gov (United States)

    Miller, C.H.

    1979-01-01

    Exploitation of vast coal and other resources in the Powder River Basin has caused recent, rapid increases in population and in commercial and residential development and has prompted land utilization studies. Two aspects of land utilization were studied for this report: (1) the seismic and geotechnical properties of a landslide and (2) the seismic, magnetic, and geotechnical properties of clinker deposits. (1) The landslide seismic survey revealed two layers in the slide area. The upper (low-velocity) layer is a relatively weak mantle of colluvium and unconsolidated and weathered bedrock that ranges in thickness from 3.0 to 7.5 m and has an average seismic velocity of about 390 m/s. It overlies high-velocity, relatively strong sedimentary bedrock that has velocities greater than about 1330 m/s. The low-velocity layer is also present at the other eight seismic refraction sites in the basin; a similar layer has also been reported in the Soviet Union in a landslide area over similar bedrock. The buried contact of the low- and high-velocity layers is relatively smooth and is nearly parallel with the restored topographic surface. There is no indication that any of the high-velocity layer (bedrock) has been displaced or removed. The seismic data also show that the shear modulus of the low-velocity layer is only about one-tenth that of the high-velocity layer and the shear strength (at failure) is only about one-thirtieth. Much of the slide failure is clearly in the shear mode, and failure is, therefore, concluded to be confined to the low-velocity layer. The major immediate factor contributing to landslide failure is apparently the addition of moisture to the low-velocity layer. The study implies that the low-velocity layer can be defined over some of the basin by seismic surveys and that they can help predict or delineate potential slides. Preventative actions that could then be taken include avoidance, dewatering, prevention of saturation, buttressing the toe, and

  2. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    Science.gov (United States)

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  3. Social-value maps for Arapaho, Roosevelt, Medicine Bow, Routt, and White River National Forests, Colorado and Wyoming

    Science.gov (United States)

    Ancona, Zachary H.; Semmens, Darius J.; Sherrouse, Benson C.

    2016-03-25

    Executive SummaryThe continued pressures of population growth on the life-sustaining, economic, and cultural ecosystem services provided by our national forests, particularly those located near rapidly growing urban areas, present ongoing challenges to forest managers. Achieving an effective assessment of these ecosystem services includes a proper accounting of the ecological, economic, and social values attributable to them. However, assessments of ecosystem goods and services notably lack information describing the spatial distribution and relative intensity of social values—the perceived, nonmarket values derived particularly from cultural ecosystem services. A geographic information system (GIS) tool developed to fill this need, Social Values for Ecosystem Services (SolVES; http://solves.cr.usgs.gov), now provides the capability to generate social-value maps at a range of spatial scales. This report presents some of the methods behind SolVES, procedures needed to apply the tool, the first formal map products resulting from its application at a regional scale, and a discussion of the management implications associated with this type of information.In this study, we use SolVES to identify the location and relative intensity of social values as derived from survey responses gathered from residents living in counties adjacent to Arapaho, Roosevelt, Medicine Bow, Routt, and White River National Forests. The results, presented as a series of social-value maps, represent the first publicly available spatial data on social-value intensity for the southern Rocky Mountain region. Our analysis identified high-value areas for social values including aesthetic, biodiversity, and life sustaining within wilderness areas. Other values, like recreation, show high-value areas both within wilderness and throughout the general forest areas, which can be attributed to people using the forests for a diverse set of recreational activities. The economic social-value type was lower

  4. Shallow ground water in the Powder River Bbasin, northeastern Wyoming: Description of selected publications, 1950-91, and indications for further study. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lindner-Lunsford, J.B.; Wilson, J.F.

    1992-01-01

    The report describes the conclusions and contributions to knowledge of shallow ground water in publications resulting from previous ground-water investigations in the Powder River Basin and describes indications for further study. For the report, shallow ground water is defined as water in geologic formations overlying the Upper Cretaceous Pierre Shale and equivalents. The 76 publications described were produced from 1950-91 by the U.S. Geological Survey, other government agencies, and academic and private organizations, including mining companies and engineering consultants. Only those parts of the publications that are relevant to thee quantity or quality of shallow ground water in the Powder River Basin are described. Mine plans for coal and uranium mines (many of which contain detailed, local hydrologic information) and publications containing pertinent geologic information, but no hydrologic information, are not included

  5. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments

  6. Hydrogeology of the Judith River Formation in southwestern Saskatchewan, Canada

    Science.gov (United States)

    Ferris, David; Lypka, Morgan; Ferguson, Grant

    2017-11-01

    The Judith River Formation forms an important regional aquifer in southwestern Saskatchewan, Canada. This aquifer is used for domestic and agricultural purposes in some areas and supports oil and gas production in other areas. As a result, the available data come from a range of sources and integration is required to provide an overview of aquifer characteristics. Here, data from oil and gas databases are combined with data from groundwater resource assessments. Analysis of cores, drill-stem tests and pumping tests provide a good overview of the physical hydrogeology of the Judith River Aquifer. Water chemistry data from oil and gas databases were less helpful in understanding the chemical hydrogeology due contamination of samples and unreliable laboratory analyses. Analytical modeling of past pumping in the aquifer indicates that decreases in hydraulic head exceeding 2 m are possible over distances of 10s of kilometers. Similar decreases in head should be expected for additional large withdrawals of groundwater from the Judith River Aquifer. Long-term groundwater abstraction should be limited by low pumping rates. Higher pumping rates appear to be possible for short-term uses, such as those required by the oil and gas industry.

  7. Salt Marsh Formation in the Lower Hudson River Estuary

    Science.gov (United States)

    Merley, Michael; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high

  8. Stratigraphy and structure of the northern and western flanks of the Black Hills Uplift, Wyoming, Montana, and South Dakota

    International Nuclear Information System (INIS)

    Robinson, C.S.; Mapel, W.J.; Bergendahl, M.H.

    1981-01-01

    This report describes the stratigraphy and structure of an area of about 5000 square miles in northeastern Wyoming and adjacent parts of Montana and South Dakota. The area includes the northern end and part of the western side of the Black Hills Uplift and the adjoining part of the Powder River Basin. About 11,000 ft of sedimentary rocks ranging in age from Mississippian to Early Tertiary are exposed in the area, not including surficial deposits of Tertiary (.) and Quaternary age. Oil is produced from several fields on the wet side of the Black Hills Uplift in Wyoming. Bentonite is mined at many places. The Fort Union and Wasatch Formations contain large reserves of sub-bituminous coal, and Lakota Formation contains some bituminous coal

  9. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming

    Science.gov (United States)

    Kirschbaum, Mark A.; Mercier, Tracey J.

    2013-01-01

    Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones

  10. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Christopher D. White

    2009-12-21

    Significant volumes of oil and gas occur in reservoirs formed by ancient river deltas. This has implications for the spatial distribution of rock types and the variation of transport properties. A between mudstones and sandstones may form baffles that influence productivity and recovery efficiency. Diagenetic processes such as compaction, dissolution, and cementation can also alter flow properties. A better understanding of these properties and improved methods will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high-resolution view of variability. Insights gleaned from these exposures can be used to model analogous reservoirs, for which data is sparser. The Frontier Formation in central Wyoming provides an opportunity for high-resolution models. The same rocks exposed in the Tisdale anticline are productive in nearby oil fields. Kilometers of exposure are accessible, and bedding-plane exposures allow use of high-resolution ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct geostatistical and flow models. Strata-conforming grids were use to reproduce the observed geometries. A new Bayesian method integrates outcrop, core, and radar amplitude and phase data. The proposed method propagates measurement uncertainty and yields an ensemble of plausible models for calcite concretions. These concretions affect flow significantly. Models which integrate more have different flow responses from simpler models, as demonstrated an exhaustive two-dimensional reference image and in three dimensions. This method is simple to implement within widely available geostatistics packages. Significant volumes of oil and gas occur in reservoirs that are inferred to have been formed by ancient river deltas. This geologic setting has implications for the spatial distribution of

  11. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth, Hardin, Montana Quadrangles; Sheridan, Arminto, Wyoming Quadrangles. Final report

    International Nuclear Information System (INIS)

    1979-05-01

    Thick Phaneorozoic sediments (greater than 17,000 feet) fill the northwest-trending Powder River Basin, which is the dominant tectonic structure in the study area. Lower Tertiary sediments comprise over 90% of the exposed units at the surface of the Basin. Small portions of the Bighorn Uplift, Casper Arch, and Porcupine Dome occupy the western edge of the study area. Numerous small claims and prospects are found in the Pumpkin Buttes - Turnercrest District at the south end of the study area (northeastern Arminto quadrangle). No economic deposits of uranium are known to exist in the area, according to available literature. Interpretation of the radiometric data resulted in 62 statistical uranium anomalies listed for this area. Most anomalies are found in the southern half of the study area within the Tertiary Fort Union and Wasatch Formations. Some are found in Cretaceous sediments in the adjoining uplifts to the west of the Basin

  12. Thermal springs of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  13. Gas, Oil, and Water Production from Jonah, Pinedale, Greater Wamsutter, and Stagecoach Draw Fields in the Greater Green River Basin, Wyoming

    Science.gov (United States)

    Nelson, Philip H.; Ewald, Shauna M.; Santus, Stephen L.; Trainor, Patrick K.

    2010-01-01

    Gas, oil, and water production data were compiled from selected wells in four gas fields in rocks of Late Cretaceous age in southwestern Wyoming. This study is one of a series of reports examining fluid production from tight-gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after commencement of production. For each producing interval, summary diagrams of oil versus gas and water versus gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The ranges of first-sample gas rates in Pinedale field and Jonah field are quite similar, and the average gas production rate for the second sample, taken five years later, is about one-half that of the first sample for both fields. Water rates are generally substantially higher in Pinedale than in Jonah, and water-gas ratios in Pinedale are roughly a factor of ten greater in Pinedale than in Jonah. Gas and water production rates from each field are fairly well grouped, indicating that Pinedale and Jonah fields are fairly cohesive gas-water systems. Pinedale field appears to be remarkably uniform in its flow behavior with time. Jonah field, which is internally faulted, exhibits a small spread in first-sample production rates. In the Greater Wamsutter field, gas production from the upper part of the Almond Formation is greater than from the main part of the Almond. Some wells in the main and the combined (upper and main parts) Almond show increases in water production with time, whereas increases

  14. Phytolith analysis in fluvial quaternary sediment (San Salvador and Palmar formation) Uruguay river and Argentina eastern

    International Nuclear Information System (INIS)

    Patterer, N.; Passeggi, E.; Zucol, A.; Brea, M.; Krohling, D.

    2012-01-01

    This work is about two microfossils fluvial units deposited by the Uruguay river during the Quaternary. These are San Salvador and Palmar formation (Plio-Pleistocene - Upper Pleistocene).The Palmar formation is a band of 4-15 km along the right bank of the Uruguay river outcropping from the eastern provinces of Corrientes and Entre Rios, to Concepcion del Uruguay

  15. The chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-02-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lake's lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which

  16. Chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-01-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which precipitated dawsonite and crystallized nahcolite in the sediment as a result of CO/sub 2/ production from organic matter. (JMT)

  17. Hydrogeology and water quality in the Snake River alluvial aquifer at Jackson Hole Airport, Jackson, Wyoming, water years 2011 and 2012

    Science.gov (United States)

    Wright, Peter R.

    2013-01-01

    The hydrogeology and water quality of the Snake River alluvial aquifer at the Jackson Hole Airport in northwest Wyoming was studied by the U.S. Geological Survey, in cooperation with the Jackson Hole Airport Board, during water years 2011 and 2012 as part of a followup to a previous baseline study during September 2008 through June 2009. Hydrogeologic conditions were characterized using data collected from 19 Jackson Hole Airport wells. Groundwater levels are summarized in this report and the direction of groundwater flow, hydraulic gradients, and estimated groundwater velocity rates in the Snake River alluvial aquifer underlying the study area are presented. Analytical results of groundwater samples collected from 10 wells during water years 2011 and 2012 are presented and summarized. The water table at Jackson Hole Airport was lowest in early spring and reached its peak in July or August, with an increase of 12.5 to 15.5 feet between April and July 2011. Groundwater flow was predominantly horizontal but generally had the hydraulic potential for downward flow. Groundwater flow within the Snake River alluvial aquifer at the airport was from the northeast to the west-southwest, with horizontal velocities estimated to be about 25 to 68 feet per day. This range of velocities slightly is broader than the range determined in the previous study and likely is due to variability in the local climate. The travel time from the farthest upgradient well to the farthest downgradient well was approximately 52 to 142 days. This estimate only describes the average movement of groundwater, and some solutes may move at a different rate than groundwater through the aquifer. The quality of the water in the alluvial aquifer generally was considered good. Water from the alluvial aquifer was fresh, hard to very hard, and dominated by calcium carbonate. No constituents were detected at concentrations exceeding U.S. Environmental Protection Agency maximum contaminant levels or health

  18. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  19. CHARACTERIZATION OF SANDSTONE RESERVOIRS FOR ENHANCED OIL RECOVERY: THE PERMIAN UPPER MINNELUSA FORMATION, POWDER RIVER BASIN, WYOMING.

    Science.gov (United States)

    Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.

    1986-01-01

    Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.

  20. Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  1. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    OpenAIRE

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. ...

  2. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  3. Wyoming : ITS/CVO business plan

    Science.gov (United States)

    1997-12-01

    Commercial Vehicle Operations (CVO) in Wyoming are among the safest and most efficient in the United States. This Business Plan recognizes the successes of Wyoming CVO and proposes seven elements to keep Wyoming a trucking leader. The Plan recommends...

  4. Trends in major-ion constituents and properties for selected sampling sites in the Tongue and Powder River watersheds, Montana and Wyoming, based on data collected during water years 1980-2010

    Science.gov (United States)

    Sando, Steven K.; Vecchia, Aldo V.; Barnhart, Elliott P.; Sando, Thomas R.; Clark, Melanie L.; Lorenz, David L.

    2014-01-01

    The primary purpose of this report is to present information relating to flow-adjusted temporal trends in major-ion constituents and properties for 16 sampling sites in the Tongue and Powder River watersheds based on data collected during 1980–2010. In association with this primary purpose, the report presents background information on major-ion characteristics (including specific conductance, calcium, magnesium, potassium, sodium adsorption ratio, sodium, alkalinity, chloride, fluoride, dissolved sulfate, and dissolved solids) of the sampling sites and coal-bed methane (CBM) produced water (groundwater pumped from coal seams) in the site watersheds, trend analysis methods, streamflow conditions, and factors that affect trend results. The Tongue and Powder River watersheds overlie the Powder River structural basin (PRB) in northeastern Wyoming and southeastern Montana. Limited extraction of coal-bed methane (CBM) from the PRB began in the early 1990’s, and increased dramatically during the late 1990’s and early 2000’s. CBM-extraction activities produce discharges of water with high concentrations of dissolved solids (particularly sodium and bicarbonate ions) relative to most stream water in the Tongue and Powder River watersheds. Water-quality of CBM produced water is of concern because of potential effects of sodium on agricultural soils and potential effects of bicarbonate on aquatic biota. Two parametric trend-analysis methods were used in this study: the time-series model (TSM) and ordinary least squares regression (OLS) on time, streamflow, and season. The TSM was used to analyze trends for 11 of the 16 study sites. For five sites, data requirements of the TSM were not met and OLS was used to analyze trends. Two primary 10-year trend-analysis periods were selected. Trend-analysis period 1 (water years 1986–95; hereinafter referred to as period 1) was selected to represent variability in major-ion concentrations in the Tongue and Powder River

  5. Promoting Art through Technology, Education and Research of Natural Sciences (PATTERNS) across Wyoming, A Wyoming NSF EPSCoR Funded Project

    Science.gov (United States)

    Gellis, B. S.; McElroy, B. J.

    2016-12-01

    PATTERNS across Wyoming is a science and art project that promotes new and innovative approaches to STEM education and outreach, helping to re-contextualize how educators think about creative knowledge, and how to reach diverse audiences through informal education. The convergence of art, science and STEM outreach efforts is vital to increasing the presence of art in geosciences, developing multidisciplinary student research opportunities, expanding creative STEM thinking, and generating creative approaches of visualizing scientific data. A major goal of this project is to train art students to think critically about the value of scientific and artistic inquiry. PATTERNS across Wyoming makes science tangible to Wyoming citizens through K-14 art classrooms, and promotes novel maker-based art explorations centered around Wyoming's geosciences. The first PATTERNS across Wyoming scientific learning module (SIM) is a fish-tank sized flume that recreates natural patterns in sand as a result of fluid flow and sediment transport. It will help promotes the understanding of river systems found across Wyoming (e.g. Green, Yellowstone, Snake). This SIM, and the student artwork inspired by it, will help to visualize environmental-water changes in the central Rocky Mountains and will provide the essential inspiration and tools for Wyoming art students to design biological-driven creative explorations. Each art class will receive different fluvial system conditions, allowing for greater understanding of river system interactions. Artwork will return to the University of Wyoming for a STE{A}M Exhibition inspired by Wyoming's varying fluvial systems. It is our hope that new generations of science and art critical thinkers will not only explore questions of `why' and `how' scientific phenomena occur, but also `how' to better predict, conserve and study invaluable artifacts, and visualize conditions which allow for better control of scientific outcomes and public understanding.

  6. [Linking optical properties of dissolved organic matter with NDMA formation potential in the Huangpu River].

    Science.gov (United States)

    Dong, Qian-Qian; Zhang, Ai; Li, Yong-Mei; Chen, Ling; Huang, Qing-Hui

    2014-03-01

    Surface water samples from the Huangpu River were filtered to measure the UV absorption and fluorescence spectrum. Dissolved organic carbon (DOC), N-nitrosodimethylamine (NDMA), and its formation potential (NDMA-FP) were also analyzed to explore relationships between the properties of dissolved organic matter (DOM) and the formation potential of disinfection byproducts-NDMA in the Huangpu River. The study found that: NDMA-FP concentration increased with the increasing of DOC concentration (r = 0.487, P NDMA-FP concentration had positive relationships with the fluorescence intensity of protein-like substances such as low-molecular-weight (LMW) tyrosine-like and tryptophan-like substances (r = 0.421, P NDMA formation potential increases with the increasing DOM content in the Huangpu River, which is significantly related with the protein-like substances, but decreases with the increasing aromaticity and humification of DOM.

  7. Late Pleistocene and Holocene paleoclimate and alpine glacier fluctuations recorded by high-resolution grain-size data from an alpine lake sediment core, Wind River Range, Wyoming, USA

    Science.gov (United States)

    Thompson Davis, P.; Machalett, Björn; Gosse, John

    2013-04-01

    Varved lake sediments, which provide ideal high-resolution climate proxies, are not commonly available in many geographic areas over long time scales. This paper utilizes high-resolution grain-size analyses (n = 1040) from a 520-cm long sediment core from Lower Titcomb Lake (LTL), which lies just outside the type Titcomb Basin (TTB) moraines in the Wind River Range, Wyoming. The TTB moraines lie between Lower Titcomb Lake and Upper Titcomb Lake (UTL), about 3 km beyond, and 200 m lower than the modern glacier margin and Gannett Peak (Little Ice Age) moraines in the basin. Based on cosmogenic exposure dating, the TTB moraines are believed to be Younger Dryas (YD) age (Gosse et al., 1995) and lie in a geomorphic position similar to several other outer cirque moraines throughout the western American Cordillera. Until recently, many of these outer cirque moraines were believed to be Neoglacial age. The sediment core discussed here is one of five obtained from the two Titcomb Lakes, but is by the far the longest with the oldest sediment depositional record. Two AMS radiocarbon ages from the 445- and 455-cm core depths (about 2% loss on ignition, LOI) suggest that the lake basin may have been ice-free as early as 16.1 or even 16.8 cal 14C kyr, consistent with 10Be and 26Al exposure ages from boulders and bedrock surfaces outside the TTB moraines. The 257-cm depth in the core marks an abrupt transition from inorganic, sticky gray silt below (rock flour production between the 257 and 466 cm core depths appear to be roughly correlative with the YD-Alleröd-Bölling-Meiendorf-Heinrich 1 climate events recognized in other terrestrial records and Northern Atlantic Ocean marine cores, but provide much higher resolution than most of those records from a climate-sensitive alpine region in North America.

  8. Oldest new genus of Myrmeleontidae (Neuroptera) from the Eocene Green River Formation.

    Science.gov (United States)

    Makarkin, Vladimir N

    2017-10-20

    Epignopholeon sophiae gen. et sp. nov. (Neuroptera: Myrmeleontidae) is described from the early Eocene of the Green River Formation (Colorado, U.S.A.). It represents the oldest confident record of the family. The new genus is remarkable in that tergite 7 of the female is much shorter than its long sternite 7. The preserved wing venation shows that the genus belongs to the subfamily Myrmeleontinae, and most probably to the tribe Gnopholeontini. The discovery of this species is consistent with estimations of relatively dry and warm conditions during deposition of the upper Parachute Creek Member of the Green River Formation.

  9. Defining the formative discharge for alternate bars in alluvial rivers

    Science.gov (United States)

    Redolfi, M.; Carlin, M.; Tubino, M.; Adami, L.; Zolezzi, G.

    2017-12-01

    We investigate the properties of alternate bars in long straight reaches of channelized streams subject to an unsteady, irregular flow regime. To this aim we propose a novel integration of a statistical approach with the analytical perturbation model of Tubino (1991) which predicts the evolution of bar properties (namely amplitude and wavelength) as consequence of a flood. The outcomes of our integrated modelling approach are probability distribution of the bar properties, which depend essentially on two ingredients: (i) the statistical properties of the flow regime (duration, frequency and magnitude of the flood events, and (ii) the reach-averaged hydro-geomorphic characteristics of the channel (bed material, channel gradient and width). This allows to define a "bar-forming" discharge value as the flow value which would reproduce the most likely bar properties in a river reach under unsteady flow. Alternate bars are often migrating downstream and growing or declining during flood events. The timescale of bar growth and migration is often comparable with the duration of the floods: consequently, bar properties such as height and wavelength do not respond instantaneously to discharge variations (i.e. quasi-equilibrium response) but may depend on previous flood events. Theoretical results are compared with observations in three Alpine, channelized gravel bed rivers with encouraging outcomes.png" class="documentimage" >

  10. Record of Lower Gondwana megafloral assemblage from Lower Kamthi Formation of Ib River Coalfield, Orissa, India

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, S. [Birbal Sahni Institute of Paleobotany, Lucknow (India)

    2006-03-15

    Recent investigations carried out in the Ib River Coalfield, Mahanadi Master Basin, Orissa, identified some fossiliferous beds in the Lower Gondwana deposits. Two exposures of the Lower Kamthi Formation yielded diverse and abundant plant remains, which include Neomariopteris, Vertebraria, and a scale leaf along with 14 Glossopteris species otherwise mapped as Barren Measures and Upper Kamthi formations. Glossopteris indica dominates the flora (22.78%) followed by G. communis (17.72%) and G. browniana (13.92%). Based on megafloral assemblages, different beds exposed at Gopalpur and Laxamanpur Pahar are assigned here to the Lower Kamthi Formation (Late Permian). The floristic composition suggests that a warm and humid climate prevailed during the Late Permian. The status of the Kamthi Formation in the Ib River Coalfield has been redefined in the present study.

  11. Statistical Characterization of River and Channel Network Formation in Intermittently Flowing Vortex Systems.

    Science.gov (United States)

    Olson, C. J.; Reichhardt, C.; Nori, F.

    1997-03-01

    Vortices moving in dirty superconductors can form intricate flow patterns, resembling fluid rivers, as they interact with the pinning landscape (F. Nori, Science 271), 1373 (1996).. Weaker pinning produces relatively straight nori>vortex channels, while stronger pinning results in the formation of one or more winding channels that carry all flow. This corresponds to a crossover from elastic flow to plastic flow as the pinning strength is increased. For several pinning parameters, we find the fractal dimension of the channels that form, the vortex trail density, the distance travelled by vortices as they pass through the sample, the branching ratio, the sinuosity, and the size distribution of the rivers, and we compare our rivers with physical rivers that follow Horton's laws.

  12. The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA

    Science.gov (United States)

    Bern, Carleton R.; Stogner, Sr., Robert W.

    2017-01-01

    Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.

  13. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    Science.gov (United States)

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  14. Sandbar Formation in the Mesjid River Estuary, Rupat Strait, Riau Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Rifardi Rifardi

    2017-07-01

    Full Text Available At the aim to clarify the relationship between the sandbar  formation and lithogeneous sediment discharges, the sedimentological aspects of the Mesjid River Estuary are revealed by various analysis. The samples of bottom surface sediments and the suspended sediment were collected at 50 stations in the estuary using grab and van dorm samplers. Oceanographic observation were also carried out  at the stations. The Mesjid River Estuary receives lithogeneous sediments mainly from the Mesjid River’s drainage areas which play important role on the formation of sandbar which is shown by  a belt-like area (0.5-1.0 m depth in the area off the river mouth. The sandbar might become a sandbank in 20 to 40 years later. High suspended sediment up to 354.61 mg/l indicates the river mouth receives lithogeneous sediments. Total of 926  ton/day of the sediments supplied by the river are deposited 0.024 m/year into the area.

  15. Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains

    International Nuclear Information System (INIS)

    Dunagan, J.F. Jr.; Kadish, K.A.

    1977-11-01

    Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains

  16. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  17. New Insights Into Valley Formation and Preservation: Geophysical Imaging of the Offshore Trinity River Paleovalley

    Science.gov (United States)

    Speed, C. M.; Swartz, J. M.; Gulick, S. P. S.; Goff, J.

    2017-12-01

    The Trinity River paleovalley is an offshore stratigraphic structure located on the inner continental shelf of the Gulf of Mexico offshore Galveston, Texas. Its formation is linked to the paleo-Trinity system as it existed across the continental shelf during the last glacial period. Newly acquired high-resolution geophysical data have imaged more complexity to the valley morphology and shelf stratigraphy than was previously captured. Significantly, the paleo-Trinity River valley appears to change in the degree of confinement and relief relative to the surrounding strata. Proximal to the modern shoreline, the interpreted time-transgressive erosive surface formed by the paleo-river system is broad and rugose with no single valley, but just 5 km farther offshore the system appears to become confined to a 10 km wide valley structure before again becoming unconfined once again 30 km offshore. Fluvial stratigraphy in this region has a similar degree of complexity in morphology and preservation. A dense geophysical survey of several hundred km is planned for Fall 2017, which will provide unprecedented imaging of the paleovalley morphology and associated stratigraphy. Our analysis leverages robust chirp processing techniques that allow for imaging of strata on the decimeter scale. We will integrate our geophysical results with a wide array of both newly collected and previously published sediment cores. This approach will allow us to address several key questions regarding incised valley formation and preservation on glacial-interglacial timescales including: to what extent do paleo-rivers remain confined within a single broad valley structure, what is the fluvial systems response to transgression, and what stratigraphy is created and preserved at the transition from fluvial to estuarine environments? Our work illustrates that traditional models of incised valley formation and subsequent infilling potentially fail to capture the full breadth of dynamics of past river

  18. Draft environmental impact statement. Bison basin project, Fremont County, Wyoming

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Construction and operation of leach uranium mine and recovery plant designed to produce one million lb of U 3 O 8 per year at a rate not to exceed 400,000 lb/y in Fremont County, Wyoming are proposed. The project site would consist of 761 acres lying 50 miles south of Riverton and 30 miles southwest of Jeffery City. The in situ leach process, implemented to mine ore contained in the Laney member of the Green River formation, would involve use of sodium carbonate-bicarbonate solution and an oxidizing agent injected and recovered through a complex of well patterns. Each well pattern would consist of six injection wells surrounding a central production well. Only about 40 acres would be mined, while another 13.5 acres would be excavated for equipment foundations and evaporation ponds. Recycling of mined formation water through a reverse osmosis cleanup system and placing it back into the formation after mining was complete would restore the groundwater system to its former potential. Solid wastes produced by the mining process would be removed to a licensed disposal site. Positive Impacts: Uranium ore produced by the mine and refined by the plant would aid in meeting demand for this resource which is estimated to double to a level of 15,000 tons per year within the next 5 years and to reach 45,000-50,000 tons per year by 1990. Some monetary benefits would accrue to local communities due to local expenditures resulting from construction and operation. Negative Impacts: Project activities would result in displacement of livestock grazing practices from 57 acres of land. Some local deterioration of groundwater quality would be expected, and approximately 240 acre-feet of groundwater would be removed from the aquifer permanently. Radon-222 and other small radioactive emissions would result from the solution mining process

  19. 76 FR 34815 - Wyoming Regulatory Program

    Science.gov (United States)

    2011-06-14

    ... Revegetation Success Standards listed by post-mine land use categories. Wyoming also proposed to combine the... document. B. Minor Wording, Editorial, Punctuation, Grammatical, and Recodification Changes to Previously Approved Regulations Wyoming proposed minor wording, editorial, punctuation, grammatical, and...

  20. Characterization of Crushed Base Materials in Wyoming

    Science.gov (United States)

    2017-08-01

    To improve the pavement design and construction in Wyoming, the Wyoming Department of Transportation (WYDOT) is adopting the Mechanistic-Empirical Pavement Design Guide (MEPDG). A full implementation of MEPDG requires the characterization of local cr...

  1. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    Extension, USU

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  2. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  3. Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Piri, Mohammad

    2014-03-31

    Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-­brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account the underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-­conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-­based dynamic core-­scale pore network model; (4) Development of new, improved high-­performance modules for the UW-­team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-­ and core-­scale models were rigorously validated against well-­characterized core-­ flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-­resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.

  4. Influence of flow variability on floodplain formation and destruction, Little Missouri River, North Dakota

    Science.gov (United States)

    Miller, J.R.; Friedman, J.M.

    2009-01-01

    Resolving observations of channel change into separate planimetric measurements of floodplain formation and destruction reveals distinct relations between these processes and the flow regime. We analyzed a time sequence of eight bottomland images from 1939 to 2003 along the Little Missouri River, North Dakota, to relate geomorphic floodplain change to flow along this largely unregulated river. At the decadal scale, floodplain formation and destruction varied independently. Destruction was strongly positively correlated with the magnitude of infrequent high flows that recur every 5-10 yr, whereas floodplain formation was negatively correlated with the magnitude of frequent low flows exceeded 80% of the time. At the century scale, however, a climatically induced decrease in peak flows has reduced the destruction rate, limiting the area made available for floodplain formation. The rate of destruction was not uniform across the floodplain. Younger surfaces were consistently destroyed at a higher rate than older surfaces, suggesting that throughput of contaminants would have occurred more rapidly than predicted by models that assume uniform residence time of sediment across the floodplain. Maps of floodplain ages produced by analysis of sequential floodplain images are similar to maps of forest ages produced through dendrochronology, confirming the assumption of dendrogeomorphic studies that riparian tree establishment in this system is limited to recent channel locations. ?? 2009 Geological Society of America.

  5. Controls on cutoff formation along a tropical meandering river in the Amazon Basin

    Science.gov (United States)

    Ahmed, J.; Constantine, J. A.

    2016-12-01

    The termination of meander bends is an inherent part of the evolution of meandering rivers. Cutoffs are produced by one of two mechanisms: neck cutoffs occur when two adjacent meanders converge, while chute cutoffs are generated by flood-driven floodplain incision, resulting in a shorter, steeper channel path. Here we use an annually-resolved record of Landsat imagery, coupled with daily discharge data to assess the role of high-magnitude discharges (Q ≥ QBF) on cutoff formation along the Rio Beni, Bolivia. Our results suggest that despite numerous above-bankfull events, the dominant cutoff mechanism operating on the Beni is neck cutoff. Evaluating the formation of these cutoffs reveals that migration rates accelerate during years of high discharge, and eventually cause the migrating bends to breach. The density of floodplain vegetation and the medium into which the channel migrated was also responsible for the patterns of cutoff documented along this river. The presence of existing floodplain channels permitted the river to divert its flow along shorter courses thereby facilitating cutoff, and limiting sinuosity growth. Understanding the long-term evolution of meandering channels is important since their morphodynamics are responsible for the creation of highly biodiverse riparian habitats, as well as the store and release of alluvial material. Moreover, the interactions between discharge and the channel-floodplain system are integral for the functioning and long-term evolution of these landscapes, particularly in the face of global climate change.

  6. Use of dye tracing in water-resources investigations in Wyoming, 1967-94

    Science.gov (United States)

    Wilson, J.F.; Rankl, J.G.

    1996-01-01

    During 1967-94, the U.S. Geological Survey made numerous applications of dye tracing for water-resources investigations in Wyoming. Many of the dye tests were done in cooperation with other agencies. Results of all applications, including some previously unpublished, are described. A chronology of past applications in Wyoming and a discussion of potential future applications are included. Time-of-travel and dispersion measurements were made in a 113-mile reach of the Wind/Bighorn River below Boysen Dam; a 117-mile reach of the Green River upstream from Fontenelle Reservoir and a 70-mile reach downstream; parts of four tributaries to the Green (East Fork River, 39 miles; Big Sandy River, 112 miles; Horse Creek, 14 miles; and Blacks Fork, 14 miles); a 75-mile reach of the Little Snake River along the Wyoming-Colorado State line; and a 95-mile reach of the North Platte River downstream from Casper. Reaeration measurements were made during one of the time-of-travel measurements in the North Platte River. Sixty-eight dye-dilution measurements of stream discharge were made at 22 different sites. These included 17 measurements for verifying the stage-discharge relations for streamflow-gaging stations on North and South Brush Creeks near Saratoga, and total of 29 discharge measurements at 12 new stations at remote sites on steep, rough mountain streams crossing limestone outcrops in northeastern Wyoming. The largest discharge measured by dye tracing was 2,300 cubic feet per second. In karst terrane, four losing streams-North Fork Powder River, North Fork Crazy Woman Creek, Little Tongue River, and Smith Creek-were dye-tested. In the Middle Popo Agie River, a sinking stream in Sinks Canyon State Park, a dye test verified the connection of the sink (Sinks of Lander Cave) to the rise, where flow in the stream resumes.

  7. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  8. Winter cyclone frequency and following freshet streamflow formation on the rivers in Belarus

    Science.gov (United States)

    Partasenok, Irina S.; Groisman, Pavel Ya; Chekan, Grigoriy S.; Melnik, Viktor I.

    2014-09-01

    We studied long-term fluctuations of streamflow and occurrence of extreme phenomena on the rivers of Belarus during the post-World War II period. It was found that formation of annual runoff within the nation has no constant tendencies and varies from year to year. At the same time, analysis of intra-annual distribution of streamflow reveals significant changes since the 1970s, first of all, increase of winter and decrease of spring streamflow. As a result, the frequency of extreme floods has decreased. These changes in water regime are associated with climatic anomalies (increase of the surface air temperatures) caused by large-scale alterations in atmospheric circulation, specifically in trajectories of cyclones. During the last two decades, the frequency of Atlantic and southern cyclones has changed and caused decreasing of cold season storms and extreme phenomena on the rivers.

  9. Geology of the Sabie River Basalt Formation in the Southern Kruger National Park

    Directory of Open Access Journals (Sweden)

    R.J. Sweeney

    1986-11-01

    Full Text Available The Sabie River Basalt Formation (SRBF in the central Lebombo is a virtually continuous sequence of basaltic lavas some 2 500 m thick that was erupted 200 - 179 Ma ago. Flows are dominantly pahoehoe in character and vary from 2 m to 20 m in thickness. Dolerite dykes cross-cutting the basalt sequence probably represent feeders to this considerable volcanic event. Volcanological features observed within the SRBF are described. Two chemically distinct basaltic magma types are recognised, the simultaneous eruption of which presents an intriguing geochemical problem as to their origins.

  10. Study on uranium valance in the third cycle of Wulungu River Formation in Tuosite depression

    International Nuclear Information System (INIS)

    Zhao Yong; Li Jiajin; Tang Yuntao; Zhang Lin

    2009-01-01

    Affected by the geochemical environment, uranium exists as U 4+ and U 6+ in the sedimentary sandstone. The transfer and enrichment of uranium are mainly controlled by the rock porosity, cementation type, cementation degree and the oxidation-reduction ability of the groundwater, and so on. Through studying uranium valance, the oxidation-reduction zones have been identified and the groundwater flowing directions have been determined in the third cycle of Wulungu River Formation in Tuosite depression, which is in accordance with the fact. (authors)

  11. An interesting new genus of Berothinae (Neuroptera: Berothidae) from the early Eocene Green River Formation, Colorado.

    Science.gov (United States)

    Makarkin, Vladimir N

    2017-01-30

    Xenoberotha angustialata gen. et sp. nov. (Neuroptera: Berothidae) is described from the early Eocene of the Parachute Creek Member of the Green River Formation (U.S.A., Colorado). It is assigned to Berothinae as an oldest known member of the subfamily based on the presence of scale-like setae on the foreleg coxae. Distal crossveins of the fourth (outer) gradate series which are located very close to the wing margin in Xenoberotha gen. nov. is a character state previously unknown in Berothinae.

  12. Wyoming's "Education Reform & Cost Study."

    Science.gov (United States)

    Meyer, Joseph B.

    A history of education in the state of Wyoming, along with a description of recent legislative initiatives, are presented in this paper. It opens with statewide reorganizations begun in the 1960s that unified school districts and equalized property valuation. A decade later a court order ruled the system inequitable and new laws provided for a…

  13. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Banking Wyoming big sagebrush seeds

    Science.gov (United States)

    Robert P. Karrfalt; Nancy Shaw

    2013-01-01

    Five commercially produced seed lots of Wyoming big sagebrush (Artemisia tridentata Nutt. var. wyomingensis (Beetle & Young) S.L. Welsh [Asteraceae]) were stored under various conditions for 5 y. Purity, moisture content as measured by equilibrium relative humidity, and storage temperature were all important factors to successful seed storage. Our results indicate...

  15. Stratigraphy and depositional environments of the upper Pleistocene Chemehuevi Formation along the lower Colorado River

    Science.gov (United States)

    Malmon, Daniel V.; Howard, Keith A.; House, P. Kyle; Lundstrom, Scott C.; Pearthree, Philip A.; Sarna-Wojcicki, Andrei M.; Wan, Elmira; Wahl, David B.

    2011-01-01

    The Chemehuevi Formation forms a conspicuous, widespread, and correlative set of nonmarine sediments lining the valleys of the Colorado River and several of its larger tributaries in the Basin and Range geologic province. These sediments have been examined by geologists since J. S. Newberry visited the region in 1857 and are widely cited in the geologic literature; however their origin remains unresolved and their stratigraphic context has been confused by inconsistent nomenclature and by conflicting interpretations of their origin. This is one of the most prominent stratigraphic units along the river below the Grand Canyon, and the formation records an important event or set of events in the history of the Colorado River. Here we summarize what is known about these deposits throughout their range, present new stratigraphic, sedimentologic, topographic, and tephrochronologic data, and formally define them as a lithostratigraphic unit. The Chemehuevi Formation consists primarily of a bluff-forming mud facies, consisting of gypsum-bearing, horizontally bedded sand, silt, and clay, and a slope-forming sand facies containing poorly bedded, well sorted, quartz rich sand and scattered gravel. The sedimentary characteristics and fossil assemblages of the two facies types suggest that they were deposited in flood plain and channel environments, respectively. In addition to these two primary facies, we identify three other mappable facies in the formation: a thick-bedded rhythmite facies, now drowned by Lake Mead; a valley-margin facies containing abundant locally derived sediment; and several tributary facies consisting of mixed fluvial and lacustrine deposits in the lower parts of major tributary valleys. Observations from the subsurface and at outcrops near the elevation of the modern flood plain suggest that the formation also contains a regional basal gravel member. Surveys of numerous outcrops using high-precision GPS demonstrate that although the sand facies commonly

  16. Porous media of the Red River Formation, Williston Basin, North Dakota: a possible Sedimentary Enhanced Geothermal System

    Science.gov (United States)

    Hartig, Caitlin M.

    2018-01-01

    Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.

  17. Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China

    Science.gov (United States)

    A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...

  18. New ecological mechanism of formation of spatial distribution of radionuclides in river ecosystem

    International Nuclear Information System (INIS)

    Degermendzhy, A.G.; Shevyrnogov, A.P.; Kosolapova, L.G.; Levin, L.A.; Chernousov, A.V.; Vlasik, P.V.

    1996-01-01

    Radioecological expeditions on the Yenissei river revealed 'spotty' distribution of radioisotopes in bottom sediments and along the coastline of the river. This work presents results of theoretical analysis of the formation mechanism of stable spatial non-uniformities of river ecosystem components by population interactions of 'predator-prey' type between the phytoplukton and zooplankton. 'Patchiness contrast' (i.e. the amplitude of the radionuclide spatial propagation wave in the water) for the large oscillations control by increasing or decreasing current velocity depends both on the boundary concentrations of phytoplankton and zooplankton and on the established nature of their interpopulation interactions (or coefficients of interactions). Variation of the below given interaction parameters within the 'phytoplanbon-zooplankton' system makes increase the amplitude of spatial distribution wave: decrease of algal growth rate; increase of algal death rate; decrease of zooplankton death rate; increase of interaction coefficients. It was shown for small oscillations that the period of component distribution waves is in proportion to the current velocity and the amplitude of 'small' waves does not depend on the water current velocity. Theoretically it has been also found that with deep limitation of phytoplankton growth by biogenous elements the 'standing wave' is observed to deteriorate and monotonous distribution of radionuclide concentration fields is found to form. (author)

  19. Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins, the Piceance Creek basin in northwestern Colorado and the Uinta basin in northwestern Utah. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. Microgranular calcite and dolomite are the predominant mineral constituents of most of the oil shale. The microflora of the Green River formation consist of two forms that have been referred to as bacteria and many fungi spores. Two kinds of organic matter are seen in thin sections of the oil shale; one is massive and structureless and is the matrix of the other, which has definite form and consists of organisms or fragments of organisms. Most structureless organic matter is isotropic (there are two anisotropic varieties) and makes up the greater part of the total organic material.

  20. Formation of fine sediment deposit from a flash flood river in the Mediterranean Sea

    Science.gov (United States)

    Grifoll, Manel; Gracia, Vicenç; Aretxabaleta, Alfredo L.; Guillén, Jorge; Espino, Manuel; Warner, John C.

    2014-01-01

    We identify the mechanisms controlling fine deposits on the inner-shelf in front of the Besòs River, in the northwestern Mediterranean Sea. This river is characterized by a flash flood regime discharging large amounts of water (more than 20 times the mean water discharge) and sediment in very short periods lasting from hours to few days. Numerical model output was compared with bottom sediment observations and used to characterize the multiple spatial and temporal scales involved in offshore sediment deposit formation. A high-resolution (50 m grid size) coupled hydrodynamic-wave-sediment transport model was applied to the initial stages of the sediment dispersal after a storm-related flood event. After the flood, sediment accumulation was predominantly confined to an area near the coastline as a result of preferential deposition during the final stage of the storm. Subsequent reworking occurred due to wave-induced bottom shear stress that resuspended fine materials, with seaward flow exporting them toward the midshelf. Wave characteristics, sediment availability, and shelf circulation determined the transport after the reworking and the final sediment deposition location. One year simulations of the regional area revealed a prevalent southwestward average flow with increased intensity downstream. The circulation pattern was consistent with the observed fine deposit depocenter being shifted southward from the river mouth. At the southern edge, bathymetry controlled the fine deposition by inducing near-bottom flow convergence enhancing bottom shear stress. According to the short-term and long-term analyses, a seasonal pattern in the fine deposit formation is expected.

  1. Effect of ice formation and streamflow on salmon incubation habitat in the lower Bradley River, Alaska

    Science.gov (United States)

    Rickman, R.L.

    1996-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate salmon egg incubation habitat. The study that determined this minimum flow did not account for the effects of ice formation on habitat. An investigation was made during periods of ice formation. Hydraulic properties and field water-quality data were measured in winter only from March 1993 to April 1995 at six transects in the lower Bradley River. Discharge in the lower Bradley River ranged from 42.6 to 73.0 cubic feet per second (average 57 cubic feet per second) with ice conditions ranging from near ice free to 100 percent ice cover. Stream water velocity and depth were adequate for habitat protection for all ice conditions and discharges. No relation was found between percent ice cover and mean velocity and depth for any given discharge and no trends were found with changes in discharge for a given ice condition. Velocity distribution within each transect varied significantly from one sampling period to the next. Mean depth and velocity at flows of 40 cubic feet per second or less could not be predicted. No consistent relation was found between the amount of wetted perimeter and percent ice cover. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface and intragravel-water dissolved-oxygen levels were adequate for all flows and ice conditions. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Excellent oxygen exchange was indicated throughout the study reach. Stranding potential of salmon fry was found to be low throughout the study reach. The limiting factors for determining the minimal acceptable flow limit appear to be stream-water velocity and depth, although specific limits could not be estimated because of the high flows that occurred during this study.

  2. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1972-01-01

    The author has identified the following significant results. Structurally linear elements in the vicinity of the Rock Springs Uplift, Sweetwater County, Wyoming are reported for the first time. One element trends N 40 deg W near Farson, Wyoming and the other N 65 deg E from Rock Springs. These elements confirm the block-like or mosaic pattern of major structural elements in Wyoming.

  3. Effect of Pre-ozonation on Haloacetic Acids Formation in Ganga River Water at Kanpur, India

    Science.gov (United States)

    Naladala, Nagasrinivasa Rao; Singh, Rambabu; Katiyar, Kumud Lata Devi; Bose, Purnendu; Dutta, Venkatesh

    2017-11-01

    Almost all natural water bodies which are considered to be sustainable sources of drinking water contain organic matter in dissolved form and pathogens. This dissolved organic matter and pathogens cannot be removed effectively through traditional filtering processes in drinking water treatment plants. Chlorination of such water for disinfection results in large amounts of disinfection by-products (DBPs), mainly trihalomethanes and haloacetic acids (HAAs), which showed many health effects like cancer and reproductive problems in lab animals and in human beings as well. Complete removal of dissolved organic carbon (DOC), which is a precursor compound for HAAs formation, is impossible from a practical point of view; hence, it will be better if DOC activity towards DBPs formation can be reduced via some process. The present article describes the process of pre-ozonating post-coagulated Ganga River water at Kanpur in a continuous flow mode and its effect on HAAs formation. Nearly 58% reduction in HAAs formation was observed during this study at higher doses of ozone.

  4. Wyoming DOE EPSCoR

    Energy Technology Data Exchange (ETDEWEB)

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  5. Radioactivity of rocks from the geological formations belonging to the Tibagi River hydrographic basin

    International Nuclear Information System (INIS)

    Bastos, Rodrigo Oliveira

    2008-01-01

    This work is a study of the 40 K and the 238 U and 232 Th series radioactivity in rocks measured with high resolution gamma ray spectrometry. The rocks were taken from the geologic formations in the region of the Tibagi river hydrographic basin. The course of this river cuts through the Paleozoic and Mesozoic stratigraphic sequences of the Parana sedimentary basin. In order to take into account the background radiation attenuation by the samples, a technique was developed that eliminated the need to measure a blank sample. The effects of the radiation's self-attenuation in the sample matrix were taken into account by using a gamma ray direct transmission method. The results for 87 rock samples, taken from 14 distinct formations, and their corresponding radioactivity variations are presented and discussed according to the possible geological processes from which they originated. Among the most discussed results are: an outcrop that profiles shale, limestone and rhythmite in the Irati Formation; a sandstone and siltstone sequence from the Rio do Rasto Formation; and a profile sampled in a coal mine located in the Rio Bonito Formation. The calculations of the rocks' contributions to the outdoor gamma radiation dose rate agree with the values presented by other authors for similar rocks. The highest dose values were obtained from felsic rocks (rhyolite of the Castro group, 129.8 ± 3.7 nGy.h -1 , and Cunhaporanga granite, 167 ± 37 nGy.h -1 ). The other highest values correspond to the shale rocks from the Irati Formation (109 ± 16 nGy.h -1 ) and the siltic shale rocks from the Ponta Grossa Formation (107.9 ± 0.7 nGy.h -1 ). The most recent geological formations presented the lowest dose values (e.g. the Botucatu sandstone, 3.3 ± 0.6 nGy.h -1 ). The average value for sedimentary rocks from seven other formations is equal to 59 ± 26 nGy.h -1 . The Rio Bonito Formation presented the highest dose value (334 ± 193 nGy.h -1 ) mainly due to the anomalous 226 Ra

  6. Rheomorphic ignimbrites of the Rogerson Formation, central Snake River plain, USA

    DEFF Research Database (Denmark)

    Knott, Thomas R.; Reichow, Marc K.; Branney, Michael J.

    2016-01-01

    Rogerson Graben, USA, is critically placed at the intersection between the Yellowstone hotspot track and the southern projection of the west Snake River rift. Eleven rhyolitic members of the re-defined, ≥420-m-thick, Rogerson Formation record voluminous high-temperature explosive eruptions....... Between 11.9 and ∼8 Ma, the average frequency of large explosive eruptions in this region was 1 per 354 ky, about twice that at Yellowstone. The chemistry and mineralogy of the early rhyolites show increasing maturity with time possibly by progressive fractional crystallisation. This was followed......-margin monocline, which developed between 10.59 and 8 Ma. The syn-volcanic basin topography contrasted significantly with the present-day elevated Yellowstone hotspot plateau. Concurrent basin-and-range extension produced the N-trending Rogerson Graben: early uplift of the Shoshone Hills (≥10.34 Ma) was followed...

  7. Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia.

    Science.gov (United States)

    Plummer, Thomas W; Ferraro, Joseph V; Louys, Julien; Hertel, Fritz; Alemseged, Zeresenay; Bobe, René; Bishop, L C

    2015-11-01

    The Shungura Formation in the lower Omo River Valley, southern Ethiopia, has yielded an important paleontological and archeological record from the Pliocene and Pleistocene of eastern Africa. Fossils are common throughout the sequence and provide evidence of paleoenvironments and environmental change through time. This study developed discriminant function ecomorphology models that linked astragalus morphology to broadly defined habitat categories (open, light cover, heavy cover, forest, and wetlands) using modern bovids of known ecology. These models used seven variables suitable for use on fragmentary fossils and had overall classification success rates of >82%. Four hundred and one fossils were analyzed from Shungura Formation members B through G (3.4-1.9 million years ago). Analysis by member documented the full range of ecomorph categories, demonstrating that a wide range of habitats existed along the axis of the paleo-Omo River. Heavy cover ecomorphs, reflecting habitats such as woodland and heavy bushland, were the most common in the fossil sample. The trend of increasing open cover habitats from Members C through F suggested by other paleoenvironmental proxies was documented by the increase in open habitat ecomorphs during this interval. However, finer grained analysis demonstrated considerable variability in ecomorph frequencies over time, suggesting that substantial short-term variability is masked when grouping samples by member. The hominin genera Australopithecus, Homo, and Paranthropus are associated with a range of ecomorphs, indicating that all three genera were living in temporally variable and heterogeneous landscapes. Australopithecus finds were predominantly associated with lower frequencies of open habitat ecomorphs, and high frequencies of heavy cover ecomorphs, perhaps indicating a more woodland focus for this genus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the thermopolis NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium in the Thermopolis National Topographic Map Series quadrangle, Wyoming. Totals of 920 water and 1821 sediment samples were collected from 1977 locations at an average density of one sample location per 9 km 2 over an 18,000-km 2 area. Water samples were collected from streams, springs, and wells; sediment samples were collected from streams and springs. The uranium contents of water samples range from below the detection limit of 0.02 ppB to 307.98 ppB with a median of 0.56 ppB. Six clusters of anomalous water samples were delineated within the Wind River Basin and are associated predominantly with the Wind River formation. Two clusters of anomalous waters were collected on the southern margin of the Bighorn Basin and are associated with sandstone and shales of Permian through Cretaceous age. The uranium contents of sediment samples range from 0.43 to 94.65 ppM with a median of 2.90 ppM. Most sediment samples with uranium concentrations of greater than 12 ppM are underlain by Precambrian crystalline rocks of the Wind River Range; this area contains the highest uranium values found in sediments from the Thermopolis quadrangle. Other samples containing greater than 12 ppM uranium are found associated with the Wind River and Aycross formations along the northern margin of the Wind River Basin, and one sample was collected from Precambrian granitic terrain of the Owl Creek Mountains

  9. 76 FR 80310 - Wyoming Regulatory Program

    Science.gov (United States)

    2011-12-23

    ... violator system or AVS,'' ``Control or controller,'' ``Notice of violation,'' and ``Own, owner or ownership... related AVS entry requirements); and Chapter 16, Section 2(h) and (j) (notification requirements related to Wyoming's enforcement regulations and AVS entry requirements). Wyoming also addresses four...

  10. Secondary circulation in river junctions even at very low flow momentum ratios : The legacy effects of point bar formation

    NARCIS (Netherlands)

    Moradi, Gelare; Rennie, Colin; Vermeulen, Bart; Cardot, Romain; Lane, Stuart

    2018-01-01

    River confluences remain a challenging subject because of their 3D geometry which leads to a complex, three-dimensional mean and turbulent velocity processes. Since secondary circulation plays an important role in flow hydrodynamics and the development of bank erosion, bed scour and bar formation,

  11. Formation of Burial Mounds of the Sarmatian Time in the Basin of the Esaulovsky Aksai River

    Directory of Open Access Journals (Sweden)

    Elena A. Korobkova

    2017-09-01

    Full Text Available The article deals with the features of the formation of the burial mounds in the basin of the Esaulovsky Aksai river in the Sarmatian period. Most of the burial mounds of the region begin to form in the Bronze Age and continue to function throughout the early, middle and early late-Sarmatian periods. Most of the burial mounds were located on the watersheds and above-flood terraces of different levels. All of them are characterized by same principles of planning, barrows in them are stretched in a chain in the natural form of the terrace on which the burial mound was built. The territories developed already in the Bronze Age were chosen for creating mounds in the early Sarmatian period. The main part of them is concentrated on a small section landplot of the middle course of the Esaulovsky Aksai river. During the Middle Sarmatian period, the main part of barrows were also located in the middle course of the Esaulovsky Aksai, but represented 2 plots. One of these plots continues to use large burial mounds of the previous period, and the other one undergoes the creation of small barrow groups consisting usually of two-three barrows containing the richest burials of the region with the “classical” set of Middle Sarmatian features. In the late Sarmatian period, as well as in the previous stages of the Sarmatian culture, the burial mounds of the middle course of the Esaulovsky Aksai continue to be used, which cease to function no later than at the first half of the 3rd century AD. But the territory of actively used burial mounds changes, and the main complexes of that time concentrate in the upper reaches, where new burial mounds are created and continue to function until the end of the Sarmatian era.

  12. A study on the formation of fouling in a heat exchanging system for Han-river water as cooling water

    International Nuclear Information System (INIS)

    Sung, Sun Kyung; Suh, Sang Ho; Rho, Hyung Woon; Cho, Young Il

    2003-01-01

    Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of Han river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of Han-river water is higher than that of tap water in Seoul

  13. Ammonia emission inventory for the state of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal

  14. Wyoming's uranium industry: status, impacts, and trends

    International Nuclear Information System (INIS)

    1978-01-01

    The Mineral Division of the Wyoming Department of Economic Planning and Development (DEPAD) commissioned a study in July 1978 of the uranium industry in Wyoming. The study was conducted for the purposes of determining the status, impacts, and future activities of the uranium industry in the State; and to assist in establishing a data base for monitoring programs and related planning activities by State and federal agencies. Another objective of the study was to enhance understanding of the uranium industry in Wyoming by public officials, industrial leaders, and the general public

  15. Wyoming CV Pilot Traveler Information Message Sample

    Data.gov (United States)

    Department of Transportation — This dataset contains a sample of the sanitized Traveler Information Messages (TIM) being generated by the Wyoming Connected Vehicle (CV) Pilot. The full set of TIMs...

  16. High wind warning system for Bordeaux, Wyoming.

    Science.gov (United States)

    2010-07-01

    "The state of Wyoming has frequent severe wind conditions, particularly in the southeast corner of the state along Interstate : 80 and Interstate 25. The high winds are problematic in many ways including, interfering with the performance of the : tra...

  17. Tidal and Seasonal River Stage Fluctuations Impact the Formation of Permeable Natural Reactive Barriers in Riverbank Sediments

    Science.gov (United States)

    Shuai, P.; Myers, K.; Knappett, P.; Cardenas, M. B.

    2017-12-01

    River stage fluctuations, induced by ocean tides and rainfall, enhance the exchange between oxic river water and reducing groundwater. When mixing occurs within riverbank aquifers high in dissolved iron (Fe) and arsenic (As), the timing and extent of mixing likely control the accumulation and mobility of arsenic (As) within the hyporheic zone. Here we analyzed the impact of tidal and seasonal water level fluctuations on the formation of a Permeable Natural Reactive Barrier (PNRB) within an aquifer adjacent to the Meghna River, Bangladesh and its impact on As mobility. We found that the periodicity and amplitude of river stage fluctuations strongly control the spatial and temporal distribution of the PNRB, comprised of rapidly precipitated iron oxides, in this riverbank along a relatively straight reach of the Meghna River. The PNRB forms much faster and with higher concentration of Fe-oxide under semi-diurnal (12 hr) tidal fluctuations compared to simulations run assuming only neap-spring tides (14 day). As tidal amplitude increases, a larger contact area between oxic river water and reducing groundwater results which in turn leads to the horizontal expansion of the PNRB into the riverbank. Seasonal fluctuations expand the PNRB up to 60 m horizontally and 5 m vertically. In contrast neap-spring tidal fluctuations result in a smaller PNRB that is 10 and 3 m in the horizontal and vertical dimensions. The predicted changes in the spatial distribution of iron oxides within the riverbank would trap and release As at different times of the year. The PNRB could act as a secondary source of As to drinking water aquifers under sustained groundwater pumping scenarios near the river.

  18. Preliminary study of uranium favorability of upper cretaceous, paleocene, and lower eocene rocks of the Bighorn Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Hesse, S.L.; Dunagan, J.F. Jr.

    1978-02-01

    This report presents an evaluation of the uranium favorability of continental sediments of the Upper Cretaceous Lance, Paleocene Polecat Bench, and lower Eocene Willwood Formations in the Bighorn Basin of Wyoming and Montana, an intermontane structural basin of Laramide age. Previous work dealing with the Bighorn Basin was reviewed, and field investigations were carried out in the spring and summer of 1976. Subsurface data were collected and results of surface and subsurface investigations were evaluated with respect to uranium favorability. Precambrian plutonic and metamorphic rocks and Tertiary tuffaceous rocks in the Bighorn Basin and bordering uplifts are considered insignificant as source rocks, although the Wiggins Formation (White River equivalent) cannot be evaluated as a possible source because of a lack of data. Potential host rocks locally show only limited favorability. Lithology of strata exposed along the western and southern basin margins is more favorable than that of rocks in the central and eastern parts of the basin, but there is little organic material, pyrite, or other reducing agents in these rocks. Strata of the Lance, Polecat Bench, and Willwood Formations in the Bighorn Basin are considered generally unfavorable for sandstone uranium deposits

  19. Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation.

    Science.gov (United States)

    Xu, Xiang-Yang; Feng, Li-Juan; Zhu, Liang; Xu, Jing; Ding, Wei; Qi, Han-Ying

    2012-06-01

    The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement via discharging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. The pollutants removal performances became stable in the four reactors after 2 months' operation, with ammonia nitrogen and permanganate index (COD(Mn)) removal efficiencies of 84.41-94.21% and 69.66-76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.

  20. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind. Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.

  1. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    Science.gov (United States)

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; ,

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached

  2. Year-class formation of upper St. Lawrence River northern pike

    Science.gov (United States)

    Smith, B.M.; Farrell, J.M.; Underwood, H.B.; Smith, S.J.

    2007-01-01

    Variables associated with year-class formation in upper St. Lawrence River northern pike Esox lucius were examined to explore population trends. A partial least-squares (PLS) regression model (PLS 1) was used to relate a year-class strength index (YCSI; 1974-1997) to explanatory variables associated with spawning and nursery areas (seasonal water level and temperature and their variability, number of ice days, and last day of ice presence). A second model (PLS 2) incorporated four additional ecological variables: potential predators (abundance of double-crested cormorants Phalacrocorax auritus and yellow perch Perca flavescens), female northern pike biomass (as a measure of stock-recruitment effects), and total phosphorus (productivity). Trends in adult northern pike catch revealed a decline (1981-2005), and year-class strength was positively related to catch per unit effort (CPUE; R2 = 0.58). The YCSI exceeded the 23-year mean in only 2 of the last 10 years. Cyclic patterns in the YCSI time series (along with strong year-classes every 4-6 years) were apparent, as was a dampening effect of amplitude beginning around 1990. The PLS 1 model explained over 50% of variation in both explanatory variables and the dependent variable, YCSI first-order moving-average residuals. Variables retained (N = 10; Wold's statistic ??? 0.8) included negative YCSI associations with high summer water levels, high variability in spring and fall water levels, and variability in fall water temperature. The YCSI exhibited positive associations with high spring, summer, and fall water temperature, variability in spring temperature, and high winter and spring water level. The PLS 2 model led to positive YCSI associations with phosphorus and yellow perch CPUE and a negative correlation with double-crested cormorant abundance. Environmental variables (water level and temperature) are hypothesized to regulate northern pike YCSI cycles, and dampening in YCSI magnitude may be related to a

  3. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  4. Wyoming Basin Rapid Ecoregional Assessment

    Science.gov (United States)

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    The Wyoming Basin Rapid Ecoregional Assessment was conducted in partnership with the Bureau of Land Management (BLM). The overall goals of the BLM Rapid Ecoregional Assessments (REAs) are to identify important ecosystems and wildlife habitats at broad spatial scales; identify where these resources are at risk from Change Agents, including development, wildfire, invasive species, disease and climate change; quantify cumulative effects of anthropogenic stressors; and assess current levels of risk to ecological resources across a range of spatial scales and jurisdictional boundaries by assessing all lands within an ecoregion. There are several components of the REAs. Management Questions, developed by the BLM and stakeholders for the ecoregion, identify the regionally significant information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant species and ecological communities that are of management concern. Change Agents that currently affect or are likely to affect the condition of species and communities in the future are identified and assessed. REAs also identify areas that have high conservation potential that are referred to as “large intact areas.” At the ecoregion level, the ecological value of large intact areas is based on the assumption that because these areas have not been greatly altered by human activities (such as development), they are more likely to contain a variety of plant and animal communities and to be resilient and resistant to changes resulting from natural disturbances such as fire, insect outbreaks, and disease.

  5. Bank pull or bar push: What drives scroll-bar formation in meandering rivers?

    NARCIS (Netherlands)

    van de Lageweg, W. I.; van Dijk, W. M.; Baar, A. W.; Rutten, J.; Kleinhans, M. G.

    2014-01-01

    One of the most striking features of meandering rivers are quasi-regular ridges of the point bar, evidence of a pulsed lateral migration of meander bends. Scroll bars formed on the inner bend are preserved on the point-bar surface as a series of ridges as meanders migrate, and in the subsurface of

  6. External controls on Quaternary fluvial incision and terrace formation at the Segre River, Southern Pyrenees

    NARCIS (Netherlands)

    Stange, K.M.; van Balen, R.T.; Vandenberghe, J.; Peña, J.L.; Sancho, C.

    2013-01-01

    Focusing on climatic- and structural (tectonic) controls, we aim to determine their relative importance for the (Pliocene to Quaternary) fluvial landscape evolution in the Southern Pyrenees foreland. We investigate the Segre River, which is one of the major streams of the Southern Pyrenees that

  7. Formation of a cohesive floodplain in a dynamic experimental meandering river

    NARCIS (Netherlands)

    Dijk, W.M. van; Lageweg, W.I. van de; Kleinhans, M.G.

    2013-01-01

    Field studies suggest that a cohesive floodplain is a necessary condition for meandering in contrast to braided rivers. However, it is only partly understood how the balance between floodplain construction by overbank deposition and removal by bank erosion and chutes leads to meandering. This is

  8. Formation of the mechanism of realisation of the logistics strategy of river ports

    Directory of Open Access Journals (Sweden)

    Tymoshchuk Olena M.

    2013-03-01

    Full Text Available The article identifies the role of river ports in the logistical chain of supplies of the transportation system of Ukraine. It envisages to use the developed logistics strategy for creation of river logistics centres on the basis of river ports with a high level of logistical attractiveness, which would become organisers of cargo delivery at a certain stage of movement of goods and a connecting logistical link at the junction of transport elements of the system (systems of managing the process of transportation, information support, selection of optimal technological schemes of cargo treatment in the port and optimal interaction of adjacent types of transport, methods of management (organisational, economic, technical and technological, and legal, logistical principles and technologies, which would allow achievement of effective realisation of the logistics strategy of a river port. The article offers to create a separate commercial structure – information logistics centre, which would ensure information support of the logistical movement of goods and optimal managerial decision making.

  9. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  10. The history of dinosaur footprint discoveries in Wyoming with emphasis on the Bighorn Basin

    Science.gov (United States)

    Kvale, Erik P.; Mickelson, Debra L.; Hasiotis, Stephen T; Johnson, Gary D.

    2003-01-01

    Dinosaur traces are well known from the western United States in the Colorado Plateau region (Utah, Colorado, New Mexico, and Arizona). Utah contains the greatest abundance of known and documented dinosaur footprints and trackways. Far less well known, however, is the occurrence and distribution of dinosaur footprint-bearing horizons in Wyoming. Scientific studies over the past 10 years have shown that three of the four Middle and Upper Jurassic formations in northern Wyoming contain dinosaur footprints. Two of the footprint-bearing horizons are located in geologic intervals that were once thought to have been deposited in offshore to nearshore marine settings and represent rare North American examples of Middle Jurassic (Bajocian and Bathonian) dinosaur remains. Some of these new Wyoming sites can be correlated to known dinosaur footprint-bearing horizons or intervals in Utah. Wyoming has a great potential for additional discoveries of new dinosaur footprint-bearing horizons, and further prospecting and study is warranted and will ultimately lead to a much better understanding of the geographic distribution and behavior of the potential footprint-makers.

  11. Stratigraphy and Facies of Cretaceous Schrader Bluff and Prince Creek Formations in Colville River Bluffs, North Slope, Alaska

    Science.gov (United States)

    Flores, Romeo M.; Myers, Mark D.; Houseknecht, David W.; Stricker, Gary D.; Brizzolara, Donald W.; Ryherd, Timothy J.; Takahashi, Kenneth I.

    2007-01-01

    Stratigraphic and sedimentologic studies of facies of the Upper Cretaceous rocks along the Colville River Bluffs in the west-central North Slope of Alaska identified barrier shoreface deposits consisting of vertically stacked, coarsening-upward parasequences in the Schrader Bluff Formation. This vertical stack of parasequence deposits represents progradational sequences that were affected by shoaling and deepening cycles caused by fluctuations of sea level. Further, the vertical stack may have served to stabilize accumulation of voluminous coal deposits in the Prince Creek Formation, which formed braided, high-sinuosity meandering, anastomosed, and low-sinuosity meandering fluvial channels and related flood plain deposits. The erosional contact at the top of the uppermost coarsening-upward sequence, however, suggests a significant drop of base level (relative sea level) that permitted a semiregional subaerial unconformity to develop at the contact between the Schrader Bluff and Prince Creek Formations. This drop of relative sea level may have been followed by a relative sea-level rise to accommodate coal deposition directly above the unconformity. This rise was followed by a second drop of relative sea level, with formation of incised valley topography as much as 75 ft deep and an equivalent surface of a major marine erosion or mass wasting, or both, either of which can be traced from the Colville River Bluffs basinward to the subsurface in the west-central North Slope. The Prince Creek fluvial deposits represent late Campanian to late Maastrichtian depositional environments that were affected by these base level changes influenced by tectonism, basin subsidence, and sea-level fluctuations.

  12. 78 FR 16204 - Wyoming Regulatory Program

    Science.gov (United States)

    2013-03-14

    ... efficiency. This document gives the times and locations that the Wyoming program and proposed amendment to... penalties). The full text of the program amendment is available for you to read at the locations listed... hearing, contact the person listed under FOR FURTHER INFORMATION CONTACT. We will arrange the location and...

  13. 76 FR 36040 - Wyoming Regulatory Program

    Science.gov (United States)

    2011-06-21

    ... SMCRA, clarify ambiguities, and improve operational efficiency. This document gives the times and locations that the Wyoming program and proposed amendment to that program are available for your [[Page... is available for you to read at the locations listed above under ADDRESSES. III. Public Comment...

  14. WYOMING MENTAL ABILITY SURVEY, 1957-58.

    Science.gov (United States)

    LINFORD, VELMA

    A STATEWIDE PROGRAM WAS INITIATED IN WYOMING FOR THE PURPOSES OF DISCOVERING THE EXTENT OF MENTAL RETARDATION AMONG ELEMENTARY AND SECONDARY STUDENTS IN THE STATE, DETERMINING WHERE THE MENTALLY RETARDED ARE FOUND, AND PLANNING AN EDUCATIONAL PROGRAM FOR THEM. GROUP MENTAL TESTS WERE APPLIED TO 67,620 CHILDREN WHICH REPRESENTED 91.8 PERCENT OF THE…

  15. 78 FR 13004 - Wyoming Regulatory Program

    Science.gov (United States)

    2013-02-26

    ... (definitions related to ownership and control including ``Applicant violator system or AVS,'' ``Control or... information, review of permit history, review of compliance history, and related AVS entry requirements); and... and AVS entry requirements). Wyoming also proposes to add a provision which allows for variable...

  16. Multispectral processing of ERTS-A (LANDSAT) data for uranium exploration in the Wind River Basin, Wyoming: a visible region ratio to enhance surface alteration associated with roll-type uraium deposits. Final report, June 1974--July 1975

    International Nuclear Information System (INIS)

    Salmon, B.C.; Pillars, W.W.

    1975-07-01

    The purpose of this report is to document possible detection capabilities of the LANDSAT multispectral scanner data for use in exploration for uranium roll-type deposits. Spectral reflectivity, mineralogy, iron content, and color paramenters were measured for twenty natural surface samples collected from a semiarid region. The relationships of these properties to LANDSAT response-weighted reflectances and to reflectance ratios are discussed. It was found that the single ratio technique of multispectral processing is likely to be sensitive enough to separate hematitic stain, but not limonitic. A combination of the LANDSAT R/sub 5,4/ and R/sub 7,6/ ratios, and a processing technique sensitive to vegetative cover is recommended for detecting areas of limonitic stain. Digital level slicing of LANDSAT R/sub 5,4/ over the Wind River Basin, after geometric correction, resulted in adequate enhancement of Triassic redbeds and lighter red materials, but not for limonitic areas. No recommendations for prospects in the area were made. Information pertaining to techniques of evaluating laboratory reflectance spectra for remote sensing applications, ratio processing, and planimetric correction of LANDSAT data is presented qualitatively

  17. Scienti fi c Approaches and Methods in the Investigation of the Formation and Stability of Hydromorphic Natural Complexes of the Irtysh River Valley System (The Kazakhstan Part

    Directory of Open Access Journals (Sweden)

    A. G. Tsaregorodtseva

    2006-12-01

    Full Text Available The current geo-environmental situation of the Irtysh River valley system is connected with the high degree of control of the river drainage, which affects the functioning of its entire ecosystem and determines some morphological features of its channel. In the present work, the methodological approaches in the study of formation of the valley’s hydromorphic natural complexes are discussed, and the results of studies on the channel processes in the middle course of the Irtysh River are given.

  18. 75 FR 5108 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Science.gov (United States)

    2010-02-01

    ... Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park Service... funerary objects in the possession and control of the University of Wyoming, Anthropology Department, Human... of Wyoming, Anthropology Department, Human Remains Repository professional staff in consultation with...

  19. 76 FR 14058 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Science.gov (United States)

    2011-03-15

    ...: University of Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park... in the possession and control of the University of Wyoming Anthropology Department, Human Remains... made by University of Wyoming, Anthropology Department, Human Remains Repository, professional staff in...

  20. Hydrologic and Isotopic Sensitivity of Alpine Lakes to Climate Change in the Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Liefert, D. T.; Shuman, B. N.; Mercer, J.; Parsekian, A.; Williams, D. G.

    2017-12-01

    Climate reconstructions show that global average temperatures were 0.5°C higher than today during the mid-Holocene, falling well within projections for increases in global average temperature presented in the latest Intergovernmental Panel on Climate Change report. Despite the consensus for the prediction of a warmer climate, however, it is unclear how snowmelt from high-elevation watersheds will be affected by such a change. Snowmelt contributes substantially to major rivers in the western United States, and much of the water flows through lakes in the highest-elevation watersheds. Our water balance models show that modern alpine lakes with seasonably unstable water levels can desiccate primarily through groundwater outflow, resulting in increased groundwater storage that likely sustains baseflow in mountain streams once snowmelt has subsided in late summer. However, contribution of freshwater from alpine lakes to streams may vary over time as changes in climate alters snowpack, rates of evaporation, and the abundance of snowmelt-fed lakes. As such, alpine lakes with seasonally unstable water levels today may have dried out entirely during the mid-Holocene warm period and may dry out in the future as temperatures increase. To investigate the response of alpine lakes to temperatures of the mid-Holocene, we collected 9 sediment cores from closed-basin alpine lakes in the Medicine Bow Mountains of southern Wyoming that lose most their volumes each summer. We use radiocarbon-dating of charcoal in basal sediments to determine lake formation age, abundance of conifer needles to infer relative forest cover, and a δ18O carbonate record to determine changes in the ratio of evaporation to precipitation in an alpine lake that existed throughout the Holocene. Warming likely changed watershed hydrology through a) decreased snowpack and earlier snowmelt, b) increased evaporation, and c) increased transpiration associated with expanded forest cover and longer growing seasons

  1. Importance of inorganic geochemical characteristics on assessment of shale gas potential in the Devonian Horn River Formation of western Canada

    Science.gov (United States)

    Hong, Sung Kyung; Shinn, Young Jae; Choi, Jiyoung; Lee, Hyun Suk

    2017-04-01

    The gas generation and storage potentials of shale has mostly been assessed by original TOC (TOCo) and original kerogen type. However, in the Horn River Formation, organic geochemical tools and analysis are barely sufficient for assessing the TOCo and original kerogen type because residual carbon contents represent up to 90% of TOC in shales. Major and trace elements are used as proxies for the bottom water oxygen level, for terrestrial sediment input and for productivity, which is related with variation of kerogen type. By using the inorganic geochemical proxies, we attempt to assess original kerogen type in shale gas formation and suggest its implication for HIo (original Hydrogen Index) estimation. The estimated HIo in this study allows us to calculate a reliable TOCo. These results provide new insights into the accurate estimation of the hydrocarbon potential of shale gas resources. The inorganic geochemical proxies indicate vertical variations of productivity (EX-SiO2 and Baauth), terrestrial sediment input (Al2O3, Zr, Hf, and Nb) and oxygen content in bottom water during deposition (Moauth, Uauth and Th/U), which represent the temporal changes in the mixing ratio between Type II and III kerogens. The Horn River Formation has different HIo values calculated from EX-SiO2 (biogenic origin) and it is ranked by HIo value in descending order: Evie and Muskwa members (500-700 mgHC/gTOC) > middle Otterpark Member (400-500 mgHC/gTOC) > upper Otterpark Member (300-400 mgHC/gTOC) > lower Otterpark Member (200 mgHC/gTOC). Based on the original kerogen type and TOCo, the gas generation and storage potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members. The source rock potential is excellent for the Evie Member with a remarkable difference between TOCo and measured TOC.

  2. Calculation of paleohydraulic parameters of a fluvial system under spatially variable subsidence, of the Ericson sandstone, South western Wyoming

    Science.gov (United States)

    Snyder, H.; Leva-Lopez, J.

    2017-12-01

    During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.

  3. Application of computer graphics to generate coal resources of the Cache coal bed, Recluse geologic model area, Campbell County, Wyoming

    Science.gov (United States)

    Schneider, G.B.; Crowley, S.S.; Carey, M.A.

    1982-01-01

    Low-sulfur subbituminous coal resources have been calculated, using both manual and computer methods, for the Cache coal bed in the Recluse Model Area, which covers the White Tail Butte, Pitch Draw, Recluse, and Homestead Draw SW 7 1/2 minute quadrangles, Campbell County, Wyoming. Approximately 275 coal thickness measurements obtained from drill hole data are evenly distributed throughout the area. The Cache coal and associated beds are in the Paleocene Tongue River Member of the Fort Union Formation. The depth from the surface to the Cache bed ranges from 269 to 1,257 feet. The thickness of the coal is as much as 31 feet, but in places the Cache coal bed is absent. Comparisons between hand-drawn and computer-generated isopach maps show minimal differences. Total coal resources calculated by computer show the bed to contain 2,316 million short tons or about 6.7 percent more than the hand-calculated figure of 2,160 million short tons.

  4. Biostratigraphy and palaeontology of the Scollard Formation, late Cretaceous and Paleocene of Alberta

    National Research Council Canada - National Science Library

    Russell, Loris S

    1987-01-01

    .... The lower portion of the formation contains fossil vertebrates, including dinosaurs and mammals that correlate with those of the Lance Formation of Wyoming and the Hell Creek Formation of Montana...

  5. 50 years of change at 14 headwater snowmelt-dominated watersheds in Wyoming

    Science.gov (United States)

    Voutchkova, D. D.; Miller, S. N.

    2017-12-01

    Wyoming is a headwater state contributing to the water resources of four major US basins: Columbia River, Colorado River, Great Basin, and Missouri River. Most of the annual precipitation in this semi-arid state is received at high elevations as snow. Water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs - all depends on the variable and potentially changing annual snowmelt. Thus, characterizing snowmelt and snowmelt-dominated runoff variability and change at high-elevation headwater watersheds in Wyoming is of utmost importance. Next to quantifying variability and changes in total precipitation, snow-water equivalent (SWE), annual runoff and low flows at 14 selected and representative high-elevation watersheds during the previous 50 years, we also explore past watershed disturbances. Wildfires, forest management (e.g. timber harvest), and recent bark beetle outbakes have altered the vegetation and potentially the hydrology of these high-elevation watersheds. We present a synthesis and trend analysis of 49-75 complete water years (wy) of daily streamflow data for 14 high-elevation watersheds, 25-36 complete wy of daily SWE and precipitation data for the closest SNOTEL stations, and spatiotemporal data on burned areas for 20 wy, tree mortality for 18 wy, timber harvest during the 20th century, as well as overview on legacy tie-drive related distrbances. These results are discussed with respect to the differing watershed characteristics in order to present a spectrum of possible hydrologic responses. The importance of our work lies in extending our understanding of snowmelt headwater annual runoff and low-flow dynamics in Wyoming specifically. Such regional synthesis would inform and facilitate water managers and planners both at local state-wide level, but also in the intermountain US West.

  6. A Numerical Modeling Study of Mesodinium Bloom Formation and Retention in a River-Dominated Mesotidal Estuary

    Science.gov (United States)

    Spitz, Y. H.; Cervantes, B.

    2016-02-01

    The Columbia River estuary experiences extensive seasonal red-colored blooms caused by a mixotrophic ciliate of the genus Mesodinium. Although the blooms are non-toxic, they have a significant influence on the levels of nutrients, light and oxygen in the estuary. Mesodinium spp. displays very particular physiology that makes it one of few planktonic species able to thrive in a highly flushed system: a high growth rate due to its ability to photosynthesize using the photosynthetic organelles of its preys, and complex vertical migration patterns. Knowledge of the migration pattern is based on limited observations of Mesodinium behavior in culture and recent in-situ measurements collected in the Columbia River estuary. A more comprehensive understanding is needed of the mechanisms allowing Mesodinium spp. to be retained and experience rapid growth. To this end, we extended the finite element circulation model SELFE to include a 5-component behavioral model that simulates the relationships between nutrients, detritus, Mesodinium spp. and its cryptophyte prey. We then used the model to investigate various migration patterns and growth scenarios to determine their role in the formation and retention of the Mesodinium spp. bloom in the brackish water of the estuary.

  7. Biomarker Analysis of Samples Visually Identified as Microbial in the Eocene Green River Formation: An Analogue for Mars.

    Science.gov (United States)

    Olcott Marshall, Alison; Cestari, Nicholas A

    2015-09-01

    One of the major exploration targets for current and future Mars missions are lithofacies suggestive of biotic activity. Although such lithofacies are not confirmation of biotic activity, they provide a way to identify samples for further analyses. To test the efficacy of this approach, we identified carbonate samples from the Eocene Green River Formation as "microbial" or "non-microbial" based on the macroscale morphology of their laminations. These samples were then crushed and analyzed by gas chromatography/mass spectroscopy (GC/MS) to determine their lipid biomarker composition. GC/MS analysis revealed that carbonates visually identified as "microbial" contained a higher concentration of more diverse biomarkers than those identified as "non-microbial," suggesting that this could be a viable detection strategy for selecting samples for further analysis or caching on Mars.

  8. Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County, Wyoming

    Science.gov (United States)

    Smith, David B.; Sweat, Michael J.

    2012-01-01

    Soil samples were collected and chemically analyzed from the Riverton Uranium Mill Tailings Remedial Action Site, which lies within the Wind River Indian Reservation in Fremont County, Wyoming. Nineteen soil samples from a depth of 0 to 5 centimeters were collected in August 2011 from the site. The samples were sieved to less than 2 millimeters and analyzed for 44 major and trace elements following a near-total multi-acid extraction. Soil pH was also determined. The geochemical data were compared to a background dataset consisting of 160 soil samples previously collected from the same depth throughout the State of Wyoming as part of another ongoing study by the U.S. Geological Survey. Risk from potentially toxic elements in soil from the site to biologic receptors and humans was estimated by comparing the concentration of these elements with soil screening values established by the U.S. Environmental Protection Agency. All 19 samples exceeded the carcinogenic human health screening level for arsenic in residential soils of 0.39 milligrams per kilogram (mg/kg), which represents a one-in-one-million cancer risk (median arsenic concentration in the study area is 2.7 mg/kg). All 19 samples also exceeded the lead and vanadium screening levels for birds. Eighteen of the 19 samples exceeded the manganese screening level for plants, 13 of the 19 samples exceeded the antimony screening level for mammals, and 10 of 19 samples exceeded the zinc screening level for birds. However, these exceedances are also found in soils at most locations in the Wyoming Statewide soil database, and elevated concentrations alone are not necessarily cause for alarm. Uranium and thorium, two other elements of environmental concern, are elevated in soils at the site as compared to the Wyoming dataset, but no human or ecological soil screening levels have been established for these elements.

  9. Depth of the base of the Jackson aquifer, based on geophysical exploration, southern Jackson Hole, Wyoming, USA

    Science.gov (United States)

    Nolan, Bernard T.; Campbell, David L.; Senterfit, Robert M.

    A geophysical survey was conducted to determine the depth of the base of the water-table aquifer in the southern part of Jackson Hole, Wyoming, USA. Audio-magnetotellurics (AMT) measurements at 77 sites in the study area yielded electrical-resistivity logs of the subsurface, and these were used to infer lithologic changes with depth. A 100-600ohm-m geoelectric layer, designated the Jackson aquifer, was used to represent surficial saturated, unconsolidated deposits of Quaternary age. The median depth of the base of the Jackson aquifer is estimated to be 200ft (61m), based on 62 sites that had sufficient resistivity data. AMT-measured values were kriged to predict the depth to the base of the aquifer throughout the southern part of Jackson Hole. Contour maps of the kriging predictions indicate that the depth of the base of the Jackson aquifer is shallow in the central part of the study area near the East and West Gros Ventre Buttes, deeper in the west near the Teton fault system, and shallow at the southern edge of Jackson Hole. Predicted, contoured depths range from 100ft (30m) in the south, near the confluences of Spring Creek and Flat Creek with the Snake River, to 700ft (210m) in the west, near the town of Wilson, Wyoming. Résumé Une campagne géophysique a été entreprise pour préciser la profondeur du mur de l'aquifère dans le secteur sud de Jackson Hole (Wyoming, États-Unis). Des mesures audio-magnétotelluriques (audio MT) sur 77 sites de ce secteur ont fourni des logs de résistivitéélectrique du sous-sol ; les variations de la lithologie en fonction de la profondeur en ont été déduites. Un niveau géoélectrique à 100-600ohm.m, dénommé "aquifère de Jackson", a servi à définir des dépôts superficiels quaternaires saturés en eau et non consolidés. La profondeur médiane de la base de l'aquifère de Jackson est de l'ordre de 61m, à partir des 62 sites ayant fourni suffisamment de données de résistivité. Les valeurs audio MT mesur

  10. Formation of A-type granites in the Lower Yangtze River Belt: A perspective from apatite geochemistry

    Science.gov (United States)

    Jiang, Xiao-Yan; Li, He; Ding, Xing; Wu, Kai; Guo, Jia; Liu, Ji-Qiang; Sun, Wei-Dong

    2018-04-01

    Apatite is ubiquitous in A-type granites, and can be used to elucidate the volatile contents of the silicate melt, which reflect its source characteristics. A-type granites have been recognized as a distinct group of granites. A1- and A2-type subgroups are produced under different extensional settings. However, the details of the mechanisms behind the distinctive geochemical characteristics of A1- and A2-type granites remain obscure. Belts of Cretaceous A1- and A2-type granites occur along the Lower Yangtze River Belt in eastern China. Here we investigated the major and trace element compositions of apatites from contemporary A1- and A2-type granites at different localities along the Lower Yangtze River Belt, in order to decipher their discrepant source processes. Apatites from A1- and A2-type granites show similar major and trace elements, but differ in their F and Cl concentrations. Apatites from A1-type granites in the eastern part of the Lower Yangtze River Belt have much lower F and higher Cl concentrations compared to A2-type granites in the western part. Moreover, from the east to the west, the F concentrations of apatites from A1-type granites increase, while the Cl concentrations decline. In a subducted plate, F is retained by amphibole, chlorite, serpentine and mica minerals through the amphibolite stage, and finally by phengite and lawsonite during the eclogite stage, whereas, Cl is controlled by amphibole, chlorite and serpentine. The high and varied Cl concentrations in A1 subgroup apatites, therefore, may be attributed to the breakdown of amphibole, chlorite and/or serpentine decomposition during partial melting of subducted oceanic crust releasing a large amount of Cl at shallower depth. In contrast, F is transported to deeper depths in the subducted oceanic crust, and released through breakdown of phengite and lawsonite, making an important contribution to the formation of A2-type granites. Apatites from A1- and A2-type granite samples show regular

  11. Accessing the Impact of Sea-Salt Emissions on Aerosol Chemical Formation and Deposition Over Pearl River Delta, China

    Science.gov (United States)

    Fan, Q.; Wang, X.; Liu, Y.; Wu, D.; Chan, P. W.; Fan, S.; Feng, Y.

    2015-12-01

    Sea-salt aerosol (SSA) emissions have a significant impact on aerosol pollution and haze formation in the coastal areas. In this study, Models-3/CMAQ modeling system was utilized to access the impact of SSA emissions on aerosol chemical formation and deposition over Pearl River Delta (PRD), China in July 2006. More SSAs were transported inland from the open-ocean under the southeast wind in summertime. Two experiments (with and without SSA emissions in the CMAQ model) were set up to compare the modeling results with each other. The results showed that the increase of sulfate concentrations were more attributable to the primary emissions of coarse SO42- particles in SSA, while the increase of nitrate concentrations were more attributable to secondary chemical formations, known as the mechanisms of chloride depletion in SSA. In the coastal areas, 17.62 % of SO42-, 26.6% of NO3- and 38.2% of PM10 were attributed to SSA emissions, while those portions were less than 1% in the inland areas. The increases of PM10 and its components due to SSA emissions resulted in higher deposition fluxes over PRD, particularly in the coastal areas, except for the wet deposition of nitrate. Nitrate was more sensitive to SSA emissions in chemical formations than sulfate and dry deposition of aerosol was also more sensitive than that for wet deposition. Process analysis of sulfate and nitrate was applied to find out the difference of physical and chemical mechanisms between Guangzhou (the inland areas) and Zhuhai (the coastal areas). The negative contributions of dry deposition process to both sulfate and nitrate concentrations increased if SSA emissions were taken into account in the model, especially for Zhuhai. The negative contributions of cloud process also increased due to cloud scavenging and wet deposition process. In the coastal area, the gas-to-particle conversions became more active with high contributions of aerosol process to nitrate concentrations.

  12. Environmental audit: Fossil energy sites in Wyoming

    International Nuclear Information System (INIS)

    1992-08-01

    This report documents the results of the Comprehensive Baseline Environmental Audit completed for Selected Fossil Energy Sites in Wyoming. During this Audit, facilities, field sites, and activities were investigated and inspected in several areas of Wyoming that are considered to be representative of offsite work falling under the purview of the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. Department of Energy (DOE) personnel at METC and at the Liquid Fuels Technology Branch (LFTB) in Laramie, Wyoming were interviewed as were DOE contractors and Federal and state regulators. Extensive document review was also a key part of this Audit. The on-site portion of the Audit occurred in Morgantown from May 18 to 22, 1992, and throughout Wyoming from May 26 through June 10, 1992. EH-24 carries out independent assessments of DOE facilities and DOE-funded off-site activities as part of the Assistant Secretary's Environmental Audit Program. That program is designed to evaluate the status of facilities and activities regarding compliance with environmental laws, regulations, DOE Directives, formal written procedures, compliance agreements, and Best Management Practices (BMPs). This internal oversight function plays an important role in improving the compliance status of DOE operations. The Audit stresses the fact that it is the responsibility of line management to conduct operations in an environmentally sound and safe manner. The scope of this Environmental Audit was comprehensive, covering all areas of environmental activities and waste management operations with the exception of the National Environmental Policy Act (NEPA), which is beyond the purview of EH-24. Specifically included within this Audit were Air, Soils/Sediment/Biota, Surface Water/Drinking Water, Groundwater, Waste Management, Toxic and Chemical Materials, Quality Assurance, Radiation, Inactive Waste Sites, and Environmental Management

  13. Comparing particle-size distributions in modern and ancient sand-bed rivers

    Science.gov (United States)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical

  14. Geology and petrography in basaltic rocks (Arapey formation) cropping out in road 4 between Arapey river (92 km) and Artigas city (200 Km)

    International Nuclear Information System (INIS)

    Oyhantcabal, P.; Pineiro, G.

    2007-01-01

    This contribution presents a geological map of the basaltic flows of Arapey formation (Mezosoic) cropping out in Road 4 between the Arapey river (92 Km) and Artigas city (200 Km) together with the description of the petrographic features of the different portions of the 13 recognized flow units. (author)

  15. Facies and diagenesis of the Devonian Portilla limestone formation between the river Esla and the Embalse de la Luna, Cantabrian Mountains, Spain

    NARCIS (Netherlands)

    Reijers, T.J.A.

    1972-01-01

    In the central part of the Cantabrian Mountains, between the artificial lake in the rivei Luna in the west and the river Esla in the east, outcrops of the Portilla Limestone Formation were investigated. A fairly uniform development could be observed in four structurally different areas. Six

  16. Fluvial to tidal transition zone facies in the McMurray Formation (Christina River, Alberta, Canada), with emphasis on the reflection of flow intensity in bottomset architecture

    NARCIS (Netherlands)

    Martinius, A. W.; Jablonski, B. V J; Fustic, M.; Strobl, R.; Van den Berg, J. H.

    2015-01-01

    An outcrop of the McMurray Formation along the Christina River (Alberta, Canada) has been investigated to better understand depositional processes and setting. The succession is formed by large-scale tabular sets of unidirectional trough cross-stratification. Many of these sets are characterized by

  17. Geology and petrography of the basaltic rocks (Arapey formation) cropping out in toad 4 between Arapey river (92 km) and Artigas (200 Km)

    International Nuclear Information System (INIS)

    Oyhantcabal, P.; Pineiro, G.

    2007-01-01

    This contribution presents a geological map of the basaltic flows of Arapey formation (Mezosoic) cropping out in Road 4 between the Arapey river (92 Km) and Artigas city (200 Km) together with the description of the petrographic features of the different portions of the 13 recognized flow units. (author)

  18. Multi-scale tectonic controls on fluvial terrace formation in a glacioeustatically-dominated river system: inference from the lower Min¿o terrace record

    NARCIS (Netherlands)

    Viveen, W.

    2013-01-01

    The general aim of this thesis is to untangle the interacting effects of climate, glacioeustacy, and regional, and local tectonics on fluvial terrace formation. The NW Iberian lower Miño River valley was chosen as a study site, because for this region, a very detailed, long-term,

  19. Assessment of undiscovered oil and gas resources in the Uteland Butte Member of the Eocene Green River Formation, Uinta Basin, Utah

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.; Charpentier, Ronald R.; Klett, Timothy R.; Leathers, Heidi M.; Schenk, Christopher J.; Tennyson, Marilyn E.

    2015-09-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered resources of 214 million barrels of oil, 329 billion cubic feet of associated/dissolved natural gas, and 14 million barrels of natural gas liquids in the informal Uteland Butte member of the Green River Formation, Uinta Basin, Utah.

  20. Age, distribution, and formation of late cenozoic paleovalleys of the lower Colorado River and their relation to river aggradation and degradation

    Science.gov (United States)

    Howard, K.A.; Lundstrom, S.C.; Malmon, D.V.; Hook, S.J.

    2008-01-01

    Distinctive far-traveled fluvial sediment of the lower Colorado River fills 20 paleo-valleys now stranded by the river downstream of Grand Canyon as it crosses the Basin and Range Province. These sediments resulted from two or more aggradational epi sodes in Pliocene and Pleistocene times following initial incision during the early Pliocene. A review of the stratigraphic evidence of major swings in river elevation over the last 5 m.y. from alternating degradation and aggradation episodes establishes a framework for understanding the incision and filling of the paleovalleys. The paleo-valleys are found mostly along narrow bedrock canyon reaches of the river, where divides of bedrock or old deposits separate them from the modern river. The paleo-valleys are interpreted to have stemmed from periods of aggradation that filled and broadened the river valley, burying low uplands in the canyon reaches into which later channel positions were entrenched during subsequent degradation episodes. The aggradation-degradation cycles resulted in the stranding of incised river valleys that range in elevation from near the modern river to 350 m above it. ?? 2008 The Geological Society of America.

  1. Wyoming's Early Settlement and Ethnic Groups, Unit IV.

    Science.gov (United States)

    Robinson, Terry

    This unit on Wyoming's early settlement and ethnic groups provides concepts, activities, stories, charts, and graphs for elementary school students. Concepts include the attraction Wyoming held for trappers; the major social, economic, and religious event called "The Rendezvous"; the different ethnic and religious groups that presently…

  2. Asset management for Wyoming counties : volume I, II, III.

    Science.gov (United States)

    2011-08-01

    Vol. 1: In the fall of 2003, the Wyoming Department of Transportation (WYDOT) and the Wyoming T2/LTAP Center (T2/LTAP) began planning an asset management program to assist counties impacted by oil and gas drilling with management of their road system...

  3. Effect of fungicides on Wyoming big sagebrush seed germination

    Science.gov (United States)

    Robert D. Cox; Lance H. Kosberg; Nancy L. Shaw; Stuart P. Hardegree

    2011-01-01

    Germination tests of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young [Asteraceae]) seeds often exhibit fungal contamination, but the use of fungicides should be avoided because fungicides may artificially inhibit germination. We tested the effect of seed-applied fungicides on germination of Wyoming big sagebrush at 2 different...

  4. Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD

    Energy Technology Data Exchange (ETDEWEB)

    Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

  5. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  6. Sediment transport and fluid mud layer formation in the macro-tidal Chikugo river estuary during a fortnightly tidal cycle

    Science.gov (United States)

    Azhikodan, Gubash; Yokoyama, Katsuhide

    2018-03-01

    The erosion and deposition dynamics of fine sediment in a highly turbid estuarine channel were successfully surveyed during the period from August 29 to September 12, 2009 using an echo sounder in combination with a high-resolution acoustic Doppler current profiler. Field measurements were conducted focusing on the tide driven dynamics of suspended sediment concentration (SSC), and fluid mud at the upstream of the macrotidal Chikugo river estuary during semidiurnal and fortnightly tidal cycles. Morphological evolution was observed especially during the spring tide over a period of two weeks. The elevation of the channel bed was stable during neap tide, but it underwent fluctuations when the spring tide occurred owing to the increase in the velocity and shear stress. Two days of time lag were observed between the maximum SSC and peak tidal flow, which resulted in the asymmetry between neap-to-spring and spring-to-neap transitions. During the spring tide, a hysteresis loop was observed between shear stress and SSC, and its direction was different during flood and ebb tides. Although both fine sediments and flocs were dominant during flood tides, only fine sediments were noticed during ebb tides. Hence, the net elevation change in the bed was positive, and sedimentation took place during the semilunar tidal cycle. Finally, a bed of consolidated mud was deposited on the initial bed, and the height of the channel bed increased by 0.9 m during the two-week period. The observed hysteretic effect between shear stress and SSC during the spring tides, and the asymmetrical neap-spring-neap tidal cycle influenced the near-bed sediment dynamics of the channel, and led to the formation of a fluid mud layer at the bottom of the river.

  7. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    Science.gov (United States)

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphael; Gebelin, Aude; Chamberlain, C. Page

    2015-01-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (−90‰ to −154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ −154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ −125‰), where 40Ar/39Ar geochronological data indicate Miocene (18–15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  8. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  9. The Morphodynamic Signature of Rivers in the Ucamara Depression: A Habitat for Formative Rivers and the Scavenger Meandering Channels they Feed

    Science.gov (United States)

    Abad, J. D.; Escobar, C.; Shan, J.

    2017-12-01

    The Pacaya Samiria National Reserve, located in Loreto, Peru, is a region of incomparable biodiversity resulting from the consistent annual climate patterns (little seasonal variability), and more importantly, the dynamics of the freshwater rivers that surround and traverse it. The Ucamara Depression, where the Pacaya Samiria National Reserve is located, presently has a myriad of active and abandoned fluvial landforms. The exploration of the geologic and tectonic history that fabricated this exceptional fluvial system is the foundation for researching and understanding further phenomena of the region. The interpretation of the history of the geologic events that occurred to form this region and the inspection of the river belts, or areas of active river migration, of these fluvial landforms, facilitate the understanding of 1) how the Ucayali and Maranon rivers interact with one another and with the streams and bodies of water in the Ucamara Depression, 2) the role of wetlands, hydrodynamics, and sediment transport mechanisms in the movement of rivers and the extent of mixing before the rivers reach their confluence, and 3) how the water chemistry, flooding, and sediment transport processes of rivers create an environment capable of fostering an unimaginable array of life and how changes in these processes affect the flora and fauna that inhabit the region. This study will discuss field measurements (hydrodynamic and bed morphodynamic) and remote sensing analysis of scavenger meandering channels (Pacaya and Samiria) and discuss confluence dynamics of the two tributaries that form the Amazon River. Morphometric parameters show that these meandering rivers do not achieve typical planform-based conditions.

  10. Kinetic study of formation of sodalite from a kaolin waste of Jari river - PA, Brazil

    International Nuclear Information System (INIS)

    Silva, L.N. da; Paz, S.P.A. da; Angelica, R.S.; Neves, R.F.

    2011-01-01

    Zeolites are materials with a wide industrial application, which has motivated the development of a large number of scientific papers on this topic. This work presents a kinetic study of the formation process of sodalite produced from the reaction of the kaolin waste in the presence of sodium hydroxide solution (5M) performed at temperatures of 80, 100, 120 and 150 ° C. The process was conducted in batch, static, and autoclaves lined with Teflon, and monitoring the kinetics was performed by ex situ XRD analysis of the materials obtained in the time interval from 2 to 24 hours. The kinetic model that best describes this transformation is zero-order homogeneous reaction. Finally, we conclude that the technique of X-ray diffraction is a powerful tool to study the kinetics of phase transformation ex situ. (author)

  11. Geochemistry of water in the Fort Union formation of the northern Powder River basin, southeastern Montana

    Science.gov (United States)

    Lee, Roger W.

    1981-01-01

    Shallow water in the coal-bearing Paleocene Fort Union Formation of southeastern Montana was investigated to provide a better understanding of its geochemistry. Springs, wells less than 200 feet deep, and wells greater than 200 feet deep were observed to have different water qualities. Overall, the ground water exists as two systems: a mosaic of shallow, chemically dynamic, and localized recharge-discharge cells superimposed on a deeper, chemically static regional system. Water chemistry is highly variable in the shallow system; whereas, waters containing sodium and bicarbonate characterize the deeper system. Within the shallow system, springs and wells less than 200 feet deep show predominantly sodium and sulfate enrichment processes from recharge to discharge. These processes are consistent with the observed aquifer mineralogy and aqueous chemistry. However, intermittent mixing with downward moving recharge waters or upward moving deeper waters, and bacterially catalyzed sulfate reduction, may cause apparent reversals in these processes.

  12. Alligator Rivers Analogue project. Geochemical modelling of secondary uranium ore formation. Final Report - Volume 11

    International Nuclear Information System (INIS)

    Sverjensky, D.; Bennett, D.G.; Read, D.

    1992-01-01

    The purpose of the present study was to establish how the uranyl phosphate zone at the Koongarra site was formed. The overall approach taken in the present study employed theoretical chemical mass transfer calculations and models that permit investigation and reconstruction of the kinds of waters that could produce the uranyl phosphate zone. These calculations have used the geological and mineralogical data for the Koongarra weathered zone (Volumes 2, 8, and 9 of this series), to constrain the initial compositions and reactions undergone by groundwater during the formation of the uranyl phosphate zone. In carrying out these calculations the present-day analyses of Koongarra waters are used only as a guide to the possible initial composition of the fluids associated with the formation of the phosphate zone. Aqueous speciation, saturation state and chemical mass transfer calculations were carried out using the computer programs EQ3NR and EQ6 (Wolery, 1983; Wolery et al., 1984) and a thermodynamic database generated at The Johns Hopkins University over the last eight years which is tabulated in the Appendix 1 to Volume 12 of this series. Despite uncertainties in the thermodynamic characterisation of species, all the above calculations suggest that the uranyl phosphate zone at Koongarra has not formed from present-day groundwaters (Volume 12 of this series). The present-day groundwaters in the weathered zone (eg. at 13 m depth) appear to be undersaturated with respect to saleeite. Furthermore, as present-day groundwaters descend below the water table they rapidly lose their atmospheric oxygen imprint, as is typical of most groundwaters, and become even more reducing in character. Under these circumstances, the groundwaters become more undersaturated with respect to saleeite than the shallow groundwaters. Because much of the phosphate zone is currently below the water table, under saturated zone conditions, it is suggested in the present study that the uranyl phosphate

  13. Alligator Rivers Analogue project. Geochemical modelling of secondary uranium ore formation. Final Report - Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States); Bennett, D G; Read, D [W.S. Atkins Science and Technology, Epsom Surrey, (United Kingdom)

    1993-12-31

    The purpose of the present study was to establish how the uranyl phosphate zone at the Koongarra site was formed. The overall approach taken in the present study employed theoretical chemical mass transfer calculations and models that permit investigation and reconstruction of the kinds of waters that could produce the uranyl phosphate zone. These calculations have used the geological and mineralogical data for the Koongarra weathered zone (Volumes 2, 8, and 9 of this series), to constrain the initial compositions and reactions undergone by groundwater during the formation of the uranyl phosphate zone. In carrying out these calculations the present-day analyses of Koongarra waters are used only as a guide to the possible initial composition of the fluids associated with the formation of the phosphate zone. Aqueous speciation, saturation state and chemical mass transfer calculations were carried out using the computer programs EQ3NR and EQ6 (Wolery, 1983; Wolery et al., 1984) and a thermodynamic database generated at The Johns Hopkins University over the last eight years which is tabulated in the Appendix 1 to Volume 12 of this series. Despite uncertainties in the thermodynamic characterisation of species, all the above calculations suggest that the uranyl phosphate zone at Koongarra has not formed from present-day groundwaters (Volume 12 of this series). The present-day groundwaters in the weathered zone (eg. at 13 m depth) appear to be undersaturated with respect to saleeite. Furthermore, as present-day groundwaters descend below the water table they rapidly lose their atmospheric oxygen imprint, as is typical of most groundwaters, and become even more reducing in character. Under these circumstances, the groundwaters become more undersaturated with respect to saleeite than the shallow groundwaters. Because much of the phosphate zone is currently below the water table, under saturated zone conditions, it is suggested in the present study that the uranyl phosphate

  14. Alligator Rivers Analogue project. Geochemical modelling of secondary uranium ore formation. Final Report - Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D. [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States); Bennett, D.G.; Read, D. [W.S. Atkins Science and Technology, Epsom Surrey, (United Kingdom)

    1992-12-31

    The purpose of the present study was to establish how the uranyl phosphate zone at the Koongarra site was formed. The overall approach taken in the present study employed theoretical chemical mass transfer calculations and models that permit investigation and reconstruction of the kinds of waters that could produce the uranyl phosphate zone. These calculations have used the geological and mineralogical data for the Koongarra weathered zone (Volumes 2, 8, and 9 of this series), to constrain the initial compositions and reactions undergone by groundwater during the formation of the uranyl phosphate zone. In carrying out these calculations the present-day analyses of Koongarra waters are used only as a guide to the possible initial composition of the fluids associated with the formation of the phosphate zone. Aqueous speciation, saturation state and chemical mass transfer calculations were carried out using the computer programs EQ3NR and EQ6 (Wolery, 1983; Wolery et al., 1984) and a thermodynamic database generated at The Johns Hopkins University over the last eight years which is tabulated in the Appendix 1 to Volume 12 of this series. Despite uncertainties in the thermodynamic characterisation of species, all the above calculations suggest that the uranyl phosphate zone at Koongarra has not formed from present-day groundwaters (Volume 12 of this series). The present-day groundwaters in the weathered zone (eg. at 13 m depth) appear to be undersaturated with respect to saleeite. Furthermore, as present-day groundwaters descend below the water table they rapidly lose their atmospheric oxygen imprint, as is typical of most groundwaters, and become even more reducing in character. Under these circumstances, the groundwaters become more undersaturated with respect to saleeite than the shallow groundwaters. Because much of the phosphate zone is currently below the water table, under saturated zone conditions, it is suggested in the present study that the uranyl phosphate

  15. Assessment of undiscovered conventional oil and gas resources in the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah, 2017

    Science.gov (United States)

    Schenk, Christopher J.; Mercier, Tracey J.; Tennyson, Marilyn E.; Woodall, Cheryl A.; Brownfield, Michael E.; Le, Phuong A.; Klett, Timothy R.; Gaswirth, Stephanie B.; Finn, Thomas M.; Marra, Kristen R.; Leathers-Miller, Heidi M.

    2018-02-16

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 26 million barrels of oil and 700 billion cubic feet of gas in the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Gillette NTMS quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; George, W.E.; Minor, M.M.; Simi, O.R.; Talcott, C.L.; Hensley, W.K.; Cheadle, J.M. III.

    1980-08-01

    During 1976 and 1977, 752 water and 843 sediment samples were collected from 1419 locations within the 17 700-km 2 area of the Gillette quadrangle, Wyoming. Water samples were collected primarily from wells, and also from springs, ponds, and streams; sediment samples were collected primarily from stream channels, and also from springs and ponds. Each water sample was analyzed for uranium and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 to 212.20 ppB and have a median of 1.10 ppB. The highest background uranium concentrations, as well as the highest individual uranium values, are in areas where favorable host units for uranium mineralization crop out. These units are the Wasatch and Fort Union formations in the Powder River Basin and the Inyan Kara group in the Black Hills. Uranium concentrations in sediment samples range from 0.64 to 29.83 ppM and have a median of 3.24 ppM. Background uranium concentrations are strongly controlled by the exposed geologic unit, and range from 4 to 8 ppM for the Cretaceous Colorado group to 1 to 3 ppM for the Triassic and Paleozoic units exposed in the Black Hills. Several areas where the Wasatch and Fort Union formations are exposed exhibit uranium concentrations in sediment samples that are slightly, but distinctly, above background values for these units. All of these areas are also associated with notably high uranium concentrations in water samples. Because epigenetic uranium mineralization in economically important areas can exhibit a similar geochemical signature, these areas within the Gillette quadrangle should be further examined for the possible presence of uranium mineralization

  17. Sr isotope evidence for a lacustrine origin for the upper Miocene to Pliocene Bouse Formation, lower Colorado River trough, and implications for timing of Colorado Plateau uplift

    Science.gov (United States)

    Spencer, J.E.; Patchett, P.J.

    1997-01-01

    The upper Miocene to Pliocene Bouse Formation in the lower Colorado River trough, which consists largely of siltstone with basal tufa and marl, has been interpreted as estuarine on the basis of paleontology. This interpretation requires abrupt marine inundation that has been linked to early rifting in the Gulf of California and Salton trough. New strontium isotope measurements reported here from carbonates and invertebrate shells in the Bouse Formation reveal no evidence of marine water, but are consistent with deposition in a lake or chain of lakes fed by the Colorado River. Furthermore, the absence of a southward decrease in 87Sr/86Sr within the Bouse Formation does not support the estuarine model in which low 87Sr/86Sr marine Sr would have dominated the mouth of the hypothetical Bouse estuary. Elevation of originally marine 87Sr/86Sr in the Bouse Formation to its present level, due to postdepositional interaction with ground water, is unlikely because Sr from secondary calcite above, below, and within the Bouse Formation is consistently less radiogenic, not more, than Bouse marl and shells. In contrast to Bouse Sr, strontium from mollusks in tidal-flat and delta-front paleoenvironments in the contemporaneous Imperial Formation in the Salton trough and from the subsurface south of Yuma was derived from sea water and confirms the dominance of marine strontium near or at the mouth of the late Miocene to early Pliocene Colorado River. Inferred post-early Pliocene uplift of the Bouse Formation from below sea level to modern elevations of up to 550 m has been used to support a late Cenozoic uplift age for the nearby Colorado Plateau. This constraint on uplift timing is eliminated if the Bouse Formation is lacustrine.

  18. The formation of green rust induced by tropical river biofilm components

    International Nuclear Information System (INIS)

    Jorand, F.; Zegeye, A.; Ghanbaja, J.; Abdelmoula, M.

    2011-01-01

    In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter. Solid analysis showed the presence of two ferric oxides ferrihydrite and lepidocrocite. Bacteria were abundant and represented more than 10 11 cells g -1 of dry weight among which iron reducers were revealed. Optical and electronic microscopy analysis revealed than the bacteria were in close vicinity of the iron oxides. After anaerobic incubations with exogenous electron donors, the biofilm's ferric material was reduced into green rust, a Fe II -Fe III layered double hydroxide. This green rust remained stable for several years. From this study and previous reports, we suggest that ferruginous biofilms should be considered as a favorable location for GR biomineralization when redox conditions and electron donors availability are gathered. - Research highlights: → Characterization of ferruginous biofilm components by solid analysis methods. → Lepidocrocite and ferrihydrite were the main iron oxides. → Anaerobic incubation of biofilm with electron donors produced green rust. → Biofilm components promote the formation of the green rust. → Ferruginous biofilm could contribute to the natural mercury attenuation.

  19. The formation of green rust induced by tropical river biofilm components

    Energy Technology Data Exchange (ETDEWEB)

    Jorand, F., E-mail: jorand@pharma.uhp-nancy.fr [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Zegeye, A. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Ghanbaja, J. [Service Commun de Microscopies Electroniques et Microanalyses X (SCMEM), Nancy-Universite, Bvd des Aiguillettes, BP 239, 54506, Vandoeuvre-les-Nancy (France); Abdelmoula, M. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France)

    2011-06-01

    In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter. Solid analysis showed the presence of two ferric oxides ferrihydrite and lepidocrocite. Bacteria were abundant and represented more than 10{sup 11} cells g{sup -1} of dry weight among which iron reducers were revealed. Optical and electronic microscopy analysis revealed than the bacteria were in close vicinity of the iron oxides. After anaerobic incubations with exogenous electron donors, the biofilm's ferric material was reduced into green rust, a Fe{sup II}-Fe{sup III} layered double hydroxide. This green rust remained stable for several years. From this study and previous reports, we suggest that ferruginous biofilms should be considered as a favorable location for GR biomineralization when redox conditions and electron donors availability are gathered. - Research highlights: {yields} Characterization of ferruginous biofilm components by solid analysis methods. {yields} Lepidocrocite and ferrihydrite were the main iron oxides. {yields} Anaerobic incubation of biofilm with electron donors produced green rust. {yields} Biofilm components promote the formation of the green rust. {yields} Ferruginous biofilm could contribute to the natural mercury attenuation.

  20. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  1. Analysis of past and future dam formation and failure in the Santa Cruz River (San Juan province, Argentina)

    Science.gov (United States)

    Penna, Ivanna M.; Derron, Marc-Henri; Volpi, Michele; Jaboyedoff, Michel

    2013-03-01

    Around 11.5 ∗ 106 m3 of rock detached from the eastern slope of the Santa Cruz valley (San Juan province, Argentina) in the first fortnight of January 2005. The rockslide-debris avalanche blocked the course, resulting in the development of a lake with maximum length of around 3.5 km. The increase in the inflow rate from 47,000-74,000 m3/d between April and October to 304,000 m3/d between late October and the first fortnight of November, accelerated the growing rate of the lake. On 12 November 2005 the dam failed, releasing 24.6 ∗ 106 m3 of water. The resulting outburst flood caused damages mainly on infrastructure, and affected the facilities of a hydropower dam which was under construction 250 km downstream from the source area. In this work we describe causes and consequences of the natural dam formation and failure, and we dynamically model the 2005 rockslide-debris avalanche with DAN3D. Additionally, as a volume ~ 24 ∗ 106 m3of rocks still remain unstable in the slope, we use the results of the back analysis to forecast the formation of a future natural dam. We analyzed two potential scenarios: a partial slope failure of 6.5 ∗ 106 m3 and a worst case where all the unstable volume remaining in the slope fails. The spreading of those potential events shows that a new blockage of the Santa Cruz River is likely to occur. According to their modeled morphometry and the contributing watershed upstream the blockage area, as the one of 2005, the dams would also be unstable. This study shows the importance of back and forward analysis that can be carried out to obtain critical information for land use planning, hazards mitigation, and emergency management.

  2. Role of microgel formation in scavenging of chromophoric dissolved organic matter and heavy metals in a river-sea system.

    Science.gov (United States)

    Shiu, Ruei-Feng; Lee, Chon-Lin

    2017-04-15

    We use riverine and marine dissolved organic carbon (DOC) polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit very much difference in size and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of hazardous materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Role of microgel formation in scavenging of chromophoric dissolved organic matter and heavy metals in a river-sea system

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Ruei-Feng [Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Lee, Chon-Lin, E-mail: linnohc@fac.nsysu.edu.tw [Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2017-04-15

    Highlights: • Different types of DOC polymers forming microgel were compared. • The assembly effectiveness of marine DOC was much higher than riverine DOC. • Types and sources of DOC polymers may control the aquatic microgel abundance. • An alternative route for CDOM and heavy metals removal is presented. • Ecological risk and fate assessments of pollutants may consider the microgel phase. - Abstract: We use riverine and marine dissolved organic carbon (DOC) polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit very much difference in size and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of hazardous materials.

  4. Basinwide sedimentation and the continuum of paleoflow in an ancient river system: Kayenta Formation (Lower Jurassic), central portion Colorado Plateau

    Science.gov (United States)

    Luttrell, Patty Rubick

    1993-05-01

    Utilizing detailed documentation of alluvial architecture to reconstruct the continuum of paleoflow (perennial, intermittent, ephemeral), a basinwide study of the Kayenta Formation (Lower Jurassic) reveals that the northern half of the basin is characterized by sandy, low-sinuosity fluvial systems which exhibit perennial (Assoc. 1) to intermittent (Assoc. 2) discharge indicators. The rivers had headwaters east of the Uncompahgre Highlands (western Colorado) and flowed southwest across the basin depositing a braidplain of channel sands with well-preserved 3-dimensional macroforms. One significant aspect of the macroform architecture is documentation of macroform climb in both an upstream and downstream direction. The macroforms aggrade vertically by climbing (maximum 10° dip in an upstream direction) and migrating over the backs (upstream ends) of underlying macroforms. The process of macroform climb records a minimum water depth of 8 m and a maximum of 16 m which places the Kayenta perennial waterways (Assoc. 1) within a mesothermal hydrologic regime. The southern portion of the basin contains intermittent (Assoc. 2) to ephemeral (Assoc. 3) fluvial deposits, extensive floodplain preservation and eolian dune and interdune/sandsheet deposition (Assoc. 4). A tributary drainage pattern to the northwest was established by smaller, low- to moderately-sinuous streams. Eolian dune and interdune deposits migrated across this more arid windswept portion of the basin. The range of alluvial architecture present in the Kayenta attests to the diversity that can be found in a small continental sedimentary basin.

  5. Role of microgel formation in scavenging of chromophoric dissolved organic matter and heavy metals in a river-sea system

    International Nuclear Information System (INIS)

    Shiu, Ruei-Feng; Lee, Chon-Lin

    2017-01-01

    Highlights: • Different types of DOC polymers forming microgel were compared. • The assembly effectiveness of marine DOC was much higher than riverine DOC. • Types and sources of DOC polymers may control the aquatic microgel abundance. • An alternative route for CDOM and heavy metals removal is presented. • Ecological risk and fate assessments of pollutants may consider the microgel phase. - Abstract: We use riverine and marine dissolved organic carbon (DOC) polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit very much difference in size and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of hazardous materials.

  6. N2Vision technology application for direct identification of commercial hydrocarbons in Trenton-Black River Formations of Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Agou, S. [Productive Geoscience Exploration Inc., Whitby, ON (Canada)

    2006-07-01

    N2Vision seismic signal interpretation technology has been used to evaluate the petroleum and natural gas potential in the Trenton-Black River (TBR) formations of Ontario. The technology was developed in Russia in the 1980s to solve complex problems in frontier exploration. The N2Vision neural networks algorithm is a multilayer feed-forward neural network (MFFN) for pattern recognition and is based on data from existing wells collected over 20 years of method application. The algorithm recognizes hydrocarbons by establishing relationships between all attributes of the seismic field and data from existing wells. In Ontario, the algorithm was trained on data from many productive and non-productive wells from the researched and adjacent fields, as well as on seismic patterns of geological features obtained from the Yurubchen-Tokhom oil field in easter Siberia. The 2D seismic data was collected by different companies. It targeted shallower horizons and had non-consistent quality. The results of N2Vision were shown to be well correlated with the objective data. The common geological features of southern Ontario, Yurubchen field and the Baltic Syneclise were presented in this paper. All 3 regions are found in specific geodynamically prestressed and heated up zones that are represented primarily by shallow carbonates, leaching dolomites and highly permeable reservoirs with vertical fracturing. This paper demonstrated that the technology can greatly reduce the risk of selecting drilling locations, while significantly decreasing the cost of hydrocarbon exploration. tabs., figs.

  7. Green River Formation Water Flood Demonstration Project: Final report. [October 21, 1992-April, 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Deo, M.D. [Dept. of Chemical and Fuels Engineering, University of Utah, Salt Lake City (US); Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc., Lomax Exploration Co., Salt Lake City, UT (US); Nielson, D.L.; Lutz, S.J. [Energy and Geoscience Institute at the University of Utah, Salt Lake City (US)

    1996-11-01

    The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day.

  8. Green River Formation Water Flood Demonstration Project: Final report, October 21, 1992-April, 30, 1996

    International Nuclear Information System (INIS)

    Deo, M.D.; Dyer, J.E.; Lomax, J.D.; Nielson, D.L.; Lutz, S.J.

    1996-01-01

    The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day

  9. Wyoming Carbon Capture and Storage Institute

    Energy Technology Data Exchange (ETDEWEB)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  10. Wyoming geo-notes No. 2

    International Nuclear Information System (INIS)

    Glass, G.B.

    1984-01-01

    After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables

  11. On turbulence and the formation of riffle-pools in gravel-bed rivers

    Science.gov (United States)

    MacVicar, Bruce J.

    Cette these doctorale porte sur l'organisation des rivieres a lit de graviers. La formation du lit en sequences a grande echelle---les sequences seuil-mouille---est une caracteristique de ces rivieres qui controle la stabilite et la productivite ecologique. Malgre son importance, le mecanisme qui genere les seuil-mouilles reste obscur. Ce probleme est lie a trois facteurs: les donnees de terrain qui existent ne sont pas suffisantes pour accepter ou rejeter les hypotheses qui existent, la complexite des interactions entre l'ecoulement, le transport des sediments, et les formes du lit; et le role de la turbulence qui n'est pas considere de facon adequate. L'approche de cette these est d'aborder ces facteurs simultanement avec des methodes innovatrices pour mesurer les parametres importants sur le terrain et de modeliser des processus non lineaires dans une riviere. Les objectifs sont: (a) de developper un modele qui est capable de simuler le transport des sediments et les interactions avec l'ecoulement turbulent, (b) en utilisant le modele, de montrer le role des mecanismes de retroaction dans le developpement des formes du lit, (c) de tester les velocimetres dans des ecoulements a fortes vitesses et fortes intensites turbulente, (d) de mesurer et caracteriser les dynamiques de l'ecoulement dans un seuil-mouille force, (e) de mesurer et caracteriser les dynamiques de la sedimentologie et la morphologie dans un seuil-mouille force, et (f) en utilisant le modele et l'analyse des donnees de terrain, d'identifier les mecanismes qui contribuent a la formation des seuils-mouilles. En considerant une riviere comme un systeme complexe, nous avons cree un modele qui simule le transport des sediments individuellement, c'est-a-dire un modele 'discret'. Les particules repondent aux parametres locaux de l'ecoulement et des boucles de retroaction sont possibles. Les processus physiques sont simplifies afin de permettre la consideration des mecanismes qui generent les formes du lit

  12. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    International Nuclear Information System (INIS)

    Santos, E.S.; Robinson, K.; Geer, K.A.; Blattspieler, J.G.

    1982-09-01

    Uranium resources of the Newcastle 1 0 x2 0 Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group

  13. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  14. The role of the river Rhine in the formation of spatial structure of the economy of European countries (1st century BC — 19th century AD

    Directory of Open Access Journals (Sweden)

    Grazhdankin Alexander

    2012-03-01

    Full Text Available This article considers the main historical stages of formation of spatial economic structure of the European countries, parts of whose territories lie within the Rhine basin. The analysis covers a protracted chronological interval from the Roman colonization until the beginning of the 20th century. The author emphasizes the role of the River Rhine in the course of territorial structure formation. This study aims to retrace the historical sequence of the formation of territorial structure of economies of the Rhine basin countries. The research and practical significance of the work lies in the identification of the periods of increased activity in the formation of spatial structural communications of the states mentioned. The author applies the historical-descriptive approach and cartographical-geographical modelling to identify the main stages of this process. The author arrives at the following conclusions. The beginning of the formation of spatial structure of economies of the Rhine basin countries dates back to the Roman period of the history of European states rather than the industrial revolution. Similarly, it is possible to assume that primitive integration processes started to develop in the region in the same period. Throughout history, the River Rhine has served as the central axis for economic structure development. The practical significance of the article lies in identifying the early — previously insufficiently studied — stages of formation of territorial economic structure in the historical and geographical context.

  15. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    Science.gov (United States)

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  16. Colemanus keeleyorum (Braconidae, Ichneutinae s. l.: a new genus and species of Eocene wasp from the Green River Formation of western North America

    Directory of Open Access Journals (Sweden)

    J. Fisher

    2015-06-01

    Full Text Available A new genus and species of Ichneutinae s. l., Colemanus keeleyorum Fisher, is described from the Eocene Green River Formation in Colorado, USA. Colemanus was placed on a phylogenetic hypothesis using morphological data. Using a parsimony criterion, Colemanus is placed within Proteropini (Ichneutinae s. l.. Reconstructions of well-preserved regions (mesosomal dorsum and wings are included. A previously described species from lower Oligocene Baltic amber is transferred to Colemanus, resulting in the new combination C. contortus (Brues, 1933.

  17. A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation

    Science.gov (United States)

    Arbour, Victoria M.; Evans, David C.

    2017-05-01

    The terrestrial Judith River Formation of northern Montana was deposited over an approximately 4 Myr interval during the Campanian (Late Cretaceous). Despite having been prospected and collected continuously by palaeontologists for over a century, few relatively complete dinosaur skeletons have been recovered from this unit to date. Here we describe a new genus and species of ankylosaurine dinosaur, Zuul crurivastator, from the Coal Ridge Member of the Judith River Formation, based on an exceptionally complete and well-preserved skeleton (ROM 75860). This is the first ankylosaurin skeleton known with a complete skull and tail club, and it is the most complete ankylosaurid ever found in North America. The presence of abundant soft tissue preservation across the skeleton, including in situ osteoderms, skin impressions and dark films that probably represent preserved keratin, make this exceptional skeleton an important reference for understanding the evolution of dermal and epidermal structures in this clade. Phylogenetic analysis recovers Zuul as an ankylosaurin ankylosaurid within a clade of Dyoplosaurus and Scolosaurus, with Euoplocephalus being more distantly related within Ankylosaurini. The occurrence of Z. crurivastator from the upper Judith River Formation fills a gap in the ankylosaurine stratigraphic and geographical record in North America, and further highlights that Campanian ankylosaurines were undergoing rapid evolution and stratigraphic succession of taxa as observed for Laramidian ceratopsids, hadrosaurids, pachycephalosaurids and tyrannosaurids.

  18. Uranium in the Wyoming Landscape Conservation Initiative study area, southwestern Wyoming

    Science.gov (United States)

    Wilson, Anna B.

    2015-10-20

    Wyoming has led the nation as the producer of uranium ore since 1995 and contains the largest reserves of any state. Approximately one third of Wyoming’s total production came from deposits in, or immediately adjacent to, the Wyoming Landscape Conservation Initiative (WLCI) study area in the southwestern corner of the state including all of Carbon, Lincoln, Sublette, Sweetwater, Uinta, and parts of southern Fremont Counties. Conventional open-pit and underground mining methods were employed in the study area until the early 1990s. Since the early 1990s, all uranium mining has been by in-situ recovery (also called in-situ leach). It is estimated that statewide remaining resources of 141,000 tonnes of uranium are about twice the 84,000 tonnes of uranium that the state has already produced.

  19. Removal of Chromophoric Dissolved Organic Matter and Heavy Metals in a River-Sea System: Role of Aquatic Microgel Formation

    Science.gov (United States)

    Shiu, R. F.; Lee, C. L.

    2016-12-01

    Dissolved organic carbon (DOC) polymers are complex and poorly understood mixture of organic macromolecules in environment system. Portions of these polymers spontaneously form microgels that play key roles in many biogeochemical reactions, including mediating aggregation processes, element cycling, and pollutant mobility. However, the detailed interaction of microgels-heterogeneous materials in aquatic systems is still lacking. Insight into the interaction between surrounding materials and microgels from different types of aquatic DOC polymers are extremely important, as it is crucial in determining the fate and transport of these materials. Here, we use riverine and marine DOC polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit too much difference in size ( 3-5 μm) and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had the sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of pollutant.

  20. Geology of photo linear elements, Great Divide Basin, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  1. Unconventional Coal in Wyoming: IGCC and Gasification of Direct Coal Liquefaction Residue

    Science.gov (United States)

    Schaffers, William Clemens

    Two unconventional uses for Wyoming Powder River Basin coal were investigated in this study. The first was the use of coal fired integrated gasification combined cycle (IGCC) plants to generate electricity. Twenty-eight different scenarios were modeled using AspenPlusRTM software. These included slurry, mechanical and dried fed gasifiers; Wyodak and Green River coals, 0%, 70%, and 90% CO2 capture; and conventional evaporative vs air cooling. All of the models were constructed on a feed basis of 6,900 tons of coal per day on an "as received basis". The AspenPlus RTM results were then used to create economic models using Microsoft RTM Excel for each configuration. These models assumed a 3 year construction period and a 30 year plant life. Results for capital and operating costs, yearly income, and internal rates of return (IRR) were compared. In addition, the scenarios were evaluated to compare electricity sales prices required to obtain a 12% IRR and to determine the effects of a carbon emissions tax on the sales price. The second part of the study investigated the gasification potential of residue remaining from solvent extraction or liquefaction of Powder River Basin Coal. Coal samples from the Decker mine on the Wyoming-Montana border were extracted with tetralin at a temperature of 360°C and pressure of 250 psi. Residue from the extraction was gasified with CO2 or steam at 833°C, 900°C and 975°C at pressures of 0.1 and 0.4 MPa. Product gases were analyzed with a mass spectrometer. Results were used to determine activation energies, reaction order, reaction rates and diffusion effects. Surface area and electron microscopic analyses were also performed on char produced from the solvent extraction residue.

  2. Geothermal energy in Wyoming: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    James, R.W.

    1979-04-01

    An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

  3. Uranium assessment for the Precambrian pebble conglomerates in southeastern Wyoming

    International Nuclear Information System (INIS)

    Borgman, L.E.; Sever, C.; Quimby, W.F.; Andrew, M.E.; Karlstrom, K.E.; Houston, R.S.

    1981-03-01

    This volume is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates, and is a companion to Volume 1: The Geology and Uranium Potential to Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 2: Drill-Hole Data, Drill-Site Geology, and Geochemical Data from the Study of Precambrian Uraniferous Conglomerates of the Medicine Bow Mountains and the Sierra Madre of Southeastern Wyoming

  4. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2005-01-01

    This report summarizes activities that have taken place in the last 6 months (July 2004-December 2004) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the US: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico.

  5. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  6. [Formation and changes of regulated trihalomethanes and haloacetic acids in raw water of Yangtze River, Huangpu River and different treatment processes and pipelines network].

    Science.gov (United States)

    Chen, Xin; Zhang, Dong; Lu, Yin-hao; Zheng, Wei-wei; Wu, Yu-xin; Wei, Xiao; Tian, Da-jun; Wang, Xia; Zhang, Hao; Guo, Shuai; Jiang, Song-hui; Qu, Wei-dong

    2010-10-01

    To investigate the pollutant levels of regulated disinfection by-products trihalomethanes (THMs) and haloacetic acids (HAAs) in raw water from the Huangpu River, the Yangtze River and different treatment processes and finished water, and to explore the changes tendency in transmission and distribution pipeline network. A total of 65 ml water samples with two replicates were collected from different raw water, corresponding treatment processes, finished water and six national surveillance points in main network of transmission and distribution, water source for A water plant and B, C water plant was the Huangpu River and the Yangtze River, respectively. Regulated THMs and HAAs above water samples were detected by gas chromatography. The total trihalomethanes (THM(4)) concentration in different treatment processes of A water plant was ND-9.64 µg/L, dichlorobromomethane was the highest (6.43 µg/L). The THM(4) concentration in B and C water plant was ND to 38.06 µg/L, dibromochloromethane (12.24 µg/L) and bromoform (14.07 µg/L) were the highest in the B and the C water plant respectively. In addition to trichloroacetic acid in A water plant from the raw water, the other HAAs came from different treatment processes. The total haloacetic acids (HAA(6)) concentration of different treated processes in A water plant was 3.21 - 22.97 µg/L, mobromoacetic acid (10.40 µg/L) was the highest. Dibromoacetic acid was the highest both in B (8.25 µg/L) and C (8.84 µg/L) water plant, HAA(6) concentration was ND to 27.18 µg/L. The highest and the lowest concentration of THM(4) were found from the main distribution network of C and A water plant respectively, but the concentration of HAA(6) in the main water pipes network of A water plant was the highest, and the lowest in C water plant. The THMs concentration was 21.11 - 31.18 µg/L in C water plant and 6.72 - 8.51 µg/L in A water plant. The concentration of HAA(6) was 25.02 - 37.31 µg/L in A water plant and 18.69 - 23

  7. Overview of Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  8. Formation and maintenance of single-thread tie channels entering floodplain lakes: Observations from three diverse river systems

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.; Day, G.; Parker, G.

    2009-06-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology; yet they are generally unrecognized and little studied. Here we report the results of field studies focused on tie channel origin and morphodynamics in the following three contrasting systems: the Middle Fly River (Papua New Guinea), the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed, single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V-shaped cross section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bidirectional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  9. The formation and maintenance of single-thread tie channels entering floodplain lakes: observations from three diverse river systems

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Joel C [Los Alamos National Laboratory; Dietrich, William E [UC BERKELEY; Day, Geoff [NEWCREST MINING; Parker, Gary [UNIV OF ILLINOIS

    2009-01-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology, yet they are generally unrecognized and little studied. here we report the results of field studies focused on tie channel origin and morphodynamics in three contrasting systems: the Middle Fly River, Papua New Guinea, the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V shaped cross-section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bi-directional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  10. Digital representation of oil and natural gas well pad scars in southwest Wyoming: 2012 update

    Science.gov (United States)

    Garman, Steven L.; McBeth, Jamie L.

    2015-01-01

    The recent proliferation of oil and natural gas energy development in the Greater Green River Basin of southwest Wyoming has accentuated the need to understand wildlife responses to this development. The location and extent of surface disturbance that is created by oil and natural gas well pad scars are key pieces of information used to assess the effects of energy infrastructure on wildlife populations and habitat. A digital database of oil and natural gas pad scars had previously been generated from 1-meter (m) National Agriculture Imagery Program imagery (NAIP) acquired in 2009 for a 7.7-million hectare (ha) (19,026,700 acres) region of southwest Wyoming. Scars included the pad area where wellheads, pumps, and storage facilities reside and the surrounding area that was scraped and denuded of vegetation during the establishment of the pad. Scars containing tanks, compressors, the storage of oil and gas related equipment, and produced-water ponds were also collected on occasion. This report updates the digital database for the five counties of southwest Wyoming (Carbon, Lincoln, Sublette, Sweetwater, Uinta) within the Wyoming Landscape Conservation Initiative (WLCI) study area and for a limited portion of Fremont, Natrona, and Albany Counties using 2012 1-m NAIP imagery and 2012 oil and natural gas well permit information. This report adds pad scars created since 2009, and updates attributes of all pad scars using the 2012 well permit information. These attributes include the origination year of the pad scar, the number of active and inactive wells on or near each pad scar in 2012, and the overall status of the pad scar (active or inactive). The new 2012 database contains 17,404 pad scars of which 15,532 are attributed as oil and natural gas well pads. Digital data are stored as shapefiles projected to the Universal Transverse Mercator (zones 12 and 13) coordinate system. These data are available from the U.S. Geological Survey (USGS) at http://dx.doi.org/10

  11. Oil and Gas Development in Southwestern Wyoming - Energy Data and Services for the Wyoming Landscape Conservation Initiative (WLCI)

    Science.gov (United States)

    Biewick, Laura

    2009-01-01

    The purpose of this report is to explore current oil and gas energy development in the area encompassing the Wyoming Landscape Conservation Initiative. The Wyoming Landscape Conservation Initiative is a long-term science-based effort to ensure southwestern Wyoming's wildlife and habitat remain viable in areas facing development pressure. Wyoming encompasses some of the highest quality wildlife habitats in the Intermountain West. At the same time, this region is an important source of natural gas. Using Geographic Information System technology, energy data pertinent to the conservation decision-making process have been assembled to show historical oil and gas exploration and production in southwestern Wyoming. In addition to historical data, estimates of undiscovered oil and gas are included from the 2002 U.S. Geological Survey National Assessment of Oil and Gas in the Southwestern Wyoming Province. This report is meant to facilitate the integration of existing data with new knowledge and technologies to analyze energy resources development and to assist in habitat conservation planning. The well and assessment data can be accessed and shared among many different clients including, but not limited to, an online web-service for scientists and resource managers engaged in the Initiative.

  12. 76 FR 14057 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Science.gov (United States)

    2011-03-15

    ...: University of Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park... Anthropology Department, Human Remains Repository, Laramie, WY. The human remains and associated funerary... the human remains was made by University of Wyoming, Anthropology Department, Human Remains Repository...

  13. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wyoming. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Wyoming.

  14. Major and trace elements in Mahogany zone oil shale in two cores from the Green River Formation, piceance basin, Colorado

    Science.gov (United States)

    Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.

    1983-01-01

    The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements

  15. The influence of delta formation mechanism on geotechnical property sequence of the late Pleistocene–Holocene sediments in the Mekong River Delta

    Directory of Open Access Journals (Sweden)

    Truong Minh Hoang

    2016-11-01

    Full Text Available The aim of the study was to characterize a variety of microstructure development-levels and geotechnical property sequences of the late Pleistocene–Holocene deposits in the Mekong River delta (MRD, and the paper furthermore discusses the influences of delta formation mechanisms on them. The survey associated the geotechnical engineering and the sedimentary geology of the late Pleistocene–Holocene deposits at five sites and also undifferentiated Pleistocene sediments. A cross-section which was rebuilt in the delta progradation-direction and between the Mekong and Bassac rivers represents the stratigraphy. Each sedimentary unit was formed under a different delta formation mechanism and revealed a typical geotechnical property sequence. The mechanical behaviors of the sediment succession in the tide-dominated delta with significant fluvial-activity and material source tend to be more cohesionless soils and strengths than those in the tide- and wave-dominated delta and even the coast. The particular tendency of the mechanical behavior of the deposit succession can be reasonably estimated from the delta formation mechanism. The characteristics of the clay minerals from the Mekong River produced the argillaceous soil which does not have extremely high plasticity. The microstructure development-levels are low to very high indicating how to choose hydraulic conductivity value, k, for estimating overconsolidation ratio, OCR, by the piezocone penetration tests (CPTU. The OCR of sediments in the delta types strangely change with depth but none less than 1. The post-depositional processes significantly influenced the microstructure development, particularly the dehydrating and oxidizing processes.

  16. 78 FR 63243 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Science.gov (United States)

    2013-10-23

    ... Wyoming's ``A Landscape Discussion on Energy Law in Wyoming,'' and follow-up to previous meetings. On..., November 13, ``A Landscape Discussion on Energy Law in Wyoming'' begins at 8:00 a.m. Members of the public... and the Federal Advisory Committee Act of 1972, the U.S. Department of the Interior, Bureau of Land...

  17. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implication for seasonal formation mechanism of Secondary Organic Aerosol (SOA)

    OpenAIRE

    Cheng, Chunlei; Li, Mei; Chan, Chak K.; Tong, Haijie; Chen, Changhong; Chen, Duohong; Wu, Dui; Li, Lei; Cheng, Peng; Gao, Wei; Huang, Zhengxu; Li, Xue; Fu, Zhong; Bi, Yanru; Zhou, Zhen

    2016-01-01

    The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM) were studied using a single particle aerosol mass spectrometer (SPAMS) in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD) region in China. Oxalic acid-containing particles accounted for 2.5 % and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carb...

  18. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    Science.gov (United States)

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  19. Headcut Erosion in Wyoming's Sweetwater Subbasin.

    Science.gov (United States)

    Cox, Samuel E; Booth, D Terrance; Likins, John C

    2016-02-01

    Increasing human population and intensive land use combined with a warming climate and chronically diminished snowpacks are putting more strain on water resources in the western United States. Properly functioning riparian systems slow runoff and store water, thus regulating extreme flows; however, riparian areas across the west are in a degraded condition with a majority of riparian systems not in proper functioning condition, and with widespread catastrophic erosion of water-storing peat and organic soils. Headcuts are the leading edge of catastrophic channel erosion. We used aerial imagery (1.4-3.3-cm pixel) to locate 163 headcuts in riparian areas in the Sweetwater subbasin of central Wyoming. We found 1-m-the generally available standard resolution for land management-and 30-cm pixel imagery to be inadequate for headcut identification. We also used Structure-from-Motion models built from ground-acquired imagery to model 18 headcuts from which we measured soil loss of 425-720 m3. Normalized by channel length, this represents a loss of 1.1-1.8 m3 m(-1) channel. Monitoring headcuts, either from ground or aerial imagery, provides an objective indicator of sustainable riparian land management and identifies priority disturbance-mitigation areas. Image-based headcut monitoring must use data on the order of 3.3 cm ground sample distance, or greater resolution, to effectively capture the information needed for accurate assessments of riparian conditions.

  20. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  1. Development of Lower Mississippian cyclic carbonates, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Elrich, M.; Read, J.F.

    1989-03-01

    The Lower Mississippian Lodgepole/Madison formations of Wyoming and Montana consist of a 20 to 300-m upward-shallowing sequence of cyclic slope/basin, deep-ramp to shallow-ramp carbonate deposits. Shallow-ramp cycles (1-3 m) are composed of cross-bedded oolitic grainstone and pellet grainstone, overlain by rare algal laminite caps. Deep-ramp cycles (1-10 m) are characterized by thin-bedded, substorm-wave-base limestone/shale, nodular limestone/shale, and storm-deposited limestone overlain by hummocky cross-stratified grainstone caps. Average periods of the cycles range from 35,000 to 110,000 years. Slope/basin deposits are 10 to 20-cm thick couplets of even-bedded, micritic limestone and shale. Computer modeling of the cycles incorporates fluctuating sea level, subsidence, depth-dependent sedimentation, lag time, and platform slope. Data from spectral analysis (basin/slope couplets), Fischer plots (shallow-ramp cycles), computer modeling, and field data suggest (1) subsidence rates across the 700-km wide platform range from 0.01 m/k.y. to 0.12 m/k.y., (2) high-frequency (10/sup 4/-10/sup 5/ years) sea level fluctuations with 15 to 25-m amplitudes affected the platform, and (3) shallow-ramp slopes were less than 2 cm/km and deep-ramp slopes were greater than 10 cm/km. Computer models produce stratigraphic sections (one-dimensional models) that graphically illustrate how input parameters interact through time to produce the cyclic stratigraphic section.

  2. Spatial mapping and attribution of Wyoming wind turbines

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These

  3. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  4. Modelling of Disinfection by-products formation via UV irradiation of the water from Tajan River (source water for Sari drinking water, Iran

    Directory of Open Access Journals (Sweden)

    Allahbakhsh Javid

    2013-11-01

    Full Text Available Background & Aims of the Study Irradiation with ultraviolet light (UV is used for the disinfection of bacterial contaminants in the production of potable water. The main objective of the study was to investigate and model Disinfection By-Products (DBPs formation due to the UV Irradiation of the Tajan River water under different Irradiation conditions. Materials & Methods:  Water samples were collected throughout September 2011 to August 2013. Transportation of the sample to the laboratory was done on ice in a cooler, and physiochemical analysis was conducted immediately within one day. Dissolved organic carbon (DOC was determined by a TOC analyzer. Irradiation experiments were conducted in a series of 25 mL glass serum bottles with Teflon septa. The present study adopts an orthogonal design. The design involved irradiation with UV at a UV/DOC ratio of 0.5–3.0 and incubating (headspace-free storage for 5–25 sec. A 1 mM phosphate buffer maintained the pH at 6, 7, or 8 respectively, and an incubator maintained the temperature (Temp at 15, 20, or 25 °C respectively. The development of empirical models for DBPs formation used a multivariate regression procedure (stepwise which applied the SPSS System for Windows (Version 16.0. Results:  The results showed that the total DBPs formation ranged between 12.3 and 67.4 mg/l and that control of the levels was primarily due to the reaction time and the dissolved organic carbon level (DOC in the water. Conclusions:  Reaction time and level of DOC concentrations in water exerted a dominant influence on the formation of DBPs during the UV irradiation of water from the Tajan River. The relationships between the measured and predicted values were satisfactory with R 2 values ranging from 0.89 (for Octanal–0.92 (for Formaldehydes. The DOC level in water is the key factor in controlling DBPs formation.

  5. Radioactivity of rocks from the geological formations belonging to the Tibagi River hydrographic basin; Radioatividade de rochas provenientes das formacoes geologicas pertencentes a bacia hidrografica do Rio Tibagi

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Rodrigo Oliveira

    2008-07-01

    This work is a study of the {sup 40}K and the {sup 238}U and {sup 232}Th series radioactivity in rocks measured with high resolution gamma ray spectrometry. The rocks were taken from the geologic formations in the region of the Tibagi river hydrographic basin. The course of this river cuts through the Paleozoic and Mesozoic stratigraphic sequences of the Parana sedimentary basin. In order to take into account the background radiation attenuation by the samples, a technique was developed that eliminated the need to measure a blank sample. The effects of the radiation's self-attenuation in the sample matrix were taken into account by using a gamma ray direct transmission method. The results for 87 rock samples, taken from 14 distinct formations, and their corresponding radioactivity variations are presented and discussed according to the possible geological processes from which they originated. Among the most discussed results are: an outcrop that profiles shale, limestone and rhythmite in the Irati Formation; a sandstone and siltstone sequence from the Rio do Rasto Formation; and a profile sampled in a coal mine located in the Rio Bonito Formation. The calculations of the rocks' contributions to the outdoor gamma radiation dose rate agree with the values presented by other authors for similar rocks. The highest dose values were obtained from felsic rocks (rhyolite of the Castro group, 129.8 {+-} 3.7 nGy.h{sup -1}, and Cunhaporanga granite, 167 {+-} 37 nGy.h{sup -1}). The other highest values correspond to the shale rocks from the Irati Formation (109 {+-} 16 nGy.h{sup -1}) and the siltic shale rocks from the Ponta Grossa Formation (107.9 {+-} 0.7 nGy.h{sup -1}). The most recent geological formations presented the lowest dose values (e.g. the Botucatu sandstone, 3.3 {+-} 0.6 nGy.h{sup -1}). The average value for sedimentary rocks from seven other formations is equal to 59 {+-} 26 nGy.h{sup -1}. The Rio Bonito Formation presented the highest dose value (334

  6. Investigating the Multicultural Competency of a Sample of Wyoming Educators

    Science.gov (United States)

    Kern, Stacey L.

    2016-01-01

    The literature on disproportionality indicates a generally held belief that disproportionality endures, in part, because of the lack of multicultural competency in today's educators. Yet, there is a dearth of empirical evidence to support this belief. This study examined the multicultural competency of a sample of Wyoming educators in order to…

  7. Digital Learning Compass: Distance Education State Almanac 2017. Wyoming

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Wyoming. The sample for this analysis is comprised of all active, degree-granting…

  8. Food habits of Northern Goshawks nesting in south central Wyoming

    Science.gov (United States)

    John R. Squires

    2000-01-01

    Northern Goshawks (Accipiter gentiles) nesting in south central Wyoming consumed at least 33 species of prey; 14 were mammals and 19 were birds. Based on percent occurrence in regurgitated pellets, dominant (>10% frequency) prey species included: red squirrel (Tamiasciurus hudsonicus; present in 50% of pellets), Northern Flicker (Colaptes auratus; 34...

  9. Mitigation Strategies to Reduce Truck Crash Rates on Wyoming Highways

    Science.gov (United States)

    2017-05-04

    M Mahdi Rezapour Mashhadi (ORCID iD: 0000-0003-0774-737X); Promothes Saha, Ph.D., P.E. (ORCID iD: 0000-0003-3298-8327); Trenna Terrill (ORCID iD: 0000-0002-5239-6380); Khaled Ksaibati, Ph.D., P.E. (ORCID iD: 0000-0003-3532-6839) Wyoming has one of th...

  10. Woody fuels reduction in Wyoming big sagebrush communities

    Science.gov (United States)

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) ecosystems historically have been subject to disturbances that reduce or remove shrubs primarily by fire, although insect outbreaks and disease have also been important. Depending on site productivity, fire return in...

  11. The Earthworms (Oligochaeta: Lumbricidae)of Wyoming, USA, Revisited.

    Science.gov (United States)

    This survey of the earthworms from 22 of the 23 counties of Wyoming recorded 13 species of terrestrial Oligochaeta, all members of the family Lumbricidae. One of these species, Aporrectodea limicola, is reported for the first time from the state. Current nomenclature is applied to historical records...

  12. Sedimentation of the basal Kombolgie Formation (Upper Precambrian-Carpentarian) Northern Territory, Australia: possible significance in the genesis of the underlying Alligator Rivers unconformity-type uranium deposits

    International Nuclear Information System (INIS)

    Ojakangas, R.W.

    1979-10-01

    The 1400 to 1500 My old Kombolgie Formation of the MacArthur Basin of the Northern Territory overlies or has overlain unconformity-type uranium deposits including Jabiluka, Ranger, Koongarra, Nabarlek and the small deposits of the South Alligator River Valley. A brief study of the basal portion of the formation showed it to consist entirely of mature conglomerates and quartzose sandstones. Analysis of the bedding types (planar cross beds, trough cross beds and parallel beds) and other sedimentary structures (mainly ripple marks and parting lineation) fit a braided alluvial plain model. A paleocurrent study utilizing about 400 measurements from nine localities located along the westward-facing 250 kilometer-long erosional escarpment of the Arnhem Land Plateau showed the dominant paleocurrent trend to be from west and northwest towards the east and southeast, with local divergence. The data and interpretation presented are relevant to the supergene model of uranium deposition at the unconformity, for they add to the suggestion that additional uranium deposits similar to Jabiluka Two may underlie the Kombolgie Formation eastward from the present escarpment

  13. 2015 Advanced Site Investigation and Monitoring Report Riverton, Wyoming, Processing Site September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [U.S. Dept. of Energy, Washington, DC (United States). Office of Legacy Management (LM); Campbell, Sam [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-09-01

    The U.S. Department of Energy conducted initial groundwater characterization of the Riverton, Wyoming, Processing Site in the 1990s. The characterization culminated in a Site Observational Work Plan in 1998 that recommended a natural flushing compliance strategy. Results of verification monitoring indicated that natural flushing was generally progressing as expected until June 2010, when significant increases in contaminant concentrations were measured in several monitoring wells downgradient of the site after the area flooded. In response to the unexpected results following the flood, an enhanced characterization of the surficial aquifer was conducted in 2012, which included installation of 103 boreholes along nine transects with a Geoprobe, collection of 103 water samples and 65 soil samples, laboratory tests on the soil samples, and additional groundwater modeling. This advanced site investigation report summarizes additional investigation in 2015 through the use of backhoe trenching, sonic drilling, multilevel monitoring wells, direct-push drilling, and temporary well points to collect soil and groundwater samples. Additional surface water measurements were made included the installation of a stilling well and the measurement of stream elevation along the Wind River to approximate upgradient groundwater heads. Groundwater sampling included the addition of geochemical constituents and isotopes that have not been sampled in the past to better understand post-flood conditions and the possibility of additional or ongoing contaminant sources. This sampling was performed to (1) better define the contaminant plumes, (2) verify the occurrence of persistent secondary contaminant sources, (3) better understand the reason for the contaminant spikes after a 2010 flood, and (4) assess contaminant plume stagnation near the Little Wind River. This report provides data analyses and interpretations for the 2015 site investigation that addresses these issues and provides

  14. Generation and migration of Bitumen and oil from the oil shale interval of the Eocene Green River formation, Uinta Basin, Utah

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.

    2016-01-01

    The results from the recent U.S. Geological Survey assessment of in-place oil shale resources of the Eocene Green River Formation, based primarily on the Fischer assay method, are applied herein to define areas where the oil shale interval is depleted of some of its petroleum-generating potential along the deep structural trough of the basin and to make: (1) a general estimates of the amount of this depletion, and (2) estimate the total volume of petroleum generated. Oil yields (gallons of oil per ton of rock, GPT) and in-place oil (barrels of oil per acre, BPA) decrease toward the structural trough of the basin, which represents an offshore lacustrine area that is believed to have originally contained greater petroleum-generating potential than is currently indicated by measured Fischer assay oil yields. Although this interval is considered to be largely immature for oil generation based on vitrinite reflectance measurements, the oil shale interval is a likely source for the gilsonite deposits and much of the tar sands in the basin. Early expulsion of petroleum may have occurred due to the very high organic carbon content and oil-prone nature of the Type I kerogen present in Green River oil shale. In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, we have created paleogeographic reconstructions of several oil shale zones in the basin as part of this study.

  15. Typical aqueous rare earth element behavior in co-produced Brines, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Charles; Quillinan, Scott [UNIVERSIty of Wyoming; McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-10-24

    Normalization of Rare Earth Elements (REEs) is important to remove the distracting effects of the Oddo–Harkins rule and provide a meaningful baseline. Normalizations for rocks are well developed and include chondritic meteorites, UCC, PM, PAAS, and NASC. However normalizations for aqueous REEs are limited to oceanic regions such as the North Pacific Deep Water or North Atlantic Surface Water. This leaves water in contact with continental lithologies without a suitable normalization. We present a preliminary continental aqueous REE normalization derived from 38 deep basin hydrocarbon brines in Wyoming. The REEs in these waters are seven orders of magnitude more dilute than NASC but with significant europium enrichment. Gromet 1984 reports NASC Eu/Eu* is 0.2179, whereas in the normalization offered here, Eu/Eu* is 3.868. These waters also are free from the distracting reduction-oxidation cerium behavior found in ocean normalizations. Because these samples exhibit both the uniform behavior of NASC and the absolute concentration of seawater, a normalization based upon them offers a unique combination of the advantages of both. We used single-peak gaussian analysis to quantify the mean values for each REE and estimate the distribution variability. Additional sample collection during the last year revealed that the Powder River Basin (PRB) is atypical relative to the other sampled basins of Wyoming. Those other basins are the Wind River Basin (WRB) Green River Basin (GRB) and Wamsutter Area (WA). A pre-normalization gadolinium anomaly (Gd/Gd*) of between 4 and 23 with a mean of 11.5, defines the PRB samples. Other basins in this study range from 1 to 7 with a mean of 2.8. Finally, we present a preliminary model for ligand-based behavior of REEs in these samples. This model identifies bicarbonate, bromide, and chloride as forming significant complexes with REEs contributing to REE solubility. The ligand model explains observed REEs in the sampled Cretaceous and

  16. Radiolytic bubble formation and level changes in simulated high-level waste salts and sludges -- application to Savannah River Site and Hanford Storage tanks

    International Nuclear Information System (INIS)

    Walker, D.D.; Crawford, C.L.; Bibler, N.E.

    1993-01-01

    Radiolytically-produced bubbles of trapped gas are observed in simulated high-level waste (HLW) damp salt cake exposed to Co-60 gamma radiation. As the damp salt cake is irradiated, its volume increases due to the formation of trapped gas bubbles. Based on the increase in volume, the rate of trapped gas generation varies between 0.04 and 0.2 molecules/100 eV of energy deposited in the damp salt cake. The maximum volume of trapped gas observed in experiments is in the range 21--26 vol %. After reaching these volumes, the gas bubbles begin to escape. The generated gas includes hydrogen, oxygen, and nitrous oxide. The ratio in which these components are produced depends on the composition of the waste. Nitrous oxide production increases with the amount of sodium nitrite. Gases trapped by this mechanism may account for some of the observed level changes in Savannah River Site and Hanford waste tanks

  17. Late Neogene deformation of the Chocolate Mountains Anticlinorium: Implications for deposition of the Bouse Formation and early evolution of the Lower Colorado River

    Science.gov (United States)

    Beard, Sue; Haxel, Gordon B.; Dorsey, Rebecca J.; McDougall, Kristin A.; Jacobsen, Carl E.

    2016-01-01

    Deformation related to late Neogene dextral shear can explain a shift from an estuarine to lacustrine depositional environment in the southern Bouse Formation north of Yuma, Arizona. We infer that late Neogene deformation in the Chocolate Mountain Anticlinorium (CMA) created a barrier that blocked an estuary inlet, and that pre-existing and possibly active structures subsequently controlled the local course of the lower Colorado River. Structural patterns summarized below suggest that the CMA absorbed transpressional strain caused by left-stepping segments of dextral faults of the San Andreas fault system and/or the eastern California shear zone and Gulf of California shear zone. For this hypothesis to be correct, about 200-250 m of post-6 Ma, pre- ~5.3 Ma uplift along the CMA crest would be required to cut off a marine inlet. The 220-km-long CMA, cored by the early Paleogene Orocopia Schist subduction complex, extends from the Orocopia Mountains (Calif.) southeastward through the Chocolate Mountains (parallel to the southern San Andreas fault). Where Highway 78 crosses the Chocolate Mountains (Fig. 1), the CMA turns eastward through the Black Mountain-Picacho area (Calif.) and Trigo Mountains (Ariz.) into southwest Arizona. It separates southernmost Bouse Formation outcrops of the Blythe basin from subsurface Bouse outcrops to the south in the Yuma area. South of Blythe basin the CMA is transected by the lower Colorado River along a circuitous path. Here we focus on the geology of an area between the central Chocolate Mountains and the Yuma Proving Grounds in Arizona. Specific landmarks include the southeast Chocolate Mountains, Midway Mountains, Peter Kane Mountain, Black Mountain, Picacho Peak, and Gavilan Hills. For simplicity, we refer to this as the eastern Chocolate Mountains.

  18. A distribution of adsorbed forms of cesium 137 and strontium 90 in flood-plain formations of Sozh river

    International Nuclear Information System (INIS)

    Kuznetsov, V.A.; Generalova, V.A.

    1999-01-01

    The distribution of strontium 90 and cesium 137 forms in flood-plain geochemical system 'alluvial deposits - flood-plain turf - humus horizon - soil-source rock', where sorption and colloidal processes play main role in the isotopes migration, was studied. The bulk amount of strontium 90 is presented in adsorbed form in all investigated objects, whereas only 6% of cesium 137 amount in alluvial deposits, flood-plain turf and humus horizon is in adsorbed form. The content of exchange forms of cesium 137 and strontium 90 increases with the depth of the layer. The race of this increase for strontium 90 is large than for cesium 137. The distribution of radionuclides through the different parts of flood-plain of Sozh river has some distinctions due to more lability of adsorbed strontium 90 forms in comparison with cesium 137 ones

  19. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  20. Pleistocene glaciation of the Jackson Hole area, Wyoming

    Science.gov (United States)

    Pierce, Kenneth L.; Licciardi, Joseph M.; Good, John M.; Jaworowski, Cheryl

    2018-01-24

    Pleistocene glaciations and late Cenozoic offset on the Teton fault have played central roles in shaping the scenic landscapes of the Teton Range and Jackson Hole area in Wyoming. The Teton Range harbored a system of mountain-valley glaciers that produced the striking geomorphic features in these mountains. However, the comparatively much larger southern sector of the Greater Yellowstone glacial system (GYGS) is responsible for creating the more expansive glacial landforms and deposits that dominate Jackson Hole. The glacial history is also inextricably associated with the Yellowstone hotspot, which caused two conditions that have fostered extensive glaciation: (1) uplift and consequent cold temperatures in greater Yellowstone; and (2) the lowland track of the hotspot (eastern Snake River Plain) that funneled moisture to the Yellowstone Plateau and the Yellowstone Crescent of High Terrain (YCHT).The penultimate (Bull Lake) glaciation filled all of Jackson Hole with glacial ice. Granitic boulders on moraines beyond the south end of Jackson Hole have cosmogenic 10Be exposure ages of ~150 thousand years ago (ka) and correlate with Marine Isotope Stage 6. A thick loess mantle subdues the topography of Bull Lake moraines and caps Bull Lake outwash terraces with a reddish buried soil near the base of the loess having a Bk horizon that extends down into the outwash gravel. The Bull Lake glaciation of Jackson Hole extended 48 kilometers (km) farther south than the Pinedale, representing the largest separation of these two glacial positions in the Western United States. The Bull Lake is also more extensive than the Pinedale on the west (22 km) and southwest (23 km) margins of the GYGS but not on the north and east. This pattern is explained by uplift and subsidence on the leading and trailing “bow-wave” of the YCHT, respectively.During the last (Pinedale) glaciation, mountain-valley glaciers of the Teton Range extended to the western edge of Jackson Hole and built

  1. DANCEMAKING IN UNEXPECTED PLACES: MOLDOVAN MUSIC AND VERTICAL DANCE IN WYOMING

    Directory of Open Access Journals (Sweden)

    GARNETT RODNEY

    2016-06-01

    Full Text Available Since 1998, vertical dance at the University of Wyoming has been an active catalyst for interactions among choreographers and dancers, composers and musical performers, audiences, rock climbers, and others. Outdoor performances at an impressive geologic formation have consistently drawn large audiences, and allowed choreographer and performer Margaret Wilson to consider the ways that vertical dancers come to embody widely varying environments through heightened sensitivity, improvisation, and other processes of “tuning in” (Hunter 2015: 181 to the world around them. In 2013, as I stood on a high ledge on the massive Vedauwoo rock formation in Wyoming, I found that the sound of Moldovan nai naturally became a part of our outdoor environment as it echoed off of the rocks and projected out into the forest. Our pianist had begun to embody an effective sense of how to collaborate with dancers and their movement having accompanied their classes for many years. Nai easily became an integral part of her musical compositions. Musicians who are more closely focused on devices such as instruments, sheet music, and microphones have been less able to improvise and interact spontaneously with the sensory world of vertical dance. Listening closely to create their best sound makes them less sensitive to distant aural, visual, and sensory phenomena that would allow them to embody their environment along with other performers and their audiences. In seeking to better adapt to variable vertical dance settings, I found that Moldovan nai is especially well-suited for collaborating with other instruments and dancers in vertical dance environments. Moldovan melodies and rhythms have also become an important element of both outdoor and indoor vertical dance performances in Wyoming. The broader movement, of playing panflute is more like dancing than the smaller movements required for playing transverse flutes. In addition, the social essence of learning and

  2. Pesticides in Wyoming Groundwater, 2008-10

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Taylor, Michelle L.

    2013-01-01

    Groundwater samples were collected from 296 wells during 1995-2006 as part of a baseline study of pesticides in Wyoming groundwater. In 2009, a previous report summarized the results of the baseline sampling and the statistical evaluation of the occurrence of pesticides in relation to selected natural and anthropogenic (human-related) characteristics. During 2008-10, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, resampled a subset (52) of the 296 wells sampled during 1995-2006 baseline study in order to compare detected compounds and respective concentrations between the two sampling periods and to evaluate the detections of new compounds. The 52 wells were distributed similarly to sites used in the 1995-2006 baseline study with respect to geographic area and land use within the geographic area of interest. Because of the use of different types of reporting levels and variability in reporting-level values during both the 1995-2006 baseline study and the 2008-10 resampling study, analytical results received from the laboratory were recensored. Two levels of recensoring were used to compare pesticides—a compound-specific assessment level (CSAL) that differed by compound and a common assessment level (CAL) of 0.07 microgram per liter. The recensoring techniques and values used for both studies, with the exception of the pesticide 2,4-D methyl ester, were the same. Twenty-eight different pesticides were detected in samples from the 52 wells during the 2008-10 resampling study. Pesticide concentrations were compared with several U.S. Environmental Protection Agency drinking-water standards or health advisories for finished (treated) water established under the Safe Drinking Water Act. All detected pesticides were measured at concentrations smaller than U.S. Environmental Protection Agency drinking-water standards or health advisories where applicable (many pesticides did not have standards or advisories). One or more pesticides

  3. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China

    Science.gov (United States)

    Liu, Shang; Hu, Min; Wu, Zhijun; Wehner, Birgit; Wiedensohler, Alfred; Cheng, Yafang

    Continuous measurements of aerosol number size distribution in the range of 3 nm-10 μm were performed in Pearl River Delta (PRD), China. These measurements were made during the period of 3 October to 5 November in 2004 at rural/coastal site, Xinken (22°37'N, 113°35'E, 6 m above sea level), in the south suburb of Guangzhou City (22°37'N, 113°35'E, 6 m above sea level), using a Twin Differential Mobility Particle Sizer (TDMPS) combined with an Aerodynamic Particle Sizer (APS). The aerosol particles at Xinken were divided into four groups according to the observation results: nucleation mode particles (3-30 nm), Aitken mode particles (30-130 nm), accumulation mode particles (130-1000 nm) and coarse mode particles (1-10 μm). Concentrations of nucleation mode, Aitken mode and accumulation mode particles were observed in the same order of magnitude (about 10,000 cm -3), among which the concentration of Aitken mode particle was the highest. The Aitken mode particles usually had two peaks: the morning peak may be caused by the land-sea circulation, which is proven to be important for transporting aged aerosols back to the sampling site, while the noon peak was ascribed to the condensational growth of new particles. New particle formation events were found on 7 days of 27 days, the new particle growth rates ranged from 2.2 to 19.8 nm h -1 and the formation rates ranged from 0.5 to 5.2 cm -3 s -1, both of them were in the range of typical observed formation rates (0.01-10 cm -3 s -1) and typical particle growth rates (1-20 nm h -1). The sustained growth of the new particles for several hours under steady northeast wind indicated that the new particle formation events may occur in a large homogeneous air mass.

  4. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid

    Directory of Open Access Journals (Sweden)

    C. Cheng

    2017-08-01

    Full Text Available The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM were studied using a single-particle aerosol mass spectrometer (SPAMS in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD region in China. Oxalic-acid-containing particles accounted for 2.5 and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carbon (EC, organic carbon (OC, elemental and organic carbon (ECOC, biomass burning (BB, heavy metal (HM, secondary (Sec, sodium-potassium (NaK, and dust. Oxalic acid was found predominantly mixing with sulfate and nitrate during the whole sampling period, likely due to aqueous-phase reactions. In summer, oxalic-acid-containing particle number and ozone concentration followed a very similar trend, which may reflect the significant contribution of photochemical reactions to oxalic acid formation. The HM particles were the most abundant oxalic acid particles in summer and the diurnal variations in peak area of iron and oxalic acid show opposite trends, which suggests a possible loss of oxalic acid through the photolysis of iron oxalato-complexes during the strong photochemical activity period. In wintertime, carbonaceous particles contained a substantial amount of oxalic acid as well as abundant carbon clusters and BB markers. The general existence of nitric acid in oxalic-acid-containing particles indicates an acidic environment during the formation process of oxalic acid. The peak areas of nitrate, sulfate and oxalic had similar temporal change in the carbonaceous type oxalic acid particles, and the organosulfate-containing oxalic acid particles correlated well with total oxalic acid particles during the haze episode, which suggests that the formation of oxalic acid is closely associated with the oxidation of organic precursors in the aqueous phase.

  5. 76 FR 58533 - Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper, WY

    Science.gov (United States)

    2011-09-21

    ... meeting is open to the public. ADDRESSES: The meeting will be held at the Wyoming Oil and Gas Conservation... Right Lease Applications in New Mexico held by Ark Land Company, for competitive bidding rights in... Powder River Coal Production Region. Any party interested in providing comments or data related to...

  6. Employment Discrimination Based on Sexual Orientation and Gender Identity in Wyoming

    OpenAIRE

    Mallory, Christy; Sears, Brad

    2015-01-01

    About 8,900 LGBT workers in Wyoming are not explicitly protected from discrimination under state or federal laws. Discrimination against LGBT employees in Wyoming has recently been documented in surveys, court cases, and other sources. Many corporate employers and public opinion in the state support protections for LGBT people in the workplace. If sexual orientation and gender identity were added to existing statewide non-discrimination laws, four more complaints would be filed in Wyoming eac...

  7. Hydrology of area 59, northern Great Plains and Rocky Mountain coal provinces, Colorado and Wyoming

    Science.gov (United States)

    Gaggiani, Neville G.; Britton, Linda J.; Minges, Donald R.; Kilpatrick, F.A.; Parker, Randolph S.; Kircher, James E.

    1987-01-01

    Hydrologic information and analysis aid in decisions to lease federally owned coal and to prepare necessary Environmental Assessments and Impact Study reports. This need has become even more critical with the enactment of Public Law 95-87, the "Surface Mining Control and Reclamation Act of 1977." This act requires an appropriate regulatory agency to issue permits, based on the review of permit-application data to assess hydrologic impacts. This report, which partially fulfills this requirement, is one in a series of nationwide coal province reports that present information thematically, through the use of a brief text and accompanying maps, graphs, charts, or other illustrations for single hydrologic topics. The report broadly characterizes the hydrology of Area 59 in north-central Colorado and southeastern Wyoming.The report area, located within the South Platte River basin, covers a 16,000-square-mile area of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics.The South Platte River, the major stream in the area, and most of its tributaries originate in granitic mountains and flow into and through the sedimentary rocks of the Great Plains. Altitudes range from less than 5,000 feet to more than 14,000 feet above sea level. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, and produces deep snowpacks. Snowmelt during the spring and summer produces most streamflow. Transmountain diversion of water from the streams on the western slope of the mountains also adds to the streamflow. Precipitation in the plains is as little as 10 inches annually. Streams that originate in the plains are ephemeral.Streamflow quality is best in the mountains, where dissolved-solids concentrations are generally small. Concentrations increase in the plains as streams flow through sedimentary basins, and as urbanization and irrigation increase. The quality of some mountain streams is affected by

  8. Sources and characteristics of organic matter in the Clackamas River, Oregon, related to the formation of disinfection by-products in treated drinking water

    Science.gov (United States)

    Carpenter, Kurt D.; Kraus, Tamara E.C.; Goldman, Jami H.; Saraceno, John Franco; Downing, Bryan D.; Bergamaschi, Brian A.; McGhee, Gordon; Triplett, Tracy

    2013-01-01

    This study characterized the amount and quality of organic matter in the Clackamas River, Oregon, to gain an understanding of sources that contribute to the formation of chlorinated and brominated disinfection by-products (DBPs), focusing on regulated DBPs in treated drinking water from two direct-filtration treatment plants that together serve approximately 100,000 customers. The central hypothesis guiding this study was that natural organic matter leaching out of the forested watershed, in-stream growth of benthic algae, and phytoplankton blooms in the reservoirs contribute different and varying proportions of organic carbon to the river. Differences in the amount and composition of carbon derived from each source affects the types and concentrations of DBP precursors entering the treatment plants and, as a result, yield varying DBP concentrations and species in finished water. The two classes of DBPs analyzed in this study-trihalomethanes (THMs) and haloacetic acids (HAAs)-form from precursors within the dissolved and particulate pools of organic matter present in source water. The five principal objectives of the study were to (1) describe the seasonal quantity and character of organic matter in the Clackamas River; (2) relate the amount and composition of organic matter to the formation of DBPs; (3) evaluate sources of DBP precursors in the watershed; (4) assess the use of optical measurements, including in-situ fluorescence, for estimating dissolved organic carbon (DOC) concentrations and DBP formation; and (5) assess the removal of DBP precursors during treatment by conducting treatability "jar-test" experiments at one of the treatment plants. Data collection consisted of (1) monthly sampling of source and finished water at two drinking-water treatment plants; (2) event-based sampling in the mainstem, tributaries, and North Fork Reservoir; and (3) in-situ continuous monitoring of fluorescent dissolved organic matter (FDOM), turbidity, chlorophyll-a, and

  9. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative: 2012 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura; Boughton, Gregory K.; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Fedy, Bradford C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Sweat, Michael J.; Wilson, Anna B.

    2014-01-01

    Southwest Wyoming contains abundant energy resources, wildlife, habitat, open spaces, and outdoor recreational opportunities. Although energy exploration and development have been taking place in the region since the late 1800s, the pace of development for fossil fuels and renewable energy increased significantly in the early 2000s. This and the associated urban and exurban development are leading to landscape-level environmental and socioeconomic changes that have the potential to diminish wildlife habitat and other natural resources, and the quality of human lives, in Southwest Wyoming. The potential for negative effects of these changes prompted Federal, State, and local agencies to undertake the Wyoming Landscape Conservation Initiative for Southwest Wyoming.

  10. Astronomically-Forced Lake Expansion and Contraction Cycles: Sr Isotopic Evidence from the Eocene Green River Formation, Western USA

    Science.gov (United States)

    Baddouh, M.; Meyers, S. R.; Carroll, A.; Beard, B. L.; Johnson, C.

    2014-12-01

    87Sr/86Sr ratio from ancient lake deposits offer a unique insight into the astronomical forcing of lake expansion and contraction, by recording changes in runoff/groundwater provenance. We present new high-resolution 87Sr/86Sr data from the upper Wilkins Peak Member, to investigate linkages between astronomical forcing, water sources, and lake level in a classic rhythmic succession. Fifty-one 87Sr/86Sr ratios from White Mountain core #1 were acquired with a sampling interval of ~30 cm starting from the top of alluvial "I" bed to the lower Laney Member. The 87Sr/86Sr data show a strong and significant negative correlation with oil-yield, a traditional proxy for paleolake level and organic productivity. Application of a radioisotopic time scale, using previously dated ash beds, reveals that both 87Sr/86Sr and oil yield have a strong 20 kyr rhythm. The 87Sr/86Sr data more clearly express a longer period 100 kyr signal, similar to the Laskar 10D eccentricity solution. Using our nominal radioisotopic time scale, the Laskar 10D solution and 87Sr/86Sr data suggest that highest lake levels and greatest organic enrichment are attained during greatest precession and eccentricity. Regional geologic studies and modern river water analyses have shown that less radiogenic waters mostly originate west of the basin, where drainage is strongly influenced by thick Paleozoic and Mesozoic marine carbonate units. Decreased in 87Sr/86Sr therefore imply greater relative water contributions from the Sevier orogenic highlands, relative to lower relief, more radiogenic ranges lying to the east. We therefore propose that highstands of Lake Gosiute record increased penetration of Pacific moisture, related either to increased El Niño frequency or southward displacement of major storm tracks. We hypothesize that the occurrence of wetter winters caused expansion of Lake Gosiute, deposition of organic carbon rich facies, and decreased lake water 87Sr/86Sr.

  11. Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.

  12. Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)

    International Nuclear Information System (INIS)

    1979-02-01

    Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment

  13. Socioeconomic issues for the Bear River Watershed Conservation Land Area Protection Plan

    Science.gov (United States)

    Thomas, Catherine Cullinane; Huber, Christopher; Gascoigne, William; Koontz, Lynne

    2012-01-01

    The Bear River Watershed Conservation Area is located in the Bear River Watershed, a vast basin covering fourteen counties across three states. Located in Wyoming, Utah, and Idaho, the watershed spans roughly 7,500 squares miles: 1,500 squares miles in Wyoming; 2,700 squares miles in Idaho; and 3,300 squares miles in Utah (Utah Division of Water Resources, 2004). Three National Wildlife Refuges are currently contained within the boundary of the BRWCA: the Bear River Migratory Bird Refuge in Utah, the Bear Lake National Wildlife Refuge in Idaho, and the Cokeville Meadows National Wildlife Refuge in Wyoming. In 2010, the U.S. Fish and Wildlife Service conducted a Preliminary Project Proposal and identified the Bear River Watershed Conservation Area as having high-value wildlife habitat. This finding initiated the Land Protection Planning process, which is used by the U.S. Fish and Wildlife Service to study land conservation opportunities including adding lands to the National Wildlife Refuge System. The U.S. Fish and Wildlife Service proposes to include part of the Bear River Watershed Conservation Area in the Refuge System by acquiring up to 920,000 acres of conservation easements from willing landowners to maintain landscape integrity and habitat connectivity in the region. The analysis described in this report provides a profile of the social and economic conditions in the Bear River Watershed Conservation Area and addresses social and economic questions and concerns raised during public involvement in the Land Protection Planning process.

  14. Possible Involvement of Permian Phosphoria Formation Oil as a Source of REE and Other Metals Associated with Complex U-V Mineralization in the Northern Bighorn Basin?

    Directory of Open Access Journals (Sweden)

    Anita L. Moore-Nall

    2017-11-01

    Full Text Available The origin of V, U, REE and other metals in the Permian Phosphoria Formation have been speculated and studied by numerous scientists. The exceptionally high concentrations of metals have been interpreted to reflect fundamental transitions from anoxic to oxic marine conditions. Much of the oil in the Bighorn Basin, is sourced by the Phosphoria Formation. Two of the top 10 producing oil fields in Wyoming are located approximately 50 km west of two abandoned U-V mining districts in the northern portion of the basin. These fields produce from basin margin anticlinal structures from Mississippian age reservoir rock. Samples collected from abandoned U-V mines and prospects hosted in Mississippian aged paleokarst in Montana and Wyoming have hydrocarbon residue present and contain anomalous high concentrations of many metals that are found in similar concentrations in the Phosphoria Formation. As, Hg, Mo, Pb, Tl, U, V and Zn, often metals of environmental concern occur in high concentrations in Phosphoria Formation samples and had values ranging from 30–1295 ppm As, 0.179–12.8 ppm Hg, 2–791 ppm Mo, <2–146 ppm Pb, 10–490 ppm Tl, 907–86,800 ppm U, 1240–18,900 ppm V, and 7–2230 ppm Zn, in mineralized samples from this study. The REE plus Y composition of Madison Limestone- and limestone breccia hosted-bitumen reflect similar patterns to both mineralized samples from this study and to U.S. Geological Survey rock samples from studies of the Phosphoria Formation. Geochemical, mineralogical and field data were used to investigate past theories for mineralization of these deposits to determine if U present in home wells and Hg content of fish from rivers on the proximal Crow Indian Reservation may have been derived from these deposits or related to their mode of mineralization.

  15. 77 FR 55529 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Science.gov (United States)

    2012-09-10

    ... background information is also available online at http://www.fws.gov/mountain-prairie/species/mammals/wolf... allowing the Wyoming Game and Fish Commission (WGFC) to diminish Wyoming's Wolf Trophy Game Management Area... minimum levels. In early 2011, we began discussions with Wyoming seeking to develop a strategy to address...

  16. 76 FR 3926 - Notice and Request for Comments: LSC Elimination of the Nevada, South Dakota, and Wyoming Migrant...

    Science.gov (United States)

    2011-01-21

    ... Dakota, and Wyoming Migrant Service Areas Beginning April 1, 2011 AGENCY: Legal Services Corporation. ACTION: Notice and Request for Comments--LSC Elimination of the Nevada, South Dakota, and Wyoming Migrant... Wyoming migrant service areas: MNV, MSD, and MWY, effective April 1, 2011, because any eligible migrant...

  17. Draft environmental statement. Wyoming Mineral Corporation, Irigaray solution mining project (Johnson County, Wyoming)

    International Nuclear Information System (INIS)

    1978-04-01

    The Irigaray project consists of solution mining (in situ leaching) operations involving uranium ore deposits in Johnson County, Wyoming. Solution mining activities will include a processing facility with an annual production of 500,000 lb of U 3 O 8 from up to 50 acres of well fields through the initial license authorization. The Irigaray project has an estimated lifetime of 10 to 20 years with known ore deposits and the current level of solution mining technology. Environmental impacts and adverse effects are summarized. The site is mostly used as grazing land for cattle and sheep. Initiation of the Irigaray project would result in the temporary removal from grazing and the disturbance of approximately 60 acres during operation. All disturbed surface areas will be reclaimed and returned to their original use. Approximately 1.2 x 10 6 m 3 (1000 acre-ft) of water will be withdrawn from the ore zone aquifer. This water will be conveyed to the onsite waste ponds for evaporation. An estimated 4.2 x 10 5 m 3 (340 acre-ft) of groundwater is expected to temporarily contain increased concentrations of radioactive and toxic elements during the operation of each 4-ha (10-acre) well field. Restoration should return this water to a condition that is consistent with its premining use (or potential use). There will be no discharge of liquid effluents from the Irigaray project. Atmospheric effluents will be within acceptable limits. The dose rates of radionuclides in the air at the nearest ranches from the plant site are tabulated. The Irigaray project proposes the production and utilization of 500,000 lb per year of uranium resources. The Irigaray project will not produce any significant socioeconomic impact on the local area because of the small number of employees that will be employed at the project

  18. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    Science.gov (United States)

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  19. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China

    Science.gov (United States)

    Shao, Ping; An, Junlin; Xin, Jinyuan; Wu, Fangkun; Wang, Junxiu; Ji, Dongsheng; Wang, Yuesi

    2016-07-01

    Volatile organic compounds (VOCs) were continuously observated in a northern suburb of Nanjing, a typical industrial area in the Yangtze River Delta, in a summer observation period from 15th May to 31st August 2013. The average concentration of total VOCs was (34.40 ± 25.20) ppbv, including alkanes (14.98 ± 12.72) ppbv, alkenes (7.35 ± 5.93) ppbv, aromatics (9.06 ± 6.64) ppbv and alkynes (3.02 ± 2.01) ppbv, respectively. Source apportionment via Positive Matrix Factorization was conducted, and six major sources of VOCs were identified. The industry-related sources, including industrial emissions and industrial solvent usage, occupied the highest proportion, accounting for about 51.26% of the VOCs. Vehicular emissions occupied the second highest proportion, accounting for about 34.08%. The rest accounted for about 14.66%, including vegetation emission and liquefied petroleum gas/natural gas usage. Contributions of VOCs to photochemical O3 formation were evaluated by the application of a detailed chemical mechanism model (NCAR MM). Alkenes were the dominant contributors to the O3 photochemical production, followed by aromatics and alkanes. Alkynes had a very small impact on photochemical O3 formation. Based on the outcomes of the source apportionment, a sensitivity analysis of relative O3 reduction efficiency (RORE), under different source removal regimes such as using the reduction of VOCs from 10% to 100% as input, was conducted. The RORE was the highest (~ 20%-40%) when the VOCs from solvent-related sources decreased by 40%. The highest RORE values for vegetation emissions, industrial emissions, vehicle exhaust, and LPG/NG usage were presented in the scenarios of 50%, 80%, 40% and 40%, respectively.

  20. Processes of Terrace Formation on the Piedmont of the Santa Cruz River Valley During Quaternary Time, Green Valley-Tubac Area, Southeastern Arizona

    Science.gov (United States)

    Lindsey, David A.; Van Gosen, Bradley S.

    2010-01-01

    In this report we describe a series of stepped Quaternary terraces on some piedmont tributaries of the Santa Cruz River valley in southeastern Arizona. These terraces began to form in early Pleistocene time, after major basin-and-range faulting ceased, with lateral planation of basin fill and deposition of thin fans of alluvium. At the end of this cycle of erosion and deposition, tributaries of the Santa Cruz River began the process of dissection and terrace formation that continues to the present. Vertical cutting alternated with periods of equilibrium, during which streams cut laterally and left thin deposits of channel fill. The distribution of terraces was mapped and compiled with adjacent mapping to produce a regional picture of piedmont stream history in the middle part of the Santa Cruz River valley. For selected tributaries, the thickness of terrace fill was measured, particle size and lithology of gravel were determined, and sedimentary features were photographed and described. Mapping of terrace stratigraphy revealed that on two tributaries, Madera Canyon Wash and Montosa Canyon Wash, stream piracy has played an important role in piedmont landscape development. On two other tributaries, Cottonwood Canyon Wash and Josephine Canyon Wash, rapid downcutting preempted piracy. Two types of terraces are recognized: erosional and depositional. Gravel in thin erosional terraces has Trask sorting coefficients and sedimentary structures typical of streamflood deposits, replete with bar-and-swale surface topography on young terraces. Erosional-terrace fill represents the channel fill of the stream that cuts the terrace; the thickness of the fill indicates the depth of channel scour. In contrast to erosional terraces, depositional terraces show evidence of repeated deposition and net aggradation, as indicated by their thickness (as much as 20+ m) and weakly bedded structure. Depositional terraces are common below mountain-front canyon mouths where streams drop their

  1. Pteridophytes from Lower Gondwana formations of the Ib River Coalfield, Orissa and their diversity and distribution in the Permian of India

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, S.; Singh, K.J.; Chandra, S. [Fakir Mohan University, Balasore (India). PG Dept. of Environmental Science

    2006-12-15

    Recent extensive investigations carried out in the Ib River Coalfield, Mahanadi Master Basin, Orissa, identified numerous fossiliferous beds in the lower Gondwana deposits. Six exposures of the Barakar and lower Kamthi formations yielded diverse and abundant plant remains. The flora includes twenty-three genera representing nine groups viz., Lycopodiales, Equisetales, Sphenophyllales, Filicales, Cordaitales, Coniferales, Ginkgoales, Cycadales and Glossopteridales. Systematic descriptions of the pteridophyte taxa namely Cyclodendron (Lycopodiales), Schizoneura, Raniganjia, Bengalia, equisetaceous stems (Equisetales), Trizygia, Benlightfootia (Sphenophyllales), Neomariopteris, and Dichotomopteris (Filicales) are presented in this paper. Pteridophytic leaves comprising nine taxa viz., Cyclodendron leslii, Schizoneura gondwanensis, Raniganjia bengalensis, Bengalia raniganjensis, Trizygia speciosa, Benlightfootia indica, Neomariopteris hughesii, N. talchirensis, and Dichotomopteris sp. together with equisetaceous stems constitute about 7.88% (72 specimens) of the total plant assemblage collected from this coalfield. Among the pteridophytes, equisetaceous stems are most abundant (40.3%; 29 specimens) followed by Schizoneura gondwanensis (20.8%, 15 specimens) and Trizygia speciosa (13.9%, 10 specimens). A summary of the known diversity of pteridophytes in the Indian Permian as a whole is provided.

  2. Application of biological markers for the identification of oil-type pollutants in recent sediments: Alluvial formation of the Danube river, Oil refinery Pančevo

    Directory of Open Access Journals (Sweden)

    Rašović Aleksandar S.

    2002-01-01

    Full Text Available The purpose of this paper was to examine to which extent the abundance and distribution of certain biological markers may be used for the identification of oil-type pollutants in recent sediments and ground waters. The samples were taken from the area of the Oil Refinery Pančevo (alluvial formation of the Danube River. The organic matter of the investigated samples was isolated using an extraction method with chloroform. The group composition and usual biological markers were analyzed in the obtained extracts. n-Alkanes and acyclic isoprenoids, pristane and phytane were analyzed using gas chromatographie (GC analysis of saturated hydrocarbons. Polycyclic alkanes of the sterane and terpane type were analyzed using gas chromatography-mass spectrometry (GC-MS, i.e. by analyzing the carbamide non-adduct of the total alkane fraction (Single Ion Monitoring SIM-technique. The obtained results indicate that n-alkanes can be used for the identification of oil-type pollutants (for example, if the oil-pollutant is biodegraded or present in very low concentrations, and steranes and triterpanes can be used as very reliable indicators of oil-type pollution in recent sediments and ground waters.

  3. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Science.gov (United States)

    2013-05-01

    ... Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming AGENCY: Nuclear Regulatory Commission.... 47 for its Bear Creek Uranium Mill facility in Converse County, Wyoming. The NRC has prepared an... INFORMATION: I. Background The Bear Creek Uranium Mill operated from September 1977 until January 1986, and...

  4. Mathematics Efficacy and Professional Development Needs of Wyoming Agricultural Education Teachers

    Science.gov (United States)

    Haynes, J. Chris; Stripling, Christopher T.

    2014-01-01

    School-based agricultural education programs provide contextualized learning environments for the teaching of core academic subject matter. This study sought to examine the mathematics efficacy and professional development needs of Wyoming agricultural education teachers related to teaching contextualized mathematics. Wyoming agricultural…

  5. Fens and their rare plants in the Beartooth Mountains, Shoshone National Forest, Wyoming

    Science.gov (United States)

    Bonnie Heidel; Walter Fertig; Sabine Mellmann-Brown; Kent E. Houston; Kathleen A. Dwire

    2017-01-01

    Fens are common wetlands in the Beartooth Mountains on the Shoshone National Forest, Clarks Fork Ranger District, in Park County, Wyoming. Fens harbor plant species found in no other habitats, and some rare plants occurring in Beartooth fens are found nowhere else in Wyoming. This report summarizes the studies on Beartooth fens from 1962 to 2009, which have contributed...

  6. Influence of container size on Wyoming big sagebrush seedling morphology and cold hardiness

    Science.gov (United States)

    Kayla R. Herriman; Anthony S. Davis; R. Kasten Dumroese

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata) is a key component of sagebrush steppe ecosystems and is a dominant shrub throughout the western United States. Our objective was to identify the effect of container size on plant morphology of Wyoming big sagebrush. We used three different stocktypes (45/340 ml [20 in3], 60/250 ml [15 in3], 112/105 ml [6....

  7. Influences on wood load in mountain streams of the Bighorn National Forest, Wyoming, USA.

    Science.gov (United States)

    Nowakowski, Amy L; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  8. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative - 2013 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Kirk A.; Potter, Christopher J.; Schell, Spencer; Sweat, Michael J.; Walters, Annika W.; Wilson, Anna B.

    2014-01-01

    the mountain shrub-mapping project in the Big Piney-La Barge mule deer winter range. Finally, a 3-year survey of pygmy rabbits in four major gas-field areas was completed and used to validate the pygmy rabbit habitat model/map developed earlier in the project. Important products that became available for use by WLCI partners included publication of USGS Data Series report (http://pubs.usgs.gov/ds/800/pdf/ds800.pdf) that compiles our WLCI land cover and land use data, which depict current and historical patterns of sage-grouse habitat in relation to energy development and will be used to pose “what-if” scenarios to evaluate possible outcomes of alternative land-use strategies and practices on habitat and wildlife. Another important FY2013 product was a journal article (http://aapgbull.geoscienceworld.org/content/97/6/899.full) that describes the Mowry Shale and Frontier formation, which harbors coalbed methane and shale gas resources in Wyoming, Colorado, and Utah, for use in future scenario-building work. We also produced maps and databases that depict the structure and condition of aspen stands in the Little Mountain Ecosystem, and then presented this information to the Bureau of Land Management, Wyoming Game and Fish Department, and other interested entities for supporting aspen-management objectives.

  9. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  10. Channelization and floodplain forests: impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA

    Science.gov (United States)

    Sonja N. Oswalt; Sammy L. King

    2005-01-01

    We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased...

  11. Wyoming uranium miners set sights on higher production

    International Nuclear Information System (INIS)

    White, L.

    1975-01-01

    The rising price of U 3 O 8 due to current shortage of supply and stiff environmental regulations on the uranium mining serve as grounds for caution in assessing the future of the uranium industry. Some projections of the need for doubled uranium production in the next 5 years have sparked much exploration and mining in Wyoming. Currently working or near-working mining operations are discussed briefly. The discussions are divided as to the company carrying out the operation-- from Exxon to small drilling contractors

  12. Comparative evaluation of clays from Abakaliki Formation with ...

    African Journals Online (AJOL)

    The characteristics of clays from Abakaliki Formation, Southeastern Nigeria was evaluated to establish its suitability as drilling mud when compared with commercial bentonite such as Wyoming bentonite. The chemical, mineralogical and geotechnical properties were employed in assessing the suitability of Abakaliki clay as ...

  13. Stratigraphy and uranium potential of early proterozoic metasedimentary rocks in the Medicine Bow Mountains, Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.

    1979-01-01

    The Medicine Bow Mountains of southeastern Wyoming contain an eight mile (13 km) thick section of Early Proterozoic (2500 to 1700 My b.p.) metasedimentary rocks which is subdivided into three successions: the Phantom Lake Metamorphic Suite (oldest), Deep Lake Group, and Libby Creek Group. The most promising units are the basal conglomerate of the upper Phantom Lake Suite, which appears to unconformably overlie metavolcanics of the lower Phantom Lake Suite, and the Magnolia Formation, which unconformably overlies the upper Phantom Lake Suite. Outcrops of the former have yielded assays of up to 141 ppM U and 916 ppM Th, with no appreciable gold. Outcrops of the Magnolia Formation have yielded up to 8.4 ppM U and 38 ppM Th. Several factors indicate that these units deserve further study. First, the lithologies of the radioactive and nonradioactive units are remarkably similar to those found in known uranium fossil-placers. Second, the paleogeography was favorable for placer accumulation if the conglomerates are fluvial sediments in an epicontinental clastic succession which was deposited during several transgressive-regressive cycles, as interpreted to be, Third, the age of the conglomerates may be similar to the age of other known uranium placers-i.e., more than 2000 My b.p. And fourth, geological and geochemical studies indicate that both uranium and pyrite have been strongly leached from outcrops and that subsurface rocks contain more uranium than surface rocks do

  14. Habitat and nesting biology of Mountain Plovers in Wyoming

    Science.gov (United States)

    Plumb, R.E.; Anderson, S.H.; Knopf, F.L.

    2005-01-01

    Although previous research has considered habitat associations and breeding biology of Mountain Plovers in Wyoming at discrete sites, no study has considered these attributes at a statewide scale. We located 55 Mountain Plover nests in 6 counties across Wyoming during 2002 and 2003. Nests occurred in 2 general habitat types: grassland and desert-shrub. Mean estimated hatch date was 26 June (n = 31) in 2002 and 21 June (n = 24) in 2003. Mean hatch date was not related to latitude or elevation. Hatch success of nests was inferred in 2003 by the presence of eggshell fragments in the nest scrape. Eggs in 14 of 22 (64%) known-fate nests hatched. All grassland sites and 90% of desert sites were host to ungulate grazers, although prairie dogs were absent at 64% of nest sites. Nest plots had less grass coverage and reduced grass height compared with random plots. More than 50% of nests occurred on elevated plateaus. The Mountain Plover's tendency to nest on arid, elevated plateaus further substantiates claims that the bird is also a disturbed-prairie species.

  15. Thermodynamic of hydration of a Wyoming montmorillonite saturated with Ca, Mg, Na and K

    International Nuclear Information System (INIS)

    Vieillard, P.; Blanc, P.; Gailhanou, H.; Gaboreau, S.; Giffaut, E.

    2010-01-01

    and the four Margules parameters (W H1 W H2 , W S1 and W S2 ) in the other hand, with the ionic potential of the interlayer cation are observed for alkaline and alkali-earth cations. Validation of standard state thermodynamic properties of hydration of end members has been done in two fields: - by comparing behaviour of hydration during exchange between two any end-members with experimental isotherms of Na/Ca Wyoming montmorillonite; - by plotting the dehydration of the four Wyoming Montmorillonite with temperature, showing a full dehydration in the temperature range 160-190 deg. C in the order 160 deg. < K ≅ Na< Ca< Mg< 190 deg. C. Then, the acquisition of standard state thermodynamic properties of hydration and the number of moles of interlayer water are then fully available for a given temperature and relative humidity and would imply to solve many questions like: the behavior of exchange between two cations and the number of moles of water transferred during exchange for a given temperature, the selectivity for a given relative humidity. However, from a limited number of measurements, it is possible to extend the results to different compositions, by using predictive models, to provide theoretical thermodynamic values of formation of some hydrated smectites and calibrated with measured data from both the literature and acquired within the framework of this project. (authors)

  16. Weatherization: Wyoming's Hidden Resource; Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Wyoming demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  17. Wyoming State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  18. CCR Certification Form for Wyoming or EPA R8 Tribal Community Water Systems

    Science.gov (United States)

    The CCR Certification Form can be used to certify that community water systems in Wyoming or on Tribal Lands in EPA Region 8 have completed and distributed their annual Consumer Confidence Report (CCR) or water quality report.

  19. Wyoming State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming

  20. 78 FR 77644 - Black Hills National Forest, South Dakota; Thunder Basin National Grassland, Wyoming; Teckla...

    Science.gov (United States)

    2013-12-24

    ...: Approximately 135 miles of transmission line Require a 125 foot right-of-way Construction of wood or steel H... lands, and state lands in Wyoming. The line would be constructed on wood or steel H-frame structures for...

  1. Connected vehicle pilot deployment program phase 1, security management operational concept : ICF/Wyoming.

    Science.gov (United States)

    2016-03-14

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  2. Connected vehicle pilot deployment program phase 2, data management plan - Wyoming

    Science.gov (United States)

    2017-04-10

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  3. Short-term regeneration dynamics of Wyoming big sagebrush at two sites in northern Utah

    Science.gov (United States)

    The herbicide tebuthiuron has been used historically to control cover of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis - complete taxonomic designation), a widespread shrub across the western United States, with the intent of increasing herbaceous plant cover. Although the tebuthiur...

  4. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Science.gov (United States)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  5. Greater sage-grouse population trends across Wyoming

    Science.gov (United States)

    Edmunds, David; Aldridge, Cameron L.; O'Donnell, Michael; Monroe, Adrian

    2018-01-01

    The scale at which analyses are performed can have an effect on model results and often one scale does not accurately describe the ecological phenomena of interest (e.g., population trends) for wide-ranging species: yet, most ecological studies are performed at a single, arbitrary scale. To best determine local and regional trends for greater sage-grouse (Centrocercus urophasianus) in Wyoming, USA, we modeled density-independent and -dependent population growth across multiple spatial scales relevant to management and conservation (Core Areas [habitat encompassing approximately 83% of the sage-grouse population on ∼24% of surface area in Wyoming], local Working Groups [7 regional areas for which groups of local experts are tasked with implementing Wyoming's statewide sage-grouse conservation plan at the local level], Core Area status (Core Area vs. Non-Core Area) by Working Groups, and Core Areas by Working Groups). Our goal was to determine the influence of fine-scale population trends (Core Areas) on larger-scale populations (Working Group Areas). We modeled the natural log of change in population size ( peak M lek counts) by time to calculate the finite rate of population growth (λ) for each population of interest from 1993 to 2015. We found that in general when Core Area status (Core Area vs. Non-Core Area) was investigated by Working Group Area, the 2 populations trended similarly and agreed with the overall trend of the Working Group Area. However, at the finer scale where Core Areas were analyzed separately, Core Areas within the same Working Group Area often trended differently and a few large Core Areas could influence the overall Working Group Area trend and mask trends occurring in smaller Core Areas. Relatively close fine-scale populations of sage-grouse can trend differently, indicating that large-scale trends may not accurately depict what is occurring across the landscape (e.g., local effects of gas and oil fields may be masked by increasing

  6. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  7. Prevalence of and risk factors associated with ovine progressive pneumonia in Wyoming sheep flocks.

    Science.gov (United States)

    Gerstner, Shelley; Adamovicz, Jeffrey J; Duncan, John V; Laegreid, William W; Marshall, Katherine L; Logan, James R; Schumaker, Brant A

    2015-10-15

    To determine the prevalence of antibodies against small ruminant lentivirus (SRLV), the causative agent of ovine progressive pneumonia (OPP), and to identify risk factors associated with OPP in Wyoming sheep flocks. Cross-sectional study. 1,415 sheep from 54 flocks in Wyoming. Flocks were surveyed as part of the National Animal Health Monitoring System (NAHMS) 2011 sheep study. Serum samples obtained from sheep in Wyoming were analyzed for anti-SRLV antibodies by use of a competitive-inhibition ELISA. The prevalence of seropositive animals overall and within each flock was calculated. Respective associations between flock OPP status and various demographic and management variables were assessed. The estimated prevalence of sheep seropositive for anti-SRLV antibodies and OPP-infected flocks in Wyoming was 18.0% and 47.5%, respectively. Within OPP-infected flocks, the prevalence of seropositive sheep ranged from 3.9% to 96%. Flocks maintained on nonfenced range were more likely to be infected with OPP than were flocks maintained on fenced range (OR, 3.4; 95% confidence interval, 1.1 to 10.7). The estimated prevalence of OPP-infected flocks in Wyoming did not vary substantially from that at the regional or national level reported in the NAHMS 2001 sheep study. Compared with results of the NAHMS 2011 sheep study, Wyoming producers were more familiar with OPP than were other US sheep producers, but only 61% of Wyoming producers surveyed reported being very or somewhat familiar with the disease. Results indicated that OPP is prevalent in many Wyoming sheep flocks, which suggested that continued efforts are necessary to increase producer knowledge about the disease and investigate practices to minimize economic losses associated with OPP.

  8. Jobs and Economic Development from New Transmission and Generation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-03-31

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  9. Jobs and Economic Development from New Transmission and Generation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Tegen, S.

    2011-03-01

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  10. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative - 2008 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Baer, Lori Anne; Bristol, R. Sky; Carr, Natasha B.; Chong, Geneva W.; Diffendorfer, Jay E.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen S.; Grauch, Richard I.; Homer, Collin G.; Manier, Daniel J.; Kauffman, Matthew J.; Latysh, Natalie; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Nutt, Constance J.; Potter, Christopher; Sawyer, Hall; Smith, David B.; Sweat, Michael J.; Wilson, Anna B.

    2009-01-01

    The Wyoming Landscape Conservation Initiative (WLCI) was launched in 2007 in response to concerns about threats to the State's world class wildlife resources, especially the threat posed by rapidly increasing energy development in southwest Wyoming. The overriding purpose of the WLCI is to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy and other types of development. The WLCI includes partners from Federal, State, and local agencies, with participation from public and private entities, industry, and landowners. As a principal WLCI partner, the U.S. Geological Survey (USGS) provides multidisciplinary scientific and technical support to inform decisionmaking in the WLCI. To address WLCI management needs, USGS has designed and implemented five integrated work activities: (1) Baseline Synthesis, (2) Targeted Monitoring and Research, (3) Integration and Coordination, (4) Data and Information Management, and (5) Decisionmaking and Evaluation. Ongoing information management of data and products acquired or generated through the integrated work activities will ensure that crucial scientific information is available to partners and stakeholders in a readily accessible and useable format for decisionmaking and evaluation. Significant progress towards WLCI goals has been achieved in many Science and Technical Assistance tasks of the work activities. Available data were identified, acquired, compiled, and integrated into a comprehensive database for use by WLCI partners and to support USGS science activities. A Web-based platform for sharing these data and products has been developed and is already in use. Numerous map products have been completed and made available to WLCI partners, and other products are in progress. Initial conceptual, habitat, and climate change models have been developed or refined. Monitoring designs for terrestrial and aquatic indicators have been completed, pilot data have been collected

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the Rawlins NTMS quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Weaver, T.A.; Morris, W.A.; Trexler, P.K.

    1978-04-01

    During the spring and winter of 1976 and January and June of 1977, 570 natural water and 1281 waterborne sediment samples were collected from 1369 locations in the Rawlins, Wyoming, NTMS quadrangle. The samples obtained from this 18 700-km 2 area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 parts per billion (ppB) to 448 ppB, with a mean value of 6 ppB. The concentrations in sediments ranged from 1.2 parts per million (ppM) to 60.4 ppM, with a mean value of 4.1 ppM. Based on simple statistical analyses of these data, arbitrary anomaly thresholds were set at 50 ppB for water samples and 9 ppM for sediment samples. Eleven water and 44 sediment samples were considered anomalous; 1 anomalous water and 25 anomalous sediments could be associated with four of the five major uranium occurrences in the quadrangle. Only the Ketchum Buttes area did not show up in the data. Twelve minor reported occurrences could not be identified by the data. Eleven anomalous samples (8 waters and 3 sediments) and 13 near-anomalous samples (10 waters and 3 sediments) outline a broad area in the northeast corner of the quadrangle (corresponding to the drainage area of the Medicine Bow River) where two airborne radiometric anomalies were discovered in an earlier study. This area, and perhaps others, may warrant further, more detailed geological, geophysical, and geochemical investigations

  12. Mathematical simulation of contaminant distribution in and around the uranium mill tailing piles, Riverton, Wyoming

    International Nuclear Information System (INIS)

    Narasimhan, T.N.; Tokunaga, T.; White, A.F.; Smith, A.R.

    1984-01-01

    The ultimate objective of the Uranium Mill Tailings Remedial Action Project (UMTRAP) is to minimize the potential environmental hazards due to the existing inactive uranium mill tailing piles. One of these sites, at Riverton, Wyoming, is located on the flood plain of the Wind River, with the water table lying within a few meters of the bottom of the tailings. Field data clearly indicates that contaminants, both radioactive and non-radioactive, are mobile within the tailings as well as in the adjacent ground water system. From the point of view of remedial action, the following important questions arise: At what rates and quantities will the contaminants continue to migrate in the ground water system over the next several hundred years. What will be the soil-water regime in the upper part of the tailings which controls the migration of radon gas to the atmosphere. In view of the projected system behavior, what are the economically viable and environmentally acceptable engineering solutions for remedy. The purpose of the mathematical modeling efforts at the Riverton site is to address the question of prediction; the transport of contaminants in the ground water system as well as the dynamic soil-water regime near the upper boundary. The use of mathematical models for the above purpose is dictated by the following questions: Do adequate computational models exist that can simulate the physico-chemical processes that characterize the mill tailings. Can these models reasonably explain the chemical evolution of the system since the beginning of the tailings emplacement. If so, can the historical behavior be used as the basis for predicting the behavior over the next several hundred years

  13. The 3D Elevation Program: summary for Wyoming

    Science.gov (United States)

    Carswell, William J.

    2015-01-01

    Elevation data are essential to a broad range of applications, including forest resources management, wildlife and habitat management, national security, recreation, and many others. For the State of Wyoming, elevation data are critical for geologic resource assessment and hazard mitigation, flood risk management, water supply an quality, natural resources conservation, agriculture and precision farming, and other business uses. Today, high-density light detection and ranging (lidar) data are the primary sources for deriving elevation models and other datasets. Federal, State, Tribal, and local agencies work in partnership to (1) replace data that are older and of lower quality and (2) provide coverage where publicly accessible data do not exist. A joint goal of State and Federal partners is to acquire consistent, statewide coverage to support existing and emerging applications enabled by lidar data.

  14. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  15. Process-scale modeling of elevated wintertime ozone in Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  16. Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-2011

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Edmiston, C. Scott; Taylor, Michelle L.; Leemon, Daniel J.

    2013-01-01

    Fish Creek, an approximately 25-kilometer-long tributary to Snake River, is located in Teton County in western Wyoming near the town of Wilson. Fish Creek is an important water body because it is used for irrigation, fishing, and recreation and adds scenic value to the Jackson Hole properties it runs through. Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address these concerns, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the hydrology, water quality, and biologic communities of Fish Creek during 2007–11. The hydrology of Fish Creek is strongly affected by groundwater contributions from the area known as the Snake River west bank, which lies east of Fish Creek and west of Snake River. Because of this continuous groundwater discharge to the creek, land-use activities in the west bank area can affect the groundwater quality. Evaluation of nitrate isotopes and dissolved-nitrate concentrations in groundwater during the study indicated that nitrate was entering Fish Creek from groundwater, and that the source of nitrate was commonly a septic/sewage effluent or manure source, or multiple sources, potentially including artificial nitrogen fertilizers, natural soil organic matter, and mixtures of sources. Concentrations of dissolved nitrate and orthophosphate, which are key nutrients for growth of aquatic plants, generally were low in Fish Creek and occasionally were less than reporting levels (not detected). One potential reason for the low nutrient concentrations is that nutrients were being consumed by aquatic plant life that increases during the summer growing season, as a result of the seasonal increase in temperature and larger number of daylight hours. Several aspects of Fish Creek’s hydrology contribute to higher productivity and biovolume of aquatic plants in Fish Creek than typically observed in streams of its size in

  17. Final environmental statement related to the Wyoming Mineral Corporation Irigaray uranium solution mining project (Johnson County, Wyoming)

    International Nuclear Information System (INIS)

    1978-09-01

    The Irigaray project consists of solution mining (in situ leaching) operations involving uranium ore deposits in Johnson County, Wyoming. Solution mining activities will include a processing facility with an annual production of 500,000 lb of U 3 O 8 from up to 50 acres of well fields through the initial license authorization. The Irigaray project has an estimated lifetime of up to 10 to 20 years with known ore deposits and the current level of solution mining technology. The site is mostly used as grazing land for cattle and sheep. Initiation of the Irigaray project would result in the temporary removal from grazing and the disturbance of approximately 60 acres during operation as proposed by the staff. All disturbed surface areas will be reclaimed and returned to their original use. Approximately 1.2 x 10 6 m 3 of water will be withdrawn from the ore zone aquifer. 43 figs, 52 tables

  18. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  19. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km 2 area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.

  1. High-resolution sequence stratigraphic correlation of the braided river and vertical distribution characteristics of sand body-Take upper member of saihan formation of lower cretaceous in Bayanwula deposit, for instance

    International Nuclear Information System (INIS)

    Dai Mingjian; Peng Yunbiao; Yang Jianxin; Shen Kefeng

    2014-01-01

    In recent years, the high-resolution sequence stratigraphy of which reference surface is base level cycle get rapid development. Its biggest advantage is the ability to apply to the continental sedimentary basins controlled by multiple factors, especially applied to the thin layer contrast of the paleochannel sandstone type uranium reservoir. This paper, by using drill core and logging data, has made the high resolution sequence stratigraphy studies on braided river uranium reservoir of Upper Member of Saihan Formation of Lower Cretaceous (Kls2) in Bayanwula deposit and identified the base level cycle interface. The study interval is divided into one long-term cycle and seven mid-term base level cycle, and high-resolution time stratigraphic framework of the deposit is established. Depth analysis is taken for the relationship between the braided river sand body and base level cycles. And the position, distribution, and genesis in vertical of the braided river sand body are discussed in detail. Ore body is mainly hosted in edge of braided bar sand body, which formed in the low accommodation space, and braided channel and the braided bar interchange. So uranium enriched in the mid-term base level cycle MSC2-MSC5 in the study area. (authors)

  2. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2015 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Kauffman, Matthew J.; Huber, Christopher C.; Manier, Daniel J.; Melcher, Cynthia P.; Miller, Kirk A.; Norkin, Tamar; Sanders, Lindsey E.; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.

    2016-09-28

    This is the eighth annual report highlighting U.S. Geological Survey (USGS) science and decision-support activities conducted for the Wyoming Landscape Conservation Initiative (WLCI). The activities address specific management needs identified by WLCI partner agencies. In 2015, USGS scientists continued 24 WLCI projects in 5 categories: (1) acquiring and analyzing resource-condition data to form a foundation for understanding and monitoring landscape conditions and projecting changes; (2) using new technologies to improve the scope and accuracy of landscape-scale monitoring and assessments, and applying them to monitor indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (3) conducting research to elucidate the mechanisms that drive wildlife and habitat responses to changing land uses; (4) managing and making accessible the large number of databases, maps, and other products being developed; and (5) coordinating efforts among WLCI partners, helping them to use USGS-developed decision-support tools, and integrating WLCI outcomes with future habitat enhancement and research projects. Of the 24 projects, 21 were ongoing, including those that entered new phases or more in-depth lines of inquiry, 2 were new, and 1 was completed.A highlight of 2015 was the WLCI science conference sponsored by the USGS, Bureau of Land Management, and National Park Service in coordination with the Wyoming chapter of The Wildlife Society. Of 260 participants, 41 were USGS professionals representing 13 USGS science centers, field offices, and Cooperative Wildlife Research Units. Major themes of USGS presentations included using new technologies for developing more efficient research protocols for modeling and monitoring natural resources, researching effects of energy development and other land uses on wildlife species and habitats of concern, and modeling species distributions, population trends, habitat use, and effects of land-use changes. There was

  3. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  4. Profiling Radar Observations and Numerical Simulations of a Downslope Wind Storm and Rotor on the Lee of the Medicine Bow Mountains in Wyoming

    Directory of Open Access Journals (Sweden)

    Binod Pokharel

    2017-02-01

    Full Text Available This study describes a downslope wind storm event observed over the Medicine Bow range (Wyoming, USA on 11 January 2013. The University of Wyoming King Air (UWKA made four along-wind passes over a five-hour period over the mountain of interest. These passes were recognized as among the most turbulent ones encountered in many years by crew members. The MacCready turbulence meter aboard the UWKA measured moderate to severe turbulence conditions on each pass in the lee of the mountain range, with eddy dissipation rate values over 0.5 m2/3 s−1. Three rawinsondes were released from an upstream location at different times. This event is simulated using the non-hydrostatic Weather Research and Forecast (WRF model at an inner- domain resolution of 1 km. The model produces a downslope wind storm, notwithstanding some discrepancies between model and rawinsonde data in terms of upstream atmospheric conditions. Airborne Wyoming Cloud Radar (WCR vertical-plane Doppler velocity data from two beams, one pointing to the nadir and one pointing slant forward, are synthesized to obtain a two-dimensional velocity field in the vertical plane below flight level. This synthesis reveals the fine-scale details of an orographic wave breaking event, including strong, persistent downslope acceleration, a strong leeside updraft (up to 10 m·s−1 flanked by counter-rotating vortices, and deep turbulence, extending well above flight level. The analysis of WCR-derived cross-mountain flow in 19 winter storms over the same mountain reveals that cross-mountain flow acceleration and downslope wind formation are difficult to predict from upstream wind and stability profiles.

  5. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  6. Economics and a novel voltage conversion technique associated with exporting Wyoming's energy by HVDC transmission

    Science.gov (United States)

    Xu, Kaili

    Wyoming is by far the largest coal producing state in the US, but local utilization is extremely low. As much as 92% of Wyoming's coal is shipped to the other states and is mainly consumed by their electricity producers. Coal accounts for more than 50% of the US electricity generation and is one of the least expensive energy sources. Wyoming could utilize its coal better by exporting electricity instead of exporting the coal only in its raw form. Natural gas is another important energy resource in Wyoming but local utilization is even lower. As a result of the development in coalbed methane fields, natural gas production in Wyoming is almost in pace with its coal production. In addition to constructing more new pipelines, new transmission lines should be considered as an alternative way of exporting this energy. Because of their enormous electricity market sizes and high electricity prices, California, Texas and Illinois are chosen to be the target markets for Wyoming's electricity. The proposed transmission schemes use High Voltage DC (HVDC) lines, which are suitable for long distance and cross-system power transmission. Technical and economic feasibilities are studied in details. The Wyoming-California scheme has a better return of investment than both the Wyoming-Texas and the Wyoming-Illinois schemes. A major drawback of HVDC transmission is the high level of harmonics generated by the converters. Elaborate filtering is required at both the AC and the DC sides. A novel pulse-multiplication method is proposed in the thesis to reduce the harmonics from the converter source. By introducing an averaging inductor, the proposed method uses less thyristors to achieve the same high-pulse operation as the existing series scheme. The reduction of thyristors makes the switching circuit more reliable and easier to control and maintain. Harmonic analysis shows that the harmonic level can be reduced to about one third of the original system. The proposed method is also

  7. 77 FR 25664 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Science.gov (United States)

    2012-05-01

    ..., Wyoming clarified that the buffer would be applied solely within Wyoming's portion of the population in... 2 gray wolves, and specify that each permit can only apply to a specified limited geographic or... source of take is limited in time and geography. Similarly, State regulations indicate that purported...

  8. Exploration of the Pine Ridge Uranium Deposits, Powder River Basin, Wyoming

    International Nuclear Information System (INIS)

    Doelger, Mark J.; Sundell, Kent A.

    2014-01-01

    Summary of Exploration in Pine Ridge District: • Use of outcrop mapping integrated with oil and gas subsurface data and available well logs resulted in a geologic model for this previously unexplored area. • Proprietary drilling by Stakeholder over the past two years has confirmed the geologic model of large mineralized alteration cells in staked fluvial sandstone sequences. • The target-rich area of potential extends over nine contiguous townships where Stakeholder has leased over 70,000 acres. • Adjacent mature in-situ projects provide strong analogs and demonstrate amenability for the ore bodies at shallow, intermediate, and deep depths. • These project attributes, with discoveries by Stakeholder are expected to result in future yellow cake production with partner or successor to Stakeholder, and warrants naming this the Pine Ridge District. • Potential resource is an estimated 66 to 72 million pounds

  9. Ground water conditions and the relation to uranium deposits in the Gas Hills area, Fremont and Natrona Counties, Wyoming

    International Nuclear Information System (INIS)

    Marks, L.Y.

    1978-03-01

    As ground water apparently leaches, transports, and deposits uranium in the Gas Hills area, central Wyoming, it is important to understand its distribution, movement, and relation to geology and ore bodies. Water table maps were prepared of the Wind River Basin; the most detailed work was in the Gas Hills area. The water table in the Gas Hills area slopes downward to the northwest, ranges in depth from near the ground surface to more than 200 feet, and has seasonal fluctuation of about five feet. Perched water tables and artesian conditions occur locally. The oxidized-unoxidized rock contact is probably roughly parallel to the water table, and averages about 25 feet above it; although locally the two surfaces are considerably farther apart and the oxidized-unoxidized contact may be below the water table. In many places the gradient of the water table changes near the contact between rocks of different permeability. It is conformable with the structure at some anticlines and its gradient changes abruptly near some faults. Most above-normal concentrations of uranium occur at local water table depressions or at water table terraces where the gradient of the water table flattens. At these places, the uraniferous ground water is slowed and is in contact with the reducing agents in the rocks for a relatively long time. This may allow reduction of soluble transported uranium (U +6 ) to insoluble U +4 ) so that uranium is precipitated

  10. Charles River

    Science.gov (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  11. Outplanting Wyoming big sagebrush following wldfire: stock performance and economics

    Science.gov (United States)

    Dettweiler-Robinson, Eva; Bakker, Jonathan D.; Evans, James R.; Newsome, Heidi; Davies, G. Matt; Wirth, Troy A.; Pyke, David A.; Easterly, Richard T.; Salstrom, Debra; Dunwiddle, Peter W.

    2013-01-01

    Finding ecologically and economically effective ways to establish matrix species is often critical for restoration success. Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) historically dominated large areas of western North America, but has been extirpated from many areas by large wildfires; its re-establishment in these areas often requires active management. We evaluated the performance (survival, health) and economic costs of container and bare-root stock based on operational plantings of more than 1.5 million seedlings across 2 200 ha, and compared our plantings with 30 other plantings in which sagebrush survival was tracked for up to 5 yr. Plantings occurred between 2001 and 2007, and included 12 combinations of stock type, planting amendment, and planting year.We monitored 10 500 plants for up to 8 yr after planting. Survival to Year 3 averaged 21% and was higher for container stock (30%) than bare-root stock (17%). Survival did not differ among container stock plantings, whereas survival of bare-root stock was sometimes enhanced by a hydrogel dip before planting, but not by

  12. Spatial mapping and attribution of Wyoming wind turbines, 2012

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2014-01-01

    These data represent locations of wind turbines found within Wyoming as of August 2012. We assigned each wind turbine to a wind farm and, in these data, provide information about each turbine’s potential megawatt output, rotor diameter, hub height, rotor height, the status of the land ownership where the turbine exists, the county each turbine is located in, wind farm power capacity, the number of units currently associated with each wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some of the attributes are estimates based on the information we found via the American Wind Energy Association and other on-line reports. The locations are derived from National Agriculture Imagery Program (2009 and 2012) true color aerial photographs and have a positional accuracy of approximately +/-5 meters. These data will provide a planning tool for wildlife- and habitat-related projects underway at the U.S. Geological Survey’s Fort Collins Science Center and other government and non-government organizations. Specifically, we will use these data to support quantifying disturbances of the landscape as related to wind energy as well as to quantify indirect disturbances to flora and fauna. This data set represents an update to a previous version by O’Donnell and Fancher (2010).

  13. Physical simulation of gas reservoir formation in the Liwan 3-1 deep-water gas field in the Baiyun sag, Pearl River Mouth Basin

    Directory of Open Access Journals (Sweden)

    Gang Gao

    2015-01-01

    Full Text Available To figure out the process and controlling factors of gas reservoir formation in deep-waters, based on an analysis of geological features, source of natural gas and process of reservoir formation in the Liwan 3-1 gas field, physical simulation experiment of the gas reservoir formation process has been performed, consequently, pattern and features of gas reservoir formation in the Baiyun sag has been found out. The results of the experiment show that: ① the formation of the Liwan 3-1 faulted anticline gas field is closely related to the longstanding active large faults, where natural gas is composed of a high proportion of hydrocarbons, a small amount of non-hydrocarbons, and the wet gas generated during highly mature stage shows obvious vertical migration signs; ② liquid hydrocarbons associated with natural gas there are derived from source rock of the Enping & Zhuhai Formation, whereas natural gas comes mainly from source rock of the Enping Formation, and source rock of the Wenchang Formation made a little contribution during the early Eocene period as well; ③ although there was gas migration and accumulation, yet most of the natural gas mainly scattered and dispersed due to the stronger activity of faults in the early period; later as fault activity gradually weakened, gas started to accumulate into reservoirs in the Baiyun sag; ④ there is stronger vertical migration of oil and gas than lateral migration, and the places where fault links effective source rocks with reservoirs are most likely for gas accumulation; ⑤ effective temporal-spatial coupling of source-fault-reservoir in late stage is the key to gas reservoir formation in the Baiyun sag; ⑥ the nearer the distance from a trap to a large-scale fault and hydrocarbon source kitchen, the more likely gas may accumulate in the trap in late stage, therefore gas accumulation efficiency is much lower for the traps which are far away from large-scale faults and hydrocarbon source

  14. Rancher and farmer quality of life in the midst of energy development in southwest Wyoming

    Science.gov (United States)

    Allen, Leslie; Montag, Jessica; Lyon, Katie; Soileau, Suzanna; Schuster, Rudy

    2014-01-01

    Quality of life (QOL) is usually defined as a person’s general well-being, and may include individual perceptions of a variety of factors such family, work, finances, local community services, community relationships, surrounding environment, and other important aspects of their life, ultimately leading to life satisfaction. Energy development can have an effect on QOL components for rural residents. Southwest Wyoming is a rural area with a history of ranching and farming which continues today. This area has also seen a “boom” of increasing wind, solar, oil and gas energy developments over the past decade. Wyoming Department of Agriculture, as part of the Wyoming Landscape Conservation Initiative (WLCI), sponsored research to examine the effect of energy development on ranchers’ and farmers’ quality of life.

  15. Statistical tables and charts showing geochemical variation in the Mesoproterozoic Big Creek, Apple Creek, and Gunsight formations, Lemhi group, Salmon River Mountains and Lemhi Range, central Idaho

    Science.gov (United States)

    Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.

    2002-01-01

    The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.

  16. Landscape consequences of natural gas extraction in Sullivan and Wyoming Counties, Pennsylvania, 2004–2010

    Science.gov (United States)

    Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Sullivan County and Wyoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  17. Geology of the Carnegie museum dinosaur quarry site of Diplodocus carnegii, Sheep Creek, Wyoming

    Science.gov (United States)

    Brezinski, D.K.; Kollar, A.D.

    2008-01-01

    The holotype of Diplodocus carnegii Hatcher, 1901, consists of a partial skeleton (CM 84) that was recovered, along with a second partial skeleton of the same species (CM 94), from the upper 10 m of the Talking Rock facies of the Brushy Basin Member of the Morrison Formation exposed along Bone Quarry Draw, a tributary of Sheep Creek in Albany County, Wyoming. A composite measured section of the stratigraphic interval exposed adjacent to the quarry indicates that the Brushy Basin Member in this area is a stacked succession of lithofacies consisting of hackly, greenish gray, calcareous mudstone and greenish brown, dense, fine-grained limestone. The more erosion resistant limestone layers can be traced over many hundreds of meters. Thus, these strata do not appear to represent a highly localized deposit such as a stream channel, oxbow lake, or backwater pond. The Sheep Creek succession is interpreted as representing a clastic-dominated lake where high turbidity and sediment influx produced deposition of calcareous mudstone. During drier periods the lake's turbidity decreased and limestone and dolomite precipitation replaced mud deposition. Microkarsting at the top of some limestone/ dolomite layers suggests subaerial deposition may have prevailed during these dry episodes. The quarry of D. carnegii was excavated within the top strata of one of the numerous intervals of hackly, greenish gray, calcareous mudstone that represent an ephemeral freshwater lake. The quarry strata are directly overlain by 0.3 m of dolomite-capped limestone that was deposited shortly after interment of D. carnegii in the lake mudstones. The close vertical proximity of the overlying limestone to the skeleton's stratigraphic: level suggests that the animal's carcass may have been buried beneath the drying lake deposits during a period of decreased rainfall.

  18. Long-Term Stewardship at a Former Uranium Mill Tailings Site in Riverton, Wyoming WM2017-17090

    Energy Technology Data Exchange (ETDEWEB)

    Dam, William [USDOE Office of Legacy Management, Washington, DC (United States); Gil, Dr. April [USDOE Office of Legacy Management, Washington, DC (United States); Johnson, Raymond H. [Navarro Research and Engineering, Oak Ridge, TN (United States); Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2017-03-01

    The US Department of Energy Office of Legacy Management (LM) is responsible for maintaining protective public health and environmental conditions at former uranium mill tailings sites nationwide via long-term stewardship. One of these sites, a former uranium mill near Riverton, Wyoming, is within the boundary of the Wind River Indian Reservation and operated from 1958 to 1963. Tailings and contaminated material associated with mill operations were removed and transported to an offsite disposal cell in 1989. The remedial action was completed under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Milling operations, which included an unlined tailings impoundment and an unlined evaporation pond, contaminated the shallow groundwater, resulting in a downgradient groundwater plume that discharges to the Little Wind River. A natural flushing compliance strategy was implemented in 1998. This strategy allows contaminants of concern to naturally flush from the groundwater, provided that contaminants flush below US Environmental Protection Agency maximum concentration limits within 100 years. As part of the compliance strategy, LM has implemented a groundwater monitoring program along with institutional controls that include the installation of an alternate water supply, continued sampling of private wells, and restrictions on well drilling and gravel pit construction. LM works closely with local stakeholders and community members to ensure that these institutional controls are in place and maintained. The Riverton site provides an interesting case study where contaminant remobilization due to river flooding prompted a reevaluation of the conceptual site model to verify if the current compliance strategy would remain protective of human health and the environment. Concentrations of groundwater contaminants, which include sulfate, molybdenum, and uranium, were transiently elevated following flooding of the Little Wind River in 2010 and 2016. These flood

  19. Immobilization of Wyoming bears using carfentanil and xylazine.

    Science.gov (United States)

    Kreeger, Terry J; Bjornlie, Dan; Thompson, Dan; Clapp, Justin; Clark, Colby; Hansen, Cole; Huizenga, Matt; Lockwood, Sam

    2013-07-01

    Seven grizzly (Ursus arctos; four male, three female) and three black (Ursus americanus; two male, one female) bears caught in culvert traps or leg snares were immobilized in northwestern Wyoming with carfentanil and xylazine at doses, respectively, of 0.011 ± 0.001 and 0.12 ± 0.01 mg/kg for grizzly bears and 0.014 ± 0.002 and 0.15 ± 0.04 mg/kg for black bears. These drugs were antagonized with 1 mg/kg naltrexone and 2 mg/kg tolazoline. Induction and recovery times, respectively, were 4.3 ± 0.5 and 7.1 ± 0.8 min for grizzly bears and 5.2 ± 0.4 and 9.1 ± 2.2 min for black bears. Inductions were smooth and uneventful. Recoveries were characterized initially by increased respiration followed by raising of the head, which quickly led to a full recovery, with the bears recognizing and avoiding humans and moving away, maneuvering around obstacles. All bears experienced respiratory depression, which did not significantly improve with supplemental oxygen on the basis of pulse oximetry (P=0.56). Rectal temperatures were normothermic. Carfentanil-xylazine immobilization of bears provided significant advantages over other drug regimens, including small drug volumes, predictable inductions, quick and complete recoveries, and lower costs. On the basis of these data, both grizzly and black bears can be immobilized effectively with 0.01 mg/kg carfentanil and 0.1 mg/kg xylazine.

  20. Retrospective Analysis of Low Flows at Headwater Watersheds in Wyoming

    Science.gov (United States)

    Voutchkova, D. D.; Miller, S. N.

    2016-12-01

    Understanding summer low-flow variability and change in the mountainous West has important implications for water allocations downstream and for maintaining water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs. Wildfires and insect infestations are classical disturbance hydrology topics. It is unclear, however, what are their effects on streamflow and in particular low-flows, when vegetation disturbances are overlapping in time and combined with highly variable and potentially changing local climate. The purpose of this study, therefore, is to quantify changes in low-flows resulting from disturbance in headwater streams. Here we present a retrospective analysis based on: (1) 49-75 complete water years (wy) of daily streamflow data (USGS) for 14 high-elevation headwater watersheds with varying areas (60-1730 km2, 86-100% of watershed area >2000masl) and evergreen forest cover (15-82%), (2) 25-36 complete wy of daily snow-water equivalent accumulation (SWE) and precipitation data from Wyoming SNOTEL stations, (3) burned area boundaries for 20wy (MTBS project), (4) aerial surveys by R1, R2, R4 Forest Service Regions for 18wy (data on tree mortality). We quantify the change in various low-flow characteristics (e.g. post-snowmelt baseflow, Q90 and Q95, 3-,7-, 30- and 90-day annual minima etc.) while accounting for local inter- and multi-annual climate variability by using SWE accumulation data, as it integrates both temperature and precipitation changes. Our approach differs from typical before-after field-based investigation for paired watersheds, as it provides a synthesis over large temporal and spatial scales, resulting in spectrum of possible hydrologic responses due to varying disturbance severity. Quantifying the changes in low-flows and low-flow variability will improve our understanding and will facilitate water management and planning at local state-wide level.

  1. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  2. Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system

    Directory of Open Access Journals (Sweden)

    X. Wang

    2010-05-01

    Full Text Available In this study, the Community Multiscale Air Quality (CMAQ modeling system is used to simulate the ozone (O3 episodes during the Program of Regional Integrated Experiments of Air Quality over the Pearl River Delta, China, in October 2004 (PRIDE-PRD2004. The simulation suggests that O3 pollution is a regional phenomenon in the Pearl River Delta (PRD. Elevated O3 levels often occurred in the southwestern inland PRD, Pearl River estuary (PRE, and southern coastal areas during the 1-month field campaign. Three evolution patterns of simulated surface O3 are summarized based on different near-ground flow conditions. More than 75% of days featured interactions between weak synoptic forcing and local sea-land circulation. Integrated process rate (IPR analysis shows that photochemical production is a dominant contributor to O3 enhancement from 09:00 to 15:00 local standard time in the atmospheric boundary layer over most areas with elevated O3 occurrence in the mid-afternoon. The simulated ozone production efficiency is 2–8 O3 molecules per NOx molecule oxidized in areas with high O3 chemical production. Precursors of O3 originating from different source regions in the central PRD are mixed during the course of transport to downwind rural areas during nighttime and early morning, where they then contribute to the daytime O3 photochemical production. The sea-land circulation plays an important role on the regional O3 formation and distribution over PRD. Sensitivity studies suggest that O3 formation is volatile-organic-compound-limited in the central inland PRD, PRE, and surrounding coastal areas with less chemical aging (NOx/NOy>0.6, but is NOx-limited in the rural southwestern PRD with aged air (NOx/NOy<0.3.

  3. Capturing the Green River -- Multispectral airborne videography to evaluate the environmental impacts of hydropower operations

    International Nuclear Information System (INIS)

    Snider, M.A.; Hayse, J.W.; Hlohowskyj, I.; LaGory, K.E.

    1996-01-01

    The 500-mile long Green River is the largest tributary of the Colorado River. From its origin in the Wind River Range mountains of western Wyoming to its confluence with the Colorado River in southeastern Utah, the Green River is vital to the arid region through which it flows. Large portions of the area remain near-wilderness with the river providing a source of recreation in the form of fishing and rafting, irrigation for farming and ranching, and hydroelectric power. In the late 1950's and early 1960's hydroelectric facilities were built on the river. One of these, Flaming Gorge Dam, is located just south of the Utah-Wyoming border near the town of Dutch John, Utah. Hydropower operations result in hourly and daily fluctuations in the releases of water from the dam that alter the natural stream flow below the dam and affect natural resources in and along the river corridor. In the present study, the authors were interested in evaluating the potential impacts of hydropower operations at Flaming Gorge Dam on the downstream natural resources. Considering the size of the area affected by the daily pattern of water release at the dam as well as the difficult terrain and limited accessibility of many reaches of the river, evaluating these impacts using standard field study methods was virtually impossible. Instead an approach was developed that used multispectral aerial videography to determine changes in the affected parameters at different flows, hydrologic modeling to predict flow conditions for various hydropower operating scenarios, and ecological information on the biological resources of concern to assign impacts

  4. Wyoming uranium mining and milling. A wage and employment survey, 1982

    International Nuclear Information System (INIS)

    1982-06-01

    The results of a wage and employment survey of Wyoming's mining industry are reported. Data were collected to: enumerate the number of workers in selected occupational categories; determine the average straight-line hourly wage in each occupational category; determine the number of workers covered by a collective bargaining agreement in each occupational category; and review the employer contributions to employee fringe benefits

  5. Learning from Distance Faculty: A Faculty Needs Assessment at the University of Wyoming

    Science.gov (United States)

    Kvenild, Cassandra; Bowles-Terry, Melissa

    2011-01-01

    Distance educators have special library needs. This article discusses the results of a library needs assessment of distance instructors at the University of Wyoming. Access to resources, use of library instructional services, barriers to distance library use, and perceived gaps in service are all addressed. Follow-up actions, based on survey…

  6. Hydrogeochemical and stream sediment reconnaissance basic data for Preston Quadrangle, Wyoming; Idaho

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 410 water samples and 702 sediment samples from the Preston Quadrangle, Wyoming; Idaho. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-70(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  7. Are We Having Fun Yet? Hitting the Moving Target of Program Choice, Wyoming, USA.

    Science.gov (United States)

    Heinlein, Ken B.; Campbell, Edward M.; Fortune, Jon; Severance, Don; Fortune, Barbara

    The changes in what people with developmental disabilities wanted and got for living and daytime settings in South Dakota and Wyoming during 1988 were compared to what they wanted and received in 2000. Although the percentage of people in their desired setting rose, there were substantial changes in the types of settings recommended over the…

  8. Instructional Design of Entrepreneurship Courses: Interview Research of Wyoming BRAVO! Entrepreneurs

    Science.gov (United States)

    Kolb, Belinda J.

    2010-01-01

    This qualitative study investigated the opportunity recognition process of Wyoming BRAVO! Entrepreneur (WBE) Award winners or nominees, in order to better inform the learner analysis and organizational strategy components of instructional design, specifically with respect to entrepreneurship courses. This study may be of significance to post…

  9. 78 FR 56769 - Genesee & Wyoming Inc.-Corporate Family Transaction Exemption

    Science.gov (United States)

    2013-09-13

    ... unnecessary intermediate subsidiaries, which will save unnecessary accounting and corporate maintenance. This... Inc.--Corporate Family Transaction Exemption Genesee & Wyoming Inc. (GWI), a noncarrier holding company, filed a verified notice of exemption under 49 CFR 1180.2(d)(3) for a corporate family transaction...

  10. Hydrogeochemical and stream sediment reconnaissance basic data for Rawlings quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 454 water samples and 1279 sediment samples from the Rawlins Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-81(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  11. Adapting to Mother Nature's changing climatic conditions: Flexible stocking for enhancing profitability of Wyoming ranchers

    Science.gov (United States)

    Ranching is a dynamic business in which profitability is impacted by changing weather and climatic conditions. A ranch-level model using a representative ranch in southeastern Wyoming was used to compare economic outcomes from growing season precipitation scenarios of: 1) historical precipitation da...

  12. Microscale patterns of tree establishment near upper treeline, Snowy Range, Wyoming, USA

    Science.gov (United States)

    W. H. Moir; Shannon G. Rochelle; A. W. Schoettle

    1999-01-01

    We report tree seedling (mostly Picea engelmannii, some Abies lasiocarpa, very infrequent Pinus contorta) invasion into meadows at upper timberline in the Snowy Range, Wyoming, from 1994 to 1996. We used gradient analysis to relate this to environmental patterns, particularly plant community structure (as aggregates of plant life-forms) and persistence of snowpack in...

  13. DNA FROM ANCIENT STONE TOOLS AND BONES EXCAVATED AT BUGAS-HOLDING, WYOMING

    Science.gov (United States)

    Traces of DNA may preserve on ancient stone tools. We examined 24 chipped stone artifacts recovered from the Bugas-Holding site in northwestern Wyoming for the presence of DNA residues, and we compared DNA preservation in bones and stone tools from the same stratigraphic context...

  14. Home on the Range: Host Families for Developmental Disabilities in Wyoming.

    Science.gov (United States)

    Walling, Teresa; Potts, Bridget; Fortune, Jon; Cobb, Ginny L.; Fortune, Barbara

    This report describes the outcomes of a Wyoming program that provides host families for individuals with developmental disabilities. Host families work with certified Medicaid providers of home and community-based services for people with developmental disabilities and provide residential habilitation to an adult who is accepted as a member of…

  15. A Study of Informal Learning among University of Wyoming Extension Educators

    Science.gov (United States)

    Skrabut, Stanley A.

    2013-01-01

    University of Wyoming Extension educators are often hired because of their subject matter expertise; yet, they must still develop education skills as well as learn to use various and ever-changing technologies. This research was conducted to understand what impact guided instruction on informal learning concepts and methods had on UW Extension…

  16. Historic range of variability for upland vegetation in the Medicine Bow National Forest, Wyoming

    Science.gov (United States)

    Gregory K. Dillon; Dennis H. Knight; Carolyn B. Meyer

    2005-01-01

    An approach for synthesizing the results of ecological research pertinent to land management is the analysis of the historic range of variability (HRV) for key ecosystem variables that are affected by management activities. This report provides an HRV analysis for the upland vegetation of the Medicine Bow National Forest in southeastern Wyoming. The variables include...

  17. Checklist of copepods (Crustacea: Calanoida, Cyclopoida,Harpacticoida) from Wyoming, USA, with new state records

    Science.gov (United States)

    Presentation of a comprehensive checklist of the copepod fauna of Wyoming, USA with 41 species of copepods; based on museum specimens, literature reviews, and active surveillance. Of these species 19 were previously unknown from the state. This checklist includes species in the families Centropagida...

  18. Introduction to uranium geology of the Kaycee area in Johnson county, Wyoming

    International Nuclear Information System (INIS)

    Li Wuwei

    2004-01-01

    The geology of the Kaycee uranium deposit is introduced in three aspects: regional setting, stratigraphy and structure. At the same time, uranium and vanadium mineralization of significant economic potential have been reported in the sandstones and conglomerates from Paleocene to Eocene period in the eastern and northeastern part of Kaycee, Wyoming. (authors)

  19. Do container volume, site preparation, and field fertilization affect restoration potential of Wyoming big sagebrush?

    Science.gov (United States)

    Kayla R. Herriman; Anthony S. Davis; Kent G. Apostol; Olga. A. Kildisheva; Amy L. Ross-Davis; Kas Dumroese

    2016-01-01

    Land management practices, invasive species expansion, and changes in the fire regime greatly impact the distribution of native plants in natural areas. Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), a keystone species in the Great Basin, has seen a 50% reduction in its distribution. For many dryland species, reestablishment efforts have...

  20. Hydrogeochemical and stream sediment reconnaissance basic data for Cheyenne Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 884 water samples and 598 sediment samples from the Cheyenne Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-106(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  1. 78 FR 21565 - Television Broadcasting Services; Jackson, Wyoming to Wilmington, DE

    Science.gov (United States)

    2013-04-11

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [MB Docket No. 13-73; RM-11695; DA 13-450] Television Broadcasting Services; Jackson, Wyoming to Wilmington, DE AGENCY: Federal Communications... review Act, see 5 U.S.C. 801(a)(1)(A). List of Subjects in 47 CFR Part 73 Television. Federal...

  2. Effects of using winter grazing as a fuel treatment on Wyoming big sagebrush plant communities

    Science.gov (United States)

    More frequent wildfires and incidences of mega-fires have increased the pressure for fuel treatments in sagebrush (Artemisia) communities. Winter grazing has been one of many fuel treatments proposed for Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle and A. Young) communitie...

  3. Wyoming big sagebrush: Efforts towards development of target plants for restoration

    Science.gov (United States)

    Kayla R. Herriman

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis) is a dominant shrub throughout much of the interior western United States. It is a key component of sagebrush steppe ecosystems, which have been degraded due to European settlement, improper land use, and changing fire regimes resulting from the invasion of exotic...

  4. The coal deposits of the Alkali Butte, the Big Sand Draw, and the Beaver Creek fields, Fremont County, Wyoming

    Science.gov (United States)

    Thompson, Raymond M.; White, Vincent L.

    1952-01-01

    Large coal reserves are present in three areas located between 12 and 20 miles southeast of Riverton, Fremont County, central Wyoming. Coal in two of these areas, the Alkali Butte coal field and the Big Sand Draw coal field, is exposed on the surface and has been developed to some extent by underground mining. The Beaver Creek coal field is known only from drill cuttings and cores from wells drilled for oil and gas in the Beaver Creek oil and gas field.These three coal areas can be reached most readily from Riverton, Wyo. State Route 320 crosses Wind River about 1 mile south of Riverton. A few hundred yards south of the river a graveled road branches off the highway and extends south across the Popo Agie River toward Sand Draw oil and gas field. About 8 miles south of the highway along the Sand Draw road, a dirt road bears east and along this road it is about 12 miles to the Bell coal mine in the Alkali Butte coal field. Three miles southeast of the Alkali Butte turn-off, 3 miles of oiled road extends southwest into the Beaver Creek oil and gas field. About 6 miles southeast of the Beaver Creek turn-off, in the valley of Little Sand Draw Creek, a dirt road extends east 1. mile and then southeast 1 mile to the Downey mine in the Big Sand Draw coal field. Location of these coal fields is shown on figure 1 with their relationship to the Wind River basin and other coal fields, place localities, and wells mentioned in this report. The coal in the Alkali Butte coal field is exposed partly on the Wind River Indian Reservation in Tps. 1 and 2 S., R. 6 E., and partly on public land. Coal in the Beaver Creek and Big Sand Draw coal fields is mainly on public land. The region has a semiarid climate with rainfall averaging less than 10 in. per year. When rain does fall the sandy-bottomed stream channels fill rapidly and are frequently impassable for a few hours. Beaver Creek, Big Sand Draw, Little Sand Draw, and Kirby Draw and their smaller tributaries drain the area and flow

  5. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    Science.gov (United States)

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  6. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    sail on the Niger River between Nigeria and Mali. Crossing villages, borders and cultures, they stop only to rest by setting up camp on riverbanks or host villages. In River Nomads, we join the nomadic Kebbawa fishermen on one of their yearly crossing, experiencing their relatively adventurous...

  7. River Piracy

    Indian Academy of Sciences (India)

    There was this highly venerated river Saraswati flowing through. Haryana, Marwar and Bahawalpur in Uttarapath and emptying itself in the Gulf ofKachchh, which has been described in glowing terms by the Rigveda. "Breaking through the mountain barrier", this "swift-flowing tempestuous river surpasses in majesty and.

  8. 78 FR 56650 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-09-13

    ... consistent decision-making process. The 2009 Strategy further established control colonies to address human... 7th, 8th, 9th, and 10th. October 7: Douglas, Wyoming--Douglas National Guard Armory--315 Pearson Road...

  9. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    Science.gov (United States)

    McLaughlin, J.F.; Frost, C.D.; Sharma, Shruti

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  10. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-11-01

    Full Text Available A high O3 episode was detected in urban Shanghai, a typical city in the Yangtze River Delta (YRD region in August 2010. The CMAQ integrated process rate method is applied to account for the contribution of different atmospheric processes during the high pollution episode. The analysis shows that the maximum concentration of ozone occurs due to transport phenomena, including vertical diffusion and horizontal advective transport. Gas-phase chemistry producing O3 mainly occurs at the height of 300–1500 m, causing a strong vertical O3 transport from upper levels to the surface layer. The gas-phase chemistry is an important sink for O3 in the surface layer, coupled with dry deposition. Cloud processes may contribute slightly to the increase of O3 due to convective clouds or to the decrease of O3 due to scavenging. The horizontal diffusion and heterogeneous chemistry contributions are negligible during the whole episode. Modeling results show that the O3 pollution characteristics among the different cities in the YRD region have both similarities and differences. During the buildup period, the O3 starts to appear in the city regions of the YRD and is then transported to the surrounding areas under the prevailing wind conditions. The O3 production from photochemical reaction in Shanghai and the surrounding area is most significant, due to the high emission intensity in the large city; this ozone is then transported out to sea by the westerly wind flow, and later diffuses to rural areas like Chongming island, Wuxi and even to Nanjing. The O3 concentrations start to decrease in the cities after sunset, due to titration of the NO emissions, but ozone can still be transported and maintain a significant concentration in rural areas and even regions outside the YRD region, where the NO emissions are very small.

  11. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  12. Summary of investigations of uranium deposits in the Pumpkin Buttes area, Johnson and Campbell Counties, Wyoming

    Science.gov (United States)

    Troyer, Max L.; McKay, Edward J.; Soister, Paul E.; Wallace, Stewart R.

    1954-01-01

    Uranium minerals were discovered in the Pumpkin Buttes area, Campbell and Johnson Counties, Wyo., by the U. S. Geological Survey in October 1951. From June to November 1952, an area of about 750 square miles was examined for uranium deposits, and 211 localities having abnormally high radioactivity were found; uranium minerals are visible at 121 of these localities. All known uranium mineralization in the area is restricted to sandstones of the Wasatch formation, except sparsely disseminated uranium in the sandstone of the White River formation, which caps the Pumpkin Buttes, mid several localities on the Great Pine Ridge southwest of the Pumpkin Buttes where iron-saturated sandstone and clinker in the Fort Union formation have above-normal radioactivity. The uranium occurrences in the Wasatch formation are in a red sandstone zone 450 to 900 feet above the base of the formation and are of two types: small concretionary masses of uranium, iron, manganese and vanadium minerals in sandstone, and irregular zones in which uranium minerals are disseminated in sandstone. The second type is usually larger but of lower grade than the first. Most of the localities at which uranium occurs are in a north-trending belt about 60 miles long and 18 miles in maximum width.

  13. Structure dynamics of a fish community over ten years of formation in the reservoir of the hydroelectric power plant in upper Uruguay River.

    Science.gov (United States)

    Schork, G; Zaniboni-Filho, E

    2017-11-01

    The objective of this study was to evaluate the structure of the fish assemblage in the ten years following the closing of the lake of the Itá Hydroelectric Power Plant. Seasonal collections were conducted from 2001 to 2010. During this period, 44,834 fish were captured, totaling 3,818.01 kg, among 8 orders, 24 families and 84 species. In general, profound changes were not observed in the fish assemblage in the ten years after the formation of the Itá lake. Few species changed in dominance over time, while many were rare in the environment. The ichthyofauna in the reservoir was dominated by small and medium size opportunist species that conduct short or no migratory movements. Among the most abundant, six species were responsible for more than 50% of the numeric representation: Steindachnerina brevipinna, Astyanax fasciatus, Apareiodon affinis, Hypostomus isbrueckeri, Iheringichthys labrosus and Loricariichthys anus. The increase in the representation of the later species stood out. The biomass was dominated by Steindachneridion scriptum, Prochilodus lineatus, I. laborsus, Schizodon nasutus, Hoplias malabaricus, Acestrorhynchus pantaneiro, Hoplias lacerdae, H. isbrueckeri and L. anus. Despite the presence of large migrators in the region of the reservoir, their vulnerability was revealed by the low numeric abundance and accidental capture. The k-dominance curve of numerical abundance and biomass indicates a moderately disturbed community, in which the representation of small species was also important to the amounts of biomass.

  14. The formation conditions of the burial site of Late Cretaceous dinosaurs and plants in the Kakanaut River basin (Koryak Highlands, Northeastern Asia)

    Science.gov (United States)

    Shczepetov, S. V.; Herman, A. B.

    2017-07-01

    The stratigraphic position of layers containing plant and animal remains in the Koryak Highlands (Northeast Asia) is under discussion. Their age is defined as late Campanian-early Maastrichtian. Plant-bearing and bone-bearing rocks represent cemented basaltic tephra. The former contain a small amount of xenogenic material and slightly rounded volcaniclastic material, which indicates its insignificant transportation. Ash particles in bone-bearing rocks are even less rounded. Among them, there are no rock fragments of other composition. Large bones and their fragments, as xenoliths, are chaotically distributed in the rock matrix as if floating in mass of ash material. This burial site was probably formed in a continental environment as a result of the gravitational and eolian transportation of the terrigenous material. The burial of small dinosaur bones and teeth occurred during the deposition of a small stream of a semiliquid water-ash mixture. This work presents a possible mechanism of the formation of burial sites, taking into consideration proposed conditions of the life and reproduction of dinosaurs in the Late Mesozoic Arctic.

  15. Concentrations of selected metals in Quaternary-age fluvial deposits along the lower Cheyenne and middle Belle Fourche Rivers, western South Dakota, 2009-10

    Science.gov (United States)

    Stamm, John F.; Hoogestraat, Galen K.

    2012-01-01

    The headwaters of the Cheyenne and Belle Fourche Rivers drain the Black Hills of South Dakota and Wyoming, an area that has been affected by mining and ore-milling operations since the discovery of gold in 1875. A tributary to the Belle Fourche River is Whitewood Creek, which drains the area of the Homestake Mine, a gold mine that operated from 1876 to 2001. Tailings discharged into Whitewood Creek contained arsenopyrite, an arsenic-rich variety of pyrite associated with gold ore, and mercury used as an amalgam during the gold-extraction process. Approximately 18 percent of the tailings that were discharged remain in fluvial deposits on the flood plain along Whitewood Creek, and approximately 25 percent remain in fluvial deposits on the flood plain along the Belle Fourche River, downstream from Whitewood Creek. In 1983, a 29-kilometer (18-mile) reach of Whitewood Creek and the adjacent flood plain was included in the U.S. Environmental Protection Agency's National Priority List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly referred to as a "Superfund site." Listing of this reach of Whitewood Creek was primarily in response to arsenic toxicity of fluvial deposits on the flood plain. Lands along the lower Cheyenne River were transferred to adjoining States and Tribes in response to the Water Resources Development Act (WRDA) of 1999. An amendment in 2000 to WRDA required a study of sediment contamination of the Cheyenne River. In response to the WRDA amendment, the U.S. Geological Survey completed field sampling of reference sites (not affected by mine-tailing disposal) along the lower Belle Fourche and lower Cheyenne Rivers. Reference sites were located on stream terraces that were elevated well above historical stream stages to ensure no contamination from historical mining activity. Sampling of potentially contaminated sites was performed on transects of the active flood plain and adjacent terraces that could

  16. Health hazard evaluation report HETA 92-0361-2343, M-I Drilling Fluids, Greybull, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Van Gilder, T.J.; Robinson, L.

    1993-08-01

    In response to a request from the state epidemiologist in Wyoming, an investigation was begun of two cases of acute, febrile hepatitis in employees of M-I Drilling Fluids (SIC-1459), Greybull, Wyoming. The two cases of hepatitis were caused by Coxiella-burnetii, the rickettsia which causes Q-fever. A survey of 39 workers using a self-administered questionnaire and a blood test revealed seven workers with serologic evidence of infection. Three showed evidence of recent infection and four showed evidence of past infection. The major risk factor identified through the questionnaire data was sheep ownership. Risk factors suggestive of either recent or past infection included working outdoors, operating heavy equipment, and hunting.

  17. Wyoming bentonite trona and uranium: a wage and employment survey 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Wyoming Department of Labor and Statistics simultaneously initiated wage and employment surveys of the state's bentonite, trona, and uranium mining industries during February 1985. This data has been compiled in a directory which determines: (1) the number of workers in selected occupational categories, (2) the average straight-time hourly wage in each occupational category, (3) the number of workers covered by a collective bargaining agreement in each occupational category; and (4) employer paid fringe benefits

  18. Microhabitat Conditions in Wyoming's Sage-Grouse Core Areas: Effects on Nest Site Selection and Success.

    Science.gov (United States)

    Dinkins, Jonathan B; Smith, Kurt T; Beck, Jeffrey L; Kirol, Christopher P; Pratt, Aaron C; Conover, Michael R

    2016-01-01

    The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus) nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming's Core Area Policy. Wyoming's Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008-2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4-45.9%). Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m). Within our study areas, Wyoming's Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available between areas within and outside of Core Areas.

  19. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    International Nuclear Information System (INIS)

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met

  20. Nichols Ranch In-Sutu Leach Uranium Mine Wyoming, USA – A Case History

    International Nuclear Information System (INIS)

    Catchpole, G.; Thomas, Glenda

    2014-01-01

    Company Incorporated in 1999 under the name Carleton Ventures Corp. In 2005 Changed name to Uranerz Energy Corporation and adopted the following Business Model: acquire quality uranium properties with the potential of being mined using the ISL extraction method with the objective of achieving uranium production as soon as practical. Focus on production; not grass roots exploration. Primary target area for property acquisition - western U.S.A., specifically Texas and Wyoming

  1. Final Environmental Assessment for Stormwater Drainage Project on F. E. Warren Air Force Base, Wyoming

    Science.gov (United States)

    2005-05-01

    Taxidea taxus), raccoon (Procyon lotor hirtus), porcupine (Erethizon dorsatum), red fox (Vulpes vulpes), coyote (Canus latrans), and Wyoming ground...squirrel (Spermophilus elegans). A relatively large herd of pronghorn antelope inhabits the base. Although the pronghorn on the installation are a...part of the larger Iron Mountain herd , most reside on the installation year-round. The Storm Water Drainage Project, Draft Environmental Assessment

  2. Application of NURE data to the study of crystalline rocks in the Wyoming uranium province

    International Nuclear Information System (INIS)

    Rush, S.M.; Anderson, J.R.; Bennett, J.E.

    1983-03-01

    The Wyoming uranium province study is a part of the National Uranium Resource Evaluation (NURE) program conducted by Bendix Field Engineering Corporation for the US Department of Energy. The ultimate objective of the entire project is the integration of NURE and other data sources to develop a model for a uranium province centered in Wyoming. This paper presents results of the first phase of the Wyoming uranium province study, which comprises characterization of the crystalline rocks of the study area using NURE hydrogeochemical and stream-sediment data, aerial radiometric and magnetic data, and new data generated for zircons from intrusive rocks in the study area. The results of this study indicate that the stream-sediment, aerial radiometric, aerial magnetic, and zircon data are useful in characterization of the crystalline rocks of the uranium province. The methods used in this project can be applied in two ways toward the recognition of a uranium province: (1) to locate major uranium deposits and occurrences, and (2) to generally identify different crystalline rock types, particularly those that could represent significant uranium source rocks. 14 figures, 8 tables

  3. Rol' reki Rejn v formirovanii prostranstvennoj struktury jekonomiki stran Evropy (I vek do nashej jery — XIX vek [The role of the river Rhine in the formation of spatial structure of the economy of European countries (1st century BC — 19th century AD

    Directory of Open Access Journals (Sweden)

    Grazhdankin Alexander

    2012-01-01

    Full Text Available This article considers the main historical stages of formation of spatial economic structure of the European countries, parts of whose territories lie within the Rhine basin. The analysis covers a protracted chronological interval from the Roman colonization until the beginning of the 20th century. The author emphasizes the role of the River Rhine in the course of territorial structure formation. This study aims to retrace the historical sequence of the formation of territorial structure of economies of the Rhine basin countries. The research and practical significance of the work lies in the identification of the periods of increased activity in the formation of spatial structural communications of the states mentioned. The author applies the historical-descriptive approach and cartographical-geographical modelling to identify the main stages of this process. The author arrives at the following conclusions. The beginning of the formation of spatial structure of economies of the Rhine basin countries dates back to the Roman period of the history of European states rather than the industrial revolution. Similarly, it is possible to assume that primitive integration processes started to develop in the region in the same period. Throughout history, the River Rhine has served as the central axis for economic structure development. The practical significance of the article lies in identifying the early — previously insufficiently studied — stages of formation of territorial economic structure in the historical and geographical context.

  4. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  5. Sorting out river channel patterns

    NARCIS (Netherlands)

    Kleinhans, M.G.

    2010-01-01

    Rivers self-organize their pattern/planform through feedbacks between bars, channels, floodplain and vegetation, which emerge as a result of the basic spatial sorting process of wash load sediment and bed sediment. The balance between floodplain formation and destruction determines the width and

  6. Distribution and pathogenicity of Batrachochytrium dendrobatidis in boreal toads from the grand teton area of western wyoming

    Science.gov (United States)

    Murphy, P.J.; St-Hilaire, S.; Bruer, S.; Corn, P.S.; Peterson, C.R.

    2009-01-01

    The pathogen Batrachochytrium dendrobatidis (Bd), which causes the skin disease chytridiomycosis, has been linked to amphibian population declines and extinctions worldwide. Bd has been implicated in recent declines of boreal toads, Bufo boreas boreas, in Colorado but populations of boreal toads in western Wyoming have high prevalence of Bd without suffering catastrophic mortality. In a field and laboratory study, we investigated the prevalence of Bd in boreal toads from the Grand Teton ecosystem (GRTE) in Wyoming and tested the pathogenicity of Bd to these toads in several environments. The pathogen was present in breeding adults at all 10 sites sampled, with a mean prevalence of 67%. In an experiment with juvenile toadlets housed individually in wet environments, 106 zoospores of Bd isolated from GRTE caused lethal disease in all Wyoming and Colorado animals within 35 days. Survival time was longer in toadlets from Wyoming than Colorado and in toadlets spending more time in dry sites. In a second trial involving Colorado toadlets exposed to 35% fewer Bd zoospores, infection peaked and subsided over 68 days with no lethal chytridiomycosis in any treatment. However, compared with drier aquaria with dry refuges, Bd infection intensity was 41% higher in more humid aquaria and 81% higher without dry refuges available. Our findings suggest that although widely infected in nature, Wyoming toads may escape chytridiomycosis due to a slight advantage in innate resistance or because their native habitat hinders Bd growth or provides more opportunities to reduce pathogen loads behaviorally than in Colorado. ?? 2009 International Association for Ecology and Health.

  7. Significant concentration changes of chemical components of PM_1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze–fog pollution

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Zhang, X.Y.; Zhang, Y.M.; Shen, X.J.; Sun, J.Y.; Ma, Q.L.; Yu, X.M.; Zhu, J.L.; Zhang, L.; Che, H.C.

    2015-01-01

    Since the winter season of 2013, a number of persistent haze–fog events have occurred in central-eastern China. Continuous measurements of the chemical and physical properties of PM_1 at a regional background station in the Yangtze River Delta area of China from 16 Nov. to 18 Dec., 2013 revealed several haze–fog events, among which a heavy haze–fog event occurred between 6 Dec. and 8 Dec. The mean concentration of PM_1 was 212 μg m"−"3 in the heavy haze–fog period, which was about 10 times higher than on clean days and featured a peak mass concentration that reached 298 μg m"−"3. Organics were the largest contributor to the dramatic rise of PM_1 on heavy haze–fog days (average mass concentration of 86 μg m"−"3), followed by nitrate (58 μg m"−"3), sulfate (35 μg m"−"3), ammonium (29 μg m"−"3), and chloride (4.0 μg m"−"3). Nitrate exhibited the largest increase (~ 20 factors), associated with a significant increase in NO_x. This was mainly attributable to increased coal combustion emissions, relative to motor vehicle emissions, and was caused by short-distance pollutant transport within surrounding areas. Low-volatility oxidized organic aerosols (OA) (LV-OOA) and biomass-burning OA (BBOA) also increased sharply on heavy haze–fog days, exhibiting an enhanced oxidation capacity of the atmosphere and increased emissions from biomass burning. The strengthening of the oxidation capacity during the heavy pollution episode, along with lower solar radiation, was probably due to increased biomass burning, which were important precursors of O_3. The prevailing meteorological conditions, including low wind and high relative humidity, and short distance transported gaseous and particulate matter surrounding of the sampling site, coincided with the increased pollutant concentrations mainly from biomass-burning mentioned above to cause the persistent haze–fog event in the YRD area. - Highlights: • Formation mechanism of a heavy haze-fog event

  8. Significant concentration changes of chemical components of PM{sub 1} in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze–fog pollution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.W. [Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081 (China); Zhang, X.Y., E-mail: xiaoye@cams.cma.gov.cn [Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081 (China); Zhang, Y.M.; Shen, X.J. [Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081 (China); Sun, J.Y. [Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081 (China); State Key Laboratory of Cryospheric Sciences, Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); Ma, Q.L.; Yu, X.M. [Lin' an Regional Air Background Station, Lin' an 311307 (China); Zhu, J.L. [School of Atmospheric Sciences, Nanjing University, Nanjing 210093 (China); Zhang, L.; Che, H.C. [Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081 (China); College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-12-15

    Since the winter season of 2013, a number of persistent haze–fog events have occurred in central-eastern China. Continuous measurements of the chemical and physical properties of PM{sub 1} at a regional background station in the Yangtze River Delta area of China from 16 Nov. to 18 Dec., 2013 revealed several haze–fog events, among which a heavy haze–fog event occurred between 6 Dec. and 8 Dec. The mean concentration of PM{sub 1} was 212 μg m{sup −3} in the heavy haze–fog period, which was about 10 times higher than on clean days and featured a peak mass concentration that reached 298 μg m{sup −3}. Organics were the largest contributor to the dramatic rise of PM{sub 1} on heavy haze–fog days (average mass concentration of 86 μg m{sup −3}), followed by nitrate (58 μg m{sup −3}), sulfate (35 μg m{sup −3}), ammonium (29 μg m{sup −3}), and chloride (4.0 μg m{sup −3}). Nitrate exhibited the largest increase (~ 20 factors), associated with a significant increase in NO{sub x}. This was mainly attributable to increased coal combustion emissions, relative to motor vehicle emissions, and was caused by short-distance pollutant transport within surrounding areas. Low-volatility oxidized organic aerosols (OA) (LV-OOA) and biomass-burning OA (BBOA) also increased sharply on heavy haze–fog days, exhibiting an enhanced oxidation capacity of the atmosphere and increased emissions from biomass burning. The strengthening of the oxidation capacity during the heavy pollution episode, along with lower solar radiation, was probably due to increased biomass burning, which were important precursors of O{sub 3}. The prevailing meteorological conditions, including low wind and high relative humidity, and short distance transported gaseous and particulate matter surrounding of the sampling site, coincided with the increased pollutant concentrations mainly from biomass-burning mentioned above to cause the persistent haze–fog event in the YRD area. - Highlights

  9. Heavy element radionuclides (Pu, Np, U) and 137Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    International Nuclear Information System (INIS)

    Beasley, T.M.; Rivera, W. Jr.; Liszewski, M.J.; Orlandini, K.A.

    1998-10-01

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of 237 Np and 137 Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that 241 Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of 236 U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and 238 Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated

  10. Geothermal district heating system feasibility analysis, Thermopolis, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

    1982-04-26

    The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

  11. Antecedent Rivers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Antecedent Rivers - Ganga Is Older Than Himalaya. K S Valdiya. General Article Volume 1 Issue 8 August 1996 pp 55-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/08/0055-0063 ...

  12. RIVER STATE

    African Journals Online (AJOL)

    principals randomly selected from one hundred secondary schools in Cross River State. The data collected ... There was no siyriificant influerlce of gender on principals' leadership styles effectiveness. ... result of the cultural stereotyping of males and females by .... schools were single sex boys, another 10 were single sex ...

  13. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M L [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Sullivan, M [Wyoming State Government, Cheyenne, WY (United States)

    1990-04-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

  14. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming

    International Nuclear Information System (INIS)

    Matthews, M.L.

    1990-04-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement

  15. Population viability of Arctic grayling in the Gibbon River, Yellowstone National Park

    Science.gov (United States)

    Steed, Amber C.; Zale, Alexander V.; Koel, Todd M.; Kalinowski, Steven T.

    2010-01-01

    The fluvial Arctic grayling Thymallus arcticus is restricted to less than 5% of its native range in the contiguous United States and was relisted as a category 3 candidate species under the U.S. Endangered Species Act in 2010. Although fluvial Arctic grayling of the lower Gibbon River, Yellowstone National Park, Wyoming, were considered to have been extirpated by 1935, anglers and biologists have continued to report catching low numbers of Arctic grayling in the river. Our goal was to determine whether a viable population of fluvial Arctic grayling persisted in the Gibbon River or whether the fish caught in the river were downstream emigrants from lacustrine populations in headwater lakes. We addressed this goal by determining relative abundances, sources, and evidence for successful spawning of Arctic grayling in the Gibbon River. During 2005 and 2006, Arctic grayling comprised between 0% and 3% of the salmonid catch in riverwide electrofishing (mean Back-calculated lengths at most ages were similar among all fish, and successful spawning within the Gibbon River below the headwater lakes was not documented. Few Arctic grayling adults and no fry were detected in the Gibbon River, implying that a reproducing fluvial population does not exist there. These findings have implications for future Endangered Species Act considerations and management of fluvial Arctic grayling within and outside of Yellowstone National Park. Our comprehensive approach is broadly applicable to the management of sparsely detected aquatic species worldwide.

  16. Hydrological and geochemical consequences of river regulation - hyporheic perspective

    Science.gov (United States)

    Siergieiev, Dmytro; Lundberg, Angela; Widerlund, Anders

    2014-05-01

    River-aquifer interfaces, essential for ecosystem functioning in terms of nutrient exchange and biological habitat, appear greatly threatened worldwide. Although river regulation is a vast pressure on river-aquifer interaction, influencing entire watersheds, knowledge about hyporheic exchange in regulated rivers is rather limited. In this study, we combine two decades of research on hydrological and geochemical impacts of hydropower regulation on river water and hyporheic zone in two large boreal rivers, unregulated Kalix River and regulated Lule River. Altered river discharge, with reduced spring peaks, daily summer fluctuations and elevated winter base flow severely modified Lule River water geochemistry and thus the transport of solutes to the Bothnian Bay (Baltic Sea). Further, these river modifications changed the river-aquifer exchange on both daily and seasonal scale, which resulted in deteriorated hyporheic conditions with reduced riverbed hydraulic conductivity (formation of a clogging layer) reflected in a declined hyporheic flux. Altered hydrological regime of the hyporheic zone created quasi-stagnant conditions beneath the river-aquifer interface and promoted the formation of geochemically suboxic environment. Taken that hyporheic water is a mixture of river water and groundwater, mixing models for the regulated site demonstrate a considerable addition of Fe, Mn, Al, NH4 and removal of dissolved oxygen and nitrate, which suggests the hyporheic zone in the Lule River to be a source of solutes. This contradicts the observations from the hyporheic zone in the unregulated river, with opposite behaviour functioning as a barrier. These results suggest that the hyporheic zone function is dependent on the river discharge and the state of the river-aquifer connectivity. Improved knowledge about the latter on a watershed scale will substantially increase our understanding about the status and potential pressures of riverine ecosystems and assist management and

  17. U.S. Geological Survey Science Strategy for the Wyoming Landscape Conservation Initiative

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Chong, Geneva W.; Drummond, Mark A.; Homer, Collin G.; Johnson, Ronald C.; Kauffman, Matthew J.; Knick, Steven T.; Kosovich, John J.; Miller, Kirk A.; Owens, Tom; Shafer, Sarah L.; Sweat, Michael J.

    2009-01-01

    Southwest Wyoming's wildlife and habitat resources are increasingly affected by energy and urban/exurban development, climate change, and other key drivers of ecosystem change. To ensure that southwest Wyoming's wildlife populations and habitats persist in the face of development and other changes, a consortium of public resource-management agencies proposed the Wyoming Landscape Conservation Initiative (WLCI), the overall goal of which is to implement conservation actions. As the principal agency charged with conducting WLCI science, the U.S. Geological Survey (USGS) has developed a Science Strategy for the WLCI. Workshops were held for all interested parties to identify and refine the most pressing management needs for achieving WLCI goals. Research approaches for addressing those needs include developing conceptual models for understanding ecosystem function, identifying key drivers of change affecting WLCI ecosystems, and conducting scientific monitoring and experimental studies to better understand ecosystems processes, cumulative effects of change, and effectiveness of habitat treatments. The management needs drive an iterative, three-phase framework developed for structuring and growing WLCI science efforts: Phase I entails synthesizing existing information to assess current conditions, determining what is already known about WLCI ecosystems, and providing a foundation for future work; Phase II entails conducting targeted research and monitoring to address gaps in data and knowledge during Phase I; and Phase III entails integrating new knowledge into WLCI activities and coordinating WLCI partners and collaborators. Throughout all three phases, information is managed and made accessible to interested parties and used to guide and improve management and conservation actions, future habitat treatments, best management practices, and other conservation activities.

  18. Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?

    Science.gov (United States)

    Smith, Kurt T.; Beck, Jeffrey L.; Pratt, Aaron C.

    2016-10-01

    Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse ( Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.

  19. Spatial variability in cost and success of revegetation in a Wyoming big sagebrush community.

    Science.gov (United States)

    Boyd, Chad S; Davies, Kirk W

    2012-09-01

    The ecological integrity of the Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and A. Young) alliance is being severely interrupted by post-fire invasion of non-native annual grasses. To curtail this invasion, successful post-fire revegetation of perennial grasses is required. Environmental factors impacting post-fire restoration success vary across space within the Wyoming big sagebrush alliance; however, most restorative management practices are applied uniformly. Our objectives were to define probability of revegetation success over space using relevant soil-related environmental factors, use this information to model cost of successful revegetation and compare the importance of vegetation competition and soil factors to revegetation success. We studied a burned Wyoming big sagebrush landscape in southeast Oregon that was reseeded with perennial grasses. We collected soil and vegetation data at plots spaced at 30 m intervals along a 1.5 km transect in the first two years post-burn. Plots were classified as successful (>5 seedlings/m(2)) or unsuccessful based on density of seeded species. Using logistic regression we found that abundance of competing vegetation correctly predicted revegetation success on 51 % of plots, and soil-related variables correctly predicted revegetation performance on 82.4 % of plots. Revegetation estimates varied from $167.06 to $43,033.94/ha across the 1.5 km transect based on probability of success, but were more homogenous at larger scales. Our experimental protocol provides managers with a technique to identify important environmental drivers of restoration success and this process will be of value for spatially allocating logistical and capital expenditures in a variable restoration environment.

  20. Serological survey for diseases in free-ranging coyotes (Canis latrans) in Yellowstone National Park, Wyoming.

    Science.gov (United States)

    Gese, E M; Schultz, R D; Johnson, M R; Williams, E S; Crabtree, R L; Ruff, R L

    1997-01-01

    From October 1989 to June 1993, we captured and sampled 110 coyotes (Canis latrans) for various diseases in Yellowstone National Park, Wyoming (USA). Prevalence of antibodies against canine parvovirus (CPV) was 100% for adults (> 24 months old), 100% for yearlings (12 to 24 months old), and 100% for old pups (4 to 12 months old); 0% of the young pups (Yellowstone National Park, with CPV influencing coyote pup survival during the first 3 months of life; eight of 21 transmitted pups died of CPV infection in 1992. The potential impact of these canine pathogens on wolves (C. lupus) reintroduced to Yellowstone National Park remains to be documented.

  1. Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program: 10 Years of REU

    Science.gov (United States)

    Canterna, R.; Beck, K.; Hickman, M. A.

    1996-05-01

    The Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program (SURAP) will complete its tenth year as an NSF REU site. Using the theme, a tutorial in research, SURAP has provided research experience for over 90 students from all regions of the United States. We will present typical histories of past students to illustrate the impact an REU experience has on the scientific careers of these students. Demographic data will be presented to show the diverse backgrounds of our SURAP students. A short film describing our science ethics seminar will be available for later presentation.

  2. Coxiella burnetii, the agent of Q fever, in domestic sheep flocks from Wyoming, United States.

    Science.gov (United States)

    Loftis, Amanda D; Reeves, Will K; Miller, Myrna M; Massung, Robert F

    2012-03-01

    Coxiella burnetii, the agent of Q fever, is an intracellular bacterial pathogen. It has a nearly cosmopolitan distribution. We conducted a serological survey of domestic sheep herds for infections with C. burnetii in Wyoming following reports of abortion and open ewes. Based on the serologic evidence, there was no link between reproductive problems and exposure to C. burnetii. However, the overall prevalence of C. burnetii in WY sheep was 7%, which indicates that the agent is present in the environment and could pose a threat to public health.

  3. Predicting occupancy for pygmy rabbits in Wyoming: an independent evaluation of two species distribution models

    Science.gov (United States)

    Germaine, Stephen S.; Ignizio, Drew; Keinath, Doug; Copeland, Holly

    2014-01-01

    Species distribution models are an important component of natural-resource conservation planning efforts. Independent, external evaluation of their accuracy is important before they are used in management contexts. We evaluated the classification accuracy of two species distribution models designed to predict the distribution of pygmy rabbit Brachylagus idahoensis habitat in southwestern Wyoming, USA. The Nature Conservancy model was deductive and based on published information and expert opinion, whereas the Wyoming Natural Diversity Database model was statistically derived using historical observation data. We randomly selected 187 evaluation survey points throughout southwestern Wyoming in areas predicted to be habitat and areas predicted to be nonhabitat for each model. The Nature Conservancy model correctly classified 39 of 77 (50.6%) unoccupied evaluation plots and 65 of 88 (73.9%) occupied plots for an overall classification success of 63.3%. The Wyoming Natural Diversity Database model correctly classified 53 of 95 (55.8%) unoccupied plots and 59 of 88 (67.0%) occupied plots for an overall classification success of 61.2%. Based on 95% asymptotic confidence intervals, classification success of the two models did not differ. The models jointly classified 10.8% of the area as habitat and 47.4% of the area as nonhabitat, but were discordant in classifying the remaining 41.9% of the area. To evaluate how anthropogenic development affected model predictive success, we surveyed 120 additional plots among three density levels of gas-field road networks. Classification success declined sharply for both models as road-density level increased beyond 5 km of roads per km-squared area. Both models were more effective at predicting habitat than nonhabitat in relatively undeveloped areas, and neither was effective at accounting for the effects of gas-energy-development road networks. Resource managers who wish to know the amount of pygmy rabbit habitat present in an

  4. Optical Dating of Holocene Dune Sands in the Ferris Dune Field, Wyoming

    Science.gov (United States)

    Stokes, Stephen; Gaylord, David R.

    1993-05-01

    Optical dating of late Quaternary quartz dune sands from the Clear Creek portion of Ferris dune field, Wyoming, demonstrates the considerable potential of the technique as a chronostratigraphic tool. A sequence of radiocarbon-dated Holocene interdune strata permit optical dating of the intercalated dune sand to be tested; the concordance is good. The optical dates for the aeolian deposits not datable by radiocarbon suggest that aeolian sedimentation at Clear Creek peaked during two relatively short phases at ca. 8500 and 4000 yr B.P. The dates indicate that aeolian accumulation maxima (at least in the Clear Creek area) may not be synchronous with previously defined phases of marked aridity.

  5. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    International Nuclear Information System (INIS)

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required

  6. Copper Mountain, Wyoming, intermediate-grade uranium resource assessment project. Final report. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Madson, M.E.; Ludlam, J.R.; Fukui, L.M.

    1982-11-01

    Intermediate-grade uranium resources were delineated and estimated for Eocene and Precambrian host rock environments in the 39.64 mi 2 Copper Mountain, Wyoming, assessment area. Geologic reconnaissance and geochemical, geophysical, petrologic, borehole, and structural data were interpreted and used to develop a genetic model for uranium mineralization in these environments. Development of a structural scoring system and application of computer graphics in a high-confidence control area established the basis for estimations of uranium resources in the total assessment area. 8 figures, 5 tables

  7. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  8. Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Allen, M.F. (University of Wyoming, Laramie, WY (USA))

    1980-01-01

    The % root infection of {ital Agropyron smithii} and {ital A. intermedium} by vesicular-arbuscular mycorrhizae was measured and spoil spores were counted in six reclaimed stripmine sites in Wyoming. On 2- and 3-yr old sites % infection and spore counts were c. 50% or less than native prairie levels. Spore counts of a 3-yr old disked prairie site were not different from the undisturbed prairie level, but infection was significantly lower. Spore counts of the reclimed sites were not highly correlated with % root infection. Five of seven annuals which colonized the reclaimed and disked sites were non-mycorrhizal. 43 refs., 3 tabs.

  9. Microhabitat Conditions in Wyoming's Sage-Grouse Core Areas: Effects on Nest Site Selection and Success.

    Directory of Open Access Journals (Sweden)

    Jonathan B Dinkins

    Full Text Available The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming's Core Area Policy. Wyoming's Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008-2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and <1.0 m, while selecting for less bare ground and rock. With the exception of more small gaps between shrubs, we did not find any differences in availability of these microhabitat characteristics between locations within and outside of Core Areas. In addition, we found little supporting evidence that sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4-45.9%. Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m. Within our study areas, Wyoming's Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available

  10. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States); Dam, Wiliam [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  11. Antecedent Rivers

    Indian Academy of Sciences (India)

    far north of the high NandaDevi (7,817 m) - Api Nampa. (7,132 m) range of the Himadri. The Sindhu flows northwestwards, the Satluj goes west, the Karnali takes the southerly course and the Tsangpo flows east. These rivers flow through their pristine channels, carved out at the very outset about 50 to 55 m.y (million years) ...

  12. Wyoming bentonites. Evidence from the geological record to evaluate the suitability of bentonite as a buffer material during the long-term underground containment of radioactive wastes

    International Nuclear Information System (INIS)

    Smellie, J.

    2001-12-01

    In the Swedish programme for the deep, geological disposal of radioactive wastes, bentonite is planned to be used as a barrier material to reduce groundwater flow and minimise radionuclide migration into the geosphere. One of the possible threats to long-term bentonite stability is the gradual incursion of saline water into the repository confines which may reduce the swelling capacity of the bentonite, even to the extent of eliminating the positive effects of mixing bentonite into backfill materials. Important information may be obtained from the study of analogous processes in nature (i.e. natural analogue or natural system studies) where bentonite, during its formation, has been in long-term contact with reducing waters of brackish to saline character. Type bentonites include those mined from the Clay Spur bed at the top of the Cretaceous Mowry Formation in NE Wyoming and demarcated for potential use as a barrier material (e.g. MX-80 sodium bentonite) in the Swedish radioactive waste programme. This bentonite forms part of the Mowry Shale which was deposited in a southern embayment of the late Albian Western Interior Cretaceous sea (Mowry Sea). The question is whether these bentonite deposits show evidence of post-deposition alteration caused by the sea water in which they were deposited, and/or, have they been altered subsequently by contact with waters of increasing salinity? Bentonites are the product of pyroclastic fall deposits thought to be generated by the type of explosive, subaerial volcanic activity characteristic of Plinian eruptive systems. In Wyoming the overall composition of the original ash varied from dacite to rhyolite, or latite to trachyte. The ash clouds were carried to high altitudes and eastwards by the prevailing westerly winds before falling over the shallow Mowry Sea and forming thin but widespread and continuous horizons on sea floor muds and sands. Whilst bentonites were principally wind-transported, there is evidence of some water

  13. Wyoming bentonites. Evidence from the geological record to evaluate the suitability of bentonite as a buffer material during the long-term underground containment of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, J [Conterra AB (Sweden)

    2001-12-01

    In the Swedish programme for the deep, geological disposal of radioactive wastes, bentonite is planned to be used as a barrier material to reduce groundwater flow and minimise radionuclide migration into the geosphere. One of the possible threats to long-term bentonite stability is the gradual incursion of saline water into the repository confines which may reduce the swelling capacity of the bentonite, even to the extent of eliminating the positive effects of mixing bentonite into backfill materials. Important information may be obtained from the study of analogous processes in nature (i.e. natural analogue or natural system studies) where bentonite, during its formation, has been in long-term contact with reducing waters of brackish to saline character. Type bentonites include those mined from the Clay Spur bed at the top of the Cretaceous Mowry Formation in NE Wyoming and demarcated for potential use as a barrier material (e.g. MX-80 sodium bentonite) in the Swedish radioactive waste programme. This bentonite forms part of the Mowry Shale which was deposited in a southern embayment of the late Albian Western Interior Cretaceous sea (Mowry Sea). The question is whether these bentonite deposits show evidence of post-deposition alteration caused by the sea water in which they were deposited, and/or, have they been altered subsequently by contact with waters of increasing salinity? Bentonites are the product of pyroclastic fall deposits thought to be generated by the type of explosive, subaerial volcanic activity characteristic of Plinian eruptive systems. In Wyoming the overall composition of the original ash varied from dacite to rhyolite, or latite to trachyte. The ash clouds were carried to high altitudes and eastwards by the prevailing westerly winds before falling over the shallow Mowry Sea and forming thin but widespread and continuous horizons on sea floor muds and sands. Whilst bentonites were principally wind-transported, there is evidence of some water

  14. [Proceedings of the 5th Symposium on Mesozoic and Cenozoic Decapod Crustaceans, Krakow, Poland, 2013: A tribute to Pál Mihály Müller / R.H.B. Fraaije, M. Hyžný, J.W.M. Jagt, M. Krobicki & B.W.M. van Bakel (eds.)]: Neozanthopsis americana (Decapoda, Brachyura, Carpilioidea) from the Middle Eocene Cane River Formation of Louisiana, USA, and associated teleost otoliths

    NARCIS (Netherlands)

    Schweitzer, C.E.; Feldmann, R.M.; Stringer, G.L.

    2014-01-01

    A large collection of Neozanthopsis americana (Rathbun, 1928) from the Middle Eocene (Lutetian) Cane River Formation in Louisiana, USA, represents the first opportunity to describe the species in detail. Detailed analysis of associated teleost otoliths and other vertebrate remains documents a

  15. TESS Follow-up Observing Programs at the University of Wyoming

    Science.gov (United States)

    Jang-Condell, Hannah; Kasper, David; Kar, Aman; Sorber, Rebecca; Hancock, Daniel A.; Leuquire, Jacob D.; Suhaimi, Afiq; Kobulnicky, Henry A.; Pierce, Michael; Pilachowski, Catherine A.

    2018-06-01

    The Transiting Exoplanet Survey Satellite (TESS), launched in Spring 2018, will detect thousands of new exoplanet candidates. These candidates will need to be vetted by ground-based observatories to rule out false positives. The Observatories at the University of Wyoming are well-positioned to take active roles in TESS Follow-Up Observing Program (TFOP) Working Groups. The 0.6-m Red Buttes Observatory has already demonstrated its capability to do precision photometric monitoring of transiting exoplanet targets as a participant in the Kilodegree Extremely Little Telescope Follow-Up Network (KELT-FUN). A new echelle spectrograph, Fiber High-Resolution Echelle (FHiRE), being built for the 2.3-m Wyoming InfraRed Observatory (WIRO), will enable precision radial velocity measurements of exoplanet candidates. Over 180 nights/year at both observatories will be available to our team to undertake follow-up observations of TESS Objects of Interest (TOIs). We anticipate making significant contributions to new exoplanet discoveries in the era of TESS.

  16. Evaluation of wetland creation and waterfowl use in conjunction with abandoned mine lands in northeast Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    McKistry, M C; Anderson, S H [University of Wyoming, Laramie, WY (United States)

    1994-12-01

    During 1991 and 1992, we studied 92 wetlands, including open water (ponds) and emergent communities, created as a result of Wyoming Abandoned Mine Lands` (AML) reclamation efforts in northeast Wyoming. Through these activities, over 300 wetlands were filled, reclaimed, created, or otherwise modified. For mitigation purposes wetlands to be filled or modified were first evaluated using a Wetland Habitat Value (WHV) Model. Using the model, wetland losses were mitigated by increasing the WHV of some wetlands or by creating new wetlands elsewhere. We evaluated model performance in offsetting wetland loss and how well the model predicted waterfowl use. We also compared post-reclamation wetland sizes to those predicted by engineering plans and submitted for Section 404 permit approval. In our study, predicted WHVs were overestimated at 100% of the wetlands for which pre-reclamation WHVs were available (n8). The most commonly overestimated variables were size, fraction of emergent cover, adjacent upland cover, and the number of bays and peninsulas. We obtained preconstruction size estimates for 64 of the original 80 wetlands. Fifty five of 64 wetlands were smaller than pre-reclamation engineering goals. The WHV Model accurately predicted use of wetlands by migrating and breeding canada geese (Branta canadensis), migrating dabbling ducks, and migrating diving ducks.

  17. Endemic chronic wasting disease causes mule deer population decline in Wyoming.

    Directory of Open Access Journals (Sweden)

    Melia T DeVivo

    Full Text Available Chronic wasting disease (CWD is a fatal transmissible spongiform encephalopathy affecting white-tailed deer (Odocoileus virginianus, mule deer (Odocoileus hemionus, Rocky Mountain elk (Cervus elaphus nelsoni, and moose (Alces alces shirasi in North America. In southeastern Wyoming average annual CWD prevalence in mule deer exceeds 20% and appears to contribute to regional population declines. We determined the effect of CWD on mule deer demography using age-specific, female-only, CWD transition matrix models to estimate the population growth rate (λ. Mule deer were captured from 2010-2014 in southern Converse County Wyoming, USA. Captured adult (≥ 1.5 years old deer were tested ante-mortem for CWD using tonsil biopsies and monitored using radio telemetry. Mean annual survival rates of CWD-negative and CWD-positive deer were 0.76 and 0.32, respectively. Pregnancy and fawn recruitment were not observed to be influenced by CWD. We estimated λ = 0.79, indicating an annual population decline of 21% under current CWD prevalence levels. A model derived from the demography of only CWD-negative individuals yielded; λ = 1.00, indicating a stable population if CWD were absent. These findings support CWD as a significant contributor to mule deer population decline. Chronic wasting disease is difficult or impossible to eradicate with current tools, given significant environmental contamination, and at present our best recommendation for control of this disease is to minimize spread to new areas and naïve cervid populations.

  18. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  19. Seasonal movement and spatial distribution of the sheep ked (Diptera: Hippoboscidae) on Wyoming lambs.

    Science.gov (United States)

    Legg, D E; Kumar, R; Watson, D W; Lloyd, J E

    1991-10-01

    When populations of adult sheep ked, Melophagus ovinus (L.), infesting unshorn lambs were monitored at the University of Wyoming Paradise Farm during 1986, we determined the body regions on which keds would be found at various times of the year and their seasonal population trends for optimal sampling. Results suggested that ked populations were consistently greater on the ribs than on any other area of the lamb. No significant differences were detected for ked populations between sides of a lamb. Distinct and similar ked population trends over time occurred only in the rib, thigh, shoulder, hind leg, belly, and hind flank areas of the lambs, suggesting that a significant seasonal migration did not occur. Analyses for seasonal population fluctuations indicated that ked populations increased in the winter and spring, decreased in summer and then increased again in the fall. Thus, sampling for keds in the rib area at shearing, which begins in March in Wyoming and runs through mid-April, would be an opportune time to detect keds. At other times of the year, the rib area should be inspected for presence of sheep ked.

  20. 76 FR 61781 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Science.gov (United States)

    2011-10-05

    ... gray wolf reintroductions in central Idaho and in Yellowstone National Park (YNP). The Yellowstone... Wolves to Yellowstone National Park and Central Idaho (EIS) reviewed wolf recovery in the NRM region and... Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming...

  1. 78 FR 79004 - Notice of Availability of the Wyoming Greater Sage-Grouse Draft Land Use Plan Amendments and...

    Science.gov (United States)

    2013-12-27

    ...-rearing and winter concentration areas. General Habitat--Areas of seasonal or year-round habitat outside of priority habitat. Connectivity Habitat--Areas identified as broader regions of connectivity... habitat identified by the Wyoming Game and Fish Department: Core Habitat--Areas identified as having the...

  2. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Wyoming portions of the Driggs, Preston, and Ogden NTMS Quadrangles

    International Nuclear Information System (INIS)

    Broxton, D.E.; Nunes, H.P.

    1978-04-01

    This report describes work done in the Wyoming portions of the Driggs and Preston, Wyoming/Idaho, and the Ogden, Wyoming/Utah, National Topographic Map Series (NTMS) quadrangles (1 : 250,000 scale) by the Los Alamos Scientific Laboratory (LASL) as part of the nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The HSSR is designed to identify areas having higher than normal concentrations of uranium in ground waters, surface waters, and water-transported sediments. During the fall of 1976, 1108 water samples and 1956 sediment samples were taken from 1999 locations by a private contractor within the Wyoming portion of Driggs, Preston, and Ogden quadrangles. An additional 108 water samples and 128 sediment samples were collected in the Grand Teton National Park during the fall of 1977 by staff members from the LASL. All of the samples were collected and treated according to standard specifications described in Appendix A. Uranium concentrations were determined at the LASL using standard analytical methods and procedures, also described briefly in Appendix A. Appendixes B-I through B-III and C-I through C-III are listings of all field and analytical data for the water and sediment samples, respectively. Appendixes D-I and D-II provide keys to codes used in the data listings. Statistical data describing the mean, range, and standard deviations of uranium concentrations are summarized by quadrangle and sample source-type in Tables I through III

  3. Analysis of Costs of Services/Supports for People with Developmental Disabilities for Nebraska, South Dakota, and Wyoming, USA.

    Science.gov (United States)

    Campbell, Edward M.; Fortune, Jon; Severance, Donald; Holderegger, John; Fortune, Barbara

    A database was assembled from data collected on all people served by the Developmental Disabilities divisions of Nebraska, South Dakota, and Wyoming, including state institutions and state-funded programs (n=5,928). Information included provider expenditures associated with each individual, allocations made by individual reimbursement rates,…

  4. 76 FR 52377 - Colorado Wyoming Reserve Co., Grant Life Sciences, Inc., NOXSO Corp., Omni Medical Holdings, Inc...

    Science.gov (United States)

    2011-08-22

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Colorado Wyoming Reserve Co., Grant Life Sciences, Inc., NOXSO Corp., Omni Medical Holdings, Inc., and TSI, Inc., Order of Suspension of Trading... Commission that there is a lack of current and accurate information concerning the securities of Grant Life...

  5. Climate change on the Shoshone National Forest, Wyoming: a synthesis of past climate, climate projections, and ecosystem implications

    Science.gov (United States)

    Janine Rice; Andrew Tredennick; Linda A. Joyce

    2012-01-01

    The Shoshone National Forest (Shoshone) covers 2.4 million acres of mountainous topography in northwest Wyoming and is a vital ecosystem that provides clean water, wildlife habitat, timber, grazing, recreational opportunities, and aesthetic value. The Shoshone has experienced and adapted to changes in climate for many millennia, and is currently experiencing a warming...

  6. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... Cooperating Agencies. No changes to the Proposed Action or Purpose of and Need for Action have been made... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will...

  7. 78 FR 29379 - BLM Director's Response to the Appeal by the Governors of Utah and Wyoming of the BLM Assistant...

    Science.gov (United States)

    2013-05-20

    ... Shale and Tar Sands Resources on Lands Administered by the Bureau of Land Management (BLM) in Colorado... Shale and Tar Sands Resources on Lands Administered by the BLM in Colorado, Utah, and Wyoming, which..., Lakewood, CO 80215 or Mitchell Leverette, BLM Division Chief, Solid Minerals, 202-912-7113, ( [email protected

  8. River Corridor Easements

    Data.gov (United States)

    Vermont Center for Geographic Information — A River Corridor Easement (RCE) is an area of conserved land adjacent to a river or stream that was conserved to permanently protect the lateral area the river needs...

  9. Occurrence of Pesticides in Ground Water of Wyoming, 1995-2006

    Science.gov (United States)

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Hallberg, Laura L.

    2009-01-01

    Little existing information was available describing pesticide occurrence in ground water of Wyoming, so the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture and the Wyoming Department of Environmental Quality on behalf of the Wyoming Ground-water and Pesticides Strategy Committee, collected ground-water samples twice (during late summer/early fall and spring) from 296 wells during 1995-2006 to characterize pesticide occurrence. Sampling focused on the State's ground water that was mapped as the most vulnerable to pesticide contamination because of either inherent hydrogeologic sensitivity (for example, shallow water table or highly permeable aquifer materials) or a combination of sensitivity and associated land use. Because of variations in reporting limits among different compounds and for the same compound during this study, pesticide detections were recensored to two different assessment levels to facilitate qualitative and quantitative examination of pesticide detection frequencies - a common assessment level (CAL) of 0.07 microgram per liter and an assessment level that differed by compound, referred to herein as a compound-specific assessment level (CSAL). Because of severe data censoring (fewer than 50 percent of the data are greater than laboratory reporting limits), categorical statistical methods were used exclusively for quantitative comparisons of pesticide detection frequencies between seasons and among various natural and anthropogenic (human-related) characteristics. One or more pesticides were detected at concentrations greater than the CAL in water from about 23 percent of wells sampled in the fall and from about 22 percent of wells sampled in the spring. Mixtures of two or more pesticides occurred at concentrations greater than the CAL in about 9 percent of wells sampled in the fall and in about 10 percent of wells sampled in the spring. At least 74 percent of pesticides detected were classified as herbicides

  10. Emergence, concept, and understanding of Pan-River-Basin (PRB

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-12-01

    Full Text Available In this study, the concept of Pan-River-Basin (PRB for water resource management is proposed with a discussion on the emergence, concept, and application of PRB. The formation and application of PRB is also discussed, including perspectives on the river contribution rates, harmonious levels of watershed systems, and water resource availability in PRB system. Understanding PRB is helpful for reconsidering river development and categorizing river studies by the influences from human projects. The sustainable development of water resources and the harmonization between humans and rivers also requires PRB.

  11. River Diversions and Shoaling

    National Research Council Canada - National Science Library

    Letter, Jr., Joseph V; Pinkard, Jr., C. F; Raphelt, Nolan K

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note describes the current knowledge of the potential impacts of river diversions on channel morphology, especially induced sedimentation in the river channel...

  12. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    MODIS-derived snow cover measured on 30 April in any given year explains approximately 89 % of the variance in stream discharge for maximum monthly streamflow in that year. Observed changes in streamflow appear to be related to increasing maximum air temperatures over the last four decades causing lower spring snow-cover extent. The majority (>70%) of the water supply in the western United States comes from snowmelt, thus analysis of the declining spring snowpack (and resulting declining stream discharge) has important implications for streamflow management in the drought-prone western U.S.

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Newcastle NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.; Talcott, C.L.; Martinez, R.G.; Minor, M.E.; Mills, C.F.

    1980-06-01

    Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales

  14. Relationships between gas field development and the presence and abundance of pygmy rabbits in southwestern Wyoming

    Science.gov (United States)

    Germaine, Stephen; Carter, Sarah; Ignizio, Drew A.; Freeman, Aaron T.

    2017-01-01

    More than 5957 km2 in southwestern Wyoming is currently covered by operational gas fields, and further development is projected through 2030. Gas fields fragment landscapes through conversion of native vegetation to roads, well pads, pipeline corridors, and other infrastructure elements. The sagebrush steppe landscape where most of this development is occurring harbors 24 sagebrush-associated species of greatest conservation need, but the effects of gas energy development on most of these species are unknown. Pygmy rabbits (Brachylagus idahoensis) are one such species. In 2011, we began collecting three years of survey data to examine the relationship between gas field development density and pygmy rabbit site occupancy patterns on four major Wyoming gas fields (Continental Divide–Creston–Blue Gap, Jonah, Moxa Arch, Pinedale Anticline Project Area). We surveyed 120 plots across four gas fields, with plots distributed across the density gradient of gas well pads on each field. In a 1 km radius around the center of each plot, we measured the area covered by each of 10 gas field infrastructure elements and by shrub cover using 2012 National Agriculture Imagery Program imagery. We then modeled the relationship between gas field elements, pygmy rabbit presence, and two indices of pygmy rabbit abundance. Gas field infrastructure elements—specifically buried utility corridors and a complex of gas well pads, adjacent disturbed areas, and well pad access roads—were negatively correlated with pygmy rabbit presence and abundance indices, with sharp declines apparent after approximately 2% of the area consisted of gas field infrastructure. We conclude that pygmy rabbits in southwestern Wyoming may be sensitive to gas field development at levels similar to those observed for greater sage-grouse, and may suffer local population declines at lower levels of development than are allowed in existing plans and policies designed to conserve greater sage-grouse by limiting

  15. New River Dam Foundation Report. Gila River Basin: Phoenix, Arizona and Vicinity (Including New River).

    Science.gov (United States)

    1985-10-01

    further downstream before merging with the Agua Fria River. 6 Site Geology 2.08 The geological formations present within the project area consist...sampling and in- situ density testing using the sand displacement 11 or large-scale water displacement method. Dozer trenches TT82-1 and TT82-6 were excavated...underlying the valley or may, due to its pervasiveness, represent an in situ weathering product of the buried bedrock. 4.18 Because of the magnitude

  16. THE WYOMING SURVEY FOR Hα. III. A MULTI-WAVELENGTH LOOK AT ATTENUATION BY DUST IN GALAXIES OUT TO z ∼ 0.4

    International Nuclear Information System (INIS)

    Moore, Carolynn A.; Dale, Daniel A.; Barlow, Rebecca J.; Cohen, Seth A.; Cook, David O.; Johnson, L. C.; Kattner, ShiAnne M.; Staudaher, Shawn M.; Lee, Janice C.

    2010-01-01

    We report results from the Wyoming Survey for Hα (WySH), a comprehensive four-square degree survey to probe the evolution of star-forming galaxies over the latter half of the age of the universe. We have supplemented the Hα data from WySH with infrared data from the Spitzer Wide-area Infrared Extragalactic Survey and ultraviolet data from the Galaxy Evolution Explorer Deep Imaging Survey. This data set provides a multi-wavelength look at the evolution of the attenuation by dust, and here we compare a traditional measure of dust attenuation (L(TIR)/L(FUV)) to a diagnostic based on a recently developed robust star formation rate (SFR) indicator, [Ha obs +24μm]/Ha obs . With such data over multiple epochs, the evolution in the attenuation by dust with redshift can be assessed. We present results from the ELAIS-N1 and Lockman Hole regions at z ∼ 0.16, 0.24, 0.32, and 0.40. While the ensemble averages of both diagnostics are relatively constant from epoch to epoch, each epoch individually exhibits a larger attenuation by dust for higher SFRs. Hence, an epoch-to-epoch comparison at a fixed SFR suggests a mild decrease in dust attenuation with redshift.

  17. THE WYOMING SURVEY FOR Hα. II. Hα LUMINOSITY FUNCTIONS AT z∼ 0.16, 0.24, 0.32, AND 0.40

    International Nuclear Information System (INIS)

    Dale, Daniel A.; Cook, David O.; Moore, Carolynn A.; Staudaher, Shawn M.; Barlow, Rebecca J.; Cohen, Seth A.; Johnson, L. Clifton; Kattner, ShiAnne M.; Schuster, Micah D.

    2010-01-01

    The Wyoming Survey for Hα, or WySH, is a large-area, ground-based imaging survey for Hα-emitting galaxies at redshifts of z ∼ 0.16, 0.24, 0.32, and 0.40. The survey spans up to 4 deg 2 in a set of fields of low Galactic cirrus emission, using twin narrowband filters at each epoch for improved stellar continuum subtraction. Hα luminosity functions are presented for each Δz ∼ 0.02 epoch based on a total of nearly 1200 galaxies. These data clearly show an evolution with look-back time in the volume-averaged cosmic star formation rate. Integrals of Schechter fits to the incompleteness- and extinction-corrected Hα luminosity functions indicate star formation rates per comoving volume of 0.010, 0.013, 0.020, 0.022 h 70 M sun yr -1 Mpc -3 at z ∼ 0.16, 0.24, 0.32, and 0.40, respectively. Combined statistical and systematic measurement uncertainties are on the order of 25%, while the effects of cosmic variance are at the 20% level. The bulk of this evolution is driven by changes in the characteristic luminosity L * of the Hα luminosity functions, with L * for the earlier two epochs being a factor of 2 larger than L * at the latter two epochs; it is more difficult with this data set to decipher systematic evolutionary differences in the luminosity function amplitude and faint-end slope. Coupling these results with a comprehensive compilation of results from the literature on emission line surveys, the evolution in the cosmic star formation rate density over 0 ∼< z ∼< 1.5 is measured.

  18. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    Science.gov (United States)

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  19. Health hazard evaluation determination report HE-80-71-703, Bear Creek Uranium Company, Douglas, Wyoming

    International Nuclear Information System (INIS)

    Gunter, B.J.

    1980-06-01

    An environmental survey was conducted in February 1980 to evaluate exposure to CRC, a cleaning solvent containing perchloroethylene (127184), (PCE) and 1,1,1-trichloroethane (71556) (TCE) at Bear Creek Uranium Company (SIC-1094) in Wyoming. The survey was requested by the company safety engineer. Breathing zone and general room air samples were collected and analyzed. One mine electrician was exposed to 6,500 milligrams per cubic meter (mg/cu m) (PCE recommended OSHA limit is 690mg/cu m). Of the 7 samples of TCE, none exceeded the OSHA standard of 1900mg/cu m. Overexposure did occur when workers used the solvent in confined areas. The authors concluded that a health hazard existed when the solvent was used on confined spaces, and they recommend improved work practices

  20. Phase II, Title I, engineering assessment of inactive uranium mill tailings, Riverton Site, Riverton, Wyoming

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Spook Site, Converse County, Wyoming. Services include the performance of core drillings, soil, water and other sample analyses, radiometric measurements to determine areas with radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site geology, hydrology, and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 187,000 tons of tailings at the Spook Site constitutes the main environmental impact, which is negligible. The two alternative actions presented are better fencing of the site in its present state, and placing tailings and contaminated on-site materials and soil in the open-pit mine and covering the resulting pile with 2 ft of overburden materials. The cost estimates for the options are $81,000 and $142,000, respectively

  1. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  2. Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming

    International Nuclear Information System (INIS)

    Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

    1980-05-01

    Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 μR/hr, the average background exposure rate for the area, to 140 μR/hr. The average exposure rate for the tailings and former mill area was 220 μR/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of 226 Ra in ten holes as a function of depth is presented graphically

  3. Black-footed ferret areas of activity during late summer and fall at Meeteetse, Wyoming

    Science.gov (United States)

    Fagerstone, K.A.; Biggins, D.E.

    2011-01-01

    Radiotelemetry was used during 1983 and 1984 to collect information on short-term areas of activity for black-footed ferrets (Mustela nigripes) near Meeteetse, Wyoming. This population ultimately provided ferrets for the captive-breeding program that bred and released offspring into the wild since 1991. We fitted 5 adult ferrets and 13 juveniles with radiotransmitters and followed their movements during late summer and fall. Adult males had 7-day areas of activity that were >6 times as large as those of adult females. Activity areas of adult males varied little in coverage or location on a weekly basis, but females sequentially shifted their areas. Unlike juvenile females, juvenile males tended to leave their natal colonies. ?? 2011 American Society of Mammalogists.

  4. U-Th-Pb systematics of precambrian rocks in the Laramie Mountains, Wyoming

    International Nuclear Information System (INIS)

    Nkomo, I.T.; Rosholt, J.N.; Dooley, J.R. Jr.

    1979-01-01

    Uranium, thorium and lead concentrations and the isotopic composition of whole-rock samples of granite from the Laramie Mountains, Wyoming, suggest intrusion of the granite no later than 2530 +- 80 m.y. ago. The uranium in surface samples is present in amounts that are insufficient to account for the observed lead isotopic composition. However, some core samples of heavily fractured rock show an extreme isotopic disequilibrium between 238 U and 206 Pb. Their uranium concentrations are generally far in excess (up to 60%) of average amounts required to support the measured lead-206. Radioactive disequilibrium measurements indicate that large amounts of uranium were gained by these fractured rocks during the last 150,000 years. Lead data on K-feldspar separated from the rocks analyzed suggest that lead has been assimilated by these minerals since time of crystallization. 8 figures, 6 tables

  5. Restoration of groundwater after solution mining at the Highland Uranium Project, Wyoming, USA

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, J. [Waste Technology Group, British Nuclear Fuels PLC, Risley, Warrington (United Kingdom); Huffman, L. [Power Resources Inc., Highland Uranium Mine, Glenrock, Wyoming (United States)

    2000-07-01

    The Highland Project, located in Converse County, Wyoming, has had a successful 11 year history of in-situ leach mining of Tertiary roll-front uranium deposits. The uranium ore is oxidized and solubilized by circulating native groundwater, containing additional dissolved O{sub 2} and CO{sub 2}, within confined fluvial aquifers at depths of 200 - 250 m. The changing chemistry of this groundwater during leaching is discussed, as are the various treatment techniques that have been used to restore this fluid at the end of mining. Examples are provided which demonstrate the varying effectiveness of each technique for the reduction of elevated concentrations of different groundwater parameters. The complications arising from the proximity of the earliest wellfields to abandoned, conventional mine workings, as well as unexpected side effects from each restoration method, have combined to make an interesting case history from this long established mining operation. (author)

  6. Draft environmental statement related to the Union Carbide Corporation, Gas Hills Uranium Project (Natrona County, Wyoming)

    International Nuclear Information System (INIS)

    1979-01-01

    The proposed action is the renewal of Source Material License SUA-648 issued for the operation of the Gas Hills Uranium Project in Wyoming, near Moneta. The project is an acid leach, ion-exchange, and solvent-extraction uranium ore processing mill at an increased capacity of 500,000 tons per year and the construction of two heap leach facilities in Natrona and Fremont Counties for initial processing of low-grade ore. After analysis of environmental impacts and adverse effects, it is the proposed position of NRC that the license be renewed subject to conditions relating to stabilization of the tailings, reclamation, environmental monitoring, evaluation of any future activity not evaluated by NRC, archeological survey, analysis of unexpected harmful effects, and decommissioning

  7. Site qualification studies of the UCG-SDB at North Knobs, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.E.; Krajewski, S.A.; Ahner, P.F.; Avasthi, J.M.; Dolde, M.E.; Greenman, C.A.; Miranda, J.E.

    1979-01-01

    The site qualification program for the North Knobs UCG site near Rawlins, Wyoming has been completed. This site will be the location for the field tests of Underground Coal Gasification of Steeply Dipping Beds undertaken by Gulf Research and Development Company for DOE in a cost shared contract. Site characterization included a comprehensive geotechnical analysis along with vegetation, historical, and archeological studies. The G coal seam chosen for these tests is a subbituminous B coal with a true seam thickness of 22 feet and has thin coal benches above and below the main seam. The water table is at 90 feet below the surface. Hydrologic studies have defined the seam as an aquiclude (non-aquifer). The site is deemed restorable to regulatory requirements. Evaluation of this site indicates total acceptability for the three-test program planned by GR and DC.

  8. Radiological survey of the inactive uranium-mill tailings at Riverton, Wyoming

    International Nuclear Information System (INIS)

    Haywood, F.F.; Lorenzo, D.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Shinpaugh, W.H.

    1980-03-01

    Results of a radiological survey performed at the Riverton, Wyoming site in July 1976, are presented. The average external gamma exposure rate at 1 m over the tailings pile was 56 μR/hr. The corresponding rate for the former mill area was 97 μR/hr. Movement of tailings particles in a dry wash is evident; but it appears that, in general, the earth cover over the tailings pile has been effective in limiting both wind and water erosion of the tailings. The calculated concentration of 226 Ra as a function of depth in 15 augered holes is presented graphically. A survey of the Teton Division Lumber Company property in Riverton showed a maximum external gamma exposure rate of 270 μR/hr

  9. Tritiated ammonia formation

    International Nuclear Information System (INIS)

    Heung, L.K.

    1995-01-01

    When nitrogen was selected as the glovebox atmosphere for the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS), a concern was raised as to the possibility of tritiated ammonia formation in the gloveboxes. Experimental data were produced to study the tritiated ammonia formation rate in a tritium and nitrogen mixture. A rate equation that closely simulates the experimental data was developed. This rate equation can be used to calculate the formation of tritiated ammonia from different concentrations of tritium and nitrogen. The reaction of T 2 and N 2 to form NT 3 is a slow process, particularly when the tritium concentration is low. The reaction requires weeks or months to reach radiochemical equilibrium dependent on the concentrations of the reactants. 4 refs., 6 figs., 1 tab

  10. Seasonal and inter-annual dynamics of suspended sediment at the mouth of the Amazon river: The role of continental and oceanic forcing, and implications for coastal geomorphology and mud bank formation

    Science.gov (United States)

    Gensac, Erwan; Martinez, Jean-Michel; Vantrepotte, Vincent; Anthony, Edward J.

    2016-04-01

    Fine-grained sediments supplied to the Ocean by the Amazon River and their transport under the influence of continental and oceanic forcing drives the geomorphic change along the 1500 km-long coast northward to the Orinoco River delta. The aim of this study is to give an encompassing view of the sediment dynamics in the shallow coastal waters from the Amazon River mouth to the Capes region (northern part of the Amapa region of Brazil and eastern part of French Guiana), where large mud banks are formed. Mud banks are the overarching features in the dynamics of the Amazon-Orinoco coast. They start migrating northward in the Capes region. Suspended Particulate Matter (SPM) concentrations were calculated from satellite products (MODIS Aqua and Terra) acquired over the period 2000-2013. The Census-X11 decomposition method used to discriminate short-term, seasonal and long-term time components of the SPM variability has rendered possible a robust analysis of the impact of continental and oceanic forcing. Continental forcing agents considered are the Amazon River water discharge, SPM concentration and sediment discharge. Oceanic forcing comprises modelled data of wind speed and direction, wave height and direction, and currents. A 150 km-long area of accretion is detected at Cabo Norte that may be linked with a reported increase in the river's sediment discharge concurrent with the satellite data study period. We also assess the rate of mud bank migration north of Cabo Norte, and highlight its variability. Although we confirm a 2 km y-1 migration rate, in agreement with other authors, we show that this velocity may be up to 5 km y-1 along the Cabo Orange region, and we highlight the effect of water discharge by major rivers debouching on this coastal mud belt in modulating such rates. Finally, we propose a refined sediment transport pattern map of the region based on our results and of previous studies in the area such as the AMASSEDS programme, and discuss the

  11. Wyoming Landscape Conservation Initiative—A case study in partnership development

    Science.gov (United States)

    D'Erchia, Frank

    2016-10-21

    The Wyoming Landscape Conservation Initiative (WLCI) is a successful example of collaboration between science and natural resource management at the landscape scale. In southwestern Wyoming, expanding energy and mineral development, urban growth, and other changes in land use over recent decades, combined with landscape-scale drivers such as climate change and invasive species, have presented compelling challenges to resource managers and a diverse group of Federal, State, industry, and non-governmental organizations, as well as citizen stakeholders. To address these challenges, the WLCI was established as a collaborative forum and interagency partnership to develop and implement science-based conservation actions. About a decade after being established, this report documents the establishment and history of the WLCI, focusing on the path to success of the initiative and providing insights and details that may be useful in developing similar partnerships in other locations. Not merely retrospective, the elements of the WLCI that are presented herein are still in play, still evolving, and still contributing to the resolution of compelling conservation challenges in the Western United States.The U.S. Geological Survey has developed many successful longstanding partnerships, of which the WLCI is one example.“As the Nation’s largest water, earth, and biological science and civilian mapping agency, the U.S. Geological Survey collects, monitors, analyzes, and provides scientific understanding about natural resource conditions, issues, and problems. The diversity of our scientific expertise enables us to carry out large-scale, multi-disciplinary investigations and provide impartial scientific information to resource managers, planners, and other customers” (U.S. Geological Survey, 2016).

  12. Endemic chronic wasting disease causes mule deer population decline in Wyoming

    Science.gov (United States)

    DeVivo, Melia T.; Edmunds, David R.; Kauffman, Matthew J.; Schumaker, Brant A.; Binfet, Justin; Kreeger, Terry J.; Richards, Bryan J.; Schatzl, Hermann M.; Cornish, Todd

    2017-01-01

    Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy affecting white-tailed deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), Rocky Mountain elk (Cervus elaphus nelsoni), and moose (Alces alces shirasi) in North America. In southeastern Wyoming average annual CWD prevalence in mule deer exceeds 20% and appears to contribute to regional population declines. We determined the effect of CWD on mule deer demography using age-specific, female-only, CWD transition matrix models to estimate the population growth rate (λ). Mule deer were captured from 2010–2014 in southern Converse County Wyoming, USA. Captured adult (≥ 1.5 years old) deer were tested ante-mortem for CWD using tonsil biopsies and monitored using radio telemetry. Mean annual survival rates of CWD-negative and CWD-positive deer were 0.76 and 0.32, respectively. Pregnancy and fawn recruitment were not observed to be influenced by CWD. We estimated λ= 0.79, indicating an annual population decline of 21% under current CWD prevalence levels. A model derived from the demography of only CWD-negative individuals yielded; λ = 1.00, indicating a stable population if CWD were absent. These findings support CWD as a significant contributor to mule deer population decline. Chronic wasting disease is difficult or impossible to eradicate with current tools, given significant environmental contamination, and at present our best recommendation for control of this disease is to minimize spread to new areas and naïve cervid populations.

  13. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  14. Estimating traffic volume on Wyoming low volume roads using linear and logistic regression methods

    Directory of Open Access Journals (Sweden)

    Dick Apronti

    2016-12-01

    Full Text Available Traffic volume is an important parameter in most transportation planning applications. Low volume roads make up about 69% of road miles in the United States. Estimating traffic on the low volume roads is a cost-effective alternative to taking traffic counts. This is because traditional traffic counts are expensive and impractical for low priority roads. The purpose of this paper is to present the development of two alternative means of cost-effectively estimating traffic volumes for low volume roads in Wyoming and to make recommendations for their implementation. The study methodology involves reviewing existing studies, identifying data sources, and carrying out the model development. The utility of the models developed were then verified by comparing actual traffic volumes to those predicted by the model. The study resulted in two regression models that are inexpensive and easy to implement. The first regression model was a linear regression model that utilized pavement type, access to highways, predominant land use types, and population to estimate traffic volume. In verifying the model, an R2 value of 0.64 and a root mean square error of 73.4% were obtained. The second model was a logistic regression model that identified the level of traffic on roads using five thresholds or levels. The logistic regression model was verified by estimating traffic volume thresholds and determining the percentage of roads that were accurately classified as belonging to the given thresholds. For the five thresholds, the percentage of roads classified correctly ranged from 79% to 88%. In conclusion, the verification of the models indicated both model types to be useful for accurate and cost-effective estimation of traffic volumes for low volume Wyoming roads. The models developed were recommended for use in traffic volume estimations for low volume roads in pavement management and environmental impact assessment studies.

  15. Optimizing accuracy of determinations of CO₂ storage capacity and permanence, and designing more efficient storage operations: An example from the Rock Springs Uplift, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, Ramsey [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Dahl, Shanna [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Deiss, Allory [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Duguid, Andrew [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Ganshin, Yuri [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Quillinan, Scott [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry

    2015-12-01

    At a potential injection site on the Rock Springs Uplift in southwest Wyoming, an investigation of confining layers was undertaken to develop and test methodology, identify key data requirements, assess previous injection scenarios relative to detailed confining layer properties, and integrate all findings in order to reduce the uncertainty of CO₂ storage permanence. The assurance of safe and permanent storage of CO₂ at a storage site involves a detailed evaluation of the confining layers. Four suites of field data were recognized as crucial for determining storage permanence relative to the confining layers; seismic, core and petrophysical data from a wellbore, formation fluid samples, and in-situ formation tests. Core and petrophysical data were used to create a vertical heterogenic property model that defined porosity, permeability, displacement pressure, geomechanical strengths, and diagenetic history. These analyses identified four primary confining layers and multiple redundant confining layers. In-situ formation tests were used to evaluate fracture gradients, regional stress fields, baseline microseismic data, step-rate injection tests, and formation perforation responses. Seismic attributes, correlated with the vertical heterogenic property models, were calculated and used to create a 3-D volume model over the entire site. The seismic data provided the vehicle to transform the vertical heterogenic property model into a horizontal heterogenic property model, which allowed for the evaluation of confining layers across the entire study site without risking additional wellbore perforations. Lastly, formation fluids were collected and analyzed for geochemical and isotopic compositions from stacked reservoir systems. These data further tested primary confining layers, by evaluating the evidence of mixing between target reservoirs (mixing would imply an existing breach of primary confining layers). All data were propagated into a dynamic, heterogenic geologic

  16. Channel belt architecture formed by a meandering river

    NARCIS (Netherlands)

    Lageweg, W.I. van de; Dijk, W.M. van; Kleinhans, M.G.

    2013-01-01

    Stratification in channel belts is the key to reconstructing formative channel dimensions and palaeoflow conditions; this requires an understanding of the relation between river morphodynamics and set thickness. So far, theories for reconstruction of the original morphology from preserved

  17. Two-dimensional coherence analysis of magnetic and gravity data from the Casper Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1981-01-01

    Volume II contains the following: gravity station location map; complete Bouguer gravity map; total magnetic map; gravity data copper area detrended continued 1 km; magnetic data Casper Wyoming continued 1 km; upward continued coherent gravity maps; magnetic field reduced to the pole/pseudo gravity map; geology map-Casper Quadrangle; magnetic interpretation map-Casper Quadrangle; gravity interpretation map; magnetic interpretation cross section; magnetic profiles; flight line map and uranium occurrences

  18. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  19. 77 FR 33021 - Approval, Disapproval and Promulgation of Implementation Plans; State of Wyoming; Regional Haze...

    Science.gov (United States)

    2012-06-04

    ... initials EGUs mean or refer to Electric Generating Units. ix. The initials EGR mean or refer to exhaust gas... River--Boilers C and D iii. Basin Electric Laramie River Station--Units 1-3 iv. PacifiCorp Dave Johnston... and Gas Area Sources ii. Mountain Cement Company Laramie Plant--Kiln 3. Reasonable Progress Goals E...

  20. 78 FR 34737 - Approval, Disapproval and Promulgation of Implementation Plans; State of Wyoming; Regional Haze...

    Science.gov (United States)

    2013-06-10

    ... or refer to elemental carbon. viii. The initials EGUs mean or refer to Electric Generating Units. ix... River--Boilers C and D iii. Basin Electric Laramie River Station--Units 1-3 iv. PacifiCorp Dave Johnston... and Gas Area Sources ii. Mountain Cement Company Laramie Plant--Kiln 3. Reasonable Progress Goals E...

  1. Stellar formation

    CERN Document Server

    Reddish, V C

    1978-01-01

    Stellar Formation brings together knowledge about the formation of stars. In seeking to determine the conditions necessary for star formation, this book examines questions such as how, where, and why stars form, and at what rate and with what properties. This text also considers whether the formation of a star is an accident or an integral part of the physical properties of matter. This book consists of 13 chapters divided into two sections and begins with an overview of theories that explain star formation as well as the state of knowledge of star formation in comparison to stellar structure

  2. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  3. Interseasonal movements of greater sage-grouse, migratory behavior, and an assessment of the core regions concept in Wyoming

    Science.gov (United States)

    Fedy, Bradley C.; Aldridge, Cameron L.; Doherty, Kevin E.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Swanson, Christopher C.; Walker, Brett L.

    2012-01-01

    Animals can require different habitat types throughout their annual cycles. When considering habitat prioritization, we need to explicitly consider habitat requirements throughout the annual cycle, particularly for species of conservation concern. Understanding annual habitat requirements begins with quantifying how far individuals move across landscapes between key life stages to access required habitats. We quantified individual interseasonal movements for greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) using radio-telemetry spanning the majority of the species distribution in Wyoming. Sage-grouse are currently a candidate for listing under the United States Endangered Species Act and Wyoming is predicted to remain a stronghold for the species. Sage-grouse use distinct seasonal habitats throughout their annual cycle for breeding, brood rearing, and wintering. Average movement distances in Wyoming from nest sites to summer-late brood-rearing locations were 8.1 km (SE = 0.3 km; n = 828 individuals) and the average subsequent distances moved from summer sites to winter locations were 17.3 km (SE = 0.5 km; n = 607 individuals). Average nest-to-winter movements were 14.4 km (SE = 0.6 km; n = 434 individuals). We documented remarkable variation in the extent of movement distances both within and among sites across Wyoming, with some individuals remaining year-round in the same vicinity and others moving over 50 km between life stages. Our results suggest defining any of our populations as migratory or non-migratory is innappropriate as individual strategies vary widely. We compared movement distances of birds marked using Global Positioning System (GPS) and very high frequency (VHF) radio marking techniques and found no evidence that the heavier GPS radios limited movement. Furthermore, we examined the capacity of the sage-grouse core regions concept to capture seasonal locations. As expected, we found the core regions approach, which was

  4. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CO2: Implications for Caprock Integrity

    Science.gov (United States)

    Loring, J. S.; Chen, J.; Thompson, C.; Schaef, T.; Miller, Q. R.; Martin, P. F.; Ilton, E. S.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2012-12-01

    The effectiveness of geologic sequestration as an enterprise for CO2 storage depends partly on the reactivity of supercritical CO2 (scCO2) with caprock minerals. Injection of scCO2 will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Caprock formations have high concentrations of clay minerals, including expandable montmorillonites. Water-bearing scCO2 is highly reactive and capable of hydrating or dehydrating clays, possibly leading to porosity and permeability changes that directly impact caprock performance. Dehydration will cause montmorillonite clay minerals in caprocks to contract, thereby decreasing solid volume and possibly increasing caprock permeability and porosity. On the other hand, water intercalation will cause these clays to expand, thereby increasing solid volume and possibly leading to self-sealing of caprock fractures. Pacific Northwest National Laboratory's Carbon Sequestration Initiative is developing capabilities for studying wet scCO2-mineral reactions in situ. Here, we introduce novel in situ infrared (IR) spectroscopic instrumentation that enables quantitative titrations of reactant minerals with water in scCO2. Results are presented for the infrared spectroscopic titrations of Na-, Ca-, and Mg-saturated Wyoming betonites with water over concentrations ranging from zero to scCO2 saturated. These experiments were carried out at 50°C and 90 bar. Transmission IR spectroscopy was used to measure concentrations of water dissolved in the scCO2 or intercalated into the clays. The titration curves evaluated from the transmission-IR data are compared between the three types of clays to assess the effects of the cation on water partitioning. Single-reflection attenuated total reflection (ATR) IR spectroscopy was used to collect the spectrum of the clays as they hydrate at every total water concentration during the titration. Clay hydration is evidenced by

  5. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  6. Data resources for the Wyoming Landscape Conservation Initiative (WLCI) Integrated Assessment (IA)

    Science.gov (United States)

    Assal, Timothy J.; Garman, Steven L.; Bowen, Zachary H.; Anderson, Patrick J.; Manier, Daniel J.; McDougal, Robert R.

    2012-01-01

    The data contained in this report were compiled, modified, and analyzed for the Wyoming Landscape Conservation Initiative (WLCI) Integrated Assessment (IA). The WLCI is a long-term science based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale in southwest Wyoming while facilitating responsible energy development through local collaboration and partnerships. The IA is an integrated synthesis and analysis of WLCI resource values based on best available data and information collected from multiple agencies and organizations. It is a support tool for landscape-scale conservation planning and evaluation, and a data and analysis resource that can be used for addressing specific management questions. The IA analysis was conducted using a Geographic Information System in a raster (that is, a grid) environment using a cell size of 30 meters. To facilitate the interpretation of the data in a regional context, mean values were summarized and displayed at the subwatershed unit (WLCI subwatersheds were subset from the National Hydrography Dataset, Hydrologic Unit Code 12/Level 6). A dynamic mapping platform, accessed via the WLCI webpage at http://www.wlci.gov is used to display the mapped information, and to access underlying resource values that were combined to produce the final mapped results. The raster data used in the IA are provided here for use by interested parties to conduct additional analyses and can be accessed via the WLCI webpage. This series contains 74 spatial data sets: WLCI subwatersheds (vector) and 73 geotiffs (raster) that are segregated into the major categories of Multicriteria Index (including Resource Index and Condition), Change Agents, and Future Change. The Total Multicriteria Index is composed of the Aquatic Multicriteria Index and the Terrestrial Multicriteria Index. The Aquatic Multicriteria Index is composed of the Aquatic Resource Index and the Aquatic Condition. The Aquatic Resource Index is composed of the

  7. Flowing with Rivers

    Science.gov (United States)

    Anderson, Heather

    2004-01-01

    This article describes a lesson in which students compare how artists have depicted rivers in paintings, using different styles, compositions, subject matter, colors, and techniques. They create a watercolor landscape that includes a river. Students can learn about rivers by studying them on site, through environmental study, and through works of…

  8. Snowmelt runoff in the Green River basin derived from MODIS snow extent

    Science.gov (United States)

    Barton, J. S.; Hall, D. K.

    2011-12-01

    The Green River represents a vital water supply for southwestern Wyoming, northern Colorado, eastern Utah, and the Lower Colorado River Compact states (Arizona, Nevada, and California). Rapid development in the southwestern United States combined with the recent drought has greatly stressed the water supply of the Colorado River system, and concurrently increased the interest in long-term variations in stream flow. Modeling of snowmelt runoff represents a means to predict flows and reservoir storage, which is useful for water resource planning. An investigation is made into the accuracy of the Snowmelt Runoff Model of Martinec and Rango, driven by Moderate Resolution Imaging Spectroradiometer (MODIS) snow maps for predicting stream flow within the Green River basin. While the moderate resolution of the MODIS snow maps limits the spatial detail that can be captured, the daily coverage is an important advantage of the MODIS imagery. The daily MODIS snow extent is measured using the most recent clear observation for each 500-meter pixel. Auxiliary data used include temperature and precipitation time series from the Snow Telemetry (SNOTEL) and Remote Automated Weather Station (RAWS) networks as well as from National Weather Service records. Also from the SNOTEL network, snow-water equivalence data are obtained to calibrate the conversion between snow extent and runoff potential.

  9. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses

  10. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  11. Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, T.M.; Rivera, W. Jr. [Dept. of Energy, New York, NY (United States). Environmental Measurements Lab.; Kelley, J.M.; Bond, L.A. [Pacific Northwest National Lab., Richland, WA (United States); Liszewski, M.J. [Bureau of Reclamation (United States); Orlandini, K.A. [Argonne National Lab., IL (United States)

    1998-10-01

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

  12. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    Science.gov (United States)

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  13. Summary of the engineering assessment of inactive uranium mill tailings, Spook Site, Converse County, Wyoming

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon, Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover materI), to rema densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation

  14. Engineering assessment of inactive uranium mill tailings, Spook site, Converse County, Wyoming. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings was performed at the Spook Site, Converse County, Wyoming. Data are presented from soil, water and other sample analyses, radiometric measurements to determine areas with radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site geology, hydrology, and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 187,000 tons of tailings at the Spook Site constitutes the main environmental impact, which is negligible. The two alternative actions presented are better fencing of the site in its present state and placing tailings and contaminated on-site materials and soil in the open-pit mine and covering the resulting pile with 2 ft of overburden material. The cost estimates for the options are $81,000 and $142,000, respectively. Reprocessing the tailings for uranium at a nearby operating uranium mill is worthy of economic consideration at this time

  15. Draft environmental statement related to the Western Nuclear, Inc. Split Rock Mill (Fremont County, Wyoming)

    International Nuclear Information System (INIS)

    1978-11-01

    The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock uranium mill near Jeffrey City and the Green Mountain ion-exchange facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area--the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U 3 O 8 through 1996 using lower-grade ores. Conditions for the protection of the environment include reclamation, tailings, stabilization, archeological survey, monitoring, etc

  16. Final environmental statement related to the Western Nuclear, Inc., Split Rock Uranium Mill (Fremont County, Wyoming)

    International Nuclear Information System (INIS)

    1980-02-01

    The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock Uranium Mill near Jeffrey City and the Green Mountain Ion-Exchange Facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area - the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). However, although heap leaching operations were previously authorized at Frazier-Lamac, there has never been any processing of material at this site. The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U 3 O 8 through 1996 using lower-grade ores

  17. Effects of low-density feeding on elk–fetus contact rates on Wyoming feedgrounds

    Science.gov (United States)

    Creech, Tyler G.; Cross, Paul C.; Scurlock, Brandon M.; Maichak, Eric J.; Rogerson, Jared D.; Henningsen, John C.; Creel, Scott

    2012-01-01

    High seroprevalance for Brucella abortus among elk on Wyoming feedgrounds suggests that supplemental feeding may influence parasite transmission and disease dynamics by altering the rate at which elk contact infectious materials in their environment. We used proximity loggers and video cameras to estimate rates of elk-to-fetus contact (the primary source of brucellosis transmission) during winter supplemental feeding. We compared contact rates during high-density and low-density (LD) feeding treatments that provided the same total amount of food distributed over different areas. Low-density feeding led to >70% reductions in total number of contacts and number of individuals contacting a fetus. Proximity loggers and video cameras provided similar estimates of elk–fetus contact rates. Elk contacted fetuses and random control points equally, suggesting that elk were not attracted to fetuses but encountered them incidentally while feeding. The modeled relationship between contact rate and disease prevalence is nonlinear and LD feeding may result in large reductions in brucellosis prevalence, but this depends on the amount of transmission that occurs on and off feedgrounds.

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Cheyenne NTMS Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Trexler, P.K.

    1978-06-01

    Between June 1976 and October 1977, 1138 water and 600 sediment samples were systematically collected from 1498 locations in the Cheyenne NTMS quadrangle of southeast Wyoming. The samples were analyzed for total uranium at the Los Alamos Scientific Laboratory. The uranium concentration in waters ranged from 0.01 to 296.30 parts per billion (ppB), with a median of 3.19 ppB and a mean of 8.34 ppB. The uranium in sediments ranged from 0.8 to 83.0 parts per million (ppM) with a median of 3.4 ppM and a mean of 4.5 ppM. Arbitrary anomaly thresholds were selected to isolate those water and sediment samples containing uranium concentrations above those of 98% of the population sampled. Using this procedure, 23 water samples above 54.50 ppB and 12 sediment samples above 14.0 ppM were considered anomalous. Several areas appear favorable for further investigation for possible uranium mineralization. High uranium concentrations were detected in waters from the northeast corner of the Cheyenne quadrangle. High uranium concentrations were detected in sediments from locations in the southern and central Laramie Mountains and along the southeast and east-central edges of the study area

  19. Weather conditions associated with autumn migration by mule deer in Wyoming

    Directory of Open Access Journals (Sweden)

    Chadwick D. Rittenhouse

    2015-06-01

    Full Text Available Maintaining ecological integrity necessitates a proactive approach of identifying and acquiring lands to conserve unfragmented landscapes, as well as evaluating existing mitigation strategies to increase connectivity in fragmented landscapes. The increased use of highway underpasses and overpasses to restore connectivity for wildlife species offers clear conservation benefits, yet also presents a unique opportunity to understand how weather conditions may impact movement of wildlife species. We used remote camera observations (19,480 from an existing wildlife highway underpass in Wyoming and daily meteorological observations to quantify weather conditions associated with autumn migration of mule deer in 2009 and 2010. We identified minimal daily temperature and snow depth as proximate cues associated with mule deer migration to winter range. These weather cues were consistent across does and bucks, but differed slightly by year. Additionally, extreme early season snow depth or cold temperature events appear to be associated with onset of migration. This information will assist wildlife managers and transportation officials as they plan future projects to maintain and enhance migration routes for mule deer.

  20. Engineering assessment of inactive uranium mill tailings, Spook site, Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover makes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation.