Sample records for river flow application

  1. Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa

    Directory of Open Access Journals (Sweden)

    Tadesse Kassahun Birhanu


    Full Text Available Knowledge of future river flow information is fundamental for development and management of a river system. In this study, Waterval River flow was forecasted by SARIMA model using GRETL statistical software. Mean monthly flows from 1960 to 2016 were used for modelling and forecasting. Different unit root and Mann–Kendall trend analysis proved the stationarity of the observed flow time series. Based on seasonally differenced correlogram characteristics, different SARIMA models were evaluated; their parameters were optimized, and diagnostic check up of forecasts was made using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AI and Hannan–Quinn (HQ criteria, SARIMA (3, 0, 2 x (3, 1, 312 model was selected for Waterval River flow forecasting. Comparison of forecast performance of SARIMA models with that of computational intelligent forecasting techniques was recommended for future study.

  2. Applications of Coupled Explicit–Implicit Solution of SWEs for Unsteady Flow in Yangtze River

    Directory of Open Access Journals (Sweden)

    Yufei Ding


    Full Text Available In engineering practice, the unsteady flows generated from the operation of hydropower station in the upstream region could significantly change the navigation system of waterways located in the middle-lower reaches of the river. In order to study the complex propagation, convergence and superposition characteristics of unsteady flows in a long channel with flow confluence, a numerical model based on the coupling of implicit and explicit solution algorithms of Shallow Water Equations (SWEs has been applied to two large rivers in the reach of Yangtze River, China, which covers the distance from Yibin to Chongqing located upstream side of the Three Gorges Dam. The accuracy of numerical model has been validated by both the steady and unsteady flows using the prototype hydrological data. It is found that the unsteady flows show much more complex water level and discharge behaviors than the steady ones. The studied unsteady flows arising from the water regulation of two upstream hydropower stations could influence the region as far as Zhutuo hydrologic station, which is close to the city of Chongqing. Meanwhile, the computed stage–discharge rating curves at all observation stations demonstrate multi-value loop patterns because of the presence of additional water surface gradient. The present numerical model proves to be robust for simulating complex flows in very long engineering rivers up to 400 km.

  3. Application of a methodological advance to calculate 3D flow fields in river channel junctions

    NARCIS (Netherlands)

    Moradi, Gelare; Vermeulen, Bart; Rennie, Colin; Cardot, Romain; Lane, Stuart


    Acoustic Doppler current profiler (aDcp) vessel-mounted flow measurements are now commonly used to quantify discharge and velocity in shallow water fluvial environments. Here, we consider the benefits of improving secondary circulation estimates in river confluences through the manner in which

  4. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming. (United States)

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam


    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  5. Flowing with Rivers (United States)

    Anderson, Heather


    This article describes a lesson in which students compare how artists have depicted rivers in paintings, using different styles, compositions, subject matter, colors, and techniques. They create a watercolor landscape that includes a river. Students can learn about rivers by studying them on site, through environmental study, and through works of…

  6. Buck Creek River Flow Analysis (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John


    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  7. Numerical modelling of river processes: flow and river bed deformation

    NARCIS (Netherlands)

    Tassi, P.A.


    The morphology of alluvial river channels is a consequence of complex interaction among a number of constituent physical processes, such as flow, sediment transport and river bed deformation. This is, an alluvial river channel is formed from its own sediment. From time to time, alluvial river

  8. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows (United States)

    Praskievicz, S. J.; Luo, C.


    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.


    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; Chen, K. F.


    The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ the GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.

  10. Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains) (United States)

    Kędra, Mariola


    Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.

  11. Development of the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW): an application to the Heihe River Basin (United States)

    Tian, Y.; Zheng, Y.; Zheng, C.; Han, F., Sr.


    Physically based and fully-distributed integrated hydrological models (IHMs) can quantitatively depict hydrological processes, both surface and subsurface, with sufficient spatial and temporal details. However, the complexity involved in pre-processing data and setting up models seriously hindered the wider application of IHMs in scientific research and management practice. This study introduces our design and development of Visual HEIFLOW, hereafter referred to as VHF, a comprehensive graphical data processing and modeling system for integrated hydrological simulation. The current version of VHF has been structured to accommodate an IHM named HEIFLOW (Hydrological-Ecological Integrated watershed-scale FLOW model). HEIFLOW is a model being developed by the authors, which has all typical elements of physically based and fully-distributed IHMs. It is based on GSFLOW, a representative integrated surface water-groundwater model developed by USGS. HEIFLOW provides several ecological modules that enable to simulate growth cycle of general vegetation and special plants (maize and populus euphratica). VHF incorporates and streamlines all key steps of the integrated modeling, and accommodates all types of GIS data necessary to hydrological simulation. It provides a GIS-based data processing framework to prepare an IHM for simulations, and has functionalities to flexibly display and modify model features (e.g., model grids, streams, boundary conditions, observational sites, etc.) and their associated data. It enables visualization and various spatio-temporal analyses of all model inputs and outputs at different scales (i.e., computing unit, sub-basin, basin, or user-defined spatial extent). The above system features, as well as many others, can significantly reduce the difficulty and time cost of building and using a complex IHM. The case study in the Heihe River Basin demonstrated the applicability of VHF for large scale integrated SW-GW modeling. Visualization and spatial

  12. Climate influences on Vaal River flow

    African Journals Online (AJOL)


    Apr 2, 2016 ... enriched NW-cloud bands over the Vaal River catchment, during the flood case study of January 2010. Comparison of. (Pacific) Southern Oscillation and east Atlantic influence on Vaal River discharge reveals the former drives evaporative losses while the latter provides an advance warning of flow ...

  13. Ecological flow requirements for South African rivers

    CSIR Research Space (South Africa)

    Ferrar, AA


    Full Text Available This document contains the proceedings of a workshop which was convened to debate the ecological flow requirements of South African rivers. Topics which are discussed include the influence of weirs and impoundments, the quantity requirements...

  14. Development and application of a groundwater/surface-water flow model using MODFLOW-NWT for the Upper Fox River Basin, southeastern Wisconsin (United States)

    Feinstein, D.T.; Fienen, M.N.; Kennedy, J.L.; Buchwald, C.A.; Greenwood, M.M.


    The Fox River is a 199-mile-long tributary to the Illinois River within the Mississippi River Basin in the states of Wisconsin and Illinois. For the purposes of this study the Upper Fox River Basin is defined as the topographic basin that extends from the upstream boundary of the Fox River Basin to a large wetland complex in south-central Waukesha County called the Vernon Marsh. The objectives for the study are to (1) develop a baseline study of groundwater conditions and groundwater/surface-water interactions in the shallow aquifer system of the Upper Fox River Basin, (2) develop a tool for evaluating possible alternative water-supply options for communities in Waukesha County, and (3) contribute to the methodology of groundwater-flow modeling by applying the recently published U.S. Geological Survey MODFLOW-NWT computer code, (a Newton formulation of MODFLOW-2005 intended for solving difficulties involving drying and rewetting nonlinearities of the unconfined groundwater-flow equation) to overcome computational problems connected with fine-scaled simulation of shallow aquifer systems by means of thin model layers. To simulate groundwater conditions, a MODFLOW grid is constructed with thin layers and small cell dimensions (125 feet per side). This nonlinear unconfined problem incorporates the streamflow/lake (SFR/LAK) packages to represent groundwater/surface-water interactions, which yields an unstable solution sensitive to initial conditions when solved using the Picard-based preconditioned-gradient (PCG2) solver. A particular problem is the presence of many isolated wet water-table cells over dry cells, causing the simulated water table to assume unrealistically high values. Attempts to work around the problem by converting to confined conditions or converting active to inactive cells introduce unacceptable bias. Application of MODFLOW-NWT overcomes numerical problem by smoothing the transition from wet to dry cells and keeps all cells active. The simulation is

  15. Visualization of Flow Alternatives, Lower Missouri River (United States)

    Jacobson, Robert B.; Heuser, Jeanne


    Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.

  16. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World (United States)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.


    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is

  17. Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions


    Jodeau , M.; Hauet , A.; Paquier , A.; Le Coz , J.; Dramais , G.


    Large Scale Particle Image Velocimetry (LS-PIV) is used to measure the surface flow velocities in a mountain stream during high flow conditions due to a reservoir release. A complete installation including video acquisition from a mobile elevated viewpoint and artificial flow seeding has been developed and implemented. The LS-PIV method was adapted in order to take into account the specific constraints of these high flow conditions. Using a usual LS-PIV data processing, significant variations...

  18. 76 FR 53436 - Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing... (United States)


    ... Mississippi River, near the town of Luling, in St. Charles Parish, Louisiana. The sole purpose of a.... 14091-000] Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing... Mississippi River LLC (Northland) filed preliminary permit applications, pursuant to section 4(f) of the...

  19. 76 FR 53427 - Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing... (United States)


    ... Mississippi River, near the town of Killona, in St. Charles Parish, Louisiana. The sole purpose of a.... 14092-000] Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing... Mississippi River LLC (Northland) filed preliminary permit applications, pursuant to section 4(f) of the...

  20. Extreme river flow dependence in Northern Scotland (United States)

    Villoria, M. Franco; Scott, M.; Hoey, T.; Fischbacher-Smith, D.


    Various methods for the spatial analysis of hydrologic data have been developed recently. Here we present results using the conditional probability approach proposed by Keef et al. [Appl. Stat. (2009): 58,601-18] to investigate spatial interdependence in extreme river flows in Scotland. This approach does not require the specification of a correlation function, being mostly suitable for relatively small geographical areas. The work is motivated by the Flood Risk Management Act (Scotland (2009)) which requires maps of flood risk that take account of spatial dependence in extreme river flow. The method is based on two conditional measures of spatial flood risk: firstly the conditional probability PC(p) that a set of sites Y = (Y 1,...,Y d) within a region C of interest exceed a flow threshold Qp at time t (or any lag of t), given that in the specified conditioning site X > Qp; and, secondly the expected number of sites within C that will exceed a flow Qp on average (given that X > Qp). The conditional probabilities are estimated using the conditional distribution of Y |X = x (for large x), which can be modeled using a semi-parametric approach (Heffernan and Tawn [Roy. Statist. Soc. Ser. B (2004): 66,497-546]). Once the model is fitted, pseudo-samples can be generated to estimate functionals of the joint tails of the distribution of (Y,X). Conditional return level plots were directly compared to traditional return level plots thus improving our understanding of the dependence structure of extreme river flow events. Confidence intervals were calculated using block bootstrapping methods (100 replicates). We report results from applying this approach to a set of four rivers (Dulnain, Lossie, Ewe and Ness) in Northern Scotland. These sites were chosen based on data quality, spatial location and catchment characteristics. The river Ness, being the largest (catchment size 1839.1km2) was chosen as the conditioning river. Both the Ewe (441.1km2) and Ness catchments have

  1. Applications of multiscale change point detections to monthly stream flow and rainfall in Xijiang River in southern China, part I: correlation and variance (United States)

    Zhu, Yuxiang; Jiang, Jianmin; Huang, Changxing; Chen, Yongqin David; Zhang, Qiang


    This article, as part I, introduces three algorithms and applies them to both series of the monthly stream flow and rainfall in Xijiang River, southern China. The three algorithms include (1) normalization of probability distribution, (2) scanning U test for change points in correlation between two time series, and (3) scanning F-test for change points in variances. The normalization algorithm adopts the quantile method to normalize data from a non-normal into the normal probability distribution. The scanning U test and F-test have three common features: grafting the classical statistics onto the wavelet algorithm, adding corrections for independence into each statistic criteria at given confidence respectively, and being almost objective and automatic detection on multiscale time scales. In addition, the coherency analyses between two series are also carried out for changes in variance. The application results show that the changes of the monthly discharge are still controlled by natural precipitation variations in Xijiang's fluvial system. Human activities disturbed the ecological balance perhaps in certain content and in shorter spells but did not violate the natural relationships of correlation and variance changes so far.

  2. History of natural flows--Kansas River (United States)

    Leeson, Elwood R.


    Through its Water Resources Division, the United States Geological Survey has become the major water-resources historian for the nation. The Geological Survey's collection of streamflow records in Kansas began on a very small scale in 1895 in response to some early irrigation interest, Since that time the program has grown, and we now have about 21 350 station-years of record accumulated. A station-year of record is defined as a continuous record of flow collected at a fixed point for a period of one year. Volume of data at hand, however, is not in itself an, adequate measure of its usefullness. An important element in historical streamflow data which enhances its value as a tool for the prediction of the future is the length of continuous records available in the area being studied. The records should be of sufficient length that they may be regarded as a reasonable sample of what has gone before and may be expected in the future. Table 1 gives a graphical inventory of the available streamflow records in Kansas. It shows that, in general, there is a fair coverage of stations with records of about thirty-seven years in length, This is not a long period as history goes but it does include considerable experience with floods and droughts.Although a large quantity of data on Kansas streamflow has been accumulated, hydrologists and planning engineers find that stream flow information for many areas of the State is considerably less than adequate. The problem of obtaining adequate coverage has been given careful study by the Kansas Water Resources Board in cooperation with the U. S. Geological Survey and a report entitled "Development of A Balanced Stream-Gaging Program For Kansas", has been published by the Board as Bulletin No. 4, That report presents an analysis of the existing stream-gaging program and recommendations for a program to meet the rapidly expanding needs for more comprehensive basic data.The Kansas River is formed near Junction City, Kansas, by the

  3. The Graded Alluvial River: Variable Flow and the Dominant Discharge (United States)

    Blom, A.; Arkesteijn, L.; Viparelli, E.


    We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.

  4. Identification of basin characteristics influencing spatial variation of river flows

    NARCIS (Netherlands)

    Mazvimavi, D.; Burgers, S.L.G.E.; Stein, A.


    The selection of basin characteristics that explain spatial variation of river flows is important for hydrological regionalization as this enables estimation of flow statistics of ungauged basins. A direct gradient analysis method, redundancy analysis, is used to identify basin characteristics,

  5. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun


    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  6. Comparison of Conventional and ANN Models for River Flow Forecasting (United States)

    Jain, A.; Ganti, R.


    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  7. Nonlinear analysis of river flow time sequences (United States)

    Porporato, Amilcare; Ridolfi, Luca


    Within the field of chaos theory several methods for the analysis of complex dynamical systems have recently been proposed. In light of these ideas we study the dynamics which control the behavior over time of river flow, investigating the existence of a low-dimension deterministic component. The present article follows the research undertaken in the work of Porporato and Ridolfi [1996a] in which some clues as to the existence of chaos were collected. Particular emphasis is given here to the problem of noise and to nonlinear prediction. With regard to the latter, the benefits obtainable by means of the interpolation of the available time series are reported and the remarkable predictive results attained with this nonlinear method are shown.

  8. Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization (United States)

    Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.


    The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.

  9. The International River Interface Cooperative: Public Domain Software for River Flow and Morphodynamics (Invited) (United States)

    Nelson, J. M.; Shimizu, Y.; McDonald, R.; Takebayashi, H.


    The International River Interface Cooperative is an informal organization made up of academic faculty and government scientists with the goal of developing, distributing and providing education for a public-domain software interface for modeling river flow and morphodynamics. Formed in late 2007, the group released the first version of this interface (iRIC) in late 2009. iRIC includes models for two and three-dimensional flow, sediment transport, bed evolution, groundwater-surface water interaction, topographic data processing, and habitat assessment, as well as comprehensive data and model output visualization, mapping, and editing tools. All the tools in iRIC are specifically designed for use in river reaches and utilize common river data sets. The models are couched within a single graphical user interface so that a broad spectrum of models are available to users without learning new pre- and post-processing tools. The first version of iRIC was developed by combining the USGS public-domain Multi-Dimensional Surface Water Modeling System (MD_SWMS), developed at the USGS Geomorphology and Sediment Transport Laboratory in Golden, Colorado, with the public-domain river modeling code NAYS developed by the Universities of Hokkaido and Kyoto, Mizuho Corporation, and the Foundation of the River Disaster Prevention Research Institute in Sapporo, Japan. Since this initial effort, other Universities and Agencies have joined the group, and the interface has been expanded to allow users to integrate their own modeling code using Executable Markup Language (XML), which provides easy access and expandability to the iRIC software interface. In this presentation, the current components of iRIC are described and results from several practical modeling applications are presented to illustrate the capabilities and flexibility of the software. In addition, some future extensions to iRIC are demonstrated, including software for Lagrangian particle tracking and the prediction of

  10. The coherent variability of African river flows : composite climate ...

    African Journals Online (AJOL)

    The composite structure of the ocean and atmosphere around Africa is studied in the context of river flow variability. Annual streamflows are analysed for the Blue and White Nile, Congo, Niger, Senegal, Zambezi, and Orange Rivers, and inflow to Lake Malawi. Spectral energy is concentrated in 6.6- and 2.4-year bands.

  11. Integrated Analysis of Flow, Form, and Function for River Management and Design Testing (United States)

    Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.


    Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.

  12. Riparian trees as common denominators across the river flow ...

    African Journals Online (AJOL)

    Riparian tree species, growing under different conditions of water availability, can ... leaf area and increasing wood density correlating with deeper groundwater levels. ... and Sanddrifskloof Rivers (South Africa) under reduced flow conditions.

  13. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.


    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  14. Climate influences on upper Limpopo River flow

    African Journals Online (AJOL)


    Jan 1, 2016 ... Keywords: Limpopo Valley, hydro-meteorology, surface water deficit. * To whom all ... millenia and there is a history of drought impacts on vegetation. (Ekblom et ... water budget of the upper Limpopo River valley using direct.

  15. MSET modeling of Crystal River-3 venturi flow meters

    International Nuclear Information System (INIS)

    Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.


    The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication

  16. Flow intermittence and ecosystem services in rivers of the Anthropocene (United States)

    Intermittent rivers and ephemeral streams (IRES) are watercourses that cease flow at some point in time and space. Arguably Earth's most widespread type of flowing water, IRES are expanding where Anthropocenic climates grow drier and human demands for water escalate. However, IRE...

  17. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain). (United States)

    Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco


    Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

  18. River Bank Erosion and the Influence of Environmental Flow Management (United States)

    Vietz, Geoff J.; Lintern, Anna; Webb, J. Angus; Straccione, David


    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional `know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  19. River Bank Erosion and the Influence of Environmental Flow Management. (United States)

    Vietz, Geoff J; Lintern, Anna; Webb, J Angus; Straccione, David


    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional 'know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  20. Meeting instream flow needs of lower Colorado River in Texas

    International Nuclear Information System (INIS)

    Martin, Q.W.


    The Lower Colorado River Authority (LCRA), an agency of the State of Texas, manages the surface waters of the lower Colorado River in Texas. The major water supply source in the lower basin is the Highland Lakes chain of reservoirs in Central Texas. The use of water from these lakes for environmental protection and enhancement has received increasing attention in recent years. The LCRA recently completed major revisions to its comprehensive Water Management Plan (WMP) for the Highland Lakes. These revisions included changes to incorporate the results of a three year study of instream flow needs in the lower Colorado River. The instream flow needs were determined to consist of two flow regimes: critical and target. The critical flows are considered to be the daily minimum flows needed to maintain minimum viable aquatic conditions for important fish species. The target flow needs are those daily flows which maximize the available habitat for a variety of fish. After evaluating numerous policy options, LCRA revised to WMP to allow the release of water from the Highland Lakes to maintain the daily river flows at no less than the critical flows in all years. Further, in those years when drought-induced irrigation water supply curtailments do not occur, LCRA will release water from the lakes, to the extent of daily inflows, to maintain daily river flows at no less than the target levels. To fully honor this pledge, LCRA committed an average of 28,700 acre-feet annually, during any ten consecutive years, from the dependable supply of the Highland Lakes

  1. Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river (United States)

    Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.


    Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response

  2. Climate change impact on river flows in Chitral watershed

    International Nuclear Information System (INIS)

    Shakir, A.S.; Rehman, H.U.; Ehsan, S.


    The impact of climate change has always been very important for water resources in the world. In countries like Pakistan where different weather conditions exist, the effects of climate change can be more crucial. Generally, the climate changes are considered in terms of global warming i.e. increase in the average temperature of earth's near surface air. The global warming can have a strong impact on river flows in Pakistan. This may be due to the melting of snow and glaciers at a higher rate and changes in precipitation patterns. Glaciers in Pakistan cover about 13,680 km/sup 2/, which is 13% of the mountainous regions of the Upper Indus Basin. Glacier and Snow melt water from these glaciers contributes significantly to the river flows in Pakistan. Due to climate change, the changes in temperature and the amount of precipitation could have diversified effects on river flows of arid and semi-arid regions of Pakistan. This paper reviews the existing research studies on climate change impact on water resources of Pakistan. The past trend of river flows in Pakistan has been discussed with respect to the available data. Further, different projections about future climate changes in terms of glacier melting and changes in temperature and precipitation have also been taken into consideration in order to qualitatively assess the future trend of river flows in Pakistan. As a case study, the flows were generated for the Chitral watershed using UBC Watershed Model. Model was calibrated for the year 2002, which is an average flow year. Model results show good agreement between simulated and observed flows. UBC watershed model was applied to a climate change scenario of 1 deg. C increase in temperature and 15% decrease in glaciated area. Results of the study reveal that the flows were decreased by about 4.2 %. (author)

  3. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)


    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

  4. Environmental flows and water quality objectives for the River Murray. (United States)

    Gippel, C; Jacobs, T; McLeod, T


    Over the past decade, there intense consideration of managing flows in the River Murray to provide environmental benefits. In 1990 the Murray-Darling Basin Ministerial Council adopted a water quality policy: To maintain and, where necessary, improve existing water quality in the rivers of the Murray-Darling Basin for all beneficial uses - agricultural, environmental, urban, industrial and recreational, and in 1994 a flow policy: To maintain and where necessary improve existing flow regimes in the waterways of the Murray-Darling Basin to protect and enhance the riverine environment. The Audit of Water Use followed in 1995, culminating in the decision of the Ministerial Council to implement an interim cap on new diversions for consumptive use (the "Cap") in a bid to halt declining river health. In March 1999 the Environmental Flows and Water Quality Objectives for the River Murray Project (the Project) was set up, primarily to establish be developed that aims to achieve a sustainable river environment and water quality, in accordance with community needs, and including an adaptive approach to management and operation of the River. It will lead to objectives for water quality and environmental flows that are feasible, appropriate, have the support of the scientific, management and stakeholder communities, and carry acceptable levels of risk. This paper describes four key aspects of the process being undertaken to determine the objectives, and design the flow options that will meet those objectives: establishment of an appropriate technical, advisory and administrative framework; establishing clear evidence for regulation impacts; undergoing assessment of environmental flow needs; and filling knowledge gaps. A review of the impacts of flow regulation on the health of the River Murray revealed evidence for decline, but the case for flow regulation as the main cause is circumstantial or uncertain. This is to be expected, because the decline of the River Murray results

  5. Altered Precipitation and Flow Patterns in the Dunajec River Basin

    Directory of Open Access Journals (Sweden)

    Mariola Kędra


    Full Text Available This study analyzes changes in long-term patterns of precipitation and river flow, as well as changes in their variability over the most recent 60 years (1956–2015. The study area is situated in the mountain basin of the Dunajec River, encompassing streams draining the Tatra Mountains in southern Poland. The focus of the study was to evaluate how regional warming translates into precipitation changes in the studied mountain region, and how changes in climate affect sub-regional hydrology. Monthly time series of precipitation measured at several sites were compared for two 30-year periods (1986–2015 versus 1956–1985. The significance of the difference between the periods in question was evaluated by means of the Wilcoxon signed rank test with the Bonferroni correction. The identified shifts in precipitation for 6 months are statistically significant and largely consistent with the revealed changes in river flow patterns. Moreover, significant differences in precipitation variability were noted in the study area, resulting in a significant decrease in the repeatability of precipitation over the most recent 30 years (1986–2015. Changes in the variability of the river flow studied were less visible in this particular mountain region (while significant for two months; however, the overall repeatability of river flow decreased significantly at the same rate as for precipitation.

  6. Denitrification in the Mississippi River network controlled by flow through river bedforms (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian


    Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters1, 2, 3, 4. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions5, 6, 7, 8, 9, 10. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones8, 11, 12. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering. 


    Directory of Open Access Journals (Sweden)

    Hudson de Azevedo Macedo


    Full Text Available Rivers are immensely important to human activities such as water supply, navigation, energy generation, and agriculture. They are also an important morphodynamic agent of erosion, transport and deposition. Their capacity to transport sediment depends on their hydraulic characteristics and can be predicted by mathematical models. Several mathematical models can be used to compute bed-load transport. Each one is appropriately better for certain conditions. In this paper, we present an application built in Microsoft Excel to compute the bed-load transport in rivers based on the Van Rijn mathematical model. The Van Rijn model is appropriate for rivers transporting sandy sediments in conditions of subcritical flow. Hydraulic parameters such as channel slope, stream power, and Reynolds and Froude numbers can be calculated using the application proposed here. The application was tested in the Paraná River and results from the calculations are consistent with data obtained from fieldwork surveys. The error of the application was only 20%, which shows good agreement of the model with survey values.

  8. Potential predictability of a Colombian river flow (United States)

    Córdoba-Machado, Samir; Palomino-Lemus, Reiner; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María


    In this study the predictability of an important Colombian river (Cauca) has been analysed based on the use of climatic variables as potential predictors. Cauca River is considered one of the most important rivers of Colombia because its basin supports important productive activities related with the agriculture, such as the production of coffee or sugar. Potential relationships between the Cauca River seasonal streamflow anomalies and different climatic variables such as sea surface temperature (SST), precipitation (Pt), temperature over land (Tm) and soil water (Sw) have been analysed for the period 1949-2009. For this end, moving correlation analysis of 30 years have been carried out for lags from one to four seasons for the global SST, and from one to two seasons for South America Pt, Tm and Sw. Also, the stability of the significant correlations have been also studied, identifying the regions used as potential predictors of streamflow. Finally, in order to establish a prediction scheme based on the previous stable correlations, a Principal Component Analysis (PCA) applied on the potential predictor regions has been carried out in order to obtain a representative time series for each predictor field. Significant and stable correlations between the seasonal streamflow and the tropical Pacific SST (El Niño region) are found for lags from one to four (one-year) season. Additionally, some regions in the Indian and Atlantic Oceans also show significant and stable correlations at different lags, highlighting the importance that exerts the Atlantic SST on the hydrology of Colombia. Also significant and stable correlations are found with the Pt, Tm and Sw for some regions over South America, at lags of one and two seasons. The prediction of Cauca seasonal streamflow based on this scheme shows an acceptable skill and represents a relative improvement compared with the predictability obtained using the teleconnection indices associated with El Niño. Keywords

  9. Microelement Exploration Water Flow of Rimnik River


    , N. Bajraktari; , B. Baraj; , T. Arbneshi; , S. Jusufi


    Compared to the increasing need on qualitative water use, many water şows are subject to a rising pollution by urban and industrial untreated water discharge, and in some cases by incidental run-offs. Besides them, there is also a great impact made by disseminated agricultural pollution and air and soil rinsing after atmospheric rainfalls. The main purpose of this paper is the micro-element exploration in water and sediments, along the water şow of Rimnik River. Some of the heavy metals: Pb, ...

  10. 1992 Columbia River salmon flow measures Options Analysis/EIS

    International Nuclear Information System (INIS)


    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described

  11. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    Energy Technology Data Exchange (ETDEWEB)


    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  12. Designing ecological flows to gravely braided rivers in alpine environments (United States)

    Egozi, R.; Ashmore, P.


    Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.

  13. Climate influences on Vaal River flow | Jury | Water SA

    African Journals Online (AJOL)

    A study of climatic influences on Vaal River discharge, near Johannesburg, South Africa, finds that peak summer flows in the period 1979–2014 coincide with ocean–atmosphere interaction in the east Atlantic. The analysis has three parts: interannual influences by correlation of summer discharge with climate fields, ...

  14. Modeling river dune evolution using a parameterization of flow separation

    NARCIS (Netherlands)

    Paarlberg, Andries J.; Dohmen-Janssen, C. Marjolein; Hulscher, Suzanne J.M.H.; Termes, Paul


    This paper presents an idealized morphodynamic model to predict river dune evolution. The flow field is solved in a vertical plane assuming hydrostatic pressure conditions. The sediment transport is computed using a Meyer-Peter–Müller type of equation, including gravitational bed slope effects and a

  15. Distributional changes in rainfall and river flow in Sarawak, Malaysia (United States)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun


    Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.

  16. Comparative Measurement of Stream Flow in the Ethiope River for ...

    African Journals Online (AJOL)

    This study investigates comparative measurement of stream flow in the Ethiope River for small hydropower development. Two methods – the Float and Current Meter or Bridge Broom Methods were investigated and values compared to determine best method for optimal power generation. Depth and width measurements ...

  17. Computation of the flow in shallow river bends

    NARCIS (Netherlands)

    Kalkwijk, J.P.T.; De Vriend, H.J.


    The mathematical model presented describes the flow in rivers of which: i the depth is small compared with the width, ii the width is small compared with the radius of curvature, iii the horizontal length scale of the bottom variations is of the order of magnitude of the width. Within these limits,

  18. Low-Flow Water Study for the Missouri River. (United States)


    The (MoDOT) retained TranSystems to identify and review low-flow industry : trends, equipment and strategies used in inland navigation settings throughout the United States and worldwide which : may be transferable to the Missouri River and which cou...

  19. Downstream flow top width prediction in a river system | Choudhury ...

    African Journals Online (AJOL)

    ANFIS, ARIMA and Hybrid Multiple Inflows Muskingum models (HMIM) were applied to simulate and forecast downstream discharge and flow top widths in a river system. The ANFIS model works on a set of linguistic rules while the ARIMA model uses a set of past values to predict the next value in a time series. The HMIM ...

  20. River Flow Prediction Using the Nearest Neighbor Probabilistic Ensemble Method

    Directory of Open Access Journals (Sweden)

    H. Sanikhani


    Full Text Available Introduction: In the recent years, researchers interested on probabilistic forecasting of hydrologic variables such river flow.A probabilistic approach aims at quantifying the prediction reliability through a probability distribution function or a prediction interval for the unknown future value. The evaluation of the uncertainty associated to the forecast is seen as a fundamental information, not only to correctly assess the prediction, but also to compare forecasts from different methods and to evaluate actions and decisions conditionally on the expected values. Several probabilistic approaches have been proposed in the literature, including (1 methods that use resampling techniques to assess parameter and model uncertainty, such as the Metropolis algorithm or the Generalized Likelihood Uncertainty Estimation (GLUE methodology for an application to runoff prediction, (2 methods based on processing the forecast errors of past data to produce the probability distributions of future values and (3 methods that evaluate how the uncertainty propagates from the rainfall forecast to the river discharge prediction, as the Bayesian forecasting system. Materials and Methods: In this study, two different probabilistic methods are used for river flow prediction.Then the uncertainty related to the forecast is quantified. One approach is based on linear predictors and in the other, nearest neighbor was used. The nonlinear probabilistic ensemble can be used for nonlinear time series analysis using locally linear predictors, while NNPE utilize a method adapted for one step ahead nearest neighbor methods. In this regard, daily river discharge (twelve years of Dizaj and Mashin Stations on Baranduz-Chay basin in west Azerbijan and Zard-River basin in Khouzestan provinces were used, respectively. The first six years of data was applied for fitting the model. The next three years was used to calibration and the remained three yeas utilized for testing the models

  1. A hybrid least squares support vector machines and GMDH approach for river flow forecasting (United States)

    Samsudin, R.; Saad, P.; Shabri, A.


    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  2. Application of optimization technique for flood damage modeling in river system (United States)

    Barman, Sangita Deb; Choudhury, Parthasarathi


    A river system is defined as a network of channels that drains different parts of a basin uniting downstream to form a common outflow. An application of various models found in literatures, to a river system having multiple upstream flows is not always straight forward, involves a lengthy procedure; and with non-availability of data sets model calibration and applications may become difficult. In the case of a river system the flow modeling can be simplified to a large extent if the channel network is replaced by an equivalent single channel. In the present work optimization model formulations based on equivalent flow and applications of the mixed integer programming based pre-emptive goal programming model in evaluating flood control alternatives for a real life river system in India are proposed to be covered in the study.

  3. Assessing flow regime alterations in a temporary river – the River Celone case study

    Directory of Open Access Journals (Sweden)

    De Girolamo Anna Maria


    Full Text Available In this paper, we present an approach to evaluate the hydrological alterations of a temporary river. In these rivers, it is expected that anthropogenic pressures largely modify low-flow components of the flow regime with consequences for aquatic habitat and diversity in invertebrate species. First, by using a simple hydrological index (IARI river segments of the Celone stream (southern Italy whose hydrological regime is significantly influenced by anthropogenic activities have been identified. Hydrological alteration has been further classified through the analysis of two metrics: the degree (Mf and the predictability of dry flow conditions (Sd6. Measured streamflow data were used to calculate the metrics in present conditions (impacted. Given the lack of data from pristine conditions, simulated streamflow time series were used to calculate the metrics in reference conditions. The Soil and Water Assessment Tool (SWAT model was used to estimate daily natural streamflow. Hydrological alterations associated with water abstractions, point discharges and the presence of a reservoir were assessed by comparing the metrics (Mf, Sd6 before and after the impacts. The results show that the hydrological regime of the river segment located in the upper part of the basin is slightly altered, while the regime of the river segment downstream of the reservoir is heavily altered. This approach is intended for use with ecological metrics in defining the water quality status and in planning streamflow management activities.


    Directory of Open Access Journals (Sweden)

    N. JIPA


    Full Text Available TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER. In the context of climate change at global and regional scale, this study intends to identify the trends in variability of the annual and monthly flow of Teleajen river. The study is based on processing the series of mean, maximum and minimum flows at Cheia and Moara Domnească hydrometric stations (these data were taken from the National Institute of Meteorology and Hydrology. The period of analysis is 1966-1998, statistical methods beeing mostly used, among which the Mann – Kendall test, that identifies the liniar trend and its statistic significance, comes into focus. The trends in the variability of water annual and monthly flows are highlighted. The results obtained show downward trends for the mean and maximum annual flows, and for the minimum water discharge, a downward trend for Cheia station and an upward trend for Moara Domnească station. Knowing the trends in the variability of the rivers’ flow is important empirically in view of taking adequate administration measures of the water resources and managment measures for the risks lead by extreme hidrologic events (floods, low-water, according to the possible identified changes.

  5. Flow controls on lowland river macrophytes: a review. (United States)

    Franklin, Paul; Dunbar, Michael; Whitehead, Paul


    We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised.

  6. Owyhee River intracanyon lava flows: does the river give a dam? (United States)

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.


    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  7. Investigation of flow and transport parameters in some Romanian rivers

    International Nuclear Information System (INIS)

    Pascu, M.; Gaspar, E.; Gaspar, R. D.; Roncea, C.; Pascu, A.


    Together with continuous pollution, the accidental spills-e.g. from industrial faults-are the greatest danger for rivers. When such spill occurs, downstream water supplies have to be warned about the arrival time of the pollutant wave. Establishing an efficient warning system implies knowing of the flow and transport parameters of the river. Within this frame, two tracer experiments were carried out in the Olt and Somes rivers, using 32 Br and fluorescent dye tracers as injected in input pulses. A basic analysis of the field data allows the calculation of the water Residence Time Distribution and the maximum concentration of the tracer versus the distance from the injection point. Afterwards, some results are found based on the interpolation technique, in order to estimate the travel time and the maximum concentration of the pollutant along the river for a given flow rate and a given injection point. A further analysis of the field data using the dispersion theory allows determining the transfer velocities of the water and dispersion coefficient. Empirical relationship between velocity, dispersion coefficient and the distance from injection point is established. (author)

  8. Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin

    Directory of Open Access Journals (Sweden)

    Hsiao-Ping Wei


    Full Text Available This study evaluated the overflow risk of the Tsengwen River under a climate change scenario by using bias-corrected dynamic downscaled data as inputs for a SOBEK model (Deltares, the Netherlands. The results showed that the simulated river flow rate at Yufeng Bridge (upstream, Erxi Bridge (midstream, and XinZong (1 (downstream stations are at risk of exceeding the management plan’s flow rate for three projection periods (1979–2003, 2015–2039, 2075–2099. After validation with the geomorphic and hydrological data collected in this study, the frequency at which the flow rate exceeded the design flood was 2 in 88 events in the base period (1979–2003, 6 in 82 events in the near future (2015–2039, and 10 in 81 events at the end of the century (2075–2099.

  9. Analyses of flow modification on water quality on Nechako River

    International Nuclear Information System (INIS)

    Mitchell, A.C.; James, C.B.; Edinger, J.E.


    Alcan Smelters and Chemicals Ltd. initiated construction of the final phase of the Kemano Completion Project in north-central British Columbia to divert additional water from the Nechako Reservoir to the existing powerhouse. The Nechako Reservoir was created by the construction of the Kenney Dam in Nechako Canyon, a natural barrier to salmon migration. The Nechako River downstream of Nechako Canyon supports important runs of sockeye and chinook salmon. This additional diversion of Nechako River flow creates the potential of high water temperatures and increased thermal stress to migrating sockeye salmon enroute to their spawning grounds in Nechako River tributaries. To achieve specific downstream water temperature objectives during sockeye salmon migration each summer, a two-level outlet facility adjacent to Kenney Dam is to be constructed to release cooling water at 10 C to the Nechako River. Results of mathematical modeling of Nechako River water temperatures show that, based on specified design criteria, a maximum Kenney Dam release of 167 m 3 /s at 10 C would be required to meet the downstream water temperature objectives

  10. Anthropogenic Water Uses and River Flow Regime Alterations by Dams (United States)

    Ferrazzi, M.; Botter, G.


    Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.

  11. Stochastic Modelling of Shiroro River Stream flow Process


    Musa, J. J


    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  12. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    International Nuclear Information System (INIS)

    Ballard, S.


    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors

  13. A Computed River Flow-Based Turbine Controller on a Programmable Logic Controller for Run-Off River Hydroelectric Systems

    Directory of Open Access Journals (Sweden)

    Razali Jidin


    Full Text Available The main feature of a run-off river hydroelectric system is a small size intake pond that overspills when river flow is more than turbines’ intake. As river flow fluctuates, a large proportion of the potential energy is wasted due to the spillages which can occur when turbines are operated manually. Manual operation is often adopted due to unreliability of water level-based controllers at many remote and unmanned run-off river hydropower plants. In order to overcome these issues, this paper proposes a novel method by developing a controller that derives turbine output set points from computed mass flow rate of rivers that feed the hydroelectric system. The computed flow is derived by summation of pond volume difference with numerical integration of both turbine discharge flows and spillages. This approach of estimating river flow allows the use of existing sensors rather than requiring the installation of new ones. All computations, including the numerical integration, have been realized as ladder logics on a programmable logic controller. The implemented controller manages the dynamic changes in the flow rate of the river better than the old point-level based controller, with the aid of a newly installed water level sensor. The computed mass flow rate of the river also allows the controller to straightforwardly determine the number of turbines to be in service with considerations of turbine efficiencies and auxiliary power conservation.

  14. Impact of farm dams on river flows; A case study in the Limpopo River basin, Southern Africa

    NARCIS (Netherlands)

    Meijer, E.; Querner, E.P.; Boesveld, H.


    The study analysed the impact of a farm dam on the river flow in the Limpopo River basin. Two methods are used to calculate the water inflow: one uses the runoff component from the catchment water balance; the other uses the drainage output of the SIMFLOW model. The impact on the flow in a

  15. Forecasting Shaharchay River Flow in Lake Urmia Basin using Genetic Programming and M5 Model Tree

    Directory of Open Access Journals (Sweden)

    S. Samadianfard


    Full Text Available Introduction: Precise prediction of river flows is the key factor for proper planning and management of water resources. Thus, obtaining the reliable methods for predicting river flows has great importance in water resource engineering. In the recent years, applications of intelligent methods such as artificial neural networks, fuzzy systems and genetic programming in water science and engineering have been grown extensively. These mentioned methods are able to model nonlinear process of river flows without any need to geometric properties. A huge number of studies have been reported in the field of using intelligent methods in water resource engineering. For example, Noorani and Salehi (23 presented a model for predicting runoff in Lighvan basin using adaptive neuro-fuzzy network and compared the performance of it with neural network and fuzzy inference methods in east Azerbaijan, Iran. Nabizadeh et al. (21 used fuzzy inference system and adaptive neuro-fuzzy inference system in order to predict river flow in Lighvan river. Khalili et al. (13 proposed a BL-ARCH method for prediction of flows in Shaharchay River in Urmia. Khu et al. (16 used genetic programming for runoff prediction in Orgeval catchment in France. Firat and Gungor (11 evaluated the fuzzy-neural model for predicting Mendes river flow in Turkey. The goal of present study is comparing the performance of genetic programming and M5 model trees for prediction of Shaharchay river flow in the basin of Lake Urmia and obtaining a comprehensive insight of their abilities. Materials and Methods: Shaharchay river as a main source of providing drinking water of Urmia city and agricultural needs of surrounding lands and finally one of the main input sources of Lake Urmia is quite important in the region. For obtaining the predetermined goals of present study, average monthly flows of Shaharchay River in Band hydrometric station has been gathered from 1951 to 2011. Then, two third of mentioned

  16. What maintains the waters flowing in our rivers? (United States)

    Vasconcelos, Vitor Vieira


    This article discusses how new contributions from hydrogeological science in the 20th and 21st centuries have allowed for a better understanding of the processes that affect the maintenance of river flows. Moreover, the way in which this knowledge has been conveyed beyond academia and has been gradually incorporated into public policy for natural resource management is also discussed. This article explains the development of several approaches used to understand the relationships among the management of aquifers, vegetation and river flows, including water balance, aquifer recharge, the piston effect, seasonal effects, and safe and sustainable yields. Additionally, the current challenges regarding the modeling of hydrological processes that integrate groundwater and surface waters are discussed. Examples of studies applied in Brazil that demonstrate these processes and stimulate thought regarding water management strategies are presented. In light of the case studies, it is possible to propose different strategies, each adapted for specific hydrogeological context to maximize aquifer recharge or base flow maintenance. Based on these strategies, the role of infiltration ponds and other artificial recharge techniques is re-evaluated in the context of the mitigation of environmental impacts on the maintenance of river flows. Proposals for the improvement of public policies regarding the payment of related environmental services to stimulate investment in aquifer recharge and the maintenance of base flow, for which the goal is to attain win-win-win situations for the environment, farmers and water users, while preventing land speculation, are discussed. Lastly, a conceptual model for the dissemination of hydrogeological knowledge in public policies is provided, and its challenges and possibilities are discussed.


    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  18. RiverFlow2D numerical simulation of flood mitigation solutions in the Ebro River

    Directory of Open Access Journals (Sweden)

    I. Echeverribar


    Full Text Available A study of measures oriented to flood mitigation in the mid reach of the Ebro river is presented: elimination of vegetation in the riverbed, use of controlled flooding areas and construction or re-adaptation of levees. The software used is RiverFlow2D which solves the conservative free-surface flow equations with a finite volume method running on GPU. The results are compared with measurements at gauge stations and aerial views. The most effective measure has turned out to be the elimination of vegetation in the riverbed. It is demonstrated that not only the maximum flooded area is narrower but also it reduces the water depth up to 1 m. The other measures have local consequences when the peak discharge is relatively high although they could be useful in case the discharge is lower.

  19. Evaporation and abstraction determined from stable isotopes during normal flow on the Gariep River, South Africa (United States)

    Diamond, Roger E.; Jack, Sam


    Changes in the stable isotope composition of water can, with the aid of climatic parameters, be used to calculate the quantity of evaporation from a water body. Previous workers have mostly focused on small, research catchments, with abundant data, but of limited scope. This study aimed to expand such work to a regional or sub-continental scale. The first full length isotope survey of the Gariep River quantifies evaporation on the river and the man-made reservoirs for the first time, and proposes a technique to calculate abstraction from the river. The theoretically determined final isotope composition for an evaporating water body in the given climate lies on the empirically determined local evaporation line, validating the assumptions and inputs to the Craig-Gordon evaporation model that was used. Evaporation from the Gariep River amounts to around 20% of flow, or 40 m3/s, of which about half is due to evaporation from the surface of the Gariep and Vanderkloof Reservoirs, showing the wastefulness of large surface water impoundments. This compares well with previous estimates based on evapotranspiration calculations, and equates to around 1300 GL/a of water, or about the annual water consumption of Johannesburg and Pretoria, where over 10 million people reside. Using similar evaporation calculations and applying existing transpiration estimates to a gauged length of river, the remaining quantity can be attributed to abstraction, amounting to 175 L/s/km in the lower middle reaches of the river. Given that high water demand and climate change are global problems, and with the challenges of maintaining water monitoring networks, stable isotopes are shown to be applicable over regional to national scales for modelling hydrological flows. Stable isotopes provide a complementary method to conventional flow gauging for understanding hydrology and management of large water resources, particularly in arid areas subject to significant evaporation.

  20. Low flow analysis of the lower Drava River

    International Nuclear Information System (INIS)

    Mijuskovic-Svetinovic, T; Maricic, S


    Understanding the regime and the characteristics of low streamflows is of vital importance in several aspects. It is essential for the effective planning, designing, constructing, maintaining, using and managing different water management systems and structures. In addition, frequent running and assessing of estimates of low stream-flow statistics are especially important when different aspects of water quality are considered. This paper attempts to present the results of a stochastic analysis of the River Drava low flow from the gauging station, Donji Miholjac [located at rkm 77+700]. Currently, almost all specialists apply the truncation method in low-flows analysis. Taking this into consideration, it is possible to accept the definition of a low streamflow, as a period when the analysed characteristics are either, equal to or lower than the truncation level of drought. The same method has been applied in this analysis. The calculating method applied takes into account all the essential components of the afore-mentioned process. This includes a number of elements, such as the deficit, duration or the time of the occurrence of low flows, the number of times, the maximum deficit and the maximum duration of the low flows in the analysed time period. Moreover, this paper determines computational values for deficits and for the duration of low flow in different return periods.

  1. Determination of reliable environmental flows in Colombia: The example of the River Palace (Cauca)

    International Nuclear Information System (INIS)

    Diez Hernandez, Juan Manuel; Ruiz Cobo Dario Hernan


    The increasing exploitation of the water resources in Colombia requires an advanced Environmental Flows Regime (EFR) regulation, for a properly design of the Watershed Planning and Management Programs. Among the diversity of approaches proposed to EFR assessment, the most used and scientifically accepted is the well-known Instream Flow Incremental Methodology (IFIM), whose applicability for Colombian rivers is explored in this study. The IFIM modeling of the Palace River below the diversion of 500 l/s to the new water-supply facilities in Popayan (Cauca) reveals that the global effect of this limited derivation of the 6.78% mean annual flow in the integrity of the aquatic ecosystem is very low. The eco-hydraulic and eco hydrological simulations of the representative reach (500m length, 18m width, 500/00 slope and coarse substrate) analyzed with the software RHABSIM 3.0, revealed some not very significant reductions of the usable habitat for adult fishes and macro-invertebrates. Consequently, the present instream flows regime of the Palace River caused by the diversion project is corroborated as a satisfactory EFR, according to the IFIM evaluation system. Finally, some research lines are suggested, that are focused to the improvement and adaptation of the IFIM to the particular fluvial conditions of Colombia

  2. Parameter estimation of an ARMA model for river flow forecasting using goal programming (United States)

    Mohammadi, Kourosh; Eslami, H. R.; Kahawita, Rene


    SummaryRiver flow forecasting constitutes one of the most important applications in hydrology. Several methods have been developed for this purpose and one of the most famous techniques is the Auto regressive moving average (ARMA) model. In the research reported here, the goal was to minimize the error for a specific season of the year as well as for the complete series. Goal programming (GP) was used to estimate the ARMA model parameters. Shaloo Bridge station on the Karun River with 68 years of observed stream flow data was selected to evaluate the performance of the proposed method. The results when compared with the usual method of maximum likelihood estimation were favorable with respect to the new proposed algorithm.

  3. River flow availability for environmental flow allocation downstream of hydropower facilities in the Kafue Basin of Zambia (United States)

    Kalumba, Mulenga; Nyirenda, Edwin


    The Government of the Republic Zambia (GRZ) will install a new hydropower station Kafue Gorge Lower downstream of the existing Kafue Gorge Station (KGS) and plans to start operating the Itezhi-Tezhi (ITT) hydropower facility in the Kafue Basin. The Basin has significant biodiversity hot spots such as the Luangwa National park and Kafue Flats. It is described as a Man-Biosphere reserve and the National Park is a designated World Heritage Site hosting a variety of wildlife species. All these natural reserves demand special protection, and environmental flow requirements (e-flows) have been identified as a necessary need to preserve these ecosystems. Implementation of e-flows is therefore a priority as Zambia considers to install more hydropower facilities. However before allocation of e-flows, it is necessary to first assess the river flow available for allocation at existing hydropower stations in the Kafue Basin. The river flow availability in the basin was checked by assessing the variability in low and high flows since the timing, frequency and duration of extreme droughts and floods (caused by low and high flows) are all important hydrological characteristics of a flow regime that affects e-flows. The river flows for a 41 year monthly time series data (1973-2014) were used to extract independent low and high flows using the Water Engineering Time Series Processing Tool (WETSPRO). The low and high flows were used to construct cumulative frequency distribution curves that were compared and analysed to show their variation over a long period. A water balance of each hydropower station was used to check the river flow allocation aspect by comparing the calculated water balance outflow (river flow) with the observed river flow, the hydropower and consumptive water rights downstream of each hydropower station. In drought periods about 50-100 m3/s of riverflow is available or discharged at both ITT and KGS stations while as in extreme flood events about 1300-1500 m3/s

  4. Metric-Resolution 2D River Modeling at the Macroscale: Computational Methods and Applications in a Braided River

    Directory of Open Access Journals (Sweden)

    Jochen eSchubert


    Full Text Available Metric resolution digital terrain models (DTMs of rivers now make it possible for multi-dimensional fluid mechanics models to be applied to characterize flow at fine scales that are relevant to studies of river morphology and ecological habitat, or microscales. These developments are important for managing rivers because of the potential to better understand system dynamics, anthropogenic impacts, and the consequences of proposed interventions. However, the data volumes and computational demands of microscale river modeling have largely constrained applications to small multiples of the channel width, or the mesoscale. This report presents computational methods to extend a microscale river model beyond the mesoscale to the macroscale, defined as large multiples of the channel width. A method of automated unstructured grid generation is presented that automatically clusters fine resolution cells in areas of curvature (e.g., channel banks, and places relatively coarse cells in areas lacking topographic variability. This overcomes the need to manually generate breaklines to constrain the grid, which is painstaking at the mesoscale and virtually impossible at the macroscale. The method is applied to a braided river with an extremely complex channel network configuration and shown to yield an efficient fine resolution model. The sensitivity of model output to grid design and resistance parameters is also examined as it relates to analysis of hydrology, hydraulic geometry and river habitats and the findings reiterate the importance of model calibration and validation.

  5. Role river flow for Sr 90 decontamination of polluted territories of Belarus

    International Nuclear Information System (INIS)

    Kudel'skij, A.V.; Smith, J.T.; Zhukova, O.M.; Rudaya, S.M.; Sasina, N.V.


    Sr 90 contamination of the water flow Dnepr, Pripyat', Sozh, Besed', Iput' rivers is considered. The dynamics of reducing the average year activities of Sr 90 and the variations of the levels of Sr 90 activities in river water during spring-autumn high water are shown. The results of investigation of Sr 90 activity of the sediments of Pripyat' and Braginka rivers are connected with the second effects of the contamination of the river flowing off Sr 90 during high water period. Sr 90 transfer in composition of the flowing off river during 1990-1995 (from Belarus to Ukraine) is being estimated. (authors)

  6. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum (United States)

    Creed, Irena F.; McKnight, Diane M.; Pellerin, Brian; Green, Mark B.; Bergamaschi, Brian; Aiken, George R.; Burns, Douglas A.; Findlay, Stuart E G; Shanley, James B.; Striegl, Robert G.; Aulenbach, Brent T.; Clow, David W.; Laudon, Hjalmar; McGlynn, Brian L.; McGuire, Kevin J.; Smith, Richard A.; Stackpoole, Sarah M.


    A better understanding is needed of how hydrological and biogeochemical processes control dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition from headwaters downstream to large rivers. We examined a large DOM dataset from the National Water Information System of the US Geological Survey, which represents approximately 100 000 measurements of DOC concentration and DOM composition at many sites along rivers across the United States. Application of quantile regression revealed a tendency towards downstream spatial and temporal homogenization of DOC concentrations and a shift from dominance of aromatic DOM in headwaters to more aliphatic DOM downstream. The DOC concentration–discharge (C-Q) relationships at each site revealed a downstream tendency towards a slope of zero. We propose that despite complexities in river networks that have driven many revisions to the River Continuum Concept, rivers show a tendency towards chemostasis (C-Q slope of zero) because of a downstream shift from a dominance of hydrologic drivers that connect terrestrial DOM sources to streams in the headwaters towards a dominance of instream and near-stream biogeochemical processes that result in preferential losses of aromatic DOM and preferential gains of aliphatic DOM.

  7. Large Dam Effects on Flow Regime and Hydraulic Parameters of river (Case study: Karkheh River, Downstream of Reservoir Dam

    Directory of Open Access Journals (Sweden)

    Farhang Azarang


    Full Text Available Introduction: The critical role of the rivers in supplying water for various needs of life has led to engineering identification of the hydraulic regime and flow condition of the rivers. Hydraulic structures such dams have inevitable effects on their downstream that should be well investigated. The reservoir dams are the most important hydraulic structures which are the cause of great changes in river flow conditions. Materials and Methods: In this research, an accurate assessment was performed to study the flow regime of Karkheh river at downstream of Karkheh Reservoir Dam as the largest dam in Middle East. Karkheh River is the third waterful river of Iran after Karun and Dez and the third longest river after the Karun and Sefidrud. The Karkheh Dam is a large reservoir dam built in Iran on the Karkheh River in 2000. The Karkheh Reservoir Dam is on the Karkheh River in the Northwestern Khouzestan Province, the closest city being Andimeshk to the east. The part of Karkheh River, which was studied in this research is located at downstream of Karkheh Reservoir Dam. This interval is approximately 94 km, which is located between PayePol and Abdolkhan hydrometric stations. In this research, 138 cross sections were used along Karkheh River. Distance of cross sections from each other was 680m in average. The efficient model of HEC-RAS has been utilized to simulate the Karkheh flow conditions before and after the reservoir dam construction using of hydrometric stations data included annually and monthly mean discharges, instantaneous maximum discharges, water surface profiles and etc. Three defined discharges had been chosen to simulate the Karkheh River flow; maximum defined discharge, mean defined discharge and minimum defined discharge. For each of these discharges values, HEC-RAS model was implemented as a steady flow of the Karkheh River at river reach of study. Water surface profiles of flow, hydraulic parameters and other results of flow regime in

  8. Evaluation of Environmental Flows in Rivers Using Hydrological Methods (Case study: The Barandozchi River- Urmia Lake Basin

    Directory of Open Access Journals (Sweden)

    S. Mostafavi


    Full Text Available Introduction Development of water resources projects are accompanied by several environmental impacts, among them, the changes in the natural flow regime and the reduction of downstream water flows. With respect to the water shortages and non-uniform distribution of rainfall, sustainable management of water resources would be inevitable. In order to prevent negative effects on long-term river ecosystems, it is necessary to preserve the ecological requirements of the river systems. The assessment of environmental flow requirements in a river ecosystem is a challenging practice all over the world, and in particular, in developing countries such as Iran. Environmental requirements of rivers are often defined as a suite of flow discharges of certain magnitude, timing, frequency and duration. These flows ensure a flow regime capable of sustaining a complex set of aquatic habitats and ecosystem processes and are referred to as "environmental flows". There are several methods for determining environmental flows. The majority of these methods can be grouped into four reasonably distinct categories, namely as: hydrological, hydraulic rating, habitat simulation (or rating, and holistic methodologies. However, the current knowledge of river ecology and existing data on the needs of aquatic habitats for water quantity and quality is very limited. It is considered that there is no unique and universal method to adapt to different rivers and/or different reaches in a river. The main aim of the present study was to provide with a framework to determine environmental flow requirements of a typical perennial river using eco-hydrological methods. The Barandozchi River was selected as an important water body in the Urmia Lake Basin, Iran. The preservation of the river lives, the restoration of the internationally recognized Urmia Lake, and the elimination of negative impact from the construction of the Barandoz dam on this river were the main concerns in this

  9. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin (United States)

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul


    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  10. Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington (United States)

    Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.


    Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.

  11. DNA capture reveals transoceanic gene flow in endangered river sharks. (United States)

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T; Naylor, Gavin J P


    For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.

  12. Forecasting of Average Monthly River Flows in Colombia (United States)

    Mesa, O. J.; Poveda, G.


    The last two decades have witnessed a marked increase in our knowledge of the causes of interannual hydroclimatic variability and our ability to make predictions. Colombia, located near the seat of the ENSO phenomenon, has been shown to experience negative (positive) anomalies in precipitation in concert with El Niño (La Niña). In general besides the Pacific Ocean, Colombia has climatic influences from the Atlantic Ocean and the Caribbean Sea through the tropical forest of the Amazon basin and the savannas of the Orinoco River, in top of the orographic and hydro-climatic effects introduced by the Andes. As in various other countries of the region, hydro-electric power contributes a large proportion (75 %) of the total electricity generation in Colombia. Also, most agriculture is rain-fed dependant, and domestic water supply relies mainly on surface waters from creeks and rivers. Besides, various vector borne tropical diseases intensify in response to rain and temperature changes. Therefore, there is a direct connection between climatic fluctuations and national and regional economies. This talk specifically presents different forecasts of average monthly stream flows for the inflow into the largest reservoir used for hydropower generation in Colombia, and illustrates the potential economic savings of such forecasts. Because of planning of the reservoir operation, the most appropriated time scale for this application is the annual to interannual. Fortunately, this corresponds to the scale at which hydroclimate variability understanding has improved significantly. Among the different possibilities we have explored: traditional statistical ARIMA models, multiple linear regression, natural and constructed analogue models, the linear inverse model, neural network models, the non-parametric regression splines (MARS) model, regime dependant Markovian models and one we termed PREBEO, which is based on spectral bands decomposition using wavelets. Most of the methods make

  13. Longitudinal heterogeneity of flow and heat fluxes in a large lowland river: A study of the San Joaquin River, CA, USA during a large-scale flow experiment (United States)

    Bray, E. N.; Dunne, T.; Dozier, J.


    Systematic downstream variation of channel characteristics, scaled by flow affects the transport and distribution of heat throughout a large river. As water moves through a river channel, streamflow and velocity may fluctuate by orders of magnitude primarily due to channel geometry, slope and resistance to flow, and the time scales of those fluctuations range from days to decades (Constantz et al., 1994; Lundquist and Cayan, 2002; McKerchar and Henderson, 2003). It is well understood that the heat budget of a river is primarily governed by surface exchanges, with the most significant surface flux coming from net shortwave radiation. The absorption of radiation at a given point in a river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient (Dozier, 1980). Few studies consider the influence of hydrologic alteration to the optical properties governing net radiative heat transfer in a large lowland river, yet it is the most significant component of the heat budget and definitive to a river's thermal regime. We seek a physically based model without calibration to incorporate scale-dependent physical processes governing heat and flow dynamics in large rivers, how they change across the longitudinal profile, and how they change under different flow regimes. Longitudinal flow and heat flux analyses require synoptic flow time series from multiple sites along rivers, and few hydrometric networks meet this requirement (Larned et al, 2011). We model the energy budget in a regulated 240-km mainstem reach of the San Joaquin River California, USA equipped with multiple gaging stations from Friant Dam to its confluence with the Merced River during a large-scale flow experiment. We use detailed hydroclimatic observations distributed across the longitudinal gradient creating a non-replicable field experiment of heat fluxes across a range of flow regime

  14. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework. (United States)

    McCoy, Amy L; Holmes, S Rankin; Boisjolie, Brett A


    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  15. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework (United States)

    McCoy, Amy L.; Holmes, S. Rankin; Boisjolie, Brett A.


    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  16. How tides and river flows determine estuarine bathymetries [review article (United States)

    Prandle, D.


    For strongly tidal, funnel-shaped estuaries, we examine how tides and river flows determine size and shape. We also consider how long it takes for bathymetric adjustment, both to determine whether present-day bathymetry reflects prevailing forcing and how rapidly changes might occur under future forcing scenarios. Starting with the assumption of a 'synchronous' estuary (i.e., where the sea surface slope resulting from the axial gradient in phase of tidal elevation significantly exceeds the gradient in tidal amplitude ζ̂), an expression is derived for the slope of the sea bed. Thence, by integration we derive expressions for the axial depth profile and estuarine length, L, as a function of ζ̂ and D, the prescribed depth at the mouth. Calculated values of L are broadly consistent with observations. The synchronous estuary approach enables a number of dynamical parameters to be directly calculated and conveniently illustrated as functions of ζ̂ and D, namely: current amplitude Û, ratio of friction to inertia terms, estuarine length, stratification, saline intrusion length, flushing time, mean suspended sediment concentration and sediment in-fill times. Four separate derivations for the length of saline intrusion, LI, all indicate a dependency on D 2/f ÛU o ( Uo is the residual river flow velocity and f is the bed friction coefficient). Likely bathymetries for `mixed' estuaries can be delineated by mapping, against ζ̂ and D, the conditions LI/ Lsalt. By combining the derived expressions for L and LI with this latter criterion, an expression is derived relating Di, the depth at the centre of the intrusion, to the corresponding value of Uo. This expression indicates Uo is always close to 1 cm s -1, as commonly observed. Converting from Uo to river flow, Q, provides a morphological expression linking estuarine depth to Q (with a small dependence on side slope gradients). These dynamical solutions are coupled with further generalised theory related to depth and

  17. Implementation of Environmental Flows for Intermittent River Systems: Adaptive Management and Stakeholder Participation Facilitate Implementation (United States)

    Conallin, John; Wilson, Emma; Campbell, Josh


    Anthropogenic pressure on freshwater ecosystems is increasing, and often leading to unacceptable social-ecological outcomes. This is even more prevalent in intermittent river systems where many are already heavily modified, or human encroachment is increasing. Although adaptive management approaches have the potential to aid in providing the framework to consider the complexities of intermittent river systems and improve utility within the management of these systems, success has been variable. This paper looks at the application of an adaptive management pilot project within an environmental flows program in an intermittent stream (Tuppal Creek) in the Murray Darling Basin, Australia. The program focused on stakeholder involvement, participatory decision-making, and simple monitoring as the basis of an adaptive management approach. The approach found that by building trust and ownership through concentrating on inclusiveness and transparency, partnerships between government agencies and landholders were developed. This facilitated a willingness to accept greater risks and unintended consequences allowing implementation to occur.

  18. Influence of Flow Regulation on Summer Water Temperature: Sauce Grande River, Argentina (United States)

    Casado, A.; Hannah, D. M.; Peiry, J.; Campo, A. M.


    This study quantifies the effects of the Paso de las Piedras Dam on the thermal behaviour of the Sauce Grande River, Argentina, during a summer season. A 30-day data set of continuous hourly data was assembled for eight stream temperature gauging sites deployed above and below the impoundment. Time series span the hottest period recorded during summer 2009 to evaluate variations in river water temperature under strong meteorological influence. The methods include: (i) analysis of the time series by inspecting the absolute differences in daily data (magnitude, timing, frequency, duration and rate of change), (ii) classification of diurnal regimes by using a novel regime 'shape' and 'magnitude' classifying method (RSMC), and (ii) quantification of the sensitivity of water temperature regimes to air temperature by computation of a novel sensitivity index (SI). Results showed that fluctuations in daily water temperatures were linked to meteorological drivers; however, spatial variability in the shape and the magnitude of the thermographs revealed the effects of the impoundment in regulating the thermal behaviour of the river downstream. An immediate cooling effect below the dam was evident. Mean daily temperatures were reduced in up to 4 °C, and described a warming trend in the downstream direction over a distance of at least 15 km (up to +2.3 °C). Diurnal cycles were reduced in amplitude and delayed in timing, and revealed a dominance of regime magnitude stability and regime shape climatic insensitivity over a distance of 8 km downstream. These findings provide new information about the water quality of the Sauce Grande River and inform management of flows to maintain the ecological integrity of the river system. Also, they motivate further analysis of potential correlates under varying hydrological and meteorological conditions. The methods presented herein have wider applicability for quantifying river thermal regimes and their sensitivity to climate and other

  19. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    Directory of Open Access Journals (Sweden)

    J. F. Salazar


    Full Text Available Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land–atmosphere interactions (mainly precipitation recycling that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  20. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir (United States)

    Salazar, Juan Fernando; Villegas, Juan Camilo; María Rendón, Angela; Rodríguez, Estiven; Hoyos, Isabel; Mercado-Bettín, Daniel; Poveda, Germán


    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land-atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  1. Economic interpretation of environmental flow regime downstream diverted river reaches. (United States)

    Gorla, Lorenzo; Perona, Paolo


    Water demand for hydropower production is increasing together with the consciousness of the importance of riparian ecosystems and biodiversity. Some Cantons in Switzerland and other alpine regions in Austria and in Sud Tirol (Italy) started replacing the inadequate concept of Minimum Flow Requirement (MFR) with a dynamic one, by releasing a fix percentage of the total inflow (e.g. 25 %) to the environment. In the same direction Perona et al. (in revision) mathematically formulated a method particularly suitable for small hydropower plants, handling the environment as a non-traditional water use, which competes with exploitators. This model uses the Principle of Equal Marginal Utility (PEMU) as optimal water allocation rule for generating like-natural flow releases while maximizing the aggregate economic benefit of all uses (Gorla and Perona, in revision). In this paper we show how redistribution policies can be interpreted in terms of PEMU, particularly we focus at traditional water repartition rules, such as the MFR, but also to dynamic ones like proportional redistribution. For the first case we show both ecological and economical arguments suggesting its inappropriateness; in the second case we highlight explicit points of strength and weakness, and suggest ways of improvement. For example the flow release allocation rule can be changed from inflow-independent ones (e.g., proportional redistribution), to inflow-dependent ones (e.g., non-proportional). The latters, having fewer constraints, can generally lead to better both ecological and economical performances. A class of simple functions, based on the PEMU, is then proposed as a suitable solution in run-of-river or small hydropower plants. Each water repartition policy underlies an ecosystem monetization. We explicit the value of the ecosystem health underlying each policy by means of the PEMU under a few assumptions, and discuss how the theoretic efficient redistribution law obtained by our approach is

  2. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.

    Energy Technology Data Exchange (ETDEWEB)


    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

  3. 1992 Columbia River salmon flow measures Options Analysis/EIS: Appendices

    International Nuclear Information System (INIS)


    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices

  4. Spatial scales of carbon flow in a river food web (United States)

    Finlay, J.C.; Khandwala, S.; Power, M.E.


    Spatial extents of food webs that support stream and river consumers are largely unknown, but such information is essential for basic understanding and management of lotic ecosystems. We used predictable variation in algal ??13C with water velocity, and measurements of consumer ??13C and ??15N to examine carbon flow and trophic structure in food webs of the South Fork Eel River in Northern California. Analyses of ??13C showed that the most abundant macroinvertebrate groups (collector-gatherers and scrapers) relied on algae from local sources within their riffle or shallow pool habitats. In contrast, filter-feeding invertebrates in riffles relied in part on algal production derived from upstream shallow pools. Riffle invertebrate predators also relied in part on consumers of pool-derived algal carbon. One abundant taxon drifting from shallow pools and riffles (baetid mayflies) relied on algal production derived from the habitats from which they dispersed. The trophic linkage from pool algae to riffle invertebrate predators was thus mediated through either predation on pool herbivores dispersing into riffles, or on filter feeders. Algal production in shallow pool habitats dominated the resource base of vertebrate predators in all habitats at the end of the summer. We could not distinguish between the trophic roles of riffle algae and terrestrial detritus, but both carbon sources appeared to play minor roles for vertebrate consumers. In shallow pools, small vertebrates, including three-spined stickleback (Gasterosteus aculeatus), roach (Hesperoleucas symmetricus), and rough-skinned newts (Taricha granulosa), relied on invertebrate prey derived from local pool habitats. During the most productive summer period, growth of all size classes of steelhead and resident rainbow trout (Oncorhynchus mykiss) in all habitats (shallow pools, riffles, and deep unproductive pools) was largely derived from algal production in shallow pools. Preliminary data suggest that the strong

  5. Informed Decision Making Process for Managing Environmental Flows in Small River Basins (United States)

    Padikkal, S.; Rema, K. P.


    Numerous examples exist worldwide of partial or complete alteration to the natural flow regime of river systems as a consequence of large scale water abstraction from upstream reaches. The effects may not be conspicuous in the case of very large rivers, but the ecosystems of smaller rivers or streams may be completely destroyed over a period of time. While restoration of the natural flow regime may not be possible, at present there is increased effort to implement restoration by regulating environmental flow. This study investigates the development of an environmental flow management model at an icon site in the small river basin of Bharathapuzha, west India. To determine optimal environmental flow regimes, a historic flow model based on data assimilated since 1978 indicated a satisfactory minimum flow depth for river ecosystem sustenance is 0.907 m (28.8 m3/s), a value also obtained from the hydraulic model; however, as three of the reservoirs were already operational at this time a flow depth of 0.922 m is considered a more viable estimate. Analysis of daily stream flow in 1997-2006, indicated adequate flow regimes during the monsoons in June-November, but that sections of the river dried out in December-May with alarming water quality conditions near the river mouth. Furthermore, the preferred minimum `dream' flow regime expressed by stakeholders of the region is a water depth of 1.548 m, which exceeds 50 % of the flood discharge in July. Water could potentially be conserved for environmental flow purposes by (1) the de-siltation of existing reservoirs or (2) reducing water spillage in the transfer between river basins. Ultimately environmental flow management of the region requires the establishment of a co-ordinated management body and the regular assimilation of water flow information from which science based decisions are made, to ensure both economic and environmental concerns are adequately addressed.

  6. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows (United States)

    Hardie, Scott A.; Bobbi, Chris J.


    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  7. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows. (United States)

    Hardie, Scott A; Bobbi, Chris J


    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  8. Risk analysis on heavy metal contamination in sediments of rivers flowing into Nansi Lake. (United States)

    Cao, Qingqing; Song, Ying; Zhang, Yiran; Wang, Renqing; Liu, Jian


    In order to understand the risk of heavy metals in sediments of the rivers flowing into Nansi Lake, 36 surface sediments were sampled from six rivers and seven heavy metals (Cr, Cu, Ni, Zn, As, Pb, and Cd) were determined. Potential ecological risk index (RI) of the six rivers showed significant differences: Xinxue River, Jiehe River, and Guangfu River were at medium potential risk, whereas the risk of Chengguo River was the lowest. Jiehe River, Xuesha River, and Jiangji River were meeting the medium potential risk at river mouths. Geo-accumulation index (I geo ) of the seven heavy metals revealed that the contamination of Cu and Cd was more serious than most other metals in the studied areas, whereas Cr in most sites of our study was not polluted. Moreover, correlation cluster analysis demonstrated that the contamination of Cu, Ni, and Zn in six rivers was mainly caused by local emissions, whereas that of As, Pb, and Cd might come from the external inputs in different forms. Consequently, the contamination of Cu and Cd and the potential risk in Xinxue River, Jiehe River, and Guangfu River as well as the local emissions should be given more attention to safeguard the water quality of Nansi Lake and the East Route Project of South to North Water Transfer.

  9. Spatial distribution of impacts to channel bed mobility due to flow regulation, Kootenai River, USA (United States)

    Michael Burke; Klaus Jorde; John M. Buffington; Jeffrey H. Braatne; Rohan Benjakar


    The regulated hydrograph of the Kootenai River between Libby Dam and Kootenay Lake has altered the natural flow regime, resulting in a significant decrease in maximum flows (60% net reduction in median 1-day annual maximum, and 77%-84% net reductions in median monthly flows for the historic peak flow months of May and June, respectively). Other key hydrologic...

  10. Potential effects of elevated base flow and midsummer spike flow experiments on riparian vegetation along the Green River (United States)

    Friedman, Jonathan M.


    The Upper Colorado River Endangered Fish Recovery Program has requested experimental flow releases from Flaming Gorge Dam for (1) elevated summer base flows to promote larval endangered Colorado pikeminnow, and (2) midsummer spike flows to disadvantage spawning invasive smallmouth bass. This white paper explores the effects of these proposed flow modifications on riparian vegetation and sediment deposition downstream along the Green River. Although modest in magnitude, the elevated base flows and possible associated reductions in magnitude or duration of peak flows would exacerbate a long-term trend of flow stabilization on the Green River that is already leading to proliferation of vegetation including invasive tamarisk along the channel and associated sediment deposition, channel narrowing and channel simplification. Midsummer spike flows could promote establishment of late-flowering plants like tamarisk. Because channel narrowing and simplification threaten persistence and quality of backwater and side channel features needed by endangered fish, the proposed flow modifications could lead to degradation of fish habitat. Channel narrowing and vegetation encroachment could be countered by increases in peak flows or reductions in base flows in some years and by prescription of rapid flow declines following midsummer spike flows. These strategies for reducing vegetation encroachment would need to be balanced with flow

  11. Riparian trees as common denominators across the river flow spectrum: are ecophysiological methods useful tools in environmental flow assessments?

    CSIR Research Space (South Africa)

    Schachtschneider, K


    Full Text Available physiological differences for trees occurred along rivers of the drier flow regime spectrum (seasonal and ephemeral). As such, this physiological measurement may be a valuable indicator for water stress, while the other measurements might provide more conclusive...

  12. Determination of flow times and longitudinal dispersion coefficients in the Main river using 3HHO as tracer

    International Nuclear Information System (INIS)

    Krause, W.J.; Mundschenk, H.


    Single discharges from nuclear power plants as well as discrete labeling with tritiated water are used to determine flow times, flow velocities and longitudinal dispersion coefficients in German rivers as shown here, for example, for the Main river. (orig.)

  13. Pulsed flows, tributary inputs, and food web structure in a highly regulated river (United States)

    Sabo, John; Caron, Melanie; Doucett, Richard R.; Dibble, Kimberly L.; Ruhi, Albert; Marks, Jane; Hungate, Bruce; Kennedy, Theodore A.


    1.Dams disrupt the river continuum, altering hydrology, biodiversity, and energy flow. Although research indicates that tributary inputs have the potential to dilute these effects, knowledge at the food web level is still scarce.2.Here we examined the riverine food web structure of the Colorado River below Glen Canyon Dam, focusing on organic matter sources, trophic diversity, and food chain length. We asked how these components respond to pulsed flows from tributaries following monsoon thunderstorms that seasonally increase streamflow in the American Southwest.3.Tributaries increased the relative importance of terrestrial organic matter, particularly during the wet season below junctures of key tributaries. This contrasted with the algal-based food web present immediately below Glen Canyon Dam.4.Tributary inputs during the monsoon also increased trophic diversity and food chain length: food chain length peaked below the confluence with the largest tributary (by discharge) in Grand Canyon, increasing by >1 trophic level over a 4-5 kilometre reach possibly due to aquatic prey being flushed into the mainstem during heavy rain events.5.Our results illustrate that large tributaries can create seasonal discontinuities, influencing riverine food web structure in terms of allochthony, food web diversity, and food chain length.6.Synthesis and applications. Pulsed flows from unregulated tributaries following seasonal monsoon rains increase the importance of terrestrially-derived organic matter in large, regulated river food webs, increasing food chain length and trophic diversity downstream of tributary inputs. Protecting unregulated tributaries within hydropower cascades may be important if we are to mitigate food web structure alteration due to flow regulation by large dams. This is critical in the light of global hydropower development, especially in megadiverse, developing countries where dam placement (including completed and planned structures) is in tributaries.

  14. Evaluation of Restoration and Flow Interactions on River Structure and Function: Channel Widening of the Thur River, Switzerland

    Directory of Open Access Journals (Sweden)

    Eduardo J. Martín


    Full Text Available Removal of lateral constraints to restore rivers has become increasingly common in river resource management, but little is known how the interaction of de-channelization with flow influences ecosystem structure and function. We evaluated the ecosystem effects of river widening to improve sediment relations in the Thur River, Switzerland, 12 years after implementation. We tested if restored and non-restored reaches differed in water physico-chemistry, hyporheic function, primary production, and macroinvertebrate density and composition in relation to the flow regime. Our results showed that (i spatio-temporal variation in sediment respiration and macroinvertebrate taxonomic richness were driven by interactions between restoration and flow; (ii riverbed conditions including substrate size, organic matter content, and groundwater–surface water exchange changed due to restoration, but (iii physico-chemistry, hydraulic conditions, and primary production were not altered by restoration. Importantly, our study revealed that abiotic conditions, except channel morphology, changed only marginally, whereas other ecosystem attributes responded markedly to changes in flow-restoration interactions. These results highlight integrating a more holistic ecosystem perspective in the design and monitoring of restoration projects such as river widening in resource management, preferably in relation to flow-sediment regimes and interactions with the biotic components of the ecosystem.

  15. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems (United States)

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.


    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  16. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA (United States)

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.


    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  17. Isotope Compositions Of Mekong River Flow Water In The South Of Vietnam

    International Nuclear Information System (INIS)

    Nguyen Kien Chinh; Huynh Long; Le Danh Chuan; Nguyen Van Nhien; Tran Thi Bich Lien


    As a part of the Research Contract No. VIE/12569, isotope composition of Mekong river flow water in the South of Vietnam has been monitored to provide information on water origin and residence times, surface-groundwater exchange in the monitoring area. According to the primary results obtained, a seasonal variation as well as the dependence on local precipitation and on the river water level of isotopic composition of two distributaries of Mekong river water have been observed. At the same time a slight change on season of tritium in rivers water and the difference between tritium content in local rainy water and river water has been recorded. (author)

  18. Granular flows: fundamentals and applications (United States)

    Cleary, Paul W.

    DEM allows the prediction of complex industrial and geophysical particle flows. The importance of particle shape is demonstrated through a series of simple examples. Shape controls resistance to shear, the magnitude of collision stress, dilation and the angle of repose. We use a periodic flow of a bed of particles to demonstrate the different states of granular matter, the generation of dilute granular flow when granular temperature is high and the flow dependent nature of the granular thermodynamic boundary conditions. A series of industrial case studies examines how DEM can be used to understand and improve processes such as separation, mixing, grinding, excavation, hopper discharge, metering and conveyor interchange. Finally, an example of landslide motion over real topography is presented.

  19. LJUBLJANICA CONNECTS - Restoration of the Ljubljanica River corridor and improvement of the river's flow regime (United States)

    Zabret, Katarina; Sapač, Klaudija; Šraj, Mojca; Bezak, Nejc; Sečnik, Matej; Vidmar, Andrej; Brilly, Mitja


    The project Ljubljanica connects is focused on improving connectivity and living conditions in Ljubljanica River which flows through capital city of Slovenia, Ljubljana. It represents living environment for endangered and Natura 2000 targeted fish species Danube Salmon (Hucho hucho), Danube Roach (Rutilus pigus) and Striped Chub (Leuciscus souffia). The project consists of four sets of activities: concrete restoration actions including improvement of two fish passes, monitoring of fish migration, monitoring of eco-hydrological parameters, and raising of public awareness. To improve living conditions the concrete restoration measures were performed. The reconstructions of sill and two fish passes on the Ljubljanica River have been implemented and barrier's lifting system on the weir was modernized. Above the sill in Zalog there is an oxbow which was disconnected with main river channel during the low flows. Interrupted inflow of fresh water caused very poor living conditions for animals in the oxbow. The raise of the sill helped to improve this situation. One of the fish passes included in the project is more than 100 years old whereas both are protected as cultural and technical heritage. None was working properly and due to the protection no visible nor drastic measures were allowed. With smaller improvements we managed to re-establish their operation. A lifting system of the barrier at the Ambrožev trg gate was outdated and did not allow precise regulation of the water level. Too fast raising of the barrier instantly caused deterioration of eco-hydrological conditions downstream. With modernization of the electromechanical equipment the situation is improved. The fish monitoring helps us to evaluate success of concrete restoration actions. The fish population status is monitored with marking the fish with Visible Implant Elastomer (VIE) tags. Regarding the location of catch we implant tags beneath transparent or translucent tissue combining different tag

  20. Socio-Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan (United States)

    Wescoat, James L.; Siddiqi, Afreen; Muhammad, Abubakr


    This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irrigation in the mid-nineteenth century to partition and development of the international river basin in the mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge measurement and data analytics in the early twenty-first century. We address these processes through a socio-hydrologic framework that couples historical geographic and analytical methods at three levels of flow in the Punjab. The first level assesses Indus River inflows analysis from its origins in 1922 to the present. The second level shows how river inflows translate into 10-daily canal command deliveries that vary widely in their conformity with canal entitlements. The third level of analysis shows how new flow measurement technologies raise questions about the performance of established methods of water scheduling (warabandi) on local distributaries. We show how near real-time measurement sheds light on the efficiency and transparency of surface water management. These local socio-hydrologic changes have implications in turn for the larger scales of canal and river inflow management in complex river basins.

  1. Vortical flows in technical applications


    Krause, Egon; Krause, Egon


    Two examples of flows dominated by vortical structures are discussed: In the first interaction and decay of vortex structures in in-cylinder flows of automotive engines are described. Numerical studies revealed clearly identifiable vortex rings, generated during the intake stroke. The influence of compressibility on the vortex formation was studied by using Mach-Zehnder interferometry in a specially designed test stand of a towed one-cylinder engine, and with numerical solutions of the Navier...

  2. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China (United States)

    Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui


    The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.

  3. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO. (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F


    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  4. Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin

    Directory of Open Access Journals (Sweden)

    Wei-Bo Chen


    Full Text Available Low-lying coastal regions and their populations are at risk during storm surge events and high freshwater discharges from upriver. An integrated storm surge and flood inundation modeling system was used to simulate storm surge and inundation in the Tsengwen River basin and the adjacent coastal area in southern Taiwan. A three-dimensional hydrodynamic model with an unstructured grid was used, which was driven by the tidal elevation at the open boundaries and freshwater discharge at the upriver boundary. The model was validated against the observed water levels for three typhoon events. The simulation results for the model were in reasonable agreement with the observational data. The model was then applied to investigate the effects of a storm surge, freshwater discharge, and a storm surge combined with freshwater discharge during an extreme typhoon event. The super Typhoon Haiyan (2013 was artificially shifted to hit Taiwan: the modeling results showed that the inundation area and depth would cause severe overbank flow and coastal flooding for a 200 year return period flow. A high-resolution grid model is essential for the accurate simulation of storm surges and inundation.

  5. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. (United States)

    Papadaki, Christina; Soulis, Konstantinos; Muñoz-Mas, Rafael; Martinez-Capel, Francisco; Zogaris, Stamatis; Ntoanidis, Lazaros; Dimitriou, Elias


    The climate change in the Mediterranean area is expected to have significant impacts on the aquatic ecosystems and particular in the mountain rivers and streams that often host important species such as the Salmo farioides, Karaman 1938. These impacts will most possibly affect the habitat availability for various aquatic species resulting to an essential alteration of the water requirements, either for dams or other water abstractions, in order to maintain the essential levels of ecological flow for the rivers. The main scope of this study was to assess potential climate change impacts on the hydrological patterns and typical biota for a south-western Balkan mountain river, the Acheloos. The altered flow regimes under different emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were estimated using a hydrological model and based on regional climate simulations over the study area. The Indicators of Hydrologic Alteration (IHA) methodology was then used to assess the potential streamflow alterations in the studied river due to predicted climate change conditions. A fish habitat simulation method integrating univariate habitat suitability curves and hydraulic modeling techniques were used to assess the impacts on the relationships between the aquatic biota and hydrological status utilizing a sentinel species, the West Balkan trout. The most prominent effects of the climate change scenarios depict severe flow reductions that are likely to occur especially during the summer flows, changing the duration and depressing the magnitude of the natural low flow conditions. Weighted Usable Area-flow curves indicated the limitation of suitable habitat for the native trout. Finally, this preliminary application highlighted the potential of science-based hydrological and habitat simulation approaches that are relevant to both biological quality elements (fish) and current EU Water policy to serve as efficient tools for the estimation of possible climate

  6. An analysis of river bank slope and unsaturated flow effects on bank storage. (United States)

    Doble, Rebecca; Brunner, Philip; McCallum, James; Cook, Peter G


    Recognizing the underlying mechanisms of bank storage and return flow is important for understanding streamflow hydrographs. Analytical models have been widely used to estimate the impacts of bank storage, but are often based on assumptions of conditions that are rarely found in the field, such as vertical river banks and saturated flow. Numerical simulations of bank storage and return flow in river-aquifer cross sections with vertical and sloping banks were undertaken using a fully-coupled, surface-subsurface flow model. Sloping river banks were found to increase the bank infiltration rates by 98% and storage volume by 40% for a bank slope of 3.4° from horizontal, and for a slope of 8.5°, delay bank return flow by more than four times compared with vertical river banks and saturated flow. The results suggested that conventional analytical approximations cannot adequately be used to quantify bank storage when bank slope is less than 60° from horizontal. Additionally, in the unconfined aquifers modeled, the analytical solutions did not accurately model bank storage and return flow even in rivers with vertical banks due to a violation of the dupuit assumption. Bank storage and return flow were also modeled for more realistic cross sections and river hydrograph from the Fitzroy River, Western Australia, to indicate the importance of accurately modeling sloping river banks at a field scale. Following a single wet season flood event of 12 m, results showed that it may take over 3.5 years for 50% of the bank storage volume to return to the river. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  7. Monitoring and Evaluation of Environmental Flow Prescriptions for Five Demonstration Sites of the Sustainable Rivers Project (United States)

    Konrad, Christopher P.


    The Nature Conservancy has been working with U.S. Army Corps of Engineers (Corps) through the Sustainable Rivers Project (SRP) to modify operations of dams to achieve ecological objectives in addition to meeting the authorized purposes of the dams. Modifications to dam operations are specified in terms of environmental flow prescriptions that quantify the magnitude, duration, frequency, and seasonal timing of releases to achieve specific ecological outcomes. Outcomes of environmental flow prescriptions implemented from 2002 to 2008 have been monitored and evaluated at demonstration sites in five rivers: Green River, Kentucky; Savannah River, Georgia/South Carolina; Bill Williams River, Arizona; Big Cypress Creek, Texas; and Middle Fork Willamette River, Oregon. Monitoring and evaluation have been accomplished through collaborative partnerships of federal and state agencies, universities, and nongovernmental organizations.

  8. Flow-duration-frequency behaviour of British rivers based on annual minima data (United States)

    Zaidman, Maxine D.; Keller, Virginie; Young, Andrew R.; Cadman, Daniel


    A comparison of different probability distribution models for describing the flow-duration-frequency behaviour of annual minima flow events in British rivers is reported. Twenty-five catchments were included in the study, each having stable and natural flow records of at least 30 years in length. Time series of annual minima D-day average flows were derived for each record using durations ( D) of 1, 7, 30, 60, 90, and 365 days and used to construct low flow frequency curves. In each case the Gringorten plotting position formula was used to determine probabilities (of non-exceedance). Four distribution types—Generalised Extreme Value (GEV), Generalised Logistic (GL), Pearson Type-3 (PE3) and Generalised Pareto (GP)—were used to model the probability distribution function for each site. L-moments were used to parameterise individual models, whilst goodness-of-fit tests were used to assess their match to the sample data. The study showed that where short durations (i.e. 60 days or less) were considered, high storage catchments tended to be best represented by GL and GEV distribution models whilst low storage catchments were best described by PE3 or GEV models. However, these models produced reasonable results only within a limited range (e.g. models for high storage catchments did not produce sensible estimates of return periods where the prescribed flow was less than 10% of the mean flow). For annual minima series derived using long duration flow averages (e.g. more than 90 days), GP and GEV models were generally more applicable. The study suggests that longer duration minima do not conform to the same distribution types as short durations, and that catchment properties can influence the type of distribution selected.

  9. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued? (United States)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish


    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.


    Directory of Open Access Journals (Sweden)



    Full Text Available Investigated region is overlapping the territory drained by tributaries of Someşul Mic and Arieş River and also the creeks collected by Mureş River between the mouth of Arieş and Geoagiu River. The study is based on processing and interpreting data from 24 gauging stations, of which 18 control surfaces basins below 150 km2. To highlight the features of seasonal flow regime we have considered three periods (1950-1967, 1950-2009 and 1970-2009. Thus, all rivers are recording a dominant flow during spring while the lowest annual average volume is related to winter season. Seasonal time variation of river flow was highlighted by analyzing the trends in the three periods using the variation coefficients.

  11. Membranes for Redox Flow Battery Applications


    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria


    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. Th...

  12. Effects of flow regulation and fragmentation by dams on riparian flora in boreal rivers

    International Nuclear Information System (INIS)

    Jansson, Roland


    The object of this thesis is to evaluate the effects of river regulation on riparian flora in boreal rivers, and to increase the understanding of the processes causing patterns in species diversity. Comparisons of free-flowing and regulated rivers showed that regulated rivers have fewer plant species and less plant cover per 200-m-stretch of river margin. Regulated river-margins were less species-rich compared to free-flowing rivers irrespective of the type of regulated water level regime, except for unimpounded reaches downstream of dams. Species with good dispersal capacity (wind-dispersed or long-floating species) were least affected by regulation, showing that the ability to recolonize after local extinction is an important character. The temporal development of river-margin vegetation in regulated rivers was studied by investigating differently-old reservoirs and impoundments. Plant-species richness along storage reservoirs increased during the first 30-40 years following damming, but declined thereafter. Both species richness and plant cover remained impoverished compared to free-flowing rivers about 70 years after regulation. Along run-of-river impoundments, plant species richness and cover peaked after 10-20 years. In the long run, riparian species richness was lower, but riparian species density did not differ, compared to free-flowing rivers. Dams fragment the riparian flora. Adjacent run-of-river impoundments developed different riparian floras, probably because dams are barriers to the dispersal of species with poor floating ability. This shows that dams disrupt the ecological continuity not only for the river channel, but also for the adjoining riparian corridor. The number of species and genera were similar between river margins along boreal free-flowing rivers in Europe and North America. The riparian floras shared few species but many genera and families. The regional species pools were similar-sized and composed of species with similar traits, and

  13. Quantifying Km-scale Hydrological Exchange Flows under Dynamic Flows and Their Influences on River Corridor Biogeochemistry (United States)

    Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.


    Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on

  14. Flow Sharing Systems for Mobile Applications

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn


    This contribution reports about some analytical and simulation/experimental studies carried out on different flow control systems for mobile applications with respect to their ability to do flow sharing. All systems have two parallel actuators and are considered regarding functionality...

  15. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis

    International Nuclear Information System (INIS)

    Döll, Petra; Schmied, Hannes Müller


    To assess the impact of climate change on freshwater resources, change in mean annual runoff (MAR) is only a first indicator. In addition, it is necessary to analyze changes of river flow regimes, i.e. changes in the temporal dynamics of river discharge, as these are important for the well-being of humans (e.g. with respect to water supply) and freshwater-dependent biota (e.g. with respect to habitat availability). Therefore, we investigated, in a global-scale hydrological modeling study, the relation between climate-induced changes of MAR and changes of a number of river flow regime indicators, including mean river discharge, statistical low and high flows, and mean seasonal discharge. In addition, we identified, for the first time at the global scale, where flow regime shifts from perennial to intermittent flow regimes (or vice versa) may occur due to climate change. Climate-induced changes of all considered river flow regime indicators (except seasonal river flow changes) broadly follow the spatial pattern of MAR changes. The differences among the computed changes of MAR due to the application of the two climate models are larger than the differences between the change of MAR and the change of the diverse river flow indicators for one climate model. At the sub-basin and grid cell scales, however, there are significant differences between the changes of MAR, mean annual river discharge, and low and high flows. Low flows are projected to be more than halved by the 2050s in almost twice the area as compared to MAR. Similarly, northern hemisphere summer flows decrease more strongly than MAR. Differences between the high emissions scenario A2 (with emissions of 25 Gt C yr −1 in the 2050s) and the low emissions scenario B2 (16 Gt C yr −1 ) are generally small as compared to the differences due to the two climate models. The benefits of avoided emissions are, however, significant in those areas where flows are projected to be more than halved due to climate change

  16. Monitoring winter flow conditions on the Ivishak River, Alaska : final report. (United States)


    The Sagavanirktok River, a braided river on the Alaska North Slope, flows adjacent to the trans-Alaska pipeline for approximately 100 miles south of Prudhoe Bay. During an unprecedented flooding event in mid-May 2015, the pipeline was exposed in an a...

  17. The lower San Pedro River: hydrology and flow restoration for biodiversity conservation (United States)

    Jeanmarie Haney


    The lower San Pedro River, downstream from Benson, is a nearly unfragmented habitat containing perennial flow reaches that support riparian vegetation that serve as “stepping stones” for migratory species. The Nature Conservancy has purchased farm properties and retired agricultural pumping along the lower river, based largely on results from hydrologic analyses...

  18. River flow response to changes in vegetation cover in a South ...

    African Journals Online (AJOL)

    It was hypothesised in this study that annual river yield (river flow as a fraction of rainfall) in the Molenaars catchment near Paarl, South Africa co-varies with an index of green vegetation cover derived from satellite data (the normalised difference vegetation index, NDVI). The catchment was partitioned into 'upland' and ...

  19. River flow regime and snow cover of the Pamir Alay (Central Asia) in a changing climate

    NARCIS (Netherlands)

    Chevallier, P.; Pouyaud, B.; Mojaisky, M.; Bolgov, M.; Olsson, O.; Bauer, M.; Froebrich, J.


    The Vakhsh and Pyandj rivers, main tributaries of the Amu Darya River in the mountainous region of the Pamir Alay, play an important role in the water resources of the Aral Sea basin (Central Asia). In this region, the glaciers and snow cover significantly influence the water cycle and flow regime,

  20. Identification of appropriate low flow forecast model for the Meuse River.

    NARCIS (Netherlands)

    Demirel, M.C.; Booij, Martijn J.; Cluckie, Ian; Chen, Yangbo; Babovic, Vladan; Konikow, Lenny; Mynett, Arthur; Demuth, Siegfried; Savic, Dragan A.


    This study investigates the selection of an appropriate low flow forecast model for the Meuse River based on the comparison of output uncertainties of different models. For this purpose, three data driven models have been developed for the Meuse River: a multivariate ARMAX model, a linear regression

  1. Statistical Characterization of River and Channel Network Formation in Intermittently Flowing Vortex Systems. (United States)

    Olson, C. J.; Reichhardt, C.; Nori, F.


    Vortices moving in dirty superconductors can form intricate flow patterns, resembling fluid rivers, as they interact with the pinning landscape (F. Nori, Science 271), 1373 (1996).. Weaker pinning produces relatively straight nori>vortex channels, while stronger pinning results in the formation of one or more winding channels that carry all flow. This corresponds to a crossover from elastic flow to plastic flow as the pinning strength is increased. For several pinning parameters, we find the fractal dimension of the channels that form, the vortex trail density, the distance travelled by vortices as they pass through the sample, the branching ratio, the sinuosity, and the size distribution of the rivers, and we compare our rivers with physical rivers that follow Horton's laws.

  2. Short-term stream flow forecasting at Australian river sites using data-driven regression techniques

    CSIR Research Space (South Africa)

    Steyn, Melise


    Full Text Available This study proposes a computationally efficient solution to stream flow forecasting for river basins where historical time series data are available. Two data-driven modeling techniques are investigated, namely support vector regression...

  3. Rivers running deep : complex flow and morphology in the Mahakam River, Indonesia

    NARCIS (Netherlands)

    Vermeulen, B.


    Rivers in tropical regions often challenge our geomorphological understanding of fluvial systems. Hairpin bends, natural scours, bifurcate meander bends, tie channels and embayments in the river bank are a few examples of features ubiquitous in tropical rivers. Existing observation techniques

  4. Sele coastal plain flood risk due to wave storm and river flow interaction (United States)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela


    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  5. Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique (United States)

    Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida


    The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.

  6. South Asia river flow projections and their implications for water resources (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.


    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  7. Groundwater flow model for the Little Plover River basin in Wisconsin’s Central Sands (United States)

    Ken Bradbury,; Fienen, Michael N.; Kniffin, Maribeth; Jacob Krause,; Westenbroek, Stephen M.; Leaf, Andrew T.; Barlow, Paul M.


    The Little Plover River is a groundwater-fed stream in the sand plains region of central Wisconsin. In this region, sandy sediment deposited during or soon after the last glaciation forms an important unconfined sand and gravel aquifer. This aquifer supplies water for numerous high-capacity irrigation, municipal, and industrial wells that support a thriving agricultural industry. In recent years the addition of many new wells, combined with observed diminished flows in the Little Plover and other nearby rivers, has raised concerns about the impacts of the wells on groundwater levels and on water levels and flows in nearby lakes, streams, and wetlands. Diverse stakeholder groups, including well operators, Growers, environmentalists, local land owners, and regulatory and government officials have sought a better understanding of the local groundwater-surface water system and have a shared desire to balance the water needs of the he liagricultural, industrial, and urban users with the maintenance and protection of groundwater-dependent natural resources. To help address these issues, the Wisconsin Department of Natural Resources requested that the Wisconsin Geological and Natural History Survey and U.S. Geological Survey cooperatively develop a groundwater flow model that could be used to demonstrate the relationships among groundwater, surface water, and well withdrawals and also be a tool for testing and evaluating alternative water management strategies for the central sands region. Because of an abundance of previous studies, data availability, local interest, and existing regulatory constraints the model focuses on the Little Plover River watershed, but the modeling methodology developed during this study can apply to much of the larger central sands of Wisconsin. The Little Plover River groundwater flow model simulates three-dimensional groundwater movement in and around the Little Plover River basin under steady-state and transient conditions. This model

  8. Simple Model for Simulating Characteristics of River Flow Velocity in Large Scale

    Directory of Open Access Journals (Sweden)

    Husin Alatas


    Full Text Available We propose a simple computer based phenomenological model to simulate the characteristics of river flow velocity in large scale. We use shuttle radar tomography mission based digital elevation model in grid form to define the terrain of catchment area. The model relies on mass-momentum conservation law and modified equation of motion of falling body in inclined plane. We assume inelastic collision occurs at every junction of two river branches to describe the dynamics of merged flow velocity.

  9. Flow Regime Classification and Hydrological Characterization: A Case Study of Ethiopian Rivers

    Directory of Open Access Journals (Sweden)

    Belete Berhanu


    Full Text Available The spatiotemporal variability of a stream flow due to the complex interaction of catchment attributes and rainfall induce complexity in hydrology. Researchers have been trying to address this complexity with a number of approaches; river flow regime is one of them. The flow regime can be quantified by means of hydrological indices characterizing five components: magnitude, frequency, duration, timing, and rate of change of flow. Similarly, this study aimed to understand the flow variability of Ethiopian Rivers using the observed daily flow data from 208 gauging stations in the country. With this process, the Hierarchical Ward Clustering method was implemented to group the streams into three flow regimes (1 ephemeral, (2 intermittent, and (3 perennial. Principal component analysis (PCA is also applied as the second multivariate analysis tool to identify dominant hydrological indices that cause the variability in the streams. The mean flow per unit catchment area (QmAR and Base flow index (BFI show an incremental trend with ephemeral, intermittent and perennial streams. Whereas the number of mean zero flow days ratio (ZFI and coefficient of variation (CV show a decreasing trend with ephemeral to perennial flow regimes. Finally, the streams in the three flow regimes were characterized with the mean and standard deviation of the hydrological variables and the shape, slope, and scale of the flow duration curve. Results of this study are the basis for further understanding of the ecohydrological processes of the river basins in Ethiopia.

  10. Synthetic river flow time series generator for dispatch and spot price forecast

    International Nuclear Information System (INIS)

    Flores, R.A.


    Decision-making in electricity markets is complicated by uncertainties in demand growth, power supplies and fuel prices. In Peru, where the electrical power system is highly dependent on water resources at dams and river flows, hydrological uncertainties play a primary role in planning, price and dispatch forecast. This paper proposed a signal processing method for generating new synthetic river flow time series as a support for planning and spot market price forecasting. River flow time series are natural phenomena representing a continuous-time domain process. As an alternative synthetic representation of the original river flow time series, this proposed signal processing method preserves correlations, basic statistics and seasonality. It takes into account deterministic, periodic and non periodic components such as those due to the El Nino Southern Oscillation phenomenon. The new synthetic time series has many correlations with the original river flow time series, rendering it suitable for possible replacement of the classical method of sorting historical river flow time series. As a dispatch and planning approach to spot pricing, the proposed method offers higher accuracy modeling by decomposing the signal into deterministic, periodic, non periodic and stochastic sub signals. 4 refs., 4 tabs., 13 figs

  11. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  12. Trends in Streamflow Characteristics of Selected Sites in the Elkhorn River, Salt Creek, and Lower Platte River Basins, Eastern Nebraska, 1928-2004, and Evaluation of Streamflows in Relation to Instream-Flow Criteria, 1953-2004 (United States)

    Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.


    The Nebraska Department of Natural Resources approved instream-flow appropriations on the Platte River to maintain fish communities, whooping crane roost habitat, and wet meadows used by several wild bird species. In the lower Platte River region, the Nebraska Game and Parks Commission owns an appropriation filed to maintain streamflow for fish communities between the Platte River confluence with the Elkhorn River and the mouth of the Platte River. Because Elkhorn River flow is an integral part of the flow in the reach addressed by this appropriation, the Upper Elkhorn and Lower Elkhorn Natural Resources Districts are involved in overall management of anthropogenic effects on the availability of surface water for instream requirements. The Physical Habitat Simulation System (PHABSIM) and other estimation methodologies were used previously to determine instream requirements for Platte River biota, which led to the filing of five water appropriations applications with the Nebraska Department of Natural Resources in 1993 by the Nebraska Game and Parks Commission. One of these requested instream-flow appropriations of 3,700 cubic feet per second was for the reach from the Elkhorn River to the mouth of the Platte River. Four appropriations were granted with modifications in 1998, by the Nebraska Department of Natural Resources. Daily streamflow data for the periods of record were summarized for 17 streamflow-gaging stations in Nebraska to evaluate streamflow characteristics, including low-flow intervals for consecutive durations of 1, 3, 7, 14, 30, 60, and 183 days. Temporal trends in selected streamflow statistics were not adjusted for variability in precipitation. Results indicated significant positive temporal trends in annual flow for the period of record at eight streamflow-gaging stations - Platte River near Duncan (06774000), Platte River at North Bend (06796000), Elkhorn River at Neligh (06798500), Logan Creek near Uehling (06799500), Maple Creek near Nickerson

  13. Using a Population Model to Inform the Management of River Flows and Invasive Carp ( Cyprinus carpio) (United States)

    Koehn, John D.; Todd, Charles R.; Zampatti, Brenton P.; Stuart, Ivor G.; Conallin, Anthony; Thwaites, Leigh; Ye, Qifeng


    Carp are a highly successful invasive fish species, now widespread, abundant and considered a pest in south-eastern Australia. To date, most management effort has been directed at reducing abundances of adult fish, with little consideration of population growth through reproduction. Environmental water allocations are now an important option for the rehabilitation of aquatic ecosystems, particularly in the Murray-Darling Basin. As carp respond to flows, there is concern that environmental watering may cause floodplain inundation and provide access to spawning habitats subsequently causing unwanted population increase. This is a management conundrum that needs to be carefully considered within the context of contemporary river flow management (natural, environmental, irrigation). This paper uses a population model to investigate flow-related carp population dynamics for three case studies in the Murray-Darling Basin: (1) river and terminal lakes; (2) wetlands and floodplain lakes; and (3) complex river channel and floodplain system. Results highlight distinctive outcomes depending on site characteristics. In particular, the terminal lakes maintain a significant source carp population regardless of river flow; hence any additional within-channel environmental flows are likely to have little impact on carp populations. In contrast, large-scale removal of carp from the lakes may be beneficial, especially in times of extended low river flows. Case studies 2 and 3 show how wetlands, floodplain lakes and the floodplain itself can now often be inundated for several months over the carp spawning season by high volume flows provided for irrigation or water transfers. Such inundations can be a major driver of carp populations, compared to within channel flows that have relatively little effecton recruitment. The use of a population model that incorporates river flows and different habitats for this flow-responsive species, allows for the comparison of likely population

  14. Experimental effect of flow depth on ratio discharge in lateral intakes in river bend

    International Nuclear Information System (INIS)

    Masjedi, A; Foroushani, E P


    Open-channel dividing flow is characterized by the inflow and outflow discharges, the upstream and downstream water depths, and the recirculation flow in the branch channel. In general, diversion flow can be categorized as natural and artificial flow. Natural flow diversion usually occurs as braiding or cut-off in bend rivers, while artificial flow is man-made to divert flow by lateral intake channels for water supply. This study presents the results of a laboratory research into effect intake flow depth on ratio discharge in lateral intakes in 180 degree bend. Investigation on lateral intake and determination of intake flow depth is among the most important issues in lateral intake on ratio discharge with model intake flow depth were measured in a laboratory flume under clear-water. Experiments were conducted for various intake flow depths and with different discharges. It was found that by increasing the flow depth at 180 degree flume bend, ratio discharge increases.

  15. CryoSat-2 Altimetry Applications over Rivers and Lakes

    DEFF Research Database (Denmark)

    Jiang, Liguang; Schneider, Raphael; Andersen, Ole Baltazar


    challenges conventional ways of dealing with satellite inland water altimetry data because virtual station time series cannot be directly derived for rivers. We review the CryoSat-2 mission characteristics, data products, and its use and perspectives for inland water applications. We discuss all......Monitoring the variation of rivers and lakes is of great importance. Satellite radar altimetry is a promising technology to do this on a regional to global scale. Satellite radar altimetry data has been used successfully to observe water levels in lakes and (large) rivers, and has also been...


    Garn, Herbert S.


    The lower 4 miles of the Red River, a tributary of the Rio Grande in northern New Mexico, was designated as one of the 'instant' components of the National Wild and Scenic River System in 1968. Instream flow requirements were determined by several methods to quantify the claims made by the United States for a federal reserved water right under the Wild and Scenic Rivers Act. The scenic (aesthetic), recreational, and fish and wildlife values are the purposes for which instream flow requirements were claimed. Since water quality is related to these values, instream flows for waste transport and protection of water quality were also included in the claim. The U. S. Fish and Wildlife Service's Instream Flow Incremental Methodology was used to quantify the relationship between various flow regimes and fish habitat. Study results are discussed.

  17. Model based hydropower gate operation for mitigation of CSO impacts by means of river base flow increase. (United States)

    Achleitner, S; De Toffol, S; Engelhard, C; Rauch, W


    In river stretches being subjected to flow regulation, usually for the purpose of energy production (e.g. Hydropower) or flood protection (river barrage), a special measure can be taken against the effect of combined sewer overflows (CSOs). The basic idea is the temporal increase of the river base flow (during storm weather) as an in-stream measure for mitigation of CSO spilling. The focus is the mitigation of the negative effect of acute pollution of substances. The measure developed can be seen as an application of the classic real time control (RTC) concept onto the river system. Upstream gate operation is to be based on real time monitoring and forecasting of precipitation. The main objective is the development of a model based predictive control system for the gate operation, by modelling of the overall wastewater system (incl. the receiving water). The main emphasis is put on the operational strategy and the appropriate short-term forecast of spilling events. The potential of the measure is tested for the application of the operational strategy and its ecological and economic feasibility. The implementation of such an in-stream measure into the hydropower's operational scheme is unique. Advantages are (a) the additional in-stream dilution of acute pollutants entering the receiving water and (b) the resulting minimization of the required CSO storage volume.

  18. Computational modeling of river flow using bathymetry collected with an experimental, water-penetrating, green LiDAR (United States)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.


    Airborne bathymetric Light Detection and Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly being deployed in fluvial environments. While the adaptation of this technology to rivers and streams would appear to be straightforward, currently technical challenges remain with regard to achieving high levels of vertical accuracy and precision when mapping bathymetry in shallow fluvial settings. Collectively these mapping errors have a direct bearing on hydraulic model predictions made using these data. We compared channel surveys conducted along the Platte River, Nebraska, and the Trinity River, California, using conventional ground-based methods with those made with the hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). In the turbid and braided Platte River, a bathymetric-waveform processing algorithm was shown to enhance the definition of thalweg channels over a more simplified, first-surface waveform processing algorithm. Consequently flow simulations using data processed with the shallow bathymetric algorithm resulted in improved prediction of wetted area relative to the first-surface algorithm, when compared to the wetted area in concurrent aerial imagery. However, when compared to using conventionally collected data for flow modeling, the inundation extent was over predicted with the EAARL topography due to higher bed elevations measured by the LiDAR. In the relatively clear, meandering Trinity River, bathymetric processing algorithms were capable of defining a 3 meter deep pool. However, a similar bias in depth measurement was observed, with the LiDAR measuring the elevation of the river bottom above its actual position, resulting in a predicted water surface higher than that measured by field data. This contribution addresses the challenge of making bathymetric measurements with the EAARL in different environmental conditions encountered in fluvial settings, explores technical issues related to

  19. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US

    Directory of Open Access Journals (Sweden)

    P. V. Caldwell


    Full Text Available Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic

  20. Flow regime effects on mature Populus fremontii (Fremont cottonwood) productivity on two contrasting dryland river floodplains (United States)

    Andersen, Douglas C.


    I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.

  1. South Asia river-flow projections and their implications for water resources (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.


    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  2. Dependence between sea surge, river flow and precipitation in south and west Britain

    Directory of Open Access Journals (Sweden)

    C. Svensson


    Full Text Available Estuaries around Great Britain may be at heightened risk of flooding because of the simultaneous occurrence of extreme sea surge and river flow, both of which may be caused by mid-latitude cyclones. A measure especially suited for extremes was employed to estimate dependence between river flow and sea surge. To assist in the interpretation of why flow-surge dependence occurs in some areas and not in others, the dependence between precipitation and surge and between precipitation and river flow was also studied. Case studies of the meteorological situations leading to high surges and/or river flows were also carried out. The present study concerns catchments draining to the south and west coasts of Great Britain. Statistically significant dependence between river flow and daily maximum sea surge may be found at catchments spread along most of this coastline. However, higher dependence is generally found in catchments in hilly areas with a southerly to westerly aspect. Here, precipitation in south-westerly airflow, which is generally the quadrant of prevailing winds, will be enhanced orographically as the first higher ground is encountered. The sloping catchments may respond quickly to the abundant rainfall and the flow peak may arrive in the estuary on the same day as a large sea surge is produced by the winds and low atmospheric pressure associated with the cyclone. There are three regions where flow-surge dependence is strong: the western part of the English south coast, southern Wales and around the Solway Firth. To reduce the influence of tide-surge interaction on the dependence analysis, the dependence between river flow and daily maximum surge occurring at high tide was estimated. The general pattern of areas with higher dependence is similar to that using the daily maximum surge. The dependence between river flow and daily maximum sea surge is often strongest when surge and flow occur on the same day. The west coast from Wales and

  3. The impact of river-lake flow and sediment exchange on sediment scouring and siltation in middle and lower Yangtze River (United States)

    Liu, Y.; Wang, Z. L.; Zuo, L. Q.


    The operation of TGR (Three Gorges Reservoir) caused river erosion and water level decline at downstream, which affects the water and sediment exchange of river-lake (Yangtze River - Dongting lake & Poyang lake). However, the change of river-lake relationship plays a significant role in the flow and sediment process of Yangtze River. In this study, flow diversion ratios of the three outlets, Chenglingji station, Hukou station are used as indexes of river-lake exchange to study the response of river erosion to flow diversion ratios. The results show that:(1) the sediment erosion in each reach from Yichang to Datong has linear correlation with the flow diversion ratio of the three outlets; (2) the sediment erosion above Chenglingji has negative linear correlation with the flow diversion ratio of Chenglingji station. While the sediment erosion below Chenglingji station has non-linear correlation with the flow diversion ratio variation of Chenglingji station; (3) the reach above Hankou station will not be affected by the flow diversion ratio of Hukou station. On one hand, if the flow diversion ratio is less than 10%, the correlation between sediment erosion and flow diversion ratio of Hukou station will be positive in Hankou to Hukou reach, but will be negative in Hukou to Datong reach. On the other hand, if the flow diversion ratio is more than 10%, the correlation will reverse.

  4. Flow-gauging structures in South African rivers Part 2: Calibration ...

    African Journals Online (AJOL)

    Accurate hydrological information is of paramount importance in a dry country such as South Africa. Flow measurements in rivers are complicated by the high variability of flows as well as by sediment loads and debris. It has been found necessary to modify and even substitute certain internationally accepted gauging station ...

  5. A modified hydrodynamic model for routing unsteady flow in a river having piedmont zone

    Directory of Open Access Journals (Sweden)

    Patowary Sudarshan


    Full Text Available Existence of piedmont zone in a river bed is a critical parameter from among numerous variations of topographical, geological and geographical conditions that can significantly influence the river flow scenario. Downstream flow situation assessed by routing of upstream hydrograph may yield higher flow depth if existence of such high infiltration zone is ignored and therefore it is a matter of concern for water resources planning and flood management. This work proposes a novel modified hydrodynamic model that has the potential to accurately determine the flow scenario in presence of piedmont zone. The model has been developed using unsteady free surface flow equations, coupled with Green-Ampt infiltration equation as governing equation. For solution of the governing equations Beam and Warming implicit finite difference scheme has been used. The proposed model was first validated from the field data of Trout Creek River showing excellent agreement. The validated model was then applied to a hypothetical river reach commensurate with the size of major tributaries of Brahmaputra Basin of India. Results indicated a 10% and 14% difference in the maximum value of discharge and depth hydrograph in presence and absence of piedmont zone respectively. Overall this model was successfully used to accurately predict the effect of piedmont zone on the unsteady flow in a river.

  6. Advanced flow MRI: emerging techniques and applications

    International Nuclear Information System (INIS)

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A.J.; Robinson, J.D.; Rigsby, C.K.


    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.

  7. Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam – A case study of the Nhue-Day River Basin

    Directory of Open Access Journals (Sweden)

    Phan Cao Duong


    Full Text Available Global warming has caused dramatic changes in regional climate variability, particularly regarding fluctuations in temperature and rainfall. Thus, it is predicted that river flow regimes will be altered accordingly. The purpose of this paper is to present the results of modeling such changes by simulating discharge using the HEC-HMS model. The precipitation was projected using super-high resolution multiple climate models (20 km resolution with newly updated emission scenarios as the input for the HEC-HMS model for flow analysis at the Red River Basin in the northern area of Vietnam. The findings showed that climate change impact on the river flow regimes tend towards a decrease in the dry season and a longer duration of flood flow. A slight runoff reduction is simulated for November while a considerable runoff increase is modeled for July and August amounting to 30% and 25%, respectively. The discharge scenarios serve as a basis for water managers to develop suitable adaptation methods and responses on the river basin scale.

  8. An integrated Riverine Environmental Flow Decision Support System (REFDSS) to evaluate the ecological effects of alternative flow scenarios on river ecosystems (United States)

    Maloney, Kelly O.; Talbert, Colin B.; Cole, Jeffrey C.; Galbraith, Heather S.; Blakeslee, Carrie J.; Hanson, Leanne; Holmquist-Johnson, Christopher L.


    In regulated rivers, managers must evaluate competing flow release scenarios that attempt to balance both human and natural needs. Meeting these natural flow needs is complex due to the myriad of interacting physical and hydrological factors that affect ecosystems. Tools that synthesize the voluminous scientific data and models on these factors will facilitate management of these systems. Here, we present the Riverine Environmental Flow Decision Support System (REFDSS), a tool that enables evaluation of competing flow scenarios and other variables on instream habitat. We developed a REFDSS for the Upper Delaware River, USA, a system that is regulated by three headwater reservoirs. This version of the REFDSS has the ability to integrate any set of spatially explicit data and synthesizes modeled discharge for three competing management scenarios, flow-specific 2-D hydrodynamic modeled estimates of local hydrologic conditions (e.g., depth, velocity, shear stress, etc.) at a fine pixel-scale (1 m2), and habitat suitability criteria (HSC) for a variety of taxa. It contains all individual model outputs, computationally integrates these data, and outputs the amount of potentially available habitat for a suite of species of interest under each flow release scenario. Users have the flexibility to change the time period of interest and vary the HSC. The REFDSS was developed to enable side-by-side evaluation of different flow management scenarios and their effects on potential habitat availability, allowing managers to make informed decisions on the best flow scenarios. An exercise comparing two alternative flow scenarios to a baseline scenario for several key species is presented. The Upper Delaware REFDSS was robust to minor changes in HSC (± 10 %). The general REFDSS platform was developed as a user-friendly Windows desktop application that was designed to include other potential parameters of interest (e.g., temperature) and for transferability to other riverine systems.

  9. Modelling nitrogen dynamics and distributions in the River Tweed, Scotland: an application of the INCA model

    Directory of Open Access Journals (Sweden)

    H. P. Jarvie


    Full Text Available The INCA (Integrated Nitrogen in Catchments model was applied to the River Tweed in the Scottish Borders, a large-scale (4400km2, spatially heterogeneous catchment, draining a wide range of agricultural land-use types, and which contributes approximately 20% of UK river flows to the North Sea. The model was calibrated for the first four years' data record (1994 to 1997 and tested over the following three years (1998 to 2000. The model calibration and testing periods incorporated a high degree of variability in climatic conditions and river flows within the Tweed catchment. The ability of the INCA model to reproduce broad-scale spatial patterns and seasonal dynamics in river flows and nitrate concentrations suggests that the processes controlling first order variability in river water nitrate concentrations have been represented successfully within the model. The tendency of the model to overestimate summer/early autumn baseflow nitrate concentrations during dry years may be linked to the operation of aquatic plant uptake effects. It is, therefore, suggested that consideration be given to incorporating a spatially and temporally variable in-stream plant uptake term for the application of INCA to lowland eutrophic rivers. Scenarios to examine possible impacts of environmental change on nitrate concentrations on the Tweed are examined. These include the effects of (i implementing different recommendations for fertiliser use and land use change under the Nitrate Sensitive Areas (NSA Scheme and the Scottish Code of Good Agricultural Practice, (ii worst case scenario changes linked to a dramatic reduction in livestock numbers as a result of a crisis in UK livestock farming and (iii changes in atmospheric nitrogen deposition. Keywords: Nitrate, nitrogen, modelling, Tweed, INCA

  10. Calculation of the Instream Ecological Flow of the Wei River Based on Hydrological Variation

    Directory of Open Access Journals (Sweden)

    Shengzhi Huang


    Full Text Available It is of great significance for the watershed management department to reasonably allocate water resources and ensure the sustainable development of river ecosystems. The greatly important issue is to accurately calculate instream ecological flow. In order to precisely compute instream ecological flow, flow variation is taken into account in this study. Moreover, the heuristic segmentation algorithm that is suitable to detect the mutation points of flow series is employed to identify the change points. Besides, based on the law of tolerance and ecological adaptation theory, the maximum instream ecological flow is calculated, which is the highest frequency of the monthly flow based on the GEV distribution and very suitable for healthy development of the river ecosystems. Furthermore, in order to guarantee the sustainable development of river ecosystems under some bad circumstances, minimum instream ecological flow is calculated by a modified Tennant method which is improved by replacing the average flow with the highest frequency of flow. Since the modified Tennant method is more suitable to reflect the law of flow, it has physical significance, and the calculation results are more reasonable.

  11. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed (United States)

    Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.


    A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.

  12. Great expectations: Flow restoration and sediment transport in the Waimea River, Kaua'i (United States)

    Gomez, Basil


    Conventional and novel observations made in the Waimea River basin between 1960 and 1995 permit the total riverine mass flux to be estimated and the influence that flow restoration will have on sediment dynamics in the river's lower reaches to be assessed. Flows between the threshold for sediment transport ( 6.0 m3 s-1) and the most effective flow (80.7 m3 s-1) recur annually and transport 60% of the Waimea River's suspended sediment load. Discharges of this magnitude essentially were unaffected by plantation era agricultural diversions of 2.3 ± 0.7 m3 s-1. The modern-day mass flux from the Waimea River basin is 155 ± 38 t km-2 y-1, and comparison with an independent cosmogenic nuclide-based estimate implies that it has remained at about this level for the past 10 ky. Previous work indicated that: (i) most of the sand the Waimea River transports to the coast is derived from steep, rapidly eroding, sparsely vegetated, bedrock-dominated hillslopes; and (ii) the sediment transport regime of the Waimea River is supply-limited at very high discharges (recurrence interval > 2.5 years). Consequently, major floods tend to remove sand from the estuary. Climate change has caused a statewide decline in heavy rainfall, and a commensurate decline in the magnitude of peak flows in the basin's pristine, undiverted headwaters over the past 97 years. The effect this secular change in climate presently is having on streamflow was foreshadowed in the late 1970s by a naturally occurring, warm Pacific Decadal Oscillation phase reduction in the magnitude of flows with low exceedance probabilities. Additionally, the controlling base level at the river mouth has risen and been displaced seaward. Simple proportionality approximations show that, for a constant sediment supply, aggradation will occur if either the magnitude of flows with a low exceedance probability declines and/or base level rises. Thus, anthropogenic stresses on Waimea River's lower reaches are not derived from the

  13. Decision support system based on DPSIR framework for a low flow Mediterranean river basin (United States)

    Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta


    The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river

  14. River flow and riparian vegetation dynamics - implications for management of the Yampa River through Dinosaur National Monument (United States)

    Scott, Michael L; Friedman, Jonathan M.


    This report addresses the relation between flow of the Yampa River and occurrence of herbaceous and woody riparian vegetation in Dinosaur National Monument (DINO) with the goal of informing management decisions related to potential future water development. The Yampa River in DINO flows through diverse valley settings, from the relatively broad restricted meanders of Deerlodge Park to narrower canyons, including debris fan-affected reaches in the upper Yampa Canyon and entrenched meanders in Harding Hole and Laddie Park. Analysis of occurrence of all plant species measured in 1470 quadrats by multiple authors over the last 24 years shows that riparian vegetation along the Yampa River is strongly related to valley setting and geomorphic surfaces, defined here as active channel, active floodplain, inactive floodplain, and upland. Principal Coordinates Ordination arrayed quadrats and species along gradients of overall cover and moisture availability, from upland and inactive floodplain quadrats and associated xeric species like western wheat grass (Pascopyrum smithii), cheatgrass (Bromus tectorum), and saltgrass (Distichlis spicata) to active channel and active floodplain quadrats supporting more mesic species including sandbar willow (Salix exigua), wild licorice (Glycyrrhiza lepidota), and cordgrass (Spartina spp.). Indicator species analysis identified plants strongly correlated with geomorphic surfaces. These species indicate state changes in geomorphic surfaces, such as the conversion of active channel to floodplain during channel narrowing. The dominant woody riparian species along the Yampa River are invasive tamarisk (Tamarix ramosissima), and native Fremont cottonwood (Populus deltoides ssp. wislizenii), box elder (Acer negundo L. var. interius), and sandbar willow (Salix exigua). These species differ in tolerance of drought, salinity, inundation, flood disturbance and shade, and in seed size, timing of seed dispersal and ability to form root sprouts. These

  15. Application of MIKE21 Software in Flood Routing of Tidal Rivers: A Case Study of the Zohre River

    Directory of Open Access Journals (Sweden)

    Ali Karami Khaniki


    Full Text Available Flood routing is of special importance from different aspects of river engineering such as flood zoning, flood forecasting, etc. There are two methods employed in river flood routing, hydraulic and hydrological. Hydrological methods are used when the river is at low tide and, hence, cannot be employed to analyze floods caused by the tide. Hydraulic methods must be employed in tidal rivers when the direction of the current reverses at high tide. In this research,MIKE21 modeling software was used for the flood routing of the Zohreh tidal river. The model was calibrated by surveying the river, taking samples form the river bed, measuring sea water level and the velocity of the river flow. Analyzing the sensitivity of the model showed that the coefficient of determination, root mean square error and relative error were 0.95, 0.032, and 0.27, respectively, all indicating the efficacy of the model in simulating different parameters such as velocity, flow rate, and water surface profile. The flood routing results of the tidal currents showed that the hydrograph of the influent and effluent to the reach at high tide (when the current direction is from sea to the river was similar to the normal flood routing of the river, but at low tide (when the current direction is from the sea to the river influent and effluent hydrograph would not follow the laws of normal flood routing.

  16. Chronological trends in maximum and minimum water flows of the Teesta River, Bangladesh, and its implications

    Directory of Open Access Journals (Sweden)

    Md. Sanaul H. Mondal


    Full Text Available Bangladesh shares a common border with India in the west, north and east and with Myanmar in the southeast. These borders cut across 57 rivers that discharge through Bangladesh into the Bay of Bengal in the south. The upstream courses of these rivers traverse India, China, Nepal and Bhutan. Transboundary flows are the important sources of water resources in Bangladesh. Among the 57 transboundary rivers, the Teesta is the fourth major river in Bangladesh after the Ganges, the Brahmaputra and the Meghna and Bangladesh occupies about 2071 km2 . The Teesta River floodplain in Bangladesh accounts for 14% of the total cropped area and 9.15 million people of the country. The objective of this study was to investigate trends in both maximum and minimum water flow at Kaunia and Dalia stations for the Teesta River and the coping strategies developed by the communities to adjust with uncertain flood situations. The flow characteristics of the Teesta were analysed by calculating monthly maximum and minimum water levels and discharges from 1985 to 2006. Discharge of the Teesta over the last 22 years has been decreasing. Extreme low-flow conditions were likely to occur more frequently after the implementation of the Gozoldoba Barrage by India. However, a very sharp decrease in peak flows was also observed albeit unexpected high discharge in 1988, 1989, 1991, 1997, 1999 and 2004 with some in between April and October. Onrush of water causes frequent flash floods, whereas decreasing flow leaves the areas dependent on the Teesta vulnerable to droughts. Both these extreme situations had a negative impact on the lives and livelihoods of people dependent on the Teesta. Over the years, people have developed several risk mitigation strategies to adjust with both natural and anthropogenic flood situations. This article proposed the concept of ‘MAXIN (maximum and minimum flows’ for river water justice for riparian land.

  17. Electricity vs Ecosystems – understanding and predicting hydropower impact on Swedish river flow

    Directory of Open Access Journals (Sweden)

    B. Arheimer


    Full Text Available The most radical anthropogenic impact on water systems in Sweden originates from the years 1900–1970, when the electricity network was developed in the country and almost all rivers were regulated. The construction of dams and changes in water flow caused problems for ecosystems. Therefore, when implementing the EU Water Framework Directive (WFD hydro-morphological indicators and targets were developed for rivers and lakes to achieve good ecological potential. The hydrological regime is one such indicator. To understand the change in flow regime we quantified the hydropower impact on river flow across Sweden by using the S-HYPE model and observations. The results show that the average redistribution of water during a year due to regulation is 19 % for the total discharge from Sweden. A distinct impact was found in seasonal flow patterns and flow duration curves. Moreover, we quantified the model skills in predicting hydropower impact on flow. The median NSE for simulating change in flow regime was 0.71 for eight dams studied. Results from the spatially distributed model are available for 37 000 sub-basins across the country, and will be used by the Swedish water authorities for reporting hydro-morphological indicators to the EU and for guiding the allocation of river restoration measures.

  18. Influence of secondary flow on meandring of rivers

    NARCIS (Netherlands)

    Olesen, K.W.


    A linear stability analysis of the governing equations for the bed and flow topography in straight alluvial channels is treated. The flow is described by a horizontal two-dimensional model, but secondary flow due to curvature of the streamlines is included. Further more knowledge about secondary

  19. Contribution of wave-induced liquefaction in triggering hyperpycnal flows in Yellow River Estuary (United States)

    Liu, X.; Jia, Y.


    Hyperpycnal flows, driven mainly by the gravity of near-bed negatively buoyant layers, are one of the most important processes for moving marine sediment across the earth. The issue of hyperpycnal flows existing in marine environment has drawn increasing scholars' attention since that was observed in situ off the Yellow River estuary in the 1980s. Most researches maintain that hyperpycnal flows in the Yellow River estuary are caused by the high-concentration sediments discharged from the Yellow River into sea, however, other mechanisms have been discounted since the sediment input from the river has been significantly changed due to climate and anthropogenic change. Here we demonstrate that wave-seabed interactions can generate hyperpycnal flows, without river input, by sediment flux convergence above an originally consolidated seabed. Using physical model experiments and multi-sensor field measurements, we characterize the composition-dependent liquefaction properties of the sediment due to wave-induced pore water pressure accumulation. This allows quantification of attenuation of sediment threshold velocity and critical shear stress (predominant variables in transport mechanics) during the liquefaction under waves. Parameterising the wave-seabed interactions in a new concept model shows that high waves propagating over the seabed sediment can act as a scarifier plough remoulding the seabed sediment. This contributes to marine hyperpycnal flows as the sediment is quickly resuspended under accumulating attenuation in strength. Therefore, the development of more integrative numerical models could supply realistic predictions of marine record in response to rising magnitude and frequency of storms.

  20. Assessment of environmental flow requirements for river basin planning in Zimbabwe (United States)

    Mazvimavi, D.; Madamombe, E.; Makurira, H.

    There is a growing awareness and understanding of the need to allocate water along a river to maintain ecological processes that provide goods and services. Legislation in Zimbabwe requires water resources management plans to include the amount of water to be reserved for environmental purposes in each river basin. This paper aims to estimate the amount of water that should be reserved for environmental purposes in each of the 151 sub-basins or water management units of Zimbabwe. A desktop hydrological method is used to estimate the environmental flow requirement (EFR). The estimated EFRs decrease with increasing flow variability, and increase with the increasing contribution of base flows to total flows. The study has established that in order to maintain slightly modified to natural habitats along rivers, the EFR should be 30-60% of mean annual runoff (MAR) in regions with perennial rivers, while this is 20-30% in the dry parts of the country with rivers, which only flow during the wet season. The inclusion of EFRs in water resources management plans will not drastically change the proportion of the available water allocated to water permits, since the amount of water allocated to water permit holders is less than 50% of the MAR on 77% of the sub-basins in the country.

  1. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River Estuary, China (United States)

    Pang, Aiping; Sun, Tao; Yang, Zhifeng


    SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.

  2. Simulated flow and solute transport, and mitigation of a hypothetical soluble-contaminant spill for the New River in the New River Gorge National River, West Virginia (United States)

    Wiley, J.B.


    This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the National Park Service, to investigate the transport and factors affecting mitigation of a hypothetical spill of a soluble contaminant into the New River in the New River Gorge National River, West Virginia. The study reach, 53 miles of the lower New River between Hinton and Fayette, is characterized as a pool-and-riffle stream that becomes narrower, steeper, and deeper in the downstream direction. A USGS unsteady-flow model, DAFLOW (Diffusion Analogy FLOW), and a USGS solute-transport model, BLTM (Branch Lagrangian Transport Model), were applied to the study reach. Increases in discharge caused decreases in peak concentration and traveltime of peak concentration. Decreases in discharge caused increases in peak concentration and traveltime of peak concentration. This study indicated that the effects of an accidental spill could be mitigated by regulating discharge from Bluestone Dam. Knowledge of the chemical characteristics of the spill, location and time of the spill, and discharge of the river can aid in determining a mitigation response.

  3. Applications, benefits and challenges of flow chemistry

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Heintz, Søren; Ringborg, Rolf Hoffmeyer


    , environmental and manufacturing perspective. A potential solution to resolve these issues is to use flow chemistry in such processes, preferably with applications of micro-and mini-sized equipment. In addition, Process Analytical Technology (PAT) may be implemented in a very efficient way in such equipment due...

  4. Developing New Modelling Tools for Environmental Flow Assessment in Regulated Salmon Rivers (United States)

    Geris, Josie; Soulsby, Chris; Tetzlaff, Doerthe


    There is a strong political drive in Scotland to meet all electricity demands from renewable sources by 2020. In Scotland, hydropower generation has a long history and is a key component of this strategy. However, many rivers sustain freshwater communities that have both high conservation status and support economically important Atlantic salmon fisheries. Both new and existing hydropower schemes must be managed in accordance with the European Union's Water Framework Directive (WFD), which requires that all surface water bodies achieve good ecological status or maintain good ecological potential. Unfortunately, long-term river flow monitoring is sparse in the Scottish Highlands and there are limited data for defining environmental flows. The River Tay is the most heavily regulated catchment in the UK. To support hydropower generation, it has an extensive network of inter- and intra- catchment transfers, in addition to a large number of regulating reservoirs for which abstraction legislation often only requires minimum compensation flows. The Tay is also considered as one of Scotland's most important rivers for Atlantic salmon (Salmo salar), and there is considerable uncertainty as to how best change reservoir operations to improve the ecological potential of the river system. It is now usually considered that environmental flows require more than a minimum compensation flow, and instead should cover a range of hydrological flow aspects that represent ecologically relevant streamflow attributes, including magnitude, timing, duration, frequency and rate of change. For salmon, these hydrological indices are of particular interest, with requirements varying at different stages of their life cycle. To meet the WFD requirements, rationally alter current abstraction licences and provide an evidence base for regulating new hydropower schemes, advanced definitions for abstraction limits and ecologically appropriate flow releases are desirable. However, a good understanding

  5. Validation of a coupled wave-flow model in a high-energy setting: the mouth of the Columbia River (United States)

    Elias, Edwin P.L.; Gelfenbaum, Guy R.; van der Westhuysen, André J.


     A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.

  6. Impact analysis of satellite rainfall products on flow simulations in the Magdalena River Basin, Colombia

    Directory of Open Access Journals (Sweden)

    Amr Elgamal


    Full Text Available The Magdalena River is the most important river in Colombia in terms of economic activities and is home to about 77% of the country’s population. The river faces water resources allocation challenges, which require reliable hydrological assessments. However, hydrological analysis and model simulations are hampered by insufficient and uncertain knowledge of the actual rainfall fields. In this research the reliability of groundbased measurements, different satellite products of rainfall and their combinations are tested for their impact on the discharge simulations of the Magdalena River. Two different satellite rainfall products from the Tropical Rainfall Measuring Mission (TRMM, have been compared and merged with the ground-based measurements and their impact on the Magdalena river flows quantified using the Representative Elementary Watershed (REW distributed hydrological model.

  7. Flood-flow analysis for Kabul river at Warsak on the basis of flow-records of Kabul river at Nowshera

    International Nuclear Information System (INIS)

    Khan, B.


    High flows and stream discharge have long been measured and used by the engineers in the design of hydraulic structures and flood-protection works and in planning for flood-plain use. Probability-analysis is the basis for the engineering design of many projects and advance information about flood-forecasting. High-flow analysis or flood-frequency studies interpret a past record of events, to predict the future probability of occurrence. In many countries, including the author's country, the long term flow data required for design of hydraulic structures and flood-protection works are not available. In such cases, the only tool with hydrologists is to extend the short-term flow data available at some other site in the region. The present study is made to find a reliable estimation of maximum instantaneous flood for higher frequencies of Kabul River at Warsak weir. Kabul River, at Nowshera gaging station is used or the purpose and regression-analysis is performed to extend the instantaneous peak-flow record up to 29 years at Warsak. The frequency-curves of high-flows are plotted on the normal probability paper, using different probability distributions. The Gumbel distribution seemed to be the best fit for the observed data-points, and is used here for estimation of flood for different return periods. (author)

  8. Bacteriological pollution indicators in Ogun River flowing through ...

    African Journals Online (AJOL)

    Water resources are significant part of integrated community development policy and good health. Hence, the need to reduce the impact of natural and anthropogenic pollution causes so as to enhance water quality. The bacteriological quality of the Ogun River was investigated to determine the sanitary conditions of the ...

  9. Establishing the environmental flow regime for the Middle Zambezi River

    NARCIS (Netherlands)

    Mwelwa-Mutekenya-Mwelwa, E.


    The Middle Zambezi, host to a rich biodiversity, is located in the central part of the Zambezi River Basin which covers eight Southern African Countries. The area is located downstream of three hydropower schemes. In the last decades, the floodplain riparian tree, the Faidherbia albida, vital for

  10. Establishing the Environmental Flow Regime for the Middle Zambezi River

    NARCIS (Netherlands)

    Mwelwa-Mutekenya, E.


    The Middle Zambezi, host to a rich biodiversity, is located in the central part of the Zambezi River Basin which covers eight Southern African Countries. The area is located downstream of three hydropower schemes. In the last decades, the floodplain riparian tree, the Faidherbia albida, vital for

  11. Robustness and quality of precipitation and river flow data obtained through participatory monitoring and citizen scienc (United States)

    Buytaert, W.; Ochoa-Tocachi, B. F.


    Apart for the most basic measurements of manual rain and staff gauges, hydrology and water resources are not an evident disciplines for the application of citizen science. High-resolution measurements require elaborate equipment, installation, and maintenance that is typically beyond the scope of non-scientists. Additionally, hydrological analysis has traditionally relied upon long time series of consistent accuracy and precision. Nevertheless, new opportunities for public participation in hydrological research are emerging, driven by increasingly affordable, robust, and more user-friendly technology. Here we analyse the results generated by participatory monitoring of river flow and precipitation in around 30 catchments in the tropical Andes. This monitoring network was set up through a collaborative effort between scientists, NGOs and local communities, with the intention to generate evidence about the impact of land-use change on streamflow. Monitoring was implemented using automatic but low-cost sensors operated and maintained by local users. Tipping bucket rain gauges are used for precipitation, and river flow is monitored with pressure transducers in combination with a V-notch weir to obtain a stable stage-discharge relation. Jointly, the sensors have now collected an equivalent of more than 30 years of data, with a measurement interval of typically 5 or 15 minutes. Analysing the data, we find that the observations themselves tend to be of a quality comparable to scientific observations. However, main issues are related to the continuity of the time series, as sensors eventually fail or run out of capacity in dataloggers or batteries in the most remote locations. Despite these shortcomings, the data have proven to be useful in characterizing land-use impacts well beyond what can be achieved with conventional data collection, thus filling long-standing gaps in local hydrological knowledge. Furthermore, we expect that the advent of new, more robust, resilient

  12. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin. (United States)

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta


    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Flow status of three transboundary rivers in Northern Greece as a tool for hydro-diplomacy (United States)

    Hatzigiannakis, Eyaggelos; Hatzispiroglou, Ioannis; Arampatzis, Georgios; Ilia, Andreas; Pantelakis, Dimitrios; Filintas, Agathos; Panagopoulos, Andreas


    The aim of this paper is to examine how the river flow monitoring consists a tool for hydro-diplomacy. Management of transboundary catchments and the demand of common water resources, often comprise the cause of conflicts and tension threatening the peaceful coexistence of nations. The Water Framework Directive 2000/60/EU sets a base for water management contributing to common approaches, common goals, common principles as well as providing new definitions and measures for Europe's water resources. In northern Greece the main renewable resources are "imported" (over 25% of its water reserves) and for this reason the implementation of continuous flow measurements throughout the year is necessary, even though difficult to achieve. This paper focuses on the three largest transboundary rivers in Northern Greece. Axios and Strymonas river flow across the region of Central Macedonia in Northern Greece. Axios flows from FYROM to Greece, and Strymonas from Bulgaria to Greece. Nestos river flows from Bulgaria to Greece. The Greek part is in the region of Eastern Macedonia and Thrace in Northern Greece. Significant productive agricultural areas around these rivers are irrigated from them so they are very important for the local society. Measurements of the river flow velocity and the flow depth have been made at bridges. The frequency of the measurements is roughly monthly, because it is expected a significant change in the depth flow and discharge. A series of continuously flow measure-ments were performed during 2013 and 2014 using flowmeters (Valeport and OTT type). The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured and calculated re-spectively. Measurements are conducted in the framework of the national water resources monitoring network, which is realised in compliance to the Water Framework Directive under the supervision and coordination of the Hellenic Ministry for the

  14. Hydrological application of the INCA model with varying spatial resolution and nitrogen dynamics in a northern river basin

    Directory of Open Access Journals (Sweden)

    K. Rankinen


    Full Text Available As a first step in applying the Integrated Nitrogen model for CAtchments (INCA to the Simojoki river basin (3160 km2, this paper focuses on calibration of the hydrological part of the model and nitrogen (N dynamics in the river during the 1980s and 1990s. The model application utilised the GIS land-use and forest classification of Finland together with a recent forest inventory based on remote sensing. In the INCA model, the Hydrologically Effective Rainfall (HER is used to drive the water flow and N fluxes through the catchment system. HER was derived from the Watershed Simulation and Forecast System (WSFS. The basic component of the WSFS is a conceptual hydrological model which simulates runoff using precipitation, potential evapotranspiration and temperature data as inputs. Spatially uniform, lumped input data were calculated for the whole river basin and spatially semi-distributed input data were calculated for each of the nine sub-basins. When comparing discharges simulated by the INCA model with observed values, a better fit was obtained with the semi-distributed data than with the spatially uniform data (R2 0.78 v. 0.70 at Hosionkoski and 0.88 v. 0.78 at the river outlet. The timing of flow peaks was simulated rather well with both approaches, although the semi-distributed input data gave a more realistic simulation of low flow periods and the magnitude of spring flow peaks. The river basin has a relatively closed N cycle with low input and output fluxes of inorganic N. During 1982-2000, the average total N flux to the sea was 715 tonnes yr–1, of which 6% was NH4-N, 14% NO3-N, and 80% organic N. Annual variation in river flow and the concentrations of major N fractions in river water, and factors affecting this variation are discussed. Keywords: northern river basin, nitrogen, forest management, hydrology, dynamic modelling, semi-distributed modelling

  15. Daily river flow prediction based on Two-Phase Constructive Fuzzy Systems Modeling: A case of hydrological - meteorological measurements asymmetry (United States)

    Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann


    Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.

  16. Forecasting models for flow and total dissolved solids in Karoun river-Iran (United States)

    Salmani, Mohammad Hassan; Salmani Jajaei, Efat


    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.

  17. Analysis of trends of low flow in river stations in eastern Slovakia

    Directory of Open Access Journals (Sweden)

    Martina Zeleňáková


    Full Text Available The availability of using hypothesis test techniques to identify the long-term trends of hydrological time series is investigated in this study. The aim is to analyse trends of low flows at streams in eastern Slovakia, namely Poprad, Hornád, Bodva, Bodrog river basins. The article presents a methodology for prediction of hydrological drought based on statistical testing of low stream flows by non-parametric statistical test. The main objective is to identify low flow trends in the selected 63 river stations in eastern Slovakia. The stations with human impacts are also evaluated. The Mann-Kendall non-parametric test has been used to detect trends in hydrological time series. Statistically significant trends have been determined from the trend lines for the whole territory of eastern Slovakia. The results indicate that the observed changes in Slovakian river basins do not have a clearly defined trend.


    Directory of Open Access Journals (Sweden)

    J. R. Santillan


    Full Text Available In this paper, we investigated how survey configuration and the type of interpolation method can affect the accuracy of river flow simulations that utilize LIDAR DTM integrated with interpolated river bed as its main source of topographic information. Aside from determining the accuracy of the individually-generated river bed topographies, we also assessed the overall accuracy of the river flow simulations in terms of maximum flood depth and extent. Four survey configurations consisting of river bed elevation data points arranged as cross-section (XS, zig-zag (ZZ, river banks-centerline (RBCL, and river banks-centerline-zig-zag (RBCLZZ, and two interpolation methods (Inverse Distance-Weighted and Ordinary Kriging were considered. Major results show that the choice of survey configuration, rather than the interpolation method, has significant effect on the accuracy of interpolated river bed surfaces, and subsequently on the accuracy of river flow simulations. The RMSEs of the interpolated surfaces and the model results vary from one configuration to another, and depends on how each configuration evenly collects river bed elevation data points. The large RMSEs for the RBCL configuration and the low RMSEs for the XS configuration confirm that as the data points become evenly spaced and cover more portions of the river, the resulting interpolated surface and the river flow simulation where it was used also become more accurate. The XS configuration with Ordinary Kriging (OK as interpolation method provided the best river bed interpolation and river flow simulation results. The RBCL configuration, regardless of the interpolation algorithm used, resulted to least accurate river bed surfaces and simulation results. Based on the accuracy analysis, the use of XS configuration to collect river bed data points and applying the OK method to interpolate the river bed topography are the best methods to use to produce satisfactory river flow simulation outputs

  19. Hydrochemical transformations of river waters during the flow in the reception basin on the basis of Olechówka River in Łódź

    Directory of Open Access Journals (Sweden)

    Bagrowicz Tomasz


    Full Text Available This work presents the results of the research experiment of conducting hydrochemical observation of the Olechówka River in Łódź and its flow from the river source until its estuary. The main aim of the research was to set tendencies of changes in waters flowing down from municipal reception basin with developed rain drain system and in waters flowing into bathing areas at the same time. Along with the flow of the river, 12 measuring-research points were established. In each of those points, measurements of the discharge rate and mean flow velocity of water in the channel were performed, which enabled to set average time of the flow of water between individual measuring-research points. The time of storing water in reservoirs was taken into consideration. The total time of the flow of water in the Olechówka River amounted to 856 h and 15 min. The analyses included in situ measurements (T, pH, SEC, analytical determinations Cl−, NH4+, NO3−, TN, PO43−, TP and Oxidability. The interchangeability of values of tested indicators and discharge point out to their decrease along with the increase of water flowing in the riverbed. There were self-cleaning processes identified in the Olechówka River: dilution and denitrification, along with the accumulation of total phosphorus in the river flow.

  20. Membranes for Redox Flow Battery Applications (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria


    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  1. Membranes for redox flow battery applications. (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria


    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  2. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos


    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  3. Applications of flow cytometry in food microbiology

    International Nuclear Information System (INIS)

    Serrano Valerin, Pamela


    A compilation of data about cytometry and its applications is performed to analyze the impact on food microbiology. The technique of flow cytometry is described and the use in various fields of microbiology is analyzed. Flow cytometry future could be implemented in many clinical laboratories and food, considering the cost / benefit test to be done, because at the moment it has a high cost. The existence of new fluorochromes and monoclonal antibodies enable that many intracellular and extracellular cell parameters are detected in the future. The technique can be developed in the country in few years considering that the technique has improved the sensitivity and specificity of many tests [es

  4. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river

    DEFF Research Database (Denmark)

    Graeber, Daniel; Pusch, Martin T.; Lorenz, Stefan


    on dissolved oxygen concentrations (DO) have not yet received much attention. We compared the macroinvertebrate composition between reference conditions and a situation after several years of discharge reduction in the Spree River (Brandenburg, Germany). Community composition shifted from rheophilic species...... concentration minima of less than 5 mg l−1 which prevailed 74% of the days in summer. This depletion of DO after flow reduction presumably caused the observed species turnover. Hence, flow reduction in lowland rivers may not only directly impair the ecological functions provided by benthic macroinvertebrates...


    Directory of Open Access Journals (Sweden)

    Zlatko Nedić


    Full Text Available The research on ectoparasitic trematodes on Scardinius erythrophthalmus from the lower flow of the Sava River showed three species of trematodes, which parasitized on the fish gills and fish skin. During the study period, we sampled 120 individuals of Scardinius erythrophthalmus. In total, 85 individuals or more than 70% showed the presence of one of the three types of ectoparasitic trematodes. Determination of the trematodes was done to the species level for one species (Posthodiplosomum cuticola and to the genus level for two of them (Dactylogyrus and Gyrodactylus. Key words: Sava River, lower flow, Orašje, ectoparasitictrematodes

  6. Low flow characteristics of river Notwane at Gaborone Dam ...

    African Journals Online (AJOL)

    ... dam has been undertaken using daily flow records between 1979 and 1999 to determine the magnitude of annual maximum deficit volumes and deficit durations at a threshold level equivalent to 75 % dependable flow. Statistical modeling of these annual maximum values, separately, using a PWM/L-moment procedure, ...

  7. DNA capture reveals transoceanic gene flow in endangered river sharks


    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T.; Naylor, Gavin J. P.


    The river sharks of the genus Glyphis, widely feared as man-eaters throughout India, remain very poorly known to science. The group constitutes five described species, all of which are considered highly endangered and restricted to freshwater systems in Australasia and Southeast Asia. DNA sequence data derived from 19th-century dried museum material augmented with contemporary samples indicates that only three of the five currently described species are valid; that there is a genetically dist...

  8. Measurement of flows for two irrigation districts in the lower Colorado River basin, Texas (United States)

    Coplin, L.S.; Liscum, Fred; East, J.W.; Goldstein, L.B.


    The Lower Colorado River Authority sells and distributes water for irrigation of rice farms in two irrigation districts, the Lakeside district and the Gulf Coast district, in the lower Colorado River Basin of Texas. In 1993, the Lower Colorado River Authority implemented a water-measurement program to account for the water delivered to rice farms and to promote water conservation. During the rice-irrigation season (summer and fall) of 1995, the U.S. Geological Survey measured flows at 30 sites in the Lakeside district and 24 sites in the Gulf Coast district coincident with Lower Colorado River Authority measuring sites. In each district, the Survey made essentially simultaneous flow measurements with different types of meters twice a day once in the morning and once in the afternoon at each site on selected days for comparison with Lower Colorado River Authority measurements. One-hundred pairs of corresponding (same site, same date) Lower Colorado River Authority and U.S. Geological Survey measurements from the Lakeside district and 104 measurement pairs from the Gulf Coast district are compared statistically and graphically. For comparison, the measurement pairs are grouped by irrigation district and further subdivided by the time difference between corresponding measurements less than or equal to 1 hour or more than 1 hour. Wilcoxon signed-rank tests (to indicate whether two groups of paired observations are statistically different) on Lakeside district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological Survey measurements are not statistically different. The median absolute percent difference between the flow measurements is 5.9 percent; and 33 percent of the flow measurements differ by more than 10 percent. Similar statistical tests on Gulf Coast district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological

  9. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.


    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  10. As long as the rivers flow: Athabasca River knowledge, use and change

    International Nuclear Information System (INIS)

    Candler, C.; Olson, R.; Deroy, S.


    This document is a report supported by specific information gathered by the Athabasca Chipewyan First Nation (ACFN) and the Mikisew Cree First Nation (MCFN), and takes part in an Athabasca River Use and Traditional Ecological Knowledge (TEK) study conducted in 2010. The main objective was to provide a written submission, based on evidence, in order to effectively notify the crown about plans for managing industrial water withdrawals from the lower Athabasca River. The First Nations used the same methods, wrote their community reports as distinguished stand-alone documents and made the choice to present the ACFN and MCFN data in parallel with each other within the same document. The study provides information on the knowledge and uses of the Athabasca River by the community members. Context and background for the study can be found in the part A. It comprises a short discussion of the Treaty No.8 of 1899, the latter confirming the rights of First Nation people. The importance of boat transportation for the community members is mentioned, and a summary of the methods is given. The results of the ACFN and MCFN studies are given in part B and C. The reduction of the quantity and quality of the river has affected the practice of ACFN and MCFN aboriginal and treaty rights. The community perceptions of the changes of the river and how it has influenced their lifestyle is discussed. Some uses of the Athabasca river have been lost because of concerns regarding contamination associated with oil sands operations. The last part of the document provides an analysis of results and suggests two thresholds that define the ability of ACFN and MCFN members to practice their rights and access their territories. This document ends with recommendations for implementation of these thresholds. 22 refs., 12 maps.

  11. As long as the rivers flow: Athabasca River knowledge, use and change

    Energy Technology Data Exchange (ETDEWEB)

    Candler, C.; Olson, R.; Deroy, S. [Firelight Group Research Cooperative, Victoria, BC (Canada)


    This document is a report supported by specific information gathered by the Athabasca Chipewyan First Nation (ACFN) and the Mikisew Cree First Nation (MCFN), and takes part in an Athabasca River Use and Traditional Ecological Knowledge (TEK) study conducted in 2010. The main objective was to provide a written submission, based on evidence, in order to effectively notify the crown about plans for managing industrial water withdrawals from the lower Athabasca River. The First Nations used the same methods, wrote their community reports as distinguished stand-alone documents and made the choice to present the ACFN and MCFN data in parallel with each other within the same document. The study provides information on the knowledge and uses of the Athabasca River by the community members. Context and background for the study can be found in the part A. It comprises a short discussion of the Treaty No.8 of 1899, the latter confirming the rights of First Nation people. The importance of boat transportation for the community members is mentioned, and a summary of the methods is given. The results of the ACFN and MCFN studies are given in part B and C. The reduction of the quantity and quality of the river has affected the practice of ACFN and MCFN aboriginal and treaty rights. The community perceptions of the changes of the river and how it has influenced their lifestyle is discussed. Some uses of the Athabasca river have been lost because of concerns regarding contamination associated with oil sands operations. The last part of the document provides an analysis of results and suggests two thresholds that define the ability of ACFN and MCFN members to practice their rights and access their territories. This document ends with recommendations for implementation of these thresholds. 22 refs., 12 maps.

  12. Preliminary synthesis and assessment of environmental flows in the middle Verde River watershed, Arizona (United States)

    Paretti, Nicholas; Brasher, Anne M. D.; Pearlstein, Susanna L.; Skow, Dena M.; Gungle, Bruce W.; Garner, Bradley D.


    A 3-year study was undertaken to evaluate the suitability of the available modeling tools for characterizing environmental flows in the middle Verde River watershed of central Arizona, describe riparian vegetation throughout the watershed, and estimate sediment mobilization in the river. Existing data on fish and macroinvertebrates were analyzed in relation to basin characteristics, flow regimes, and microhabitat, and a pilot study was conducted that sampled fish and macroinvertebrates and the microhabitats in which they were found. The sampling for the pilot study took place at five different locations in the middle Verde River watershed. This report presents the results of this 3-year study. The Northern Arizona Groundwater Flow Model (NARGFM) was found to be capable of predicting long-term changes caused by alteration of regional recharge (such as may result from climate variability) and groundwater pumping in gaining, losing, and dry reaches of the major streams in the middle Verde River watershed. Over the period 1910 to 2006, the model simulated an increase in dry reaches, a small increase in reaches losing discharge to the groundwater aquifer, and a concurrent decrease in reaches gaining discharge from groundwater. Although evaluations of the suitability of using the NARGFM and Basin Characteristic Model to characterize various streamflow intervals showed that smallerscale basin monthly runoff could be estimated adequately at locations of interest, monthly stream-flow estimates were found unsatisfactory for determining environmental flows.Orthoimagery and Moderate Resolution Imaging Spectroradiometer data were used to quantify stream and riparian vegetation properties related to biotic habitat. The relative abundance of riparian vegetation varied along the main channel of the Verde River. As would be expected, more upland plant species and fewer lowland species were found in the upper-middle section compared to the lower-middle section, and vice


    Directory of Open Access Journals (Sweden)



    Full Text Available The researched area overlaps the territory belonging to Crişul Alb and Crişul Negru river basins. The study is based on processing and interpretation data from 33 hydrometric stations of which 18 stations control hydrographic basins with surfaces of less than 150 km2. To highlight the seasonal hydrological flow regime, we took into account three time periods (1950-1967, 1950-2009 and 1970-2009. For all rivers the highest flow values appear during springtime, while the smallest contribution to the multiannual average volume is realized in autumn. The time variation of seasonal flow was highlighted by analysis and variation of extreme values coefficients and also by analysing seasonal flow trends that appeared in all three time periods.

  14. An analysis of effect of land use change on river flow variability (United States)

    Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang


    Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.

  15. Flow structure through pool-riffle sequences and a conceptual model for their sustainability in gravel-bed rivers (United States)

    D. Caamano; P. Goodwin; J. M. Buffington


    Detailed field measurements and simulations of three-dimensional flow structure were used to develop a conceptual model to explain the sustainability of self-formed pool-riffle sequences in gravel-bed rivers. The analysis was conducted at the Red River Wildlife Management Area in Idaho, USA, and enabled characterization of the flow structure through two consecutive...

  16. An ecological economic assessment of flow regimes in a hydropower dominated river basin: the case of the lower Zambezi River, Mozambique. (United States)

    Fanaian, Safa; Graas, Susan; Jiang, Yong; van der Zaag, Pieter


    The flow regime of rivers, being an integral part of aquatic ecosystems, provides many important services benefiting humans in catchments. Past water resource developments characterized by river embankments and dams, however, were often dominated by one (or few) economic use(s) of water. This results in a dramatically changed flow regime negatively affecting the provision of other ecosystem services sustained by the river flow. This study is intended to demonstrate the value of alternative flow regimes in a river that is highly modified by the presence of large hydropower dams and reservoirs, explicitly accounting for a broad range of flow-dependent ecosystem services. In this study, we propose a holistic approach for conducting an ecological economic assessment of a river's flow regime. This integrates recent advances in the conceptualization and classification of ecosystem services (UK NEA, 2011) with the flow regime evaluation technique developed by Korsgaard (2006). This integrated approach allows for a systematic comparison of the economic values of alternative flow regimes, including those that are considered beneficial for aquatic ecosystems. As an illustration, we applied this combined approach to the Lower Zambezi Basin, Mozambique. Empirical analysis shows that even though re-operating dams to create environmentally friendly flow regimes reduces hydropower benefits, the gains to goods derived from the aquatic ecosystem may offset the forgone hydropower benefits, thereby increasing the total economic value of river flow to society. The proposed integrated flow assessment approach can be a useful tool for welfare-improving decision-making in managing river basins. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sedimentary Records of Hyperpycnal Flows and the Influence of River Damming on Sediment Dynamics of Estuaries: Examples from the Nelson, Churchill, Moisie and Sainte-Marguerite Rivers (Canada) (United States)

    St-Onge, G.; Duboc, Q.; Boyer-Villemaire, U.; Lajeunesse, P.; Bernatchez, P.


    Sediment cores were sampled in the estuary of the Nelson and Churchill Rivers in western Hudson Bay, as well as in the estuary of the Moisie and Sainte-Marguerite Rivers in Gulf of St. Lawrence in order to evaluate the impact of hydroelectric dams on the sedimentary regime of these estuaries. The gravity cores at the mouth of the Nelson River recorded several cm-thick rapidly deposited layers with a reverse to normal grading sequence, indicating the occurrence of hyperpycnal flows generated by major floods during the last few centuries. These hyperpycnal flows were probably caused by ice-jam formation, which can increase both the flow and the sediment concentration following the breaching of such natural dams. Following the construction of hydroelectric dams since the 1960s, the regulation of river discharge prevented the formation of hyperpycnal flows, and hence the deposition of hyperpycnites in the upper part of the cores. In the core sampled in the estuary of the Churchill River, only one hyperpycnite was recorded. This lower frequency may be due to the enclosed estuary of the Churchill River, its weaker discharge and the more distal location of the coring site.In the Gulf of St. Lawrence, grain size measurements allowed the identification of a major flood around AD 1844±4 years in box cores from both the Sainte-Marguerite and Moisie Rivers, whereas a drastic decrease in variations in the median grain size occurred around AD ~1900 in the estuary of the Sainte-Marguerite River, highlighting the offshore impact of the SM1 dam construction in the early 1900s. Furthermore, sedimentological variations in the box cores from both estuaries have been investigated by wavelet analysis and the sharp disappearance of high frequencies around AD 1900 in the estuary of the dammed river (Sainte-Marguerite River), but not in the estuary of the natural river (Moisie River), also provides evidence of the influence of dams on the sedimentary regime of estuaries.

  18. Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington (United States)

    Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.


    A regional, three-dimensional, transient numerical model of groundwater flow was constructed for the Yakima River basin aquifer system to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate proposed alternative management strategies that consider the interrelation between groundwater availability and surface-water resources.

  19. Importance of the 2014 Colorado River Delta pulse flow for migratory songbirds: Insights from foraging behavior (United States)

    Darrah, Abigail J.; Greeney, Harold F.; van Riper, Charles


    The Lower Colorado River provides critical riparian areas in an otherwise arid region and is an important stopover site for migrating landbirds. In order to reverse ongoing habitat degradation due to drought and human-altered hydrology, a pulse flow was released from Morelos Dam in spring of 2014, which brought surface flow to dry stretches of the Colorado River in Mexico. To assess the potential effects of habitat modification resulting from the pulse flow, we used foraging behavior of spring migrants from past and current studies to assess the relative importance of different riparian habitats. We observed foraging birds in 2000 and 2014 at five riparian sites along the Lower Colorado River in Mexico to quantify prey attack rates, prey attack maneuvers, vegetation use patterns, and degree of preference for fully leafed-out or flowering plants. Prey attack rate was highest in mesquite (Prosopis spp.) in 2000 and in willow (Salix gooddingii) in 2014; correspondingly, migrants predominantly used mesquite in 2000 and willow in 2014 and showed a preference for willows in flower or fruit in 2014. Wilson’s warbler (Cardellina pusilla) used relatively more low-energy foraging maneuvers in willow than in tamarisk (Tamarix spp.) or mesquite. Those patterns in foraging behavior suggest native riparian vegetation, and especially willow, are important resources for spring migrants along the lower Colorado River. Willow is a relatively short-lived tree dependent on spring floods for dispersal and establishment and thus spring migrants are likely to benefit from controlled pulse flows.

  20. River flow simulation using a multilayer perceptron-firefly algorithm model (United States)

    Darbandi, Sabereh; Pourhosseini, Fatemeh Akhoni


    River flow estimation using records of past time series is importance in water resources engineering and management and is required in hydrologic studies. In the past two decades, the approaches based on the artificial neural networks (ANN) were developed. River flow modeling is a non-linear process and highly affected by the inputs to the modeling. In this study, the best input combination of the models was identified using the Gamma test then MLP-ANN and hybrid multilayer perceptron (MLP-FFA) is used to forecast monthly river flow for a set of time intervals using observed data. The measurements from three gauge at Ajichay watershed, East Azerbaijani, were used to train and test the models approach for the period from January 2004 to July 2016. Calibration and validation were performed within the same period for MLP-ANN and MLP-FFA models after the preparation of the required data. Statistics, the root mean square error and determination coefficient, are used to verify outputs from MLP-ANN to MLP-FFA models. The results show that MLP-FFA model is satisfactory for monthly river flow simulation in study area.

  1. Chapter 1: Hydrologic exchange flows and their ecological consequences in river corridors (United States)

    Harvey, Judson


    The actively flowing waters of streams and rivers remain in close contact with surrounding off-channel and subsurface environments. These hydrologic linkages between relatively fast flowing channel waters, with more slowly flowing waters off-channel and in the subsurface, are collectively referred to as hydrologic exchange flows (HEFs). HEFs include surface exchange with a channel’s marginal areas and subsurface flow through the streambed (hyporheic flow), as well as storm-driven bank storage and overbank flows onto floodplains. HEFs are important, not only for storing water and attenuating flood peaks, but also for their role in influencing water conservation, water quality improvement, and related outcomes for ecological values and services of aquatic ecosystems. Biogeochemical opportunities for chemical transformations are increased by HEFs as a result of the prolonged contact between flowing waters and geochemically and microbially active surfaces of sediments and vegetation. Chemical processing is intensified and water quality is often improved by removal of excess nutrients, metals, and organic contaminants from flowing waters. HEFs also are important regulators of organic matter decomposition, nutrient recycling, and stream metabolism that helps establish a balanced and resilient aquatic food web. The shallow and protected storage zones associated with HEFs support nursery and feeding areas for aquatic organisms that sustain aquatic biological diversity. Understanding of these varied roles for HEFs has been driven by the related disciplines of stream ecology, fluvial geomorphology, surface-water hydraulics, and groundwater hydrology. A current research emphasis is on the role that HEFs play in altered flow regimes, including restoration to achieve diverse goals, such as expanding aquatic habitats and managing dissolved and suspended river loads to reduce over-fertilization of coastal waters and offset wetland loss. New integrative concepts and models are

  2. A modeling approach to establish environmental flow threshold in ungauged semidiurnal tidal river (United States)

    Akter, A.; Tanim, A. H.


    Due to shortage of flow monitoring data in ungauged semidiurnal river, 'environmental flow' (EF) determination based on its key component 'minimum low flow' is always difficult. For EF assessment this study selected a reach immediately after the Halda-Karnafuli confluence, a unique breeding ground for Indian Carp fishes of Bangladesh. As part of an ungauged tidal river, EF threshold establishment faces challenges in changing ecological paradigms with periodic change of tides and hydrologic alterations. This study describes a novel approach through modeling framework comprising hydrological, hydrodynamic and habitat simulation model. The EF establishment was conceptualized according to the hydrologic process of an ungauged semi-diurnal tidal regime in four steps. Initially, a hydrologic model coupled with a hydrodynamic model to simulate flow considering land use changes effect on streamflow, seepage loss of channel, friction dominated tidal decay as well as lack of long term flow characteristics. Secondly, to define hydraulic habitat feature, a statistical analysis on derived flow data was performed to identify 'habitat suitability'. Thirdly, to observe the ecological habitat behavior based on the identified hydrologic alteration, hydraulic habitat features were investigated. Finally, based on the combined habitat suitability index flow alteration and ecological response relationship was established. Then, the obtained EF provides a set of low flow indices of desired regime and thus the obtained discharge against maximum Weighted Usable Area (WUA) was defined as EF threshold for the selected reach. A suitable EF regime condition was obtained within flow range 25-30.1 m3/s i.e., around 10-12% of the mean annual runoff of 245 m3/s and these findings are within researchers' recommendation of minimum flow requirement. Additionally it was observed that tidal characteristics are dominant process in semi-diurnal regime. However, during the study period (2010-2015) the

  3. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation (United States)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano


    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers

  4. Comparison of the Gen Expression Programming, Nonlinear Time Series and Artificial Neural Network in Estimating the River Daily Flow (Case Study: The Karun River

    Directory of Open Access Journals (Sweden)

    R. Zamani


    Full Text Available Today, the daily flow forecasting of rivers is an important issue in hydrology and water resources and thus can be used the results of daily river flow modeling in water resources management, droughts and floods monitoring. In this study, due to the importance of this issue, using nonlinear time series models and artificial intelligence (Artificial Neural Network and Gen Expression Programming, the daily flow modeling has been at the time interval (1981-2012 in the Armand hydrometric station on the Karun River. Armand station upstream basin is one of the most basins in the North Karun basin and includes four sub basins (Vanak, Middle Karun, Beheshtabad and Kohrang.The results of this study shown that artificial intelligence models have superior than nonlinear time series in flow daily simulation in the Karun River. As well as, modeling and comparison of artificial intelligence models showed that the Gen Expression Programming have evaluation criteria better than artificial neural network.

  5. Determination of flow times and flow velocities in the upper Rhine river using 3HHO as tracer

    International Nuclear Information System (INIS)

    Krause, W.J.; Mundschenk, H.


    The behaviour of water bodies of the Upper Rhine river discretely traced with 3 HHO-loaded waste waters from the nuclear power plants of Beznau, Fessenheim, Philippsburg and Biblis was investigated along a distance of nearly 385 km down to Nierstein. The passage of the distinct entrainment charged by different emissions was measured at the sampling points of Bad Saeckingen, Weil, Weisweil, Iffezheim and Nierstein. From these profiles the flow times and flow velocities were calculated for the discharge range from 0.6 to 1.7 MQ (mean discharge), taking the begin, end and duration of the individual releases into account. (orig./HP) [de

  6. Modeling flow, sediment transport and morphodynamics in rivers (United States)

    Nelson, Jonathan M.; McDonald, Richard R.; Shimizu, Yasuyuki; Kimura, Ichiro; Nabi, Mohamed; Asahi, Kazutake


    Predicting the response of natural or man-made channels to imposed supplies of water and sediment is one of the difficult practical problems commonly addressed by fluvial geomorphologists. This problem typically arises in three situations. In the first situation, geomorphologists are attempting to understand why a channel or class of channels has a certain general form; in a sense, this is the central goal of fluvial geomorphology. In the second situation, geomorphologists are trying to understand and explain how and why a specific channel will evolve or has evolved in response to altered or unusual sediment and water supplies to that channel. For example, this would include explaining the short-term response of a channel to an unusually large flood or predicting the response of a channel to long-term changes in flow or sediment supply due to various human activities such as damming or diversions. Finally, geomorphologists may be called upon to design or assess the design of proposed man-made channels that must carry a certain range of flows and sediment loads in a stable or at least quasi-stable manner. In each of these three situations, the problem is really the same: geomorphologists must understand and predict the interaction of the flow field in the channel, the sediment movement in the channel and the geometry of the channel bed and banks. In general, the flow field, the movement of sediment making up the bed and the morphology of the bed are intricately linked; the flow moves the sediment, the bed is altered by erosion and deposition of sediment and the shape of the bed is critically important for predicting the flow. This complex linkage is precisely what makes understanding channel form and process such a difficult and interesting challenge.

  7. Unraveling the effects of climate change and flow abstraction on an aggrading Alpine river (United States)

    Bakker, Maarten; Costa, Anna; Adriao Silva, Tiago A.; Stutenbecker, Laura; Girardclos, Stéphanie; Loizeau, Jean-Luc; Molnar, Peter; Schlunegger, Fritz; Lane, Stuart N.


    Widespread temperature increase has been observed in the Swiss Alps and is most pronounced at high elevations. Alpine rivers are very susceptible to such change where large amounts of sediments are released from melting (peri)glacial environments and potentially become available for transport. These rivers are also impacted on a large scale by hydropower exploitation, where flow is commonly abstracted and transferred to a hydropower scheme. Whilst water is diverted, sediment is trapped at the intake and intermittently flushed down the river during short duration purges. Thus, these rivers are impacted upon by both climate and human forcing. In this study we quantify their relative and combined impacts upon the morphological evolution of an aggrading Alpine river. Our study focusses on the development of a sequence of braided reaches of the Borgne River (tributary of the Rhône) in south-west Switzerland. A unique dataset forms the basis for determining sediment deposition and transfer: (1) a set of high resolution Digital Elevation Models (DEMs) of the reaches was derived through applying Structure from Motion (SfM) photogrammetry to archival aerial photographs available for the period 1959-2014; (2) flow intake management data, provided by Grande Dixence SA, allowed the reconstruction of (up- and downstream) discharge and sediment supply since 1977. Subsequently we used climate data and transport capacity calculations to assess their relative impact on the system evolution over the last 25 years. Not surprisingly, considerable aggradation of the river bed (up to 5 meters) has taken place since the onset of flow abstraction in 1963: the abstraction of flow has substantially reduced sediment transport capacity whilst the sediment supply to the river was maintained. Although there was an initial response of the system to the start of abstraction in the 1960s, it was not before the onset of glacial retreat and the dry and warm years in the late 1980s and early 1990's

  8. Performance Evaluation of Linear (ARMA and Threshold Nonlinear (TAR Time Series Models in Daily River Flow Modeling (Case Study: Upstream Basin Rivers of Zarrineh Roud Dam

    Directory of Open Access Journals (Sweden)

    Farshad Fathian


    Full Text Available Introduction: Time series models are generally categorized as a data-driven method or mathematically-based method. These models are known as one of the most important tools in modeling and forecasting of hydrological processes, which are used to design and scientific management of water resources projects. On the other hand, a better understanding of the river flow process is vital for appropriate streamflow modeling and forecasting. One of the main concerns of hydrological time series modeling is whether the hydrologic variable is governed by the linear or nonlinear models through time. Although the linear time series models have been widely applied in hydrology research, there has been some recent increasing interest in the application of nonlinear time series approaches. The threshold autoregressive (TAR method is frequently applied in modeling the mean (first order moment of financial and economic time series. Thise type of the model has not received considerable attention yet from the hydrological community. The main purposes of this paper are to analyze and to discuss stochastic modeling of daily river flow time series of the study area using linear (such as ARMA: autoregressive integrated moving average and non-linear (such as two- and three- regime TAR models. Material and Methods: The study area has constituted itself of four sub-basins namely, Saghez Chai, Jighato Chai, Khorkhoreh Chai and Sarogh Chai from west to east, respectively, which discharge water into the Zarrineh Roud dam reservoir. River flow time series of 6 hydro-gauge stations located on upstream basin rivers of Zarrineh Roud dam (located in the southern part of Urmia Lake basin were considered to model purposes. All the data series used here to start from January 1, 1997, and ends until December 31, 2011. In this study, the daily river flow data from January 01 1997 to December 31 2009 (13 years were chosen for calibration and data for January 01 2010 to December 31 2011

  9. Flow Routing in River Yala Using the Muskingum Technique | Opere ...

    African Journals Online (AJOL)

    The magnitude and frequency of occurrence of extreme hydrological events is of great importance due to the reasons of communication, water supply, power generation, agriculture and others. Due to population ... Forecasting through flow routing is achieved in this study using the Muskingum method. In this method ...

  10. An Application of Data Mining Techniques for Flood Forecasting: Application in Rivers Daya and Bhargavi, India (United States)

    Panigrahi, Binay Kumar; Das, Soumya; Nath, Tushar Kumar; Senapati, Manas Ranjan


    In the present study, with a view to speculate the water flow of two rivers in eastern India namely river Daya and river Bhargavi, the focus was on developing Cascaded Functional Link Artificial Neural Network (C-FLANN) model. Parameters of C-FLANN architecture were updated using Harmony Search (HS) and Differential Evolution (DE). As the numbers of samples are very low, there is a risk of over fitting. To avoid this Map reduce based ANOVA technique is used to select important features. These features were used and provided to the architecture which is used to predict the water flow in both the rivers, one day, one week and two weeks ahead. The results of both the techniques were compared with Radial Basis Functional Neural Network (RBFNN) and Multilayer Perceptron (MLP), two widely used artificial neural network for prediction. From the result it was confirmed that C-FLANN trained through HS gives better prediction result than being trained through DE or RBFNN or MLP and can be used for predicting water flow in different rivers.

  11. Simulating floods in the Amazon River Basin: Impacts of new river geomorphic and dynamic flow parameterizations (United States)

    Coe, M. T.; Costa, M. H.; Howard, E. A.


    In this paper we analyze the hydrology of the Amazon River system for the latter half of the 20th century with our recently completed model of terrestrial hydrology (Terrestrial Hydrology Model with Biogeochemistry, THMB). We evaluate the simulated hydrology of the Central Amazon basin against limited observations of river discharge, floodplain inundation, and water height and analyze the spatial and temporal variability of the hydrology for the period 1939-1998. We compare the simulated discharge and floodplain inundated area to the simulations by Coe et al., 2002 using a previous version of this model. The new model simulates the discharge and flooded area in better agreement with the observations than the previous model. The coefficient of correlation between the simulated and observed discharge for the greater than 27000 monthly observations of discharge at 120 sites throughout the Brazilian Amazon is 0.9874 compared to 0.9744 for the previous model. The coefficient of correlation between the simulated monthly flooded area and the satellite-based estimates by Sippel et al., 1998 exceeds 0.7 for 8 of the 12 mainstem reaches. The seasonal and inter-annual variability of the water height and the river slope compares favorably to the satellite altimetric measurements of height reported by Birkett et al., 2002.

  12. Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity River, Texas (United States)

    Wellmeyer, Jessica L.; Slattery, Michael C.; Phillips, Jonathan D.


    As human population worldwide has grown, so has interest in harnessing and manipulating the flow of water for the benefit of humans. The Trinity River of eastern Texas is one such watershed greatly impacted by engineering and urbanization. Draining the Dallas-Fort Worth metroplex, just under 30 reservoirs are in operation in the basin, regulating flow while containing public supplies, supporting recreation, and providing flood control. Lake Livingston is the lowest, as well as largest, reservoir in the basin, a mere 95 km above the Trinity's outlet near Galveston Bay. This study seeks to describe and quantify channel activity and flow regime, identifying effects of the 1968 closure of Livingston dam. Using historic daily and peak discharge data from USGS gauging stations, flow duration curves are constructed, identifying pre- and post-dam flow conditions. A digital historic photo archive was also constructed using six sets of aerial photographs spanning from 1938 to 1995, and three measures of channel activity applied using a GIS. Results show no changes in high flow conditions following impoundment, while low flows are elevated. However, the entire post-dam period is characterized by significantly higher rainfall, which may be obscuring the full impact of flow regulation. Channel activity rates do not indicate a more stabilized planform following dam closure; rather they suggest that the Trinity River is adjusting itself to the stress of Livingston dam in a slow, gradual process that may not be apparent in a modern time scale.

  13. Calculation of bedload transport in Swiss mountain rivers using the model sedFlow: proof of concept

    Directory of Open Access Journals (Sweden)

    F. U. M. Heimann


    Full Text Available Fully validated numerical models specifically designed for simulating bedload transport dynamics in mountain streams are rare. In this study, the recently developed modelling tool sedFlow has been applied to simulate bedload transport in the Swiss mountain rivers Kleine Emme and Brenno. It is shown that sedFlow can be used to successfully reproduce observations from historic bedload transport events with plausible parameter set-ups, meaning that calibration parameters are only varied within ranges of uncertainty that have been pre-determined either by previous research or by field observations in the simulated study reaches. In the Brenno river, the spatial distribution of total transport volumes has been reproduced with a Nash–Sutcliffe goodness of fit of 0.733; this relatively low value is partially due to anthropogenic extraction of sediment that was not considered. In the Kleine Emme river, the spatial distribution of total transport volumes has been reproduced with a goodness of fit of 0.949. The simulation results shed light on the difficulties that arise with traditional flow-resistance estimation methods when macro-roughness is present. In addition, our results demonstrate that greatly simplified hydraulic routing schemes, such as kinematic wave or uniform discharge approaches, are probably sufficient for a good representation of bedload transport processes in reach-scale simulations of steep mountain streams. The influence of different parameters on simulation results is semi-quantitatively evaluated in a simple sensitivity study. This proof-of-concept study demonstrates the usefulness of sedFlow for a range of practical applications in alpine mountain streams.

  14. Regional implications of heat flow of the Snake River Plain, Northwestern United States (United States)

    Blackwell, D. D.


    The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.

  15. Research of thermoluminescence dating for ancient debris flow materials in Qingshui river basin of Beijing

    International Nuclear Information System (INIS)

    Liu Junxin; Wei Mingjian; Zhou Rui; Zhang Bin; Liu Tiantian


    The thermoluminescence age of the samples for ancient debris flow terraces material of Lingshan and Hongshuikou, which are in Qingshui River Basin of Beijing, was studied using the thermo luminescence technology. The age increases with the increasing depth of two ancient debris flow profile, and the deeper debris flow deposits material the more of the environmental radiation dose is. The trend with depth of U, Th and K contents and annual dose is consistency. And the change with depth of Th content is more discrete than that of U, K contents. (authors)

  16. Petrology and chemistry of the Huntzinger flow, Columbia River basalt, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Ward, A.W. Jr.


    Drill core samples of basalts of the Columbia River Group from the Hanford Reservation reveal a spotted, diabasic flow of up to 60 meters in thickness. These samples and those from the flow outcropping at Wahatis Peak (Saddle Mountains, Washington) were examined in detail to document intraflow textural, mineralogical, and chemical variations, which are of importance in basalt flow correlations. Analyses were by atomic absorption, instrumental neutron activation, electron microprobe, natural gamma well logging, K-Ar age dating, X-ray fluorescence, field (portable) magnetometer, and petrographic microscope.

  17. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    Energy Technology Data Exchange (ETDEWEB)


    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  18. Impacts of small scale flow regulation on sediment dynamics in an ecologically important upland river. (United States)

    Quinlan, E; Gibbins, C N; Batalla, R J; Vericat, D


    Flow regulation is widely recognized as affecting fluvial processes and river ecosystems. Most impact assessments have focused on large dams and major water transfer schemes, so relatively little is known about the impacts of smaller dams, weirs and water diversions. This paper assesses sediment dynamics in an upland river (the Ehen, NW England) whose flows are regulated by a small weir and tributary diversion. The river is important ecologically due to the presence of the endangered freshwater pearl mussel Margaritifera margaritifera, a species known to be sensitive to sedimentary conditions. Fine sediment yield for the 300-m long study reach was estimated to be 0.057 t km(-2) year(-1), a very low value relative to other upland UK rivers. Mean in-channel storage of fine sediment was also low, estimated at an average of around 40 g m(-2). Although the study period was characterized by frequent high flow events, little movement of coarser bed material was observed. Data therefore indicate an extremely stable fluvial system within the study reach. The implication of this stability for pearl mussels is discussed.

  19. Hydraulic conditions of flood flows in a Polish Carpathian river subjected to variable human impacts (United States)

    Radecki-Pawlik, Artur; Czech, Wiktoria; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Ruiz-Villanueva, Virginia


    Channel morphology of the Czarny Dunajec River, Polish Carpathians, has been considerably modified as a result of channelization and gravel-mining induced channel incision, and now it varies from a single-thread, incised or regulated channel to an unmanaged, multi-thread channel. We investigated effects of these distinct channel morphologies on the conditions for flood flows in a study of 25 cross-sections from the middle river course where the Czarny Dunajec receives no significant tributaries and flood discharges increase little in the downstream direction. Cross-sectional morphology, channel slope and roughness of particular cross-section parts were used as input data for the hydraulic modelling performed with the 1D steady-flow HEC-RAS model for discharges with recurrence interval from 1.5 to 50 years. The model for each cross-section was calibrated with the water level of a 20-year flood from May 2014, determined shortly after the flood on the basis of high-water marks. Results indicated that incised and channelized river reaches are typified by similar flow widths and cross-sectional flow areas, which are substantially smaller than those in the multi-thread reach. However, because of steeper channel slope in the incised reach than in the channelized reach, the three river reaches differ in unit stream power and bed shear stress, which attain the highest values in the incised reach, intermediate values in the channelized reach, and the lowest ones in the multi-thread reach. These patterns of flow power and hydraulic forces are reflected in significant differences in river competence between the three river reaches. Since the introduction of the channelization scheme 30 years ago, sedimentation has reduced its initial flow conveyance by more than half and elevated water stages at given flood discharges by about 0.5-0.7 m. This partly reflects a progressive growth of natural levees along artificially stabilized channel banks. By contrast, sediments of natural

  20. Identifying hydrological regime and eco-flow threshold of small and medium flood of the Xiaoqing River in Jinan city (United States)

    Liu, Yang; Cao, Sheng-Le


    It was known that hydrological regime was the main influencing factor of river ecosystem, but the regime of different flow rates of urban rivers was poorly understood. We collected daily inflows at the Huangtai station of the Xiaoqing River from 1960 to 2014 and divided the data into three periods. Then we calculated hydrological parameters by the method of EFCs (Environmental Flow Components) and analyzed the tendency and change rates of each component respectively in the three periods. Combined with the ecological significance of environmental flow components, we identified the small and medium flood had the greatest impact on the river regime and ecosystem. And then we used the hydraulic parameters in the good ecosystem period as control conditions, to calculate the ecological threshold of the flow component under the current situation. This study could provide technical support for restoring and improving hydrological regime and ecological environment of the Xiaoqing River in Jinan city.

  1. Affecting factors of preferential flow in the forest of the Three Gorges area, Yangtze River

    Institute of Scientific and Technical Information of China (English)

    CHENG Jinhua; ZHANG Hongjiang; HE Fan; QI Shenglin; SUN Yanhong; ZHANG Youyan; SHI Yuhu


    In order to study the factors affecting preferential flow,a 2.9 m-long,2.6 m-deep soil profile was dug in the Quxi watershed,Yangtze River.To analyze the influence of rainfall on preferential flow,the preferential flow process was observed when the rainfalls were recorded.Soil physical and infiltration characteristics were also measured to study their effect on preferential flow.The results showed that the rainfall amount that could cause preferential flow was over 26 mm.There are four types of rainfall in the Three Gorges area,namely gradually dropping rain,even rain,sudden rain and peak rain.Preferential flow process was found to be relevant to the rainfall process.It was determined that with different rainfall types,preferential flow appeared at different times,occurring first in peak rain,followed by sudden rain,gradually dropping rain,and then even rain.Preferential flow would appear when the rainfall intensity was over 0.075 mm/min.In the studied area,the coarse soil particles increased with the soil depth,and for the deeper soil layer,the coarse particles promote the formation of preferential flow.Preferential flow accelerates the steady infiltration rate in the 83-110 cm soil horizon,and the quickly moving water in this horizon also enhanced the further formation and development of preferential flow.

  2. Geomorphic Change Induced by 100 years of Flow Alteration on the Diamond Fork River, Central Utah (United States)

    Jones, J.; Belmont, P.; Wilcock, P. R.


    Changes in hydrology and sediment supply affect the form of rivers. The rate of change of fluvial form is controlled by a variety of factors, including valley confinement, sediment size, and antecedent condition. The Diamond Fork River in central Utah has been altered by trans-basin flows delivered from the Colorado River system for over a century. Beginning in 1915, water used for irrigation was delivered through a tributary, Sixth Water Creek, with daily summer flows regularly exceeding the 50 - 100 year flood. Elevated flows caused drastic geomorphic change - resulting in incision and widening of the channel, and the destruction of riparian vegetation. Beginning in 1997, the outlet for the trans-basin diversion was moved downstream on Sixth Water, bypassing a large landslide, and flows were drastically reduced in 2004 through management actions. We delineated eight distinct process domains for the Sixth Water-Diamond Fork system and examined the response of each process domain to the altered flow and sediment regimes through the analysis of aerial photographs and repeat cross-sections. We measured a variety of channel metrics, including channel width, areal extent of bars and islands, and sinuosity in ArcGIS. Results indicate that unconfined reaches that were wide and braided during the period of elevated flows have narrowed to become single threaded and meandering in response to the reduced flows. Confined reaches have experienced minor changes since the reduction in flows, suggesting that confinement is a primary control on the degree of channel response. These findings and complimentary studies will provide managers of Sixth Water and Diamond Fork with a greater understanding of the physical response of the streams, and the resulting effects on ecological communities.

  3. Linking Flow Regime and Water Quality in Rivers: a Challenge to Adaptive Catchment Management

    Directory of Open Access Journals (Sweden)

    Christer Nilsson


    Full Text Available Water quality describes the physicochemical characteristics of the water body. These vary naturally with the weather and with the spatiotemporal variation of the water flow, i.e., the flow regime. Worldwide, biota have adapted to the variation in these variables. River channels and their riparian zones contain a rich selection of adapted species and have been able to offer goods and services for sustaining human civilizations. Many human impacts on natural riverine environments have been destructive and present opportunities for rehabilitation. It is a big challenge to satisfy the needs of both humans and nature, without sacrificing one or the other. New ways of thinking, new policies, and institutional commitment are needed to make improvements, both in the ways water flow is modified in rivers by dam operations and direct extractions, and in the ways runoff from adjacent land is affected by land-use practices. Originally, prescribed flows were relatively static, but precepts have been developed to encompass variation, specifically on how water could be shared over the year to become most useful to ecosystems and humans. A key aspect is how allocations of water interact with physicochemical variation of water. An important applied question is how waste releases and discharge can be managed to reduce ecological and sanitary problems that might arise from inappropriate combinations of flow variation and physicochemical characteristics of water. We review knowledge in this field, provide examples on how the flow regime and the water quality can impact ecosystem processes, and conclude that most problems are associated with low-flow conditions. Given that reduced flows represent an escalating problem in an increasing number of rivers worldwide, managers are facing enormous challenges.

  4. Numerical modelling of admixture transport in a turbulent flow at river confluence

    International Nuclear Information System (INIS)

    Lyubimova, T; Parshakova, Ya; Konovalov, V; Shumilova, N; Lepikhin, A; Tiunov, A


    The paper is concerned with the development of the hydrodynamic model of the Chusovskoy water intake located in the confluence zone of two rivers with essentially different hydrochemical regimes and in the backwater zone of the Kamskaya hydroelectric power station. The proposed model is used for numerical simulation in the framework of two-and three-dimensional approaches for the annual average, minimal and maximal values of the water flow rates in two rivers. The data for water mineralization in the water intake zone have been obtained. The recommendations for optimization of the water intake structure have been formulated.

  5. Design of a naturalized flow regime—An example from the Lower Missouri River, USA (United States)

    Jacobson, Robert B.; Galat, David L.


     group of river managers, stakeholders, and scientists met during summer 2005 to design a more naturalized flow regime for the Lower Missouri River (LMOR). The objective was to comply with requirements under the U.S. Endangered Species Act to support reproduction and survival of threatened and endangered species, with emphasis on the endangered pallid sturgeon (Scaphirhynchus albus), while minimizing negative effects to existing social and economic benefits of prevailing river management. Specific hydrograph requirements for pallid sturgeon reproduction are unknown, hence much of the design process was based on features of the natural flow regime. Environmental flow components (EFCs) extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes.The design process incorporated a primary stage in which conceptual hydrographs were developed and assessed for their general ecological and social-economic performance. The second stage accounted for hydroclimatic variation by coding the conceptual hydrographs into reservoir release rules, adding constraints for downstream flooding and low-storage precludes, and running the rules through 100 years of hydroclimatic simulation. The output flow regimes were then evaluated for presumed ecological benefits based on how closely they resembled EFCs in the reference natural flow regime. Flow regimes also were assessed for social-economic cost indicators, including days of flooding of low-lying agricultural land, days over flood stage, and storage levels in system reservoirs.Our experience with flow-regime design on the LMOR underscored the lack of confidence the stakeholders place in the value of the natural flow regime as a measure of ecosystem benefit in the absence of fundamental scientific documentation. Stakeholders desired proof of ecological benefits commensurate with the certainty of economic losses. We also gained insight into the processes of integrating science


    Directory of Open Access Journals (Sweden)

    I. Abramiuk


    Full Text Available Purpose. Using as an example of a small river, which flows through a bar plain of the Dnipro, to study species composition of the littoral ichthyoplankton, dynamics of its structure during the season and its diversity in different parts of the river. Methodology. The littoral ichthyoplankton was investigated during four seasons of 2011-2014 on the Vita river, a right tributary of the Dnipro affected by the operation of Kaniv HPP. The research covered the main channel, a permanent backwater connected with the channel, as well as temporarily flooded areas of the floodplain and separated from the channel oxbow lakes. Samples were collected with standard sweep nets and Bagenal buoyant nets. Identification of young fish was carried out under binocular microscope MBS-9. Early life stages of larvae were determined according to the system of V. Vasnetsov. Species diversity of ichthyoplankton was assessed by the Shannon index. Findings. The littoral ichthyoplankton during May-July mostly consisted of limnophilic fish larvae belonging to a family Cyprinidae. In the river channel and the backwater at the beginning of the period the larvae of roach (Rutilus rutilus prevailed, later they were substituted by larvae of more thermophilic species, among which the rudd (Scardinius erythrophthalmus was the most abundant. In the oxbow lakes and temporarily flooded areas in spring the coastal ichthyoplankton was mainly structured by larvae of Carassius sp. and the rudd, in summer the larvae assemblages of oxbow lakes were quantitatively dominated by the sunbleak (Leucaspius delineatus. In areas covered with vegetation the larvae of invasive Chinese sleeper (Perccottus glenii were firstly found. Rheophilic species among young fish were absent, which indicates unfavorable conditions for their spawning at present hydrologic regime of the river. Originality. For the first time the coastal communities of early young fish in a small tributary of the Dnipro were

  7. High Resolution Monitoring of River Bluff Erosion Reveals Failure Mechanisms and Geomorphically Effective Flows

    Directory of Open Access Journals (Sweden)

    Sara Ann Kelly


    Full Text Available Using a combination of Structure from Motion and time lapse photogrammetry, we document rapid river bluff erosion occurring in the Greater Blue Earth River (GBER basin, a muddy tributary to the sediment-impaired Minnesota River in south central Minnesota. Our datasets elucidated dominant bluff failure mechanisms and rates of bluff retreat in a transient system responding to ongoing streamflow increases and glacial legacy impacts. Specifically, we document the importance of fluvial scour, freeze–thaw, as well as other drivers of bluff erosion. We find that even small flows, a mere 30% of the two-year recurrence interval flow, are capable of causing bluff erosion. During our study period (2014–2017, the most erosion was associated with two large flood events with 13- and 25-year return periods. However, based on the frequency of floods and magnitude of bluff face erosion associated with floods over the last 78 years, the 1.2-year return interval flood has likely accomplished the most cumulative erosion, and is thus more geomorphically effective than larger magnitude floods. Flows in the GBER basin are nonstationary, increasing across the full range of return intervals. We find that management implications differ considerably depending on whether the bluff erosion-runoff power law exponent, γ, is greater than, equal to, or less than 1. Previous research has recommended installation of water retention sites in tributaries to the Minnesota River in order to reduce flows and sediment loading from river bluffs. Our findings support the notion that water retention would be an effective practice to reduce sediment loading and highlight the importance of managing for both runoff frequency and magnitude.

  8. A century of changing flows: Forest management changed flow magnitudes and warming advanced the timing of flow in a southwestern US river.

    Directory of Open Access Journals (Sweden)

    Marcos D Robles

    Full Text Available The continued provision of water from rivers in the southwestern United States to downstream cities, natural communities and species is at risk due to higher temperatures and drought conditions in recent decades. Snowpack and snowfall levels have declined, snowmelt and peak spring flows are arriving earlier, and summer flows have declined. Concurrent to climate change and variation, a century of fire suppression has resulted in dramatic changes to forest conditions, and yet, few studies have focused on determining the degree to which changing forests have altered flows. In this study, we evaluated changes in flow, climate, and forest conditions in the Salt River in central Arizona from 1914-2012 to compare and evaluate the effects of changing forest conditions and temperatures on flows. After using linear regression models to remove the influence of precipitation and temperature, we estimated that annual flows declined by 8-29% from 1914-1963, coincident with a 2-fold increase in basal area, a 2-3-fold increase in canopy cover, and at least a 10-fold increase in forest density within ponderosa pine forests. Streamflow volumes declined by 37-56% in summer and fall months during this period. Declines in climate-adjusted flows reversed at mid-century when spring and annual flows increased by 10-31% from 1964-2012, perhaps due to more winter rainfall. Additionally, peak spring flows occurred about 12 days earlier in this period than in the previous period, coincident with winter and spring temperatures that increased by 1-2°C. While uncertainties remain, this study adds to the knowledge gained in other regions that forest change has had effects on flow that were on par with climate variability and, in the case of mid-century declines, well before the influence of anthropogenic warming. Current large-scale forest restoration projects hold some promise of recovering seasonal flows.

  9. Role of river flow and sediment mobilization in riparian alder establishment along a bedrock-gravel river, South Fork Eel River, California (United States)

    Jablkowski, P.; Johnson, E. A.; Martin, Y. E.


    Climatic, hydraulics, hydrologic, and fluvial geomorphic processes are the main drivers of riparian white alder (Alnus rhombifolia Nutt.) distribution in northern California. The Mediterranean climate and canyon bound, bedrock-gravel morphology of the South Fork Eel have a distinct effect on these processes. White alder seeds are preferentially deposited on river bars where river hydraulics create eddies coinciding with the downstream part of riffles and the upstream part of pools. Seeds are generally deposited below bankfull elevations by the descending hydrograph during the spring season in this Mediterranean climate. For successful germination and establishment, the seeds must be deposited at a location such that they are not remobilized by late spring flows. The summer establishment period is defined from the date of seed deposition and germination to the fall/winter date of river sediment mobilization. Seedling root growth rate decreases exponentially with decreasing water potential. However, seedlings are shown not to be generally limited by water availability at the elevations they are most commonly deposited. The establishment of white alder seedlings following the first summer will therefore depend on their ability to resist fall/winter high flows. The method proposed here compares the predicted rooting depth to predicted sediment scour rates. The length of the establishment period rather than water availability determines final seedling rooting depth. Over the past 40 years, very few years had establishment periods that were long enough or had fast enough alder growth rates to survive winter floods that often scour deeper than the total root length. The low survival of seedlings in the first autumn season following germination is believed to be a principal reason for the missing age classes often found in alder distributions along rivers.

  10. Nutrients and carbon fluxes in the estuaries of major rivers flowing into the tropical Atlantic

    Directory of Open Access Journals (Sweden)

    Moacyr Cunha De Araujo


    Full Text Available Knowledge of the seasonal variability of river discharge and the concentration of nutrients in the estuary waters of large rivers flowing into the tropical Atlantic contributes to a better understanding of the biogeochemical processes that occur in adjacent coastal and ocean systems. The monthly averaged variations of the physical and biogeochemical contributions of the Orinoco, Amazon, São Francisco, Paraíba do Sul (South America, Volta, Niger and Congo (Africa Rivers are estimated from models or observations. The results indicate that these rivers deliver approximately 0.1 Pg C yr-1 in its dissolved organic (DOC 0.046 Pg C yr-1 and inorganic (DIC 0.053 Pg C yr-1 forms combined. These values represent 27.3% of the global DOC and 13.2% of the global DIC delivered by rivers into the world’s oceans. Estimations of the air-sea CO2 fluxes indicate a slightly higher atmospheric liberation for the African systems compared with the South American estuaries (+10.67 mmol m-2 day-1 and +5.48 mmol m-2 day-1, respectively. During the high river discharge periods, the fluxes remained positive in all of the analyzed systems (average +128 mmol m-2 day-1, except at the mouth of the Orinoco River, which continued to act as a sink for CO2. During the periods of low river discharges, the mean CO2 efflux decreased to +5.29 mmol m-2 day-1. The updated and detailed review presented here contributes to the accurate quantification of CO2 input into the atmosphere and to ongoing studies on the oceanic modeling of biogeochemical cycles in the tropical Atlantic.

  11. Electromagnetic application device for flow rate/flow speed control

    International Nuclear Information System (INIS)

    Yoshioka, Senji.


    Electric current and magnetic field are at first generated in a direction perpendicular to a flow channel of a fluid, and forces generated by electromagnetic interaction of the current and the magnetic field are combined and exerted on the fluid, to control the flow rate and the flow speed thereby decreasing flowing pressure loss. In addition, an electric current generation means and a magnetic field generation means integrated together are disposed to a structural component constituting the flow channel, and they are combined to attain the aimed effect. The current generating means forms a potential difference by supplying electric power to a pair of electrodes as a cathode and an anode by using structures disposed along the channel, to generate an electric field or electric current in a direction perpendicular to the flow channel. The magnetic field generating means forms a counter current (reciprocal current) by using structures disposed along the flow channel, to generate synthesized or emphasized magnetic field. The fluid can be applied with a force in the direction of the flowing direction by the electromagnetic interaction of the electric current and the magnetic field, thereby capable of propelling the fluid. Accordingly, the flowrate/flowing speed can be controlled inside of the flow channel and flowing pressure loss can be decreased. (N.H.)

  12. Explore the impacts of river flow and quality on biodiversity for water resources management by AI techniques (United States)

    Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu


    Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non

  13. Bed Load Variability and Morphology of Gravel Bed Rivers Subject to Unsteady Flow: A Laboratory Investigation (United States)

    Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.


    Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.

  14. Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models (United States)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca


    Several decades of field observations, laboratory experiments and mathematical modelings have demonstrated that the riparian environment is a disturbance-driven ecosystem, and that the main source of disturbance is river flow fluctuations. The focus of the present work has been on the key role that flow fluctuations play in determining the abundance, zonation and species composition of patches of riparian vegetation. To this aim, the scientific literature on the subject, over the last 20 years, has been reviewed. First, the most relevant ecological, morphological and chemical mechanisms induced by river flow fluctuations are described from a process-based perspective. The role of flow variability is discussed for the processes that affect the recruitment of vegetation, the vegetation during its adult life, and the morphological and nutrient dynamics occurring in the riparian habitat. Particular emphasis has been given to studies that were aimed at quantifying the effect of these processes on vegetation, and at linking them to the statistical characteristics of the river hydrology. Second, the advances made, from a modeling point of view, have been considered and discussed. The main models that have been developed to describe the dynamics of riparian vegetation have been presented. Different modeling approaches have been compared, and the corresponding advantages and drawbacks have been pointed out. Finally, attention has been paid to identifying the processes considered by the models, and these processes have been compared with those that have actually been observed or measured in field/laboratory studies.

  15. Non-equilibrium flow and sediment transport distribution over mobile river dunes (United States)

    Hoitink, T.; Naqshband, S.; McElroy, B. J.


    Flow and sediment transport are key processes in the morphodynamics of river dunes. During floods in several rivers (e.g., the Elkhorn, Missouri, Niobrara, and Rio Grande), dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This morphological evolution of dunes to upper stage plane bed is the strongest bed-form adjustment during non-equilibrium flows and is associated with a significant change in hydraulic roughness and water levels. Detailed experimental investigations, however, have mostly focused on fixed dunes limited to equilibrium flow and bed conditions that are rare in natural channels. Our understanding of the underlying sedimentary processes that result into the washing out of dunes is therefore very limited. In the present study, using the Acoustic Concentration and Velocity Profiler (ACVP), we were able to quantify flow structure and sediment transport distribution over mobile non-equilibrium dunes. Under these non-equilibrium flow conditions average dune heights were decreasing while dune lengths were increasing. Preliminary results suggest that this morphological behaviour is due to a positive phase lag between sediment transport maximum and topographic maximum leading to a larger erosion on the dune stoss side compared to deposition on dune lee side.

  16. Flathead River Instream Flow Investigation Project : Final Report 1996-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William J. (Miller Ecological Consultants., Fort Collins, CO); Ptacek, Jonathan A. (Miller Ecological Consultants, Inc., Fort Collins, CO)


    A modified Instream Flow Incremental Methodology (IFIM) approach was used on the mainstem Flathead River from the South Fork Flathead River downstream to Flathead Lake. The objective of this study was to quantify changes in habitat for the target fish species, bull trout (Salvelinus confluentus) and west slope cutthroat trout (Oncorhynchus clarki lewisi), as a function of discharge in the river. This approach used a combination of georeferenced field data for each study site combined with a two-dimensional hydraulic simulation of river hydraulic characteristics. The hydraulic simulations were combined with habitat suitability criteria in a GIS analysis format to determine habitat area as a function of discharge. Results of the analysis showed that habitat area is more available at lower discharges than higher discharges and that in comparison of the pre-dam hydrology with post-dam hydrology, the stable pre-dam baseflows provided more stable habitat than the highly variable flow regime during both summer and winter baseflow post-dam periods. The variability week to week and day to day under post-dam conditions waters and dewaters stream margins. This forces sub-adult fish, in particular bull trout, to use less productive habitat during the night. There is a distinct difference between daytime and nighttime habitat use for bull trout sub-adults. The marginal areas that are constantly wet and then dried provide little in productivity for lower trophic levels and consequently become unproductive for higher trophic levels, especially bull trout sub-adults that use those areas as flows increase. A stable flow regime would be more productive than flow regimes with high variability week to week. The highly variable flows likely put stress on a bull trout subadult and west slope cutthroat trout, due to the additional movement required to find suitable habitat. The GIS approach presented here provides both a visual characterization of habitat as well as Arcview project data

  17. Effect of tides, river flow, and gate operations on entrainment of juvenile salmon into the interior Sacramento–San Joaquin River Delta (United States)

    Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.


    Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to

  18. Tocantins river as an effective barrier to gene flow in Saguinus niger populations

    Directory of Open Access Journals (Sweden)

    Marcelo Vallinoto


    Full Text Available The Saguinus represent the basal genus of the Callitrichinae subfamily. Traditionally this genus is divided into three groups: Hairy, Mottled and Bare-face, however, molecular data failed to validate these groups as monophyletic units, as well as raised some subspecies to the species status. This is the case of the former subspecies Saguinus midas midas and S. midas niger, which are now considered as different species. In the present study, we sequenced a portion of the D-loop mtDNA region in populations from the East bank of the Xingu and from both banks of the Tocantins river, in order to test the effectiveness of large rivers as barriers to the gene flow in Saguinus. According to our results, the populations from the East and West banks of the Tocantins river are more divergent than true species like S. mystax and S. imperator. The Tocantins river may be acting as a barrier to gene flow, and consequently these very divergent populations may represent distinct taxonomic entities (species?.

  19. Flow prediction models using macroclimatic variables and multivariate statistical techniques in the Cauca River Valley

    International Nuclear Information System (INIS)

    Carvajal Escobar Yesid; Munoz, Flor Matilde


    The project this centred in the revision of the state of the art of the ocean-atmospheric phenomena that you affect the Colombian hydrology especially The Phenomenon Enos that causes a socioeconomic impact of first order in our country, it has not been sufficiently studied; therefore it is important to approach the thematic one, including the variable macroclimates associated to the Enos in the analyses of water planning. The analyses include revision of statistical techniques of analysis of consistency of hydrological data with the objective of conforming a database of monthly flow of the river reliable and homogeneous Cauca. Statistical methods are used (Analysis of data multivariante) specifically The analysis of principal components to involve them in the development of models of prediction of flows monthly means in the river Cauca involving the Lineal focus as they are the model autoregressive AR, ARX and Armax and the focus non lineal Net Artificial Network.

  20. Three-dimensional simulation of flow, salinity, sediment, and radionuclide movements in the Hudson River estuary

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.


    The three-dimensional, finite difference model, FLESCOT simulates time-varying movements of flow, turbulent kinetic energy, salinity, water temperature, sediment, and contaminants in estuarine, coastal, and ocean waters. The model was applied to a 106-km (66-mi) reach of the Hudson River estuary in New York between Chelsea and the mouth of the river. It predicted the time-varying, three-dimensional distributions of tidal flow, salinity, three separate groups of sediments (i.e., sand, silt, and clay), and a radionuclide ( 137 Cs) in both dissolved and particulate (those sorbed by sediments) forms for over 40 days. The model also calculated riverbed elevation changes caused by sediment deposition and bed erosion, bed sediment size distribution and armoring, and distributions of the particulate 137 Cs sorbed by sand, silt, and clay in the bed

  1. Modelling maximum river flow by using Bayesian Markov Chain Monte Carlo (United States)

    Cheong, R. Y.; Gabda, D.


    Analysis of flood trends is vital since flooding threatens human living in terms of financial, environment and security. The data of annual maximum river flows in Sabah were fitted into generalized extreme value (GEV) distribution. Maximum likelihood estimator (MLE) raised naturally when working with GEV distribution. However, previous researches showed that MLE provide unstable results especially in small sample size. In this study, we used different Bayesian Markov Chain Monte Carlo (MCMC) based on Metropolis-Hastings algorithm to estimate GEV parameters. Bayesian MCMC method is a statistical inference which studies the parameter estimation by using posterior distribution based on Bayes’ theorem. Metropolis-Hastings algorithm is used to overcome the high dimensional state space faced in Monte Carlo method. This approach also considers more uncertainty in parameter estimation which then presents a better prediction on maximum river flow in Sabah.

  2. Were rivers flowing across the Sahara during the last interglacial? Implications for human migration through Africa.

    Directory of Open Access Journals (Sweden)

    Tom J Coulthard

    Full Text Available Human migration north through Africa is contentious. This paper uses a novel palaeohydrological and hydraulic modelling approach to test the hypothesis that under wetter climates c.100,000 years ago major river systems ran north across the Sahara to the Mediterranean, creating viable migration routes. We confirm that three of these now buried palaeo river systems could have been active at the key time of human migration across the Sahara. Unexpectedly, it is the most western of these three rivers, the Irharhar river, that represents the most likely route for human migration. The Irharhar river flows directly south to north, uniquely linking the mountain areas experiencing monsoon climates at these times to temperate Mediterranean environments where food and resources would have been abundant. The findings have major implications for our understanding of how humans migrated north through Africa, for the first time providing a quantitative perspective on the probabilities that these routes were viable for human habitation at these times.

  3. Can we predict the response of large sand bed rivers to changes in flow and sediment supply? The case of the Missouri River. (United States)

    Viparelli, E.; Blum, M. D.


    In the past century engineering projects and changes in land use significantly modified the hydrology and the sediment supply of large sand bed rivers all over the world. Field studies documented the river responses to the imposed changes, which can be summarized as adjustments in channel geometry, slope, and/or characteristics of the bed material. Further, one-, two- and three-dimensional river morphodynamic models were used to predict the fluvial system response to the imposed changes at time scales ranging from few months up to several decades. Notwithstading this previous research effort, the spatial and temporal scales of river adjustment, as well as quantitative predictions of the river responses, are still a matter of debate due to the difficulties associated with the interpretation of limited field datasets and with the large scale sediment transport modeling. Here we present the preliminary results of a study of the Missouri River response to the construction of dams, i.e. reduction in flood flow and sediment supply. In particular, we first compare the numerical results of a one-dimensional model of river morphodynamics for large, low slope sand bed rivers with field data to validate the model. The validated model is then used to constrain the spatial and temporal scales of the river adjustment, i.e. bed degradation in the Missouri River case. In other words, our numerical work focuses on how the magnitude and speed of the wave of channel bed degradation changes in time and space for the Missouri River case and how these scales change for different values of the ratio between pre- and pos-dam flow rates, and pre- and post-dam sediment loads.

  4. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model. (United States)

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C


    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  5. Instream Flows Incremental Methodology :Kootenai River, Montana : Final Report 1990-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Greg; Skaar, Don; Dalbey, Steve (Montana Department of Fish, Wildlife and Parks, Libby, MT)


    Regulated rivers such as the Kootenai River below Libby Dam often exhibit hydrographs and water fluctuation levels that are atypical when compared to non-regulated rivers. These flow regimes are often different conditions than those which native fish species evolved with, and can be important limiting factors in some systems. Fluctuating discharge levels can change the quantity and quality of aquatic habitat for fish. The instream flow incremental methodology (IFIM) is a tool that can help water managers evaluate different discharges in terms of their effects on available habitat for a particular fish species. The U.S. Fish and Wildlife Service developed the IFIM (Bovee 1982) to quantify changes in aquatic habitat with changes in instream flow (Waite and Barnhart 1992; Baldridge and Amos 1981; Gore and Judy 1981; Irvine et al. 1987). IFIM modeling uses hydraulic computer models to relate changes in discharge to changes in the physical parameters such as water depth, current velocity and substrate particle size, within the aquatic environment. Habitat utilization curves are developed to describe the physical habitat most needed, preferred or tolerated for a selected species at various life stages (Bovee and Cochnauer 1977; Raleigh et al. 1984). Through the use of physical habitat simulation computer models, hydraulic and physical variables are simulated for differing flows, and the amount of usable habitat is predicted for the selected species and life stages. The Kootenai River IFIM project was first initiated in 1990, with the collection of habitat utilization and physical hydraulic data through 1996. The physical habitat simulation computer modeling was completed from 1996 through 2000 with the assistance from Thomas Payne and Associates. This report summarizes the results of these efforts.

  6. Computer modeling of ground-water flow at the Savannah River Plant

    International Nuclear Information System (INIS)

    Root, R.W. Jr.


    Mathematical equations describing ground-water flow are used in a computer model being developed to predict the space-time distribution of hydraulic head beneath a part of the Savannah River Plant site. These equations are solved by a three-dimensional finite-difference scheme. Preliminary calibration of the hydraulic head model has been completed and calculated results compare well with water-level changes observed in the field. 10 figures, 1 table

  7. Environmental flow calculation for the maintenance of the water reserve of the Piaxtla River, Sinaloa, Mexico

    Directory of Open Access Journals (Sweden)

    Guadalupe de la Lanza Espino


    Full Text Available The calculation of river flows necessary to maintain the environmental services of the diverse river basins in Mexico has been an element to be considered in complying with the Mexican Norm and in allowing an adequate administration of water resources. Several methods have been proposed for this calculation, among which a very simple one is a hydrological method that requires a data base on runoff to determine the volume of water that ecosystem functions need. Hydrological methodology proposed by the NMX cited above, provides guidelines for establishing a regime as a percentage of average annual runoff and it is assumed maintain biological attributes at certain levels of conservation. It also analyzes the regime of seasonal normal flow for wet hydrological conditions, socks, dry and very dry, and the system of avenues (considered as the sudden increase in the volume and speed of the current in a river due to runoff resulting from rain cyclical or extraordinary, it is also known as flooding, considering at least three categories of avenues (intra-annual, annual and interannual low magnitude of average size with corresponding attributes of magnitude, duration, frequency, time of occurrence and rate exchange. For greater certainty calculation it will always be necessary to have records in the three levels of a basin. This level of analysis is to determine the final volume of ecological flow, considering the benchmark to achieve the previously defined environmental objective. For ecological calculation referred by the NMX, some fundamental aspects were considered, such as: ecology importance (which ranks among very high, high, medium and low based on the concepts of the rule itself ; use pressures (determined as the ratio percentage of the volume allocated over the concession between the annual average availability basin or aquifer, determined as high ≥ 80%, ≥ 40% high, medium and low ≥ 11% ≤ 10% ; the environmental objective (ecological

  8. CERCLA document flow: Compressing the schedule, saving costs, and expediting review at the Savannah River Site

    International Nuclear Information System (INIS)

    Hoffman, W.D.


    The purpose of this paper is to convey the logic of the CERCLA document flow including Work Plans, Characterization Studies, Risk Assessments, Remedial Investigations, Feasibility Studies, proposed plans, and Records of Decision. The intent is to show how schedules at the Savannah River Site are being formulated to accomplish work using an observational approach where carefully planned tasks can be initiated early and carried out in parallel. This paper will share specific proactive experience in working with the EPA to expedite projects, begin removal actions, take interim actions, speed document flow, and eliminate unnecessary documents from the review cycle

  9. Countercurrent flow-limiting characteristics of a Savannah River Plant control rod septifoil

    International Nuclear Information System (INIS)

    Anderson, J.L.


    Experiments were performed at the Idaho National Engineering Laboratory to investigate the counter-current flow limiting characteristics of a Savannah River Plant control rod septifoil assembly. These experiments were unheated, using air and water as the working fluids. Results are presented in terms of the Wallis flooding correlation for several different control rod configurations. Flooding was observed to occur in the vicinity of the inlet slots/holes of the septifoil, rather than within the rod bundle at the location of the minimum flow area. Nearly identical flooding characteristics of the septifoil were observed for configurations with zero, three, and four rods inserted, but significantly different results occurred with 5 rods inserted

  10. Small farm dams: impact on river flows and sustainability in a context of climate change (United States)

    Habets, F.; Philippe, E.; Martin, E.; David, C. H.; Leseur, F.


    The repetition of droughts in France has led to a growing demand for irrigation water and consequently to an increase in requests for the construction of small farm dams. Although such dams are small, their accumulation in a basin affects river flows, because the water collected in these small farm dams is used for irrigation and thus does not contribute to river flow. In order to gain more insight into their impact on the annual and monthly discharges, especially during dry years, a small farm dam model was built and connected to a hydrometeorological model. Several scenarios with different volume capacities, filling catchment sizes and filling periods were tested for such dams. The results were analysed in a small basin in western France, where the pressure for building such dams is high, and then extended to the entire country. It was found that, due to the hydrometeorological conditions (mainly low precipitation compared to other regions in France), the development of small farm dams in north-western France would result in greater decreases in river flows and less efficient filling of small farm dams than in other regions. Therefore, such dams might not be as efficient as expected in supplying water to farmers when needed. Moreover, the ability to fill small farm dams is projected to decrease in a context of climate change, despite the uncertainty on the evolution of precipitation, thus worsening the situation.

  11. Influence of flow variability on floodplain formation and destruction, Little Missouri River, North Dakota (United States)

    Miller, J.R.; Friedman, J.M.


    Resolving observations of channel change into separate planimetric measurements of floodplain formation and destruction reveals distinct relations between these processes and the flow regime. We analyzed a time sequence of eight bottomland images from 1939 to 2003 along the Little Missouri River, North Dakota, to relate geomorphic floodplain change to flow along this largely unregulated river. At the decadal scale, floodplain formation and destruction varied independently. Destruction was strongly positively correlated with the magnitude of infrequent high flows that recur every 5-10 yr, whereas floodplain formation was negatively correlated with the magnitude of frequent low flows exceeded 80% of the time. At the century scale, however, a climatically induced decrease in peak flows has reduced the destruction rate, limiting the area made available for floodplain formation. The rate of destruction was not uniform across the floodplain. Younger surfaces were consistently destroyed at a higher rate than older surfaces, suggesting that throughput of contaminants would have occurred more rapidly than predicted by models that assume uniform residence time of sediment across the floodplain. Maps of floodplain ages produced by analysis of sequential floodplain images are similar to maps of forest ages produced through dendrochronology, confirming the assumption of dendrogeomorphic studies that riparian tree establishment in this system is limited to recent channel locations. ?? 2009 Geological Society of America.

  12. Low Flow Regimes of the Tarim River Basin, China: Probabilistic Behavior, Causes and Implications

    Directory of Open Access Journals (Sweden)

    Peng Sun


    Full Text Available Droughts are a frequent occurrence in Xinjiang, China, and therefore fundamental to determining their hydrologic characteristics is low flow analysis. To that end, 11 probability distribution functions and 26 copulas functions were employed to analyze the changing characteristics of low flow regime (defined as seven-day low flow of the Tarim River Basin. Results indicated that: (1 The Wakeby distribution satisfactorily described the probabilistic behavior of the low flow regime. According to Akaike Information Criterion (AIC, Bayesian Information Criterions (BIC, maximum likelihood, and other residual-based metrics, Tawn copula, Farlie–Gumbel–Morgenstern copula and Frank copula were the best choice and used in this current study. (2 After 1987, hydrological droughts of longer return periods were prone to higher occurrence frequency. (3 The low flow volume has been increasing in recent years due to the temperature-induced increase of snowmelt and increasing precipitation. However, hydrological droughts can be expected to occur due to the massive increase in water demand from the development of irrigated agriculture, increasing arable land and livestock farming. As a result, the water shortage in the lower Tarim River Basin will be increasingly severe under the influence of climate change and human activities. To alleviate the shortage would call for the development of water-saving agricultural irrigation, water-saving technology, conservation of eco-environment and sustainable development of local socio-economy.

  13. Rainfall Variability and Landuse Conversion Impacts to Sensitivity of Citarum River Flow

    Directory of Open Access Journals (Sweden)

    Dyah Marganingrum


    Full Text Available The objective of this study is to determine the sensitivity of Citarum river flow to climate change and land conversion. It will provide the flow information that required in the water resources sustainability. Saguling reservoir is one of the strategic reservoirs, which 75% water is coming from the inflow of Upper Citarum measured at Nanjung station. Climate variability was identified as rainfall variability. Sensitivity was calculated as the elasticity value of discharge using three-variate model of statistical approach. The landuse conversion was calculated used GIS at 1994 and 2004. The results showed that elasticity at the Nanjung station and Saguling station decreased from 1.59 and 1.02 to 0.68 and 0.62 respectively. The decreasing occurred in the before the dam was built period (1950-1980 to the after reservoirs operated period (1986-2008. This value indicates that: 1 Citarum river flow is more sensitive to rainfall variability that recorded at Nanjung station than Saguling station, 2 rainfall character is more difficult to predict. The landuse analysis shows that forest area decrease to ± 27% and built up area increased to ± 26%. Those implied a minimum rainfall reduction to± 8% and minimum flow to ± 46%. Those were caused by land conversion and describing that the vegetation have function to maintain the base flow for sustainable water resource infrastructure.

  14. Flow Regime Changes: From Impounding a Temperate Lowland River to Small Hydropower Operations

    Directory of Open Access Journals (Sweden)

    Petras Punys


    Full Text Available This article discusses the environmental issues facing small hydropower plants (SHPs operating in temperate lowland rivers of Lithuania. The research subjects are two medium head reservoir type hydro schemes considered within a context of the global fleet of SHPs in the country. This research considers general abiotic indicators (flow, level, water retention time in the reservoirs of the stream that may affect the aquatic systems. The main idea was to test whether the hydrologic regime has been altered by small hydropower dams. The analysis of changes in abiotic indicators is a complex process, including both pre- and post-reservoir construction and post commissioning of the SHPs under operation. Downstream hydrograph (flow and stage ramping is also an issue for operating SHPs that can result in temporary rapid changes in flow and consequently negatively impact aquatic resources. This ramping has been quantitatively evaluated. To avoid the risk of excessive flow ramping, the types of turbines available were evaluated and the most suitable types for the natural river flow regime were identified. The results of this study are to allow for new hydro schemes or upgrades to use water resources in a more sustainable way.

  15. Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover (United States)

    Intermittent rivers, those channels that periodically cease to flow, constitute over half of the total discharge of the global river network and will likely increase in their extent due to climatic shifts and/or water resources development. Burgeoning research on intermittent riv...

  16. Hydrology and modeling of flow conditions at Bridge 339 and Mile 38-43, Copper River Highway, Alaska (United States)

    Brabets, Timothy P.


    The Copper River basin, the sixth largest watershed in Alaska, drains an area of 24,200 square miles in south-central Alaska. This large, glacier-fed river flows across a wide alluvial fan before it enters the Gulf of Alaska. The Copper River Highway, which traverses the alluvial fan, has been affected by channel planform reconfiguration. Currently (2012), two areas of the Copper River Highway are at risk: at Mile 38-43, the road grade is too low and the highway could be flooded by high flows of the Copper River, and at Mile 36, the main channel of the Copper River has migrated directly toward Bridge 339. Because Bridge 339 was not designed and built to convey the main flow of the Copper River, as much as 50 feet of scour occurred at the piers in 2011. The piers can no longer absorb the lateral or vertical loads, resulting in closure of the bridge and the Copper River Highway. The U.S. Geological Survey Flow and Sediment Transport with Morphologic Evolution of Channels (FaSTMECH) model was used to simulate the flow of the Copper River and produce simulations of depth, water-surface elevation, and velocity. At the Mile 38-43 area, FaSTMECH was used to analyze the effects of raising the road grade 5 feet, and at Mile 36, FaSTMECH was used to analyze the effects of constructing a channel to divert flow away from Bridge 339. Results from FaSTMECH indicate that if raising the road grade 5 feet in the Mile 38-43 area, a flood with an annual exceedance probability of 2 percent (400,000 cubic feet per second) would not overtop the highway. In the Bridge 339 area, results from FaSTMECH indicate that a design channel could divert flows as much as 100,000 cubic feet per second away from Bridge 339.

  17. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: effects of flow intermittence (United States)

    A central goal in ecology is to identify general relationships between environmental drivers and community patterns. In this study, we investigated the relationships between aquatic invertebrate communities and river flow intermittence across multiple continents. Particularly, we...

  18. Flow intermittence and ecosystem services in rivers of the Anthropocene_Figure 4_Journal of Applied Ecology (United States)

    U.S. Environmental Protection Agency — Counts of ecosystem service status (provided, altered, and lost/absent) during three hydrological phases (flowing, pool, dry) typically seen in intermittent rivers...

  19. Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy

    Directory of Open Access Journals (Sweden)

    P. Martini


    Full Text Available The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.

  20. Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy) (United States)

    Martini, P.; Carniello, L.; Avanzi, C.


    The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy) are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.

  1. Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China

    Directory of Open Access Journals (Sweden)

    Wen Zhang


    Full Text Available The basic geometric parameters of 236 debris flow catchments were determined by interpreting SPOT5 remote sensing images with a resolution of 2.5 m in a 209 km section along the Jinsha River in the Panxi area, China. A total of 27 large-scale debris flow catchments were selected for detailed in situ investigation. Samples were taken from two profiles in the deposition zone for each debris flow catchment. The φ value gradation method of the grain size was used to obtain 54 histograms with abscissa in a logarithmic scale. Five types of debris flows were summarized from the outline of the histogram. Four grain size parameters were calculated: mean grain size, standard deviation, coefficient of skewness, and coefficient of kurtosis. These four values were used to evaluate the features of the histogram. The grain index that reflects the transport (kinetic energy information of debris flows was defined to describe the characteristics of the debris-flow materials. Furthermore, a normalized grain index based on the catchment area was proposed to allow evaluation of the debris flow mobility. The characteristics of the debris-flow materials were well-described by the histogram of grain-size distribution and the normalized grain index.

  2. Estuarine Response to River Flow and Sea-Level Rise under Future Climate Change and Human Development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie; Copping, Andrea E.


    Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of the inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.

  3. Combined Flow Abstraction and Climate Change Impacts on an Aggrading Alpine River (United States)

    Bakker, M.; Costa, A.; Silva, T. A.; Stutenbecker, L.; Girardclos, S.; Loizeau, J.-L.; Molnar, P.; Schlunegger, F.; Lane, S. N.


    Recent climatic warming and associated glacial retreat may have a large impact on sediment release and transfer in Alpine river basins. Concurrently, the sediment transport capacity of many European Alpine streams is affected by hydropower exploitation, notably where flow is abstracted but the sediment supply downstream is maintained. Here, we investigate the combined effects of climate change and flow abstraction on morphodynamics and sediment transfer in the Borgne River, Switzerland. From photogrammetrically derived historical Digital Elevation Models (DEMs), we find considerable net aggradation of the braided river bed (up to 5 m) since the onset of flow abstraction in 1963. Reaches responded through bed level steepening which was strongest in the upper most reach. Widespread aggradation however did not commence until the onset of glacier retreat in the late 1980s and the dry and warm years of the early 1990s. Upstream flow intake data shows that this aggradation coincided with an increase in sediment supply, although aggradation accounts for no more than 25% of supplied material. The remainder was transferred through the studied reaches. Estimations of bed load transport capacity indicate that flow abstraction reduces transport capacity by 1-2 orders of magnitude. While residual transport rates vary with morphological evolution, they are in the same order of magnitude as the sediment supply rates, which is why significant transport remains. However, the reduction in transport capacity makes the system more sensitive to short-term (annual) changes in climate-driven hydrological variability and climate-induced changes in intake management and sediment delivery rates.

  4. Predictability of Western Himalayan river flow: melt seasonal inflow into Bhakra Reservoir in northern India

    Directory of Open Access Journals (Sweden)

    I. Pal


    Full Text Available Snowmelt-dominated streamflow of the Western Himalayan rivers is an important water resource during the dry pre-monsoon spring months to meet the irrigation and hydropower needs in northern India. Here we study the seasonal prediction of melt-dominated total inflow into the Bhakra Dam in northern India based on statistical relationships with meteorological variables during the preceding winter. Total inflow into the Bhakra Dam includes the Satluj River flow together with a flow diversion from its tributary, the Beas River. Both are tributaries of the Indus River that originate from the Western Himalayas, which is an under-studied region. Average measured winter snow volume at the upper-elevation stations and corresponding lower-elevation rainfall and temperature of the Satluj River basin were considered as empirical predictors. Akaike information criteria (AIC and Bayesian information criteria (BIC were used to select the best subset of inputs from all the possible combinations of predictors for a multiple linear regression framework. To test for potential issues arising due to multicollinearity of the predictor variables, cross-validated prediction skills of the best subset were also compared with the prediction skills of principal component regression (PCR and partial least squares regression (PLSR techniques, which yielded broadly similar results. As a whole, the forecasts of the melt season at the end of winter and as the melt season commences were shown to have potential skill for guiding the development of stochastic optimization models to manage the trade-off between irrigation and hydropower releases versus flood control during the annual fill cycle of the Bhakra Reservoir, a major energy and irrigation source in the region.

  5. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng


    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  6. Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images

    International Nuclear Information System (INIS)

    Georgievsky, M V


    This paper analyses an opportunity to integrate remote sensing data in a forecasting scheme of river inflow to the Krasnodar reservoir. MODIS MOD10A2 eight-day composite snow cover data was selected as the basic remote sensing information. Based on these data, a database which consists of maximal snow extent maps covering the Kuban river basin over the period from March 2000 to the present, along with the technique of operative monitoring of the maximal snow covered area for the main basins of the rivers flowing into the Krasnodar reservoir were developed. It was revealed that the snow cover distribution data could be useful in the prediction of flooding in the basin. In addition, the Snowmelt Runoff model, application of which is based on snow cover remote sensing data as the input information, was tested as a short-term forecasting model. The obtained results enable us to conclude that the model can be used for short-term runoff forecasts in the mountain and foothill areas of the Krasnodar reservoir basin.

  7. Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Georgievsky, M V, E-mail: [State Hydrological Institute, St Petersburg (Russian Federation)


    This paper analyses an opportunity to integrate remote sensing data in a forecasting scheme of river inflow to the Krasnodar reservoir. MODIS MOD10A2 eight-day composite snow cover data was selected as the basic remote sensing information. Based on these data, a database which consists of maximal snow extent maps covering the Kuban river basin over the period from March 2000 to the present, along with the technique of operative monitoring of the maximal snow covered area for the main basins of the rivers flowing into the Krasnodar reservoir were developed. It was revealed that the snow cover distribution data could be useful in the prediction of flooding in the basin. In addition, the Snowmelt Runoff model, application of which is based on snow cover remote sensing data as the input information, was tested as a short-term forecasting model. The obtained results enable us to conclude that the model can be used for short-term runoff forecasts in the mountain and foothill areas of the Krasnodar reservoir basin.

  8. Application of neutron radiography to visualization of multiphase flows

    International Nuclear Information System (INIS)

    Takenaka, N.; Fujii, T.; Nishizaki, K.; Asano, H.; Ono, A.; Sonoda, K.; Akagawa, K.


    Visualizations by real-time neutron radiography are demonstrated of various flow patterns of nitrogen gas-water two-phase flow in a stainless-steel tube, water inverted annular flow in a stainless-steel tube, flashing flow in an aluminium nozzle and fluidized bed in aluminium tube and vessels. Photographs every 1/60 s are presented by an image processing method to show the dynamic behaviours of the various flow patterns. It is shown that this visualization method can be applied efficiently to multiphase flow researches and will be applicable to multiphase flows in industrial machines. (author)

  9. Assessment of Environmental Flows for the Rivers of Western Ganges Delta with Special Reference to Indian Sundarban (United States)

    Bhadra, T.; Hazra, S.; Ghosh, S.; Barman, B. C.


    The Indian Sundarban, situated on the western tide-dominated part of the Ganges delta was formed by the sedimentation of the Ganges and its tributaries. Freshwater is a scarce resource in the Sundarban though it is traversed by rivers. Most of the rivers of Western Ganges Delta, which used to nourish the Sundarban, have become defunct with the passage of time. To ensure sustainable flow and to enhance the flow-dependent ecosystem services in this region, assessment of environmental flows within the system is required. A pilot assessment of environment flows, supported by IUCN has been carried out in some specific river reaches of Western Ganges Delta under the present study. The holistic Building Block Methodology (BBM) has been modified and used for the assessment of environmental flows. In the modified BBM, three distinctive blocks namely Hydro-Morphology, Ecology and Socio-Economy have been selected and indicators like Ganges Dolphin (Platanista gangetica), Sundari tree (Heritiera fomes) and Hilsa fish (Tenualosa ilisha) etc. have been determined to assess the environmental flows. As the discharge data of the selected rivers are restricted in the public domain, the SWAT model has been run to generate the discharge data of the classified rivers. The Hydraulic model, HEC-RAS has been calibrated in the selected River reaches to assess the habitat availability and its changes for indicator species under different flow condition. The study reveals that River Bhagirathi-Hugli requires 150-427 cumec additional water in monsoon and 850-1127 cumec additional water in post-monsoon months for Hilsa migration, whereas 327-486 cumec additional water in pre-monsoon and dry season and 227-386 cumec additional water in post-monsoon months are required for Dolphin movement. Flow requirement of river Ichhamati has also been estimated under the present study. The total required flow for the Sundarban ecosystem to reduce the salinity level from 30ppt to 14ppt during the dry and pre

  10. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon (United States)

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.


    The McKenzie River is a tributary to the Willamette River in northwestern Oregon. The McKenzie River is approximately 90 miles in length and has a drainage area of approximately 1,300 square miles. Two major flood control dams, a hydropower dam complex, and two hydropower canals significantly alter streamflows in the river. The structures reduce the magnitude and frequency of large and small floods while increasing the annual 7-day minimum streamflows. Stream temperatures also have been altered by the dams and other anthropogenic factors, such as the removal of riparian vegetation and channel simplification. Flow releases from one of the flood control dams are cooler in the summer and warmer in the fall in comparison to unregulated flow conditions before the dam was constructed. In 2006, the Oregon Department of Environmental Quality listed a total of 112.4, 6.3, and 55.7 miles of the McKenzie River basin mainstem and tributary stream reaches as thermally impaired for salmonid rearing, salmonid spawning, and bull trout, respectively. The analyses in this report, along with previous studies, indicate that dams have altered downstream channel morphology and ecologic communities. In addition to reducing the magnitude and frequency of floods, dams have diminished sediment transport by trapping bed material. Other anthropogenic factors, such as bank stabilization, highway construction, and reductions of in-channel wood, also have contributed to the loss of riparian habitat. A comparison of aerial photography taken in 1939 and 2005 showed substantial decreases in secondary channels, gravel bars, and channel sinuosity, particularly along the lower alluvial reaches of the McKenzie River. In addition, bed armoring and incision may contribute to habitat degradation, although further study is needed to determine the extent of these processes. Peak streamflow reduction has led to vegetation colonization and stabilization of formerly active bar surfaces. The large flood control

  11. Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology (United States)

    Sukhodolov, Alexander N.; Krick, Julian; Sukhodolova, Tatiana A.; Cheng, Zhengyang; Rhoads, Bruce L.; Constantinescu, George S.


    Only a handful of field studies have examined turbulent flow structure at discordant confluences; the dynamics of flow at such confluences have mainly been examined in the laboratory. This paper reports results of a field-based investigation of turbulent flow structure at a discordant river confluence. These results support the hypothesis that flow at a discordant alluvial confluence with a velocity ratio greater than 2 exhibits jet-like characteristics. Scaling analysis shows that the dynamics of the jet core are quite similar to those of free jets but that the complex structure of flow at the confluence imposes strong effects that can locally suppress or enhance the spreading rate of the jet. This jet-like behavior of the flow has important implications for morphodynamic processes at these types of confluences. The highly energetic core of the jet at this discordant confluence is displaced away from the riverbed, thereby inhibiting scour; however, helical motion develops adjacent to the jet, particularly at high flows, which may promote scour. Numerical experiments demonstrate that the presence or absence of a depositional wedge at the mouth of the tributary can strongly influence detachment of the jet from the bed and the angle of the jet within the confluence.

  12. Identification of appropriate lags and temporal resolutions for low flow indicators in the River Rhine to forecast low flows with different lead times

    NARCIS (Netherlands)

    Demirel, M.C.; Booij, Martijn J.; Hoekstra, Arjen Ysbert


    The aim of this paper is to assess the relative importance of low flow indicators for the River Rhine and to identify their appropriate temporal lag and resolution. This is done in the context of low flow forecasting with lead times of 14 and 90 days. First, the Rhine basin is subdivided into seven

  13. Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow.

    Directory of Open Access Journals (Sweden)

    Kelly Ortega-Cisneros

    Full Text Available This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N and the tanaid Apseudes digitalis (%N, C:N. These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that

  14. Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow. (United States)

    Ortega-Cisneros, Kelly; Scharler, Ursula M


    This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine

  15. Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden

    Directory of Open Access Journals (Sweden)

    G. Göransson


    Full Text Available The turbidity variation in time and space is investigated in the downstream stretch of the river Göta Älv in Sweden. The river is heavily regulated and carries the discharge from the largest fresh water lake in Sweden, Lake Vänern, to the outflow point in Göteborg Harbour on the Swedish west coast. The river is an important waterway and serves as a fresh-water supply for 700 000 users. Turbidity is utilised as a water quality indicator to ensure sufficient quality of the intake water to the treatment plant. The overall objective of the study was to investigate the influence of rainfall, surface runoff, and river water flow on the temporal and spatial variability of the turbidity in the regulated river system by employing statistical analysis of an extensive data set. A six year long time series of daily mean values on precipitation, discharge, and turbidity from six stations along the river were examined primarily through linear correlation and regression analysis, combined with nonparametric tests and analysis of variance. The analyses were performed on annual, monthly, and daily bases, establishing temporal patterns and dependences, including; seasonal changes, impacts from extreme events, influences from tributaries, and the spatial variation along the river. The results showed that there is no simple relationship between discharge, precipitation, and turbidity, mainly due to the complexity of the runoff process, the regulation of the river, and the effects of Lake Vänern and its large catchment area. For the river Göta Älv, significant, positive correlations between turbidity, discharge, and precipitation could only be found during periods with high flow combined with heavy rainfall. Local precipitation does not seem to have any significant impact on the discharge in the main river, which is primarily governed by precipitation at catchment scale. The discharge from Lake Vänern determines the base level for the turbidity in the river

  16. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange (United States)

    Gomez-Velez, J. D.; Wilson, J. L.; Cardenas, M. B.; Harvey, J. W.


    Hydrologic exchange fluxes (HEFs) vary significantly along river corridors due to spatiotemporal changes in discharge and geomorphology. This variability results in the emergence of biogeochemical hot-spots and hot-moments that ultimately control solute and energy transport and ecosystem services from the local to the watershed scales. In this work, we use a reduced-order model to gain mechanistic understanding of river bank storage and sinuosity-driven hyporheic exchange induced by transient river discharge. This is the first time that a systematic analysis of both processes is presented and serves as an initial step to propose parsimonious, physics-based models for better predictions of water quality at the large watershed scale. The effects of channel sinuosity, alluvial valley slope, hydraulic conductivity, and river stage forcing intensity and duration are encapsulated in dimensionless variables that can be easily estimated or constrained. We find that the importance of perturbations in the hyporheic zone's flux, residence times, and geometry is mainly explained by two-dimensionless variables representing the ratio of the hydraulic time constant of the aquifer and the duration of the event (Γd) and the importance of the ambient groundwater flow (Δh∗). Our model additionally shows that even systems with small sensitivity, resulting in small changes in the hyporheic zone extent, are characterized by highly variable exchange fluxes and residence times. These findings highlight the importance of including dynamic changes in hyporheic zones for typical HEF models such as the transient storage model.

  17. River adjustments under varying flow and sediment sypply regimes. The role of hydrograh shape (United States)

    Ferrer-Boix, C.; Elgueta, M. A.; Hassan, M. A.


    This research aims to explore how sediment supply conditions and hydrograph shape influence bed surface evolution, vertical and downstream sediment sorting, and sediment transport in gravel bed streams. While a significant body of research has been focused on channel evolution under constant flow regimes, few studies have focused on the impacts of flow variations in channel adjustments. Particularly, we are interested in examining the impact of the sediment supply regime and hydrograph magnitude and duration on channel adjustments and sediment transport rates. To this end, we conducted a set of experiments in a 0.8 m-wide, 5 m-long tilting flume. Flow discharge during the runs was increased and decreased at steps of certain duration allowing us to vary the steepness of rising and falling limbs of hydrographs. The influence of hydrograph shape (symmetrical and asymmetrical) on river morphodynamics was tested. Flow rates during the experiments ranged from 30 l/s to 70 l/s. Some of the experiments were conducted under no feed conditions while others were carried out with sediment supply, which ranged from 10 kg/h to 80 kg/h. The feed texture in these latter runs was identical to that of the original mixture (Dmin = 0.5 mm, Dmax = 64 mm, Dg = 5.65 mm and σg = 3.05). Initial bed slope and surface configuration were obtained after varying times of conditioning under constant flow and no feed. Finally, we conducted equilibrium experiments under constant flow and sediment supply that were used as reference. All these sets of experiments benefited from a very detailed and extensive data monitoring which allowed us to provide a unique description or river adjustments under varying flow conditions. Data acquisition included: 1) bed surface images covering the entire flume, 2) bed scans at 2 mm resolution of the whole flume and 3) real-time measurements of bedload transport (rate and texture) at the outlet of the flume. This set up allows us to obtain fractional particle

  18. Simulation and Modelling of Climate Change Effects on River Awara Flow Discharge using WEAP Model

    Directory of Open Access Journals (Sweden)

    Oyati E.N.


    Full Text Available Modelling of stream flow and discharge of river Awara under changed climate conditions using CLIMGEN for stochastic weather generation and WEAP model was used to simulate reserviour storage volume, water demand and river discharges at high spatial resolution (0.5°×0.5°, total 66,420 grid cells. Results of CLM-Based flow measurement shows a linear regression with R 2 = 0.99 for IFPRI-MNP- IGSM_WRS calibration. Sensitivity simulation of ambient long-term shows an increase in temperature with 0.5 o c thus the results of the studies generally show that annual runoff and river discharges could largely decrease. The projection of water demand 150 million m 3 by 2020 against the reservoir storage volume 60 million m 3 and decrease in rainfall depth by -5.7 mm. The output of the combined models used in this study is veritable to create robust water management system under different climate change scenarios.

  19. Predictability of soil moisture and river flows over France for the spring season (United States)

    Singla, S.; Céron, J.-P.; Martin, E.; Regimbeau, F.; Déqué, M.; Habets, F.; Vidal, J.-P.


    Sources of spring predictability of the hydrological system over France were studied on a seasonal time scale over the 1960-2005 period. Two random sampling experiments were set up in order to test the relative importance of the land surface initial state and the atmospheric forcing. The experiments were based on the SAFRAN-ISBA-MODCOU hydrometeorological suite which computed soil moisture and river flow forecasts over a 8-km grid and more than 880 river-gauging stations. Results showed that the predictability of hydrological variables primarily depended on the seasonal atmospheric forcing (mostly temperature and total precipitation) over most plains, whereas it mainly depended on snow cover over high mountains. However, the Seine catchment area was an exception as the skill mainly came from the initial state of its large and complex aquifers. Seasonal meteorological hindcasts with the Météo-France ARPEGE climate model were then used to force the ISBA-MODCOU hydrological model and obtain seasonal hydrological forecasts from 1960 to 2005 for the entire March-April-May period. Scores from this seasonal hydrological forecasting suite could thus be compared with the random atmospheric experiment. Soil moisture and river flow skill scores clearly showed the added value in seasonal meteorological forecasts in the north of France, contrary to the Mediterranean area where values worsened.

  20. Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China

    Directory of Open Access Journals (Sweden)

    C. W. Dawson


    Full Text Available While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron (MLP, and the radial basis function network (RBF. Using six-hourly rainfall-runoff data for the River Yangtze at Yichang (upstream of the Three Gorges Dam for the period 1991 to 1993, it is shown that both neural network types can simulate river flows beyond the range of the training set. In addition, an evaluation of alternative RBF transfer functions demonstrates that the popular Gaussian function, often used in RBF networks, is not necessarily the ‘best’ function to use for river flow forecasting. Comparisons are also made between these neural networks and conventional statistical techniques; stepwise multiple linear regression, auto regressive moving average models and a zero order forecasting approach. Keywords: Artificial neural network, multilayer perception, radial basis function, flood forecasting

  1. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia (United States)

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.


    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  2. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah (United States)

    Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.


    Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.

  3. In situ permeable flow sensors at the Savannah River Integrated Demonstration: Phase 2 results

    International Nuclear Information System (INIS)

    Ballard, S.


    A suite of In Situ Permeable Flow Sensors was deployed at the site of the Savannah River Integrated Demonstration to monitor the interaction between the groundwater flow regime and air injected into the saturated subsurface through a horizontal well. One of the goals of the experiment was to determine if a groundwater circulation system was induced by the air injection process. The data suggest that no such circulation system was established, perhaps due to the heterogeneous nature of the sediments through which the injected gas has to travel. The steady state and transient groundwater flow patterns observed suggest that the injected air followed high permeability pathways from the injection well to the water table. The preferential pathways through the essentially horizontal impermeable layers appear to have been created by drilling activities at the site

  4. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations (United States)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.


    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  5. Analysis of land use and climate change impacts by comparing river flow records for headwaters and lowland reaches (United States)

    Fazel, Nasim; Torabi Haghighi, Ali; Kløve, Bjørn


    The natural flow regime of rivers has been strongly altered world-wide, resulting in ecosystem degradation and lakes drying up, especially in arid and semi-arid regions. Determining whether this is due mainly to climate change or to water withdrawal for direct human use (e.g. irrigation) is difficult, particularly for saline lake basins where hydrology data are scarce. In this study, we developed an approach for assessing climate and land use change impacts based on river flow records for headwater and lowland reaches of rivers, using the case of Lake Urmia basin, in north-westen Iran. Flow regimes at upstream and downstream stations were studied before and after major dam construction and irrigation projects. Data from 57 stations were used to establish five different time intervals representing 10 different land use development periods (scenarios) for upstream (not impacted) and downstream (impacted) systems. An existing river impact (RI) index was used to assess changes in three main characteristics of flow (magnitude, timing and, intra-annual variability). The results showed that irrigation was by far the main driving force for river flow regime changes in the lake basin. All stations close to the lake and on adjacent plains showed significantly higher impacts of land use change than headwaters. As headwaters are relatively unaffected by agriculture, the non-significant changes observed in headwater flow regimes indicate a minor effect of climate change on river flows in the region. The benefit of the method developed is clear interpretation of results based on river flow records, which is useful in communicating land use and climate change information to decision makers and lake restoration planners.

  6. Dispatch Method for Independently Owned Hydropower Plants in the Same River Flow

    Directory of Open Access Journals (Sweden)

    Slavko Krajcar


    Full Text Available This paper proposes a coexistence model for two independent companies both operating hydropower plants in the same river flow, based on a case study of the Cetina river basin in Croatia. Companies are participants of the day-ahead electricity market. The incumbent company owns the existing hydropower plants and holds concessions for the water. The new company decides to build a pump storage hydropower plant that uses one of the existing reservoirs as its lower reservoir. Meeting reservoir water balance is affected by decisions by both companies which are independently seeking maximal profit. Methods for water use settlement and preventing of spillage are proposed. A mixed-integer linear programming approach is used. Head effects on output power levels are also considered. Existences of dispatches that satisfy both companies are shown.

  7. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Netrananda; Yamashiki, Yosuke; Takara, Kaoru [Kyoto University, Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Gokasho, Uji City, Kyoto (Japan); Behera, Swadhin K. [JAMSTEC, Research Institute for Global Change, Yokohama, Kanagawa (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan); Yamagata, Toshio [University of Tokyo, School of Science, Bunkyo-ku, Tokyo (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan)


    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Nina conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Nino Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Nino events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Nino for September-November season only. (orig.)

  8. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia (United States)

    Sahu, Netrananda; Behera, Swadhin K.; Yamashiki, Yosuke; Takara, Kaoru; Yamagata, Toshio


    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Niña conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Niño Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Niño events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Niño for September-November season only.

  9. Tidal current energy potential of Nalón river estuary assessment using a high precision flow model (United States)

    Badano, Nicolás; Valdés, Rodolfo Espina; Álvarez, Eduardo Álvarez


    Obtaining energy from tide currents in onshore locations is of great interest due to the proximity to the points of consumption. This opens the door to the feasibility of new installations based on hydrokinetic microturbines even in zones of moderate speed. In this context, the accuracy of energy predictions based on hydrodynamic models is of paramount importance. This research presents a high precision methodology based on a multidimensional hydrodynamic model that is used to study the energetic potential in estuaries. Moreover, it is able to estimate the flow variations caused by microturbine installations. The paper also shows the results obtained from the application of the methodology in a study of the Nalón river mouth (Asturias, Spain).

  10. 75 FR 78979 - Application to Export Electric Energy; Twin Rivers Paper Company Inc. (United States)


    ... DEPARTMENT OF ENERGY [OE Docket No. EA-366] Application to Export Electric Energy; Twin Rivers... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act. DATES... received an application from Twin Rivers for authority to transmit electric energy from the United States...

  11. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003 (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.


    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  12. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale

    Directory of Open Access Journals (Sweden)

    A. Kleidon


    Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.

  13. Benefits of prescribed flows for salmon smolt survival enhancement vary longitudinally in a highly managed river system (United States)

    Courter, Ian; Garrison, Thomas; Kock, Tobias J.; Perry, Russell W.; Child, David; Hubble, Joel


    The influence of streamflow on survival of emigrating juvenile Pacific salmonids Oncorhynchus spp. (smolts) is a major concern for water managers throughout the northeast Pacific Rim. However, few studies have quantified flow effects on smolt survival, and available information does not indicate a consistent flow–survival relationship within the typical range of flows under management control. In the Yakima Basin, Washington, the potential effects of streamflow alterations on smolt survival have been debated for over 20 years. Using a series of controlled flow releases from upper basin reservoirs and radiotelemetry, we quantified the relationship between flow and yearling Chinook salmon smolt survival in the 208 km reach between Roza Dam and the Yakima River mouth. A multistate mark–recapture model accounted for weekly variation in flow conditions experienced by tagged fish in four discrete river segments. Smolt survival was significantly associated with streamflow in the Roza Reach [river kilometre (rkm) 208–189] and marginally associated with streamflow in the Sunnyside Reach (rkm 169–77). However, smolt survival was not significantly associated with flow in the Naches and Prosser Reaches (rkm 189–169 and rkm 77–3). This discrepancy indicates potential differences in underlying flow-related survival mechanisms, such as predation or passage impediments. Our results clarify trade-offs between flow augmentation for fisheries enhancement and other beneficial uses, and our study design provides a framework for resolving uncertainties about streamflow effects on migratory fish survival in other river systems. 

  14. Adaptive Management of Return Flows: Lessons from a Case Study in Environmental Water Delivery to a Floodplain River (United States)

    Wolfenden, Benjamin J.; Wassens, Skye M.; Jenkins, Kim M.; Baldwin, Darren S.; Kobayashi, Tsuyoshi; Maguire, James


    For many floodplain rivers, reinstating wetland connectivity is necessary for ecosystems to recover from decades of regulation. Environmental return flows (the managed delivery of wetland water to an adjacent river) can be used strategically to facilitate natural ecosystem connectivity, enabling the transfer of nutrients, energy, and biota from wetland habitats to the river. Using an informal adaptive management framework, we delivered return flows from a forested wetland complex into a large lowland river in south-eastern Australia. We hypothesized that return flows would (a) increase river nutrient concentrations; (b) reduce wetland nutrient concentrations; (c) increase rates of ecosystem metabolism through the addition of potentially limiting nutrients, causing related increases in the concentration of water column chlorophyll-a; and (d) increase the density and species richness of microinvertebrates in riverine benthic habitats. Our monitoring results demonstrated a small increase in the concentrations of several key nutrients but no evidence for significant ecological responses was found. Although return flows can be delivered from forested floodplain areas without risking hypoxic blackwater events, returning nutrient and carbon-rich water to increase riverine productivity is limited by the achievable scale of return flows. Nevertheless, using return flows to flush carbon from floodplains may be a useful management tool to reduce carbon loads, preparing floodplains for subsequent releases (e.g., mitigating the risk of hypoxic blackwater events). In this example, adaptive management benefited from a semi-formal collaboration between science and management that allowed for prompt decision-making.

  15. Simulating Spawning and Juvenile Rainbow Trout (Oncorhynchus mykiss Habitat in Colorado River Based on High-Flow Effects

    Directory of Open Access Journals (Sweden)

    Weiwei Yao


    Full Text Available High flow generates significant alterations in downstream river reaches, resulting in physical condition changes in the downstream regions of the river such as water depth, flow velocity, water temperature and river bed. These alterations will lead to change in fish habitat configuration in the river. This paper proposes a model system to evaluate the high flow effects on river velocity, water depth, substrates changes, temperature distribution and consequently assess the change in spawning and juvenile rainbow trout (Oncorhynchus mykiss habitats in the downstream region of the Glen Canyon Dam. Firstly, based on the 2 dimensional (2D depth-averaged CFD (Computational Fluid Dynamics model and heat transfer equation applied for simulation, three indices were simulated, namely depth, flow velocity and temperature distribution. Then, the spawning and juvenile fish preference curves were obtained based on these three indices and substrates distribution. After that, the habitat model was proposed and used to simulate the high flow effects on juvenile and spawning rainbow trout habitat structure. Finally, the weighted usable area (WUA and overall suitability index (OSI of the spawning and juvenile fish species were quantitatively simulated to estimate the habitat sensitivity. The results illustrate that the high flow effect (HFE increased the juvenile rainbow trout habitat quality but decreased the spawning rainbow trout habitat quality. The juvenile trout were mainly affected by the water depth while the spawning rainbow trout were dominated by the bed elevation.

  16. Estimation of natural historical flows for the Manitowish River near Manitowish Waters, Wisconsin (United States)

    Juckem, Paul F.; Reneau, Paul C.; Robertson, Dale M.


    The Wisconsin Department of Natural Resources is charged with oversight of dam operations throughout Wisconsin and is considering modifications to the operating orders for the Rest Lake Dam in Vilas County, Wisconsin. State law requires that the operation orders be tied to natural low flows at the dam. Because the presence of the dam confounds measurement of natural flows, the U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, installed streamflow-gaging stations and developed two statistical methods to improve estimates of natural flows at the Rest Lake Dam. Two independent methods were used to estimate daily natural flow for the Manitowish River approximately 1 mile downstream of the Rest Lake Dam. The first method was an adjusted drainage-area ratio method, which used a regression analysis that related measured water yield (flow divided by watershed area) from short-term (2009–11) gaging stations upstream of the Manitowish Chain of Lakes to the water yield from two nearby long-term gaging stations in order to extend the flow record (1991–2011). In this approach, the computed flows into the Chain of Lakes at the upstream gaging stations were multiplied by a coefficient to account for the monthly hydrologic contributions (precipitation, evaporation, groundwater, and runoff) associated with the additional watershed area between the upstream gaging stations and the dam at the outlet of the Chain of Lakes (Rest Lake Dam). The second method used to estimate daily natural flow at the Rest Lake Dam was a water-budget approach, which used lake stage and dam outflow data provided by the dam operator. A water-budget model was constructed and then calibrated with an automated parameter-estimation program by matching simulated flow-duration statistics with measured flow-duration statistics at the upstream gaging stations. After calibration of the water-budget model, the model was used to compute natural flow at the dam from 1973 to

  17. Flowing like a river: facilitation in practice development and the evolution of critical-creative companionship

    Directory of Open Access Journals (Sweden)

    Angie Titchen


    Full Text Available Beginnings: Using a river landscape metaphor, the purpose of this paper is to locate critical creativity in the evolution of practice development in the UK and show how it can be facilitated through critical-creative companionship. Critical creativity is a new landscape for practice development that has evolved through three decades of a deepening understanding of: the philosophical foundations of practice development (bedrocks; paradigms (landscapes; projects/studies (gardens; and practice development/research roles, relationships and skills (gardeners. As a practice development practitioner, facilitator and researcher, I have helped shape the course of the river, peaking with the slow-burn, yet intense, co-creation of critical creativity. Panorama, flow and transformation: A panoramic view of the river is offered as it changes over time. This view includes the river’s changes of flow and direction, powered by different philosophical and theoretical influences and resultant transformations in practice development practice/research and facilitation. Unfolding: I telescope in on the critical creativity landscape, showing how it is a synthesis of previous influences and how the critical companionship of my earlier work flowed gently into critical-creative companionship. I show broad-brush how critical-creative companions help people to use the philosophical, theoretical and methodological mandalas of critical creativity, not only in their practice development, but also in their own being and becoming critical-creative companions. Conclusion and implications for practice development and inquiry: Critical-creative companions help people to work in the gardens of critical creativity to embody and live what might seem difficult, complex and mysterious. Becoming a critical-creative companion takes time. It requires a scholarly approach to practice and the development of enabling facilitation skills and experiential and theoretical understanding

  18. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware (United States)

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.


    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  19. Evaluation of hydrological methods to obtain environmental flows in the Tulua River, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Herendia, Lina Mabel; Carvajal-Escobar, Yesid [Universidad del Valle (Colombia)


    Most rivers in the world have been modified in their structure, form, composition or function, which has caused severe ecological and environmental alterations, such as pollution, a dramatic reduction in flow, and less environmental and recreational services. To reduce the human impact on the hydrological systems, new policies of sustainability are being developed worldwide. The aim is the sustainable and responsible use of water resources. One of them is the development and implementation of techniques to estimate environmental flows (EF) and environmental regimen flow regime (EFR). In this article, some hydrological methods used to determine EF and EFR are explained, and their implementation in the Tulua River (Valle del Cauca-Colombia). Simulation on HEC-RAS of the given flows was performed in order to examine flow and level variability. The result showed that most hydrological methods demand constant flows over time, and are specific for certain places and aquatic species, but some others calculate a variable EFR throughout the year and with some modifications can be used in Colombian Rivers. [Spanish] La mayoria de los rios en el mundo han sido modificados en su estructura, forma, composicion y funcionamiento, lo que ha provocado graves alteraciones ecologicas y ambientales, como contaminacion, disminucion excesiva de caudales, y perdida de los servicios ambientales y recreativos, entre otras. Es por esto que para reducir los impactos generadores por las actividades humanas en las cuencas, se estan desarrollando nuevas politicas en el mundo para el uso sostenible y responsable del recurso hidrico, entre las cuales se tienen el desarrollo y la aplicacion de tecnicas de estimacion de caudales ambientales (QA) o de regimenes de caudal ambiental (RQA). En el presente trabajo se explican algunos de los metodos hidrologicos usados para determinar el QA y el RQA, y se muestra la aplicacion de los mismos rios Tulua (Valle del Cauca, Colombia), y su posterior

  20. Future Climate Change Impact Assessment of River Flows at Two Watersheds of Peninsular Malaysia (United States)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.


    Impacts of climate change on the river flows under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate model and a physically-based hydrology model utilizing an ensemble of 15 different future climate realizations. Coarse resolution GCMs' future projections covering a wide range of emission scenarios were dynamically downscaled to 6 km resolution over the study area. Hydrologic simulations of the two selected watersheds were carried out at hillslope-scale and at hourly increments.

  1. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers. (United States)

    Merritt, David M; Poff, N LeRoy


    Tamarix ramosissima is a naturalized, nonnative plant species which has become widespread along riparian corridors throughout the western United States. We test the hypothesis that the distribution and success of Tamarix result from human modification of river-flow regimes. We conducted a natural experiment in eight ecoregions in arid and semiarid portions of the western United States, measuring Tamarix and native Populus recruitment and abundance at 64 sites along 13 perennial rivers spanning a range of altered flow regimes. We quantified biologically relevant attributes of flow alteration as an integrated measure (the index of flow modification, IFM), which was then used to explain between-site variation in abundance and recruitment of native and nonnative riparian plant species. We found the likelihood of successful recruitment of Tamarix to be highest along unregulated river reaches and to remain high across a gradient of regulated flows. Recruitment probability for Populus, in contrast, was highest under free-flowing conditions and declined abruptly under even slight flow modification (IFM > 0.1). Adult Tamarix was most abundant at intermediate levels of IFM. Populus abundance declined sharply with modest flow regulation (IFM > 0.2) and was not present at the most flow-regulated sites. Dominance of Tamarix was highest along rivers with the most altered flow regimes. At the 16 least regulated sites, Tamarix and Populus were equally abundant. Given observed patterns of Tamarix recruitment and abundance, we infer that Tamarix would likely have naturalized, spread, and established widely in riparian communities in the absence of dam construction, diversions, and flow regulation in western North America. However, Tamarix dominance over native species would likely be less extensive in the absence of human alteration of river-flow regimes. Restoration that combines active mechanical removal of established stands of Tamarix with a program of flow releases conducive to

  2. Flow Control for Supersonic Inlet Applications (United States)


    1221-1233, May 2013 3. Loth, E., Titchener, N., Babinsky, H., Povinelli , L., “Canonical NSBLI Flows Relevant to External Compression Inlets”, AIAA J...Tennessee, Jan. 9-12, 2012 7. Loth, E.L., Titchener, N., Babinsky, H., Povinelli , L.A., “A Canonical Normal SBLI Flow Relevant to External

  3. Physical modeling of river spanning rock structures: Evaluating interstitial flow, local hydraulics, downstream scour development, and structure stability (United States)

    Collins, K.L.; Thornton, C.I.; Mefford, B.; Holmquist-Johnson, C. L.


    Rock weir and ramp structures uniquely serve a necessary role in river management: to meet water deliveries in an ecologically sound manner. Uses include functioning as low head diversion dams, permitting fish passage, creating habitat diversity, and stabilizing stream banks and profiles. Existing information on design and performance of in-stream rock structures does not provide the guidance necessary to implement repeatable and sustainable construction and retrofit techniques. As widespread use of rock structures increases, the need for reliable design methods with a broad range of applicability at individual sites grows as well. Rigorous laboratory testing programs were implemented at the U.S. Bureau of Reclamation (Reclamation) and at Colorado State University (CSU) as part of a multifaceted research project focused on expanding the current knowledge base and developing design methods to improve the success rate of river spanning rock structures in meeting project goals. Physical modeling at Reclamation is being used to measure, predict, and reduce interstitial flow through rock ramps. CSU is using physical testing to quantify and predict scour development downstream of rock weirs and its impact on the stability of rock structures. ?? 2009 ASCE.

  4. Assessing Climate-Induced Change in River Flow Using Satellite Remote Sensing and Process Modeling in High Mountain Asia (United States)

    McDonald, K. C.


    Snow- and glacier-fed river systems originating from High Mountain Asia (HMA) support diverse ecosystems and provide the basis for food and energy production for more than a billion people living downstream. Climate-driven changes in the melting of snow and glaciers and in precipitation patterns are expected to significantly alter the flow of the rivers in the HMA region at various temporal scales, which in turn could heavily affect the socioeconomics of the region. Hence, climate change effects on seasonal and long-term hydrological conditions may have far reaching economic impact annually and over the century. We are developing a decision support tool utilizing integrated microwave remote sensing datasets, process modeling and economic models to inform water resource management decisions and ecosystem sustainability as related to the High Mountain Asia (HMA) region's response to climate change. The availability of consistent time-series microwave remote sensing datasets from Earth-orbiting scatterometers, radiometers and synthetic aperture radar (SAR) imagery provides the basis for the observational framework of this monitoring system. We discuss the assembly, processing and application of scatterometer and SAR data sets from the Advanced Scatterometer (ASCAT) and Sentinal-1 SARs, and the enlistment of these data to monitor seasonal melt and thaw status of glacier-dominated and surrounding regions. We present current status and future plans for this effort. Our team's study emphasizes processes and economic modeling within the Trishuli basin; our remote sensing analysis supports analyses across the HiMAT domain.

  5. Non-domestic phosphorus release in rivers during low-flow: Mechanisms and implications for sources identification (United States)

    Dupas, Rémi; Tittel, Jörg; Jordan, Phil; Musolff, Andreas; Rode, Michael


    A common assumption in phosphorus (P) load apportionment studies is that P loads in rivers consist of flow independent point source emissions (mainly from domestic and industrial origins) and flow dependent diffuse source emissions (mainly from agricultural origin). Hence, rivers dominated by point sources will exhibit highest P concentration during low-flow, when flow dilution capacity is minimal, whereas rivers dominated by diffuse sources will exhibit highest P concentration during high-flow, when land-to-river hydrological connectivity is maximal. Here, we show that Soluble Reactive P (SRP) concentrations in three forested catchments free of point sources exhibited seasonal maxima during the summer low-flow period, i.e. a pattern expected in point source dominated areas. A load apportionment model (LAM) is used to show how point sources contribution may have been overestimated in previous studies, because of a biogeochemical process mimicking a point source signal. Almost twenty-two years (March 1995-September 2016) of monthly monitoring data of SRP, dissolved iron (Fe) and nitrate-N (NO3) were used to investigate the underlying mechanisms: SRP and Fe exhibited similar seasonal patterns and opposite to that of NO3. We hypothesise that Fe oxyhydroxide reductive dissolution might be the cause of SRP release during the summer period, and that NO3 might act as a redox buffer, controlling the seasonality of SRP release. We conclude that LAMs may overestimate the contribution of P point sources, especially during the summer low-flow period, when eutrophication risk is maximal.

  6. Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system. (United States)

    Wilding, Andrew; Liu, Ruixia; Zhou, John L


    Through cross-flow filtration (CFF) with a 1-kDa regenerated cellulose Pellicon 2 module, the ultrafiltration characteristics of river organic matter from Longford Stream, UK, were investigated. The concentration of organic carbon (OC) in the retentate in the Longford Stream samples increased substantially with the concentration factor (cf), reaching approximately 40 mg/L at cf 15. The results of dissolved organic carbon (DOC) and colloidal organic carbon (COC) analysis, tracking the isolation of colloids from river waters, show that 2 mg/L of COC was present in those samples and good OC mass balance (77-101%) was achieved. Fluorescence measurements were carried out for the investigation of retentate and permeate behaviour of coloured dissolved organic materials (CDOM). The concentrations of CDOM in both the retentate and permeate increased with increasing cf, although CDOM were significantly more concentrated in the retentate. The permeation model expressing the correlation between log[CDOM] in the permeate and logcf was able to describe the permeation behaviour of CDOM in the river water with regression coefficients (r(2)) of 0.94 and 0.98. Dry weight analysis indicated that the levels of organic colloidal particles were from 49 to 71%, and between 29 and 51% of colloidal particles present were inorganic. COC as a percentage of DOC was found to be 10-16% for Longford Stream samples.

  7. Adaptive management of flows in the lower Roanoke River, North Carolina, USA. (United States)

    Pearsall, Sam H; McCrodden, Brian J; Townsend, Philip A


    The lower Roanoke River in North Carolina, USA, has been regulated by a series of dams since the 1950s. This river and its floodplain have been identified by The Nature Conservancy, the US Fish and Wildlife Service, and the State of North Carolina as critical resources for the conservation of bottomland hardwoods and other riparian and in-stream biota and communities. Upstream dams are causing extended floods in the growing season for bottomland hardwood forests, threatening their survival. A coalition of stakeholders including public agencies and private organizations is cooperating with the dam managers to establish an active adaptive management program to reduce the negative impacts of flow regulation, especially extended growing season inundation, on these conservation targets. We introduce the lower Roanoke River, describe the regulatory context for negotiating towards an active adaptive management program, present our conservation objective for bottomland hardwoods, and describe investigations in which we successfully employed a series of models to develop testable management hypotheses. We propose adaptive management strategies that we believe will enable the bottomland hardwoods to regenerate and support their associated biota and that are reasonable, flexible, and economically sustainable.

  8. A long range dependent model with nonlinear innovations for simulating daily river flows

    Directory of Open Access Journals (Sweden)

    P. Elek


    Full Text Available We present the analysis aimed at the estimation of flood risks of Tisza River in Hungary on the basis of daily river discharge data registered in the last 100 years. The deseasonalised series has skewed and leptokurtic distribution and various methods suggest that it possesses substantial long memory. This motivates the attempt to fit a fractional ARIMA model with non-Gaussian innovations as a first step. Synthetic streamflow series can then be generated from the bootstrapped innovations. However, there remains a significant difference between the empirical and the synthetic density functions as well as the quantiles. This brings attention to the fact that the innovations are not independent, both their squares and absolute values are autocorrelated. Furthermore, the innovations display non-seasonal periods of high and low variances. This behaviour is characteristic to generalised autoregressive conditional heteroscedastic (GARCH models. However, when innovations are simulated as GARCH processes, the quantiles and extremes of the discharge series are heavily overestimated. Therefore we suggest to fit a smooth transition GARCH-process to the innovations. In a standard GARCH model the dependence of the variance on the lagged innovation is quadratic whereas in our proposed model it is a bounded function. While preserving long memory and eliminating the correlation from both the generating noise and from its square, the new model is superior to the previously mentioned ones in approximating the probability density, the high quantiles and the extremal behaviour of the empirical river flows.

  9. Flow seasonality and fish assemblage in a tropical river, French Guiana, South America

    Directory of Open Access Journals (Sweden)

    Francisco Leonardo Tejerina-Garro

    Full Text Available The objective of this study is to verify the existence of a seasonal pattern of variation in the fish assemblages of a tropical river using taxonomic and functional descriptors. Fish were sampled using gillnets at two sites on the Comté River, a large-sized river 254.8 km long, flowing entirely through rainforest areas of French Guiana. Samplings were conducted every other month from August 1998 to July 2000. Four types of fish assemblage descriptors were used: the species descriptor (number of individual fish of each species in the sample; the family descriptor (number of individual fish of each family in the sample; the trophic descriptor (distribution of the fish biomass in each feeding guild and the specific maximum observed size - MOS (number of individual fish in each of four classes of MOS: 300 mm. Results point out that changes in the fish assemblage are related to water level oscillations. The role of migration seems to be weak and is limited to trophic displacements characteristic of few species. In the low-water season, characterized by weak water level oscillation, fish species and families belonging to piscivorous or aquatic invertivorous guilds were predominant, whereas in the high-water season the environment is submitted to strong variations caused by fast and large water level oscillations, and the fish assemblage was characterized by species or families with an opportunistic omnivorous diet.

  10. Measurement of the ecological flow of the Acaponeta river, Nayarit, comparing different time intervals

    Directory of Open Access Journals (Sweden)

    Guadalupe de la Lanza Espino


    Full Text Available The diverse management of river water in Mexico has been unequal due to the different anthropological activities, and it is associated with inter-annual changes in the climate and runoff patterns, leading to a loss of the ecosystem integrity. However, nowadays there are different methods to assess the water volume that is necessary to conserve the environment, among which are hydrological methods, such as those applied here, that are based on information on water volumes recorded over decades, which are not always available in the country. For this reason, this study compares runoff records for different time ranges: minimum of 10 years, medium of 20 years, and more than 50 years, to quantify the environmental flow. These time intervals provided similar results, which mean that not only for the Acaponeta river, but possibly for others lotic systems as well, a 10-year interval may be used satisfactorily. In this river, the runoff water that must be kept for environmental purposes is: for 10 years 70.1%, for 20 years 78.1% and for >50 years 68.8%, with an average of 72.3% of the total water volume or of the average annual runoff.

  11. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow (United States)

    Erban, Laura E.; Gorelick, Steven M.


    Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season ;deficit; area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.

  12. About the high flow regime of the rivers of Kosovo and Metohia

    Directory of Open Access Journals (Sweden)

    Živković Nenad


    Full Text Available The examples from Kosovo and Metohia attempted to point to some problems in the domain of hydrogeographic regionalization. The river water regime, especially the phase of high flows which marks this regime, has been the topic of almost all researches which treat water resources of drainage basins. However, the thing that has not been achieved till now is the unique solution by which the classification of rivers would be made according to this feature. On this example it has been shown that even some older methods, based on genetic analysis of hydrograms and of global type, as well as some recent ones, with lot of quantitative entry and regional approaches, cannot with certainty answer all the challenges which river regimes bring with themselves. This work shows that apart from climate, orographic and physiognomic features of drainage basins, the periods of data processing and the analysis of individual intra-annual series of discharges are very important as well. Discretization on time periods shorter than one month, as well as elimination of the extreme values of discharges in the longtime series is recommended for the future research.

  13. The effects of parameter variation on MSET models of the Crystal River-3 feedwater flow system

    International Nuclear Information System (INIS)

    Miron, A.


    In this paper we develop further the results reported in Reference 1 to include a systematic study of the effects of varying MSET models and model parameters for the Crystal River-3 (CR) feedwater flow system The study used archived CR process computer files from November 1-December 15, 1993 that were provided by Florida Power Corporation engineers Fairman Bockhorst and Brook Julias. The results support the conclusion that an optimal MSET model, properly trained and deriving its inputs in real-time from no more than 25 of the sensor signals normally provided to a PWR plant process computer, should be able to reliably detect anomalous variations in the feedwater flow venturis of less than 0.1% and in the absence of a venturi sensor signal should be able to generate a virtual signal that will be within 0.1% of the correct value of the missing signal

  14. Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps

    International Nuclear Information System (INIS)

    Cho, S.M.; Zury, H.L.; Cook, M.E.; Fair, C.E.


    The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results

  15. Spaceflight Flow Cytometry: Design Challenges and Applications (United States)

    Pappas, Dimitri; Kao, Shih-Hsin; Jeevarajan, Antony S.


    Future space exploration missions will require analytical technology capable of providing both autonomous medical care to the crew and investigative capabilities to researchers. While several promising candidate technologies exist for further development, flow cytometry is an attractive technology as it offers both crew health and a wide array of biochemistry and immunology assays. While flow cytometry has been widely used for cellular analysis in both clinical and research settings, the requirements for proper operation in spaceflight impose constraints on any instrument designs. The challenges of designing a spaceflight-ready flow cytometer are discussed, as well as some preliminary results using a prototype system.

  16. Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed. (United States)

    Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.


    To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to

  17. Determination of flow times, flow velocities and longitudinal dispersion in the Middle and Lower Rhine River using 3HHO as a tracer

    International Nuclear Information System (INIS)

    Krause, J.; Mundschenk, H.


    Flow times, flow velocities and parameters describing the longitudinal dispersion in the Middle and Lower Rhine river under natural conditions were determined by use of intermittent emissions of tritated wastewater from nuclear power plants during normal operation situated on the Upper Rhine. In cases of accidental releases of radioactive materials, these data would be the basis of prognoses by which the dispersion behaviour of contaminated sections along the course of river Rhine can be described and radiological consequences within the socalled critical impact areas estimated. (orig.) [de

  18. Investigating the impact of land cover change on peak river flow in UK upland peat catchments, based on modelled scenarios (United States)

    Gao, Jihui; Holden, Joseph; Kirkby, Mike


    Changes to land cover can influence the velocity of overland flow. In headwater peatlands, saturation means that overland flow is a dominant source of runoff, particularly during heavy rainfall events. Human modifications in headwater peatlands may include removal of vegetation (e.g. by erosion processes, fire, pollution, overgrazing) or pro-active revegetation of peat with sedges such as Eriophorum or mosses such as Sphagnum. How these modifications affect the river flow, and in particular the flood peak, in headwater peatlands is a key problem for land management. In particular, the impact of the spatial distribution of land cover change (e.g. different locations and sizes of land cover change area) on river flow is not clear. In this presentation a new fully distributed version of TOPMODEL, which represents the effects of distributed land cover change on river discharge, was employed to investigate land cover change impacts in three UK upland peat catchments (Trout Beck in the North Pennines, the Wye in mid-Wales and the East Dart in southwest England). Land cover scenarios with three typical land covers (i.e. Eriophorum, Sphagnum and bare peat) having different surface roughness in upland peatlands were designed for these catchments to investigate land cover impacts on river flow through simulation runs of the distributed model. As a result of hypothesis testing three land cover principles emerged from the work as follows: Principle (1): Well vegetated buffer strips are important for reducing flow peaks. A wider bare peat strip nearer to the river channel gives a higher flow peak and reduces the delay to peak; conversely, a wider buffer strip with higher density vegetation (e.g. Sphagnum) leads to a lower peak and postpones the peak. In both cases, a narrower buffer strip surrounding upstream and downstream channels has a greater effect than a thicker buffer strip just based around the downstream river network. Principle (2): When the area of change is equal

  19. The Role of Small Impoundments on Flow Alteration Within River Networks (United States)

    Brogan, C. O.; Keys, T.; Scott, D.; Burgholzer, R.; Kleiner, J.


    Numerous water quality and quantity models have been established to illustrate the ecologic and hydrologic effects of large reservoirs. Smaller, unregulated ponds are often assumed to have a negligible impact on watershed flow regimes even though they overwhelmingly outnumber larger waterbodies. Individually, these small impoundments impart merely a fraction of the flow alteration larger reservoirs do; however, a network of ponds may act cumulatively to alter the flow regime. Many models have attempted to study smaller impoundments but rely on selectively available rating curves or bathymetry surveys. This study created a generalized process to model impoundments of varying size across a 58 square mile watershed exclusively using satellite imagery and publicly available information as inputs. With information drawn from public Army Corps of Engineers databases and LiDAR surveys, it was found that impoundment surface and drainage area served as useful explanatory variables, capable of predicting both pond bathymetry and outlet structure area across the 37 waterbodies modeled within the study area. Working within a flow routing model with inputs from the Chesapeake Bay HSPF model and verified with USGS gauge data, flow simulations were conducted with increasing number of impoundments to quantify how small ponds affect the overall flow regime. As the total impounded volume increased, simulations showed a notable reduction in both low and peak flows. Medium-sized floods increased as the network of ponds and reservoirs stabilized the catchment's streamflow. The results of this study illustrate the importance of including ponded waters into river corridor models to improve downstream management of both water quantity and quality.

  20. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004 (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.


    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  1. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s (United States)

    Sauquet, Eric


    . A model of water management similar to the tools used by Electricité De France was calibrated to simulate the behavior of the three reservoirs Serre-Ponçon, Castillon, Sainte-Croix on present-day conditions. This model simulates water releases from reservoir under constraints imposed by rule curves, ecological flows downstream to the dams and water levels in summer for recreational purposes. The results demonstrate the relatively good performance of this simplified model and its ability to represent the influence of reservoir operations on the natural hydrological river flow regime, the decision-making involved in water management and the interactions at regional scale. Four territorial socio-economic scenarios have been also elaborated with the help of stake holders to project water needs in the 2050s for the area supplied with water from the Durance River basin. This presentation will focus on the specific tools developed within the project to simulate water management and water abstractions. The main conclusions related to the risk of water shortage in the 2050s and the level of satisfaction for each water use will be also discussed.

  2. The application of neural networks to flow regime identification

    International Nuclear Information System (INIS)

    Embrechts, M.; Yapo, T.C.; Lahey, R.T. Jr.


    This paper deals with the application of a Kohonen map for the identification of two-phase flow regimes where a mixture of gas and fluid flows through a horizontal tube. Depending on the relative flow velocities of the gas and the liquid phase, four distinct flow regimes can be identified: Wavy flow, plug flow, slug flow and annular flow. A schematic of these flow regimes is presented. The objective identification of two-phase flow regimes constitutes an important and challenging problem for the design of safe and reliable nuclear power plants. Previous attempts to classify these flow regimes are reviewed by Franca and Lahey. The authors describe how a Kohonen map can be applied to distinguish between flow regimes based on the Fourier power spectra and wavelet transforms of pressure drop fluctuations. The Fourier power spectra allowed the Kohonen map to identify the flow regimes successfully. In contrast, the Kohonen maps based on a wavelet transform could only distinguish between wavy and annular flows. An analysis of typical two-phase pressure drop data for an air/water mixture in a horizontal pipe is presented. Use of the wavelet transform and the Kohonen feature map are discussed

  3. Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River (United States)

    Czuba, J.A.; Best, J.L.; Oberg, K.A.; Parsons, D.R.; Jackson, P.R.; Garcia, M.H.; Ashmore, P.


    An integrated multibeam echo sounder and acoustic Doppler current profiler field survey was conducted in July 2008 to investigate the morphodynamics of the St. Clair River at the outlet of Lake Huron. The principal morphological features of the upper St. Clair River included flow-transverse bedforms that appear weakly mobile, erosive bedforms in cohesive muds, thin non-cohesive veneers of weakly mobile sediment that cover an underlying cohesive (till or glacio-lacustrine) surface, and vegetation that covers the bed. The flow was characterized by acceleration as the banks constrict from Lake Huron into the St. Clair River, an approximately 1500-m long region of flow separation downstream from the Blue Water Bridge, and secondary flow connected to: i) channel curvature; ii) forcing of the flow by local bed topography, and iii) flow wakes in the lee side of ship wrecks. Nearshore, sand-sized, sediment from Lake Huron was capable of being transported into, and principally along, the banks of the upper St. Clair River by the measured flow. A comparison of bathymetric surveys conducted in 2007 and 2008 identifies that the gravel bed does undergo slow downstream movement, but that this movement does not appear to be generated by the mean flow, and could possibly be caused by ship-propeller-induced turbulence. The study results suggest that the measured mean flow and dredging within the channel have not produced major scour of the upper St. Clair River and that the recent fall in the level of Lake Huron is unlikely to have been caused by these mechanisms. ?? 2011.

  4. Application of advanced diagnostics to airblast injector flows (United States)

    Mcvey, John B.; Kennedy, Jan B.; Russell, Sid


    This effort is concerned with the application of both conventional laser velocimetry and phase Doppler anemometry to the flow produced by an airblast nozzle. The emphasis is placed on the acquisition of data using actual engine injector/swirler components at (noncombusting) conditions simulating those encountered in the engine. The objective of the effort was to test the applicability of the instrumentation to real injector flows, to develop information on the behavior of injectors at high flow, and to provide data useful in the development of physical models of injector flows.

  5. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. (United States)

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi


    Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.

  6. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali


    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  7. Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta River (United States)

    D'Alpaos, L.; Martini, P.; Carniello, L.


    The paper deals with numerical modelling of flood waves and suspended sediment in plain river basins. The two dimensional depth integrated momentum and continuity equations, modified to take into account of the bottom irregularities that strongly affect the hydrodynamic and the continuity in partially dry areas (for example, during the first stages of a plain flooding and in tidal flows), are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme and considering the role both of the small channel network and the regulation dispositive on the flooding wave propagation. Transport of suspended sediment and bed evolution are coupled with the flood propagation through the convection-dispersion equation and the Exner's equation. Results of a real case study are presented in which the effects of extreme flood of Brenta River (Italy) are examinated. The flooded areas (urban and rural areas) are identified and a mitigation solution based on a diversion channel flowing into Venice Lagoon is proposed. We show that this solution strongly reduces the flood risk in the downstream areas and can provide an important sediment source to the Venice Lagoon. Finally, preliminary results of the sediment dispersion in the Venice Lagoon are presented.

  8. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    P. Gao


    Full Text Available Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P P P P P < 0.05, respectively. The impact of precipitation or human activity on the reduction amount after the transition years was estimated by double mass curves of precipitation vs. stream flow (sediment. For reductions in stream flow and sediment discharge, the contribution rate of human activity was found to be 82.80 and 95.56%, respectively, and was significantly stronger than the contribution rate of precipitation. This evidence clearly suggests that, in the absence of significant decreases in precipitation

  9. Application of the ELOHA framework to regulated rivers in the upper Tennessee River Basin: A case study (United States)

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff; David C. Mathews


    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and...

  10. 77 FR 73636 - Rock River Beach, Inc.; Notice of Application Tendered for Filing With the Commission and... (United States)


    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14345-001] Rock River Beach.... c. Date filed: November 23, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock River, in the Town of Onota, Alger County...

  11. 77 FR 2966 - Rock River Beach, Inc.; Notice of Application Tendered for Filing With the Commission and... (United States)


    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14345-000] Rock River Beach.... c. Filing Date: January 5, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock River, in the Township of Onota, Alger County...

  12. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system (United States)

    Jidin, Razali; Othman, Bahari


    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  13. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    International Nuclear Information System (INIS)

    Jidin, Razali; Othman, Bahari


    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  14. Estimating the Natural Flow Regime of Rivers With Long-Standing Development: The Northern Branch of the Rio Grande (United States)

    Blythe, Todd L.; Schmidt, John C.


    An estimate of a river's natural flow regime is useful for water resource planning and ecosystem rehabilitation by providing insight into the predisturbance form and function of a river. The natural flow regime of most rivers has been perturbed by development during the 20th century and in some cases, before stream gaging began. The temporal resolution of natural flows estimated using traditional methods is typically not sufficient to evaluate cues that drive native ecosystem function. Additionally, these traditional methods are watershed specific and require large amounts of data to produce accurate results. We present a mass balance method that estimates natural flows at daily time step resolution for the northern branch of the Rio Grande, upstream from the Rio Conchos, that relies only on easily obtained streamflow data. Using an analytical change point method, we identified periods of the measured flow regime during the 20th century for comparison with the estimated natural flows. Our results highlight the significant deviation from natural conditions that occurred during the 20th century. The total annual flow of the northern branch is 95% lower than it would be in the absence of human use. The current 2 year flood has decreased by more than 60%, is shorter in duration, and peaks later in the year. When compared to unregulated flows estimated using traditional mass balance accounting methods, our approach provides similar results.

  15. Using Flow-Ecology Relationships to Evaluate Ecosystem Service Trade-Offs and Complementarities in the Nation's Largest River Swamp (United States)

    Kozak, Justin P.; Bennett, Micah G.; Hayden-Lesmeister, Anne; Fritz, Kelley A.; Nickolotsky, Aaron


    Large river systems are inextricably linked with social systems; consequently, management decisions must be made within a given ecological, social, and political framework that often defies objective, technical resolution. Understanding flow-ecology relationships in rivers is necessary to assess potential impacts of management decisions, but translating complex flow-ecology relationships into stakeholder-relevant information remains a struggle. The concept of ecosystem services provides a bridge between flow-ecology relationships and stakeholder-relevant data. Flow-ecology relationships were used to explore complementary and trade-off relationships among 12 ecosystem services and related variables in the Atchafalaya River Basin, Louisiana. Results from Indicators of Hydrologic Alteration were reduced to four management-relevant hydrologic variables using principal components analysis. Multiple regression was used to determine flow-ecology relationships and Pearson correlation coefficients, along with regression results, were used to determine complementary and trade-off relationships among ecosystem services and related variables that were induced by flow. Seven ecosystem service variables had significant flow-ecology relationships for at least one hydrologic variable ( R 2 = 0.19-0.64). River transportation and blue crab ( Callinectes sapidus) landings exhibited a complementary relationship mediated by flow; whereas transportation and crawfish landings, crawfish landings and crappie ( Pomoxis spp.) abundance, and blue crab landings and blue catfish ( Ictalurus furcatus) abundance exhibited trade-off relationships. Other trade-off and complementary relationships among ecosystem services and related variables, however, were not related to flow. These results give insight into potential conflicts among stakeholders, can reduce the dimensions of management decisions, and provide initial hypotheses for experimental flow modifications.

  16. Using Flow-Ecology Relationships to Evaluate Ecosystem Service Trade-Offs and Complementarities in the Nation's Largest River Swamp. (United States)

    Kozak, Justin P; Bennett, Micah G; Hayden-Lesmeister, Anne; Fritz, Kelley A; Nickolotsky, Aaron


    Large river systems are inextricably linked with social systems; consequently, management decisions must be made within a given ecological, social, and political framework that often defies objective, technical resolution. Understanding flow-ecology relationships in rivers is necessary to assess potential impacts of management decisions, but translating complex flow-ecology relationships into stakeholder-relevant information remains a struggle. The concept of ecosystem services provides a bridge between flow-ecology relationships and stakeholder-relevant data. Flow-ecology relationships were used to explore complementary and trade-off relationships among 12 ecosystem services and related variables in the Atchafalaya River Basin, Louisiana. Results from Indicators of Hydrologic Alteration were reduced to four management-relevant hydrologic variables using principal components analysis. Multiple regression was used to determine flow-ecology relationships and Pearson correlation coefficients, along with regression results, were used to determine complementary and trade-off relationships among ecosystem services and related variables that were induced by flow. Seven ecosystem service variables had significant flow-ecology relationships for at least one hydrologic variable (R (2) = 0.19-0.64). River transportation and blue crab (Callinectes sapidus) landings exhibited a complementary relationship mediated by flow; whereas transportation and crawfish landings, crawfish landings and crappie (Pomoxis spp.) abundance, and blue crab landings and blue catfish (Ictalurus furcatus) abundance exhibited trade-off relationships. Other trade-off and complementary relationships among ecosystem services and related variables, however, were not related to flow. These results give insight into potential conflicts among stakeholders, can reduce the dimensions of management decisions, and provide initial hypotheses for experimental flow modifications.

  17. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale (United States)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter


    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal

  18. The application of team flow theory

    NARCIS (Netherlands)

    Hout, van den J.J.J.; Davis, O.C.; Walrave, B.; Harmat, L.; Orsted Andersen, F.; Ullen, F.; Wright, J.; Sadlo, G.


    Despite the noted potential for ‘team flow’ to enhance a team’s effectiveness, productivity, performance, and capabilities, studies on the construct are scarce. Most research on flow has been conducted either at the individual level, which generally constitutes the experience of complete absorption

  19. Document flow segmentation for business applications (United States)

    Daher, Hani; Belaïd, Abdel


    The aim of this paper is to propose a document flow supervised segmentation approach applied to real world heterogeneous documents. Our algorithm treats the flow of documents as couples of consecutive pages and studies the relationship that exists between them. At first, sets of features are extracted from the pages where we propose an approach to model the couple of pages into a single feature vector representation. This representation will be provided to a binary classifier which classifies the relationship as either segmentation or continuity. In case of segmentation, we consider that we have a complete document and the analysis of the flow continues by starting a new document. In case of continuity, the couple of pages are assimilated to the same document and the analysis continues on the flow. If there is an uncertainty on whether the relationship between the couple of pages should be classified as a continuity or segmentation, a rejection is decided and the pages analyzed until this point are considered as a "fragment". The first classification already provides good results approaching 90% on certain documents, which is high at this level of the system.

  20. Flow time, flow velocity and longitudinal dispersion in Moselle and Weser rivers; Fliesszeit, Fliessgeschwindigkeit und Longitudinale Dispersion in Mosel und Weser

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.J.; Krinitzky, T.; Cremer, M. [Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz (Germany)


    Since 1980, the Federal Institute of Hydrology has performed dispersion investigations with tritium as a tracer on Federal Waterways. The aim was to establish dispersion prognoses, i.e. forecasts of the longitudinal dispersion of concentrations of noxious substances in the water column. Characteristic parameters like discharge-relevant flow velocities, dispersion and elimination constants of emittent sites and selected river sections will be determined. They will serve as basis for a mathematical model permitting to forecast discharge-relevant flow velocities, expected impact times, concentration maxima and the duration of critical concentration increases. In the following, the results obtained at the Moselle river and the investigations carried out on the Weser river will be shortly described. (orig.)

  1. Application of water quality models to rivers in Johor (United States)

    Chii, Puah Lih; Rahman, Haliza Abd.


    River pollution is one the most common hazard in many countries in the world, which includes Malaysia. Many rivers have been polluted because of the rapid growth in industrialization to support the country's growing population and economy. Domestic and industrial sewage, agricultural wastes have polluted the rivers and will affect the water quality. Based on the Malaysia Environment Quality Report 2007, the Department of Environment (DOE) has described that one of the major pollutants is Biochemical Oxygen Demand (BOD). Data from DOE in 2004, based on BOD, 18 river basins were classified polluted, 37 river basins were slightly polluted and 65 river basins were in clean condition. In this paper, two models are fitted the data of rivers in Johor state namely Streeter-Phelps model and nonlinear regression (NLR) model. The BOD concentration data for the two rivers in Johor state from year 1981 to year 1990 is analyzed. To estimate the parameters for the Streeter-Phelps model and NLR model, this study focuses on the weighted least squares and Gauss-Newton method respectively. Based on the value of Mean Square Error, NLR model is a better model compared to Streeter-Phelps model.

  2. Solute Response To Arid-Climate Managed-River Flow During Storm Events (United States)

    McLean, B.; Shock, E.


    Storm pulses are widely used in unmanaged, temperate and subtropical river systems to resolve in-stream surface and subsurface flow components. Resulting catchment-scale hydrochemical mixing models yield insight into mechanisms of solute transport. Managed systems are far more complicated due to the human need for high quality water resources, which drives processes that are superimposed on most, if not all, of the unmanaged components. As an example, an increasingly large portion of the water supply for the Phoenix metropolitan area is derived from multiple surface water sources that are impounded, diverted and otherwise managed upstream from the urban core that consumes the water and produces anthropogenic impacts. During large storm events this managed system is perturbed towards natural behavior as it receives inputs from natural hydrologic pathways in addition to impervious surfaces and storm water drainage channels. Our goals in studying managed river systems during this critical transition state are to determine how the well- characterized behavior of natural systems break down as the system responds then returns to its managed state. Using storm events as perturbations we can contrast an arid managed system with the unmanaged system it approaches during the storm event. In the process, we can extract geochemical consequences specifically related to unknown urban components in the form of chemical fingerprints. The effects of river management on solute behavior were assessed by taking advantage of several anomalously heavy winter storm events in late 2004 and early 2005 using a rigorous sampling routine. Several hundred samples collected between January and October 2005 were analyzed for major ion, isotopic, and trace metal concentrations with 78 individual measurements for each sample. The data are used to resolve managed watershed processes, mechanisms of solute transport and river mixing from anthropogenic inputs. Our results show that concentrations of

  3. Application of Microbial Technology Used in Bioremediation of Urban Polluted River: A Case Study of Chengnan River, China

    Directory of Open Access Journals (Sweden)

    Hong Gao


    Full Text Available Contrary to the constraints in time, investment, and management of the traditional technology for waste water treatment, this paper seeks to propose a more advanced, reliable, and affordable new technology to restore urban polluted rivers to pristine quality levels. The paper also presents new ideas on the selection and use of microbial agents to improve the efficiency of pollution removal. It presents the successful implementation of microbial technology (MT on Chengnan River, which was heavily polluted before MT implementation. Without artificial aeration, sediment dredging, or complete sewage interception, we directly sprayed a previously configured HP-RPe-3 Microbial Agent into the water body and sediment. We considered the feasibility of MT for treating polluted urban rivers from the perspective of several water quality indices evaluation methods. After the treatment, the concentration of dissolved oxygen (DO reached 5.0 mg/L, the removal rates of ammonia nitrogen (NH3-N and chemical oxygen demand (COD reached 20% and 38% respectively, and the average degradation rate of total phosphorus (TP along river was close to 15%. Also, the Nemerow Index of the river was reduced from 2.7 to 1.9. The Fuzzy Comprehensive Index shows a tendency for improvement from Inferior Grade V to a better grade (approximately Grade III. The color of the river water changed, from black or dark green, to its original color. The results indicate that the bioremediation technology of directly adding microbial agents mainly aimed for the degradation of NH3-N can preliminarily eliminate the black-odor phenomenon of urban rivers, and improve their water quality. It is expected that the MT application, and the concept of how to select the corresponding microbial agents according to main pollutants, can be widely accepted and applied to similar cases.

  4. Studying and modelling variable density turbulent flows for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.


    Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.). 18 refs.

  5. Studying and modelling variable density turbulent flows for industrial applications

    International Nuclear Information System (INIS)

    Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.


    Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.)

  6. Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India. (United States)

    Jin, Li; Whitehead, Paul G; Rodda, Harvey; Macadam, Ian; Sarkar, Sananda


    Delta systems formed by the deposition of sediments at the mouths of large catchments are vulnerable to sea level rise and other climate change impacts. Deltas often have some of the highest population densities in the world and the Mahanadi Delta in India is one of these, with a population of 39 million. The Mahanadi River is a major river in East Central India and flows through Chattisgarh and Orissa states before discharging into the Bay of Bengal. This study uses an Integrated Catchment Model (INCA) to simulate flow dynamics and water quality (nitrogen and phosphorus) and to analyze the impacts of climate change and socio-economic drivers in the Mahanadi River system. Future flows affected by large population growth, effluent discharge increases and changes in irrigation water demand from changing land uses are assessed under shared socio-economic pathways (SSPs). Model results indicate a significant increase in monsoon flows under the future climates at 2050s (2041-2060) and 2090s (2079-2098) which greatly enhances flood potential. The water availability under low flow conditions will be worsened because of increased water demand from population growth and increased irrigation in the future. Decreased concentrations of nitrogen and phosphorus are expected due to increased flow hence dilution. Socio-economic scenarios have a significant impact on water quality but less impact on the river flow. For example, higher population growth, increased sewage treatment discharges, land use change and enhanced atmospheric deposition would result in the deterioration of water quality, while the upgrade of the sewage treatment works lead to improved water quality. In summary, socio-economic scenarios would change future water quality of the Mahanadi River and alter nutrient fluxes transported into the delta region. This study has serious implications for people's livelihoods in the deltaic area and could impact coastal and Bay of Bengal water ecology. Copyright © 2018

  7. Analysis and Application of River Surface Line in Hilly Area based on Hec-ras Model

    Directory of Open Access Journals (Sweden)

    Yang Congshan


    Full Text Available For example—Cixian Fuyang River Regulation Project. Due to the character that Fuyang River is located in hilly areas of Cixian, we use the Hex-ras software to calculate the status of the river water surface line for the goal of determining the final treatment plan. We maintain the present situation of the river channel design as principle, select the most appropriate pushed water level and roughnessas the basic, and we combine the classification calculation of crossing structures of backwater and the encryption calculation section to get the more accurate result. We compare the water level elevation and the calculation of cross strait, analyze the design parameters, calculate repeated the water line section, analyze the rationality of the design plan, and then finally determine the applicability of Hex-rac software in the large continuous variation of cross section of embankment of river river surface line.

  8. Flow and suspended-sand behavior in large rivers after dredging. (United States)

    Yuill, B. T.; Wang, Y.; Allison, M. A.; Meselhe, E. A.


    Dredging is commonly used in large rivers to promote navigation and provide sediment for engineering projects. Channel bars typically have thicker, coarser sediment deposits than elsewhere on the channel bed and are often the focus of dredging projects. Bar dredging may create deep pits ("borrow pits") that significantly alter flow and sediment transport. Locally, the pit acts as a large bedform, contracting and expanding the flow field and enhancing turbulence. At the reach scale, the pit acts as a new sediment sink and disrupts the sediment budget which may have consequences for channel stability and aquatic ecosystem health. In this study, we focus on the local impact of the borrow pit and how it, similar to dunes, creates a turbulent wake within the downstream flow column. We hypothesize that this wake may have implications for the overlapping suspended-sediment transport fields. Efficient dredging operations requires the ability to predict channel infilling/recovery timescales and in large, sandy rivers, a substantial fraction of the sediment infilling results from the settling of suspended sediment. However, if the turbulent wake significantly alters pathways of sediment settling within the borrow pit, typical models of sediment deposition that do not account for the wake effects may not apply. To explore this problem, we use numerical modelling to predict sand behavior with and without resolving the effects of wake turbulence. Wake turbulence is resolved using detached-eddy simulation and sand settling is simulated using Lagrangian particle tracking. Our study area is a >1 km2 channel bar in the lower Mississippi River, which was dredged in October 2016. We used vessel-based measurements (MBES, ADCP) to characterize the post-dredge hydrodynamic environment. Study results indicate that the turbulent wake significantly impacted suspended-sand behavior as it entered the borrow pit and large eddies increased the vertical grain velocities, mean grain settling was

  9. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications


    Jang, Jaesung; Wereley, Steven


    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both wal...

  10. The use and applicability of flow models to quantify intermine flow in the Western Witbank coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Havenga, A.; Usher, B.; Hodgson, E.; van Tonder, G. [University of Free State, Bloemfontein (South Africa). Inst. of Groundwater Studies


    After the closure of collieries, they naturally start to fill up with water. As a result, hydraulic gradients develop between them and different hydraulic pressures are exerted onto peripheral areas or compartments within mines. This results in water flow between mines, or onto the surface. This flow is referred to as intermine flow. The collieries in the Witbank Coalfield have geometries such that there are several areas where this intermine flow is possible. Since the Department of Water Affairs and Forestry has declared intermine flow as one of its greatest concerns for granting closure to South African mines, much research into this phenomenon is required. The challenges in determining intermine flow are numerous, and attention has focused on identification of areas where these flows can take place. The quantification of these flows is problematic due to the uncertainties in exact geometric configurations and the variation in site-specific hydraulic properties of the coal and overlying lithological layers. During this study, use has been made of numerical flow modelling and several analytic solutions to test the applicability of the flow models as well as to predict groundwater flow directions, filling times of voids and flow volumes. The numerical modelling methodology entailed a downscaling approach starting with a broad regional model covering the entire area, followed by modelling the interactions between interconnected mines, and finally looking in detail at the major areas of interaction.

  11. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005 (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.


    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  12. Flow Battery Solution for Smart Grid Applications

    Energy Technology Data Exchange (ETDEWEB)



    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  13. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals

    International Nuclear Information System (INIS)

    Macintosh, K.A.; Jordan, P.; Cassidy, R.; Arnscheidt, J.; Ward, C.


    Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L −1 (0.018 mg TRP L −1 ) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km −2 to 4.6 km −2 and 13.8 km −2 to 17.2 km −2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.

  14. Groundwater flow simulation of the Savannah River Site general separations area

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The most recent groundwater flow model of the General Separations Area, Savannah River Site, is referred to as the “GSA/PORFLOW” model. GSA/PORFLOW was developed in 2004 by porting an existing General Separations Area groundwater flow model from the FACT code to the PORFLOW code. The preceding “GSA/FACT” model was developed in 1997 using characterization and monitoring data through the mid-1990’s. Both models were manually calibrated to field data. Significantly more field data have been acquired since the 1990’s and model calibration using mathematical optimization software has become routine and recommended practice. The current task involved updating the GSA/PORFLOW model using selected field data current through at least 2015, and use of the PEST code to calibrate the model and quantify parameter uncertainty. This new GSA groundwater flow model is named “GSA2016” in reference to the year in which most development occurred. The GSA2016 model update is intended to address issues raised by the DOE Low-Level Waste (LLW) Disposal Facility Federal Review Group (LFRG) in a 2008 review of the E-Area Performance Assessment, and by the Nuclear Regulatory Commission in reviews of tank closure and Saltstone Disposal Facility Performance Assessments.

  15. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt


    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  16. Participatory scenario development for integrated assessment of nutrient flows in a Catalan river catchment

    Directory of Open Access Journals (Sweden)

    F. Caille


    Full Text Available Rivers in developed regions are under significant stress due to nutrient enrichment generated mainly by human activities. Excess nitrogen and phosphorus emissions are the product of complex dynamic systems influenced by various factors such as demographic, socio-economic and technological development. Using a Catalan river catchment, La Tordera (North-East of Spain, as a case study of an integrated and interdisciplinary environmental assessment of nutrient flows, we present and discuss the development of narrative socio-economic scenarios through a participatory process for the sustainable management of the anthropogenic sources of nutrients, nitrogen and phosphorus. In this context, scenarios are an appropriate tool to assist nutrient emissions modelling, and to assess impacts, possible pathways for socio-economic development and associated uncertainties. Evaluated against the 1993–2003 baseline period, scenarios target the 2030 horizon, i.e. through the implementation process of the Water Framework Directive (Directive 2000/60/EC. After a critical examination of the methodology used in the participatory development of socio-economic scenarios, we present four possible futures (or perspectives for the Catalan river catchment conceived by stakeholders invited to a workshop. Keys to the success of such a participatory process were trust, which enhanced openness, and disagreements, which fostered the group's creativity for scenario development. The translation of narrative socio-economic scenarios into meaningful nutrient emission scenarios is also discussed. By integrating findings of natural sciences and socio-economic analysis, we aim to assist decision makers and stakeholders in evaluating optimal management strategies for the anthropogenic sources of nitrogen and phosphorus.

  17. Analysis of heavy metal flow in the river Przemsza, Katowice region, using macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Lewander, M.


    The river Przemsza, in southern Poland, was investigated with the aim to determine the flow of Cd, Pb and Zn between the submerged macrophytes Potamogeton pectinatus and Myriophyllum verticillatum, sediment and water, and to find out if a pollution gradient was present along the investigated part of the river. In order to determine the uptake of heavy metals from water and sediment macrophytes were planted in pots along the river, in unpolluted and polluted sediment during six weeks in the summer of 1993. After harvesting the plants were dried, wet digested and analysed by atomic absorption spectrophotometry. Parallel in situ experiments and outdoor experiments in sealed jars were performed. No significant decreased pollution gradient in the sediment or the macrophytes content could be detected. However, the water concentration of Zn decreased slightly along the gradient and in both experiments Pb concentration in the water also decreased. The concentrations of metals in the plants and sediments were probably depending on local stream conditions as well as increasing organic content. The study suggests that the macrophytes took up metals both from water and sediment. The unpolluted sediment accumulated Pb and Zn in both experiments, while Cd was accumulated in the in situ experiment. Metal concentration in the polluted sediment decreased during the study period, either due to plant uptake or loss to the water. Metals lost from the polluted sediment to the water were taken up by the plant shoots. Lead mainly accumulated in the roots while Zn accumulated in the plant shoots, and Cd was distributed almost equally between shoots and roots. 18 refs, 2 figs, 6 tabs

  18. Community Based Warning and Evacuation System against Debris Flow in the Upper Jeneberang River, Gowa, South Sulawesi

    Directory of Open Access Journals (Sweden)

    Sutikno Hardjosuwarno


    Full Text Available Gigantic collapse of the Caldera wall of Mt. Bawakaraeng (2,830 m in March 2004 had supplied the sediment volume of 230 million to the most upper stream of Jeneberang River, which flowed down to the lower reach in the form of debris flow which is triggered by rainfall. The purpose of the research is to provide a system which is able to forecast the occurrence of debris flow, to identify the weak points along the river course, to identify the hazard areas and how to inform effectively and efficiently the warning messages to the inhabitants in the dangerous area by using the existing modern equipment combined with the traditional one. The standard rainfall which is used to judge the occurrence of debris flow was established by Yano method. It is based on the historical data of rainfall that trigger and not trigger to the occurrence of debris flow which is widely used in Japan so far. The hazard area was estimated by Two-Dimensional Simulation Model for debris flow, the debris flow arrival time at each point in the river were estimated by dividing their distance from reference point by debris flow velocity, where the check dam no. 7-1 in Manimbahoi was designated as reference point. The existing evacuation routes were checked by field survey, the strength and coverage of sound for kentongan and manual siren were examined using sound pressure level at the location of the existing monitoring post and the effectiveness of warning and evacuation were evaluated by comparing the warning and evacuation time against the debris flow arrival time. It was resulted that debris flow occurrence was triggered by short duration of high rainfall intensity, long duration of low rainfall intensity and the outbreak of natural dam which is formed by land slide or bank collapses. The hazard area of upper Jeneberang River are mostly located on the river terraces where the local inhabitants earn their living through cultivating the river terraces as paddy fields, dry

  19. Behavior and movement of formerly landlocked juvenile coho salmon after release into the free-flowing Cowlitz River, Washington (United States)

    Kock, Tobias J.; Henning, Julie A.; Liedtke, Theresa L.; Royer, Ida M.; Ekstrom, Brian K.; Rondorf, Dennis W.


    Formerly landlocked Coho Salmon (Oncorhynchus kisutch) juveniles (age 2) were monitored following release into the free-flowing Cowlitz River to determine if they remained in the river or resumed seaward migration. Juvenile Coho Salmon were tagged with a radio transmitter (30 fish) or Floy tag (1050 fish) and their behavior was monitored in the lower Cowlitz River. We found that 97% of the radio-tagged fish remained in the Cowlitz River beyond the juvenile outmigration period, and the number of fish dispersing downstream decreased with increasing distance from the release site. None of the tagged fish returned as spawning adults in the 2 y following release. We suspect that fish in our study failed to migrate because they exceeded a threshold in size, age, or physiological status. Tagged fish in our study primarily remained in the Cowlitz River, thus it is possible that these fish presented challenges to juvenile salmon migrating through the system either directly by predation or indirectly by competition for food or habitat. Given these findings, returning formerly landlocked Coho Salmon juveniles to the free-flowing river apparently provided no benefit to the anadromous population. These findings have management implications in locations where landlocked salmon have the potential to interact with anadromous species of concern.

  20. River Flow Prediction for Future Climate Using Long Series of Multi-Site Synthetic Data and MIKE SHE Model

    Directory of Open Access Journals (Sweden)

    Kuchar Leszek


    Full Text Available A new simulation of daily flow for Kaczawa River, south-west Poland for extra long series of generated meteorological data (comparing to previous research and selected climate change scenarios are presented. The Representative Concentration Pathways (RCPs scenarios vs. SRES are introduced for simulations. The flow simulation in the river catchment is made using MIKE SHE hydrological model while the multisite data are generated by spatial weather generator SWGEN. Simulations are done for 2040 and 2060 while the simulations for the year 2000 are used as a background. The large number of new simulated series determined by the lead time, three climate change scenarios (RCP2.6 RCP4.5 and RCP6.0, and number of generated years (1000 for each case is equal to 7000 for a single station. Finally, Pdf function for flow is presented as well probability of exceedance of maximum flow.

  1. Substrate and flow characteristics associated with White Sturgeon recruitment in the Columbia River Basin (United States)

    Hatten, James R.; Parsley, Michael; Barton, Gary; Batt, Thomas; Fosness, Ryan L.


    A study was conducted to identify habitat characteristics associated with age 0+ White Sturgeon (Acipenser transmontanus Richardson, 1863) recruitment in three reaches of the Columbia River Basin: Skamania reach (consistent recruitment), John Day reach (intermittent/inconsistent recruitment), and Kootenai reach (no recruitment). Our modeling approach involved numerous steps. First, we collected information about substrate, embeddedness, and hydrodynamics in each reach. Second, we developed a set of spatially explicit predictor variables. Third, we built two habitat (probability) models with Skamania reach training data where White Sturgeon recruitment was consistent. Fourth, we created spawning maps of each reach by populating the habitat models with in-reach physical metrics (substrate, embeddedness, and hydrodynamics). Fifth, we examined model accuracy by overlaying spawning locations in Skamania and Kootenai reaches with habitat predictions obtained from probability models. Sixth, we simulated how predicted habitat changed in each reach after manipulating physical conditions to more closely match Skamania reach. Model verification confirmed White Sturgeon generally spawned in locations with higher model probabilities in Skamania and Kootenai reaches, indicating the utility of extrapolating the models. Model simulations revealed significant gains in White Sturgeon habitat in all reaches when spring flow increased, gravel/cobble composition increased, or embeddedness decreased. The habitat models appear well suited to assist managers when identifying reach-specific factors limiting White Sturgeon recruitment in the Columbia River Basin or throughout its range.

  2. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geist, D. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arntzen, E. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  3. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions. (United States)

    Keupers, Ingrid; Willems, Patrick


    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  4. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada (United States)

    Prudic, David E.; Herman, M.E.


    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  5. Flow dependent water quality impacts of historic coal and oil shale mining in the Almond River catchment, Scotland

    International Nuclear Information System (INIS)

    Haunch, Simon; MacDonald, Alan M.; Brown, Neil; McDermott, Christopher I.


    Highlights: • A GIS map of coal and oil shale mining in the Almond basin was constructed. • Water quality data confirms the continued detrimental impact of historic mining. • Oil shale mining is confirmed as a contributor to poor surface water quality. • Surface water flow affects mine contaminant chemistry, behaviour and transport. • River bed iron precipitate is re-suspended and transported downstream at high flow. - Abstract: The Almond River catchment in Central Scotland has experienced extensive coal mining during the last 300 years and also provides an example of enduring pollution associated with historic unconventional hydrocarbon exploitation from oil shale. Detailed spatial analysis of the catchment has identified over 300 abandoned mine and mine waste sites, comprising a significant potential source of mine related contamination. River water quality data, collected over a 15 year period from 1994 to 2008, indicates that both the coal and oil shale mining areas detrimentally impact surface water quality long after mine abandonment, due to the continued release of Fe and SO 4 2- associated with pyrite oxidation at abandoned mine sites. Once in the surface water environment Fe and SO 4 2- display significant concentration-flow dependence: Fe increases at high flows due to the re-suspension of river bed Fe precipitates (Fe(OH) 3 ); SO 4 2- concentrations decrease with higher flow as a result of dilution. Further examination of Fe and SO 4 loading at low flows indicates a close correlation of Fe and SO 4 2- with mined areas; cumulative low flow load calculations indicate that coal and oil shale mining regions contribute 0.21 and 0.31 g/s of Fe, respectively, to the main Almond tributary. Decreases in Fe loading along some river sections demonstrate the deposition and storage of Fe within the river channel. This river bed Fe is re-suspended with increased flow resulting in significant transport of Fe downstream with load values of up to 50 g/s Fe

  6. The '333' integrated strategy for effective pollution control and its application to the heavily polluted Jialu River in north China. (United States)

    Huang, Yu; Sun, Jie; Li, Aimin; Xie, Xianchuan


    In this study, an integrated approach named the '333' strategy was applied to pollution control in the Jialu River, in northern China, which is heavily burdened with anthropogenic pollution. Due to a deficiency of the natural ecological inflow, the Jialu River receives predominantly industrial and municipal effluent. The '333' strategy is composed of three steps of pollution control including industrial point-source pollution control, advanced treatment of municipal wastewater, and ecological restoration; three increased stringency emission standards; and three stages of reclamation. Phase 1 of the '333' strategy focuses on industrial point-source pollution control; phase 2 aims to harness municipal wastewater and minimize sewage effluents using novel techniques for advanced water purification; phase 3 of the '333' strategy focuses on the further purification of effluents flowing into Jialu River with the employment of an engineering-based ecological restoration project. The application of the '333' strategy resulted in the development of novel techniques for water purification including modified magnetic resins (NDMP resin), a two-stage internal circulation anaerobic reactor (IC reactor) and an ecological restoration system. The results indicate that water quality in the river was significantly improved, with increased concentrations of dissolved oxygen (DO), as well as reduction of COD by 42.8% and NH 3 -N by 61.4%. In addition, it was observed that the total population of phytoplankton in treated river water notably increased from only one prior to restoration to 8 following restoration. This system also provides a tool for pollution control of other similar industrial and anthropogenic source polluted rivers.

  7. Field studies of estuarine turbidity under different freshwater flow conditions, Kaipara River, New Zealand (United States)

    Mitchell, Steven B.; Green, Malcolm O.; MacDonald, Iain T.; Pritchard, Mark


    We present a first interpretation of three days of measurements made in 2013 from the tidal reaches of the Kaipara River (New Zealand) under both low and high freshwater inputs and a neap tidal cycle. During the first day, we occupied two stations that were approximately 6 km apart in a tidal reach that runs for 25 km from the river mouth to the upstream limit of tidal influence. During the second day, longitudinal surveys were conducted over a distance of 6 km centred on the upstream station. The data reveal a turbidity maximum in the form of a high-concentration 'plug' of suspended mud that was advected downstream on the ebbing tide past the upper (HB) measurement station and which exchanged sediment with the seabed by settling at low slack water and by resuspension in the early flooding tide. The data suggest that fine sediment is transported landwards and trapped in the upper part of the tidal reach under these low-flow conditions. On the third day of measurements we repeated the experiments of the first day but later in the year, for a much higher freshwater flow. This interpretation of our data set highlights the potential contribution of a range of processes to the generation of the observed suspended-sediment signals, including resuspension of local bed sediment, advection by the tidal current, settling of suspended sediment over a long timescale compared to the advection timescale, advection of longitudinal gradients in suspended sediment, and suppression of vertical mixing by density stratification of the water column. The level of temporal and spatial detail afforded by these measurements allows a much clearer understanding of the timing and importance of vertical stratification on the transport of suspended particulate matter than is generally possible using fixed-point sensors.

  8. The role of bed surface configuration on river response under increasing flows (United States)

    Ferrer-Boix, Carles; Elgueta, María A.; Hassan, Marwan A.


    This research aims to explore how bed surface configuration influence channel evolution, vertical and downstream sediment sorting, and sediment transport in gravel bed streams under varying flows. While a significant body of research has been focused on channel evolution under constant flow regimes, few studies have focused on the impacts of flow variations in channel adjustments. Particularly, we are interested in examining the impact of the degree of bed surface coarsening and particle arrangement on channel adjustments and sediment transport rates. To this end, we conducted a set of experiments in a 0.55 m-wide, 5 m-long tilting flume. Flow discharge during the runs was initially held constant at 25 l/s for a period of time after which discharge was gradually increased at steps of certain duration. Flow rates during the rising limb of the hydrographs ranged from 26 l/s to 40 l/s. Initial bed slope was 0.04 m/m for all runs. Some of the experiments were conducted under no feed conditions while others were carried out with sediment supply, which ranged from 1 kg/h to 10 kg/h. The feed texture in these latter runs was identical to that of the original mixture (Dg = 5.65 mm and σg = 3.05). Bed slopes and surface configuration were obtained after varying times of conditioning under constant flow and no feed. Data acquisition included: 1) bed surface images covering the entire flume, 2) bed scans at 2 mm resolution of the whole flume and 3) real-time measurements of bedload transport (rate and texture) at the outlet of the flume. This set up allows us to obtain fractional particle mobility, i.e. how much bed area covered by a particular grain size changed at a given time and to link to sediment transport rates. Data gathered from this study 1) will contribute to better understanding of river dynamics under unsteady flow conditions (floods) and 2) will help us improve sediment transport predictions under such conditions.

  9. Determination of Columbia River flow times from Pasco, Washington using radioactive tracers introduced by the Hanford reactors (United States)

    Nelson, Jack L.; Perkins, R.W.; Haushild, W.L.


    Radioactive tracers introduced into the Columbia River in cooling water from the Hanford reactors were used to measure flow times downstream from Pasco, Washington, as far as Astoria, Oregon. The use of two tracer methods was investigated. One method used the decay of a steady release of Na24 (15-hour half-life) to determine flow times to various downstream locations, and flow times were also determined from the time required for peak concentration of instantaneous releases of I131 (8-day half-life) to reach these locations. Flow times determined from the simultaneous use of the two methods agreed closely. The measured flow times for the 224 miles from Pasco to Vancouver, Washington, ranged from 14.6 to 3.6 days, respectively, for discharges of 108,000 and 630,000 ft3/sec at Vancouver, Washington. A graphic relation for estimating flow times at discharges other than those measured and for several locations between Pasco and Vancouver was prepared from the data of tests made at four river discharges. Some limited data are also presented on the characteristics of dispersion of I131 in the Columbia River.

  10. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers (United States)

    David M. Merritt; N. Leroy Poff


    Tamarix ramosissima is a naturalized, nonnative plant species which has become widespread along riparian corridors throughout the western United States. We test the hypothesis that the distribution and success of Tamarix result from human modification of river-flow regimes. We conducted a natural experiment in eight...

  11. Secondary circulation in river junctions even at very low flow momentum ratios : The legacy effects of point bar formation

    NARCIS (Netherlands)

    Moradi, Gelare; Rennie, Colin; Vermeulen, Bart; Cardot, Romain; Lane, Stuart


    River confluences remain a challenging subject because of their 3D geometry which leads to a complex, three-dimensional mean and turbulent velocity processes. Since secondary circulation plays an important role in flow hydrodynamics and the development of bank erosion, bed scour and bar formation,

  12. Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system

    NARCIS (Netherlands)

    Poot, A.; Gillissen, F.; Koelmans, A.A.


    The acid volatile sulphide (AVS) and simultaneously extracted metals (¿SEM) method is increasingly used for risk assessment of toxic metals. In this study, we assessed spatial and temporal variations of AVS and ¿SEM in river sediments and floodplain soils, addressing influence of flow regime and

  13. Multimodel Uncertainty Changes in Simulated River Flows Induced by Human Impact Parameterizations (United States)

    Liu, Xingcai; Tang, Qiuhong; Cui, Huijuan; Mu, Mengfei; Gerten Dieter; Gosling, Simon; Masaki, Yoshimitsu; Satoh, Yusuke; Wada, Yoshihide


    Human impacts increasingly affect the global hydrological cycle and indeed dominate hydrological changes in some regions. Hydrologists have sought to identify the human-impact-induced hydrological variations via parameterizing anthropogenic water uses in global hydrological models (GHMs). The consequently increased model complexity is likely to introduce additional uncertainty among GHMs. Here, using four GHMs, between-model uncertainties are quantified in terms of the ratio of signal to noise (SNR) for average river flow during 1971-2000 simulated in two experiments, with representation of human impacts (VARSOC) and without (NOSOC). It is the first quantitative investigation of between-model uncertainty resulted from the inclusion of human impact parameterizations. Results show that the between-model uncertainties in terms of SNRs in the VARSOC annual flow are larger (about 2 for global and varied magnitude for different basins) than those in the NOSOC, which are particularly significant in most areas of Asia and northern areas to the Mediterranean Sea. The SNR differences are mostly negative (-20 to 5, indicating higher uncertainty) for basin-averaged annual flow. The VARSOC high flow shows slightly lower uncertainties than NOSOC simulations, with SNR differences mostly ranging from -20 to 20. The uncertainty differences between the two experiments are significantly related to the fraction of irrigation areas of basins. The large additional uncertainties in VARSOC simulations introduced by the inclusion of parameterizations of human impacts raise the urgent need of GHMs development regarding a better understanding of human impacts. Differences in the parameterizations of irrigation, reservoir regulation and water withdrawals are discussed towards potential directions of improvements for future GHM development. We also discuss the advantages of statistical approaches to reduce the between-model uncertainties, and the importance of calibration of GHMs for not only

  14. Ecological effects of a long-term flood program in a flow-regulated river

    Directory of Open Access Journals (Sweden)

    Sabine Mannes


    Full Text Available Le régime hydrologique naturel de la grande majorité des rivières du globe a été modifié par une régulation artificielle, qui a profondément affecté la morphologie fluviale et la vie aquatique. L’intégration de critères hydrologiques comme le débit et la température dans les programmes de restauration constitue une étape importante pour la gestion de rivière. Cet article synthétise les observations, en terme de qualité physicochimique de l’eau et de biocénose aquatique, des effets d’une programmation de crues sur le long terme (15 crues artificielles en huit ans sur la rivière Spöl, dans le Parc National Suisse. Du fait des lâchers d’eau hypolimnétiques (issues des eaux profondes, ces crues ont peu d’impact sur les paramètres physiques et chimiques. La biomasse du périphyton a été réduite par les premières crues, puis s’est maintenue à des niveaux faibles pendant toute la période étudiée. La richesse spécifique, la biomasse et la densité de macro-invertébrés ont aussi été significativement réduites, et l’association de macroinvertébrés a évolué vers des taxons plus résistants aux perturbations. La qualité des habitats piscicoles, en particulier pour les zones de frai, a été sensiblement améliorée par les inondations. Une analyse plus approfondie a montré que la réponse de la biocénose à des crues d’ampleur similaire a changé pendant la période d’étude en parallèle avec la modification de la composition des associations biotiques.The natural flow regime of many rivers on the globe has been altered by regulation, strongly influencing river morphology and aquatic biota. The incorporation of regimebased criteria such as flow and temperature regimes in restoration plans is an important step in river management. This paper summarizes the effects of a long-term flood program (15 floods over 8 years on the river Spöl, Swiss National Park, on water physico-chemistry and river

  15. Detecting Human Hydrologic Alteration from Diversion Hydropower Requires Universal Flow Prediction Tools: A Proposed Framework for Flow Prediction in Poorly-gauged, Regulated Rivers (United States)

    Kibler, K. M.; Alipour, M.


    Achieving the universal energy access Sustainable Development Goal will require great investment in renewable energy infrastructure in the developing world. Much growth in the renewable sector will come from new hydropower projects, including small and diversion hydropower in remote and mountainous regions. Yet, human impacts to hydrological systems from diversion hydropower are poorly described. Diversion hydropower is often implemented in ungauged rivers, thus detection of impact requires flow analysis tools suited to prediction in poorly-gauged and human-altered catchments. We conduct a comprehensive analysis of hydrologic alteration in 32 rivers developed with diversion hydropower in southwestern China. As flow data are sparse, we devise an approach for estimating streamflow during pre- and post-development periods, drawing upon a decade of research into prediction in ungauged basins. We apply a rainfall-runoff model, parameterized and forced exclusively with global-scale data, in hydrologically-similar gauged and ungauged catchments. Uncertain "soft" data are incorporated through fuzzy numbers and confidence-based weighting, and a multi-criteria objective function is applied to evaluate model performance. Testing indicates that the proposed framework returns superior performance (NSE = 0.77) as compared to models parameterized by rote calibration (NSE = 0.62). Confident that the models are providing `the right answer for the right reasons', our analysis of hydrologic alteration based on simulated flows indicates statistically significant hydrologic effects of diversion hydropower across many rivers. Mean annual flows, 7-day minimum and 7-day maximum flows decreased. Frequency and duration of flow exceeding Q25 decreased while duration of flows sustained below the Q75 increased substantially. Hydrograph rise and fall rates and flow constancy increased. The proposed methodology may be applied to improve diversion hydropower design in data-limited regions.

  16. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014 (United States)

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.


    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged

  17. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia (United States)

    Planert, Michael


    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over

  18. Contribution of groundwater to the discharge and quality of surface flow: example of the Garonne river upstream of its confluence with the Tarn river

    International Nuclear Information System (INIS)

    Danneville, L.


    Very few studies have been made of the contribution of groundwater to the discharge and quality of surface flow at regional scale, such as that of the catchment area of the Garonne river upstream of its confluence with the Tarn river (15.000 km 2 ). Three main types of groundwater reservoir exist in the area: karstic aquifers, alluvial aquifers, and colluvial and local aquifers that are still poorly understood. The contribution from the karstic aquifers to surface flow varies seasonally depending on the nature, hydraulic behaviour and elevation of the karst. Minor exchange occurs between the alluvial aquifers and rivers, mainly during flooding. The Garonne river, which has an average flow of 199 m 3 /s, is mainly replenished by the Salat and Ariege tributaries, regardless of the season. Study of the low-water stage using Maillet's formula has given a good estimate of the groundwater storage of certain tributaries, and the role played by the groundwater is demonstrated by correlation and spectrum analysis of discharge time series. For example, during 1985, the main storage was shown to be in the river basins of Ariege (142 million m 3 ), Salat (111 million m 3 ) and Ger (21 million m 3 ). The Ger, which is the smallest tributary, has the highest specific storage (224 I/m 2 ) and presents an important buffer effect related to numerous karstic springs. The total groundwater storage of the entire recharge area is estimated at 2.1-2.9 billion m 3 for 1993. It is the largest water storage of the basin, greater than the snow cover (371 million m 3 ) and the artificial storage for electric power plants, discharge buffering and irrigation. The groundwater contribution to the total flow of the Garonne river at the Portet gauging station has been estimated at 46-60% of total discharge in 1993 by extrapolating the low-water stage from the residual hydrograph (hydrograph without the influence of dam reservoirs and snow cover), Direct runoff is estimated at 34-48% and the snow

  19. Hydraulic characteristics of the New River in the New River Gorge National River, West Virginia (United States)

    Wiley, J.B.; Appel, David H.


    Traveltime, dispersion, water-surface and streambed profiles, and cross-section data were collected for use in application of flow and solute-transport models to the New River in the New River Gorge National River, West Virginia. Dye clouds subjected to increasing and decreasing flow rates (unsteady flow) showed that increasing flows shorten the cloud and decreasing flows lengthen the cloud. After the flow rate was changed and the flow was again steady, traveltime and dispersion characteristics were determined by the new rate of flow. Seven stage/streamflow relations identified the general changes of stream geometry throughout the study reach. Channel cross sections were estimated for model input. Low water and streambed profiles were developed from surveyed water surface elevations and water depths. (USGS)

  20. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L. (University of Montana, Flathead Lake Biological Station, Poison, MT)


    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  1. Modelling ecological flow regime: an example from the Tennessee and Cumberland River basins (United States)

    Knight, Rodney R.; Gain, W. Scott; Wolfe, William J.


    Predictive equations were developed for 19 ecologically relevant streamflow characteristics within five major groups of flow variables (magnitude, ratio, frequency, variability, and date) for use in the Tennessee and Cumberland River basins using stepbackward regression. Basin characteristics explain 50% or more of the variation for 12 of the 19 equations. Independent variables identified through stepbackward regression were statistically significant in 78 of 304 cases (α > 0.0001) and represent four major groups: climate, physical landscape features, regional indicators, and land use. Of these groups, the regional and climate variables were the most influential for determining hydrologic response. Daily temperature range, geologic factor, and rock depth were major factors explaining the variability in 17, 15, and 13 equations, respectively. The equations and independent datasets were used to explore the broad relation between basin properties and streamflow and the implication of streamflow to the study of ecological flow requirements. Key results include a high degree of hydrologic variability among least disturbed Blue Ridge streams, similar hydrologic behaviour for watersheds with widely varying degrees of forest cover, and distinct hydrologic profiles for streams in different geographic regions. Published in 2011. This article is a US Government work and is in the public domain in the USA.

  2. Effects of catastrophic floods and debris flows on the sediment retention structure, North Fork Toutle River, Washington (United States)

    Denlinger, Roger P.


    The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage

  3. Influence of riparian vegetation on near-bank flow structure and erosion rates on a large meandering river (United States)

    Konsoer, K. M.; Rhoads, B. L.; Langendoen, E. J.; Johnson, K.; Ursic, M.


    Rates of meander migration are dependent upon dynamic interactions between planform geometry, three-dimensional flow structure, sediment transport, and the erodibility and geotechnical properties of the channel banks and floodplains. Riparian vegetation can greatly reduce the rate of migration through root-reinforcement and increased flow resistance near the bank. In particular, forested riverbanks can also provide large woody debris (LWD) to the channel, and if located near the outer bank, can act to amour the bank by disrupting three-dimensional flow patterns and redirecting flow away from the bank-toe, the locus of erosion in meandering rivers. In this paper, three-dimensional flow patterns and migration rates are compared for two meander bends, one forested and one non-forested, on the Wabash River, near Grayville, Illinois. Flow data were obtained using acoustic Doppler current profilers (ADCP) for two large flow events in May and June 2011. LWD was mapped using a terrestrial LiDAR survey, and residence times for the LWD were estimated by comparing the survey data to time-series aerial photography. Rates of migration and planform evolution were determined through time-series analysis of aerial photography from 1938-2011. Results from this study show that near-bank LWD can have a significant influence on flow patterns through a meander bend and can disrupt helical flow near the outer bank, thereby reducing the effect of the high velocity core on the toe of the bank. Additionally, these effects influence migration rates and the planform evolution of meandering rivers.

  4. Metal contamination budget at the river basin scale: an original Flux-Flow Analysis (F2A for the Seine River

    Directory of Open Access Journals (Sweden)

    L. Lestel


    Full Text Available Material flow analysis and environmental contamination analysis are merged into a Flux-Flow analysis (F2A as illustrated for the metal circulation in the Seine River catchment. F2A combines about 30 metal flows in the anthroposphere (14 million people and/or metal fluxes in the environment (atmosphere, soils, and aquatic system originating from two dozens of sources. The nature and quality of data is very heterogeneous going from downscaled national economic statistics to upscaled daily environmental surveys.

    A triple integration is performed: space integration over the catchment (65 000 km2, time integration for the 1950–2000 trend analysed at 5 year resolution, and a conceptual integration resulting in two F2A indicators.

    Despite the various data sources an average metal circulation is established for the 1994–2003 period and illustrated for zinc: (i metal circulation in the anthroposphere is now two orders of magnitude higher than river outputs, (ii long term metal storage, and their potential leaks, in soils, wastedumps and structures is also orders of magnitude higher than present river fluxes. Trend analysis is made through two F2A indicators, the per capita excess load at the river outlet and the leakage ratio (excess fluxes/metal demand. From 1950 to 2000, they both show a ten fold improvement of metal recycling while the metal demand has increased by 2.5 to 5 for Cd, Cu, Cr, Pb and Zn, and the population by 50%.

  5. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009 (United States)

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.


    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water

  6. Modelling of a cross flow evaporator for CSP application

    DEFF Research Database (Denmark)

    Sørensen, Kim; Franco, Alessandro; Pelagotti, Leonardo


    ) applications. Heat transfer and pressure drop prediction methods are an important tool for design and modelling of diabatic, two-phase, shell-side flow over a horizontal plain tubes bundle for a vertical up-flow evaporator. With the objective of developing a model for a specific type of cross flow evaporator...... the available correlations for the definition of two-phase flow heat transfer, void fraction and pressure drop in connection with the operation of steam generators, focuses attention on a comparison of the results obtained using several different models resulting by different combination of correlations......Heat exchangers consisting of bundles of horizontal plain tubes with boiling on the shell side are widely used in industrial and energy systems applications. A recent particular specific interest for the use of this special heat exchanger is in connection with Concentrated Solar Power (CSP...

  7. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.


    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  8. Comparative study on flow rate measurement by nuclear and conventional methods in selected rivers at Ulu Langat district, Selangor

    Energy Technology Data Exchange (ETDEWEB)

    Wan Mohamad Tahir, Wan Zakaria; Mohamad, Daud; Hamzah, Abdul Razak; Yusuf, Johari Mohamad; Aziz Wan Mohamad, Wan Abdul


    A radiotracer technique using Tc-99 to measure flows of small rivers was introduced in Malaysia. Three rivers in the Ulu Langat District were selected for a comparative study on flow rate determination by conventional and radioisotope methods. Radioisotopic approach, comprising injection procedures, calibration, mixing length and safety aspects are discussed. The results measured by radioisotope method are compared to the Drainage and Irrigation Department's (DID's) discharge curves data collected from 1980 to 1982 which is calibrated using a current meter. The results are comparable and fall within the range obtained by conventional method. Related to this study, a comprehensive work on stream gauging of moderate and high flow rates using both methods is proposed to be carried out directly.

  9. Assessment of the Effects of Temperature and Precipitation Variations on the Trend of River Flows in Urmia Lake Watershed

    Directory of Open Access Journals (Sweden)

    Ashkan Farokhnia


    Full Text Available Trend analysis is one of the appropriate methods to assess the hydro-climatic condition of watersheds, which is commonly used for analysis of change pattern in a single variable over time. However, in real cases, many hydrological variables such as river flow are directly affected by climate and environmental factors, which usually go unnoticed in routine analyzes. The aim of the present research is to investigate the trend of river discharge in 25 hydrometric stations in Lake Urmia river basin with and without consideration of temperature and rainfall variability. Briefly, the results showed that there is a decreasing trend in all stations, which is significant in 9 cases. Also, it has been shown that regarding to trends in precipitation and temperature, the number of stations with significant decreasing trend will reduce to 7, which shows low impact of climate factors on the reduction rate of discharge in these stations. Based on the results, it can be concluded that climate variations have direct effect in inferring significant trends in river flow, so that considering these variables in studying of river discharge can lead to different results in the detection of significant trends.

  10. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications (United States)

    Jang, Jaesung; Wereley, Steven T.


    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.

  11. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang


    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  12. Sensitivity Modeling and Evaluation of Evapotranspiration Effects on Flow Discharge of River Owena in Nigeria

    Directory of Open Access Journals (Sweden)

    P.O Idogho


    Full Text Available Analysis of discharges, precipitation and temperature and some other meteorological-hydrological variables from 1996-2011 at the section of Owena River Basin. The evaluation, correlations, and the relationship between precipitation and discharge time series indicate a strong relationship. Minimum discharge values of 0.8 m 3 /s and 1.2 m 3 /s were observed in January and December and these values correspond to rainfall depth of 1.4 mm and 8.2 mm respectively. The average annual rainfall, river discharge were computed as 1,306.7 mm, 1,165 m 3 /s and mean temperature and evaporation of 31.1 oC and 4.6 mm. Evapotranspiration computation using pan evaporation model overestimated the evapotranspiration values by 0.5 mm and 0.21 mm over IHACRES and CROPWAT model for the total period of 15-year. Integration of the simulation outputs would be veritable in creating realistic-robust water management system for domestic and agricultural applications.

  13. Changes to subaqueous delta bathymetry following a high river flow event, Wax Lake Delta, LA, USA (United States)

    Whaling, A. R.; Shaw, J.


    Sediment transport capacity is increased during high river flow (flood) events which are characterized by discharges that exceed the 15 year median daily statistic. The Wax Lake Delta (WLD) in coastal Louisiana has experienced 19 of these high flow events in the past 20 years, yet the depositional patterns of single floods are rarely measured in a field-scale deltaic setting. We characterize flood deposition and erosion patterns on the subaqueous portion of the WLD by differencing two Digital Elevation Models (DEMs) constructed from bathymetric surveys before and after the third largest flood in the WLD's recorded history. The total suspended sediment discharge for the 496 day inter-survey period was 2.14x107 cubic meters measured 21 km upstream of the delta apex. The difference map showed 1.06x107 cubic meters of sediment was deposited and 8.2x106 cubic meters was eroded, yielding 2.40x106 cubic meters of net deposition in the survey area ( 79.7 km2 ). Therefore the average deposition rate was 0.061 mm/day. Channel planform remained relatively unchanged for five out of six distributary passes however Gadwall Pass experienced a maximum channel displacement of 166 m ( 1 channel width) measured from the thalweg centerline. Channel tip extension was negligible. In addition, channel displacement was not concentrated at any portion along the channel centerline. Maximum erosion occurred within channel margins and increased upstream whereas maximum deposition occurred immediately outside the channel margins. Sediment eroded from the survey area was either subsequently re-deposited or transported out of the system. Our results show that up to 77.4% of deposition in the survey area originated from sediment eroded during the flood. Surprisingly, only 11.2% of the total suspended sediment discharge was retained in the subaqueous portion of the delta after the flood. We conclude that a high flow event does not produce channel progradation. Rather, high flow causes delta

  14. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows (United States)

    Som, Sanjoy M.


    The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a nitrogen level of at most

  15. Application of the Delft Numerical models in the Lower Yellow River

    NARCIS (Netherlands)

    De Vriend, H.J.; Wang, Z.B.; Winterwerp, H.; Visser, P.J.; Sloff, C.J.; Liu, H.L.; Liang, G.T.; Wu, S.Q.; Ji, Z.W.


    Because of heavy deposition and water shortage, the Yellow River faces the risk of flooding and no-flow since the middle of 1980s. The problem could be solved only by integrated water management. However, Dutch has a long history fighting the flood and gets a lot of experiences in water management,

  16. A water availability and low-flow analysis of the Tagliamento River discharge in Italy under changing climate conditions

    Directory of Open Access Journals (Sweden)

    L. N. Gunawardhana


    Full Text Available This study estimated the effects of projected variations in precipitation and temperature on snowfall-snowmelt processes and subsequent river discharge variations in the Tagliamento River in Italy. A lumped-parameter, non-linear, rainfall-runoff model with 10 general circulation model (GCM scenarios was used. Spatial and temporal changes in snow cover were assessed using 15 high-quality Landsat images. The 7Q10 low-flow probability distribution approximated by the Log-Pearson type III distribution function was used to examine river discharge variations with respect to climate extremes in the future. On average, the results obtained for 10 scenarios indicate a consistent warming rate for all time periods, which may increase the maximum and minimum temperatures by 2.3 °C (0.6–3.7 °C and 2.7 °C (1.0–4.0 °C, respectively, by the end of the 21st century compared to the present climate. Consequently, the exponential rate of frost day decrease for 1 °C winter warming in lower-elevation areas is approximately three-fold (262% higher than that in higher-elevation areas, revealing that snowfall in lower-elevation areas will be more vulnerable under a changing climate. In spite of the relatively minor changes in annual precipitation (−17.4 ~ 1.7% compared to the average of the baseline (1991–2010 period, snowfall will likely decrease by 48–67% during the 2080–2099 time period. The mean river discharges are projected to decrease in all seasons, except winter. The low-flow analysis indicated that while the magnitude of the minimum river discharge will increase (e.g. a 25% increase in the 7Q10 estimations for the winter season in the 2080–2099 time period, the number of annual average low-flow events will also increase (e.g. 16 and 15 more days during the spring and summer seasons, respectively, in the 2080–2099 time period compared to the average during the baseline period, leading to a future with a highly variable river discharge

  17. Susceptibility assessment of debris flows using the analytic hierarchy process method − A case study in Subao river valley, China

    Directory of Open Access Journals (Sweden)

    Xingzhang Chen


    Full Text Available Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation. This paper studies one of the worst hit areas, the Subao river valley, and the susceptibility assessment of debris flows is performed based on field surveys and remote sensing interpretation. By investigating the formation conditions of debris flows in the valley, the following assessment factors are selected: mixture density of landslides and rock avalanches, distance to the seismogenic fault, stratum lithology, ground roughness, and hillside angle. The weights of the assessment factors are determined by the analytic hierarchy process (AHP method. Each of the assessment factors is further divided into five grades. Then, the assessment model is built using the multifactor superposition method to assess the debris flow susceptibility. Based on the assessment results, the Subao river valley is divided into three areas: high susceptibility areas, medium susceptibility areas, and low susceptibility areas. The high susceptibility areas are concentrated in the middle of the valley, accounting for 17.6% of the valley area. The medium susceptibility areas are in the middle and lower reaches, most of which are located on both sides of the high susceptibility areas and account for 45.3% of the valley area. The remainders are classified as low susceptibility areas. The results of the model are in accordance with the actual debris flow events that occurred after the earthquake in the valley, confirming that the proposed model is capable of assessing the debris flow susceptibility. The results can also provide guidance for reconstruction planning and debris flow prevention in the Subao river valley.

  18. Non-stationary open-flow filtration of ground waters at the Pripyat'-Dnieper inter river

    International Nuclear Information System (INIS)

    Tarapon, A.G.


    Consideration is given to filtration of ground waters into rivers and to effect of drainage devices. Investigations were conducted with use of modelling of planned and profile filtration of ground waters at the electric models. Efficiency of engineering protection facilities suggested, was studied to prevent contamination of water intakes. Modelling shown, that contamination washing out process was in a cycle character with 1 year period. Use of drainage canal with the water level 0.8 m lower than in the river, is an effective way to prevent filtration of ground waters into the Pripyat' and the Dnieper from the upper open-flow aquiver

  19. Hydrogeology and deformation of sandbars in response to fluctuations in flow of the Colorado River in the Grand Canyon, Arizona (United States)

    Carpenter, M.C.; Carruth, R.L.; Fink, J.B.; Boling, J.K.; Cluer, B.L.


    Rill erosion, slumping, and fissuring develop on seepage faces of many sandbars along the Colorado River in the Grand Canyon. These processes, observed at low river stage, are a response to residual head gradients in the sandbars caused by the river-stage fluctuation. Three sandbars were instrumented with sensors for continual monitoring of pore pressure and ground-water temperature within the sandbars and river stage. Two of the sandbars also had tilt sensors to aid in determining the relation between ground-water flow within and out of the sandbars and sandbar deformation. Tilting at sandbar 43.1L occurred on the downward limb of the hydrograph in the absence of scour, indicating slumping or a slump-creep sequence. The deformation was caused by outward-flowing bank storage, oversteepening of the lower part of the slope in the zone of fluctuating river stage by filling, and increased effective stress. At sandbar 172.3L, tilts were probably all related to scour and occurred on the rising limb of a hydrograph. Tilt occurred on April 17, May 7, May 13, June 18, and September 1, 1991. On September 1, the entire face of sandbar 172.3L was scoured. Rill erosion and slumping accompanied by measured tilts continued in reduced magnitude on sandbar 43.1L during interim flows. Thus, reduction in the range of discharge does not eliminate degradation caused by rill erosion, slumping, and fissuring. The importance of the ground-water processes is that they occur on every sandbar and become increasingly important on all sandbars in the absence of sandbar-building flows.

  20. Assessing the contribution of the main aquifer of Loire basin to the river discharge during low flow

    International Nuclear Information System (INIS)

    Monteil, C.


    The evolution of the Loire river low flows is a key issue for various uses such as water supply, irrigation or industrial needs. Power production is a major activity in the Loire basin with four nuclear power plants using the river water for the cooling system. To estimate the evolution of long term in-stream low flow distribution, it is necessary to have a good estimate of the contribution of a complex aquifer system to the river discharge. Three main overlaying aquifer units covering an area of 38000 km 2 are considered: Beauce Limestones (Oligocene), Chalks (Seno-Turonian) and Sands (Cenomanian). A distributed hydrogeological model (Eau-Dyssee) is implemented with the coupling of five modules: surface water budget, watershed routing, river routing, unsaturated zone transfer, and groundwater flow. The model is calibrated over a 10-yr period, validated over another 10-yr period, and then a test simulation is run over 35 years. A hybrid fitting methodology, based on an automated inverse method and a trial-error one, has been developed for the fitting of the Beauce aquifer unit. The other units are calibrated by trial and error. The fitted model simulates properly both discharges and piezometric heads over the whole domain, with a global RMSE between simulated and observed piezometric heads of 2.86 m, and all Nash efficiency at the Loire discharge gauging stations over 0.9. The fitted model has then been used to quantify the hydro-system mass balance at different time scales. Mean aquifer contribution to Loire river discharge during low flow between 1975 and 2008 is estimated at 15 m 3 /s. First results of simulations under four different climate change projections indicate an averaged decrease of these contributions reaching 8 to 50% in 2100. (author)

  1. The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics

    NARCIS (Netherlands)

    Guo, L.; Van der Wegen, M.; Roelvink, J.A.; He, Q.


    Numerous research efforts have been devoted to understanding estuarine morphodynamics under tidal forcing. However, the impact of river discharge on estuarine morphodynamics is insufficiently examined. Inspired by the Yangtze Estuary, this work explores the morphodynamic impact of river discharge in

  2. Interoperability challenges in river discharge modelling: A cross domain application scenario (United States)

    Santoro, Mattia; Andres, Volker; Jirka, Simon; Koike, Toshio; Looser, Ulrich; Nativi, Stefano; Pappenberger, Florian; Schlummer, Manuela; Strauch, Adrian; Utech, Michael; Zsoter, Ervin


    River discharge is a critical water cycle variable, as it integrates all the processes (e.g. runoff and evapotranspiration) occurring within a river basin and provides a hydrological output variable that can be readily measured. Its prediction is of invaluable help for many water-related tasks including water resources assessment and management, flood protection, and disaster mitigation. Observations of river discharge are important to calibrate and validate hydrological or coupled land, atmosphere and ocean models. This requires using datasets from different scientific domains (Water, Weather, etc.). Typically, such datasets are provided using different technological solutions. This complicates the integration of new hydrological data sources into application systems. Therefore, a considerable effort is often spent on data access issues instead of the actual scientific question. This paper describes the work performed to address multidisciplinary interoperability challenges related to river discharge modeling and validation. This includes definition and standardization of domain specific interoperability standards for hydrological data sharing and their support in global frameworks such as the Global Earth Observation System of Systems (GEOSS). The research was developed in the context of the EU FP7-funded project GEOWOW (GEOSS Interoperability for Weather, Ocean and Water), which implemented a "River Discharge" application scenario. This scenario demonstrates the combination of river discharge observations data from the Global Runoff Data Centre (GRDC) database and model outputs produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) predicting river discharge based on weather forecast information in the context of the GEOSS.

  3. Complex analysis with applications to flows and fields

    CERN Document Server

    Braga da Costa Campos, Luis Manuel


    Complex Analysis with Applications to Flows and Fields presents the theory of functions of a complex variable, from the complex plane to the calculus of residues to power series to conformal mapping. The book explores numerous physical and engineering applications concerning potential flows, the gravity field, electro- and magnetostatics, steady heat conduction, and other problems. It provides the mathematical results to sufficiently justify the solution of these problems, eliminating the need to consult external references.The book is conveniently divided into four parts. In each part, the ma

  4. Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows

    Directory of Open Access Journals (Sweden)

    F. Laio


    Full Text Available Several methods exist for the detection of nonlinearity in univariate time series. In the present work we consider riverflow time series to infer the dynamical characteristics of the rainfall-runoff transformation. It is shown that the non-Gaussian nature of the driving force (rainfall can distort the results of such methods, in particular when surrogate data techniques are used. Deterministic versus stochastic (DVS plots, conditionally applied to the decay phases of the time series, are instead proved to be a suitable tool to detect nonlinearity in processes driven by non-Gaussian (Poissonian noise. An application to daily discharges from three Italian rivers provides important clues to the presence of nonlinearity in the rainfall-runoff transformation.

  5. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications

    International Nuclear Information System (INIS)

    Kottapalli, A G P; Tan, C W; Olfatnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M


    The paper reports the design, fabrication and experimental results of a liquid crystal polymer (LCP) membrane-based pressure sensor for flow rate and flow direction sensing applications. Elaborate experimental testing results demonstrating the sensors' performance as an airflow sensor have been illustrated and validated with theory. MEMS sensors using LCP as a membrane structural material show higher sensitivity and reliability over silicon counterparts. The developed device is highly robust for harsh environment applications such as atmospheric wind flow monitoring and underwater flow sensing. A simple, low-cost and repeatable fabrication scheme has been developed employing low temperatures. The main features of the sensor developed in this work are a LCP membrane with integrated thin film gold piezoresistors deposited on it. The sensor developed demonstrates a good sensitivity of 3.695 mV (ms −1 ) −1 , large operating range (0.1 to >10 ms −1 ) and good accuracy in measuring airflow with an average error of only 3.6% full-scale in comparison with theory. Various feasible applications of the developed sensor have been demonstrated with experimental results. The sensor was tested for two other applications—in clinical diagnosis for breath rate, breath velocity monitoring, and in underwater applications for object detection by sensing near-field spatial flow pressure

  6. Review of advanced reactor transient analysis capabilities and applications for Savannah River Plant reactors

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hostetler, D.E.; Anderson, M.M.; Dodds, H.L.


    GRASS is a three-dimensional, coupled neutronic and engineering code for analysis of the radioisotope production reactors at the Savannah River Plant. The capabilities of GRASS are reviewed with emphasis on recent additions to model accident conditions involving the transport of molten fuel material and to accurately characterize neutronic and engineering feedback. The general application of GRASS to the Savannah River reactors is discussed, and results are presented for the analyses of severla reactor transient calculations

  7. Flow parameter determination in pneumatic dilute phase flow applications; Foerderparameterbestimmung in pneumatischen Duennstrom-Transportanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, A.; Zangl, H.; Brasseur, G. [Technische Univ. Graz (Austria). Inst. fuer Elektrische Messtechnik und Messsignalverarbeitung


    This paper investigates possible approaches towards the development of a flowmeter that allows the determination of the material velocity and the material concentration in pneumatically conveyed bulk solids. These two flow parameters yield the mass flow of material through the conveyor pipe. Measurement methods and sensor principles that satisfy requirements for the flowmeter have been realized as prototype-sensors and were tested in practical dilute phase conveying applications. In particular, the development and the application of optical principles, of a sensor based on spatial filtering, and a capacitive cross-correlation sensor are addressed in the present work. (orig.)

  8. 77 FR 75628 - STS Hydropower, Ltd., Dan River, Inc., and City of Danville, VA; Notice of Application for... (United States)


    ..., Ltd., Dan River, Inc., and City of Danville, VA; Notice of Application for Partial Transfer of License... Bankruptcy Trustee for Dan River, Inc. and STS Hydropower, Ltd (co-licensees) transferors and the City of... Project from Dan River, Inc. and STS Hydropower, Ltd. to STS Hydropower, Ltd. and the City of Danville...

  9. Application of Multivariate Statistical Analysis in Evaluation of Surface River Water Quality of a Tropical River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling


    Full Text Available The present study evaluated the spatial variations of surface water quality in a tropical river using multivariate statistical techniques, including cluster analysis (CA and principal component analysis (PCA. Twenty physicochemical parameters were measured at 30 stations along the Batang Baram and its tributaries. The water quality of the Batang Baram was categorized as “slightly polluted” where the chemical oxygen demand and total suspended solids were the most deteriorated parameters. The CA grouped the 30 stations into four clusters which shared similar characteristics within the same cluster, representing the upstream, middle, and downstream regions of the main river and the tributaries from the middle to downstream regions of the river. The PCA has determined a reduced number of six principal components that explained 83.6% of the data set variance. The first PC indicated that the total suspended solids, turbidity, and hydrogen sulphide were the dominant polluting factors which is attributed to the logging activities, followed by the five-day biochemical oxygen demand, total phosphorus, organic nitrogen, and nitrate-nitrogen in the second PC which are related to the discharges from domestic wastewater. The components also imply that logging activities are the major anthropogenic activities responsible for water quality variations in the Batang Baram when compared to the domestic wastewater discharge.

  10. Flow characteristics and salinity patterns of tidal rivers within the northern Ten Thousand Islands, southwest Florida, water years 2007–14 (United States)

    Booth, Amanda C.; Soderqvist, Lars E.


    Freshwater flow to the Ten Thousand Islands estuary has been altered by the construction of the Tamiami Trail and the Southern Golden Gate Estates. The Picayune Strand Restoration Project, which is associated with the Comprehensive Everglades Restoration Plan, has been implemented to improve freshwater delivery to the Ten Thousand Islands estuary by removing hundreds of miles of roads, emplacing hundreds of canal plugs, removing exotic vegetation, and constructing three pump stations. Quantifying the tributary flows and salinity patterns prior to, during, and after the restoration is essential to assessing the effectiveness of upstream restoration efforts.Tributary flow and salinity patterns during preliminary restoration efforts and prior to the installation of pump stations were analyzed to provide baseline data and preliminary analysis of changes due to restoration efforts. The study assessed streamflow and salinity data for water years1 2007–2014 for the Faka Union River (canal flow included), East River, Little Wood River, Pumpkin River, and Blackwater River. Salinity data from the Palm River and Faka Union Boundary water-quality stations were also assessed.Faka Union River was the dominant contributor of freshwater during water years 2007–14 to the Ten Thousand Islands estuary, followed by Little Wood and East Rivers. Pumpkin River and Blackwater River were the least substantial contributors of freshwater flow. The lowest annual flow volumes, the highest annual mean salinities, and the highest percentage of salinity values greater than 35 parts per thousand (ppt) occurred in water year 2011 at all sites with available data, corresponding with the lowest annual rainfall during the study. The highest annual flow volumes and the lowest percentage of salinities greater than 35 ppt occurred in water year 2013 for all sites with available data, corresponding with the highest rainfall during the study.In water year 2014, the percentage of monitored annual flow

  11. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics. (United States)

    Whitehead, P G; Barbour, E; Futter, M N; Sarkar, S; Rodda, H; Caesar, J; Butterfield, D; Jin, L; Sinha, R; Nicholls, R; Salehin, M


    The potential impacts of climate change and socio-economic change on flow and water quality in rivers worldwide is a key area of interest. The Ganges-Brahmaputra-Meghna (GBM) is one of the largest river basins in the world serving a population of over 650 million, and is of vital concern to India and Bangladesh as it provides fresh water for people, agriculture, industry, conservation and for the delta system downstream. This paper seeks to assess future changes in flow and water quality utilising a modelling approach as a means of assessment in a very complex system. The INCA-N model has been applied to the Ganges, Brahmaputra and Meghna river systems to simulate flow and water quality along the rivers under a range of future climate conditions. Three model realisations of the Met Office Hadley Centre global and regional climate models were selected from 17 perturbed model runs to evaluate a range of potential futures in climate. In addition, the models have also been evaluated using socio-economic scenarios, comprising (1) a business as usual future, (2) a more sustainable future, and (3) a less sustainable future. Model results for the 2050s and the 2090s indicate a significant increase in monsoon flows under the future climates, with enhanced flood potential. Low flows are predicted to fall with extended drought periods, which could have impacts on water and sediment supply, irrigated agriculture and saline intrusion. In contrast, the socio-economic changes had relatively little impact on flows, except under the low flow regimes where increased irrigation could further reduce water availability. However, should large scale water transfers upstream of Bangladesh be constructed, these have the potential to reduce flows and divert water away from the delta region depending on the volume and timing of the transfers. This could have significant implications for the delta in terms of saline intrusion, water supply, agriculture and maintaining crucial ecosystems such

  12. 78 FR 48661 - Application for Presidential Permit; Soule River Hydroelectric Project: Correction (United States)


    ... DEPARTMENT OF ENERGY [OE Docket No. PP-387] Application for Presidential Permit; Soule River Hydroelectric Project: Correction AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application; correction. SUMMARY: The Department of Energy (DOE) Office of Electricity Delivery...

  13. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.


    Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization

  14. Assessing the impact of managed aquifer recharge on seasonal low flows in a semi-arid alluvial river (United States)

    Ronayne, M. J.; Roudebush, J. A.; Stednick, J. D.


    Managed aquifer recharge (MAR) is one strategy that can be used to augment seasonal low flows in alluvial rivers. Successful implementation requires an understanding of spatio-temporal groundwater-surface water exchange. In this study we conducted numerical groundwater modeling to analyze the performance of an existing MAR system in the South Platte River Valley in northeastern Colorado (USA). The engineered system involves a spatial reallocation of water during the winter months; alluvial groundwater is extracted near the river and pumped to upgradient recharge ponds, with the intent of producing a delayed hydraulic response that increases the riparian zone water table (and therefore streamflow) during summer months. Higher flows during the summer are required to improve riverine habitat for threatened species in the Platte River. Modeling scenarios were constrained by surface (streamflow gaging) and subsurface (well data) measurements throughout the study area. We compare two scenarios to analyze the impact of MAR: a natural base case scenario and an active management scenario that includes groundwater pumping and managed recharge. Steady-periodic solutions are used to evaluate the long-term stabilized behavior of the stream-aquifer system with and without pumping/recharge. Streamflow routing is included in the model, which permits quantification of the timing and location of streamflow accretion (increased streamflow associated with MAR). An analysis framework utilizing capture concepts is developed to interpret seasonal changes in head-dependent flows to/from the aquifer, including groundwater-surface water exchange that impacts streamflow. Results demonstrate that accretion occurs during the target low-flow period but is not limited to those months, highlighting an inefficiency that is a function of the aquifer geometry and hydraulic properties. The results of this study offer guidance for other flow augmentation projects that rely on water storage in shallow

  15. Assessing River Low-Flow Uncertainties Related to Hydrological Model Calibration and Structure under Climate Change Conditions

    Directory of Open Access Journals (Sweden)

    Mélanie Trudel


    Full Text Available Low-flow is the flow of water in a river during prolonged dry weather. This paper investigated the uncertainty originating from hydrological model calibration and structure in low-flow simulations under climate change conditions. Two hydrological models of contrasting complexity, GR4J and SWAT, were applied to four sub-watersheds of the Yamaska River, Canada. The two models were calibrated using seven different objective functions including the Nash-Sutcliffe coefficient (NSEQ and six other objective functions more related to low flows. The uncertainty in the model parameters was evaluated using a PARAmeter SOLutions procedure (PARASOL. Twelve climate projections from different combinations of General Circulation Models (GCMs and Regional Circulation Models (RCMs were used to simulate low-flow indices in a reference (1970–2000 and future (2040–2070 horizon. Results indicate that the NSEQ objective function does not properly represent low-flow indices for either model. The NSE objective function applied to the log of the flows shows the lowest total variance for all sub-watersheds. In addition, these hydrological models should be used with care for low-flow studies, since they both show some inconsistent results. The uncertainty is higher for SWAT than for GR4J. With GR4J, the uncertainties in the simulations for the 7Q2 index (the 7-day low-flow value with a 2-year return period are lower for the future period than for the reference period. This can be explained by the analysis of hydrological processes. In the future horizon, a significant worsening of low-flow conditions was projected.

  16. Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring (United States)

    Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro


    Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload

  17. Lattice Boltzmann methods for complex micro-flows: applicability and limitations for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K, E-mail: [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)


    The extensive evaluation studies of the lattice Boltzmann method for micro-scale flows ({mu}-flow LBM) by the author's group are summarized. For the two-dimensional test cases, force-driven Poiseuille flows, Couette flows, a combined nanochannel flow, and flows in a nanochannel with a square- or triangular cylinder are discussed. The three-dimensional (3D) test cases are nano-mesh flows and a flow between 3D bumpy walls. The reference data for the complex test flow geometries are from the molecular dynamics simulations of the Lennard-Jones fluid by the author's group. The focused flows are mainly in the slip and a part of the transitional flow regimes at Kn < 1. The evaluated schemes of the {mu}-flow LBMs are the lattice Bhatnagar-Gross-Krook and the multiple-relaxation time LBMs with several boundary conditions and discrete velocity models. The effects of the discrete velocity models, the wall boundary conditions, the near-wall correction models of the molecular mean free path and the regularization process are discussed to confirm the applicability and the limitations of the {mu}-flow LBMs for complex flow geometries. (invited review)

  18. Lattice Boltzmann methods for complex micro-flows: applicability and limitations for practical applications

    International Nuclear Information System (INIS)

    Suga, K


    The extensive evaluation studies of the lattice Boltzmann method for micro-scale flows (μ-flow LBM) by the author's group are summarized. For the two-dimensional test cases, force-driven Poiseuille flows, Couette flows, a combined nanochannel flow, and flows in a nanochannel with a square- or triangular cylinder are discussed. The three-dimensional (3D) test cases are nano-mesh flows and a flow between 3D bumpy walls. The reference data for the complex test flow geometries are from the molecular dynamics simulations of the Lennard-Jones fluid by the author's group. The focused flows are mainly in the slip and a part of the transitional flow regimes at Kn < 1. The evaluated schemes of the μ-flow LBMs are the lattice Bhatnagar–Gross–Krook and the multiple-relaxation time LBMs with several boundary conditions and discrete velocity models. The effects of the discrete velocity models, the wall boundary conditions, the near-wall correction models of the molecular mean free path and the regularization process are discussed to confirm the applicability and the limitations of the μ-flow LBMs for complex flow geometries. (invited review)

  19. Methods for compressible multiphase flows and their applications (United States)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.


    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  20. Flow cytometric applications of tumor biology: prospects and pitfalls

    International Nuclear Information System (INIS)

    Raju, M.R.; Johnson, T.S.; Tokita, N.; Gillette, E.L.


    A brief review of cytometry instrumentation and its potential applications in tumor biology is presented using our recent data. Age-distribution measurements of cells from spontaneous dog tumors and cultured cells after exposure to x rays, alpha particles, or adriamycin are shown. The data show that DNA fluorescence measurements have application in the study of cell kinetics after either radiation or drug treatment. Extensive and careful experimentation is needed to utilize the sophisticated developments in flow cytometry instrumentation

  1. Flow cytometric applications to tumour biology: prospects and pitfalls

    International Nuclear Information System (INIS)

    Raju, M.R.; Johnson, T.S.; Tokita, N.; Gillette, E.L.


    A brief review of cytometry instrumentation and its potential applications in tumour biology is presented. DNA distribution measurements of cells from spontaneous dog tumours and cultured cells after exposure to X-rays, alpha particles or adriamycin are shown. The data show that DNA fluorescence measurements have application in the study of cell kinetics after either radiation or drug treatment. Extensive and careful experimentation is needed, however, to utilize the sophisticated developments in flow cytometry instrumentation. (author)

  2. Simulation of groundwater flow and streamflow depletion in the Branch Brook, Merriland River, and parts of the Mousam River watersheds in southern Maine (United States)

    Nielsen, Martha G.; Locke, Daniel B.


    Watersheds of three streams, the Mousam River, Branch Brook, and Merriland River in southeastern Maine were investigated from 2010 through 2013 under a cooperative project between the U.S. Geological Survey and the Maine Geological Survey. The Branch Brook watershed previously had been deemed “at risk” by the Maine Geological Survey because of the proportionally large water withdrawals compared to estimates of the in-stream flow requirements for habitat protection. The primary groundwater withdrawals in the study area include a water-supply well in the headwaters of the system and three water-supply wells in the coastal plain near the downstream end of the system. A steady-state groundwater flow model was used to understand the movement of water within the system, to evaluate the water budget and the effect of groundwater withdrawals on streamflows, and to understand streamflow depletion in relation to the State of Maine’s requirements to maintain in-stream flows for habitat protection.

  3. Application of 2-D sediment model to fluctuating backwater area of Yangtze River

    Directory of Open Access Journals (Sweden)

    Yong Fan


    Full Text Available Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system. The basic equation of the two-dimensional total sediment load model, the numerical calculation format, and key problems associated with using the orthogonal curvilinear coordinate system were discussed. Water and sediment flow in the Chongqing reach of the Yangtze River were simulated. The calculated water level, flow velocity distribution, amount of silting and scouring, and alluvial distribution are found to be in agreement with the measured data, which indicates that the numerical model and calculation method are reasonable. The model can be used for calculation of flow in a relatively complicated river network.

  4. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.


    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle


    Directory of Open Access Journals (Sweden)

    Yvonilde Dantas Pinto Medeiros


    Full Text Available Traditionally, water resource management has been developed using an essentially technical approach. Currently, public opinion on water resource management is formed as a result of growing environmental concerns and social conflicts arising from poorly planned actions. Environmental problems are complex and have multiple dimensions, including social and economic. Therefore, the inclusion of a human dimension in integrated assessment methodologies is required for the introduction of new elements to the water management planning process. Environmental water allocation (EWA is understood as the quantity, quality and distribution of water required for the maintenance of the functions and processes of aquatic ecosystems on which people depend. Within the various holistic assessment methodologies, the Building Block Methodology (BBM was found to be the most suitable, in the Brazilian context, for maintaining and restoring essential elements of the natural flow regime. This article describes the process of social participation in the environmental flow assessment (EFA for the Sao Francisco River, and compares it with some of the lessons learned from EFA in other parts of the world. The process involved multiple stakeholders who have conflicting interests. BBM was used to guide the field interviews, to incorporate the empirical observations by the local population and to guide the methodological procedures of the multidisciplinary team. The results of the study indicate the effectiveness of this holistic approach in organizing the elements to be evaluated. It also facilitated important contributions to the establishment of a dialogue between the actors to achieve a better understanding of the multiple aspects involved in the decisions associated with the EWA.

  6. Modeling Surface Water Dynamics in the Amazon Basin Using Mosart-Inundation-v1.0: Impacts of Geomorphological Parameters and River Flow Representation (United States)

    Luo, Xiangyu; Li, Hong-Yi; Leung, Ruby; Tesfa, Teklu K.; Getirana, Augusto; Papa, Fabrice; Hess, Laura L.


    Surface water dynamics play an important role in water, energy and carbon cycles of the Amazon Basin. A macro-scale inundation scheme was integrated with a surface-water transport model and the extended model was applied in this vast basin. We addressed the challenges of improving basin-wide geomorphological parameters and river flow representation for 15 large-scale applications. Vegetation-caused biases embedded in the HydroSHEDS DEM data were alleviated by using a vegetation height map of about 1-km resolution and a land cover dataset of about 90-m resolution. The average elevation deduction from the DEM correction was about 13.2 m for the entire basin. Basin-wide empirical formulae for channel cross-sectional geometry were adjusted based on local information for the major portion of the basin, which could significantly reduce the cross-sectional area for the channels of some subregions. The Manning roughness coefficient of the channel 20 varied with the channel depth to reflect the general rule that the relative importance of riverbed resistance in river flow declined with the increase of river size. The entire basin was discretized into 5395 subbasins (with an average area of 1091.7 km2), which were used as computation units. The model was driven by runoff estimates of 14 years (1994 2007) generated by the ISBA land surface model. The simulated results were evaluated against in situ streamflow records, and remotely sensed Envisat altimetry data and GIEMS inundation data. The hydrographs were reproduced fairly well for the majority of 25 13 major stream gauges. For the 11 subbasins containing or close to 11 of the 13 gauges, the timing of river stage fluctuations was captured; for most of the 11 subbasins, the magnitude of river stage fluctuations was represented well. The inundation estimates were comparable to the GIEMS observations. Sensitivity analyses demonstrated that refining floodplain topography, channel morphology and Manning roughness coefficients

  7. Economic Analysis of the Impacts of Climate-Induced Changes in River Flow on Hydropower and Fisheries in Himalayan region. (United States)

    Khadka Mishra, S.; Hayse, J.; Veselka, T.; Yan, E.; Kayastha, R. B.; McDonald, K.; Steiner, N.; Lagory, K.


    Climate-mediated changes in melting of snow and glaciers and in precipitation patterns are expected to significantly alter the water flow of rivers at various spatial and temporal scales. Hydropower generation and fisheries are likely to be impacted annually and over the century by the seasonal as well as long-term changes in hydrological conditions. In order to quantify the interactions between the drivers of climate change, the hydropower sector and the ecosystem we developed an integrated assessment framework that links climate models with process-based bio-physical and economic models. This framework was applied to estimate the impacts of changes in snow and glacier melt on the stream flow of the Trishuli River of the High Mountain Asia Region. Remotely-sensed data and derived products, as well as in-situ data, were used to quantify the changes in snow and glacier melt. The hydrological model was calibrated and validated for stream flows at various points in the Trishuli river in order to forecast conditions at the location of a stream gauge station upstream of the Trishuli hydropower plant. The flow of Trishuli River was projected to increase in spring and decrease in summer over the period of 2020-2100 under RCP 8.5 and RCP 4.5 scenarios as compared to respective mean seasonal discharge observed over 1981-2014. The simulated future annual mean stream flow would increase by 0.6 m3/s under RCP 8.5 scenario but slightly decrease under RCP 4.5. The Argonne Hydropower Energy and Economic toolkit was used to estimate and forecast electricity generation at the Trishuli power plant under various flow conditions and upgraded infrastructure. The increased spring flow is expected to increase dry-season electricity generation by 18% under RCP 8.5 in comparison to RCP 4.5. A fishery suitability model developed for the basin indicated that fishery suitability in the Trishuli River would be greater than 70% of optimal, even during dry months under both RCP 4.5 and RCP 8