WorldWideScience

Sample records for river fish passage

  1. Walla Walla River Fish Passage Operations Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2004-2005 project year, there were 590 adult summer steelhead, 31 summer steelhead kelts (Oncorhynchus mykiss), 70 adult bull trout (Salvelinus confluentus); 80 adult and 1 jack spring Chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 13, 2004, and June 16, 2005. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by ODFW in order to enumerate fish passage. Of the total, 143 adult summer steelhead and 15 summer steelhead kelts were enumerated at the west ladder at Nursery Bridge Dam during the video efforts between February 4 and May 23, 2005. Operation of the Little Walla Walla River

  2. Walla Walla River Fish Passage Operations Program, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-03-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2002-2003 project year, there were 545 adult summer steelhead (Oncorhynchus mykiss), 29 adult bull trout (Salvelinus confluentus); 1 adult and 1 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway adult trap between January 1 and June 23, 2003. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported 21 adult spring chinook from Ringold Springs Hatchery and 281 from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. Of these, 290 were outplanted in August for natural spawning in the basin.

  3. Walla Walla River Fish Passage Operations Program, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian C. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-02-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow measures, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2000-2001 project year, there were 624 summer steelhead (Oncorhynchus mykiss), 24 bull trout (Salvelinus confluentus), and 47 spring chinook (O. tshawytscha) counted at the Nursery Bridge Dam adult trap between December 27, 2000 and June 7, 2001. The Little Walla Walla River juvenile trap was not operated this year. The project transported 1600 adult spring chinook from Ringold Springs Hatchery to the South Fork Walla Walla Brood Holding Facility and outplanted 1156 for natural spawning in the basin. The project also provided equipment for transportation of juveniles captured during the construction fish salvage at Nursery Bridge Dam.

  4. Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2004-12-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla

  5. Walla Walla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P.; Duke, Bill; Loffink, Ken

    2008-12-30

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. Migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage and trapping facility design, operation, and criteria. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. Beginning in March of 2007, two work elements from the Walla Walla Fish Passage Operations Project were transferred to other projects. The work element Enumeration of Adult Migration at Nursery Bridge Dam is now conducted under the Walla Walla Basin Natural Production Monitoring and Evaluation Project and the work element Provide Transportation Assistance is conducted under the Umatilla Satellite Facilities Operation and Maintenance Project. Details of these activities can be found in those project's respective annual reports.

  6. Yakima Basin Fish Passage Project, Phase 2

    International Nuclear Information System (INIS)

    1991-08-01

    Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs

  7. The future of fish passage science, engineering, and practice

    DEFF Research Database (Denmark)

    Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore

    2018-01-01

    science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge......Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i...... underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South-East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post-passage impacts, requires adaptive management and continued...

  8. Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, Mickie A. [Pacific Northwest National Laboratory

    2008-08-29

    In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridge fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of

  9. Upstream movements of Atlantic Salmon in the Lower Penobscot River, Maine following two dam removals and fish passage modifications

    Science.gov (United States)

    Izzo, Lisa K.; Maynard, George A.; Zydlewski, Joseph D.

    2016-01-01

    The Penobscot River Restoration Project (PRRP), to be completed in 2016, involved an extensive plan of dam removal, increases in hydroelectric capacity, and fish passage modifications to increase habitat access for diadromous species. As part of the PRRP, Great Works and Veazie dams were removed, making Milford Dam the first impediment to federally endangered Atlantic Salmon Salmo salar. Upstream habitat access for Atlantic Salmon is dependent upon successful and timely passage at Milford Dam because nearly all suitable spawning habitat is located upstream. In 2014 and 2015, a total of 73 adult salmon were radio-tagged to track their upstream movements through the Penobscot River to assess potential delays at (1) the dam remnants, (2) the confluence of the Stillwater Branch and the main stem of the Penobscot River below the impassable Orono Dam, and (3) the Milford Dam fish lift (installed in 2014). Movement rates through the dam remnants and the Stillwater confluence were comparable to open river reaches. Passage efficiency of the fish lift was high in both years (95% and 100%). However, fish experienced long delays at Milford Dam, with approximately one-third of fish taking more than a week to pass in each year, well below the Federal Energy Regulatory Commission passage standard of 95% within 48 h. Telemetry indicates most fish locate the fishway entrance within 5 h of arrival and were observed at the entrance at all hours of the day. These data indicate that overall transit times through the lower river were comparable to reported movement rates prior to changes to the Penobscot River due to the substantial delays seen at Milford Dam. The results of this study show that while adult Atlantic Salmon locate the new fish lift entrance quickly, passage of these fish was significantly delayed under 2014–2015 operations.

  10. The future of fish passage science, engineering, and practice

    Science.gov (United States)

    Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore R.; Katopodis, Christos; Baumgartner, Lee J.; Thiem, Jason D.; Aarestrup, Kim; Pompeu, Paulo S.; O'Brien, Gordon C.; Braun, Douglas C.; Burnett, Nicholas J.; Zhu, David Z.; Fjeldstad, Hans-Petter; Forseth, Torbjorn; Rajarathnam, Nallamuthu; Williams, John G.; Cooke, Steven J.

    2018-01-01

    Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i.e., biology, ecology, physiology, ecohydraulics, engineering) and from different continents (i.e., North and South America, Europe, Africa, Australia) identified knowledge gaps and provided a roadmap for research priorities and technical developments. Once dominated by an engineering‐focused approach, fishway science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South‐East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post‐passage impacts, requires adaptive management and continued innovation. While the use of fishways in river restoration demands a transition towards fish passage at the community scale, advances in selective fishways are also needed to manage invasive fish colonization. Because of the erroneous view in some literature and communities of practice that fish passage is largely a proven technology, improved international collaboration, information sharing, method standardization and multidisciplinary training are needed. Further development of regional expertise is needed in South America, Asia and Africa where hydropower dams are currently being planned and constructed.

  11. Natural Propagation and Habitat Improvement, Volume 1, Oregon, Supplement B, White River Falls Fish Passage, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1984-04-01

    White River Falls are located in north central Oregon approximately 25 miles south of the City of The Dalles. The project site is characterized by a series of three natural waterfalls with a combined fall of 180 ft. In the watershed above the falls are some 120 miles of mainstem habitat and an undetermined amount of tributary stream habitat that could be opened to anadromous fish, if passage is provided around the falls. The purpose of this project is to determine feasibility of passage, select a passage scheme, and design and construct passage facilities. This report provides information on possible facilities that would pass adult anadromous fish over the White River Falls. 25 references, 29 figures, 12 tables. (ACR)

  12. Australian experience of fish passage past instream structures

    International Nuclear Information System (INIS)

    Lewis, B.

    2008-01-01

    The growth in hydropower has resulted in the construction of various structures across rivers and streams, such as dams and weirs, which may impede essential fish movements and result in local extinctions of some fish species. When it is not practical to build instream structures that provide for fish passage, it may be appropriate to install some type of fishway. Site specific factors such as the fish species present, topography, flow characteristics and cost effectiveness will determine how best to provide for fish passage. The types of fishways suitable at small dams and weirs up to five metres high were described in this paper along with their benefits and effectiveness. The purpose was to provide simple and appropriate solutions that can improve the health of rivers considerably by managing the native aquatic habitat. The upstream passage past obstacles can be provided for through several types of fishways such as pool-type fishways, Denil fish passes, rock ramps, nature-like bypass channels, fish lifts or locks, collection and transportation facilities. In addition to environmental benefits, providing for fish passage can have long term social and economic benefits as well. 17 refs., 3 figs

  13. Downstream passage of fish larvae and eggs through a small-sized reservoir, Mucuri river, Brazil

    Directory of Open Access Journals (Sweden)

    Paulo S. Pompeu

    2011-12-01

    Full Text Available In South America, one important symptom of the failure of fish passages to sustain fish migratory recruitment is the inability of eggs and larvae to reach the nurseries. This is especially so when the breeding areas are located upstream of a reservoir, and the floodplain is downstream of the dam. Therefore, the transport of fish larvae and eggs across reservoir barriers is a key factor in the development of effective conservation strategies. In this paper, we evaluate the potential for migratory fish larvae and egg transportation across a small size reservoir in eastern Brazil. We sampled fish daily between 15th October 2002 and 15th February 2003 (spawning period in the Mucuri River, immediately upstream of the reservoir and downstream of the Santa Clara Power Plant dam. Our study was the first to indicate the possibility of successful larval passage through the reservoir of a hydroelectric reservoir and dam in South America, and showed that the passage of migratory fish larvae was associated significantly with residence time of water in the reservoir. The relatively short water residence time and elevated turbidity of the Santa Clara's reservoir waters during the rainy season certainly contributed to the successful passage, and can be considered as key factors for a priori evaluations of the feasibility of a downstream larval passage.

  14. Fish passage hydroelectric power plant Linne, Netherlands. Didson measurements

    International Nuclear Information System (INIS)

    Van Keeken, O.A.; Griffioen, A.B.

    2011-11-01

    The hydroelectric power plant in the Dutch Maas River near Linne has a fish deflection and passage system. For this study, two evenings in the months of August and September 2011 were dedicated to examining the extent to which fish approached and used the fish passage system. To establish the swimming behavior of the fish, a high-resolution sonar (DIDSON) was used, which generates moving images of fish in turbid waters, to study their behavior. [nl

  15. Evaluation of Fish Passage Conditions for Juvenile Salmonids Using Sensor Fish at Detroit Dam, Oregon

    International Nuclear Information System (INIS)

    Duncan, Joanne P.

    2010-01-01

    Fish passage conditions through two spillways at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions through Spillbay 3 and Spillbay 6 at 1.5- and 3.5-ft gate openings, identifying potential fish injury regions of the routes. The study was performed in July 2009, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish and live fish were deployed at elevations approximately 3 ft above structure at depths determined using a computational fluid dynamics model. Data collected were analyzed to estimate (1) exposure conditions, particularly exposure to severe collision and shear events by passage route sub-regions; (2) differences in passage conditions between passage routes; and (3) relationships to live-fish injury and mortality data estimates.

  16. Fish Passage Center : Fish Passage Center of the Columbia Basin Fish and Wildlife Authority; Annual report 1998

    International Nuclear Information System (INIS)

    DeHart, Michele

    1999-01-01

    The 1998 operations of the Columbia and Snake rivers system illustrated that there was potential flexibility in the operation of the hydrosystem to improve fish passage for juvenile salmon and increase the degree to which the NMS Biological Opinion measures could have been implemented successfully. This additional flexibility was not exercised. Some measures of the Biological Opinion were not implemented. The 1998 operation showed that the Hells Canyon Complex, operation, the Upper Snake River operation and Non-treaty storage operation could have provided flexibility to meet early spring and later summer flows

  17. Synthesis of downstream fish passage information at projects owned by the U.S. Army Corps of Engineers in the Willamette River Basin, Oregon

    Science.gov (United States)

    Hansen, Amy C.; Kock, Tobias J.; Hansen, Gabriel S.

    2017-08-07

    The U.S. Army Corps of Engineers (USACE) operates the Willamette Valley Project (Project) in northwestern Oregon, which includes a series of dams, reservoirs, revetments, and fish hatcheries. Project dams were constructed during the 1950s and 1960s on rivers that supported populations of spring Chinook salmon (Oncorhynchus tshawytscha), winter steelhead (O. mykiss), and other anadromous fish species in the Willamette River Basin. These dams, and the reservoirs they created, negatively affected anadromous fish populations. Efforts are currently underway to improve passage conditions within the Project and enhance populations of anadromous fish species. Research on downstream fish passage within the Project has occurred since 1960 and these efforts are documented in numerous reports and publications. These studies are important resources to managers in the Project, so the USACE requested a synthesis of existing literature that could serve as a resource for future decision-making processes. In 2016, the U.S. Geological Survey conducted an extensive literature review on downstream fish passage studies within the Project. We identified 116 documents that described studies conducted during 1960–2016. Each of these documents were obtained, reviewed, and organized by their content to describe the state-of-knowledge within four subbasins in the Project, which include the North Santiam, South Santiam, McKenzie, and Middle Fork Willamette Rivers. In this document, we summarize key findings from various studies on downstream fish passage in the Willamette Project. Readers are advised to review specific reports of interest to insure that study methods, results, and additional considerations are fully understood.

  18. Umatilla River Fish Passage Operations Program, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-03-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 17, 2002 to September 29, 2003. A total of 3,080 summer steelhead (Oncorhynchus mykiss); 1716 adult, 617 jack, and 1,709 subjack fall chinook (O. tshawytscha); 3,820 adult and 971 jack coho (O. kisutch); and 3,607 adult and 135 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 6 summer steelhead and 330 adult and 49 jack spring chinook were hauled upstream from Threemile Dam. There were 2,882 summer steelhead; 1161 adult, 509 jack and 1,546 subjack fall chinook; 3,704 adult and 915 jack coho; and 2,406 adult and 31 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 109 summer steelhead; 532 adult and 32 jack fall chinook; and 560 adult and 28 jack spring chinook were collected for brood. In addition, 282 spring chinook were collected for the outplanting efforts in the Walla Walla Basin. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 159 days between January 27 and July 4, 2003. During that period, fish were bypassed back to the river 145 days and were trapped 11 days. An estimated 205 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5). Approximately 82% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was opened on September 16, 2002. and continued until November 1, 2002. The bypass was reopened March 3, 2003 and ran until July 3, 2003. The juvenile trap was operated by the Umatilla Passage Evaluation

  19. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume III, Appendix B, Fisheries Report; Appendix C, Engineering Alternative Evaluation; Appendix D, Benefit/Cost Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

    1985-06-01

    Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developd to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. This volume contains appendices of habitat survey data, potential production, resident fish population data, upstream passage designs, and benefit/cost calculations. (ACR)

  20. Hungry Horse Dam fisheries mitigation program: Fish passage and habitat improvement in the Upper Flathead River basin

    International Nuclear Information System (INIS)

    Knotek, W.L.; Deleray, M.; Marotz, B.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects

  1. Characterization of Fish Passage Conditions through a Francis Turbine, Spillway, and Regulating Outlet at Detroit Dam, Oregon, Using Sensor Fish, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P.; Carlson, Thomas J.

    2011-05-06

    Fish passage conditions through two spillways, a Francis turbine, and a regulating outlet (RO) at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions within the routes. The study was performed in July, October, and December 2009 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe strike, collision, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Detroit Dam indicates that the RO passage route through the 5-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine and spillway passage. However, none of the passage routes tested is safe for juvenile salmonid passage.

  2. Identifying and Evaluating Options for Improving Sediment Management and Fish Passage at Hydropower Dams in the Lower Mekong River Basin

    Science.gov (United States)

    Wild, T. B.; Reed, P. M.; Loucks, D. P.

    2015-12-01

    The Mekong River basin in Southeast Asia is undergoing intensive and pervasive hydropower development to satisfy demand for increased energy and income to support its growing population of 60 million people. Just 20 years ago this river flowed freely. Today some 30 large dams exist in the basin, and over 100 more are being planned for construction. These dams will alter the river's natural water, sediment and nutrient flows, thereby impacting river morphology and ecosystems, and will fragment fish migration pathways. In doing so, they will degrade one of the world's most valuable and productive freshwater fish habitats. For those dams that have not yet been constructed, there still exist opportunities to modify their siting, design and operation (SDO) to potentially achieve a more balanced set of tradeoffs among hydropower production, sediment/nutrient passage and fish passage. We introduce examples of such alternative SDO opportunities for Sambor Dam in Cambodia, planned to be constructed on the main stem of the Mekong River. To evaluate the performance of such alternatives, we developed a Python-based simulation tool called PySedSim. PySedSim is a daily time step mass balance model that identifies the relative tradeoffs among hydropower production, and flow and sediment regime alteration, associated with reservoir sediment management techniques such as flushing, sluicing, bypassing, density current venting and dredging. To date, there has been a very limited acknowledgement or evaluation of the significant uncertainties that impact the evaluation of SDO alternatives. This research is formalizing a model diagnostic assessment of the key assumptions and parametric uncertainties that strongly influence PySedSim SDO evaluations. Using stochastic hydrology and sediment load data, our diagnostic assessment evaluates and compares several Sambor Dam alternatives using several performance measures related to energy production, sediment trapping and regime alteration, and

  3. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.

  4. A barrier to upstream migration in the fish passage of Itaipu Dam (Canal da Piracema), Paraná River basin

    Science.gov (United States)

    ,; Fontes Júnior, Hélio Martins; Makrakis, Sergio; Gomes, Luiz Carlos; Latini, João Dirço

    2012-01-01

    The majority of the fish passages built in the Neotropical region are characterised by low efficiency and high selectivity; in many cases, the benefits to fish populations are uncertain. Studies conducted in the Canal da Piracema at Itaipu dam on the Parana River indicate that the system component designated as the Discharge channel in the Bela Vista River (herein named Canal de deságue no rio Bela Vista or CABV), a 200 m long technical section, was the main barrier to the upstream migration. The aim of this study was to evaluate the degree of restriction imposed by the CABV on upstream movements of Prochilodus lineatus and Leporinus elongatus, Characiformes. Fish were tagged with passive integrated transponders (PIT tags) and released both downstream and upstream of this critical section. Individuals of both species released downstream of the CABV took much more time to reach the upper end of the system (43.6 days vs. 15.9 days), and passed in much lower proportions (18% vs. 60.8%) than those tagged upstream of this component. Although more work is needed to differentiate between fishway effects and natural variation in migratory motivation, the results clearly demonstrate passage problems at the CABV.

  5. Fish ladders: safe fish passage or hotspot for predation?

    Directory of Open Access Journals (Sweden)

    Angelo Antonio Agostinho

    Full Text Available Fish ladders are a strategy for conserving biodiversity, as they can provide connectivity between fragmented habitats and reduce predation on shoals that accumulate immediately below dams. Although the impact of predation downstream of reservoirs has been investigated, especially in juvenile salmonids during their downstream movements, nothing is known about predation on Neotropical fish in the attraction and containment areas commonly found in translocation facilities. This study analysed predation in a fish passage system at the Lajeado Dam on the Tocantins River in Brazil. The abundance, distribution, and the permanence (time spent of large predatory fish along the ladder, the injuries imposed by piranhas during passage and the presence of other vertebrate predators were investigated. From December 2002 to October 2003, sampling was conducted in four regions (downstream, along the ladder, in the forebay, and upstream of the reservoir using gillnets, cast nets and counts or visual observations. The captured fish were tagged with thread and beads, and any mutilations were registered. Fish, birds and dolphins were the main predator groups observed, with a predominance of the first two groups. The entrance to the ladder, in the downstream region, was the area with the highest number of large predators and was the only region with relevant non-fish vertebrates. The main predatory fish species were Rhaphiodon vulpinus, Hydrolycus armatus, and Serrasalmus rhombeus. Tagged individuals were detected predating along the ladder for up to 90 days. Mutilations caused by Serrasalmus attacks were noted in 36% of species and 4% of individuals at the top of the ladder. Our results suggested that the high density of fish in the restricted ladder environment, which is associated with injuries suffered along the ladder course and the presence of multiple predator groups with different predation strategies, transformed the fish corridor into a hotspot for

  6. Sensor Fish: an autonomous sensor package for characterizing complex flow fields and fish passage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Martinez, Jayson J.; Lu, Jun

    2016-10-04

    Fish passing through dams or other hydraulic structures may be injured or killed despite advances in turbine design, project operations, and other fish bypass systems. The Sensor Fish (SF) device is an autonomous sensor package that characterizes the physical conditions and stressors to which fish are exposed during passage through hydro facilities. It was designed to move passively as a neutrally buoyant object through severe hydraulic environments, while collecting high-resolution sensor data. Since its first generation1, the SF device has been successfully deployed in many fish passage studies and has evolved to be a major tool for characterizing fish passage conditions during fish passage in the Columbia River Basin. To better accelerate hydropower development, the U.S. Department of Energy Water Power Program provided funding to develop a new generation (Gen 2 SF) to incorporate more capabilities and accommodate a wider range of users over a broader range of turbine designs and operating environments. The Gen 2 SF (Figure 1) is approximately the size and density of a yearling salmon smolt and is nearly neutrally buoyant. It contains three-dimensional (3D) rotation sensors, 3D linear acceleration sensors, a pressure sensor, a temperature sensor, a 3D orientation sensor, a radiofrequency (RF) transmitter, and a recovery module2. A low-power microcontroller collects data from the sensors and stores up to 5 min of data on internal flash memory at a sampling frequency of 2048 Hz. The recovery module makes the SF positively buoyant after a pre-programmed period of time, causing it to float to the surface for recovery.

  7. Fish Passage Center 2001 annual report.; ANNUAL

    International Nuclear Information System (INIS)

    Fish Passage Center

    2002-01-01

    Extremely poor water conditions within the Columbia River Basin along with extraordinary power market conditions created an exceptionally poor migration year for juvenile salmon and steelhead. Monthly 2001 precipitation at the Columbia above Grand Coulee, the Snake River above Ice Harbor, and the Columbia River above The Dalles was approximately 70% of average. As a result the 2001 January-July runoff volume at The Dalles was the second lowest in Columbia River recorded history. As a compounding factor to the near record low flows in 2001, California energy deregulation and the resulting volatile power market created a financial crisis for the Bonneville Power Administration (BPA). Power emergencies were first declared in the summer and winter of 2000 for brief periods of time. In February of 2001, and on April 3, the BPA declared a ''power emergency'' and suspended many of the Endangered Species Act (ESA) and Biological Opinion (Opinion) measures that addressed mainstem Columbia and Snake Rivers juvenile fish passage. The river and reservoir system was operated primarily for power generation. Power generation requirements in January through March coincidentally provided emergence and rearing flows for the Ives-Pierce Islands spawning area below Bonneville Dam. In particular, flow and spill measures to protect juvenile downstream migrant salmon and steelhead were nearly totally suspended. Spring and summer flows were below the Opinion migration target at all sites. Maximum smolt transportation was implemented instead of the Opinion in-river juvenile passage measures. On May 16, the BPA Administrator decided to implement a limited spill for fish passage at Bonneville and The Dalles dams. On May 25, a limited spill program was added at McNary and John Day dams. Spill extended to July 15. Juvenile migrants, which passed McNary Dam after May 21, experienced a noticeable, improved survival, as a benefit of spill at John Day Dam. The suspension of Biological Opinion

  8. Development of computational fluid dynamics--habitat suitability (CFD-HSI) models to identify potential passage--Challenge zones for migratory fishes in the Penobscot River

    Science.gov (United States)

    Haro, Alexander J.; Dudley, Robert W.; Chelminski, Michael

    2012-01-01

    A two-dimensional computational fluid dynamics-habitat suitability (CFD–HSI) model was developed to identify potential zones of shallow depth and high water velocity that may present passage challenges for five anadromous fish species in the Penobscot River, Maine, upstream from two existing dams and as a result of the proposed future removal of the dams. Potential depth-challenge zones were predicted for larger species at the lowest flow modeled in the dam-removal scenario. Increasing flows under both scenarios increased the number and size of potential velocity-challenge zones, especially for smaller species. This application of the two-dimensional CFD–HSI model demonstrated its capabilities to estimate the potential effects of flow and hydraulic alteration on the passage of migratory fish.

  9. Influence of seasonal, diel, lunar, and other environmental factors on upstream fish passage in the igarapava fish ladder, Brazil

    Science.gov (United States)

    Bizzotto, P.M.; Godinho, Alexandre L.; Vono, V.; Kynard, B.; Godinho, Hugo P.

    2009-01-01

    Upstream fish passage was evaluated during 12 months in the vertical-slot Igarapava Fish Ladder constructed around Igarapava Dam, in the heavily dammed Grande River, Southeast Brazil. A video monitoring system was used to observe 61,621 fish that passed the ladder, of which 93.5% were identified to 15 taxa. Among the migratory species, the most abundant were Pimelodus maculatus (33.6% of all fish), Leporinus octofasciatus (31.4%), Leporinus friderici (4.5%), and Prochilodus lineatus (3.1%). Seven taxa were classified as nonmigratory, and of these taxa, the small Bryconamericus stramineus was the most abundant (12.7%) of all fishes. Passage of the 'nonmigratory' taxa upstream in the ladder shows they are migratory in this system and have a strong behavioural drive to move to upstream habitat. Passage of most taxa had a strong seasonal pattern. While some species passed primarily during the day, others showed a distinct nocturnal pattern. Lunar phase and water temperature also strongly affected passage of some taxa. Rainfall and dam discharge had a small or null influence on most taxa; perhaps due to the fairly small catchment area of the reservoir and the highly regulated discharge at Igarapava Dam. ?? 2009 John Wiley & Sons A/S.

  10. Fish passage hydroelectric power plant Linne, Netherlands. Didson measurements; Vispassage waterkrachtcentrale Linne. Didson metingen

    Energy Technology Data Exchange (ETDEWEB)

    Van Keeken, O.A.; Griffioen, A.B. [Institute for Marine Resources and Ecosystem Studies IMARES, Wageningen UR, IJmuiden (Netherlands)

    2011-11-15

    The hydroelectric power plant in the Dutch Maas River near Linne has a fish deflection and passage system. For this study, two evenings in the months of August and September 2011 were dedicated to examining the extent to which fish approached and used the fish passage system. To establish the swimming behavior of the fish, a high-resolution sonar (DIDSON) was used, which generates moving images of fish in turbid waters, to study their behavior. [Dutch] Bij de waterkrachtcentrale in de Maas bij Linne is een visafweer- en geleidingssysteem aangelegd. In deze studie werd op twee avonden verdeeld over de maanden augustus en september 2011 gekeken in hoeverre vissen het visgeleidingssysteem benaderden en gebruikten. Voor het vaststellen van het zwemgedrag van de vissen is gebruik gemaakt van de DIDSON, een hoge resolutie sonar waarmee bewegende beelden kunnen worden gemaakt van vis in troebel water om het gedrag te bestuderen.

  11. Evaluation of Fish Passage at Whitewater Parks Using 2D and 3D Hydraulic Modeling

    Science.gov (United States)

    Hardee, T.; Nelson, P. A.; Kondratieff, M.; Bledsoe, B. P.

    2016-12-01

    In-stream whitewater parks (WWPs) are increasingly popular recreational amenities that typically create waves by constricting flow through a chute to increase velocities and form a hydraulic jump. However, the hydraulic conditions these structures create can limit longitudinal habitat connectivity and potentially inhibit upstream fish migration, especially of native fishes. An improved understanding of the fundamental hydraulic processes and potential environmental effects of whitewater parks is needed to inform management decisions about Recreational In-Channel Diversions (RICDs). Here, we use hydraulic models to compute a continuous and spatially explicit description of velocity and depth along potential fish swimming paths in the flow field, and the ensemble of potential paths are compared to fish swimming performance data to predict fish passage via logistic regression analysis. While 3d models have been shown to accurately predict trout movement through WWP structures, 2d methods can provide a more cost-effective and manager-friendly approach to assessing the effects of similar hydraulic structures on fish passage when 3d analysis in not feasible. Here, we use 2d models to examine the hydraulics in several WWP structures on the North Fork of the St. Vrain River at Lyons, Colorado, and we compare these model results to fish passage predictions from a 3d model. Our analysis establishes a foundation for a practical, transferable and physically-rigorous 2d modeling approach for mechanistically evaluating the effects of hydraulic structures on fish passage.

  12. Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele (Columbia Basin Fish and Wildlife Authority, Fish Passage Center, Portland, OR)

    2004-09-01

    The runoff volumes in 2003 were below average for the January to July period above Lower Granite Dam (79%) and The Dalles Dam (82%). The year 2003 hydrosystem operations and runoff conditions resulted in flows that met the spring seasonal Biological Opinion flow objectives at Lower Granite Dam, McNary Dam and Priest Rapids Dam. However, summer seasonal flows at Lower Granite Dam and McNary Dam were considerably below the Biological Opinion objectives of 50.7 Kcfs at Lower Granite Dam and 2000 Kcfs at McNary Dam. Actual summer seasonal flows were just 32.3 Kcfs and 135.5 Kcfs, respectively. In most instances spill was provided as described by the Biological Opinion program for fish passage, within the constraints of the State waivers for total dissolved gas supersaturation levels. Spill was altered during spill testing and most notably during the month of August at Ice Harbor dam. At this project spill was modified from a 24-hour program to a 12-hour nightly spill period pending the evaluation of studies being conducted in-season. Spill was not returned to full implementation of the Biological Opinion levels even after data showed that spillway passage had the highest associated fish survival. This experience demonstrated the difficulty of managing the hydrosystem for fish passage based on preliminary data and data collected in-season. Increased hatchery releases and higher wild fish production resulted in a population of yearling chinook at Lower Granite Dam being one of the highest observed in recent years. However, the increased hatchery production may have been offset to some extent by decreased survival from release to Lower Granite Dam as suggested by the lower than average survival observed for the PIT tagged trap released fish to Lower Monumental Dam. Travel times were also longer for hatchery spring chinook compared to recent past years. The short duration of high flows that occurred in the Lower Snake River was too late for yearling chinook, but likely was

  13. Fish Passage Center 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele [Fish Passage Center of the Columbia Basin Fish & Wildlife Authority

    2008-11-25

    and McNary dams), whereas prior to 2005 spill was terminated at these projects after the spring period. In addition, the 2007 operations agreement provided regardless of flow conditions. For the first time spill for fish passage was provided in the low flow conditions that prevailed in the Snake River throughout the spring and summer migration periods. Gas bubble trauma (GBT) monitoring continued throughout the spill period. A higher incidence of rank 1, GBT signs were observed in late arriving steelhead smolts arriving after the 95% passage date had occurred. During this time dissolved gas levels were generally below the 110% water quality standard in the forebay where fish were sampled. This occurrence was due to prolonged exposure and extended travel times due to low migration flows. The 2007 migration conditions differed from any year in the historic record. The migration conditions combined low river flows in the Snake River with spill throughout the spring and summer season. The juvenile migration characteristics observed in 2007 were unique compared to past years in that high levels of 24 hour spill for fish passage were provided in low flow conditions, and with a delayed start to the smolt transportation program a smaller proportion of the total run being transported. This resulted in relatively high spring juvenile survival despite the lower flows. The seasonal spring average flow in the Snake River was 61 Kcfs much lower than the spring time average of 120 Kcfs that occurred in 2006. However juvenile steelhead survival through the Lower Granite to McNary reach in 2007 was nearly 70% which was similar to the juvenile steelhead survival seen in 2006 under higher migration flows. The low flows in the May-July period of 2007 were similar to the 2001 low flow year, yet survival for fall chinook juveniles in this period in 2007 was much higher. In 2001 the reach survival estimate for juvenile fall Chinook from Lower Granite to McNary Dam ranged from 0

  14. Comparative Study of Barotrauma Risk during Fish Passage through Kaplan Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Romero-Gomez, Pedro [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Serkowski, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Rakowski, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Graf, Michael J. [Voith Hydro, York, PA (United States)

    2015-10-01

    Rapid pressure changes in hydroelectric turbine flows can cause barotrauma that can be hazardous to the passage of fish, in particular migratory juvenile salmonids. Although numerous laboratory tests have evaluated the effect of rapid decompression in fish species of relevance, numerical modeling studies offer the advantage of predicting, for new turbine designs, the potential risks of mortality and injury from rapid pressure change during turbine passage. However, rapid pressure change is only one of several hydraulic risks encountered by fish during turbine passage in addition to blade strike, shear, and turbulence. To better understand the role of rapid pressure changes, the present work focuses on the application of a computational fluid dynamics based method for evaluating the risk of pressure-related mortality to fish passing through an early 1960s era original hydroelectric Kaplan turbine at Wanapum Dam (Columbia River, Washington), and a modern advanced Kaplan turbine installed in 2005. The results show that the modeling approach acceptably reproduced the nadir pressure distributions compared to field data previously collected at the site using an autonomous sensor. Our findings show that the new advanced-design unit performs better, in terms of reduced barotrauma risk to fish from exposure to low pressures, than the original turbine unit. The outcomes allow for comparative analyses of turbine designs and operations prior to installation, an advantage that can potentially be integrated in the process of designing new turbine units to achieve superior environmental performance. Overall, the results show that modern turbine designs can achieve the multiple objectives of increasing power generation, lowering cavitation potential, and reducing barotrauma risks to passing fish.

  15. Fish passage post-construction issues: analysis of distribution, attraction and passage efficiency metrics at the Baguari Dam fish ladder to approach the problem

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Martins da Silva

    Full Text Available Fish passages are considered the oldest management tool used to minimize the impact of blocking fish migratory routes by hydroelectric power plants. However, fish passages are being installed without specific criteria in Brazil, with severe consequences to the conservation of the local fish fauna. Therefore, basic data gathered for fish passages already constructed could contribute to define operational rules, in addition to offer subsidies to decision-making and design of future facilities. Thus, the fish ladder of Baguari Dam was evaluated regarding temporal distribution, attraction, and ascension of the local fish fauna. A total of 20 fish samples were conducted immediately downstream of the dam and inside the fish ladder, from January 2010 to June 2011. Seasonal variation in fish abundance and richness was registered below the dam and inside the passage, with higher number of migratory fish in the reproductive season (Kruskall-Wallis, p = 0.04 and p = 0.05. Furthermore, higher concentration of migratory allochthonous and non-migratory species was registered for the spill bay (Wilcoxon, p = 0.009 and p = 0.006 compared to the tailrace, where the fish ladder entrance is located. This result suggests low efficiency of the attraction system of the mechanism during the reproductive period. Once entering the fish ladder, migratory species apparently ascend the facility due to the similar distribution throughout different stretches. Generally, the results showed that an operational rule for the Baguari Dam fish ladder should consider running the facility only during the reproductive period, unless the objectives of the passage are well defined. The attraction system must be more precisely evaluated, using technologies such as radiotelemetry. Similarly, fish ascension also should be better analyzed to evaluate the time spent to ascend and its influence in the reproductive biology of the species using the ladder. Pit-tag system could be used to

  16. Hydroacoustic Evaluation of Fish Passage through Bonneville Dam in 2004

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Schilt, Carl R.; Kim, Jina; Johnson, Peter N.; Hanks, Michael E.; Patterson, Deborah S.; Skalski, John R.; Hedgepeth, J

    2005-12-22

    The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2004. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of four studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 15 and July 15, 2004, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, (2) B2 fish guidance efficiency and gap loss, (3) smolt approach and fate at the B2 Corner Collector (B2CC), and (4) B2 vertical barrier screen head differential.

  17. Automatic system for monitoring fish passage at dams

    Science.gov (United States)

    Castignolles, Nathalie; Cattoen, Michel; Larinier, M.

    1994-09-01

    Devices called fishways or fish passes are constructed in rivers to help migratory fish get over obstacles (dams). There counting windows are used to monitor fish passage by video-based counting. Our goal is to design and construct a vision system to automate this process. Images are taken by a video camera fitted with an electronic shutter in a backlit fishway. They are stored on optical disks in real time but are processed in delayed time. Faced with high volumes of data, a compression is necessary and an electronic board has been designed to accomplish it in real time. The coding method used is based on a run description of binarized images. Then, a tracking process is implemented on a micro-computer to count the fish crossing the pass. It includes fish recognition, which is based on a Bayesian classification process. In order to reduce processing times, recognition operations (labelling, parameter extraction) are accomplished on coded images. Classification results are satisfactory and are improved by the temporal redundancy generated by the tracking process. Image processing time permits the user, on average, to process images faster than they have been stored. Thus there is no data accumulation. At the end of the processing it is possible to edit a result file, to choose a fish, view its crossing images and change its species if wrong.

  18. Review of mitigation methods for fish passage, instream flows, and water quality

    International Nuclear Information System (INIS)

    Railsback, S.F.

    1991-01-01

    This paper reports on current environmental mitigation practices at nonfederal hydropower projects. Information was obtained from project operators on dissolved oxygen (DO) mitigation, instream flows, upstream fish passage facilities, and downstream fish passage facilities. The most common method for DO mitigation is the use of spill flows, which are costly because of lost power generation. DO concentrations are commonly monitored, but biological effects of DO mitigation are not. At many projects, instream flow requirements have been set without reference to formalized methods. About half of the projects with instream flow requirements monitor flow rates, but few monitor fish populations to verify that instream flows are effective. Angled bar racks are the most commonly used downstream fish passage devices and fish ladders are the most commonly used upstream fish passage devices. Fish passage rates or populations have been monitored to verify the effectiveness of passage mitigation at few projects. This analysis is the first phase of an evaluation of the costs, benefits, and effectiveness of mitigation measures

  19. Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead.

    Directory of Open Access Journals (Sweden)

    Christopher C Caudill

    Full Text Available Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp. often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T at four dams over four years. Some spring Chinook salmon (O. tshawytscha experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.

  20. A computational fluid dynamics modeling study of guide walls for downstream fish passage

    Science.gov (United States)

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2017-01-01

    A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.

  1. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    2008-12-31

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelhead and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one

  2. Estimating reach-specific fish movement probabilities in rivers with a Bayesian state-space model: application to sea lamprey passage and capture at dams

    Science.gov (United States)

    Holbrook, Christopher M.; Johnson, Nicholas S.; Steibel, Juan P.; Twohey, Michael B.; Binder, Thomas R.; Krueger, Charles C.; Jones, Michael L.

    2014-01-01

    Improved methods are needed to evaluate barriers and traps for control and assessment of invasive sea lamprey (Petromyzon marinus) in the Great Lakes. A Bayesian state-space model provided reach-specific probabilities of movement, including trap capture and dam passage, for 148 acoustic tagged invasive sea lamprey in the lower Cheboygan River, Michigan, a tributary to Lake Huron. Reach-specific movement probabilities were combined to obtain estimates of spatial distribution and abundance needed to evaluate a barrier and trap complex for sea lamprey control and assessment. Of an estimated 21 828 – 29 300 adult sea lampreys in the river, 0%–2%, or 0–514 untagged lampreys, could have passed upstream of the dam, and 46%–61% were caught in the trap. Although no tagged lampreys passed above the dam (0/148), our sample size was not sufficient to consider the lock and dam a complete barrier to sea lamprey. Results also showed that existing traps are in good locations because 83%–96% of the population was vulnerable to existing traps. However, only 52%–69% of lampreys vulnerable to traps were caught, suggesting that traps can be improved. The approach used in this study was a novel use of Bayesian state-space models that may have broader applications, including evaluation of barriers for other invasive species (e.g., Asian carp (Hypophthalmichthys spp.)) and fish passage structures for other diadromous fishes.

  3. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vucelick, Jessica; McMichael, Geoffrey; Chamness, Mickie [Pacific Northwest National Laboratory

    2006-02-01

    In 2004, the Pacific Northwest National Laboratory (PNNL) evaluated 25 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2004, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (4) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites. (5) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve passage conditions for juvenile fish. For example, Taylor has had problems meeting bypass flow and submergence operating criteria since the main river channel shifted away from the site 2 years ago, and Fruitvale consistently has had problems meeting bypass flow criteria when the water is low. (6) Continued problems at Gleed point to design flaws. This site should be considered for redesign or replacement.

  4. A comparison of metrics to evaluate the effects of hydro-facility passage stressors on fish

    Energy Technology Data Exchange (ETDEWEB)

    Colotelo, Alison H.; Goldman, Amy E.; Wagner, Katie A.; Brown, Richard S.; Deng, Z. Daniel; Richmond, Marshall C.

    2017-03-01

    Hydropower is the most common form of renewable energy, and countries worldwide are considering expanding hydropower to new areas. One of the challenges of hydropower deployment is mitigation of the environmental impacts including water quality, habitat alterations, and ecosystem connectivity. For fish species that inhabit river systems with hydropower facilities, passage through the facility to access spawning and rearing habitats can be particularly challenging. Fish moving downstream through a hydro-facility can be exposed to a number of stressors (e.g., rapid decompression, shear forces, blade strike and collision, and turbulence), which can all affect fish survival in direct and indirect ways. Many studies have investigated the effects of hydro-turbine passage on fish; however, the comparability among studies is limited by variation in the metrics and biological endpoints used. Future studies investigating the effects of hydro-turbine passage should focus on using metrics and endpoints that are easily comparable. This review summarizes four categories of metrics that are used in fisheries research and have application to hydro-turbine passage (i.e., mortality, injury, molecular metrics, behavior) and evaluates them based on several criteria (i.e., resources needed, invasiveness, comparability among stressors and species, and diagnostic properties). Additionally, these comparisons are put into context of study setting (i.e., laboratory vs. field). Overall, injury and molecular metrics are ideal for studies in which there is a need to understand the mechanisms of effect, whereas behavior and mortality metrics provide information on the whole body response of the fish. The study setting strongly influences the comparability among studies. In laboratory-based studies, stressors can be controlled by both type and magnitude, allowing for easy comparisons among studies. In contrast, field studies expose fish to realistic passage environments but the comparability is

  5. Benefits of fish passage and protection measures at hydroelectric projects

    International Nuclear Information System (INIS)

    Cada, G.F.; Jones, D.W.

    1993-01-01

    The US Department of Energy's Hydropower Program is engaged in a multi-year study of the costs and benefits of environmental mitigation measures at nonfederal hydroelectric power plants. An initial report (Volume 1) reviewed and surveyed the status of mitigation methods for fish passage, instream flows, and water quality; this paper focuses on the fish passage/protection aspects of the study. Fish ladders were found to be the most common means of passing fish upstream; elevators/lifts were less common, but their use appears to be increasing. A variety of mitigative measures is employed to prevent fish from being drawn into turbine intakes, including spill flows, narrow-mesh intake screens, angled bar racks, and lightor sound-based guidance measures. Performance monitoring and detailed, quantifiable performance criteria were frequently lacking at non-federal hydroelectric projects. Volume 2 considers the benefits and costs of fish passage and protection measures, as illustrated by case studies for which performance monitoring has been conducted. The report estimates the effectiveness of particular measures, the consequent impacts on the fish populations that are being maintained or restored, and the resulting use and non-use values of the maintained or restored fish populations

  6. Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele (Columbia Basin Fish and Wildlife Authority, Portland, OR)

    2005-07-01

    The runoff volume for 2004 was below average throughout the Columbia Basin. At The Dalles the January-July runoff volume was 77% of average or 83.0 MAF. Grand Coulee, Hungry Horse, and Libby were below their Biological Opinion reservoir target elevations on April 10 at the beginning of the spring salmon migration season. All major storage reservoirs except Libby, Grand Coulee, Hungry Horse, Dworshak, and Brownlee were within a few feet of full by the end of June and early July. Overall, NOAA Biological Opinion seasonal flow targets were not met at any project for either spring or summer migrations of salmon and steelhead. Overall, spill was reduced in 2004. Implementation of Biological Opinion spill for fish passage measures was wrought with contention in 2004, particularly for summer spill which was finally the subject of litigation. The spring migration spill season began with debate among the fishery mangers and tribes and action agencies regarding spill at Bonneville Dam for the Spring Creek Hatchery release. The USFWS agreed to a spill test versus a corner collector operation to determine the best route for survival for these fish. The USFWS agreement includes no spill for early Spring Creek Hatchery releases for the next two years. Spring spill at Snake River transportation sites was eliminated after April 23, and transportation was maximized. The federal operators and regulators proposed to reduce Biological Opinion summer spill measures, while testing the impact of those reductions. This proposal was eventually rejected in challenges in the Federal Ninth Circuit Court. The Corps of Engineers reported that spill at Bonneville Dam in the 2002 to 2004 period was actually lower than reported due to a spill calibration error at the project. Because flows were low and spill levels were easily controlled few fish were observed with any signs of Gas Bubble Trauma. The annual Smolt Monitoring Program was implemented and provided in-season timing and passage

  7. Effects of hydroelectric turbine passage on fish early life stages

    International Nuclear Information System (INIS)

    Cada, G.F.

    1991-01-01

    Turbine-passage mortality has been studied extensively for juveniles and adults of migratory fish species, but few studies have directly quantified orality of fish eggs and larvae. This paper provides an analysis of literature relating to component stresses of turbine passage (i.e., pressure changes, blade contact, and shear) which indicates that mortality of early life stages of fish would be relatively low at low-head, bulb turbine installations. The shear forces and pressure regimes normally experienced are insufficient to cause high mortality rates. The probability of contact with turbine blades is related to the size of the fish; less than 5% of entrained ichthyoplankton would be killed by the blades in a bulb turbine. Other sources of mortality (e.g., cavitation and entrainment of fish acclimated to deep water) are controlled by operation of the facility and thus are mitigable. Because turbine-passage mortality among fish early life stages can be very difficult to estimate directly, it may be more fruitful to base the need for mitigation at any given site on detailed knowledge of turbine characteristics and the susceptibility of the fish community to entrainment

  8. Fish passage mitigation of impacts from hydroelectric power projects in the United States

    International Nuclear Information System (INIS)

    Cada, G.F.

    1996-01-01

    Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy's Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality

  9. Assessment of whether upstream passage for Lake Sturgeon is needed at the Pointe du Bois Generating Station (Winnipeg River)

    International Nuclear Information System (INIS)

    Pratt, T.

    2010-01-01

    This document reviewed Manitoba Hydro's proposal to modernize the Pointe du Bois Generating Station (GS) on the Winnipeg River, with particular reference to the potential impacts on Lake Sturgeon in Management Unit 5 (MU5) where large numbers of the fish spawn at the base of the falls. The modernization will involve replacing the spillway, dam segments and replacing or repairing the powerhouse. The pros and cons of providing upstream fish passage for Lake Sturgeon and the generating station were outlined. The only spawning area in the MU5 area may be altered considerably due to changes in water flow, depending on the design chosen for modernization. A potential benefit of providing upstream fish passage for Lake Sturgeon would be to increase genetic diversity within the Winnipeg River. Another potential benefit would be to allow Lake Sturgeon, from the relatively dense population below the GS, to move upstream into MU4 where unfilled habitat may be available and Lake Sturgeon abundance is lower. A potential disadvantage of providing fish passage would be the loss of individual Lake Sturgeon from the healthy population in MU5 with no accompanying benefit to MU4. There would be no net gain to MU4 or MU5 if migrating Lake Sturgeon returned to MU5 rather than proceeding upstream. It was concluded that these current gaps in knowledge must be filled in order to fully assess the environmental impacts. 2 figs.

  10. The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F [ORNL; Schweizer, Peter E [ORNL

    2012-04-01

    One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000

  11. Evaluation of juvenile salmonid bypass facilities and passage at water diversions on the lower Umatilla River. Final report

    International Nuclear Information System (INIS)

    Cameron, W.A.; Knapp, S.M.; Carmichael, R.W.

    1997-07-01

    Outdated juvenile and adult fish passage facilities were recently reconstructed at the five major irrigation dams on the lower Umatilla River, Oregon to meet National marine Fisheries Service (NMFS) design standards. Changes in design at juvenile fish bypass facilities included reduced mesh size on the rotating drum screens, larger screening area, a more oblique orientation of the drum screens to canal flow, improved screen seals, replacement of bypass portals with vertical slot bypass channels, and increased bypass pipe diameters. Weir-and-pool adult fish ladders and jump pools were replaced with vertical-slot ladders. From 1991--1995, they investigated injury and travel rate of juvenile fish moving through the facilities, and efficiency of screens in preventing fish entry into the canals. Water velocities in front of canal screens, at bypass channel entrances, and at ladder diffusers were measured to assess adherence to NMFS criteria and identify hydraulic patterns. Biological evaluations were conducted by releasing and recapturing marked yearling summer steelhead (Oncorhynchus mykiss), yearling spring chinook salmon (O. tshawytscha), and subyearling fall chinook salmon (O. tshawytscha) in varying locations within the fish passage facilities

  12. Australian experience of providing for fish passage at small instream structures

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B. [Forest Hill, Victoria (Australia)

    2006-07-01

    Various instream structures have been constructed in Australia as a result of increasing agricultural activities. However, even small structures such as culverts and stream gauging stations can restrict essential fish movements and result in the extinction of local fish species. This paper discussed methods of modifying and designing new structures to ensure adequate fish passage. It was suggested that instream structures can provide for fish passage through the provision of bridges, or through the use of low profile structures for small weirs. Recommendations for site-specific instream structures included an assessment of fish species, topography, flow characteristics and cost effectiveness. Solutions for reducing the impact of small instream barriers to fish movement were also discussed. Provision for fish passage is an important consideration for planners and designers of dams. Legislation is now in place to ensure a planning and approval process prior to the commencement of construction and operation. It was concluded that significant works are now being undertaken to restore fish migration pathways caused by barriers that restrict fish movement. However, monitoring is needed to ensure that designs operate effectively. 17 refs., 3 figs.

  13. Australian experience of providing for fish passage at small instream structures

    International Nuclear Information System (INIS)

    Lewis, B.

    2006-01-01

    Various instream structures have been constructed in Australia as a result of increasing agricultural activities. However, even small structures such as culverts and stream gauging stations can restrict essential fish movements and result in the extinction of local fish species. This paper discussed methods of modifying and designing new structures to ensure adequate fish passage. It was suggested that instream structures can provide for fish passage through the provision of bridges, or through the use of low profile structures for small weirs. Recommendations for site-specific instream structures included an assessment of fish species, topography, flow characteristics and cost effectiveness. Solutions for reducing the impact of small instream barriers to fish movement were also discussed. Provision for fish passage is an important consideration for planners and designers of dams. Legislation is now in place to ensure a planning and approval process prior to the commencement of construction and operation. It was concluded that significant works are now being undertaken to restore fish migration pathways caused by barriers that restrict fish movement. However, monitoring is needed to ensure that designs operate effectively. 17 refs., 3 figs

  14. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2012-05-31

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River for the U.S. Army Corps of Engineers, Portland District (USACE), to provide data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE's Willamette Valley Project. This study was conducted in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. We conducted a hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011. Findings from this 1 year of study should be applied carefully because annual variation can be expected due to variability in adult salmon escapement, egg-to-fry and fry-to-smolt survival rates, reservoir rearing and predation, dam operations, and weather. Fish passage rates for smolt-size fish (> {approx}90 mm and < 300 mm) were highest during December-January and lowest in mid-summer through early fall. Passage peaks were also evident in early spring, early summer, and late fall. During the entire study period, an estimated total of 142,463 fish {+-} 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. Of this total, 84% passed during December-January. Run timing for small-size fish ({approx}65-90 mm) peaked (702 fish) on December 18. Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. Relatively few fish passed into the Regulating Outlets (ROs) when they were open in summer (2 fish/d) and winter (8 fish/d). Overall, when the ROs were open, RO efficiency (RO passage divided by total project passage) was 0.004. In linear regression analyses, daily fish passage (turbines and ROs combined) for smolt-size fish was significantly related to

  15. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2011-07-01

    This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt

  16. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Detroit Dam, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Ham, Kenneth D.

    2012-11-15

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Detroit Dam (DET) on the North Santiam River, Oregon for the U.S. Army Corps of Engineers (USACE) to provide data to support decisions on long-term measures to enhance downstream passage at DET and others dams in USACE’s Willamette Valley Project. This study was conducted in response to regulatory requirements necessitated by the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. The goal of the study was to provide information of juvenile salmonid passage and distribution at DET from February 2011 through February 2012. The results of the hydroacoustic study provide new and, in some cases, first-ever data on passage estimates, run timing, distributions, and relationships between fish passage and environmental variables at the dam. This information will inform management decisions on the design and development of surface passage and collection devices to help restore Chinook salmon populations in the North Santiam River watershed above DET. During the entire study period, an estimated total of 182,526 smolt-size fish (±4,660 fish, 95% CI) passed through turbine penstock intakes. Run timing peaked in winter and early spring months. Passage rates were highest during late fall, winter and early spring months and low during summer. Horizontal distribution for hours when both turbine units were operated simultaneously indicated Unit 2 passed almost twice as much fish as Unit 1. Diel distribution for smolt-size fish during the study period was fairly uniform, indicating fish were passing the turbines at all times of the day. A total of 5,083 smolt-size fish (± 312 fish, 95% CI) were estimated passed via the spillway when it was open between June 23 and September 27, 2011. Daily passage was low at the spillway during the June-August period, and

  17. Cowlitz Falls fish passage

    International Nuclear Information System (INIS)

    1995-09-01

    The upper Cowlitz was once home to native salmon and steelhead. But the combined impacts of overharvest, farming, logging and road building hammered fish runs. And in the 1960s, a pair of hydroelectric dams blocked the migration path of ocean-returning and ocean-going fish. The lower Cowlitz still supports hatchery runs of chinook, coho and steelhead. But some 200 river miles in the upper river basin--much of it prime spawning and rearing habitat--have been virtually cut off from the ocean for over 26 years. Now the idea is to trap-and-haul salmon and steelhead both ways and bypass previously impassable obstacles in the path of anadromous fish. The plan can be summarized, for the sake of explanation, in three steps: (1) trap and haul adult fish--collect ocean-returning adult fish at the lowermost Cowlitz dam, and truck them upstream; (2) reseed--release the ripe adults above the uppermost dam, and let them spawn naturally, at the same time, supplement these runs with hatchery born fry that are reared and imprinted in ponds and net pens in the watershed; (3) trap and haul smolts--collection the new generation of young fish as they arrive at the uppermost Cowlitz dam, truck them past the three dams, and release them to continue their downstream migration to the sea. The critical part of any fish-collection system is the method of fish attraction. Scientists have to find the best combination of attraction system and screens that will guide young fish to the right spot, away from the turbine intakes. In the spring of 1994 a test was made of a prototype system of baffles and slots on the upriver face of the Cowlitz Falls Dam. The prototype worked at 90% efficiency in early tests, and it worked without the kind of expensive screening devices that have been installed on other dams. Now that the success of the attraction system has been verified, Harza engineers and consultants will design and build the appropriate collection part of the system

  18. Effects of barge traffic on distribution and survival of ichthyoplankton and small fishes in the upper Mississippi River

    Science.gov (United States)

    Holland, L.E.

    1986-01-01

    Short-term impacts of commercial barge traffic on fish eggs, larvae, young-of-the-year (age-0) fishes, and small adults in the main channel of the upper Mississippi River were examined. Barge passages caused significant changes in the distribution of eggs and larvae in the study area. The mean catch of ichthyoplankton was reduced in both surface and bottom waters for 90 min after passage of vessels downstream. The effects of upstream traffic on catch ranged from nil in surface or bottom samples to short-term increases in surface samples immediately after passage. No consistent effect on the catch of age-0 or small adult fishes in surface or bottom trawls was evident.

  19. Columbia River Basin Fish and Wildlife Program Work Plan for Fiscal Year 1988.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Northwest Power Planning Council (U.S.); Columbia Basin Fish and Wildlife Authority

    1987-10-01

    The FY 1988 Columbia River Basin Fish and Wildlife Program Work Plan (Work Plan) presents Bonneville Power Administration's plans for implementing the Columbia River Basin Fish and Wildlife Program (Program) in FY 1988. The Work Plan focuses on individual Action Items found in the amended Program for which Bonneville Power Administration (BPA) has determined it has authority and responsibility to implement. The FY 1988 Work Plan emphasizes continuation of 95 ongoing projects, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. These continuing activities are summarized briefly by Program area: (1) mainstem passage; (2) artificial propagation; (3) natural propagation; (4) resident fish and wildlife; and (5) planning activities.

  20. Fish as vectors in the dispersal of Bythotrephes cederstroemi: Diapausing eggs survive passage through the gut

    Science.gov (United States)

    Jarnagin, S.T.; Swan, B.K.; Kerfoot, W.C.

    2000-01-01

    1. Bythotrephes cederstroemi (Crustacea: Onychopoda: Cercopagidae) is an introduced invertebrate predator currently spreading through the Laurentian Great Lakes region of North America. We examined a previously unsuspected way in which B. cederstroemi may be dispersed by fish by their consumption of diapausing eggs. 2. Ninety-four percentage of the mature B. cederstroemi diapausing eggs consumed by fish were egested apparently intact. This proportion is considerably above previous estimates for the ephippial eggs of Daphnia. The hatching success of diapausing eggs was compared among four categories: (a) eggs released naturally by B. cederstroemi (control, 73% hatched (b) eggs released during 'stressful confinement' (46% hatched) (c) eggs dissected from dead females (13% hatched) and (d) eggs recovered from faecal pellets following consumption by fish (viable gut passage experiment, 41% hatched). 3. Samples of small fish and B. cederstroemi were collected simultaneously. Examination of gut contents revealed that fish contained B. cederstroemi diapausing eggs and that B. cederstroemi bearing resting eggs were consumed selectively over those without eggs. Moreover, fish selected B. cederstroemi bearing mature rather than immature diapausing eggs. 4. The fact that diapausing eggs survive gut passage is important for the dispersal of B. cederstroemi. Fish often move between the pelagic and littoral zones of lakes and may thus disperse diapausing eggs widely. Fish may also move between lakes connected by river systems and can be caught and passively dispersed by anglers or piscivorous birds. Our results demonstrate the potential for fish to act as vectors in the spread of B. cederstroemi.

  1. Enloe Dam Passage Project, Volume I, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, M.L.

    1985-07-01

    This report discusses issues related to the provision of fish passage facilities at Enloe Dam and the introduction of anadromous salmonid fish to the upper Similkameen River basin. The species of fish being considered is a summer run of steelhead trout adapted to the upper Columbia basin. (ACR)

  2. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Colotelo, Alison HA; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; McMichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, X.; Fu, Tao

    2014-03-28

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile

  3. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Colotelo, Alison H.A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Bryan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanson, Amanda C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trott, Donna M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greiner, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcmichael, Geoffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Richard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-15

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile

  4. Planning Guide for Fish Passage at Pittsburgh District Dams

    Science.gov (United States)

    2013-08-01

    attracted to a downstream flow at the entrance gate of the lift. 2) Immigrants pass around a moveable crowder that, when engaged, forces fish into the...might influence fish passage over a large number of sites. REFERENCES Bailey, M. M., J. J. Isely, and W. C. Bridges , Jr. 2004. Movement and

  5. Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Carlson, T. J.; Dauble, D. D.; Ploskey, G. R. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2011-07-01

    Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected. (authors)

  6. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2011-01-01

    Full Text Available Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected.

  7. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    Science.gov (United States)

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  8. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Batten, G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cushing, Aaron W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Gary E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seaburg, Adam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, James S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Scott M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Etherington, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fischer, Eric S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greiner, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hennen, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martinez, Jayson J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, T. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rayamajhi, Bishes [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-02-15

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon using a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  9. Can north american fish passage tools work for South american migratory fishes?

    Directory of Open Access Journals (Sweden)

    Claudio Rafael Mariano Baigún

    Full Text Available In North America, the Numerical Fish Surrogate (NFS is used to design fish bypass systems for emigrating juvenile salmon as they migrate from hatchery outfalls and rearing habitats to adult habitat in the oceans. The NFS is constructed of three linked modules: 1 a computational fluid dynamics model describes the complex flow fields upstream of dams at a scale sufficiently resolved to analyze, understand and forecast fish movement, 2 a particle tracking model interpolates hydraulic information from the fixed nodes of the computational fluid model mesh to multiple locations relevant to migrating fish, and 3 a behavior model simulates the cognition and behavior of individual fish in response to the fluid dynamics predicted by the computational fluid dynamics model. These three modules together create a virtual reality where virtual fish exhibit realistic dam approach behaviors and can be counted at dam exits in ways similar to the real world. Once calibrated and validated with measured fish movement and passage data, the NFS can accurately predict fish passage proportions with sufficient precision to allow engineers to select one optimum alternative from among many competing structural or operational bypass alternatives. Although South American fish species are different from North American species, it is likely that the basic computational architecture and numerical methods of the NFS can be used for fish conservation in South America. Consequently, the extensive investment made in the creation of the NFS need not be duplicated in South America. However, its use in South America will require that the behavioral response of the continent's unique fishes to hydrodynamic cues must be described, codified and tested before the NFS can be used to conserve fishes by helping design efficient South American bypass systems. To this end, we identify studies that could be used to describe the movement behavior of South American fishes of sufficient detail

  10. Effect of stress on turbine fish passage mortality estimates

    International Nuclear Information System (INIS)

    Ruggles, C.P.

    1993-01-01

    Tests were conducted with juvenile alewife to determine the effects of four experimental protocols upon turbine fish passage mortality estimates. Three protocols determined the effect of cumulative stresses upon fish, while the fourth determined the effect of long range truck transportation prior to release into the penstock or tailrace. The wide range in results were attributed to the presence or absence of additional stress factors associated with the experiments. For instance, fish may survive passage through a turbine, or non-turbine related stresses imposed by the investigator; however, when both are imposed, the cumulative stresses may be lethal. The impact of protocol stress on turbine mortality estimates becomes almost exponential after control mortality exceeds 10%. Valid turbine related mortalities may be determined only after stresses associated with experimental protocol are adequately reduced. This is usually indicated by a control mortality of less than 10%. 14 refs., 5 figs., 6 tabs

  11. A new technique for assessing fish passage survival at hydro power stations

    International Nuclear Information System (INIS)

    Heisey, P.G.; Mathur, D.; D'Allesandro, L.

    1993-01-01

    The HI-Z Turb'N Tag recovery method is presented as a new technique that has been successfully used at ten hydropower stations to determine turbine or spillway passage survival of fish. According to this technique, fish are tagged with the Turb'N Tag, which is pear-shaped, made of inflatable latex, and ca 35 mm long and 13 mm wide. The tag is designed to inflate after passage through the turbine, where it then floats the fish to the surface where it can be easily spotted and netted. One tag is sufficient to retrieve fish less than 18 cm long, while three tags may be needed for fish longer than 30 cm. In tests, fish were recovered in under 10 minutes from the tailrace after being tagged and released into a turbine. The tag allowed over 90% recovery of fish in most tests. The technique had minimal effect on the well-being of both hardy and sensitive species and provided an opportunity to examine recovered fish for injuries and retain them up to 72 h to assess possible delayed effects. The technique overcomes most of the logistical problems associated with conventional methods (netting, radio telemetry, mass mark-recapture) to determine turbine passage survival. The technique can also be used to assess effects of spill and fish bypass structures. 9 refs., 2 figs., 1 tab

  12. Behaviour and locomotor activity of a migratory catostomid during fishway passage.

    Directory of Open Access Journals (Sweden)

    Ana T Silva

    Full Text Available Fishways have been developed to restore longitudinal connectivity in rivers. Despite their potential for aiding fish passage, fishways may represent a source of significant energetic expenditure for fish as they are highly turbulent environments. Nonetheless, our understanding of the physiological mechanisms underpinning fishway passage of fish is still limited. We examined swimming behaviour and activity of silver redhorse (Moxostoma anisurum during its upriver spawning migration in a vertical slot fishway. We used an accelerometer-derived instantaneous activity metric (overall dynamic body acceleration to estimate location-specific swimming activity. Silver redhorse demonstrated progressive increases in activity during upstream fishway passage. Moreover, location-specific passage duration decreased with an increasing number of passage attempts. Turning basins and the most upstream basin were found to delay fish passage. No relationship was found between basin-specific passage duration and activity and the respective values from previous basins. The results demonstrate that successful fishway passage requires periods of high activity. The resultant energetic expenditure may affect fitness, foraging behaviour and increase susceptibility to predation, compromising population sustainability. This study highlights the need to understand the physiological mechanisms underpinning fishway passage to improve future designs and interpretation of biological evaluations.

  13. Environmental mitigation at hydroelectric projects. Volume 2, Benefits and costs of fish passage and protection

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Cada, G.F.; Jones, D.W. [Oak Ridge National Lab., TN (United States); Dauble, D.D. [Pacific Northwest Lab., Richland, WA (United States); Hunt, R.T. [Hunt (Richard) Associates, Inc., Concord, NH (United States); Costello, R.J. [Northwest Water Resources Advisory Services (United States)

    1994-01-01

    This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed or exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.

  14. Comparative physiology and relative swimming performance of three redhorse (Moxostoma spp.) species: associations with fishway passage success.

    Science.gov (United States)

    Hatry, Charles; Thiem, Jason D; Binder, Thomas R; Hatin, Daniel; Dumont, Pierre; Stamplecoskie, Keith M; Molina, Juan M; Smokorowski, Karen E; Cooke, Steven J

    2014-01-01

    Our understanding of biological criteria to inform fish passage design is limited, partially due to the lack of understanding of biological motivators, cues, and constraints, as well as a lack of biological performance evaluations of structures once they are built. The Vianney-Legendre vertical slot fishway on the Richelieu River, Quebec, Canada, passes large numbers of migrating redhorse (Moxostoma spp.) upriver to spawning grounds each year. We evaluated the physiological capacity and relative swimming ability of three redhorse species (Moxostoma anisurum, Moxostoma carinatum, Moxostoma macrolepidotum; silver, river, and shorthead redhorse, respectively) to determine how these biotic factors relate to variation in fishway passage success and duration. Shorthead redhorse had higher maximum metabolic rates and were faster swimmers than silver and river redhorse at their species-specific peak migration temperatures. Blood lactate and glucose concentrations recovered more quickly for river redhorse than for silver and shorthead redhorse, and river redhorse placed second in terms of metabolic recovery and swim speed. Interestingly, fish sampled from the top of the fishway had nearly identical lactate, glucose, and pH values compared to control fish. Using passive integrated transponders in 2010 and 2012, we observed that passage success and duration were highly variable among redhorse species and were not consistent among years, suggesting that other factors such as water temperature and river flows may modulate passage success. Clearly, additional research is needed to understand how organismal performance, environmental conditions, and other factors (including abundance of conspecifics and other comigrants) interact with fishway features to dictate which fish will be successful and to inform research of future fishways. Our research suggests that there may be an opportunity for a rapid assessment approach where fish chased to exhaustion to determine maximal values

  15. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, Tyler; Monter, Tyrell J.; Skalski, John R.; Townsend, Richard L.; Zimmerman, Shon A.

    2011-12-01

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  16. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, T. D.; Monter, Tyrell J.; Skalski, J. R.; Townsend, Richard L.; Zimmerman, Shon A.

    2012-09-01

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  17. Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at Bonneville Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Carlson, Thomas J.

    2012-06-07

    The study was designed to estimate dam passage survival at Bonneville Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

  18. Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at Bonneville Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Carlson, Thomas J.

    2012-03-01

    The study was designed to estimate dam passage survival at Bonneville Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

  19. Potential Effects of Dams on Migratory Fish in the Mekong River: Lessons from Salmon in the Fraser and Columbia Rivers

    Science.gov (United States)

    Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  20. Fish movement ecology in high gradient headwater streams: Its relevance to fish passage restoration through stream culvert barriers

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.

    2007-01-01

    Restoration of fish passage through culvert barriers has emerged as a major issue in the Pacific Northwest and nationwide, in part, because of their potential influence on fish movement. Movement is an essential mechanism by which mobile animals acquire the resources necessary for the successful completion of their life-cycles. In this report, we provide a brief review of some essential characteristics of animal movement and examples from a focal group of fishes in Washington State: salmon, trout, and char. We begin by outlining some basic characteristics of animal movement and then apply that foundation to the case of salmonid fishes. Next we consider the consequences of disrupting fish movement with human-constructed barriers, such as culverts. Finally, this body of evidence is summarized, and we propose a short list of what we view as high priority information needs to support more effective restoration of fish passage through culverts.

  1. Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Carlson, Thomas J.

    2012-06-01

    The study was designed to estimate dam passage survival at John Day Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

  2. Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Carlson, Thomas J.

    2012-02-01

    The study was designed to estimate dam passage survival at John Day Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

  3. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.

    Science.gov (United States)

    Li, Xinya; Deng, Zhiqun D; Brown, Richard S; Fu, Tao; Martinez, Jayson J; McMichael, Geoffrey A; Skalski, John R; Townsend, Richard L; Trumbo, Bradly A; Ahmann, Martin L; Renholds, Jon F

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival.

  4. Passage of fish larvae and eggs through the Funil, Itutinga and Camargos Reservoirs on the upper Rio Grande (Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Mineo Suzuki

    Full Text Available The objective of this study was to evaluate the passage of fish eggs and larvae through the Funil, Itutinga and Camargos Reservoirs, located in the upper Rio Grande basin, Minas Gerais, Brazil. Samples were taken downstream and upstream of the dams using a conical ichthyoplankton net and were collected every two weeks, twice per sampling day, between November 2008 and March 2009. Although eggs and larvae were abundant immediately upstream of the reservoirs, no ichthyoplankton were captured immediately downstream of the dams, possibly indicating that eggs and larvae do not pass through the reservoirs. The arrival of ichthyoplankton in the reservoirs without its effective passage downstream makes the survival of these eggs and larvae unlikely. Furthermore, this lack of downstream movement may compromise the recruitment of species to downstream stretches, especially in the case of the Funil Reservoir (because of the presence of a fish pass in this dam. We emphasize that the fish lift operation at the Funil Dam must be carefully assessed, considering not only its efficiency but also its short- and long-term effects on the recruitment of migratory fish species from the river.

  5. Experimental investigation of fish downstream passage and turbine related fish mortality at an innovative hydro power setup

    International Nuclear Information System (INIS)

    Geiger, Franz; Cuchet, Mathilde; Rutschmann, Peter

    2016-01-01

    The fish downstream passage of small fish at the innovative TUM hydro shaft power plant concept was investigated experimentally. The behavior of 1974 inserted individuals of brown trout, grayling, barbel, minnow and bullhead of 45 mm to 220 mm body length was observed in a fully functional test setup which included a 35 kW Kaplan turbine and a horizontal screen with 20 mm bar clearance. The 24 h tests were conducted under nature like conditions whereas the laboratory environment also enabled targeted hydraulic situations and modifications of the bypass during the test series. A recapture rate of the fish of 99% and a subsequent 96 h observation period yielded detailed information about the migration behavior and instant as well as long term mortality. The results reveal the actual passage distribution of small fish between bypass and turbine and the turbine related injury and mortality rates in dependency of fish species, fish length, turbine discharge and bypass arrangement. General trends as well as species specific particularities could be deduced. The work confirms the suitability of the employed experimental approach and the ecological potential of the investigated hydro power plant concept. The behavioral barrier effect of the screen on small fish and the necessary of appropriate downstream migration corridor were proved and quantified. (authors)

  6. Survival and Passage of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead at McNary Dam, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, James S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Scott M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hennen, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fischer, Eric S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Batton, George [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cushing, Aaron W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Etherington, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greiner, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ingraham, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martinez, Jayson J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, T. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rayamajhi, Bishes [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seaburg, Adam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-23

    The study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead at McNary Dam as stipulated by the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. This study supports the USACE’s continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  7. Upstream passage, spawning, and stock identification of fall chinook in the Snake River, 1992 and 1993. Final report

    International Nuclear Information System (INIS)

    Blankenship, H.L.; Mendel, G.W.

    1997-05-01

    This final report of the 3-year study summarizes activities and results for 1993. Study objectives were to: (1) determine the source of losses (or accounting errors) for adult chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), and upstream of LGR in the Snake River; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, redd habitat mapping, carcass recovery for genetic stock profile analysis, and correction of estimated adult/redd ratios; and (3) estimate passage and migration times at Snake River. 200 fall chinook salmon were radio tagged and tracked with aerial, fixed-site, and ground mobile tracking. Fish were released upstream of IHR at Charbonneau Park (CHAR). 190 of the fish were tracked or relocated away from CHAR. 59 fish descended to below IHR without crossing Lower Monumental Dam (LMO). Another 128 salmon passed upstream of LMO without falling back at IHR. Only 80 salmon passed Little Goose Dam (LGO) without falling back at a downstream dam; 66 of these fish passed LGR. Many fish that fell back reascended the dams. A total of 72 salmon released at CHAR passed upstream of LGR, including fish that had fallen back and reascended a dam. Over 80 percent of the salmon that entered Lyons Ferry Hatchery each year had reached LGO before descending to the hatchery. Extensive wandering was documented between LMO and upstream of LGR before salmon entered Lyons Ferry Hatchery or the Tucannon River. In 1993, 41 salmon were found to be of hatchery origin when recovered. These fish entered Lyons Ferry Hatchery with similar movements to unmarked salmon. Each year a few salmon have remained near the hatchery without entering, which suggests the hatchery may have inadequate attraction flows. Fall chinook passed lower Snake River dams in 2-5 days each on average. Median travel times through LMO and LGO were 1.0-1.3 days each, which was slower than for spring chinook or steelhead in 1993. 5 refs., 21 figs., 20 tabs

  8. Time-to-event analysis as a framework for quantifying fish passage performance: Chapter 9.1

    Science.gov (United States)

    Castro-Santos, Theodore R.; Perry, Russell W.; Adams, Noah S.; Beeman, John W.; Eiler, John H.

    2012-01-01

    Fish passage is the result of a sequence of processes, whereby fish must approach, enter, and pass a structure. Each of these processes takes time, and fishway performance is best quantified in terms of the rates at which each process is completed. Optimal performance is achieved by maximizing the rates of approach, entry, and passage through safe and desirable routes. Sometimes, however, it is necessary to reduce rates of passage through less desirable routes in order to increase proportions passing through the preferred route. Effectiveness of operational or structural modifications for achieving either of these goals is best quantified by applying time-to-event analysis, commonly known as survival analysis methods, to telemetry data. This set of techniques allows for accurate estimation of passage rates and covariate effects on those rates. Importantly, it allows researchers to quantify rates that vary over time, as well as the effects of covariates that also vary over time. Finally, these methods are able to control for competing risks, i.e., the presence of alternate passage routes, failure to pass, or other fates that remove fish from the pool of candidates available to pass through a particular route. In this chapter, we present a model simulation of telemetered fish passing a hydroelectric dam, and provide step-by-step guidance and rationales for performing time-to-event analysis on the resulting data. We demonstrate how this approach removes bias from performance estimates that can result from using methods that focus only on proportions passing each route. Time-to-event analysis, coupled with multinomial models for measuring survival, provides a comprehensive set of techniques for quantifying fish passage, and a framework from which performance among different sites can be better understood.

  9. Endangered river fish: factors hindering conservation and restoration

    Science.gov (United States)

    Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb

    2012-01-01

    Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.

  10. Compliance Monitoring of Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Johnson, Gary E.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at The Dalles Dam during summer 2012. Under the 2008 Federal Columbia River Power System Biological Opinion, dam passage survival is required to be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal to 0.015. The study also estimated survival from the forebay 2 km upstream of the dam and through the tailrace to 2 km downstream of the dam, forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required by the 2008 Columbia Basin Fish Accords.

  11. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the

  12. Evolution of the sensor fish device for measuring physical conditions in sever hydraulic environments

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-03-01

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new “fish-friendly” turbines, and spillway designs and operations, Pacific Northwest National Laboratory (PNNL) scientists have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. This report discusses the development and field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River, which have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  13. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival

    OpenAIRE

    Li, Xinya; Deng, Zhiqun D.; Brown, Richard S.; Fu, Tao; Martinez, Jayson J.; McMichael, Geoffrey A.; Skalski, John R.; Townsend, Richard L.; Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation dep...

  14. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Hennen, Matthew J.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Skalski, J. R.; Townsend, Richard L.; Wagner, Katie A.; Fischer, Eric S.; Duncan, Joanne P.; Batten, G.; Carlson, Thomas J.; Carpenter, Scott M.; Cushing, Aaron W.; Elder, T.; Etherington, D. J.; Johnson, Gary E.; Khan, Fenton; Miracle, Ann L.; Mitchell, T. D.; Prather, K.; Rayamajhi, Bishes; Royer, Ida; Seaburg, Adam; Zimmerman, Shon A.

    2013-06-21

    This report presents survival, behavioral, and fish passage results for tagged yearling Chinook salmon and juvenile steelhead as part of a survival study conducted at John Day Dam during spring 2011. This study was designed to evaluate the passage and survival of yearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a paired-release survival model.

  15. Reconnecting fragmented sturgeon populations in North American rivers

    Science.gov (United States)

    Jager, Henriette; Parsley, Michael J.; Cech, Joseph J. Jr.; McLaughlin, R.L.; Forsythe, Patrick S.; Elliott, Robert S.

    2016-01-01

    The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migration is only half the battle. Broader recovery for linked sturgeon populations requires safe “round-trip” passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.

  16. Evolution of the Sensor Fish Device for Measuring Physical Conditions in Severe Hydraulic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Duncan, Joanne P.

    2003-02-28

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new ''fish-friendly'' turbines, and spillway designs and operations, scientists at the Pacific Northwest National Laboratory (PNNL) have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. The Sensor Fish was developed with the support of the U.S. Department of Energy's Advanced Hydropower Turbine System program. Field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  17. Risk assessment for fish passage through small, low-head turbines

    Energy Technology Data Exchange (ETDEWEB)

    Turnpenny, A.W.H.; Clough, S.; Hanson, K.P.; Ramsay, R.; McEwan, D.

    2000-07-01

    This report summarises the findings of a study to improve the accuracy of prediction methods for fish fatalities for small-head Francis and Kaplan propeller turbine designs and gives details of computational fluid dynamic modelling to estimate pressure fluxes and shear stresses. Biological data is reviewed, and the STRIKER Excel spreadsheet model is used to predict death caused by pressure flux, shear turbulence, and blade strike. Field validation is discussed, and drawings of the Francis 1 and Kaplan 1 turbines, results of the fish passage trials, and STRIKER instructions and sample runs are presented in the appendices.

  18. Risk assessment for fish passage through small, low-head turbines

    International Nuclear Information System (INIS)

    Turnpenny, A.W.H.; Clough, S.; Hanson, K.P.; Ramsay, R.; McEwan, D.

    2000-01-01

    This report summarises the findings of a study to improve the accuracy of prediction methods for fish fatalities for small-head Francis and Kaplan propeller turbine designs and gives details of computational fluid dynamic modelling to estimate pressure fluxes and shear stresses. Biological data is reviewed, and the STRIKER Excel spreadsheet model is used to predict death caused by pressure flux, shear turbulence, and blade strike. Field validation is discussed, and drawings of the Francis 1 and Kaplan 1 turbines, results of the fish passage trials, and STRIKER instructions and sample runs are presented in the appendices

  19. Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

  20. Knowledge exchange for efficient passage of fish in the southern hemispere (KEEPFISH)

    DEFF Research Database (Denmark)

    Wilkes, M. A.; Aarestrup, Kim; Jepsen, Niels

    The decline of freshwater fish biodiversity is proceeding at an alarming and persistent rate. Given that most fish must undertake some form of migration in order to complete their life-cycle, of particular concern is the proliferation of hydropower schemes that block migration routes, as well as ...... passage science and policy. This will be achieved through systematic review, expert consultation, ecological modelling, postgraduate training programmes, networking and stakeholder engagement using a novel combination of approaches....

  1. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjomn (Bjornn), Theodore C.

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).

  2. Fall chinook salmon survival and supplementation studies in the Snake River and Lower Snake River reservoirs: Annual report 1995

    International Nuclear Information System (INIS)

    Williams, John G.; Bjornn, Theodore C.

    1997-01-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2)

  3. Variações temporais na passagem de peixes pelo elevador da Usina Hidrelétrica de Santa Clara, rio Mucuri, leste brasileiro Temporal patterns of fish passage in Santa Clara Power Plant's fish lift, Mucuri River, east Brazil

    Directory of Open Access Journals (Sweden)

    Paulo dos S. Pompeu

    2006-06-01

    Full Text Available O presente estudo teve como objetivo determinar padrões temporais na passagem de peixes pelo elevador da Usina Hidrelétrica de Santa, localizado no rio Mucuri. Durante quatro meses, de novembro de 2003 a março de 2004, foram realizados ciclos de transposição a cada duas horas, quando todos os indivíduos foram contados e identificados. Durante este período foram transpostos 67.838 indivíduos de 31 espécies. A abundância de Characiformes migradores no elevador foi maior no período diurno, enquanto Siluriformes foram observados em maior quantidade à noite. A abundância de peixes no elevador foi relacionada significativamente com as vazões no rio Mucuri. O padrão encontrado torna possível a melhor utilização do elevador, priorizando sua operação durante o dia e em períodos de maior vazão.The current study had the objective of determining temporal patterns of fish passage in Santa Clara Power Plant's fish lift, Mucuri River. During four months, from November 2003 to March 2004, transposition cycles were performed each two hours, when the specimens were counted and identified. During this migration period 67,838 individuals of 31 species passed through the lift. Migratory Characiformes abundance was larger during the day, whereas the Siluriformes were registered mainly at night. Fish abundance in the lift was significantly related to the Mucuri river flow. The temporal pattern found makes possible a better utilization of the lift, focusing cycles during the day and high flows periods.

  4. Lindane residues in fish inhabiting Nigerian rivers

    International Nuclear Information System (INIS)

    Okereke, G.U.; Dje, Y.

    1997-01-01

    Analysis for residues of lindane in fish collected from various rivers close to rice agroecosystems showed that the concentrations of lindane ranged from none detectable to 3.4 mg kg -1 . Fish from rivers where strict regulations prohibits its use had no detectable lindane residues while appreciable amounts of lindane were found in fish were such restriction was not enforced with the variation attributed to the extent of use of lindane in the area of contamination. The investigation confirms that the use of lindane in rice production in Nigeria can cause the contamination of fish in nearby rivers. (author). 16 refs, 2 tab

  5. Passage of north temperate fish through the Cowan Dam Denil fishway

    International Nuclear Information System (INIS)

    Christense, B.

    1994-01-01

    Fish passage through a standard Denil fishway under low tailwater conditions was studied at Cowan Dam in Saskatchewan in 1990. In 1991 and 1992, fish passage through an experimental two-level Denil fishway was studied at the same location under similar flow conditions. Six species of fish used the Cowan Dam Denil fishway in 1990: northern pike, walleye, white sucker, longnose sucker, cisco, and lake whitefish. Tag returns suggest that most fish that congregate below Cowan Dam in the spring originate in Lac Ile-a-la-Crosse 150-200 km downstream. Northern pike waited until spawning had been completed before ascending the fishway. Only 12.1% of the pike congregated below the dam are estimated to have ascended the fishway. During 1990 and 1991, the number of pike ascending the fishway appeared to decline as water velocities in the standard and two-level Denil fishways increased. Mean pike length also declined over the period of fish movement, and as water velocities in the standard Denil declined. Walleye did not appear to have any difficulty ascending the standard Denil in 1990, but they did appear to have difficulty ascending the two-level Denil in 1991. Only 29% of the white suckers that ascended the fishway did so prior to spawning. According to recaptures of tagged fish, 58.8% of white suckers present in the tailwater pool ascended the standard Denil in 1990. White suckers also appeared to be able to ascend the two-level Denil without difficulty. Of the longnose suckers, 98% ascended the fishway prior to spawning in 1990, and appeared to ascend both the standard and two-level fishways without obvious delay or difficulty. Only small numbers of cisco and lake whitefish utilized the standard Denil fishway in 1990. 68 refs., 56 figs., 24 tabs

  6. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Fischer, Eric S.; Skalski, J. R.; Townsend, Richard L.; Duncan, Joanne P.; Hennen, Matthew J.; Wagner, Katie A.; Arntzen, Evan V.; Miller, Benjamin L.; Miracle, Ann L.; Zimmerman, Shon A.; Royer, Ida M.; Khan, Fenton; Cushing, Aaron W.; Etherington, D. J.; Mitchell, T. D.; Elder, T.; Batton, George; Johnson, Gary E.; Carlson, Thomas J.

    2013-05-01

    This report presents survival, behavioral, and fish passage results for yearling and subyearling Chinook salmon smolts and juvenile steelhead tagged with JSATS acoustic micro-transmitters as part of a survival study conducted at John Day Dam during 2010. This study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a single-release survival estimate model.

  7. Evaluation of Behavioral Guidance Structure on Juvenile Salmonid Passage and Survival at Bonneville Dam in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Hughes, James S.; Kim, Jin A.; Fu, Tao; Fischer, Eric S.; Monter, Tyrell J.; Skalski, J. R.

    2011-03-01

    Pacific Northwest National Laboratory (PNNL) conducted an acoustic-telemetry study at Bonneville Dam in 2009 to evaluate the effects of a behavioral guidance structure (BGS) in the Bonneville Dam second powerhouse forebay on fish passage and survival through the second powerhouse (B2), the dam as a whole, and through the first powerhouse and spillway combined. The BGS was deployed to increase the survival of fish passing through B2 by increasing the percentage of outmigrating smolts entering the B2 Corner Collector (B2CC)—a surface flow outlet known to be a relatively benign route for downstream passage at this dam. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. Study results indicated that having turbine 11 in service is important for providing flow conditions that are comparable to those observed in pre-BGS years (2004 and 2005) and in 2008. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  8. Columbia River ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in Columbia River. Vector polygons in this...

  9. Shining the light on the loss of rheophilic fish habitat in lowland rivers as a forgotten consequence of barriers and its implications for management

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Aarestrup, Kim; Riis, Torsten M. O.

    2017-01-01

    modified by agriculture and other human activities for centuries, leaving management practitioners wondering how much change is acceptable to maintain sustainable fish populations and fisheries practices. 4. With examples from Denmark, this paper attempts to conceptualize the loss in habitat as a result...... of barriers in lowland streams and rivers, and the repercussions that such alterations may have on rheophilic fish populations. Furthermore, the need for management to address habitat loss and its related consequences concurrently with the improvement of fish passage is emphasized...

  10. Effects of grade control structures on fish passage, biological assemblages, and hydraulic environments in western Iowa streams: a multidisciplinary review

    Science.gov (United States)

    Thomas, J.T.; Culler, M.E.; Dermisis, D.C.; Pierce, Clay; Papanicolaou, A.N.; Stewart, T.W.; Larson, C.J.

    2011-01-01

    Land use changes and channelization of streams in the deep loess region of western Iowa have led to stream channel incision, altered flow regimes, increased sediment inputs, decreased habitat diversity and reduced lateral connectivity of streams and floodplains. Grade control structures (GCSs) are built in streams to prevent further erosion, protect infrastructure and reduce sediment loads. However, GCS can have a detrimental impact on fisheries and biological communities. We review three complementary biological and hydraulic studies on the effects of GCS in these streams. GCS with steep (≥1:4 rise : run) downstream slopes severely limited fish passage, but GCS with gentle slopes (≤1:15) allowed greater passage. Fish assemblages were dominated by species tolerant of degradation, and Index of Biotic Integrity (IBI) scores were indicative of fair or poor biotic integrity. More than 50% of fish species had truncated distributions. After modification of GCS to reduce slopes and permit increased passage, IBI scores increased and several species were detected further upstream than before modification. Total macroinvertebrate density, biomass and taxonomic diversity and abundance of ecologically sensitive taxa were greater at GCS than in reaches immediately upstream, downstream or ≥1 km from GCS. A hydraulic study confirmed results from fish passage studies; minimum depths and maximum current velocities at GCS with gentle slopes (≤1:15) were more likely to meet minimum criteria for catfish passage than GCS with steeper slopes. Multidisciplinary approaches such as ours will increase understanding of GCS-associated factors influencing fish passage, biological assemblage structure and other ecological relationships in streams.

  11. Fish depth distributions in the Lower Mississippi River

    Science.gov (United States)

    Killgore, K. J.; Miranda, Leandro E.

    2014-01-01

    A substantial body of literature exists about depth distribution of fish in oceans, lakes and reservoirs, but less is known about fish depth distribution in large rivers. Most of the emphasis on fish distributions in rivers has focused on longitudinal and latitudinal spatial distributions. Knowledge on depth distribution is necessary to understand species and community habitat needs. Considering this void, our goal was to identify patterns in fish benthic distribution along depth gradients in the Lower Mississippi River. Fish were collected over 14 years in depths down to 27 m. Fish exhibited non-random depth distributions that varied seasonally and according to species. Species richness was highest in shallow water, with about 50% of the 62 species detected no longer collected in water deeper than 8 m and about 75% no longer collected in water deeper than 12 m. Although richness was highest in shallow water, most species were not restricted to shallow water. Rather, most species used a wide range of depths. A weak depth zonation occurred, not as strong as that reported for deep oceans and lakes. Larger fish tended to occur in deeper water during the high-water period of an annual cycle, but no correlation was evident during the low-water period. The advent of landscape ecology has guided river research to search for spatial patterns along the length of the river and associated floodplains. Our results suggest that fish assemblages in large rivers are also structured vertically. 

  12. Fish Passage Through Dams on the Upper Mississippi River

    National Research Council Canada - National Science Library

    Wilcox, Daniel

    1999-01-01

    .... I identified UMR migratory fish species, estimated current velocities through gate openings on UMR dams, compiled information on migration behavior, and estimated the swimming for north performance...

  13. Assessing survival of Mid-Columbia River released juvenile salmonids at McNary Dam, Washington, 2008-09

    Science.gov (United States)

    Evans, Scott D.; Walker, Christopher E.; Brewer, Scott J.; Adams, Noah S.

    2010-01-01

    Few studies have evaluated survival of juvenile salmon over long river reaches in the Columbia River and information regarding the survival of sockeye salmon at lower Columbia River dams is lacking. To address these information gaps, the U.S. Geological Survey was contracted by the U.S. Army Corps of Engineers to evaluate the possibility of using tagged fish released in the Mid-Columbia River to assess passage and survival at and downstream of McNary Dam. Using the acoustic telemetry systems already in place for a passage and survival study at McNary Dam, fish released from the tailraces of Wells, Rocky Reach, Rock Island, Wanapum, and Priest Rapids Dams were detected at McNary Dam and at the subsequent downstream arrays. These data were used to generate route-specific survival probabilities using single-release models from fish released in the Mid-Columbia River. We document trends in passage and survival probabilities at McNary Dam for yearling Chinook and sockeye salmon and juvenile steelhead released during studies in the Mid-Columbia River. Trends in the survival and passage of these juvenile salmonid species are presented and discussed. However, comparisons made across years and between study groups are not possible because of differences in the source of the test fish, the type of acoustic tags used, the absence of the use of passive integrated transponder tags in some of the release groups, differences in tagging and release protocols, annual differences in dam operations and configurations, differences in how the survival models were constructed (that is, number of routes that could be estimated given the number of fish detected), and the number and length of reaches included in the analysis (downstream reach length and arrays). Despite these differences, the data we present offer a unique opportunity to examine the migration behavior and survival of a group of fish that otherwise would not be studied. This is particularly true for sockeye salmon because

  14. Protecting salmon and trout in the Capilano River

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Capilano Reservoir and Cleveland Dam were constructed in 1954 in order to supply energy to a growing urban region. The dam became a barrier for trout and salmon trying to migrate from the reservoir behind the dam into the lower Capilano River. Studies have indicated that up to 90 per cent of the fish do not survive the drop into the rocky pool at the base of the dam. This paper discussed a project being conducted to improve the fish habitat in the lower Capilano River and reduce the mortality of smolt or young fish during their passage over the dam. A trap-and-truck project was launched to catch migrating trout and salmon in rotary screw traps in the upper portion of the river as well as in the reservoir. The fish were measured, weighed and tagged and then trucked to the base of the dam near the fish hatchery. It was concluded that more traps will be used to increase the capture rate in 2009. Habitat assessments are also being conducted in order to design long-term fish passage systems. 10 figs.

  15. Improving hydroturbine pressures to enhance salmon passage survival and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trumbo, Bradly A. [U.S. Army Corp. of Engineers, Walla Walla, WA (United States); Ahmann, Martin L. [U.S. Army Corp. of Engineers, Walla Walla, WA (United States); Renholods, Jon F. [U.S. Army Corp. of Engineers, Walla Walla, WA (United States); Brown, Richard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison H. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-12

    This paper provides an overview of turbine pressure data collection and barotrauma studies relative to fish passage through large Kaplan turbines and how this information may be applied to safer fish passage through turbines. The specific objectives are to 1) discuss turbine pressures defined by Sensor Fish releases; 2) discuss what has been learned about pressure effects on fish and the factors influencing barotrauma associated with simulated turbine passage; 3) elucidate data gaps associated with fish behavior and passage that influence barotrauma during turbine passage; 4) discuss how the results of these studies have led to turbine design criteria for safer fish passage; and 5) relate this information to salmon recovery efforts and safer fish passage for Atlantic and Pacific salmonids.

  16. Nonnative Fishes in the Upper Mississippi River System

    Science.gov (United States)

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for

  17. Upstream Atlantic salmon (Salmo salar) passage

    International Nuclear Information System (INIS)

    Clay, C.H.

    1993-01-01

    Upstream salmon passage though a dam is discussed with respect to three main components: the fishway entrance, the fishway, and the exit. Design considerations and alternative types of components are presented. For fishway entrances, an important consideration is the positioning of the entrance as far upstream as the fish can swim with respect to obstacles. For powerhouses using water diverted from a river, the problem of leading fish past the powerhouse may be overcome by either installing a tailrace barrier or increasing the flow until the home stream odor is sufficient to attract fish. Swimming ability should be the first consideration in fishway design. Fishways with 50 cm drops per pool would be satisfactory in most cases. The problem of headwater fluctuation is overcome through careful fishway selection. Fish locks, hoists, and elevators are other alternatives to pool/weir fishways. The location for a fish exit must be decided on the basis of whether the fishway will be used only for upstream migrations. 5 refs., 1 fig., 1 tab

  18. Functional testing of a fish sluice, Buchholz small hydro plant - Final report; Funktionskontrolle Fischschleuse, KWKW Buchholz - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ruhle, Ch. [Buero fuer Jagd- und Fischereifragen, Schmerikon (Switzerland); Scherrer, I. [Entegra Wasserkraft AG, St. Gallen (Switzerland)

    2009-01-15

    Since more than 100 years the diversion hydropower plant of Buchholz at the river Glatt (canton Saint Gall) has been out of operation. With its reactivation as run-of-river scheme, the river meadow, originated due to sedimentation in the former storage basin, with its beaver habitat, could be preserved. For the first time in Switzerland, a fish lock was implemented for the upstream passage way for fish. The fish lock was built directly into for stability reasons newly constructed secondary concrete at the downstream side of the old dam. At the upper lock opening a weir basked is installed, where the migrating fish are recorded. The examination proofed that the fish lock in principle is working for strong swimming fish species (qualitative proof of the performance control). In case of flood caused drift, the migrating fish seem to accept the fish passage. The attempt to quantify the proportion of the migrating willing fish which actually swim through the lock (quantitative proof of the performance control) did not produce satisfactory results. (authors)

  19. Distribution and habitat use of the Missouri River and Lower Yellowstone River benthic fishes from 1996 to 1998: A baseline for fish community recovery

    Science.gov (United States)

    Wildhaber, M.L.; Gladish, D.W.; Arab, A.

    2011-01-01

    Past and present Missouri River management practices have resulted in native fishes being identified as in jeopardy. In 1995, the Missouri River Benthic Fishes Study was initiated to provide improved information on Missouri River fish populations and how alterations might affect them. The study produced a baseline against which to evaluate future changes in Missouri River operating criteria. The objective was to evaluate population structure and habitat use of benthic fishes along the entire mainstem Missouri River, exclusive of reservoirs. Here we use the data from this study to provide a recent-past baseline for on-going Missouri River fish population monitoring programmes along with a more powerful method for analysing data containing large percentages of zero values. This is carried out by describing the distribution and habitat use of 21 species of Missouri River benthic fishes based on catch-per-unit area data from multiple gears. We employ a Bayesian zero-inflated Poisson model expanded to include continuous measures of habitat quality (i.e. substrate composition, depth, velocity, temperature, turbidity and conductivity). Along with presenting the method, we provide a relatively complete picture of the Missouri River benthic fish community and the relationship between their relative population numbers and habitat conditions. We demonstrate that our single model provides all the information that is often obtained by a myriad of analytical techniques. An important advantage of the present approach is reliable inference for patterns of relative abundance using multiple gears without using gear efficiencies.

  20. Fish fauna in the Krueng Geumpang River, Indonesia

    Science.gov (United States)

    Nasir, M.; Munira, M.; Muchlisin, Z. A.

    2018-03-01

    The objective of the present study was to examine the diversity and distribution of fishes in the Krueng Geumpang River.The survey was conducted from 1st to 22nd August 2015 with six sampling locations. Fish samples were caught using gillnets and fish traps. Data analyses performed in this study were the frequency of incidence (FOI), diveristy index (H’), and dominance index (C). A total of 88 individual fishes belong to 12 species and six familia. Tor soro is the dominant species in this river. There are two species of fish that widely distributed i.e. Tor soro (FOI = 66.7 %) and Neolissochilus thienemanni (FOI = 50.0 %). The Shannon-Wienner diversity index ranged from 0.00 to 2.05. The low value of the diversity index (H’) can be caused by factors such as river morphology, poisoning, mining, and overfishing.

  1. Edibility of sport fishes in the Ottawa River near Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.R.; Chaput, T.; Miller, A.; Wills, C.A., E-mail: leed@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-12-15

    To address the question of edibility of fish in the Ottawa River near Chalk River Laboratories (CRL), 123 game fish were collected for analysis from four locations: Mackey and Rolphton (45 km and 35 km upstream of Chalk River Laboratories (CRL), respectively), the Sandspit (Pointe au Bapteme) and Cotnam Island (1.6 km and 45 km downstream of CRL, respectively). Twenty-six to thirty-six game fish were collected at each location in 2007 and samples of flesh or bone were analyzed. Trap nets were used to collect only the fish required, allowing release of management-sensitive species. The focus was on walleye (Sander vitreus) because they are abundant and popular among anglers. A few northern pike (Esox lucius) and a smaller number of smallmouth bass (Micropterus dolomieui) were also collected at three of the four sites. Samples of the fish were analyzed for cesium-137 ({sup 137}Cs), strontium-90 ({sup 90}Sr), mercury (Hg), and selected organo-chlorine compounds. Concentrations of {sup 137}Cs in the flesh and {sup 90}Sr in the bones of sport fish were low and similar at all four locations and appear to reflect the global residuals from nuclear weapons testing (primarily in the 1960's) as opposed to releases from CRL. Possible explanations are: 1) Reductions in radionuclide releases from CRL in recent decades and 2) Relatively large foraging ranges of sport fish. Mercury concentrations were elevated in fishes in the Ottawa River and were significantly higher at the Sandspit and Rolphton than at Mackey and Cotnam Island (p<0.001). Mercury concentrations from the four sites are comparable to concentrations in other Ontario and Quebec lakes. It is advisable therefore, that consumers follow the fish consumption guidelines issued by provincial authorities when eating fish from the Ottawa River. Organo-chlorine compounds were not detected in walleye; however, they were detected in all eight of the pike collected at Cotnam Island. The highest organo

  2. Edibility of sport fishes in the Ottawa River near Chalk River Laboratories

    International Nuclear Information System (INIS)

    Lee, D.R.; Chaput, T.; Miller, A.; Wills, C.A.

    2013-01-01

    To address the question of edibility of fish in the Ottawa River near Chalk River Laboratories (CRL), 123 game fish were collected for analysis from four locations: Mackey and Rolphton (45 km and 35 km upstream of Chalk River Laboratories (CRL), respectively), the Sandspit (Pointe au Bapteme) and Cotnam Island (1.6 km and 45 km downstream of CRL, respectively). Twenty-six to thirty-six game fish were collected at each location in 2007 and samples of flesh or bone were analyzed. Trap nets were used to collect only the fish required, allowing release of management-sensitive species. The focus was on walleye (Sander vitreus) because they are abundant and popular among anglers. A few northern pike (Esox lucius) and a smaller number of smallmouth bass (Micropterus dolomieui) were also collected at three of the four sites. Samples of the fish were analyzed for cesium-137 ( 137 Cs), strontium-90 ( 90 Sr), mercury (Hg), and selected organo-chlorine compounds. Concentrations of 137 Cs in the flesh and 90 Sr in the bones of sport fish were low and similar at all four locations and appear to reflect the global residuals from nuclear weapons testing (primarily in the 1960's) as opposed to releases from CRL. Possible explanations are: 1) Reductions in radionuclide releases from CRL in recent decades and 2) Relatively large foraging ranges of sport fish. Mercury concentrations were elevated in fishes in the Ottawa River and were significantly higher at the Sandspit and Rolphton than at Mackey and Cotnam Island (p<0.001). Mercury concentrations from the four sites are comparable to concentrations in other Ontario and Quebec lakes. It is advisable therefore, that consumers follow the fish consumption guidelines issued by provincial authorities when eating fish from the Ottawa River. Organo-chlorine compounds were not detected in walleye; however, they were detected in all eight of the pike collected at Cotnam Island. The highest organo-chlorine concentrations were measured in two

  3. Approach, passage, and survival of juvenile salmonids at Little Goose Dam, Washington: Post-construction evaluation of a temporary spillway weir, 2009

    Science.gov (United States)

    Beeman, J.W.; Braatz, A.C.; Hansel, H.C.; Fielding, S.D.; Haner, P.V.; Hansen, G.S.; Shurtleff, D.J.; Sprando, J.M.; Rondorf, D.W.

    2010-01-01

    This report describes a study of dam passage and survival of radio-tagged juvenile salmonids after installation of a temporary spillway weir (TSW) at Little Goose Dam, Washington, in 2009. The purpose of the study was to document fish passage and survival when the dam was operated with the TSW in place. Spillway weirs are one of several methods used to improve downstream passage of juvenile salmonids. Each spillway weir design is based on the concept of providing an overflow weir with a depth more similar to the natural migration depth of juvenile salmonids than conventional spill bays. Little Goose Dam was the last of the four lower Snake River dams to have a spillway weir installed. This was the first year that some form of surface passage device was operating at all Snake River and Columbia River dams between Lewiston, Idaho, and the Columbia River estuary. The study design stipulated that a total of 30 percent of the river discharge would continuously be passed over the TSW and the conventional spill bays, and this percentage was achieved. The TSW also was to be operated at the 'low crest' elevation during the spring and the 'high crest' elevation during the summer, but the TSW was only operated at the low crest elevation during this study. Behavior, passage, and survival of spring and summer juvenile salmonid migrants passing through Little Goose Dam were examined using radio telemetry. Survival was estimated using the Route Specific Survival Model (RSSM) by releasing tagged fish near Central Ferry State Park 21 kilometers upstream of the dam and in the tailrace approximately 0.5 kilometer downstream of the dam. From April 18 to May 21, 2009, 1,520 yearling Chinook salmon (Oncorhynchus tshawytscha) and 1,517 juvenile steelhead (O. mykiss) were radio tagged and released. From June 6 to July 5, 2009, 4,251 subyearling Chinook salmon (O. tshawytscha) were radio tagged and released. Release dates of subyearling Chinook salmon were selected to avoid 'reservoir

  4. Frankenmuth Dam Fish Passage, Cass River, Saginaw County, Michigan

    Science.gov (United States)

    2012-11-01

    2009letter, our office and the Alpena Fish and Wildlife Conservation Office have been worldng with you to develop monitoring programs to assess changes...Sargent. MDNR. Wildlife Division. Lansing, MI Andrea Ania, USFWS, Alpena , M1 EA - C-7 ZIIBIWING CENTER ot A~t.:..~ c •. lt • .,..~ 1’¥- ,..1

  5. Fish distributions in the Rondegat River, Cape Floristic Region ...

    African Journals Online (AJOL)

    Alien fishes are considered the most serious threat to native headwater stream fishes in South Africa. A 4 km reach of the Rondegat River is the first section of a South African river to be rehabilitated through the attempted removal of alien fish by using the piscicide rotenone. The objectives of the current study were to ...

  6. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  7. Survival estimates for the passage of juvenile chinook salmon through Snake River dams and reservoirs. Annual report 1993

    International Nuclear Information System (INIS)

    Iwamoto, R.N.; Muir, W.D.; Sandford, B.P.; McIntyre, K.W.; Frost, D.A.; Williams, J.G.; Smith, S.G.; Skalski, J.R.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers

  8. A semi-automated method of monitoring dam passage of American Eels Anguilla rostrata

    Science.gov (United States)

    Welsh, Stuart A.; Aldinger, Joni L.

    2014-01-01

    Fish passage facilities at dams have become an important focus of fishery management in riverine systems. Given the personnel and travel costs associated with physical monitoring programs, automated or semi-automated systems are an attractive alternative for monitoring fish passage facilities. We designed and tested a semi-automated system for eel ladder monitoring at Millville Dam on the lower Shenandoah River, West Virginia. A motion-activated eel ladder camera (ELC) photographed each yellow-phase American Eel Anguilla rostrata that passed through the ladder. Digital images (with date and time stamps) of American Eels allowed for total daily counts and measurements of eel TL using photogrammetric methods with digital imaging software. We compared physical counts of American Eels with camera-based counts; TLs obtained with a measuring board were compared with TLs derived from photogrammetric methods. Data from the ELC were consistent with data obtained by physical methods, thus supporting the semi-automated camera system as a viable option for monitoring American Eel passage. Time stamps on digital images allowed for the documentation of eel passage time—data that were not obtainable from physical monitoring efforts. The ELC has application to eel ladder facilities but can also be used to monitor dam passage of other taxa, such as crayfishes, lampreys, and water snakes.

  9. How Physical Processes are Informing River Management Actions at Marble Bluff Dam, Truckee River, Nevada

    Science.gov (United States)

    Bountry, J.; Godaire, J.; Bradley, D. N.

    2017-12-01

    At the terminus of the Truckee River into Pyramid Lake (Nevada, USA), upstream river management actions have dramatically reshaped the river landscape, posing significant challenges for the management of endangered aquatic species and maintenance of existing infrastructure. Within the last 100 years, upstream water withdrawal for human uses has resulted in a rapid lowering of Pyramid Lake which initiated up to 90 ft of channel incision. In 1976 Marble Bluff Dam was constructed to halt the upstream progression of channel incision and protect upstream agricultural lands, tribal resources, and infrastructure. Since construction an additional 40 ft of lake lowering and subsequent channel lowering now poses a potential risk to the structural integrity of the dam. The dynamic downstream river combined with ongoing reservoir sedimentation pose challenges to fish passage facilities that enable migration of numerous endangered cui-ui and threatened Lahontan Cutthroat Trout (LCT) to upstream spawning areas each year. These facilities include a fish lock at the dam, a fish bypass channel which allows fish to avoid the shallow delta area during low lake levels, and a meandering channel constructed by the Nature Conservancy to connect the bypass channel to the receding Pyramid Lake. The reservoir formed by Marble Bluff Dam has completely filled with sediment which impacts fish passage facilities. The original operating manual for the dam recommends year-round flushing of sediment through radial gates, but this can no longer be accomplished. During critical fish migration periods in the spring operators must ensure fish entrance channels downstream of the dam are not buried with released sediment and fish are not trapped in a portion of the reservoir full of sediment that would risk sending them back over the dam. To help inform future reservoir sediment and infrastructure management strategies, we bracket a range of potential river responses to lake level lowering and floods

  10. Fish catch composition of selected small scale fishing gears used in the Bonny River, Rivers State, Nigeria

    Directory of Open Access Journals (Sweden)

    Olaniyi Alaba Olopade

    2017-04-01

    Full Text Available Fish catch composition of some selected small scale fishing gears (gill net, cast net, beach seine and long line were investigated in Bonny River, Rivers State, Nigeria from August 2014 to January 2015. A total number of 25 fish species from 18 families were recorded during the study. The Mugilidae with only one species constituted the dominant family while Cichlidae, Lutjanidae, Clupeidae, had three species and Scianidae had two species of fish caught and the remaining families had one species each. Mugil cephalus constituted 28.48% of the total catches followed by C. nigrodigitatus (22.48%. In the dry season M. cephalus forms the major component landings (32.65%, followed by C. nigrodigitatus (26.53% and S. galilaeus (12.24% while in the wet season M. cephalus (31.06%, C. nigrodigitatus (18.63% and T. zillii (11.80% were the dominant fish species. Cast net was the most efficient fishing gear while gill net was the least efficient. The comparison analysis between the wet and dry seasons using t-test showed no significant difference between dry and wet seasons (t = 0.092, P > 0.05.

  11. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat

  12. Trace elements in fish from the Savannah River near Savannah River Nuclear Plant

    International Nuclear Information System (INIS)

    Koli, A.K.; Whitmore, R.

    1983-01-01

    A survey of trace element residues in fish from the Savannah River near Savannah River Nuclear Plant was undertaken in 1982. Fish muscle tissue was incubated by the wet digestion method. Fifteen trace elements were determined by flame atomic absorption spectrophotometry analysis of the digests. It was found that As, Se, Mg, Hg, Ca, Zn, and Fe levels were relatively higher than Pb, Cd, Ni, Co, Cr, and Mn in all fish species. In addition, in all fish species it seems that Pb, Cd, Ni, Co, Cr, and Mn levels were relatively higher than Cs and Cu. Cs and Cu levels were negligible in all fish species analyzed. Trace element levels found in these fish species were not high enough to render them dangerous for human consumption. (author)

  13. Optimizing Hydro Power Turbines in Order to Secure the Passage of Fishes in Khuzestan province

    Directory of Open Access Journals (Sweden)

    Moona Mohammadi

    2015-04-01

    Full Text Available Nowadays,it is important to consider environmental issues,as ecological problems and their severe effect intensify in Iran,particularly in Khuzestan province.The environmental effects of hydroelectric plants are highly regarded due to their significant impact on an extensive area.The lack of safe path for fish passing through the turbines is one of these damages. In order to deal with these challenges,researchers are trying to optimize hydro power turbines.In this optimization,old runners were replaced,while conditions of fish passing through the turbines and fish survival have been improved.Considering the existence of six hydroelectric power plants in Khuzestan province,it would be possible to conduct optimization or constructing studies with a fish-friendly approach for the safe passage of fishes to slightly reduce the extent of environmental damages.

  14. Synergistic and singular effects of river discharge and lunar illumination on dam passage of upstream migrant yellow-phase American eels

    Science.gov (United States)

    Welsh, Stuart A.; Aldinger, Joni L.; Braham, Melissa A.; Zimmerman, Jennifer L.

    2016-01-01

    Monitoring of dam passage can be useful for management and conservation assessments of American eel, particularly if passage counts can be examined over multiple years. During a 7-year study (2007–2013) of upstream migration of American eels within the lower Shenandoah River (Potomac River drainage), we counted and measured American eels at the Millville Dam eel pass, where annual study periods were determined by the timing of the eel pass installation during spring or summer and removal during fall. Daily American eel counts were analysed with negative binomial regression models, with and without a year (YR) effect, and with the following time-varying environmental covariates: river discharge of the Shenandoah River at Millville (RDM) and of the Potomac River at Point of Rocks, lunar illumination (LI), water temperature, and cloud cover. A total of 17 161 yellow-phase American eels used the pass during the seven annual periods, and length measurements were obtained from 9213 individuals (mean = 294 mm TL, s.e. = 0.49, range 183–594 mm). Data on passage counts of American eels supported an additive-effects model (YR + LI + RDM) where parameter estimates were positive for river discharge (β = 7.3, s.e. = 0.01) and negative for LI (β = −1.9, s.e. = 0.34). Interestingly, RDM and LI acted synergistically and singularly as correlates of upstream migration of American eels, but the highest daily counts and multiple-day passage events were associated with increased RDM. Annual installation of the eel pass during late spring or summer prevented an early spring assessment, a period with higher RDM relative to those values obtained during sampling periods. Because increases in river discharge are climatically controlled events, upstream migration events of American eels within the Potomac River drainage are likely linked to the influence of climate variability on flow regime.

  15. Fishes of the White River basin, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  16. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  17. UV filters bioaccumulation in fish from Iberian river basins

    International Nuclear Information System (INIS)

    Gago-Ferrero, Pablo; Díaz-Cruz, M. Silvia; Barceló, Damià

    2015-01-01

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification

  18. Performance of a surface bypass structure to enhance juvenile steelhead passage and survival at Lower Granite Dam, Washington

    Science.gov (United States)

    Adams, Noah S.; Plumb, John M.; Perry, Russell W.; Rondorf, Dennis W.

    2014-01-01

    An integral part of efforts to recover stocks of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss in Pacific Northwest rivers is to increase passage efficacy and survival of juveniles past hydroelectric dams. As part of this effort, we evaluated the efficacy of a prototype surface bypass structure, the removable spillway weir (RSW), installed in a spillbay at Lower Granite Dam, Washington, on the Snake River during 2002, 2003, 2005, and 2006. Radio-tagged juvenile steelhead were released upstream from the dam and their route of passage through the turbines, juvenile bypass, spillway, or RSW was recorded. The RSW was operated in an on-or-off condition and passed 3–13% of the total discharge at the dam when it was on. Poisson rate models were fit to the passage counts of hatchery- and natural-origin juvenile steelhead to predict the probability of fish passing the dam. Main-effect predictor variables were RSW operation, diel period, day of the year, proportion of flow passed by the spillway, and total discharge at the dam. The combined fish passage through the RSW and spillway was 55–85% during the day and 37–61% during the night. The proportion of steelhead passing through nonturbine routes was 95% when the RSW was on during the day. The ratio of the proportion of steelhead passed to the proportion of water passing the RSW was from 6.3:1 to 10.0:1 during the day and from 2.7:1 to 5.2:1 during the night. Steelhead passing through the RSW exited the tailrace about 15 min faster than fish passing through the spillway. Mark–recapture single-release survival estimates for steelhead passing the RSW ranged from 0.95 to 1.00. The RSW appeared to be an effective bypass structure compared with other routes of fish passage at the dam.

  19. Charles River Fish Contaminant Survey, April 2001

    Science.gov (United States)

    Report summarizing a biological monitoring component of the Clean Charles River 2005 initiative through the monitoring & analysis of fish within the lower Charles River basin, implemented by the EPA New England Regional Laboratory in the late fall of 1999.

  20. Use of preserved museum fish to evaluate historical and current mercury contamination in fish from two rivers in Oklahoma, USA.

    Science.gov (United States)

    Hill, J Jaron; Chumchal, Matthew M; Drenner, Ray W; Pinder, John E; Drenner, S Matthew

    2010-02-01

    We examined the effects of a commonly used preservation technique on mercury concentration in fish tissue. After fixing fish muscle tissue in formalin followed by preservation in isopropanol, we found that mercury concentration in fish muscle tissue increased by 18%, reaching an asymptote after 40 days. We used formalin-isopropanol-preserved longear sunfish (Lepomis megalotis) from the Sam Noble Oklahoma Museum of Natural History to examine historical changes and predict current mercury concentrations in fish from two rivers in southeastern Oklahoma. Glover River was free-flowing, while Mountain Fork River was impounded in 1970 and a coldwater trout fishery was established upstream from the collection site in 1989. Mercury concentrations in longear sunfish from Glover River showed no historical changes from 1963 to 2001. Mercury concentrations in longear sunfish from Mountain Fork River showed no change from 1925 to 1993 but declined significantly from 1993 to 2003. We also compared mercury concentrations of the most recently collected longear sunfish in the museum to mercury concentrations of unpreserved fish collected from the rivers in 2006. Concentrations of mercury in museum fish were not significantly different from mercury concentrations in unpreserved fish we collected from the rivers. Our study indicates that preserved museum fish specimens can be used to evaluate historical changes and predict current levels of mercury contamination in fish.

  1. EPA's National Reassessment of Contaminants in Fish from U.S. Rivers

    Science.gov (United States)

    Multiple EPA offices collaborated to conduct a reassessment of fish contamination in U.S. rivers as part of the Agency’s 2013-14 National Rivers and Streams Assessment (NRSA). This is the first national assessment of contamination in river fish that will generate probabili...

  2. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    Directory of Open Access Journals (Sweden)

    Richard S Brown

    Full Text Available Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to

  3. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    Science.gov (United States)

    Brown, Richard S; Deng, Z Daniel; Cook, Katrina V; Pflugrath, Brett D; Li, Xinya; Fu, Tao; Martinez, Jayson J; Li, Huidong; Trumbo, Bradly A; Ahmann, Martin L; Seaburg, Adam G

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this.

  4. Fish resource data from the Snare River, Northwest Territories

    International Nuclear Information System (INIS)

    Jessop, E.F.; Chang-Kue, K.T.J.; MacDonald, G.

    1994-01-01

    An extensive fish sampling and tagging program was conducted on the Snare River, Northwest Territories, in order to collect baseline data on the fish populations in sections of the river altered by hydroelectric projects. Fish populations were sampled from May to July 1977 in five sections of the river that were influenced by development of hydropower at three dams currently on line; 530 tagged fish were also released. The biweekly catch composition in experimental gill nets for each study area and the catch per gill net mesh size are presented for walleye (Stizostedion vitreum), lake trout (Salvelinus namaycush), lake whitefish (Coregonus clupeaformis), lake cisco (Coregonus artedi), northern pike (Esox lucius), white sucker (Catostomus commersoni), and longnose sucker (Catostomus catostomus). Age-specific data on length, weight, age, sex, and maturity are also included. 7 refs., 12 figs., 42 tabs

  5. Distribution patterns of fish assemblages in an Eastern Mediterranean intermittent river

    Directory of Open Access Journals (Sweden)

    Vardakas L.

    2015-01-01

    Full Text Available The distribution patterns of fish assemblages within streams can provide insights for river type classifications and may warrant specific conservation actions. However, there is limited knowledge of how fish assemblages assort along a longitudinal axis in Mediterranean intermittent streams. Patterns in spatial and temporal distribution of fish communities were analysed in a Mediterranean intermittent river (Evrotas River located in Southern Greece, hosting three endemic range restricted species of high conservation concern, during the period 2007−2009, with 80% of the river’s total length desiccating in the 2007 and 2008 droughts. The general trend was an increase in fish density and species richness along an upstream-downstream gradient. Fish assemblages from upstream to downstream were characterized by a decrease of the most rheophilic species (Squalius keadicus and an increase of the most stagnophilic species (Tropidophoxinellus spartiaticus. Three river segments, characterized by a high degree of homogeneity were delineated. Habitat and environmental preferences for the studied fish species were identified, with elevation and low flowing habitats being the most important environmental factors affecting fish distribution patterns. The current study provides evidence that even in an intermittent river an assemblage pattern following a longitudinal gradient can be identified, mainly due to the lack of instream barriers that allows recolonization after flow resumption.

  6. Passage and survival probabilities of juvenile Chinook salmon at Cougar Dam, Oregon, 2012

    Science.gov (United States)

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Smith, Collin D.; Sprando, Jamie M.

    2014-01-01

    This report describes studies of juvenile-salmon dam passage and apparent survival at Cougar Dam, Oregon, during two operating conditions in 2012. Cougar Dam is a 158-meter tall rock-fill dam used primarily for flood control, and passes water through a temperature control tower to either a powerhouse penstock or to a regulating outlet (RO). The temperature control tower has moveable weir gates to enable water of different elevations and temperatures to be drawn through the dam to control water temperatures downstream. A series of studies of downstream dam passage of juvenile salmonids were begun after the National Oceanic and Atmospheric Administration determined that Cougar Dam was impacting the viability of anadromous fish stocks. The primary objectives of the studies described in this report were to estimate the route-specific fish passage probabilities at the dam and to estimate the survival probabilities of fish passing through the RO. The first set of dam operating conditions, studied in November, consisted of (1) a mean reservoir elevation of 1,589 feet, (2) water entering the temperature control tower through the weir gates, (3) most water routed through the turbines during the day and through the RO during the night, and (4) mean RO gate openings of 1.2 feet during the day and 3.2 feet during the night. The second set of dam operating conditions, studied in December, consisted of (1) a mean reservoir elevation of 1,507 ft, (2) water entering the temperature control tower through the RO bypass, (3) all water passing through the RO, and (4) mean RO gate openings of 7.3 feet during the day and 7.5 feet during the night. The studies were based on juvenile Chinook salmon (Oncorhynchus tshawytscha) surgically implanted with radio transmitters and passive integrated transponder (PIT) tags. Inferences about general dam passage percentage and timing of volitional migrants were based on surface-acclimated fish released in the reservoir. Dam passage and apparent

  7. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-06-12

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  8. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dales Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-02-01

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  9. Fish fauna of the Brahmaputra River, Bangladesh: richness, threats and conservation needs

    Directory of Open Access Journals (Sweden)

    Shams Muhammad Galib

    2015-12-01

    Full Text Available The Brahmaputra River is one of the largest rivers in the world as well as in Bangladesh. The present study was carried out for a period of one year from January to December 2013 with a view to assessing the availability of fishes in the river with species emphasis on species richness, existing threats and conservation issues. Daytime and night sampling were carried out in three sites located along the upstream to downstream course of the river on a monthly basis. Three fishing gears including cast net, seine net and drag net and one fishing trap were employed to collect fishes. A total of 67 finfish species including 63 indigenous and 4 exotic/alien species have been recorded belonging to 46 genera, 24 families and 8 orders. Cypriniformes and Cyprinidae were the most dominating order (21 species family (15 species of native fishes. A small portion (2% of native fishes was globally threatened. Over one third of total species (38% were considered threatened to extinct species in Bangladesh. Population trend of over two third of total fish species was Declining in the river. Major threats were alien/invasive species, banned fishing gears and loss of habitats.

  10. Bioaccumulation of polonium-210 in fish of the Kaveri river system

    International Nuclear Information System (INIS)

    Shaheed, K.; Shahul Hameed, P.; Iyengar, M.A.R.

    1997-01-01

    Concentration of naturally occurring radioactive nuclide polonium-210 was determined in selected species of fish from the Kaveri river system at Tiruchirappalli. It is shown that 210 Po is non-uniformly distributed within these fishes. Concentrations of 210 Po in the muscle of fish ranged from 3.3 to 8.2 Bq/kg (wet weight). Concentration factors of Po 210 in edible portion of fish from river water worked out to be 2.5 x 10 3 to 6.3 x 10 3 . Radiation dose to public due to consumption of fish from the Kaveri river varied from 5.1 to 27.3 μSv/y. The results have implications that fish represents an important source of supply of 210 Po to humans. (author). 16 refs., 2 tabs

  11. Fish Passage Center 2000 annual report.; ANNUAL

    International Nuclear Information System (INIS)

    Fish Passage Center

    2001-01-01

    The year 2000 hydrosystem operations illustrated two main points: (1) that the NMFS Biological Opinion on the operations of the Federal Columbia River Power System (FCRPS) fish migration measures could not be met in a slightly below average water year, and; (2) the impacts and relationships of energy deregulation and volatile wholesale energy prices on the ability of the FCRPS to provide the Biological Opinion fish migration measures. In 2000, a slightly below average water year, the flow targets were not met and, when energy ''emergencies'' were declared, salmon protection measures were reduced. The 2000 migration year was a below average runoff volume year with an actual run off volume of 61.1 MAF or 96% of average. This year illustrated the ability of the hydro system to meet the migration protection measures established by the NMFS Biological Opinion. The winter operation of storage reservoirs was based upon inaccurate runoff volume forecasts which predicted a January-July runoff volume forecast at The Dalles of 102 to 105% of average, from January through June. Reservoir flood control drafts during the winter months occurred according to these forecasts. This caused an over-draft of reservoirs that resulted in less volume of water available for fish flow augmentation in the spring and the summer. The season Biological Opinion flow targets for spring and summer migrants at Lower Granite and McNary dams were not met. Several power emergencies were declared by BPA in the summer of 2000. The first in June was caused by loss of resources (WNP2 went off-line). The second and third emergencies were declared in August as a result of power emergencies in California and in the Northwest. The unanticipated effects of energy deregulation, power market volatility and rising wholesale electricity prices, and Californian energy deregulation reduced the ability of the FCRPS to implement fish protection measures. A Spill Plan Agreement was implemented in the FCRPS. Under this

  12. Downstream fish passage guide walls: A hydraulic scale model analysis

    Science.gov (United States)

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2018-01-01

    Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as

  13. Fish, the protection of streams and rivers, and hydropower

    International Nuclear Information System (INIS)

    Berg, R.; Blasel, K.

    2004-01-01

    This article discusses how the river Rhine along the Swiss-German border has been affected by man-made changes over the last 200 years. The grave effects on fish stocks caused by the construction of several hydropower stations along this stretch of the river are discussed. The two programmes 'Salmon 2000' and 'Rhine 2020' are discussed that aim to provide power station dams with fish passes to enable migrant fish to reach their old spawning grounds. Proposals are described that are to improve the situation and new Europe-wide regulations on the matter are discussed. The changes that the influence of man have caused on the Rhine's fauna are described and an historical review of the changes which the river has undergone is presented

  14. Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.

    2009-09-14

    Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including changes in pressure as they pass through turbines and dissolved gas supersaturation (resulting from the release of water from the spillway). To examine pressure changes as a source of turbine-passage injury and mortality, Pacific Northwest National Laboratory scientists conducted specific tests using a hyperbaric chamber. Tests were designed to simulate Kaplan turbine passage conditions and to quantify the response of fish to rapid pressure changes, with and without the complication of fish being acclimated to gas-supersaturated water.

  15. Habits and Habitats of Fishes in the Upper Mississippi River

    Science.gov (United States)

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  16. Pesticide residues in fish from the Densu River Basin in Ghana ...

    African Journals Online (AJOL)

    The Densu River is a typical river flowing through agricultural areas in Southern Ghana. Six fish species from different locations in the river were sampled and analyzed for residues of pesticides and metabolites using GC with ECD/FID. The results of the study indicate that all the detected residues and metabolites in fish ...

  17. Radionuclide accumulations in Clinch River fish

    International Nuclear Information System (INIS)

    Oakes, T.W.; Easterly, C.E.; Shank, K.E.

    1976-01-01

    Fish samples were collected from several locations above Melton Hill Dam, which is upstream from the liquid effluent release point of the Oak Ridge National Laboratory. The sampling locations were chosen to determine the accumulation of natural and man-made radionuclides in fish from areas in the Clinch River not influenced by the Laboratory's liquid effluents. Bass, carp, crappie, shad, bluegill, and other sunfish were collected; ten fish per species were composited to form a single sample for each location. The gamma-emitting radionuclide concentrations were determined by gamma-ray spectroscopy. Estimates of radiological dose to man subsequent to ingestion of these fish are made

  18. Effect of Multiple Turbine Passage on Juvenile Snake River Salmonid Survival

    International Nuclear Information System (INIS)

    Ham, Kenneth D.; Anderson, James J.; Vucelick, Jessica A.

    2005-01-01

    This report describes a study conducted by Pacific Northwest National Laboratory to identify populations of migrating juvenile salmonids with a potential to be impacted by repeated exposure to turbine passage conditions. This study is part of a research program supported by the U.S. Department of Energy Wind/Hydropower Program. The program's goal is to increase hydropower generation and capacity while enhancing environmental performance. Our study objective is to determine whether the incremental effects of turbine passage during downstream migration impact populations of salmonids. When such a potential is found to exist, a secondary objective is to determine what level of effect of passing multiple turbines is required to decrease the number of successful migrants by 10%. This information will help identify whether future laboratory or field studies are feasible and design those studies to address conditions that present the greatest potential to improve dam survival and thus benefit fish and power generation

  19. Migrations and swimming capabilities of endangered pallid sturgeon (Scaphirhynchus albus) to guide passage designs in the fragmented Yellowstone River

    Science.gov (United States)

    Braaten, P. J.; Elliott, Caroline M.; Rhoten, Jason C.; Fuller, D. B.; McElroy, Brandon J.

    2015-01-01

    Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free-flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by-pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free-ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.

  20. Application of the target fish community model to an urban river system.

    Science.gov (United States)

    Meixler, Marcia S

    2011-04-01

    Several models have been developed to assess the biological integrity of aquatic systems using fish community data. One of these, the target fish community (TFC) model, has been used primarily to assess the biological integrity of larger, mainstem rivers in southern New England with basins characterized by dispersed human activities. We tested the efficacy of the TFC approach to specify the fish community in the highly urbanized Charles River watershed in eastern Massachusetts. To create a TFC for the Charles River we assembled a list of fish species that historically inhabited the Charles River watershed, identified geomorphically and zoogeographically similar reference rivers regarded as being in high quality condition, amassed fish survey data for the reference rivers, and extracted from the collections the information needed to define a TFC. We used a similarity measurement method to assess the extent to which the study river community complies with the TFC and an inference approach to summarize the manner in which the existing fish community differed from target conditions. The five most abundant species in the TFC were common shiners (34%), fallfish (17%) redbreast sunfish (11%), white suckers (8%), and American eel (7%). Three of the five species predicted to be most abundant in the TFC were scarce or absent in the existing river community. Further, the river was dominated by macrohabitat generalists (99%) while the TFC was predicted to contain 19% fluvial specialist species, 43% fluvial dependent species, and 38% macrohabitat generalist species. In addition, while the target community was dominated by fish intolerant (37%) and moderately tolerant (39%) of water quality degradation, the existing community was dominated by tolerant individuals (59%) and lacked intolerant species expected in the TFC. Similarity scores for species, habitat use specialization, and water quality degradation tolerance categories were 28%, 35% and 66%, respectively. The clear

  1. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    development of a 105-foot well for off-stream livestock watering at approximately River Mile 12.0 Wildhorse Creek and construction of an engineered stream ford at approximately River Mile 3.0 Mission Creek. A total of $277,848 in financial cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Environmental Protection Agency, U.S. Department of Agriculture, National Oceanic and Atmospheric Administration, U.S. Workforce Investment Act, Oregon Watershed Enhancement Board, Umatilla County and Pheasants Forever for planning efforts and habitat enhancements. Monitoring continued to quantify baseline conditions and the effects of habitat enhancements in the upper basin. Daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 96 existing and three newly established photo points to document habitat recovery and pre-project conditions. Transects were measured at three stream channel cross sections to assist with engineering and design and to obtain baseline data regarding channel morphology. Biological inventories were conducted at River Mile 3.0 Mission Creek to determine pre-project fish utilization above and below the passage barrier. Post-project inventories were also conducted at River Mile 85.0 of the Umatilla River at a project site completed in 1999. Umatilla Subbasin Watershed Assessment efforts were continued under a subcontract with Eco-Pacific. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs. Water Works Consulting, Duck Creek Associates and Ed Salminen Consulting were subcontracted for watershed assessment and restoration planning in the Meacham Creek Subwatershed. A document detailing current

  2. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  3. UV filters bioaccumulation in fish from Iberian river basins.

    Science.gov (United States)

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. Copyright © 2015. Published by Elsevier B.V.

  4. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    Science.gov (United States)

    Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.

  5. Fish ladder of Lajeado Dam: migrations on one-way routes?

    Directory of Open Access Journals (Sweden)

    Angelo Antônio Agostinho

    Full Text Available Fish ladders are generally conceived to reestablish connectivity among critical habitats for migratory species, thus mitigating the impacts of the blockage of migration routes by dams. If this management tool is to be meaningful for conserving fish species, it must provide a fully permeable connection and assure both upward and downward movements. However, because reservoirs have very different hydrodynamics than the original river, it is expected that, at least in the inner area, they may constitute an additional barrier to this movement, especially for descending fish. Thus, the present study sought to determine if migratory fish and their offspring disperse downstream from the dam after ascending a ladder and spawning in the upper reaches of a basin. To achieve this purpose, we evaluated the limitation imposed by lentic areas to the descent of eggs, larvae and adults of migratory species; we also determined the abundance and composition of larvae present in the plankton near the dam, and compared the intensity of the upward and downward movements of adult fish. Samples of ichthyoplankton were taken upriver, inside the reservoir, in the river downstream from the dam, and in the forebay of the Lajeado Dam on the Tocantins River (Luis Eduardo Magalhães Hydroelectric Plant, from October, 1999 through September, 2004. The densities of fish ascending and descending the ladder were determined experimentally on eight occasions, from June, 2004 to March, 2005. Due to difficulties in identifying the true fish origin (up or down in the environments connected by the fish passage system, the evaluation of the distribution of migratory fish in reservoirs was based on the landings of the commercial fishery conducted along the Itaipu Reservoir during the four years preceding (2001 through 2003 the construction of the lateral channel (fish-passage mechanism. Fish eggs and larvae drifting down the Tocantins River did not appear in samples taken in the lower

  6. Columbia River ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anadromous fish species in Columbia River. Vector lines in this data set represent locations of...

  7. CEPF Western Ghats Special Series: Fish fauna of Indrayani River, northern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Neelesh Dahanukar

    2012-01-01

    Full Text Available The freshwater fish fauna of the Indrayani River, a northern tributary of the Krishna River system in the Western Ghats of India was studied. A total of 57 species of freshwater fish belonging to 18 families and 39 genera were recorded. However, based on the previous literature it is possible that the Indrayani River harbours around 67 species. Out of the 57 species in the present collection, 12 are endemic to the Western Ghats while six are endemic to the Krishna River system. Neotropius khavalchor, an endemic fish of the Krishna River system, was recorded for the first time from the northern tributaries. The fish fauna of the Indrayani River is threatened due to seven introduced species and anthropogenic activities such as deforestation leading to siltation, tourism, sand mining, over fishing and organic and inorganic pollution. Since the Indrayani River hosts endemic and threatened species, including Glyptothorax poonaensis, conservation measures to ensure habitat protection in the river are essential.

  8. Fish elevator and method of elevating fish

    Science.gov (United States)

    Truebe, Jonathan; Drooker, Michael S.

    1984-01-01

    A means and method for transporting fish from a lower body of water to a higher body of water. The means comprises a tubular lock with a gated entrance below the level of the lower body of water through which fish may enter the lock and a discharge passage above the level of the upper body of water. The fish raising means in the lock is a crowder pulled upward by a surface float as water from the upper body of water gravitationally flows into the closed lock filling it to the level of the upper body. Water is then pumped into the lock to raise the level to the discharge passage. The crowder is then caused to float upward the remaining distance through the water to the level of the discharge passage by the introduction of air into a pocket on the underside of the crowder. The fish are then automatically discharged from the lock into the discharge passage by the out of water position of the crowder. The movement of the fish into the discharge passage is aided by the continuous overflow of water still being pumped into the lock. A pipe may be connected to the discharge passage to deliver the fish to a selected location in the upper body of water.

  9. Studies on geo-morphology, ecology and fish production of the 92 rivers of Rajshahi Division, Bangladesh

    OpenAIRE

    Rahman, M.K.; Akhter, J.N.; Nima, A.; Ahmed, S.U.; Mazid, M.A.

    2003-01-01

    Geo-morphology, ecology and fish production of the 92 rivers of Rajshahi division have been presented in this paper. Fifteen rivers are dead and 11 rivers have severe erosion problem. Siltation has increased in 66 rivers and depth has decreased in 11 rivers. Sixty nine rivers are suffering from low flow conditions. Fish diversity has decreased in 20 rivers while fish production has declined in 75 rivers. A total of 31 fish species have extinct, 25 species are under threat of extinction and 43...

  10. Reduced Spill at Hydropower Dams: Opportunities for More Generation and Increased Fish Population

    Energy Technology Data Exchange (ETDEWEB)

    Coutant, Charles C [ORNL; Mann, Roger [RMecon, Davis, California; Sale, Michael J [ORNL

    2006-09-01

    This report indicates that reduction of managed spill at hydropower dams can speed implementation of technologies for fish protection and achieve economic goals. Spill of water over spillways is managed in the Columbia River basin to assist downstream-migrating juvenile salmon, and is generally believed to be the most similar to natural migration, benign and effective passage route; other routes include turbines, intake screens with bypasses, and surface bypasses. However, this belief may be misguided, because spill is becoming recognized as less than natural, with deep intakes below normal migration depths, and likely causing physical damages from severe shear on spillways, high turbulence in tail waters, and collisions with baffle blocks that lead to disorientation and predation. Some spillways induce mortalities comparable to turbines. Spill is expensive in lost generation, and controversial. Fish-passage research is leading to more fish-friendly turbines, screens and bypasses that are more effective and less damaging, and surface bypasses that offer passage of more fish per unit water volume than does spill (leaving more water for generation). Analyses by independent economists demonstrated that goals of increased fish survival over the long term and net gain to the economy can be obtained by selectively reducing spill and diverting some of the income from added power generation to research, development, and installation of fish-passage technologies. Such a plan would selectively reduce spill when and where least damaging to fish, increase electricity generation using the water not spilled and use innovative financing to direct monetary gains to improving fish passage.

  11. Optimum Pathways of Fish Spawning Migrations in Rivers

    Science.gov (United States)

    McElroy, B. J.; Jacobson, R. B.; Delonay, A.

    2010-12-01

    Many fish species migrate large distances upstream in rivers to spawn. These migrations require energetic expenditures that are inversely related to fecundity of spawners. Here we present the theory necessary to quantify relative energetic requirements of upstream migration pathways and then test the hypothesis that least-cost paths are taken by the federally endangered pallid sturgeon (Scaphyrhyncus Albus), a benthic rheophile, in the lower Missouri River, USA. Total work done by a fish through a migratory path is proportional to the size of the fish, the total drag on the fish, and the distance traversed. Normalizing by the work required to remain stationary at the beginning of a path, relative work expenditure at each point of the path is found to be the cube of the ratio of the velocity along the path to the velocity at the start of the path. This is the velocity of the fish relative to the river flow. A least-cost migratory pathway can be determined from the velocity field in a reach as the path that minimizes a fish's relative work expenditure. We combine location data from pallid sturgeon implanted with telemetric tags and pressure-sensitive data storage tags with depth and velocity data collected with an acoustic Doppler profiler. During spring 2010 individual sturgeon were closely followed as they migrated up the Missouri River to spawn. These show that, within a small margin, pallid sturgeon in the lower Missouri River select least-cost paths as they swim upstream (typical velocities near 1.0 - 1.2 m/s). Within the range of collected data, it is also seen that many alternative paths not selected for migration are two orders of magnitude more energetically expensive (typical velocities near 2.0 - 2.5 m/s). In general these sturgeon migrated along the inner banks of bends avoiding high velocities in the thalweg, crossing the channel where the thalweg crosses in the opposite direction in order to proceed up the inner bank of subsequent bends. Overall, these

  12. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  13. Smolt Passage Behavior and Flow-Net Relationships in the Forebay of John Day Dam, 1983 [Amended] Annual Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, Albert E.

    1984-04-01

    During 1983, the research program had three separate but complementary phases--monitoring current patterns in the forebay, defining fish distribution with purse seine sampling, and describing the migration routes of salmonid smolts using radio tracking techniques. Preliminary results from the radio-tracking and purse seining operations in FY83 suggest that the discharge from the John Day River and the turbid plume it forms in the forebay may have a pronounced effect on the distribution of smolts, especially chinook and sockeye salmon, as they approach the dam. The implication of these data is that the plume may be shunting salmon toward the Washington (spill) side of the river where they would be more susceptible to spill passage. This resulted in higher spill passage of tagged chinook salmon than the proportion of water being spilled. In contrast, spillway passage of steelhead not influenced by the plume is approximately the same as the proportion of water being spilled. These findings are based on limited data and must be considered preliminary at this time. Data describing the current patterns have just recently been reduced to a usable format and have not yet been correlated with findings from radio tracking and purse seining. Such data will be incorporated into an overall analysis of the relations of current patterns and John Day River discharge to fish migration patterns. Representative examples of prevailing current patterns during the spring migration have been completed and are included in this document.

  14. Columbia River System Operation Review final environmental impact statement. Appendix K: Resident fish

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. In this appendix the Resident Fish Work Group (RFWG) has attempted to characterize and evaluate impacts of dam operation on an extremely complex and diverse integrated resource. Not only is this required under the National Environmental Policy Act (NEPA) for SOR, there are resident fish populations that have status under the Federal Endangered Species Act (ESA) or equivalent state regulations (Kootenai River white sturgeon, Snake River white sturgeon, sandroller, shorthead and torrent sculpins, bull trout, westslope cutthroat trout, redband trout, and burbot). The RFWG has also attempted to develop operating alternatives that benefit not only resident fish, but anadromous fish, wildlife, and other human interests as well. The authors have recognized the co-evolution of resident fish, anadromous fish, and other integrated resources in the basin

  15. Brook trout passage performance through culverts

    Science.gov (United States)

    Goerig, Elsa; Castro-Santos, Theodore R.; Bergeron, Normand

    2016-01-01

    Culverts can restrict access to habitat for stream-dwelling fishes. We used passive integrated transponder telemetry to quantify passage performance of >1000 wild brook trout (Salvelinus fontinalis) attempting to pass 13 culverts in Quebec under a range of hydraulic and environmental conditions. Several variables influenced passage success, including complex interactions between physiology and behavior, hydraulics, and structural characteristics. The probability of successful passage was greater through corrugated metal culverts than through smooth ones, particularly among smaller fish. Trout were also more likely to pass at warmer temperatures, but this effect diminished above 15 °C. Passage was impeded at higher flows, through culverts with steep slopes, and those with deep downstream pools. This study provides insight on factors influencing brook trout capacity to pass culverts as well as a model to estimate passage success under various conditions, with an improved resolution and accuracy over existing approaches. It also presents methods that could be used to investigate passage success of other species, with implications for connectivity of the riverscape.

  16. Factors affecting the recovery of fish populations in an industrial river. [Brown trout

    Energy Technology Data Exchange (ETDEWEB)

    Turnpenny, A W.M.; Williams, R

    1981-01-01

    The river Ebbw Fawr, an industrial river of South-East Wales, was investigated over a three-year period to follow the re-establishment of fish populations as a result of pollution control measures at coal washeries and a steelworks on the river. These measures were effective in reducing levels of toxic materials and restoring dissolved oxygen levels and pH values acceptable for fish. Five freshwater fish species became established in parts of the river during the study period (1974-77). The brown trout Salmo trutta l. was the first to enter, followed by eel Anguilla anguilla l., stoneloach Noemacheilus barbatulus l., stickleback Gasterosteus aculeatus l. and bullhead Cottus gobio l., respectively. The flounder Platicthys flesus l., a euryhaline species, penetrated the river beyond the upper tidal limit. The minnow Phoxinus phoxinus l., a resident of other parts of the Ebbw system, did not recolonise during the study. Calculated toxicities and the results of fish caging tests indicated that water quality was satisfactory for fish populations throughout the river with the possible exception of a short reach immediately below the steelworks. The absence of fish from some upstream reaches with good water quality was due to the limited numbers of fish available for recolonisation and their restricted movements. Good growth and condition factors among the recolonising brown trout stock suggest that a sport fishery could be developed on the river, though constraints on spawning due to residual silt pollution indicate that stocking with hatchery reared fish will be necessary to maintain trout numbers.

  17. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam

    Science.gov (United States)

    Nyqvist, Daniel; Greenberg, L.; Goerig, E.; Calles, O.; Bergman, E.; Ardren, William R.; Castro-Santos, Theodore R.

    2017-01-01

    Passage of fish through hydropower dams is associated with mortality, delay, increased energy expenditure and migratory failure for migrating fish and the need for remedial measures for both upstream and downstream migration is widely recognised. A functional fish passage must ensure safe and timely passage routes that a substantial portion of migrating fish will use. Passage solutions must address not only the number or percentage of fish that successfully pass a barrier, but also the time it takes to pass. Here, we used radiotelemetry to study the functionality of a fish bypass for downstream-migrating wild-caught and hatchery-released Atlantic salmon smolts. We used time-to-event analysis to model the influence of fish characteristics and environmental variables on the rates of a series of events associated with dam passage. Among the modelled events were approach rate to the bypass entry zone, retention rates in both the forebay and the entry zone and passage rates. Despite repeated attempts, only 65% of the tagged fish present in the forebay passed the dam. Fish passed via the bypass (33%), via spill (18%) and via turbines (15%). Discharge was positively related to approach, passage and retention rates. We did not detect any differences between wild and hatchery fish. Even though individual fish visited the forebay and the entry zone on multiple occasions, most fish passed during the first exposures to these zones. This study underscores the importance of timeliness to passage success and the usefulness of time-to-event analysis for understanding factors governing passage performance.

  18. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  19. Synthesis of Sensor Fish Data for Assessment of Fish Passage Conditions at Turbines, Spillways, and Bypass Facilities – Phase 1: The Dalles Dam Spillway Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Serkowski, John A.; Fu, Tao; Carlson, Thomas J.; Richmond, Marshall C.

    2007-12-31

    This report summarizes the characterization of spillway passage conditions at The Dalles Dam in 2006 and the effort to complete a comprehensive database for data sets from The Dalles Dam spillway Sensor Fish and balloon-tagged live fish experiments. Through The Dalles Dam spillway case study, Pacific Northwest National Laboratory (PNNL) researchers evaluated the database as an efficient means for accessing and retrieving system-wide data for the U.S Army Corps of Engineers (USACE).

  20. Optimum swimming pathways of fish spawning migrations in rivers

    Science.gov (United States)

    McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert

    2012-01-01

    Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.

  1. Fish elevator and method of elevating fish

    Energy Technology Data Exchange (ETDEWEB)

    Truebe, J.; Drooker, M.S.

    1984-02-14

    A means and method are disclosed for transporting fish from a lower body of water to a higher body of water. The means comprise a tubular lock with a gated entrance below the level of the lower body of water through which fish may enter the lock and a discharge passage above the level of the upper body of water. The fish raising means in the lock is a crowder pulled upward by a surface float as water from the upper body of water gravitationally flows into the closed lock filling it to the level of the upper body. Water is then pumped into the lock to raise the level to the discharge passage. The crowder is then caused to float upward the remaining distance through the water to the level of the discharge passage by the introduction of air into a pocket on the underside of the crowder. The fish are then automatically discharged from the lock into the discharge passage by the out of water position of the crowder. The movement of the fish into the discharge passage is aided by the continuous overflow of water still being pumped into the lock. A pipe may be connected to the discharge passage to deliver the fish to a selected location in the upper body of water. 6 figs.

  2. Impingement and entrainment of fishes at the Savannah River Plant: an NPDES 316b demonstration

    International Nuclear Information System (INIS)

    McFarlane, R.W.; Frietsche, R.F.; Miracle, R.D.

    1978-02-01

    Environmental impacts of the Savannah River Plant's withdrawal of Savannah River water include impingement of juvenile and adult fish on trash removal screens, and entrainment of planktonic fish eggs and larval fish into the pumping system. The Savannah River Plant (SRP) has the capacity to pump 3.6 million cubic meters of water per day--25% of the minimal river discharge--for cooling and other purposes. Present removal is 7% of the actual river discharge. In the river and intake canals reside sixty-nine species of fishes. The species composition of the resident fish community of the intake canals is similar to the species composition in the river, but different in relative species abundance. The dominant sunfishes tend to reside in the canals for long periods and seldom go from canal to canal. The fish impingement rate at the plant ranks very low in comparison with electric power plants on inland waters. Thirty-five species of fishes were impinged during 1977. The average impingement rate of 7.3 fish per day extrapolates to 2,680 fish per year. No single species comprised more than 10% of the sample. The most commonly impinged species were bluespotted sunfish, warmouth, channel catfish, and yellow perch. The relative abundance of those species impinged deviates from their relative abundance in the canal fish population

  3. Fish pass assessment by remote control: a novel framework for quantifying the hydraulics at fish pass entrances

    Science.gov (United States)

    Kriechbaumer, Thomas; Blackburn, Kim; Gill, Andrew; Breckon, Toby; Everard, Nick; Wright, Ros; Rivas Casado, Monica

    2014-05-01

    Fragmentation of aquatic habitats can lead to the extinction of migratory fish species with severe negative consequences at the ecosystem level and thus opposes the target of good ecological status of rivers defined in the EU Water Framework Directive (WFD). In the UK, the implementation of the EU WFD requires investments in fish pass facilities of estimated 532 million GBP (i.e. 639 million Euros) until 2027 to ensure fish passage at around 3,000 barriers considered critical. Hundreds of passes have been installed in the past. However, monitoring studies of fish passes around the world indicate that on average less than half of the fish attempting to pass such facilities are actually successful. There is a need for frameworks that allow the rapid identification of facilities that are biologically effective and those that require enhancement. Although there are many environmental characteristics that can affect fish passage success, past research suggests that variations in hydrodynamic conditions, reflected in water velocities, velocity gradients and turbulences, are the major cues that fish use to seek migration pathways in rivers. This paper presents the first steps taken in the development of a framework for the rapid field-based quantification of the hydraulic conditions downstream of fish passes and the assessment of the attractivity of fish passes for salmonids and coarse fish in UK rivers. For this purpose, a small-sized remote control platform carrying an acoustic Doppler current profiler (ADCP), a GPS unit, a stereo camera and an inertial measurement unit has been developed. The large amount of data on water velocities and depths measured by the ADCP within relatively short time is used to quantify the spatial and temporal distribution of water velocities. By matching these hydraulic features with known preferences of migratory fish, it is attempted to identify likely migration routes and aggregation areas at barriers as well as hydraulic features that

  4. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  5. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  6. Downstream passage and impact of turbine shutdowns on survival of silver American Eels at five hydroelectric dams on the Shenandoah River

    Science.gov (United States)

    Eyler, Sheila; Welsh, Stuart A.; Smith, David R.; Rockey, Mary

    2016-01-01

    Hydroelectric dams impact the downstream migrations of silver American Eels Anguilla rostrata via migratory delays and turbine mortality. A radiotelemetry study of American Eels was conducted to determine the impacts of five run-of-the-river hydroelectric dams located over a 195-km stretch of the Shenandoah River, Virginia–West Virginia, during fall 2007–summer 2010. Overall, 96 radio-tagged individuals (mean TL = 85.4 cm) migrated downstream past at least one dam during the study. Most American Eels passed dams relatively quickly; over half (57.9%) of the dam passage events occurred within 1 h of reaching a dam, and most (81.3%) occurred within 24 h of reaching the dam. Two-thirds of the dam passage events occurred via spill, and the remaining passage events were through turbines. Migratory delays at dams were shorter and American Eels were more likely to pass via spill over the dam during periods of high river discharge than during low river discharge. The extent of delay in migration did not differ between the passage routes (spill versus turbine). Twenty-eight American Eels suffered turbine-related mortality, which occurred at all five dams. Mortality rates for eels passing through turbines ranged from 15.8% to 40.7% at individual dams. Overall project-specific mortality rates (with all passage routes combined) ranged from 3.0% to 14.3%. To protect downstream-migrating American Eels, nighttime turbine shutdowns (1800–0600 hours) were implemented during September 15–December 15. Fifty percent of all downstream passage events in the study occurred during the turbine shutdown period. Implementation of the seasonal turbine shutdown period reduced cumulative mortality from 63.3% to 37.3% for American Eels passing all five dams. Modifying the turbine shutdown period to encompass more dates in the spring and linking the shutdowns to environmental conditions could provide greater protection to downstream-migrating American Eels.

  7. Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele (Columbia Basin Fish and Wildlife Authority, Fish Passage Center, Portland, OR)

    2001-06-01

    The year 2000 hydrosystem operations illustrated two main points: (1) that the NMFS Biological Opinion on the operations of the Federal Columbia River Power System (FCRPS) fish migration measures could not be met in a slightly below average water year, and; (2) the impacts and relationships of energy deregulation and volatile wholesale energy prices on the ability of the FCRPS to provide the Biological Opinion fish migration measures. In 2000, a slightly below average water year, the flow targets were not met and, when energy ''emergencies'' were declared, salmon protection measures were reduced. The 2000 migration year was a below average runoff volume year with an actual run off volume of 61.1 MAF or 96% of average. This year illustrated the ability of the hydro system to meet the migration protection measures established by the NMFS Biological Opinion. The winter operation of storage reservoirs was based upon inaccurate runoff volume forecasts which predicted a January-July runoff volume forecast at The Dalles of 102 to 105% of average, from January through June. Reservoir flood control drafts during the winter months occurred according to these forecasts. This caused an over-draft of reservoirs that resulted in less volume of water available for fish flow augmentation in the spring and the summer. The season Biological Opinion flow targets for spring and summer migrants at Lower Granite and McNary dams were not met. Several power emergencies were declared by BPA in the summer of 2000. The first in June was caused by loss of resources (WNP2 went off-line). The second and third emergencies were declared in August as a result of power emergencies in California and in the Northwest. The unanticipated effects of energy deregulation, power market volatility and rising wholesale electricity prices, and Californian energy deregulation reduced the ability of the FCRPS to implement fish protection measures. A Spill Plan Agreement was implemented in

  8. Smolt Passage Behavior and Flow-Net Relationships in the Forebay of John Day Dam, 1983 Annual Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, Albert E.

    1984-04-01

    During 1983, the research program had three separate but complementary phases - monitoring current patterns in the forebay, defining fish distribution with purse seine sampling, and describing the migration routes of salmonid smolts using radio tracking techniques. Preliminary results from the radio-tracking and purse seining operations in FY 1983 suggest that the discharge from the John Day River and the turbid plume it forms in the forebay may have a pronounced effect on the distribution of smolts, especially chinook and sockeye salmon, as they approach the dam. The implication of these data is that the plume may be shunting salmon toward the Washington (spill) side of the river where they would be more susceptible to spill passage. This resulted in higher spill passage of tagged chinook salmon than the proportion of water being spilled. In contrast, sillway passage of steelhead not influenced by the plume is approximately the same as the proportion of water being spilled. These findings are based on limited data and must be considered preliminary at this time. Data describing the current patterns have just recently been reduced to a usable format and have not yet been correlated with findings from radio tracking and purse seining. Such data will be icorporated into an overall analysis of the relations of current patterns and John Day River discharge to fish migration patterns. Representative examples of prevailing current patterns during the spring migration have been completed and are included in this document. 10 refs., 14 figs., 6 tabs.

  9. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida

    Science.gov (United States)

    Burgess, O.T.; Pine, William E.; Walsh, S.J.

    2013-01-01

    Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.

  10. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  11. Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

    Science.gov (United States)

    Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa

    2017-01-01

    In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.

  12. Temporary Restoration of Bull Trout Passage at Albeni Falls Dam, 2008 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-03-31

    The goal of this project is to provide temporary upstream passage of bull trout around Albeni Falls Dam on the Pend Oreille River, Idaho. Our specific objectives are to capture fish downstream of Albeni Falls Dam, tag them with combination acoustic and radio transmitters, release them upstream of Albeni Falls Dam, and determine if genetic information on tagged fish can be used to accurately establish where fish are located during the spawning season. In 2007, radio receiving stations were installed at several locations throughout the Pend Oreille River watershed to detect movements of adult bull trout; however, no bull trout were tagged during that year. In 2008, four bull trout were captured downstream of Albeni Falls Dam, implanted with transmitters, and released upstream of the dam at Priest River, Idaho. The most-likely natal tributaries of bull trout assigned using genetic analyses were Grouse Creek (N = 2); a tributary of the Pack River, Lightning Creek (N = 1); and Rattle Creek (N = 1), a tributary of Lightning Creek. All four bull trout migrated upstream from the release site in Priest River, Idaho, were detected at monitoring stations near Dover, Idaho, and were presumed to reside in Lake Pend Oreille from spring until fall 2008. The transmitter of one bull trout with a genetic assignment to Grouse Creek was found in Grouse Creek in October 2008; however, the fish was not found. The bull trout assigned to Rattle Creek was detected in the Clark Fork River downstream from Cabinet Gorge Dam (approximately 13 km from the mouth of Lightning Creek) in September but was not detected entering Lightning Creek. The remaining two bull trout were not detected in 2008 after detection at the Dover receiving stations. This report details the progress by work element in the 2008 statement of work, including data analyses of fish movements, and expands on the information reported in the quarterly Pisces status reports.

  13. Trophic structure and mercury biomagnification in tropical fish assemblages, Iténez River, Bolivia.

    Directory of Open Access Journals (Sweden)

    Marc Pouilly

    Full Text Available We examined mercury concentrations in three fish assemblages to estimate biomagnification rates in the Iténez main river, affected by anthropogenic activities, and two unperturbed rivers from the Iténez basin, Bolivian Amazon. Rivers presented low to moderate water mercury concentrations (from 1.25 ng L(-1 to 2.96 ng L(-1 and natural differences in terms of sediment load. Mercury biomagnification rates were confronted to trophic structure depicted by carbon and nitrogen stable isotopes composition (δ(15N; δ(13C of primary trophic sources, invertebrates and fishes. Results showed a slight fish contamination in the Iténez River compared to the unperturbed rivers, with higher mercury concentrations in piscivore species (0.15 µg g(-1 vs. 0.11 µg g(-1 in the unperturbed rivers and a higher biomagnification rate. Trophic structure analysis showed that the higher biomagnification rate in the Iténez River could not be attributed to a longer food chain. Nevertheless, it revealed for the Iténez River a higher contribution of periphyton to the diet of the primary consumers fish species; and more negative δ(13C values for primary trophic sources, invertebrates and fishes that could indicate a higher contribution of methanotrophic bacteria. These two factors may enhance methylation and methyl mercury transfer in the food web and thus, alternatively or complementarily to the impact of the anthropogenic activities, may explain mercury differences observed in fishes from the Iténez River in comparison to the two other rivers.

  14. Fish response to the annual flooding regime in the Kavango River ...

    African Journals Online (AJOL)

    The results of the first seasonal survey of the fish of the Kavango River floodplain along the Angola/Namibia border are reported. The river experiences peak flooding from February through June, with the 375-km long floodplain extending up to 5 km across. The floodplain was sampled five times in 1992 by seine, fish traps ...

  15. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.

  16. The status of the peripheral blood in fish from radioactively contaminated Techa river

    Energy Technology Data Exchange (ETDEWEB)

    Tryapitsina, G.; Akleyev, A. [Urals Research Center for Radiation Medicine and Chelyabinsk State University (Russian Federation); Shaposhnikova, I.; Andreev, S.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Rudolfsen, G. [Norwegian Radiation Protection Authority and University of Tromsoe (Norway)

    2014-07-01

    Low-level radioactive had been releasing to the Techa River from 1949 to 1956. During that period over 76 million m{sup 3} of waste water was released into the river with total activity of 1.1*10{sup 17} Bq. In 2012 we examined the erythrocytes in peripheral blood of fish (roach, perch, pike), inhabiting different part of the Techa River. Sampling was conducted twice a year (in May and in August) at three stations with various levels of radioactive contamination. Station RT1 in the upper reach, RT2 in the middle reach and RT3 in the lower reach of the river. An average above-background content of {sup 90}Sr in the body of fish inhabiting the Techa River is given in the table. Fish from the nearby Miass River was used as a control group. Blood was taken from the tail vein of live fish. We examined number of nucleated cells in peripheral blood, relative and absolute number of erythrocytes, leukocytes, and thrombocytes, immature and mature forms of blood cells of the erythroid line, leukocytes of different types. At least 1,000 blood cells were analyzed for each fish. The most expressed effects were registered in the analysis of the status of the peripheral blood erythrokaryocytes. In summer period increased proliferative activity of erythroid cell lineage was observed in fish from the Techa river as compared to fish from Miass river: at station RT2 the amount of dividing erythrokaryocytes in the peripheral blood (the sum of the parameters for 3 species of fish) was statistically significantly 1.4 times higher than that in the control; at station RT1 - it was 4 times higher. In the studied species of fish caught at station RT1 in summer period the number of dividing erythrokaryocytes was statistically significantly higher than that in the control populations: in roach - 4 times, in perch - 8 times, in pike - 2 times higher. Increase in the number of proliferating erythroid cells in blood allows for the maintenance of the number of mature erythrocytes in the blood of

  17. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  18. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin.

    Science.gov (United States)

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A

    2012-04-10

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin.

  19. Disentangling multiple pressures on fish assemblages in large rivers.

    Science.gov (United States)

    Zajicek, Petr; Radinger, Johannes; Wolter, Christian

    2018-06-15

    European large rivers are exposed to multiple human pressures and maintained as waterways for inland navigation. However, little is known on the dominance and interactions of multiple pressures in large rivers and in particular inland navigation has been ignored in multi-pressure analyzes so far. We determined the response of ten fish population metrics (FPM, related to densities of diagnostic guilds and biodiversity) to 11 prevailing pressures including navigation intensity at 76 sites in eight European large rivers. Thereby, we aimed to derive indicative FPM for the most influential pressures that can serve for fish-based assessments. Pressures' influences, impacts and interactions were determined for each FPM using bootstrapped regression tree models. Increased flow velocity, navigation intensity and the loss of floodplains had the highest influences on guild densities and biodiversity. Interactions between navigation intensity and loss of floodplains and between navigation intensity and increased flow velocity were most frequent, each affecting 80% of the FPM. Further, increased sedimentation, channelization, organic siltation, the presence of artificial embankments and the presence of barriers had strong influences on at least one FPM. Thereby, each FPM was influenced by up to five pressures. However, some diagnostic FPM could be derived: Species richness, Shannon and Simpson Indices, the Fish Region Index and lithophilic and psammophilic guilds specifically indicate rhithralisation of the potamal region of large rivers. Lithophilic, phytophilic and psammophilic guilds indicate disturbance of shoreline habitats through both (i) wave action induced by passing vessels and (ii) hydromorphological degradation of the river channel that comes along with inland navigation. In European large rivers, inland navigation constitutes a highly influential pressure that adds on top of the prevailing hydromorphological degradation. Therefore, river management has to consider

  20. Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele; Berggren, Thomas J.; Filardo, Margaret (Columbia Basin Fish and Wildlife Authority, Fish Passage Center, Portland, OR)

    2003-09-01

    The runoff volumes in 2002 were near average for the January to July period above Lower Granite Dam (80%) and The Dalles Dam (97%). The year 2002 hydrosystem operations and runoff conditions resulted in flows that were less than the seasonal Biological Opinion (Opinion) flow objectives at Lower Granite Dam for both the spring and summer period. The seasonal flow objectives for Priest Rapids and McNary dams were exceeded for the spring period, but at McNary Dam summer flow objectives were not met. While seasonal flow objectives were exceeded for the spring at McNary Dam, the 2002 season illustrated that Biological Opinion management to seasonal flow targets can result in conditions where a major portion of the juvenile fish migration migrates in conditions that are less than the flow objectives. The delay in runoff due to cool weather conditions and the inability of reservoirs to augment flows by drafting lower than the flood control elevations, resulted in flows less than the Opinion objectives until May 22, 2002. By this time approximately 73% of the yearling chinook and 56% of steelhead had already passed the project. For the most part, spill in 2002 was managed below the gas waiver limits for total dissolved gas levels and the NMFS action criteria for dissolved gas signs were not exceeded. The exception was at Lower Monumental Dam where no Biological Opinion spill occurred due to the need to conduct repairs in the stilling basin. Survival estimates obtained for PIT tagged juveniles were similar in range to those observed prior to 2001. A multi-year analysis of juvenile survival and the factors that affect it was conducted in 2002. A water transit time and flow relation was demonstrated for spring migrating chinook and steelhead of Snake River and Mid Columbia River origin. Returning numbers of adults observed at Bonneville Dam declined for spring chinook, steelhead and coho, while summer and fall chinook numbers increased. However, all numbers were far greater

  1. Kootenai River Resident Fish Assessment, FY2008 KTOI Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holderman, Charles

    2009-06-26

    The overarching goal of project 1994-049-00 is to recover a productive, healthy and biologically diverse Kootenai River ecosystem, with emphasis on native fish species rehabilitation. It is especially designed to aid the recovery of important fish stocks, i.e. white sturgeon, burbot, bull trout, kokanee and several other salmonids important to the Kootenai Tribe of Idaho and regional sport-fisheries. The objectives of the project have been to address factors limiting key fish species within an ecosystem perspective. Major objectives include: establishment of a comprehensive and thorough biomonitoring program, investigate ecosystem--level in-river productivity, test the feasibility of a large-scale Kootenai River nutrient addition experiment (completed), to evaluate and rehabilitate key Kootenai River tributaries important to the health of the lower Kootenai River ecosystem, to provide funding for Canadian implementation of nutrient addition and monitoring in the Kootenai River ecosystem (Kootenay Lake) due to lost system productivity created by construction and operation of Libby Dam, mitigate the cost of monitoring nutrient additions in Arrow Lakes due to lost system productivity created by the Libby-Arrow water swap, provide written summaries of all research and activities of the project, and, hold a yearly workshop to convene with other agencies and institutions to discuss management, research, and monitoring strategies for this project and to provide a forum to coordinate and disseminate data with other projects involved in the Kootenai River basin.

  2. Anadromous fish behaviour important for fish passage

    International Nuclear Information System (INIS)

    Kynard, B.E.

    1993-01-01

    An understanding of the behavior of target fish species is necessary for proper design, location, and operation of a successful upstream or downstream fishway for anadromous migrants. Important fish behaviors are seasonal and daily timing of migration; rheotaxis and near field behavior; stimulus-response behavior; swimming capability; shoaling behavior; response to physical environmental factors such as illumination, sound, water depth, current velocity, and structure; response to chemicals; and response to biological factors such as competition for space and response to predators. The information on migrant fish behavior is reviewed, using examples from the literature on the behavior of eastern anadromous species, particularly Atlantic salmon (Salmo salar) and American shad (Alosa sapidissima). 87 refs

  3. A Survey of Fish Production and Processing Machinery in Rivers ...

    African Journals Online (AJOL)

    Survey of fish production and processing machinery in Port Harcourt City Local Government Area of Rivers State, Nigeria was carried out to evaluate the followings: different machines used for fish production and processing, the most acceptable machine, effect of cost of machinery on the fish farmer, whether gender has ...

  4. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  5. Upper Caraş River (Danube watershed fish populations fragmentation – technical rehabilitation proposal

    Directory of Open Access Journals (Sweden)

    Voicu Răzvan

    2018-01-01

    Full Text Available We propose a technical solution for fish movement based on the flow of water over a spill threshold. Such barriers are common in the Danube system. The proposed system has a range of operating components which are easily detachable from the spill threshold, are resistant to corrosion and will not harm the fish. In fact, if designed to complement swimming abilities of target fish, it should provide adequate passage for both adults and juveniles. If implemented correctly, the design may offer a solution to help displaced fish recolonize upstream habitats.

  6. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    International Nuclear Information System (INIS)

    Skinner, Lawrence C.

    2011-01-01

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: → In the Hudson River, → PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. → Proximity to known PCB sources govern PCB levels and patterns in fish. → PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. → PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. → PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  7. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrence C., E-mail: lxskinne@gw.dec.state.ny.us [New York State Department of Environmental Conservation, 625 Broadway, Albany, NY 12233 (United States)

    2011-10-15

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: > In the Hudson River, > PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. > Proximity to known PCB sources govern PCB levels and patterns in fish. > PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. > PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. > PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  8. Bioaccumulation of methylmercury in fish tissue from the Roosevelt River, Southwestern Amazon basin

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues dos Anjos

    2016-06-01

    Full Text Available Mercury is a major pollutant in the Amazon River system, and its levels in fish and human hair are usually above the limit recommended by health agencies. The objective of this study was to analyze the methylmercury (MeHg concentration in fish tissue from the Roosevelt River. The river's water velocity, depth, pH, temperature, electrical conductivity, dissolved oxygen and substrate type were measured, and fifty specimens distributed in 14 fish species were collected. A total of 64.3% of the sampled species were of the order Characiform and 71.4% of the species were carnivores. Fifty percent of the species had MeHg concentrations above threshold limit (Hg-T 0.5 mg kg-1 established for food by the World Health Organization. Cichla monoculus had the highest value of MeHg (2.45 mg kg-1. The MeHg concentration in fish varied according to dietary habits. The study also found bioaccumulation of MeHg in fish tissue in the following descending order: carnivorous > detritivorous > frugivore. Low significant correlations were found between fish weight or length and MeHg. Further studies on MeHg contamination are recommended in tissues of fish consumed in human riverine communities in the Roosevelt River Basin.

  9. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

    2002-08-30

    This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of

  10. Changes in the fish fauna of the Kissimmee River basin, peninsular Florida: Nonnative additions

    Science.gov (United States)

    Nico, L.G.

    2005-01-01

    Recent decades have seen substantial changes in fish assemblages in rivers of peninsular Florida. The most striking change has involved the addition of nonnative fishes, including taxa from Asia, Africa, and Central and South America. I review recent and historical records of fishes occurring in the Kissimmee River basin (7,800 km2), a low-gradient drainage with 47 extant native fishes (one possibly the result of an early transplant), at least 7 foreign fishes (most of which are widely established), and a stocked hybrid. Kissimmee assemblages include fewer marine fishes than the nearby Peace and Caloosahatchee rivers, and fewer introduced foreign fishes than south Florida canals. Fish assemblages of the Kissimmee and other subtropical Florida rivers are dynamic, due to new introductions, range expansions of nonnative fishes already present, and periodic declines in nonnative fish populations during occasional harsh winters. The addition, dispersal, and abundance of nonnative fishes in the basin is linked to many factors, including habitat disturbance, a subtropical climate, and the fact that the basin is centrally located in a region where drainage boundaries are blurred and introductions of foreign fishes commonplace. The first appearance of foreign fishes in the basin coincided with the complete channelization of the Kissimmee River in the 1970s. Although not a causal factor, artificial waterways connecting the upper lakes and channelization of the Kissimmee River have facilitated dispersal. With one possible exception, there have been no basin-wide losses of native fishes. When assessing change in peninsular Florida waters, extinction or extirpation of fishes appears to be a poor measure of impact. No endemic species are known from peninsular Florida (although some endemic subspecies have been noted). Most native freshwater fishes are themselves descended from recent invaders that reached the peninsula from the main continent. These invasions likely were

  11. High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Yuehua Lin

    2014-03-01

    Full Text Available The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results.

  12. Histologic, immunologic and endocrine biomarkers indicate contaminant effects in fishes of the Ashtabula River.

    Science.gov (United States)

    Iwanowicz, Luke R; Blazer, Vicki S; Hitt, Nathaniel P; McCormick, Stephen D; DeVault, David S; Ottinger, Christopher A

    2012-01-01

    The use of fish as sentinels of aquatic ecosystem health is a biologically relevant approach to environmental monitoring and assessment. We examined the health of the Ashtabula River using histologic, immunologic, and endocrine biomarkers in brown bullhead (BB; Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) and compared fish collected from a reference site (Conneaut Creek). Seasonal analysis was necessary to distinguish differences in fish between the two rivers. Overall BB from the Ashtabula River had a lower condition factor and significantly more macrophage aggregates than those from the reference site. Reduced bactericidal and cytotoxic-cell activity was observed in anterior kidney leukocytes from both BB and largemouth bass from the Ashtabula River. Lower plasma thyroxine and triiodo-L-thyronine in both species in the Ashtabula River indicated disruption of the thyroid axis. Differences in physiological biomarker responses were supported by body burden chemical concentrations when data were analyzed on a seasonal basis. The use of two fish species added a level of rigor that demonstrated biological effects were not exclusive to a single species. The results provide strong evidence that contaminants have affected fish in the Ashtabula River, a Great Lakes Area of Concern, and provide a baseline by which to evaluate remediation activities.

  13. River Rehabilitation for Conservation of Fish Biodiversity in Monsoonal Asia

    Directory of Open Access Journals (Sweden)

    David Dudgeon

    2005-12-01

    Full Text Available Freshwater biodiversity is under threat worldwide, but the intensity of threat in the Oriental biogeographic region of tropical Asia is exceptional. Asia is the most densely populated region on Earth. Many rivers in that region are grossly polluted, and significant portions of their drainage basins and floodplains have been deforested or otherwise degraded. Flow regulation has been practiced for centuries, and thousands of dams have been constructed, with the result that most of the rivers are now dammed, often at several points along their course. Irrigation, hydropower, and flood security are among the perceived benefits. Recent water engineering projects in Asia have been exceptionally aggressive; they include the world's largest and tallest dams in China and a water transfer scheme intended to link India's major rivers. Some of these projects, i.e., those on the Mekong, have international ramifications that have yet to be fully played out. Overexploitation has exacerbated the effects of habitat alterations on riverine biodiversity, particularly that of fishes. Some fishery stocks have collapsed, and many fish and other vertebrate species are threatened with extinction. The pressure from growing impoverished human populations, increasingly concentrated in cities, has forced governments to focus on economic development rather than environmental protection and conservation. Although legislation has been introduced to control water pollution, which is a danger to human health. it is not explicitly intended to protect biodiversity. Where legislation has been enforced, it can be effective against point-source polluters, but it has not significantly reduced the huge quantities of organic pollution from agricultural and domestic sources that contaminate rivers such as the Ganges and Yangtze. River scientists in Asia appear to have had little influence on policy makers or the implementation of water development projects. Human demands from

  14. Environmental factors predicting fish community structure in two neotropical rivers in Brazil

    Directory of Open Access Journals (Sweden)

    Yzel Rondon Súarez

    Full Text Available In order to assess the organization patterns of the fish communities in the Jogui and Iguatemi rivers, we collected fish with gill nets tri-monthly from November 1999 to August 2000. Hypostomus ancistroides and Parauchenipterus galeatus were the most abundant species in the Jogui and Iguatemi rivers, respectively. Longitudinal variation was more important than seasonal in determining the species composition in both rivers, and the difference between seasons was not statistically significant. Altitude was the most important factor determining species distribution.

  15. Hydroacoustic Evaluation of Juvenile Salmonid Passage at The Dalles Dam Spillway, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Khan, Fenton; Skalski, John R.; Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.

    2007-05-24

    The objective of this study was to determine detailed vertical, horizontal, intensive, and diel distributions of juvenile salmonid passage at the spillway at The Dalles Dam from April 12 to July16, 2006. These data are being applied in the Spillway Improvements Program to position release pipes for direct injury and mortality studies and to provide baseline data for assessment of the vortex suppression devices scheduled for deployment in 2007. We estimated fish distributions from hydroacoustic data collected with split-beam transducers arrayed across Bays 1 through 9 and 14. Spill at ~20 kcfs per bay was bulked at Bays 1-6, although the other bays were opened at times during the study to maintain a 40% spill percentage out of total project discharge. The vertical distribution of fish was skewed toward the surface during spring, but during summer, passage peaked at 2-3 m above the spillway ogee. Fish passage rates (number per hour) and fish densities (number per kcfs) were highest at Bay 6, followed by passage at Bay 5. This result comports with spillway horizontal distribution data from radio telemetry and hydroacoustic studies in 2004. The vertical and horizontal distribution of fish passage at bays 5 and 6 was much more variable during spring than summer and more variable at bay 5 than bay 6. Diel distribution data revealed that fish passage was highest during 0600-0700 h in spring; otherwise passage was reasonably uniform on a diel basis. This study substantiates the purpose of the spillway vortex suppression device to re-distribute downstream migrants away from Bay 6 toward Bays 1-5.

  16. Fish Health Study Ashtabula River Natural Resource Damage Assessment

    Science.gov (United States)

    Blazer, V.S.; Iwanowicz, L.R.; Baumann, P.C.

    2006-01-01

    INTRODUCTION The Ashtabula River is located in northeast Ohio, flowing into Lake Erie at Ashtabula, Ohio. Tributaries include Fields Brook, Hubbard Run, Strong Brook, and Ashtabula Creek. The bottom sediments, bank soils and biota of Fields Brook have been severely contaminated by unregulated discharges of hazardous substances. Hazardous substances have migrated downstream from Fields Brook to the Ashtabula River and Harbor, contaminating bottom sediments, fish and wildlife. There are presently more than 1,000,000 cubic yards of contaminated sediment in the Ashtabula River and Harbor, much of which originated from Fields Brook. Contaminants include polychlorinated biphenyls (PCBs), chlorinated benzenes, chlorinated ethenes, hexachlorobutadiene, polyaromatic hydrocarbons (PAHs), other organic chemicals, heavy metals and low level radionuclides. A Preassessment Screen, using existing data, was completed for the Ashtabula River and Harbor on May 18, 2001. Among the findings was that the fish community at Ashtabula contained approximately 45 percent fewer species and 52 percent fewer individuals than the Ohio EPA designated reference area, Conneaut Creek. The Ashtabula River and Conneaut Creek are similar in many respects, with the exception of the presence of contamination at Ashtabula. The difference in the fish communities between the two sites is believed to be at least partially a result of the hazardous substance contamination at Ashtabula. In order to investigate this matter further, the Trustees elected to conduct a study of the status and health of the aquatic biological communities of the Ashtabula River and Conneaut Creek in 2002-2004. The following document contains brief method descriptions (more detail available in attached Appendix A) and a summary of the data used to evaluate the health status of brown bullheads (Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) collected from the above sites.

  17. RESEARCH ON ARGES RIVER FISH FAUNA IN BUDEASA-GOLESTI AREA

    Directory of Open Access Journals (Sweden)

    Alina-Mihaela Truţă

    2015-12-01

    Full Text Available Arges River was subject to periodic ichthyologic, hydrobiological and hydrological research. By its content and approach the present paper shows a series of research on fish fauna in Budeasa-Golesti area of Arges River, Pitesti. By research presented in the study we sought to evaluate the state and evolution of fish fauna in the city reservoirs, Pitesti area, over the last 30 years, trying to highlight the causes that led to the current situation and to propose measures for the conservation of natural fish fauna in the future. Fish fauna in Pitesti area currently consists of 14 species belonging to four families: Cyprinidae (9 species, Cobitidae (1 species, Esocidae (1 species and Percidae (3 species. Most species live naturally in lakes studied except for one species Pseudorasbora parva which was introduced accidentally. The research undertaken to reflect changes in the fish fauna in the last 30 years, indicates an increase in the number of species, either through deliberate stocking for sport fishing purposes or due to changes in biotope favouring the development of certain species which were accidental in the past.

  18. Survival and Passage of Yearling Chinook Salmon and Steelhead at The Dalles Dam, Spring 2011 - FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Hennen, Matthew J.; Zimmerman, Shon A.; Batten, G.; Carpenter, Scott M.; Deng, Zhiqun; Fu, Tao; Hughes, James S.; Martinez, Jayson J.; Ploskey, Gene R.; Royer, Ida M.; Townsend, Richard L.; Woodley, Christa M.; Kim, Jeongkwon; Etherington, D. J.; Skalski, J. R.; Carlson, Thomas J.; Cushing, Aaron W.; Fisher, Erik J.; Greiner, Michael J.; Khan, Fenton; Mitchell, T. D.; Rayamajhi, Bishes; Seaburg, Adam; Weiland, Mark A.

    2012-10-01

    The study reported herein was conducted by the Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The PNNL and UW project managers were Drs. Thomas J. Carlson and John R. Skalski, respectively. The USACE technical lead was Mr. Brad Eppard. The study was designed to estimate dam passage survival and other performance measures at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System Biological Opinion (BiOp) and the 2008 Columbia Basin Fish Accords. The study is being documented in two types of reports: compliance and technical. A compliance report is delivered within 6 months of the completion of the field season and focuses on results of the performance metrics outlined in the 2008 BiOp and Fish Accords. A technical report is produced within the 18 months after field work, providing comprehensive documentation of a given study and results on route-specific survival estimates and fish passage distributions, which are not included in compliance reports. This technical report concerns the 2011 acoustic telemetry study at The Dalles Dam.

  19. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries.

    Science.gov (United States)

    Hinck, Jo Ellen; Blazer, Vicki S; Denslow, Nancy D; Echols, Kathy R; Gross, Timothy S; May, Tom W; Anderson, Patrick J; Coyle, James J; Tillitt, Donald E

    2007-06-01

    Common carp (Cyprinus carpio), black bass (Micropterus spp.), and channel catfish (Ictalurus punctatus) were collected from 14 sites in the Colorado River Basin (CRB) to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8-tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Selenium (Se) and mercury (Hg) concentrations in fish were elevated throughout the CRB, and pesticide concentrations were greatest in fish from agricultural areas in the Lower Colorado River and Gila River. Selenium concentrations exceeded toxicity thresholds for fish (>1.0 microg/g ww) at all CRB sites except the Gila River at Hayden, Arizona. Mercury concentrations were elevated (>0.1 microg/g ww) in fish from the Yampa River at Lay, Colorado; the Green River at Ouray National Wildlife Refuge (NWR), Utah and San Rafael, Utah; the San Juan River at Hogback Diversion, New Mexico; and the Colorado River at Gold Bar Canyon, Utah, Needles, California, and Imperial Dam, Arizona. Concentrations of p,p'-DDE were relatively high in fish from the Gila River at Arlington, Arizona (>1.0 microg/g ww) and Phoenix, Arizona (>0.5 microg/g ww). Concentrations of other formerly used pesticides including toxaphene, total chlordanes, and dieldrin were also greatest at these two sites but did not exceed toxicity thresholds. Currently used pesticides such as Dacthal, endosulfan, gamma-HCH, and methoxychlor were also greatest in fish from the Gila River downstream of Phoenix. Total polychlorinated biphenyls (PCBs; >0.11 microg/g ww) and TCDD-EQs (>5 pg/g ww) exceeded wildlife guidelines in fish from the Gila River at Phoenix. Hepatic ethoxyresorufin O-deethylase (EROD) activity was also relatively high in carp from the Gila River at Phoenix and in bass from the Green River at Ouray NWR. Fish from some sites

  20. Improving fish survival through turbines

    International Nuclear Information System (INIS)

    Ferguson, J.W.

    1993-01-01

    Much of what is known about fish passage through hydroturbines has been developed by studying migratory species of fish passing through large Kaplan turbine units. A review of the literature on previous fish passage research presented in the accompanying story illustrates that studies have focused on determining mortality levels, rather than identifying the causal mechanism involved. There is a need for understanding how turbine designs could be altered to improve fish passage conditions, how to retrofit existing units, and how proposed hydro plant operational changes may affect fish survival. The US Army Corps of Engineers has developed a research program to define biologically based engineering criteria for improving fish passage conditions. Turbine designs incorporating these criteria can be evaluated for their effects on fish survival, engineering issues, costs, and power production. The research program has the following objectives: To gain a thorough knowledge of the mechanisms of fish mortality; To define the biological sensitivities of key fish species to these mechanisms of mortality; To develop new turbine design criteria to reduce fish mortality; To construct prototype turbine designs, and to test these designs for fish passage, hydro-mechanical operation, and power production; and To identify construction and power costs associated with new turbine designs

  1. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  2. Heavy Metal Content in Chilean Fish Related to Habitat Use, Tissue Type and River of Origin.

    Science.gov (United States)

    Copaja, S V; Pérez, C A; Vega-Retter, C; Véliz, D

    2017-12-01

    In this study, we analyze the concentration of ten metals in two freshwater fish-the benthic catfish Trichomycterus areolatus and the limnetic silverside Basilichthys microlepidotus-in order to detect possible accumulation differences related to fish habitat (benthic or pelagic), tissue type (gill, liver and muscle), and the river of origin (four different rivers) in central Chile. The MANOVA performed with all variables and metals, revealed independent effects of fish, tissue and river. In the case of the fish factor, Cu, Cr, Mo and Zn showed statistically higher concentrations in catfish compared with silverside for all tissues and in all rivers (p food sources and respiration.

  3. Magnetic properties of fishes from rivers near Semarang, Central Java

    Science.gov (United States)

    Khumaedi; Nurbaiti, U.; Setyaningsi, N. E.

    2018-03-01

    Magnetic properties, in the form of magnetic susceptibility (χ) and frequency-dependent susceptibility (χ fd) were measured on scores of samples made of fishes from river nearby Semarang, Central Java. Semarang is one of the major cities in Indonesia, where the river systems are very likely to be contaminated by anthropogenic activities. The objective of this study is to identify the presence of heavy metals in the fishes that will determine the suitability of these fishes for healthy food. The results show that magnetic susceptibility varies from -0.3 to 13.8 × 10-8 m3/kg, while the frequency-dependent susceptibility is less than 3% indicating the predominance of ferromagnetic minerals. Quantitative chemical analyses on four samples show consistently high concentration of Ca, while Fe, Hg, Cu, Pb, Cd, and Ni present a few in some of the samples. This finding shows that the fishes are suitable for the ongoing research on environmental magnetism.

  4. Survival and Passage of Yearling and Subyearling Chinook Salmon and Steelhead at The Dalles Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Skalski, J. R.; Carlson, Thomas J.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Fischer, Eric S.; Hughes, James S.; Khan, Fenton; Kim, Jin A.; Townsend, Richard L.

    2011-12-01

    The acoustic telemetry study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The purpose of the study was to estimate dam passage survival and other performance measures for yearling and subyearling Chinook salmon and steelhead at The Dalles Dam as stipulated by the 2008 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS) and 2008 Columbia Basin Fish Accords.

  5. Contaminant-associated health effects in fishes from the Ottawa and Ashtabula Rivers, Ohio

    Science.gov (United States)

    Iwanowicz, Luke R.; Blazer, Vicki S.; Walsh, Heather L.; Shaw, Cassidy H.; DeVault, David S.; Banda, Jo A.

    2018-01-01

    The health of resident fishes serves as a biologically relevant barometer of aquatic ecosystem integrity. Here, the health of the Ottawa River and Ashtabula River (both within the Lake Erie Basin) were assessed using morphological and immunological biomarkers in brown bullheads (Ameiurus nebulosus) and largemouth bass (Micropterus salmoides). Biomarker metrics were compared to fish collected from a reference site (Conneaut Creek). Data utilized for analyses were collected between 2003 and 2011. Fish collected from all three river systems had markedly different contaminant profiles. Total PCBs were the dominant contaminant class by mass. In bullhead, PCBs were highest in fish from the Ashtabula River and there were no differences in fish collected pre- or post-remediation of Ashtabula Harbor (median = 4.6 and 5.5 mg/kg respectively). Excluding PCBs, the Ottawa River was dominated by organochlorine pesticides. Liver tumor prevalence exceeded the 5% trigger level at both the Ashtabula (7.7%) and Ottawa Rivers (10.2%), but was not statistically different than that at the reference site. There was no statistically significant association between microscopic lesions, gross pathology and contaminant body burdens. Collectively, contaminant body burdens were generally negatively correlated with functional immune responses including bactericidal, cytotoxic-cell and respiratory burst activity in both species. Exceptions were positive correlations of HCB and heptachlor epoxide with respiratory burst activity in largemouth bass, and HCB with respiratory burst activity in bullhead and ΣBHC for all three functional assays in bullhead. Data here provide additional support that organochlorine contamination is associated with immunomodulation, and that species differences exist within sites.

  6. Fish passage through hydropower turbines: Simulating blade strike using the discrete element method

    International Nuclear Information System (INIS)

    Richmond, M C; Romero-Gomez, P

    2014-01-01

    Among the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though hydro-turbines two common physical processes can lead to injury and mortality: collisions/blade-strike and rapid decompression. Several methods are currently available to evaluate these stressors in installed turbines, e.g. using live fish or autonomous sensor devices, and in reduced-scale physical models, e.g. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and rapid pressure change by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions-representing fish collisions with turbine components such as blades-are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for unsteady turbulence using detached eddy simulation (DES), as compared to the conventional practice of simulating the system in steady state (which was also done here for comparison). While both schemes yielded comparable bulk hydraulic performance values, transient conditions exhibited an improvement in describing flow temporal and spatial variability. We released streamtraces (in the steady flow solution) and DEM particles (transient solution) at the same locations where sensor fish (SF) were released in previous field studies of the advanced turbine unit. The streamtrace- based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the

  7. Habitat preferences of common native fishes in a tropical river in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Marcus Rodrigues da Costa

    Full Text Available We determined in this study the habitat preferences of seven native fish species in a regulated river in Southeastern Brazil. We tested the hypothesis that fishes differ in habitat preference and that they use stretches of the river differing in hydraulic characteristics and substrate type. We surveyed fishes in four 1-km long river stretches encompassing different habitat traits, where we also measured water depth, velocity, and substrate type. We investigated preference patterns of four Siluriformes (Loricariichthys castaneus, Hoplosternum littorale, Pimelodus maculatus, and Trachelyopterus striatulus and three Characiformes (Astyanax aff. bimaculatus, Oligosarcus hepsetus, and Hoplias malabaricus, representing approximately 70% of the total number of fishes and 64% of the total biomass. We classified fishes into four habitat guilds: (1 a slow-flowing water guild that occupied mud-sand substrate, composed of two Siluriformes in either shallow ( 8 m, L. castaneus waters; (2 a run-dwelling guild that occurs in deep backwaters with clay-mud substrate, composed of the Characiformes A. aff. bimaculatus and O. hepsetus; (3 a run-dwelling guild that occurs in sandy and shallow substrate, composed of T. striatulus; and (4 a fast-flowing guild that occurs primarily along shorelines with shallow mud bottoms, composed of H. malabaricus and P. maculatus. Our hypothesis was confirmed, as different habitat preferences by fishes appear to occur in this regulated river.

  8. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    Science.gov (United States)

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.

  9. Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species.

    Science.gov (United States)

    Ahmad, Habib; Yousafzai, Ali Muhammad; Siraj, Muhammad; Ahmad, Rashid; Ahmad, Israr; Nadeem, Muhammad Shahid; Ahmad, Waqar; Akbar, Nazia; Muhammad, Khushi

    2015-01-01

    The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals including chromium, nickel, copper, zinc, cadmium, and lead were determined through atomic absorption spectrophotometer after tissue digestion by adopting standard procedures. Concentrations of these metals were recorded in muscles and liver of five native fish species, namely, Wallago attu, Aorichthys seenghala, Cyprinus carpio, Labeo dyocheilus, and Ompok bimaculatus. The concentrations of chromium, nickel, copper, zinc, and lead were higher in both of the tissues, whereas the concentration of cadmium was comparatively low. However, the concentration of metals was exceeding the RDA (Recommended Dietary Allowance of USA) limits. Hence, continuous fish consumption may create health problems for the consumers. The results of the present study are alarming and suggest implementing environmental laws and initiation of a biomonitoring program of the river.

  10. Egg deposition by lithophilic-spawning fishes in the Detroit and Saint Clair Rivers, 2005–14

    Science.gov (United States)

    Prichard, Carson G.; Craig, Jaquelyn M.; Roseman, Edward F.; Fischer, Jason L.; Manny, Bruce A.; Kennedy, Gregory W.

    2017-03-14

    A long-term, multiseason, fish egg sampling program conducted annually on the Detroit (2005–14) and Saint Clair (2010–14) Rivers was summarized to identify where productive fish spawning habitat currently exists. Egg mats were placed on the river bottom during the spring and fall at historic spawning areas and candidate fish spawning habitat restoration sites throughout both rivers. Widespread evidence was found of lithophilic spawning by numerous native fish species, including walleye (Sander vitreus), lake whitefish (Coregonus clupeaformis), lake sturgeon (Acipenser fulvescens), suckers (Catostomidae spp.), and trout-perch (Percopsis omiscomaycus). Walleye, lake whitefish, and suckers spp. spawned in nearly every region of each river in all years on both reef and nonreef substrates. Lake sturgeon eggs were collected almost exclusively over constructed reefs. Catch-per-unit effort of walleye, lake whitefish, and sucker eggs was much greater in the Detroit River than in the Saint Clair River, while Saint Clair River sites supported the greatest collections of lake sturgeon eggs. Collections during this study of lake sturgeon eggs on man-made spawning reefs suggest that artificial reefs may be an effective tool for restoring fish populations in the Detroit and Saint Clair Rivers; however, the quick response of lake sturgeon to spawn on newly constructed reefs and the fact that walleye, lake whitefish, and sucker eggs were often collected over substrate with little interstitial space to protect eggs from siltation and predators suggests that lack of suitable spawning habitat may continue to limit reproduction of lithophilic-spawning fish species in the Saint Clair-Detroit River System.

  11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in the Hudson River. Vector polygons in this...

  12. Fishing effort statistics of the artisanal fisheries of the Cross River ...

    African Journals Online (AJOL)

    Frame surveys were carried out in 1997 and 1998 to assess the effort statistics of the artisanal fisheries of the Cross River Estuary. These surveys covered the inner Estuary and the West coast of the outer Estuary. Fishing effort was taken as number of fishers, number of canoes, and types of fishing gears. A total of 64 fishing ...

  13. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  14. Flow seasonality and fish assemblage in a tropical river, French Guiana, South America

    Directory of Open Access Journals (Sweden)

    Francisco Leonardo Tejerina-Garro

    Full Text Available The objective of this study is to verify the existence of a seasonal pattern of variation in the fish assemblages of a tropical river using taxonomic and functional descriptors. Fish were sampled using gillnets at two sites on the Comté River, a large-sized river 254.8 km long, flowing entirely through rainforest areas of French Guiana. Samplings were conducted every other month from August 1998 to July 2000. Four types of fish assemblage descriptors were used: the species descriptor (number of individual fish of each species in the sample; the family descriptor (number of individual fish of each family in the sample; the trophic descriptor (distribution of the fish biomass in each feeding guild and the specific maximum observed size - MOS (number of individual fish in each of four classes of MOS: 300 mm. Results point out that changes in the fish assemblage are related to water level oscillations. The role of migration seems to be weak and is limited to trophic displacements characteristic of few species. In the low-water season, characterized by weak water level oscillation, fish species and families belonging to piscivorous or aquatic invertivorous guilds were predominant, whereas in the high-water season the environment is submitted to strong variations caused by fast and large water level oscillations, and the fish assemblage was characterized by species or families with an opportunistic omnivorous diet.

  15. Design of extended length submerged traveling screen and submerged bar screen fish guidance equipment

    International Nuclear Information System (INIS)

    Bardy, D.; Lindstrom, M.; Fechner, D.

    1991-01-01

    The hydropower projects on the Snake and lower Columbia Rivers in the Pacific Northwest are unique because these rivers are also the spawning grounds for migratory salmon. The salmon swim upstream from the ocean, lay their eggs, and die. The newly hatched fingerlings must then make their way past the hydroelectric dams to the ocean. Two separate bypass systems are needed, one to pass the adult fish going upstream, and one to pass the fingerlings going downstream. This paper addresses the design considerations for two of the components of the downstream migrant fish passage facilities, the extended Submerged Traveling Screen and Submerged Bar Screen

  16. Fish Community Structure and Diet Responses to Newbury Weirs in a Low-Gradient River

    Science.gov (United States)

    Bonjour, Sophia M.; Rantala, Heidi M.; Bennett, Micah G.; Whiles, Matt R.

    2018-06-01

    Restoration projects are often implemented to address specific issues in the environment. Consequences of a restoration project, if any are measured, typically focus on direct changes to the projects focus. However, changing habitat structure likely results in changes to the environment that affect the communities living there. Rock weirs have been used for channel stabilization in many midwestern rivers. Previous research in a southern Illinois river found that weirs benefitted aquatic macroinvertebrate and riparian bird communities by enhancing habitat heterogeneity and insect emergence production. We hypothesized that fishes would also benefit from weirs through enhanced habitat and food availability. We collected fishes in the Cache River in southern Illinois using hand nets, seines, and electroshocking at sites where weirs had been installed and at non-weir sites. Gut contents were identified and individual food items measured. Fish species richness, but not diversity, was higher at weir sites. Fish communities also differed between site types, with benthic feeders characterizing weir sites. Gut content biomass and abundance differed among fish guilds but not between weir and non-weir sites. Fishes from both site types selected for prey taxa predominately found at weirs. Differences between site types were not always captured by univariate metrics, but connecting fish prey to habitat suggests a reach-scale benefit for fishes through increased abundance of favored prey and enhanced prey diversity. Additionally, given the paucity of rocky substrata in the river as a whole, rock weirs enhance fish species richness by providing habitat for less common benthic species.

  17. Fishes and aquatic habitats of the Orinoco River Basin: diversity and conservation.

    Science.gov (United States)

    Lasso, C A; Machado-Allison, A; Taphorn, D C

    2016-07-01

    About 1000 freshwater fishes have been found so far in the Orinoco River Basin of Venezuela and Colombia. This high ichthyological diversity reflects the wide range of landscapes and aquatic ecosystems included in the basin. Mountain streams descend from the high Andes to become rapid-flowing foothill rivers that burst out upon vast savannah flatlands where they slowly make their way to the sea. These white-water rivers are heavily laden with sediments from the geologically young Andes. Because their sediment deposits have formed the richest soils of the basin, they have attracted the highest density of human populations, along with the greatest levels of deforestation, wildfires, agricultural biocides and fertilizers, sewage and all the other impacts associated with urban centres, agriculture and cattle ranching. In the southern portion of the basin, human populations are much smaller, where often the only inhabitants are indigenous peoples. The ancient rocks and sands of the Guiana Shield yield clear and black water streams of very different quality. Here, sediment loads are miniscule, pH is very acid and fish biomass is only a fraction of that observed in the rich Andean tributaries to the north. For each region of the basin, the current state of knowledge about fish diversity is assessed, fish sampling density evaluated, the presence of endemic species and economically important species (for human consumption or ornamental purposes) described and gaps in knowledge are pointed out. Current trends in the fishery for human consumption are analysed, noting that stocks of many species are in steep decline, and that current fishing practices are not sustainable. Finally, the major impacts and threats faced by the fishes and aquatic ecosystems of the Orinoco River Basin are summarized, and the creation of bi-national commissions to promote standardized fishing laws in both countries is recommended. © 2016 The Fisheries Society of the British Isles.

  18. Restoring stream habitat connectivity: a proposed method for prioritizing the removal of resident fish passage barriers.

    Science.gov (United States)

    O'Hanley, Jesse R; Wright, Jed; Diebel, Matthew; Fedora, Mark A; Soucy, Charles L

    2013-08-15

    Systematic methods for prioritizing the repair and removal of fish passage barriers, while growing of late, have hitherto focused almost exclusively on meeting the needs of migratory fish species (e.g., anadromous salmonids). An important but as of yet unaddressed issue is the development of new modeling approaches which are applicable to resident fish species habitat restoration programs. In this paper, we develop a budget constrained optimization model for deciding which barriers to repair or remove in order to maximize habitat availability for stream resident fish. Habitat availability at the local stream reach is determined based on the recently proposed C metric, which accounts for the amount, quality, distance and level of connectivity to different stream habitat types. We assess the computational performance of our model using geospatial barrier and stream data collected from the Pine-Popple Watershed, located in northeast Wisconsin (USA). The optimization model is found to be an efficient and practical decision support tool. Optimal solutions, which are useful in informing basin-wide restoration planning efforts, can be generated on average in only a few minutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Alien fish species in upper Sakarya River and their distribution ...

    African Journals Online (AJOL)

    However, the fact that the flood plains have been reclaimed, excessive hunting, destruction of the ecologic balance and invasion of the area by the alien fish species threatens the fish stocks in Sakarya River. In this study, we aimed to determine the dispersion area of Carassius gibelio (Bloch, 1782), Oreochromis niloticus ...

  20. Spawning and nursery habitats of neotropical fish species in the tributaries of a regulated river

    Science.gov (United States)

    Makrakis, Maristela Cavicchioli; da Silva, Patrícia S.; Makrakis, Sergio; de Lima, Ariane F.; de Assumpção, Lucileine; de Paula, Salete; Miranda, Leandro E.; Dias, João Henrique Pinheiro

    2012-01-01

    This chapter provides information on ontogenetic patterns of neotropical fish species distribution in tributaries (Verde, Pardo, Anhanduí, and Aguapeí rivers) of the Porto Primavera Reservoir, in the heavily dammed Paraná River, Brazil, identifying key spawning and nursery habitats. Samplings were conducted monthly in the main channel of rivers and in marginal lagoons from October through March during three consecutive spawning seasons in 2007-2010. Most species spawn in December especially in Verde River. Main river channels are spawning habitats and marginal lagoons are nursery areas for most fish, mainly for migratory species. The tributaries have high diversity of larvae species: a total of 56 taxa representing 21 families, dominated by Characidae. Sedentary species without parental care are more abundant (45.7%), and many long-distance migratory fish species are present (17.4%). Migrators included Prochilodus lineatus, Rhaphiodon vulpinus, Hemisorubim platyrhynchos, Pimelodus maculatus, Pseudoplatystoma corruscans, Sorubim lima, two threatened migratory species: Salminus brasiliensis and Zungaro jahu, and one endangered migratory species: Brycon orbignyanus. Most of these migratory species are vital to commercial and recreational fishing, and their stocks have decreased drastically in the last decades, attributed to habitat alteration, especially impoundments. The fish ladder at Porto Primavera Dam appears to be playing an important role in re-establishing longitudinal connectivity among critical habitats, allowing ascent to migratory fish species, and thus access to upstream reaches and tributaries. Establishment of Permanent Conservation Units in tributaries can help preserve habitats identified as essential spawning and nursery areas, and can be key to the maintenance and conservation of the fish species in the Paraná River basin.

  1. Distribution of Fish in the Upper Citarum River: an Adaptive Response to Physico-Chemical Properties

    Directory of Open Access Journals (Sweden)

    SUNARDI

    2012-12-01

    Full Text Available Distribution of fish in river is controlled by physico-chemical properties of the water which is affected by land-use complexity and intensity of human intervention. A study on fish distribution was carried out in the upper Citarum River to map the effects of physio-chemical properties on habitat use. A survey was conducted to collect fish and to measure the water quality both on dry and rainy season. The result showed that distribution of the fish, in general, represented their adaptive response to physico-chemical properties. The river environment could be grouped into two categories: (i clean and relatively unpolluted sites, which associated with high DO and water current, and (ii polluted sites characterized by low DO, high COD, BOD, water temperature, NO3, PO4, H2S, NH3, and surfactant. Fish inhabiting the first sites were Xiphophorus helleri, Punctius binotatus, Xiphophorus maculatus, and Oreochromis mossambicus. Meanwhile, the latter sites were inhabited by Liposarcus pardalis, Trichogaster trichopterus, and Poecilia reticulata. Knowledge about fish distribution in association with the pysico-chemical properties of water is crucial especially for the river management.

  2. Bacteriological quality of some fishes and crab from rivers within Imo ...

    African Journals Online (AJOL)

    Aeromonas hydrophila and Vibrio sp. were isolated from healthy fishes. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putrefaciens were isolated from crabs. This study revealed that heavy contamination of water bodies within Imo River basin affects the health of fishes and aquatic ...

  3. Distribution of Fish in the Upper Citarum River: an Adaptive Response to Physico-Chemical Properties

    OpenAIRE

    SUNARDI,; KANIAWATI, KEUKEU; HUSODO, TEGUH; MALINI, DESAK MADE; ASTARI, ANNISA JOVIANI

    2012-01-01

    Distribution of fish in river is controlled by physico-chemical properties of the water which is affected by land-use complexity and intensity of human intervention. A study on fish distribution was carried out in the upper Citarum River to map the effects of physio-chemical properties on habitat use. A survey was conducted to collect fish and to measure the water quality both on dry and rainy season. The result showed that distribution of the fish, in general, represented their adaptive resp...

  4. Current status of non-native fish species in the St. Louis River estuary

    Science.gov (United States)

    The fish community of the St. Louis River estuary is well characterized, thanks to fishery assessment and invasive species early detection monitoring by federal, state, and tribal agencies. This sampling includes long-standing adult/juvenile fish surveys, larval fish surveys beg...

  5. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    Science.gov (United States)

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  6. Wigwam River juvenile bull trout and fish habitat monitoring program : 2001 data report

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.; Bisset, J.E.

    2002-01-01

    The Wigwam River juvenile bull trout and fish habitat monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The Wigwam River has been characterized as the single most important bull trout spawning stream in the Kootenay Region. This report provides a summary of results obtained during the second year (2001) of the juvenile bull trout enumeration and fish habitat assessment program. This project was commissioned in planning for fish habitat protection and forest development within the upper Wigwam River valley. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes in the upper Wigwam River, especially as they relate to spawning and rearing habitat quality. Five permanent sampling sites were established August 2000 in the Wigwam river drainage (one site on Bighorn Creek and four sites on the mainstem Wigwam River). At each site, juvenile (0(sup+), 1(sup+) and 2(sup+) age classes) fish densities and stream habitat conditions were measured over two stream meander wavelengths. Bull trout represented 95.1% of the catch and the mean density of juvenile bull trout was estimated to be 20.7 fish/100m(sup 2) (range 0.9 to 24.0 fish/100m(sup 2)). This compares to 17.2 fish/100m(sup 2) (+20%) for the previous year. Fry (0(sup+)) dominated the catch and this was a direct result of juvenile bull trout ecology and habitat partitioning among life history stages. Site selection was biased towards sample sites which favored high bull trout fry capture success. Comparison of fry density estimates replicated across both the preliminary survey (1997) and the current study (Cope and Morris 2001) illustrate the stable nature of these high densities. Bull trout populations have been shown to be extremely susceptible to habitat degradation and over-harvest and are ecologically

  7. Diet and trophic structure of the fish assemblage in the mid-course of the Teles Pires River, Tapajós River basin, Brazil

    Directory of Open Access Journals (Sweden)

    Eurizângela P. Dary

    2017-12-01

    Full Text Available ABSTRACT This study was carried out in a section of the middle course of the Teles Pires River, a clear water river that drains ancient and highly eroded geological formations, and where five hydropower plants are planned or in construction. In this study we tested the hypothesis that local fish fauna is mainly sustained by autochthonous food resources, with modest changes in the trophic structure of fish assemblages along the hydrometric cycle. Sampling was performed every three months between July 2008 and May 2009 at seven sites distributed along a 50-km section of the river. Piscivores was the most representative group in terms of biomass, abundance and species richness, followed by herbivores, insectivores and omnivores. The trophic structure did not change significantly during the hydrometric cycle, only omnivores showed significant temporal variation in abundance. The main food resources consumed by the ichthyofauna were of autochthonous origin, mainly immature aquatic insects and fish. Eight of 34 species showed temporal variations of the food resources consumed. Our results corroborate the hypothesis that the fish fauna of large, clear water rivers can be sustained by autochthonous resources. This contributes to understanding some determinants of fish production in large Neotropical rivers.

  8. Investigating phenology of larval fishes in St. Louis River estuary shallow water habitats

    Science.gov (United States)

    As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages acro...

  9. River Continuity Restoration and Diadromous Fishes: Much More than an Ecological Issue

    Science.gov (United States)

    Drouineau, H.; Carter, C.; Rambonilaza, M.; Beaufaron, G.; Bouleau, G.; Gassiat, A.; Lambert, P.; le Floch, S.; Tétard, S.; de Oliveira, E.

    2018-04-01

    Ecosystem fragmentation is a serious threat to biodiversity and one of the main challenges in ecosystem restoration. River continuity restoration (RCR) has often targeted diadromous fishes, a group of species supporting strong cultural and economic values and especially sensitive to river fragmentation. Yet it has frequently produced mixed results and diadromous fishes remain at very low levels of abundance. Against this background, this paper presents the main challenges for defining, evaluating and achieving effective RCR. We first identify challenges specific to disciplines. In ecology, there is a need to develop quantitative and mechanistic models to support decision making, accounting for both direct and indirect impacts of river obstacles and working at the river catchment scale. In a context of dwindling abundances and reduced market value, cultural services provided by diadromous fishes are becoming increasingly prominent. Methods for carrying out economic quantification of non-market values of diadromous fishes become ever more urgent. Given current challenges for rivers to meet all needs sustainably, conflicts arise over the legitimate use of water resources for human purposes. Concepts and methods from political science and geography are needed to develop understandings on how the political work of public authorities and stakeholders can influence the legitimacy of restoration projects. Finally, the most exciting challenge is to combine disciplinary outcomes to achieve a multidisciplinary approach to RCR. Accordingly, the co-construction of intermediary objects and diagrams of flows of knowledge among disciplines can be first steps towards new frameworks supporting restoration design and planning.

  10. Checklist of non-indigenous fish species of the River Danube

    Directory of Open Access Journals (Sweden)

    Zorić Katarina

    2014-01-01

    Full Text Available Twenty non-indigenous fish species were recorded in the Danube River. The manner of their introduction, vectors, pathways, as well as invasive status are discussed. The major modes of introduction and translocation were found to be aquaculture and fish stocking. The main environmental consequences of the spread of alien fish are related to changes in the structure and functioning of the fish community and to the introduction of non-indigenous parasites. [Projekat Ministarstva nauke Republike Srbije, br. ON 173025, TR 37009 and III 43002 and European Commission 6th Framework Program: Integrated Project ALARM (contract GOCE-CT-2003-506675

  11. Total Mercury and Methylmercury Contamination in Fish from Sites along the Elbe River

    Directory of Open Access Journals (Sweden)

    P. Maršálek

    2006-01-01

    Full Text Available The aim of the study was to evaluate total mercury Hg and methylmercury MeHg contamination in muscle tissues of fish collected in 2002 from the Labe (Elbe river at sites upstream of Pardubice and downstream of Pardubice and Hřensko, and in 2004 from the Labe river upstream and downstream of the Spolana factory in Neratovice, and from the Vltava river downstream of Lenora. Eighty eight fish of the following species were sampled: bream (Abramis brama L., perch (Perca fluviatilis L., chub (Leuciscus cephalus L. and barbel (Barbus barbus L.. Total mercury content in chub, perch and bream was in the range of 0.05 - 1.96 mg kg-1 w.w., 0. 09 - 1.46 mg kg-1 w.w. and 0.35 - 0.82 mg kg-1 w.w., respectively. Methylmercury content in chub, perch and bream was in the range of 0.04 - 2.11 mg kg-1 w.w., 0.1 - 1.73 mg kg-1 w.w. and 0.371 - 0.650 mg kg-1 w.w., respectively. Significant correlation (p p < 0.05 between THg and MeHg contents were found between individual sites. In 2002, for example, the most contaminated fish were found downstream of Pardubice, followed by fish from upstream of Pardubice and from Hřensko. In 2004, fish from downstream and upstream of the Spolana factory in Neratovice were more contaminated than fish from the Vltava river downstream of Lenora. The methylmercury-tototal mercury ratio in muscle tissue was close to 1.0.

  12. Genetic characterization of fin fish species from the Warri River at ...

    African Journals Online (AJOL)

    SAM

    2014-07-02

    Jul 2, 2014 ... Genetic characterization of fin fish species from the. Warri River at Ubeji, Niger Delta, Nigeria. Asagbra ..... Prochilodus lineatus, Salminus brasiliensis and Steindachneridion scripta) from Uruguay River basin. Brazilian Archives Biol. Tech. 49(4):589-598. Saad YM, Shaden-Hanafi M, Essa MA, Guerges AA ...

  13. Two Dimensional Movement Patterns of Juvenile Winter Run and Late Fall Run Chinook Salmon at the Fremont Weir, Sacramento River, CA

    Science.gov (United States)

    2017-07-01

    all fish from each run. Hotter colors indicate greater probability of use. Contour lines are shown for perspective, and approximate river banks are...releases, additional ADCP surveys were conducted by California DWR. Surveys were not conducted concurrently with fish passage windows to avoid unwanted...the transport water reduces this ion imbalance and reduces stress for the fish (Moyle and Cech 2004). In addition , Stress Coat®, a water conditioner

  14. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  15. Genotoxic effects of water pollution on two fish species living in Karasu River, Erzurum, Turkey.

    Science.gov (United States)

    Yazıcı, Zehra; Sişman, Turgay

    2014-11-01

    Karasu River, which is the only river in the Erzurum plain, is the source of the Euphrates River (Eastern Anatolia of Turkey). The river is in a serious environmental situation as a result of pollution by agricultural and industrial sewage and domestic discharges. The present study aims to evaluate genotoxic effects of toxic metals in chub, Leuciscus cephalus, and transcaucasian barb, Capoeta capoeta, collected from contaminated site of the Karasu River, in comparison with fish from an unpolluted reference site. Heavy metal concentrations in surface water of the river were determined. The condition factor (CF) was taken as a general biomarker of the health of the fish, and genotoxicity assays such as micronucleus (MN) and other nuclear abnormalities (NA) were carried out on the fish species studied. MN and NA such as kidney-shaped nucleus, notched nucleus, binucleated, lobed nucleus, and blebbed nucleus were assessed in peripheral blood erythrocytes, gill epithelial cells, and liver cells of the fish. A significant decrease in CF values associated with a significant elevation in MN and NA frequencies was observed in fish collected from the polluted sites compared with those from the reference site. Results of the current study show the significance of integrating a set of biomarkers to identify the effects of anthropogenic pollution. High concentrations of heavy metals have a potential genotoxic effects, and the toxicity is possibly related to industrial, agricultural, and domestic activities.

  16. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.

  17. Improvement of fish habitat in a Norwegian river channelization scheme

    International Nuclear Information System (INIS)

    Brittain, J.E.; Brabrand, A.; Saltveit, S.J.; Heggenes, J.

    1993-01-01

    Techniques for reducing adverse effects of river and lake regulation are being developed and tested within the framework of the Norwegian Biotope Adjustment Programme. The programme is illustrated by studies of a river flowing through the wetland area, Lesjaleirene, which has been drained and channelized to provide additional agricultural land. The channelized river has a homogeneous sand substrate. Experimental placement of rocks and stones increased brown trout densities, especially in areas in contact with the river banks. The new areas of rocks and stones provide cover for fish as well as a greater variation in depth and flow conditions. (Author)

  18. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  19. Evaluation of swimming capability and potential velocity barrier problems for fish. Part A: Swimming performance of selected warm and cold water fish species relative to fish passage and fishway design

    International Nuclear Information System (INIS)

    Scruton, D. A.; Goosney, R. G.; McKinley, R. S.; Booth, R. K.; Peake, S.

    1998-08-01

    The objective of this study was to provide information about the swimming capability of several widely distributed, economically or recreationally important fish species, for use in mitigating potential velocity barrier problems associated with hydroelectric power facilities. Swimming capability of anadromous and landlocked Atlantic salmon, brook trout, brown trout, lake sturgeon, and walleye, collected from various locations throughout Canada, were investigated to develop criteria for sustained, prolonged, burst swimming performance characteristics of the study species, fish physiology, life history and migration distance on swimming performance. Swimming performance characteristics in the wild, especially the use of physiological telemetry, as well as development of new methodology for the measurement of burst speed was also central to the study. Models were derived to describe swimming capabilities for each study species/life stage in relation to fish length, water velocity, water temperature, and other significant environmental factors. The data will form the basis of guideline development and decision making to improve design and evaluation of fish passage facilities. A series of annotated bibliographies resulting from the study are described in Appendix B. 74 refs., 8 tabs., figs., 2 appendices

  20. Fish assemblages and diversity in three tributaries of the Irrawaddy River in China: changes, threats and conservation perspectives

    Directory of Open Access Journals (Sweden)

    Yang M.-L.

    2016-01-01

    Full Text Available Incompletely known fish assemblages and species diversity are substantial obstacles in fish conservation, particularly when their aquatic habitats are under threat due to rapid human-induced changes. Fish assemblages and diversity in three tributaries of the upper Irrawaddy River in China (the Dulong, Daying and Ruili rivers were examined based on field collections and literature resources. The newly compiled fish assemblage recorded 85 species (in 8 orders, 20 families and 51 genera distributed in the upper Irrawaddy. The fish compositions in the Daying (67 species, 44 genera, 19 families, 7 orders and Ruili rivers (65 species, 44 genera, 19 families, 8 orders were more similar to each other and more speciose than that in the Dulong River (14 species, 10 genera, 4 families, 3 orders. Two indices of taxonomic diversity (the average taxonomic distinctness (Δ+, and the variation in taxonomic distinctness (Λ+ were used to discriminate four collections spanning a ten-year period. A decrease in taxonomic diversity and an increase in unevenness of the fish assemblages were found in both the Daying River and Ruili rivers, which indicated that the impacts were accumulated gradually during this decade, when dams and the spread of non-native species were major threats. Comparatively speaking, the Dulong River is still in a near-natural state, and thus the fish community has experienced less disturbance. In situ conservation (nature reserves and tributary protection and ex situ conservation (artificial propagation and release should be combined and managed to promote fish conservation in the future.

  1. Columbia River basin fish and wildlife program strategy for salmon

    International Nuclear Information System (INIS)

    Ruff, J.; Fazio, J.

    1993-01-01

    Three species of Snake River salmon have been listed as threatened or endangered under the federal Endangered Species Act. In response, the Northwest Power Planning Council worked with the states of Idaho, Montana, Oregon and Washington, Indian tribes, federal agencies and interest groups to address the status of Snake River salmon runs in a forum known as the Salmon Summit. The Summit met in 1990 and 1991 and reached agreement on specific, short-term actions. When the Summit disbanded in April 1991, responsibility for developing a regional recovery plan for salmon shifted to the Council. The Council responded with a four-phased process of amending its Columbia River Basin Fish and Wildlife Program. The first three phases. completed in September 1992, pertain to salmon and steelhead. Phase four, scheduled for completion in October 1993, will take up issues of resident fish and wildlife. This paper deals with the first three phases, collectively known as Strategy for Salmon

  2. Improved intake design for downstream migrating fish at hydropower plants

    International Nuclear Information System (INIS)

    Mih, W.C.

    1991-01-01

    This paper reports on hydroelectric power projects on the Columbia River which provided low-cost electricity to the Pacific Northwest. However, they are detrimental to anadromous fisheries resources. Anadromous fish are migratory. They begin their life in shallow mountain streams. After several months, they migrate to the ocean, where the fish grow to maturity before their return migration. Remarkably, most anadromous fish return to spawn in their natal streams. At dams, the upstream migration of grown salmon and steelhead is accomplished through fishways. The downstream migration of juveniles remains a serious problem. Juvenile fish follow the water flow during their sea-ward migration. When passing through a turbine, fish can be severely injured due to the sudden pressure drop, high velocity shear zones, and rotating turbine blades. Stunned fish that survive the gauntlet of the turbine are easy prey for sea gulls and squawfish in the tailrace of the powerhouse. Fish mortality per turbine passage is estimated at 15 percent. With nine hydropower projected on the main steam of the Columbia River, their combined mortality is very serious. The historical Columbia River anadromous run of about 12 million fish has declined to 2.5 million in recent years. Modern high-output hydraulic turbines are designed to be placed at a lower elevation to minimize cavitation damage to turbine blades. The modern design trend of deep intake submergence has caused parallel and unsteady vortex flow patterns in the forebay, resulting in a decrease in the guiding efficiency of the screens, such as at Bonneville Second Powerhouse and at Rocky Reach Project

  3. Mercury Contamination in an Indicator Fish Species from Andean Amazonian Rivers Affected by Petroleum Extraction.

    Science.gov (United States)

    Webb, Jena; Coomes, Oliver T; Mainville, Nicolas; Mergler, Donna

    2015-09-01

    Elevated mercury (Hg) concentrations in fish from Amazonia have been associated with gold-mining, hydroelectric dams and deforestation but few studies consider the role of petroleum extraction. Hg levels were determined in fish samples collected in three river basins in Ecuador and Peru with contrasting petroleum exploitation and land-use characteristics. The non-migratory, piscivorous species, Hoplias malabaricus, was used as a bioindicator. The rate of Hg increase with body weight for this species was significantly higher on the Corrientes River, near the site of a recent oil spill, than on the other two rivers. In the absence of substantial deforestation and other anthropogenic sources in the Corrientes River basin, this finding suggests that oil contamination in Andean Amazonia may have a significant impact on Hg levels in fish.

  4. Identification And Study Of Fish Species In Karkheh River (Iran

    Directory of Open Access Journals (Sweden)

    Khoshnood Zahra

    2014-10-01

    Full Text Available For the investigation of fish from Karkheh River, sampling was performed in a six month period from August 2014 to January 2015. All sampled fish were measured for biometrical values (length and weight. General results of the sampling and identification of the fish showed the presence of 14 species from four fish families of Cyprinidae, Mugilidae, Siluridae and Macrostomidae, out of which the Cyprinidae family were the most frequent of the sampled fish. The most significant abundance belongs to Cyprinus carpio. The fish sampled in the present study were: Liza abu, Ctenopharyngodon idella, Barbel sp., Cyprinion macrostomum, Barbus sharpeyi, Hypophthalmichthys molitrix, Barbus esocinus, Barbus barbulus, Barbus luteus, Barbus grypus, Cyprinus carpio, Silurus triostegus, Mastacembelus circumcinctus and Capoeta trutta. Shannon Index results showed that the fish biodiversity in the studyed area followed a uniform path and additionally that the considered area at the studied period has good fish biodiversity.

  5. Estimate of throughput of bridge transitions and pipe passages built on minor rivers of piedmont areas of Krasnodar Territory-Russia

    Directory of Open Access Journals (Sweden)

    Bryukhan Fedor

    2018-01-01

    Full Text Available Stability and accident-free operation of engineering road structures including bridge transitions and pipe passages built on mountain rivers mostly depends on a stream regime and lack of obstructions for water flow. Such structures pose a prominent potential hazard being built in piedmont areas of Caucasus Mountains characterized by flash floods and blockage of structures by floating debris, mudflow deposits and wastes of construction. This notwithstanding, the threats caused by these phenomena are poorly studied. The purpose of this study is in estimation of throughput of bridge transitions and pipe passages built on minor rivers of piedmont areas and analysis of hazards caused by floods and obstructions to water flow. The results of calculation of capacities of existing road structures are provided herein. A qualitative assessment of potential emergencies in case of severe flood is also given. A major hazard of possible blockage of waterways that can cause emergency even in regular flood conditions is noted.

  6. Temporary Restoration of Bull Trout Passage at Albeni Falls Dam

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, Mark; Scholz, Allan; McLellan, Holly [Eastern Washington University Department of Biology; Olson, Jason [Kalispel Tribe of Indians Natural Resources Department

    2009-07-13

    This study was designed to monitor movements of bull trout that were provided passage above Albeni Falls Dam, Pend Oreille River. Electrofishing and angling were used to collect bull trout below the dam. Tissue samples were collected from each bull trout and sent to the U. S. Fish and Wildlife Service Abernathy Fish Technology Center Conservation Genetics Lab, Washington. The DNA extracted from tissue samples were compared to a catalog of bull trout population DNA from the Priest River drainage, Lake Pend Oreille tributaries, and the Clark Fork drainage to determine the most probable tributary of origin. A combined acoustic radio or radio tag was implanted in each fish prior to being transported and released above the dam. Bull trout relocated above the dam were able to volitionally migrate into their natal tributary, drop back downstream, or migrate upstream to the next dam. A combination of stationary radio receiving stations and tracking via aircraft, boat, and vehicle were used to monitor the movement of tagged fish to determine if the spawning tributary it selected matched the tributary assigned from the genetic analysis. Seven bull trout were captured during electrofishing surveys in 2008. Of these seven, four were tagged and relocated above the dam. Two were tagged and left below the dam as part of a study monitoring movements below the dam. One was immature and too small at the time of capture to implant a tracking tag. All four fish released above the dam passed by stationary receivers stations leading into Lake Pend Oreille and no fish dropped back below the dam. One of the radio tags was recovered in the tributary corresponding with the results of the genetic test. Another fish was located in the vicinity of its assigned tributary, which was impassable due to low water discharge at its mouth. Two fish have not been located since entering the lake. Of these fish, one was immature and not expected to enter its natal tributary in the fall of 2008. The other

  7. Diet composition and fish consumption of double-crested cormorants from three St. Lawrence River Colonies in 2013

    Science.gov (United States)

    Johnson, James H.; Farquhar, James F.; Mazzocchi, Irene M.; Bendig, Anne

    2014-01-01

    Double-crested Cormorants (Phalacrocorax auritus) were first observed nesting in the upper St. Lawrence River at Strachan Island in 1992. Cormorants now nest at a number of islands in the Thousand Islands section of the river. Griswold, McNair, and Strachan islands are among the largest colonies in the upper river. Until 2011, nest counts had remained relatively stable, ranging from 200 to 603 nests per colony. However, since 2011 the number of nests at McNair Island have exceeded 700 each year. Although the size of cormorant colonies in the upper St. Lawrence River is smaller than those in the eastern basin of Lake Ontario, the close proximity of islands in the upper river that have colonies may cause a cumulative fish consumption effect similar to a larger colony. Because of increasing numbers of Double-crested Cormorants in the upper St. Lawrence River and the possible effects on fish populations, studies were initiated in 1999 to quantify cormorant diet and fish consumption at the three largest colonies. From 1999 to 2012, these studies have shown that cormorants consumed about 128.6 million fish including 37.5 million yellow perch (Perca flavescens), 17.4 million rock bass (Ambloplites rupestris) and 1.0 million smallmouth bass (Micropterus dolemieu) (Johnson et al. 2012). During this same time period fish assessment studies near some of these islands have shown a major decrease in yellow perch populations (Klindt 2007). This occurrence is known as the halo effect and happens when piscivorous birds deplete local fish populations in areas immediately surrounding the colony (Ashmole 1963). This paper describes the diet and fish consumption of cormorants in the upper St. Lawrence River in 2013.

  8. Philosophy of river problems: local to regional, static to mobile

    International Nuclear Information System (INIS)

    Jansky, L.

    1997-01-01

    According to the statistics, thirteen of the twenty-five major river basins in Europe are basins of transboundary rivers. The Danube river basin is largest transboundary river basin in Europe. Almost in each case the local and regional problems arise, like division of fishing rights (or rights on river beds), right to claim tolls on navigation, how to adjust boundaries if the channel moves, or rights to claim duty on crossing the river, or to build bridges, weirs, etc. All the above problems on a larger scale include also rights of non-contiguous lands (i.e. not fronting on the river) to use the river for navigation, for passage of migrating fish, to exploit river (e.g. bed sediments) without damage by one country or society to another below. Similarly, pollution and large-scale removal of water, are problems on regional or national levels. Disputes usually arise from the above, more or less exacerbated by their superimposition or other non-river problems, e.g. religion, politics, historical issues, recent aggression, relative prosperity, expanding economy vs. contrasting economy. May be cause or consequence of many of these. And somewhere here is likely the case of Gabcikovo on Danube between Slovakia and Hungary, as well. (author)

  9. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  10. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    Science.gov (United States)

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  11. Forestry practices and aquatic biodiversity: Fish

    Science.gov (United States)

    Gresswell, Robert E.

    2005-01-01

    In the Pacific Northwest, fish communities are found in a diverse array of aquatic habitats ranging from the large coastal rivers of the temperate rainforests, to the fragmented and sometimes ephemeral streams of the xeric interior basins, and high-elevation streams and lakes in the mountainous areas (Rieman et al. 2003). Only high-elevation lakes and streams isolated above barriers to fish passage remained historically devoid of fish because they were never invaded following Pleistocene glaciation (Smith 1981). Despite this widespread distribution and once great population abundances, taxonomic diversity of fishes in these forested systems is naturally lower than in aquatic habitats in the eastern U.S. (Reeves, Bisson, and Dambacher 1998). Interactions among factors that influence species richness in aquatic systems (e.g., basin size, long-term stability of habitat, and barriers to colonization; Smith 1981) continue to influence the occurrence and persistence of fishes in these systems today. Consequently, the larger low-elevation rivers and estuaries support the greatest variety of fish species. In the high-elevation tributary streams, fish communities are less complex because these aquatic systems were less climatically and geologically stable, and fish populations were smaller and more prone to local extirpation. Furthermore, barriers to fish passage inhibited dispersal and colonization (Smith 1981). Streams in forested landscapes generally support salmon and trout, Oncorhynchus spp., whitefish Prosopium spp., sculpins Cottus spp., suckers Catostomus spp., and minnows (Cyprinidae), but in some of the colder streams, chars (e.g., Salvelinus confluentus and Salvelinus malma) and lampreys (Petromyzontidae)may also occur (Rieman et al. 2003).Although biodiversity defined in terms of fish species richness is low in the Pacific Northwest, intraspecific variability is high, and polytypic fish species are common in the diverse aquatic habitats of the region. For

  12. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2011 - February 2012

    Science.gov (United States)

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.; Hatton, Tyson W.

    2013-01-01

    The movements and dam passage of juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. The purpose of the study was to provide information to aid with decisions about potential alternatives for improving downstream passage conditions for juvenile salmonids in this flood-control reservoir. In 2011, a total of 411 hatchery fish and 26 wild fish were tagged and released during a 3-month period in the spring, and another 356 hatchery fish and 117 wild fish were released during a 3-month period in the fall. A series of 16 autonomous hydrophones throughout the reservoir and 12 hydrophones in a collective system near the dam outlet were used to determine general movements and dam passage of the fish over the life of the acoustic transmitter, which was expected to be about 3 months. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back to the head of the reservoir. Most fish were detected near the temperature control tower at least once. The median time from release near the head of the reservoir to detection within about 100 meters of the dam outlet at the temperature control tower was between 5.7 and 10.8 days, depending on season and fish origin. Dam passage events occurred over a wider range of dates in the spring and summer than in the fall and winter, but dam passage numbers were greatest during the fall and winter. A total of 10.5 percent (43 of 411) of the hatchery fish and 15.4 percent (4 of 26) of the wild fish released in the spring are assumed to have passed the dam, whereas a total of 25.3 percent (90 of 356) of the hatchery fish and 16.9 percent (30 of 117) of the wild fish released in the fall are assumed to have passed the dam. A small number of fish passed the dam after their transmitters had stopped working and were detected at

  13. Long-term trends in the St. Marys River open water fish community

    Science.gov (United States)

    Schaeffer, Jeffrey S.; Fielder, David G.; Godby, Neal; Bowen, Anjanette; O'Connor, Lisa; Parrish, Josh; Greenwood, Susan; Chong, Stephen; Wright, Greg

    2011-01-01

    We examined trends in species composition and abundance of the St. Marys River fish community. Abundance data were available approximately once every six years from 1975 through 2006, and size and age data were available from 1995 through 2006. We also compared survey data in 2006 with results of a concurrent creel survey that year, as well as data from prior surveys spanning a 69 year time frame. The St. Marys River fish community was best characterized as a coolwater fish community with apparent little variation in species composition, and only slight variation in overall fish abundance since 1975. However, we did find recent trends in abundance among target species sought by anglers: centrarchids increased, percids appeared stable, and both northern pike Esox lucius and cisco Coregonus artedii declined. Survey results suggested that walleye (Sander vitreus) and yellow perch (Perca flavescens) experienced moderate exploitation but benefited from recent strong recruitment and faster growth. Mechanisms underlying declines of northern pike and cisco were not clear; reduced abundance could have resulted from high exploitation, variation in recruitment, or a combination of both factors. Despite these challenges, the St. Marys River fish community appears remarkably stable. We suggest that managers insure that creel surveys occur simultaneously with assessments, but periodic gill net surveys may no longer provide adequate data in support of recent, more complex management objectives. While additional surveys would add costs, more frequent data might ensure sustainability of a unique fish community that supports a large proportion of angler effort on Lake Huron.

  14. Ecological risk assessment in a large river-reservoir. 2: Fish community

    International Nuclear Information System (INIS)

    Suter, G.W. II; Barnthouse, L.W.; Efroymson, R.A.; Jager, H.

    1999-01-01

    This paper summarizes the assessment of risks to fishes in the Clinch River Operable Unit due to contaminants released by the US Department of Energy's activities on its Oak Ridge Reservation in Tennessee. This paper focuses on the most contaminated area, the Poplar Creek (PC) embayment. The assessment is of interest because of its use of five distinct lines of evidence: fish community surveys, fish body burdens, toxicity tests of ambient waters, suborganismal bioindicators, and single chemical toxicity tests. None of these lines of evidence provided unambiguous evidence of a significant risk, but the surveys indicated that the fish community in PC was depauperate, polychlorinated biphenyl body burdens may have been at toxic levels in catfish, one of the three tests of ambient water showed clear toxicity, some of the indicators were indicative of toxic effects, and concentrations that have been toxic in the laboratory were detected periodically. Interpretation was further complicated by upstream contamination of both the Clinch River and PC. The risk characterization was performed by evaluating each line of evidence separately and then weighing the evidence using an ecoepidemiological approach

  15. Level of cytogenetic damage and morphological abnormalities in peripheral blood erythrocytes of fish from the Techa river

    Energy Technology Data Exchange (ETDEWEB)

    Tryapitsina, G. [Urals Research Center for Radiation Medicine - URCRM, Chelyabinsk State University (Russian Federation); Shaposhnikova, I. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation); Rudolfsen, G. [Norwegian Radiation Protection Authority - NRPA, and University of Tromsoe (Norway); Obvintseva, N.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Akleyev, A. [Urals Research Center for Radiation Medicine and Chelyabinsk State University (Russian Federation)

    2014-07-01

    Low-level radioactive waste had been releasing to the Techa River from 1949 to 1956. Now it is a suitable water system to study the potential effect of chronic low level exposure of radiation. During that period over 76 million m{sup 3} of waste water was released into the river with total activity of 1.1 *10{sup 17} Bq. In 2012 we examined the erythrocytes in peripheral blood of fish (roach, perch, pike), inhabiting different part of the Techa River (Russia, Chelyabinsk region). Sampling was conducted twice a year (in May during spawning, and in August during feeding) at three stations with various levels of radioactive contamination: Station RT1 in the upper reach of the Techa River, station RT2 in the middle reach and station RT3 in the lower reach of the river. Determination of radionuclide concentrations in water, bottom sediments and fish was performed. An average above-background content of {sup 90}Sr in the body of fish inhabiting the Techa River is given in the table. Fish from the nearby Miass River was used as a control group. Blood was taken from the tail vein of live fish for the preparation of smears for determination of cytogenetic damage levels. 3,000 erythrocytes were analyzed for each fish on microscope Axioskop 50 (Carl Zeiss). Regression analyses found out significant dependency of the frequency of erythrocytes with micronuclei in blood on the burden of {sup 90}Sr in the body of roach in the summer period (F{sub 1,32}=4.6; p=0.04). The given data do not allow excluding the genotoxic influence of radiation on fish. Another important effect is an increase in the frequency of erythrocytes with cell division pathology: with an increase of the burden of {sup 90}Sr in the body, an increase in the frequency of amitoses and the sum of division pathologies are noted in the body. Regression analyses indicated a significant dependency of these parameters on the burden of {sup 90}Sr in the body of fish (for the frequency of amitoses F{sub 1,199}=6.3, p=0

  16. Evaluation of Application Space Expansion for the Sensor Fish

    Energy Technology Data Exchange (ETDEWEB)

    DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-01

    The Pacific Northwest National Laboratory has developed an instrument known as the sensor fish that can be released into downstream passage routes at hydropower facilities to collect data on the physical conditions that a fish might be exposed to during passage through a turbine. The US Department of Energy Wind and Water Power Program sees value in expanding the sensor fish application space beyond large Kaplan turbines in the northwest United States to evaluate conditions to which a greater variety of fish species are exposed. Development of fish-friendly turbines requires an understanding of both physical passage conditions and biological responses to those conditions. Expanding the use of sensor fish into other application spaces will add to the knowledge base of physical passage conditions and could also enhance the use of sensor fish as a site-specific tool in mitigating potential impacts to fish populations from hydropower. The Oak Ridge National Laboratory (ORNL) National Hydropower Assessment Program (NHAAP) database contains hydropower facility characteristics that, along with national fish distribution data, were used to evaluate potential interactions between fish species and project characteristics related to downstream passage issues. ORNL developed rankings for the turbine types in the NHAAP database in terms of their potential to impact fish through injury or mortality during downstream turbine passage. National-scale fish distributions for 31 key migratory species were spatially intersected with hydropower plant locations to identify facilities where turbines with a high threat to fish injury or mortality overlap with the potential range of a sensitive fish species. A dataset was produced that identifies hydropower facilities where deployment of the sensor fish technology might be beneficial in addressing issues related to downstream fish passage. The dataset can be queried to target specific geographic regions, fish species, license expiration

  17. Is motivation important to brook trout passage through culverts?

    Science.gov (United States)

    Goerig, Elsa; Castro-Santos, Theodore R.

    2017-01-01

    Culverts can restrict movement of stream-dwelling fish. Motivation to enter and ascend these structures is an essential precursor for successful passage. However, motivation is challenging to quantify. Here, we use attempt rate to assess motivation of 447 brook trout (Salvelinus fontinalis) entering three culverts under a range of hydraulic, environmental, and biological conditions. A passive integrated transponder system allowed for the identification of passage attempts and success of individual fish. Attempt rate was quantified using time-to-event analysis allowing for time-varying covariates and recurrent events. Attempt rate was greatest during the spawning period, at elevated discharge, at dusk, and for longer fish. It decreased during the day and with increasing number of conspecifics downstream of the culvert. Results also show a positive correlation between elevated motivation and successful passage. This study enhances understanding of factors influencing brook trout motivation to ascend culverts and shows that attempt rate is a dynamic phenomenon, variable over time and among individuals. It also presents methods that could be used to investigate other species’ motivation to pass natural or anthropogenic barriers.

  18. Relationship of fish indices with sampling effort and land use change in a large Mediterranean river.

    Science.gov (United States)

    Almeida, David; Alcaraz-Hernández, Juan Diego; Merciai, Roberto; Benejam, Lluís; García-Berthou, Emili

    2017-12-15

    Fish are invaluable ecological indicators in freshwater ecosystems but have been less used for ecological assessments in large Mediterranean rivers. We evaluated the effects of sampling effort (transect length) on fish metrics, such as species richness and two fish indices (the new European Fish Index EFI+ and a regional index, IBICAT2b), in the mainstem of a large Mediterranean river. For this purpose, we sampled by boat electrofishing five sites each with 10 consecutive transects corresponding to a total length of 20 times the river width (European standard required by the Water Framework Directive) and we also analysed the effect of sampling area on previous surveys. Species accumulation curves and richness extrapolation estimates in general suggested that species richness was reasonably estimated with transect lengths of 10 times the river width or less. The EFI+ index was significantly affected by sampling area, both for our samplings and previous data. Surprisingly, EFI+ values in general decreased with increasing sampling area, despite the higher observed richness, likely because the expected values of metrics were higher. By contrast, the regional fish index was not dependent on sampling area, likely because it does not use a predictive model. Both fish indices, but particularly the EFI+, decreased with less forest cover percentage, even within the smaller disturbance gradient in the river type studied (mainstem of a large Mediterranean river, where environmental pressures are more general). Although the two fish-based indices are very different in terms of their development, methodology, and metrics used, they were significantly correlated and provided a similar assessment of ecological status. Our results reinforce the importance of standardization of sampling methods for bioassessment and suggest that predictive models that use sampling area as a predictor might be more affected by differences in sampling effort than simpler biotic indices. Copyright

  19. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    Science.gov (United States)

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  20. How restructuring river connectivity changes freshwater fish biodiversity and biogeography

    Science.gov (United States)

    Lynch, Heather L.; Grant, Evan H. Campbell; Muneepeerakul, Rachata; Arunachalam, Muthukumarasamy; Rodriguez-Iturbe, Ignacio; Fagan, William F.

    2011-01-01

    Interbasin water transfer projects, in which river connectivity is restructured via man-made canals, are an increasingly popular solution to address the spatial mismatch between supply and demand of fresh water. However, the ecological consequences of such restructuring remain largely unexplored, and there are no general theoretical guidelines from which to derive these expectations. River systems provide excellent opportunities to explore how network connectivity shapes habitat occupancy, community dynamics, and biogeographic patterns. We apply a neutral model (which assumes competitive equivalence among species within a stochastic framework) to an empirically derived river network to explore how proposed changes in network connectivity may impact patterns of freshwater fish biodiversity. Without predicting the responses of individual extant species, we find the addition of canals connecting hydrologically isolated river basins facilitates the spread of common species and increases average local species richness without changing the total species richness of the system. These impacts are sensitive to the parameters controlling the spatial scale of fish dispersal, with increased dispersal affording more opportunities for biotic restructuring at the community and landscape scales. Connections between isolated basins have a much larger effect on local species richness than those connecting reaches within a river basin, even when those within-basin reaches are far apart. As a result, interbasin canal projects have the potential for long-term impacts to continental-scale riverine communities.

  1. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    Science.gov (United States)

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    . Most of the tagged fish that were released in the fish bypass moved downstream and re-entered the river within 12 hours, but 9.8 percent of the Chinook salmon and 15.7 percent of the coho salmon remained in the bypass for 2.5–17.4 days. We developed a set of models for Chinook salmon and coho salmon and used model selection to determine if release site was an important predictor of survival of tagged fish. The models that provided the best fit to the Chinook salmon and coho salmon datasets did not include release site as a covariate. Furthermore, survival estimates for groups of fish from the various release sites were nearly identical for both species. Based on these observations, it appears that passage through the fish bypass did not result in increased mortality relative to groups of fish released downstream of the bypass.Juvenile Chinook salmon migrated downstream faster than juvenile coho salmon and survival for each species varied with release timing. Median travel time from release at Roza Dam to arrival at a detection gate located at river kilometer (rkm) 527.8 on the Columbia River was 15.4 days for Chinook salmon and 37.4 days for coho salmon. Cumulative survival from Roza Dam to the Columbia River detection gate ranged from 0.299 to 0.678 for Chinook salmon, and from 0.321 to 0.627 for coho salmon. Survival was highest for both species when tagged fish were released in mid-April and lowest when tagged fish were released in early-May. Reach-specific survival estimates were standardized to create estimates that described survival per 100 rkm, which showed that survival was very low (less than 0.500) for some release groups, particularly in the Roza, Sunnyside, and Chandler diversion reaches. A more extensive analysis of reach-specific survival is planned for this dataset, which should provide insights into covariates that affected survival during 2016.

  2. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  3. Diversitas Dan Hilangnya Jenis-jenis Ikan Disungai Ciliwung Dan Sungai Cisadane [Study of Fish Diversity and the Lost of Fish Species of River Ciliwung and R. Cisadane

    OpenAIRE

    Hadiaty, Renny Kurnia

    2011-01-01

    The fish research in Indonesian waters has been begun since 16 century ago. Most of the research collected fish around Batavia.Many new species was described and the type specimens deposited at the museums in Europe or America.The study of fish diversity and the lost of fish species was conducted at River Ciliwung and R. Cisadane in 2009. The aim of this study is to describe the recent fish diversity in both river drainages, then make a comparison with the number of species recorded based on ...

  4. The finfish species caught with various fishing gear in Odi River ...

    African Journals Online (AJOL)

    The finfish species caught with various fishing gear in Odi River was studied in the Kolokuma/Opokuma axis of River Nun for six months (November – December 2011 and January, 2012 for dry season and May, June and July 2012 for wet season) to enhance management of its and similar water bodies fishery. Drift gillnet ...

  5. Progress report on fish counting on the Rivers Itchen and Test

    OpenAIRE

    Welton, J.S.

    1982-01-01

    This progress report summarises work on NSHEB Mark 10 fish counters which are installed at Woodmill on the River Itchen and Nurseling Mill and Connegar Bridge on the River Test. Counters are evaluated and salmon behaviour regarding the counters examined. The report includes a a list of equipment needed for the efficient running of the project in the future.

  6. Route-Specific Passage and Survival of Steelhead Kelts at The Dalles and Bonneville Dams, 2012 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rayamajhi, Bishes; Ploskey, Gene R.; Woodley, Christa M.; Weiland, Mark A.; Faber, Derek M.; Kim, Jin A.; Colotelo, Alison HA; Deng, Zhiqun; Fu, Tao

    2013-07-31

    This study was mainly focused on evaluating the route-specific passage and migration success of steelhead kelts passing downstream through The Dalles Dam (TDA) and Bonneville Dam (BON) at Columbia River (CR) river kilometers 309 and 234 respectively. Oregon Department of Fish and Wildlife (ODFW) personnel collected, tagged and released out-migrating steelhead kelts in the tributaries of the Deschutes River, 15 Mile Creek and Hood River between April 14 and June 4, 2012. A PIT tag was injected into each kelt’s dorsal sinus whereas a Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic micro-transmitter was attached to an external FLoy T-bar tag and inserted into the dorsal back musculature using a Floy tagging gun. JSATS cabled arrays were deployed at TDA and BON and autonomous node arrays were deployed near Celilo, Oregon (CR325); the BON forebay (CR236); the BON tailrace (CR233); near Knapp, Washington (CR156); and near Kalama, Washington (CR113) to monitor the kelts movement while passing through the dams and above mentioned river cross-sections.

  7. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A. [Nez Perce Tribe Department of Fisheries Resources Management

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical

  8. Compliance Monitoring of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Ploskey, Gene R.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of yearling and subyearling Chinook salmon and steelhead smolts at John Day Dam during the spring and summer outmigrations in 2012. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 for spring migrants and greater than or equal to 0.93 for summer migrants, estimated with a standard error (SE) less than or equal to 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 3 km downstream of the dam, as well as the forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required in the Columbia Basin Fish Accords (Fish Accords). A virtual/paired-release design was used to estimate dam passage survival at John Day Dam. The approach included releases of smolts, tagged with acoustic micro-transmitters, above John Day Dam that contributed to the formation of a virtual release at the face of John Day Dam. A survival estimate from this release was adjusted by a paired release below John Day Dam. A total of 3376 yearling Chinook salmon, 5726 subyearling Chinook salmon, and 3239 steelhead smolts were used in the virtual releases. Sample sizes for the below-dam paired releases (R2 and R3, respectively) were 997 and 995 for yearling Chinook salmon smolts, 986 and 983 for subyearling Chinook salmon smolts, and 1000 and 1000 for steelhead smolts. The Juvenile Salmon Acoustic Telemetry System (JSATS) tags were manufactured by Advanced Telemetry Systems. Model SS300 tags, weighing 0.304 g in air, were surgically implanted in yearling and subyearling Chinook salmon, and Model SS130 tag, weighing 0.438 g in air, were surgically implanted in juvenile steelhead for this investigation. The intent of the spring study was to estimate dam passage survival during both 30% and 40% spill conditions. The two

  9. Fish assemblage relationships with physical characteristics and presence of dams in three eastern Iowa rivers

    Science.gov (United States)

    Pierce, Clay; Nicholas L. Ahrens,; Anna K. Loan-Wilsey,; Gregory A. Simmons,; Gregory T. Gelwicks,

    2013-01-01

    Fish assemblages in rivers of the Midwestern United States are an important component of the region's natural resources and biodiversity. We characterized the physical environment and presence of dams in a series of reaches in three eastern Iowa rivers tributary to the Mississippi River and related these characteristics to the fish assemblages present. Some physical characteristics were similar among the 12 study reaches, whereas others differed substantially. We found a total of 68 species across the 12 study reaches; 56 in the Turkey River, 51 in the Maquoketa River and 50 in the Wapsipinicon River. Seventeen species could be described as ‘downstream-distributed’; 15 being found only in the lowest reach of one or more rivers and the other two being found only in the lowest reaches or two or more contiguous reaches including the lowest reach. Two species could be described as ‘upstream-distributed’, being found only in an uppermost reach. Non-metric multidimensional scaling ordination illustrated similarities among reaches, and five physical variables were significantly correlated with assemblage similarities. Catchment area and number of dams between reaches and the Mississippi River were strongly correlated with assemblage similarities, but the directions of their effects were opposite. Catchment area and number of dams were confounded. The collective evidence to date suggests that the pervasiveness of dams on rivers significantly alters fish assemblages, making underlying patterns of species change and relationships with naturally varying and human-influenced physical characteristics along a river's course difficult to discern.

  10. Food and feeding habits of four selected fish species in Cross River ...

    African Journals Online (AJOL)

    The food and feeding habits of four fish species: Citharinus latus, Ethmalosa fimbriata, Hepsetus odoe and Trichiurus lepturus, from the Cross River Estuary, Nigeria were investigated. In studying the diets and feeding habits of the fishes, both the frequency of occurrence and numerical methods were used. Results show that ...

  11. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  12. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River, Estuary, and Plume in 2010

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, Geoffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, John R. [Univ. of Washington, Seattle, WA (United States); Deters, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Univ. of Washington, Seattle, WA (United States); Titzler, P. Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, Michael S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trott, Donna M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2011-09-01

    Uncertainty regarding the migratory behavior and survival of juvenile salmonids passing through the lower Columbia River and estuary after negotiating dams on the Federal Columbia River Power System (FCRPS) prompted the development and application of the Juvenile Salmon Acoustic Telemetry System (JSATS). The JSATS has been used to investigate the survival of juvenile salmonid smolts between Bonneville Dam (river kilometer (rkm) 236) and the mouth of the Columbia River annually since 2004. In 2010, a total of 12,214 juvenile salmonids were implanted with both a passive integrated transponder (PIT) and a JSATS acoustic transmitter. Using detection information from JSATS receiver arrays deployed on dams and in the river, estuary, and plume, the survival probability of yearling Chinook salmon and steelhead smolts tagged at John Day Dam was estimated form multiple reaches between rkm 153 and 8.3 during the spring. During summer, the survival probability of subyearling Chinook salmon was estimated for the same reaches. In addition, the influence of routes of passage (e.g., surface spill, deep spill, turbine, juvenile bypass system) through the lower three dams on the Columbia River (John Day, The Dalles, and Bonneville) on juvenile salmonid smolt survival probability from the dams to rkm 153 and then between rkm 153 and 8.3 was examined to increase understanding of the immediate and latent effects of dam passage on juvenile salmon survival. Similar to previous findings, survival probability was relatively high (>0.95) for most groups of juvenile salmonids from the Bonneville Dam tailrace to about rkm 50. Downstream of rkm 50 the survival probability of all species and run types we examined decreased markedly. Steelhead smolts suffered the highest mortality in this lower portion of the Columbia River estuary, with only an estimated 60% of the tagged fish surviving to the mouth of the river. In contrast, yearling and subyearling Chinook salmon smolts survived to the mouth

  13. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Stacey H.

    1994-08-01

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  14. Proceedings of a workshop on American Eel passage technologies

    Science.gov (United States)

    Haro, Alexander J.

    2013-01-01

    Recent concerns regarding a decline in recruitment of American eels (Anguilla rostrata) have prompted efforts to restore this species to historic habitats by providing passage for both upstream migrant juveniles and downstream migrant adults at riverine barriers, including low-head and hydroelectric dams (Castonguay et al. 1994, Haro et al. 2000). These efforts include development of management plans and stock assessment reviews in both the US and Canada (COSEWIC 2006, Canadian Eel Working Group 2009, DFO 2010, MacGregor et al. 2010, ASMFC 2000, ASMFC 2006, ASMFC 2008, Williams and Threader 2007), which target improvement of upstream and downstream passage for eels, as well as identification and prioritization of research needs for development of new and more effective passage technologies for American eels. Traditional upstream fish passage structures, such as fishways and fish lifts, are often ineffective passing juvenile eels, and specialized passage structures for this species are needed. Although designs for such passage structures are available and diverse (Knights and White 1998, Porcher 2002, FAO/DVWK 2002, Solomon and Beach 2004a,b, Environment Agency UK 2011), many biologists, managers, and engineers are unfamiliar with eel pass design and operation, or unaware of the technical options available for upstream eel passage, Better coordination is needed to account for eel passage requirements during restoration efforts for other diadromous fish species. Also, appropriately siting eel passes at hydropower projects is critical, and siting can be difficult and complex due to physical restrictions in access to points of natural concentrations of eels, dynamic hydraulics of tailrace areas, and presence of significant competing flows from turbine outfalls or spill. As a result, some constructed eel passes are sited poorly and may pass only a fraction of the number of eels attempting to pass the barrier. When sited and constructed appropriately, however, eel passes

  15. Assessment of mercury contamination in the Bílina River (Czech Republic using indicator fish

    Directory of Open Access Journals (Sweden)

    Kamila Kružíková

    2012-01-01

    Full Text Available The aim of the study was to determine mercury content in the muscle of indicator fish and to assess mercury pollution along the Bílina River, which is one of the most important tributaries of the Elbe River. A total of eight sites were chosen on the Bílina River for sampling. Indicator fish chub (Leuciscus cephalus L, roach (Rutilus rutilus L. and brown trout (Salmo trutta m. fario L. in the total numbers of 24, 26 and 27, respectively, were sampled at four locations, since at the remaining sites fish were absent. Mercury concentrations in the muscle of sampled indicator fish were measured using cold vapour atomic absorption spectrometry on an AMA 254 analyser. The highest mercury content (0.12 ± 0.027 mg·kg-1 was found in the muscle of roach at the Ústí nad Labem site and the lowest mercury content (0.04 ± 0.008 mg·kg-1 in the muscle of brown trout from the Březenec (the first upstream site site. A significant difference (P -1 and brown trout (0.04 mg·kg-1 at the Březenec site. The priority of this study was to assess the mercury contamination of the Bílina River because this river flows through a heavy industrial activity in the region (especially production of petrochemicals, agrochemicals, sorbents, plasticizers and textile auxiliaries. Despite the fact that the Bílina is an extensively polluted river, the obtained mercury results were very low and did not exceed the limit of 0.5 mg·kg-1 set by Commission Regulation No. 1881/2006.

  16. The Investigation of Heavy Metal Content (Cu, Cd, Pb in Sapu-Sapu Fish (Hypostomus plecostomus in Bengawan Solo River

    Directory of Open Access Journals (Sweden)

    Ristiyana Eko Setyarini

    2016-12-01

    Full Text Available A study had been carried out to investigate heavy metal (Cu, Cd, Pb content in sapu-sapu fish (hypostomus plecostomus in Bengawan Solo river. The type of this research was observational research, with sapu-sapu fish inhabit Bengawan Solo River as the population. The samples were taken with purposive random sampling. Nine sapu-sapu fishes taken from 3 places, i.e.: Nguter Sukoharjo area, Premulung river outlet and Anyar river, 3 fishes from each palce, and then take examined the content of heavy metal. The result of study showed that the average content of Cu: 0.027 mg/100gr, Cd: 0.005 mg/100gr and Pb: 0.042 mg/100gr. Hence, sapu-sapu fish in Be3ngawan Solo had been contaminated with heavy metal (Cu, Cd, and Pb and should not be consumed.

  17. Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison HA [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    In 2012 and 2013, Pacific Northwest National Laboratory conducted a study that summarized the passage proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged-kelts. Kelts were also tagged with Passive Integrated Transponder tags to monitor passage through juvenile bypass systems and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify individual, behavioral, environmental and dam operation variables that were related to passage and survival of steelhead kelts that passed through FCRPS dams. Bayesian model averaging of multivariable logistic regression models was used to identify the environmental, temporal, operational, individual, and behavioral variables that had the highest probability of influencing the route of passage and the route-specific survival probabilities for kelts that passed Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams in 2012 and 2013. The posterior probabilities of the best models for predicting route of passage ranged from 0.106 for traditional spill at LMN to 0.720 for turbine passage at LGS. Generally, the behavior (depth and near-dam searching activity) of kelts in the forebay appeared to have the greatest influence on their route of passage. Shallower-migrating kelts had a higher probability of passing via the weir and deeper-migrating kelts had a higher probability of passing via the JBS and turbines than other routes. Kelts that displayed a higher level of near-dam searching activity had a higher probability of passing via the spillway weir and those that did less near-dam searching had a higher probability of passing via the JBS and

  18. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  19. Population Aspects of Fishes in Geba and Sor Rivers, White Nile System in Ethiopia, East Africa

    Directory of Open Access Journals (Sweden)

    Simagegnew Melaku

    2017-01-01

    Full Text Available This study was carried out to assess the diversity, condition factor, length-weight relationship, and sex ratio of fishes in Geba and Sor Rivers located in Baro-Akobo Basin, White Nile system within Ethiopia. Fish samples were collected in one wet and one dry season. The length-weight relationships were fitted using power equation for the most abundant species. A total of 348 fish specimens were collected using gillnets and hooks. These were identified into eight species and one Garra sp. representing seven genera and four families. Family Cyprinidae was the most dominant with six species (66.7%. Labeobarbus intermedius, Labeobarbus nedgia, and Labeo cylindricus were the most abundant fish species, respectively, with 60.72%, 16.83%, and 14.66% index of relative importance (IRI. The diversity index was higher for Geba River (H′ = 1.50 than for Sor River (H′ = 1.10. All the three most abundant species had negative allometric growth. Seasonal variations in the mean Fulton condition factor (FCF were statistically significant for L. cylindricus (p<0.05. There was variation in the sex ratio with the females dominating in all the three most abundant species. Further investigation into the fish diversity, food, feeding, and reproductive behaviors of fish species especially in the tributaries of these rivers and their socioeconomic aspects is recommended.

  20. The Feeding Behaviour of Fish from the Upper Lake Baikal Watershed of the Eroo River in Mongolia

    Directory of Open Access Journals (Sweden)

    Sudeep Chandra

    2005-06-01

    Full Text Available The upper Selenge watershed in Mongolia is home to some of the world’s unique fish species. In this study we determined the feeding behaviour of selected fish species collected from the main stream of the Eroo River and two of its upstream tributaries, the Sharlan and Bar Chuluut rivers. Using stable isotope (carbon and nitrogen measurements combined with qualitative and literature information, we determined that taimen ( Hucho taimen and pike ( Esox luceus were the top predators in the Eroo River. They received a substantial amount of their energy from other fish species as well as terrestrial derived sources. Percent presence of biota in lenok ( Brachymystax lenok stomachs demonstrated they eat zoobenthos, invertebrates, fish, and terrestrial rodents. Siberian dace ( Leuciscus baicalensis , a small forage fish collected from the Sharlan and Bar Chuluut rivers demonstrate these fish eat periphyton, zoobenthos and terrestrial invertebrates. In the Bar Chuluut tributary, lenok eat a combination of foods including zoobenthos and other fish species, while arctic grayling ( Thymallus arcticus fed primarily on zoobenthos. Percent frequency analysis showed the two game fish species collected from the Bar Chuluut tributary fed primarily on zoobenthos (85 % for lenok and 80 % for grayling, with 28 families and 10 orders represented in their stomachs. Interviews with families suggested local people fish for a variety of species and that there has been a decline in the catch of taimen and sturgeon ( Acipenser baeri baicalensis over time. Since fishing was poor below highly disturbed areas (e.g. mine sites, local people fished above mine locations or in areas least impacted by these anthropogenic impacts.

  1. Using river distance and existing hydrography data can improve the geostatistical estimation of fish tissue mercury at unsampled locations.

    Science.gov (United States)

    Money, Eric S; Sackett, Dana K; Aday, D Derek; Serre, Marc L

    2011-09-15

    Mercury in fish tissue is a major human health concern. Consumption of mercury-contaminated fish poses risks to the general population, including potentially serious developmental defects and neurological damage in young children. Therefore, it is important to accurately identify areas that have the potential for high levels of bioaccumulated mercury. However, due to time and resource constraints, it is difficult to adequately assess fish tissue mercury on a basin wide scale. We hypothesized that, given the nature of fish movement along streams, an analytical approach that takes into account distance traveled along these streams would improve the estimation accuracy for fish tissue mercury in unsampled streams. Therefore, we used a river-based Bayesian Maximum Entropy framework (river-BME) for modern space/time geostatistics to estimate fish tissue mercury at unsampled locations in the Cape Fear and Lumber Basins in eastern North Carolina. We also compared the space/time geostatistical estimation using river-BME to the more traditional Euclidean-based BME approach, with and without the inclusion of a secondary variable. Results showed that this river-based approach reduced the estimation error of fish tissue mercury by more than 13% and that the median estimate of fish tissue mercury exceeded the EPA action level of 0.3 ppm in more than 90% of river miles for the study domain.

  2. The Effects of Run-of-River Hydroelectric Power Schemes on Fish Community Composition in Temperate Streams and Rivers.

    Science.gov (United States)

    Bilotta, Gary S; Burnside, Niall G; Gray, Jeremy C; Orr, Harriet G

    2016-01-01

    The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon-Salmo salar, number of >1 year old Atlantic salmon, number of brown trout-Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (pcomposition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies.

  3. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2002 Data Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.S. [Westslope Fisheries, Cranbrook, BC, Canada

    2003-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Water, Land, and Air Protection (MWLAP), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenay they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MWLAP applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that were undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  4. Ecological interdependences between fish fauna and habitat structures of the Elbe river; Oekologische Zusammenhaenge zwischen Fischgemeinschafts- und Lebensraumstrukturen der Elbe

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, R. [Institut fuer Hydrobiologie und Fischereiwissenschaft - Elbelabor, Universitaet Hamburg, Hamburg (Germany); Buslovich, R.; Gerkens, M. [and others

    2000-07-01

    Fluvial fishes are good indicators of the habitat quality in river systems. However, no quantitative data about the relationships between the ecomorphology of the Elbe River and its fish community were available. Therefore, fish ecological assessments or predictions of the development of the fish populations were not possible. Since March 1997, a project financed by the Federal Ministry of Education, Science, Research and Technology focuses on mathematical modelling of the habitat used of all life history stages of the fish fauna. The results of the project shall support decisions in the framework of changing ecomorphology in the Elbe River. (orig.)

  5. Abundances and Habitat Sensitivities of Some River Fishes in ...

    African Journals Online (AJOL)

    Freshwater fishes from a diverse array of 11 families, some dominated by marine species and others containing only a few species, were collected by electrofishing from 84 locations on small rivers in central Thailand and their abundances related to habitat characteristics. Abundances were largest for Channa gachua, ...

  6. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure

    Science.gov (United States)

    Miranda, Leandro E.

    2016-01-01

    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  7. Timing, frequency and environmental conditions associated with mainstem-tributary movement by a lowland river fish, golden perch (Macquaria ambigua.

    Directory of Open Access Journals (Sweden)

    Wayne M Koster

    Full Text Available Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007-2011. Fish were tagged and released in autumn 2007-2009 in the mid-Murray (n = 42 and lower Goulburn (n = 37 rivers within 3-6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem-tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem-tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers.

  8. Timing, frequency and environmental conditions associated with mainstem-tributary movement by a lowland river fish, golden perch (Macquaria ambigua).

    Science.gov (United States)

    Koster, Wayne M; Dawson, David R; O'Mahony, Damien J; Moloney, Paul D; Crook, David A

    2014-01-01

    Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007-2011). Fish were tagged and released in autumn 2007-2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3-6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem-tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem-tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers.

  9. Timing, Frequency and Environmental Conditions Associated with Mainstem–Tributary Movement by a Lowland River Fish, Golden Perch (Macquaria ambigua)

    Science.gov (United States)

    Koster, Wayne M.; Dawson, David R.; O’Mahony, Damien J.; Moloney, Paul D.; Crook, David A.

    2014-01-01

    Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007–2011). Fish were tagged and released in autumn 2007–2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3–6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem–tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem–tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers. PMID:24788137

  10. Turbine related fish mortality

    International Nuclear Information System (INIS)

    Eicher, G.J.

    1993-01-01

    A literature review was conducted to assess the factors affecting turbine-related fish mortality. The mechanics of fish passage through a turbine is outlined, and various turbine related stresses are described, including pressure and shear effects, hydraulic head, turbine efficiency, and tailwater level. The methodologies used in determining the effects of fish passage are evaluated. The necessity of adequate controls in each test is noted. It is concluded that mortality is the result of several factors such as hardiness of study fish, fish size, concentrations of dissolved gases, and amounts of cavitation. Comparisons between Francis and Kaplan turbines indicate little difference in percent mortality. 27 refs., 5 figs

  11. Polybrominated diphenyl ethers in fish and sediment from river polluted by electronic waste

    Energy Technology Data Exchange (ETDEWEB)

    Luo Qian [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Cai Zongwei [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)]. E-mail: zwcai@hkbu.edu.hk; Wong Minghung [Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)]. E-mail: mhwong@hkbu.edu.hk

    2007-09-20

    The present study investigated contamination of polybrominated diphenyl ethers (PBDEs) in sediment and fish samples collected from rivers in Guiyu, China where electronic waste (e-waste) is recycled and disposed. PBDE congeners with mono-to hepta-brominated and deca-brominated substitutions were detected using {sup 13}C{sub 12} isotope dilution GC/MS/MS and GC/MS methods, respectively. The total PBDE concentrations ranged from 4434 to 16088 ng/g (dry weight) in Nanyang River bank sediment, from 55 to 445 ng/g in Nanyang River bottom sediment and 51.3 to 365 ng/g in Lianjiang River bottom sediment in Guiyu compared with those from 16.1 to 21.4 ng/g in wastewater discharged from a vehicle repairing workshop in Lo Uk Tsuen in Hong Kong. No PBDE congeners were detected in bottom sediment and fish from Mai Po Marshes in Hong Kong. The mean concentrations of total PBDEs in mixed muscles of tilapia (Oreochromis spp) from Lianjiang River were 115 ng/g wet weight (ww) and from wastewater in Hong Kong were 4.1 ng/g ww. Highest mean PBDE concentration was obtained in liver (2687 ng/g ww), followed by abdomen muscle (1088 ng/g ww) of bighead carp (Aristichthys nobilis) collected from Nanyang River. A significant correlation of concentration of each PBDE congener between sediment and muscle from Guiyu was observed. The present results of total PBDEs in sediment and fish were 10 and 1000 times higher than other studies. Open burning and dumping of e-waste are the major causes of PBDE contamination.

  12. Snake River sockeye salmon (Oncorhynchus nerka) habitat/limnologic research

    International Nuclear Information System (INIS)

    Spaulding, S.

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock

  13. Monitoring of fish species in the Lamone river: distribution and morphometric measures of the populations

    Directory of Open Access Journals (Sweden)

    Riccardo Bozzi

    2010-01-01

    Full Text Available Fish samplings were carried out monthly from spring to autumn during 2008, on the Lamone river and the Campigno stream by an electrofishing, in order to verify the presence of fish populations and the most common species represented. Barb, Barbus plebejus, Blageon, Leuciscus muticellus, Chub, Leuciscus cephalus, South European Nase, Chondrostoma genei were identified. A small population of Brown trout, Salmo trutta fario was also recognized. Barb is the most represented species in all the sites. The samplings highlight that Lamone river presented conditions suitable to fully guarantee the life of the fish populations.

  14. Assessment of Heavy Metals in the Fish Collected from the River Ravi, Pakistan

    Directory of Open Access Journals (Sweden)

    Ghazala Jabeen*, Muhammad Javed and Hamda Azmat

    2012-01-01

    Full Text Available The toxicity of heavy metals viz. aluminium (Al, arsenic (As, barium (Ba, chromium (Cr, nickel (Ni and zinc (Zn in fish at three main public fishing sites of the river Ravi viz. Shahdara bridge, Baloki headworks and Sidhnai barrage has been studied from June, 2009 to May, 2010. The concentrations of heavy metals in the body organs (gills, liver, kidney, intestine, reproductive organs, skin, muscle, fins, scales, bones, fats of three fish species viz. Catla catla, Labeo rohita and Cirrhina mrigala were determined. The present results reveal that the toxicity of metals fluctuated significantly in fish at all the three sampling stations with season. The fish samples collected from all the three sampling stations had significantly higher aluminium and zinc. However, the fish at Sidhnai barrage showed significantly lower metallic toxicity, followed by that at Baloki headworks and Shahdara bridge. Significantly higher metals were observed in fish liver, followed by that of kidney, gills, intestine, reproductive organs, skin, scales, fins, bones, muscle and fats. The accumulation of metals in carnivorous fish body organs showed significantly direct dependence on the metallic toxicity of herbivorous cyprinids. Fish liver and kidney showed significantly higher abilities for the accumulation of all metals while accumulations were lowest in fish muscle and fats. The health status of river Ravi at three main public fishing sites viz. Shahdara bridge, Baloki headworks and Sidhnai barrage, with respect to eco-toxicity of Al, As, Ba, Cr, Ni and Zn was above the recommended permissible standards.

  15. Wide reproductive period of a long-distance migratory fish in a subtropical river, Brazil

    Directory of Open Access Journals (Sweden)

    Evoy Zaniboni-Filho

    2017-03-01

    Full Text Available ABSTRACT Salminus brasiliensis is a potamodromous fish species that occurs in southern South American rivers. In spite of its ecological and economic relevance, information regarding the reproductive biology of S. brasiliensis is still scarce. This study used data from 18 years of continuous sampling in the Upper Uruguay River Basin, analyzing 718 adult fish (307 males, 243 females, 168 undefined captured at different months of the year. The results showed that the reproductive timing for S. brasiliensis is wide in the Upper Uruguay River, with the occurrence of mature fish between the month of August and March and spawned individuals between July and May of the next year. These results were sustained by the increase of gonadal somatic relationship (GSR from August. The reproductive timing of S. brasiliensis in the Upper Uruguay River may start between the middle winter and early spring (from late July to late September, and may extend until the late summer and middle fall (from the middle February to early May. These findings contribute to information on the general biology of S. brasiliensis and provide valuable knowledge to management programs and to conservation efforts of this fisheries resource.

  16. Assessing Potential Conservation and Restoration Areas of Freshwater Fish Fauna in the Indian River Basins.

    Science.gov (United States)

    Bhatt, Jay P; Manish, Kumar; Mehta, Rajender; Pandit, Maharaj K

    2016-05-01

    Conservation efforts globally are skewed toward terrestrial ecosystems. To date, conservation of aquatic ecosystems, in particular fish fauna, is largely neglected. We provide a country-wide assessment of Indian river ecosystems in order to identify and prioritize areas for protection and restoration of freshwater fish fauna. Using various biodiversity and anthropogenic attributes, coupled with tools of ecological modeling, we delineated areas for fish fauna conservation and restoration in the 20 major river basins of India. To do this, we used prioritization analyses and reserve selection algorithms to derive conservation value index (CVI) and vulnerability index (VI) of the river basins. CVI was estimated using endemicity, rarity, conservation value, and taxonomic singularity, while VI was estimated using a disturbance index derived from percent geographic area of the basin under human settlements, human population density, predominant land use, and total number of exotic fish species in each basin. The two indices, CVI and VI, were converted into geo-referenced maps, and each map was super-imposed onto species richness and forest cover maps, respectively. After superimposition, areas with high CVI and low VI shade intensities were delineated for conservation, while areas with high CVI and high VI shade intensities were demarcated for restoration. In view of the importance of freshwater fish for human livelihoods and consumption, and ecosystems of India's rivers, we call for urgent attention to the conservation of their fish fauna along with restoration of their degraded habitats.

  17. Evaluation of the behavior and movement patterns of adult coho salmon and steelhead in the North Fork Toutle River, Washington, 2005-2009

    Science.gov (United States)

    Liedtke, Theresa L.; Kock, Tobias J.; Rondorf, Dennis W.

    2013-01-01

    The 1980 eruption of Mount St. Helens severely affected the North Fork Toutle River (hereafter Toutle River), Washington, and threatened anadromous salmon (Oncorhynchus spp.) populations in the basin. The Toutle River was further affected in 1989 when a sediment retention structure (SRS) was constructed to trap sediments in the upper basin. The SRS completely blocked upstream volitional passage, so a fish collection facility (FCF) was constructed to trap adult coho salmon (O. kisutch) and steelhead (O. mykiss) so they could be transported upstream of the SRS. The Washington Department of Fish and Wildlife (WDFW) has operated a trap-and-haul program since 1989 to transport coho salmon and steelhead into tributaries of the Toutle River, upstream of the SRS. Although this program has allowed wild coho salmon and steelhead populations to persist in the Toutle River basin, the trap-andhaul program has faced many challenges that may be limiting the effectiveness of the program. We conducted a multi-year evaluation during 2005–2009 to monitor tagged fish in the upper Toutle River to provide information on the movements and behavior of adult coho salmon and steelhead, and to evaluate the efficacy of the FCF. Radio-tagged coho salmon and steelhead were released: (1) in Toutle River tributaries to evaluate the behavior and movements of fish released as part of the trap-and-haul program; (2) between the FCF and SRS to determine if volitional upstream passage through the SRS spillway was possible; (3) in the sediment plain upstream of the SRS to determine if volitional passage through the sediment plain was possible; and (4) downstream of the FCF to evaluate the efficacy of the structure. We also deployed an acoustic camera in the FCF to monitor fish movements near the entrance to the FCF, and in the fish holding vault where coho salmon and steelhead are trapped. A total of 20 radio-tagged coho salmon and 10 radio-tagged steelhead were released into Alder and Hoffstadt

  18. Longitudinal patterns of fish assemblages, aquatic habitat, and water temperature in the Lower Crooked River, Oregon

    Science.gov (United States)

    Torgersen, Christian E.; Hockman-Wert, David P.; Bateman, Douglas S.; Leer, David W.; Gresswell, Robert E.

    2007-01-01

    The Lower Crooked River is a remarkable groundwater-fed stream flowing through vertical basalt canyons in the Deschutes River Valley ecoregion in central Oregon (Pater and others, 1998). The 9-mile section of the river between the Crooked River National Grasslands boundary near Ogden Wayside and river mile (RM) 8 is protected under the National Wild and Scenic Rivers Act (16 U.S.C. 1271-1287) for its outstandingly remarkable scenic, recreational, geologic, hydrologic, wildlife, and botanical values (ORVs), and significant fishery and cultural values. Groundwater springs flow directly out of the canyon walls into the Lower Crooked River and create a unique hydrologic setting for native coldwater fish, such as inland Columbia Basin redband trout (Oncorhynchus mykiss gairdneri). To protect and enhance the ORVs that are the basis for the wild and scenic designation, the Bureau of Land Management (BLM) has identified the need to evaluate, among other conditions, fish presence and habitat use of the Lower Crooked River. The results of this and other studies will provide a scientific basis for communication and cooperation between the BLM, Oregon Water Resources Department, Oregon Department of Fish and Wildlife (ODFW) and all water users within the basin. These biological studies initiated by the BLM in the region reflect a growing national awareness of the impacts of agricultural and municipal water use on the integrity of freshwater ecosystems.

  19. Landscape-scale food webs of fish nursery habitat along a river-coast mixing zone

    Science.gov (United States)

    We used carbon and nitrogen stable isotope analysis to study connections between allochthonous energy use and ecological connectivity of fish larvae in a complex coastal mosaic. We quantified fish larvae support by autochthonous and allochthonous material in three coastal river-w...

  20. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2012-03-01

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is

  1. Mussel Spat Ropes Assist Redfin Bully Gobiomorphus huttoni Passage through Experimental Culverts with Velocity Barriers

    Directory of Open Access Journals (Sweden)

    Jonathan D. Tonkin

    2012-09-01

    Full Text Available The application of mussel spat rope for enabling the passage of redfin bully Gobiomorphus huttoni through culverts, which create velocity barriers, was trialled in the laboratory. No fish were able to access the un-roped control pipes whereas 52% successfully negotiated the pipes in the rope treatments. The success of fish ascending treatment pipes suggests mussel spat rope may be effective for enabling the passage of this and other similar fish species through otherwise impassable culverts with velocity barriers.

  2. Radiocesium cumulation in selected fishes in the Czechoslovak stretch of the Danube river

    International Nuclear Information System (INIS)

    Cipakova, A.; Mitro, A.; Smidt, I.; Wirdzek, S.

    1987-01-01

    The contents were measured of 137 Cs and 134 Cs in the bodies, scales, viscera and gonades of different species of fish caught in the river Danube in September 1986. The highest specific activity of the two radionuclides in the edible parts of the fishes was found in Esox lucius, namely 71.9 Bq.kg -1 and 31.8 Bq.kg -1 , respectively. The lowest values were measured in Chondrostoma nasus, i.e., 24.5 and 11.2 Bq.kg -1 , and Barbus barbus 18.8 and 7.9 Bq.kg -1 . Also calculated were transfer coefficients. Presented and compared are the values of specific activity of the two radionuclides in the individual organs of the caught fish and the dose commitment for the individual body organs of persons consuming the fish caught in the Danube river in the years 1978 and 1986. As compared with 1978, the 137 Cs specific activity in the body organs of the fishes increased by two orders of magnitude, dose commitment of human organs from consumption of these fishes also increased. However, the said increased values are still 5 order of magnitude lower than is the annual limit set by Czechoslovak standards. (J.B.). 5 tabs., 7 refs

  3. Selenium: Mercury Molar Ratios in Freshwater Fish in the Columbia River Basin: Potential Applications for Specific Fish Consumption Advisories.

    Science.gov (United States)

    Cusack, Leanne K; Eagles-Smith, Collin; Harding, Anna K; Kile, Molly; Stone, Dave

    2017-07-01

    Fish provide a valuable source of beneficial nutrients and are an excellent source of low fat protein. However, fish are also the primary source of methylmercury exposure in humans. Selenium often co-occurs with mercury and there is some evidence that selenium can protect against mercury toxicity yet States issue fish consumption advisories based solely on the risks that methylmercury pose to human health. Recently, it has been suggested the selenium: mercury molar ratio be considered in risk management. In order for agencies to utilize the ratio to set consumption guidelines, it is important to evaluate the variability in selenium and mercury in different fish species. We examined 10 different freshwater fish species found within the Columbia River Basin in order to determine the inter- and intra-specific variability in the selenium: mercury molar ratios and the selenium health benefit values. We found significant variation in selenium: mercury molar ratios. The mean molar ratios for each species were all above 1:1, ranging from 3.42:1 in Walleye to 27.2:1 in Chinook salmon. There was a positive correlation between both mercury and selenium with length for each fish species apart from yellow perch and rainbow trout. All species had health benefit values greater than 2. We observed considerable variability in selenium: mercury molar ratios within fish species collected in the Columbia River Basin. Although incorporating selenium: mercury molar ratios into fish consumption holds the potential for refining advisories and assessing the risk of methylmercury exposure, the current understanding of how these ratios apply is insufficient, and further understanding of drivers of variability in the ratios is needed.

  4. Selenium: Mercury molar ratios in freshwater fish in the Columbia River Basin: Potential applications for specific fish consumption advisories

    Science.gov (United States)

    Cusack, Leanne K.; Eagles-Smith, Collin A.; Harding, Anna K.; Kile, Molly; Stone, Dave

    2017-01-01

    Fish provide a valuable source of beneficial nutrients and are an excellent source of low fat protein. However, fish are also the primary source of methylmercury exposure in humans. Selenium often co-occurs with mercury and there is some evidence that selenium can protect against mercury toxicity yet States issue fish consumption advisories based solely on the risks that methylmercury pose to human health. Recently, it has been suggested the selenium: mercury molar ratio be considered in risk management. In order for agencies to utilize the ratio to set consumption guidelines, it is important to evaluate the variability in selenium and mercury in different fish species. We examined 10 different freshwater fish species found within the Columbia River Basin in order to determine the inter- and intra-specific variability in the selenium: mercury molar ratios and the selenium health benefit values. We found significant variation in selenium: mercury molar ratios. The mean molar ratios for each species were all above 1:1, ranging from 3.42:1 in Walleye to 27.2:1 in Chinook salmon. There was a positive correlation between both mercury and selenium with length for each fish species apart from yellow perch and rainbow trout. All species had health benefit values greater than 2. We observed considerable variability in selenium: mercury molar ratios within fish species collected in the Columbia River Basin. Although incorporating selenium: mercury molar ratios into fish consumption holds the potential for refining advisories and assessing the risk of methylmercury exposure, the current understanding of how these ratios apply is insufficient, and further understanding of drivers of variability in the ratios is needed.

  5. Selectivity of fish ladders: a bottleneck in Neotropical fish movement

    Directory of Open Access Journals (Sweden)

    Carlos Sérgio Agostinho

    Full Text Available Although dozens of fish ladders have been constructed at dams of Brazilian reservoirs, there are few studies evaluating their efficiency as a tool for the conservation of Neotropical ichthyofauna, especially for migratory species. Therefore, the present study evaluated the selectivity of the species that entered and ascended the fish ladder located next to Lajeado Dam (Luis Eduardo Magalhães Hydroelectric Power Plant on the Tocantins River. Samples were taken monthly from November, 2002 through October, 2003, in the resting pools of the ladder, using cast nets, and in the downstream stretch, using gillnets. The selectivity of the ladder in attracting fish was evaluated by comparing the occurrence, relative abundance, dominance and the congruence of abundance ranks of migratory and non-migratory species in the ladder and in the stretch of river immediately downstream. Species richness and fish abundance in the resting pools were used to evaluate selectivity along the ladder. The effects on selectivity by temporal variations in water level downriver and maximum flow velocity in the fish ladder were also analyzed. Out of the 130 species recorded downriver, 62.3% were caught in the ladder, and migratory species were clearly favored. However, more than 2/3 of the catch belonged to only three species (Rhaphiodon vulpinus, Psectrogaster amazonica and Oxydoras niger. Although the majority of the species that entered the ladder were able to reach its top, there was a sharp reduction in abundance of individuals towards the top. Temporal variations in the water level below the dam influenced richness and abundance of fish concentrated downstream and in the ladder, with lower values during periods of low water. In the ladder, a maximum flow velocity of 2.3 m/s, although also selective, proved to be more appropriate for fish ascension than a velocity of 2.8 m/s. It was concluded that the entry and ascension of the fish in the ladder were not congruent with

  6. A multi-year analysis of passage and survival at McNary Dam, 2004-09

    Science.gov (United States)

    Adams, Noah S.; Walker, C.E.; Perry, R.W.

    2011-01-01

    We analyzed 6 years (2004–09) of passage and survival data collected at McNary Dam to determine how dam operations and environmental conditions affect passage and survival of juvenile salmonids. A multinomial logistic regression was used to examine how environmental variables and dam operations relate to passage behavior of juvenile salmonids at McNary Dam. We used the Cormack-Jolly-Seber release-recapture model to determine how the survival of juvenile salmonids passing through McNary Dam relates to environmental variables and dam operations. Total project discharge and the proportion of flow passing the spillway typically had a positive effect on survival for all species and routes. As the proportion of water through the spillway increased, the number of fish passing the spillway increased, as did overall survival. Additionally, survival generally was higher at night. There was no meaningful difference in survival for fish that passed through the north or south portions of the spillway or powerhouse. Similarly, there was no difference in survival for fish released in the north, middle, or south portions of the tailrace. For subyearling Chinook salmon migrating during the summer season, increased temperatures had a drastic effect on passage and survival. As temperature increased, survival of subyearling Chinook salmon decreased through all passage routes and the number of fish that passed through the turbines increased. During years when the temporary spillway weirs (TSWs) were installed, passage through the spillway increased for spring migrants. However, due to the changes made in the location of the TSW between years and the potential effect of other confounding environmental conditions, it is not certain if the increase in spillway passage was due solely to the presence of the TSWs. The TSWs appeared to improve forebay survival during years when they were operated.

  7. Patchiness in a large floodplain river: Associations among hydrology, nutrients, and fish communities

    Science.gov (United States)

    DeJager, Nathan R.; Houser, Jeff N.

    2016-01-01

    Large floodplain rivers have internal structures shaped by directions and rates of water movement. In a previous study, we showed that spatial variation in local current velocities and degrees of hydrological exchange creates a patch-work mosaic of nitrogen and phosphorus concentrations and ratios in the Upper Mississippi River. Here, we used long-term fish and limnological data sets to test the hypothesis that fish communities differ between the previously identified patches defined by high or low nitrogen to phosphorus ratios (TN:TP) and to determine the extent to which select limnological covariates might explain those differences. Species considered as habitat generalists were common in both patch types but were at least 2 times as abundant in low TN:TP patches. Dominance by these species resulted in lower diversity in low TN:TP patches, whereas an increased relative abundance of a number of rheophilic (flow-dependent) species resulted in higher diversity and a more even species distribution in high TN:TP patches. Of the limnological variables considered, the strongest predictor of fish species assemblage and diversity was water flow velocity, indicating that spatial patterns in water-mediated connectivity may act as the main driver of both local nutrient concentrations and fish community composition in these reaches. The coupling among hydrology, biogeochemistry, and biodiversity in these river reaches suggests that landscape-scale restoration projects that manipulate hydrogeomorphic patterns may also modify the spatial mosaic of nutrients and fish communities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. Wigwam River juvenile bull trout and fish habitat monitoring program: 2000 data report; TOPICAL

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.

    2001-01-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00)

  9. The influence of flood pulse on fish communities of floodplain canals in the Middle Solimões River, Brazil

    Directory of Open Access Journals (Sweden)

    Raniere G. C. Sousa

    Full Text Available The functioning of large river systems with adjacent floodplains is strongly influenced by the flood pulse. This phenomenon is the main structuring force for the biota, including fish communities that use floodplain environments for spawning, feeding, nursery and refuge. In floodplains and in the entire basin, the volume of water controls internal flows. During rising water, the high discharge of the river acts as a natural barrier to the canals that connect floodplain lakes and the Solimões River, because the water flows from river to lake. During the dry period, there is a reduction of discharge and the water flow is reversed or stationary. These canals are environments with distinct ecological characteristics such as differentiated limnology and water level variation intensely affected by the hydrological cycle. Therefore, we surveyed the influence of the flood pulse on fish communities that inhabit two canals that connect floodplain lakes to the Middle Solimões River. Particularly, we evaluated the hypothesis that the Solimões River flow direction is not perfectly parallel to its banks, which creates peripheral flows that direct water from the rivers to the floodplain lake canals. Our analysis indicated that the seasonal pattern is stronger than the spatial. Beside this, we observed that the positions of the canals in relation to the main river flow somehow affect the fish assemblages. Finally, we conclude that the flood pulse is the main structuring force acting on these fish communities.

  10. Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast.

    Science.gov (United States)

    Kominoski, John S; Ruhí, Albert; Hagler, Megan M; Petersen, Kelly; Sabo, John L; Sinha, Tushar; Sankarasubramanian, Arumugam; Olden, Julian D

    2018-03-01

    Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama-Coosa-Tallapoosa (ACT), and Apalachicola-Chattahoochee-Flint (ACF) basins. Using long-term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure "expected" streamflow) at the sub-basin scale over the past half-century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non-native species richness using binomial logistic regression. Sub-basin extirpations in the Southwest (n = 95 Upper CR, n = 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub-basin extirpations in the Southeast (ACT n = 46, ACF n = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin-wide differences in native or non-native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be

  11. Effect of electric barrier on passage and physical condition of juvenile and adult rainbow trout

    Science.gov (United States)

    Layhee, Megan J.; Sepulveda, Adam; Shaw, Amy; Smuckall, Matthew; Kapperman, Kevin; Reyes, Alejandro

    2016-01-01

    Electric barriers can inhibit passage and injure fish. Few data exist on electric barrier parameters that minimize these impacts and on how body size affects susceptibility, especially to nontarget fish species. The goal of this study was to determine electric barrier voltage and pulse-width settings that inhibit passage of larger bodied rainbow trout Oncorhynchus mykiss (215–410 mm fork length) while allowing passage of smaller bodied juvenile rainbow trout (52–126 mm) in a static laboratory setting. We exposed rainbow trout to 30-Hz pulsed-direct current voltage gradients (0.00–0.45 V cm−1) and pulse widths (0.0–0.7 ms) and recorded their movement, injury incidence, and mortality. No settings tested allowed all juveniles to pass while impeding all adult passage. Juvenile and adult rainbow trout avoided the barrier at higher pulse widths, and fewer rainbow trout passed the barrier at 0.7-ms pulse width compared to 0.1 ms and when the barrier was turned off. We found no effect of voltage gradient on fish passage. No mortality occurred, and we observed external bruising in 5 (7%) juvenile rainbow trout and 15 (21%) adult rainbow trout. This study may aid managers in selecting barrier settings that allow for increased juvenile passage.

  12. Remotely Sensed Predictions and In Situ Observations of Lower Congo River Dynamics in Support of Fish Evolutionary Biology

    Science.gov (United States)

    Gardiner, N.; Bjerklie, D. M.

    2011-12-01

    Ongoing research into the evolution of fishes in the lower Congo River suggests a close tie between diversity and hydraulic complexity of flow in the channel. For example, fish populations on each side of the rapids at the head of the lower Congo are within 1.5 km of one another, a distance normally allowing for interbreeding in river systems of comparable size, yet these fish populations show about 5% divergence in their mitochondrial DNA signatures. The proximal reason for this divergence is hydraulic complexity: the speed and turbulence of water moving through the thalweg is a barrier to dispersal for these fishes. Further examination of fish diversity suggests additional correlations of evolutionary divergence of fish clades in association with geomorphic and hydraulic features such as deep pools, extensive systems of rapids, alternating sections of fast and slow current, and recurring whirlpools. Due to prohibitive travel costs, limited field time, and the large geographic domain (approximately 400 river km) of the study area, we undertook a nested set of remote sensing analyses to extract habitat features, geomorphic descriptors, and hydraulic parameters including channel forming velocity, depth, channel roughness, slope, and shear stress. Each of these estimated parameters is mapped for each 1 km segment of the river from the rapids described above to below Inga Falls, a massive cataract where several endemic fish species have been identified. To validate remote sensing estimates, we collected depth and velocity data within the river using gps-enabled sonar measurements from a kayak and Doppler profiling from a motor-driven dugout canoe. Observations corroborate remote sensing estimates of geomorphic parameters. Remote sensing-based estimates of channel-forming velocity and depth were less than the observed maximum channel depth but correlated well with channel properties within 1 km reach segments. This correspondence is notable. The empirical models used

  13. 75 FR 64752 - Amended Columbia River Basin Fish and Wildlife Program

    Science.gov (United States)

    2010-10-20

    ... Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and...) 452-5161. Stephen L. Crow, Executive Director. [FR Doc. 2010-26372 Filed 10-19-10; 8:45 am] BILLING...

  14. Technologies for evaluating fish passage through turbines

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-10-01

    This study evaluated the feasibility of two types of technologies to observe fish and near neutrally buoyant drogues as they move through hydropower turbines. Existing or reasonably modified light-emitting and ultrasonic technologies were used to observe flow patterns, the response of fish to flow, and interactions between fish and turbine structures with good spatial and temporal accuracy. This information can be used to assess the biological benefits of turbine design features such as reductions in gaps at the tips and hub of turbine runner blades, reshaping wicket gates and stay vanes, modifications to draft tube splitter piers, and design changes that enhance egress through the powerhouse and tailrace.

  15. Water intake fish diversion apparatus

    International Nuclear Information System (INIS)

    Taft, E.P. III; Cook, T.C.

    1995-01-01

    A fish diversion apparatus uses a plane screen to divert fish for variety of types of water intakes in order to protect fish from injury and death. The apparatus permits selection of a relatively small screen angle, for example ten degrees, to minimize fish injury. The apparatus permits selection of a high water velocity, for example ten feet per second, to maximize power generation efficiency. The apparatus is especially suitable retrofit to existing water intakes. The apparatus is modular to allow use plural modules in parallel to adjust for water flow conditions. The apparatus has a floor, two opposite side walls, and a roof which define a water flow passage and a plane screen within the passage. The screen is oriented to divert fish into a fish bypass which carries fish to a safe discharge location. The dimensions of the floor, walls, and roof are selected to define the dimensions of the passage and to permit selection of the screen angle. The floor is bi-level with a level upstream of the screen and a level beneath screen selected to provide a uniform flow distribution through the screen. The apparatus may include separation walls to provide a water flow channel between the apparatus and the water intake. Lead walls may be used to adjust water flow conditions into the apparatus. The apparatus features stoplog guides near its upstream and downstream ends to permit the water flow passage to be dewatered. 3 figs

  16. A systematic review of the effectiveness of liming to mitigate impacts of river acidification on fish and macro-invertebrates

    International Nuclear Information System (INIS)

    Mant, Rebecca C.; Jones, David L.; Reynolds, Brian; Ormerod, Steve J.; Pullin, Andrew S.

    2013-01-01

    The addition of calcium carbonate to catchments or watercourses – liming – has been used widely to mitigate freshwater acidification but the abatement of acidifying emissions has led to questions about its effectiveness and necessity. We conducted a systematic review and meta-analysis of the impact of liming streams and rivers on two key groups of river organisms: fish and invertebrates. On average, liming increased the abundance and richness of acid-sensitive invertebrates and increased overall fish abundance, but benefits were variable and not guaranteed in all rivers. Where B-A-C-I designs (before-after-control-impact) were used to reduce bias, there was evidence that liming decreased overall invertebrate abundance. This systematic review indicates that liming has the potential to mitigate the symptoms of acidification in some instances, but effects are mixed. Future studies should use robust designs to isolate recovery due to liming from decreasing acid deposition, and assess factors affecting liming outcomes. -- Highlights: •In a systematic review and meta-analysis, we asked how river liming affected fish and invertebrates. •On average, liming increased fish abundance. •Liming also increased average abundance and richness of acid-sensitive invertebrates. •However, benefits were variable and not guaranteed in all acidified rivers. -- A systematic review showed lime application to acidified rivers increased average fish abundance, and abundance and richness in acid-sensitive invertebrates, but not always

  17. 2008-09 National Rivers and Streams Assessment Fish Tissue Data Dictionary

    Science.gov (United States)

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2008-09 National Rivers and Streams Assessment (NRSA). This document includes the “data dictionary” for Mercury, Selenium, PBDEs, PCBs, Pesticides and PFCs.

  18. 76 FR 13676 - Amended Columbia River Basin Fish and Wildlife Program

    Science.gov (United States)

    2011-03-14

    ... Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and...) 452-5161. Stephen L. Crow, Executive Director. [FR Doc. 2011-5758 Filed 3-11-11; 8:45 am] BILLING CODE...

  19. 76 FR 13438 - Amended Columbia River Basin Fish and Wildlife Program

    Science.gov (United States)

    2011-03-11

    ... Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and...) 452-5161. Stephen L. Crow, Executive Director. [FR Doc. 2011-5599 Filed 3-10-11; 8:45 am] BILLING CODE...

  20. Asian river fishes in the Anthropocene: threats and conservation challenges in an era of rapid environmental change.

    Science.gov (United States)

    Dudgeon, D

    2011-12-01

    This review compares and contrasts the environmental changes that have influenced, or will influence, fishes and fisheries in the Yangtze and Mekong Rivers. These two rivers have been chosen because they differ markedly in the type and intensity of prevailing threats. The Mekong is relatively pristine, whereas the Three Gorges Dam on the Yangtze is the world's largest dam representing the apotheosis of environmental alteration of Asian rivers thus far. Moreover, it is situated at the foot of a planned cascade of at least 12 new dams on the upper Yangtze. Anthropogenic effects of dams and pollution of Yangtze fishes will be exacerbated by plans to divert water northwards along three transfer routes, in part to supplement the flow of the Yellow River. Adaptation to climate change will undoubtedly stimulate more dam construction and flow regulation, potentially causing perfect storm conditions for fishes in the Yangtze. China has already built dams along the upper course of the Mekong, and there are plans for as many as 11 mainstream dams in People's Democratic Republic (Laos) and Cambodia in the lower Mekong Basin. If built, they could have profound consequences for biodiversity, fisheries and human livelihoods, and such concerns have stalled dam construction. Potential effects of dams proposed for other rivers (such as Nujiang-Salween) are also cause for concern. Conservation or restoration measures to sustain some semblance of the rich fish biodiversity of Asian rivers can be identified, but their implementation may prove problematic in a context of increasing Anthropocene alteration of these ecosystems. © 2011 The Author. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  1. Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

  2. Effect of dietary supplement (cevas on the chemical composition of wild fish Brycon falcatus Müller & Troschel, 1844 in the Teles Pires river basin

    Directory of Open Access Journals (Sweden)

    Liliane Stedile Matos

    2017-05-01

    Full Text Available In the Teles Pires River watershed, one of the most common techniques currently used by fishermen to catch fish is to provide a food supplement commonly known as “cevas”. The purpose of this study was to compare the chemical composition of fillets from Brycon falcatus that were caught in both the presence and absence of cevas. The fish were sampled monthly and captured in the following conditions: the Tapaiúna River without cevas, the Teles Pires River with one ceva/100 m, the Celeste River with one ceva/500 m, the Verde River with one ceva/1000 m and the Cristalino River (control area. Subsequent to capture, the fish were euthanized and preserved on ice to determine their water, ash, crude protein and fat contents. Fillets of fish from the control area exhibited a lower level of crude protein (17.81% compared with that of fish from the other rivers, which did not differ amongst one other. The fillets of fish from the river with the greatest density of cevas (1/100 m exhibited a higher fat content (3.63% than that of fish from the control area (1.51%. Thus, the cevas changed the chemical composition of B. falcatus fillets.

  3. Synthesis of juvenile lamprey migration and passage research and monitoring at Columbia and Snake River Dams

    Science.gov (United States)

    Mesa, Matthew G.; Weiland, Lisa K.; Christiansen, Helena E.

    2016-01-01

    We compiled and summarized previous sources of data and research results related to the presence, numbers, and migration timing characteristics of juvenile (eyed macropthalmia) and larval (ammocoetes) Pacific lamprey Entosphenus tridentatus, in the Columbia River basin (CRB). Included were data from various screw trap collections, data from historic fyke net studies, catch records of lampreys at JBS facilities, turbine cooling water strainer collections, and information on the occurrence of lampreys in the diets of avian and piscine predators. We identified key data gaps and uncertainties that should be addressed in a juvenile lamprey passage research program. The goal of this work was to summarize information from disparate sources so that managers can use it to prioritize and guide future research and monitoring efforts related to the downstream migration of juvenile Pacific lamprey within the CRB. A common finding in all datasets was the high level of variation observed for CRB lamprey in numbers present, timing and spatial distribution. This will make developing monitoring programs to accurately characterize lamprey migrations and passage more challenging. Primary data gaps centered around our uncertainty on the numbers of juvenile and larval present in the system which affects the ability to assign risk to passage conditions and prioritize management actions. Recommendations include developing standardized monitoring methods, such as at juvenile bypass systems (JBS’s), to better document numbers and timing of lamprey migrations at dams, and use biotelemetry tracking techniques to estimate survival potentials for different migration histories.

  4. In-situ partitioning and bioconcentration of polycyclic aromatic hydrocarbons among water, suspended particulate matter, and fish in the Dongjiang and Pearl Rivers and the Pearl River Estuary, China

    International Nuclear Information System (INIS)

    Li, Haiyan; Lu, Lei; Huang, Wen; Yang, Juan; Ran, Yong

    2014-01-01

    Highlights: • PAHs are relatively higher in marine fish than in freshwater fish. • PAHs respectively show significant correlations with DOC, POC, and Chl a. • The log K oc for PAHs is one order magnitude higher than the predicted. • The log BCF values in fish and their tissues are nonlinear in respect to log K ow . • Lipid is related to PAHs in freshwater fish, but not in marine fishes. - Abstract: The partitioning and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in water, suspended particulate matter (SPM), and fish samples from the Dongjiang River (DR), Pearl River (PR), and the Pearl River Estuary (PRE) were examined. Although PAHs are much lower in PRE than in DR or PR, PAHs in some fish species are significantly higher in PRE than in DR or PR. Aqueous or particulate PAHs respectively show significant correlations with dissolved organic carbon, particulate organic matter, and chlorophyll a, suggesting that biological pumping effect regulates their distribution. The in situ partitioning coefficients (log K oc ) for PAHs are one order magnitude higher than the empirical log K oc –log K ow correlation. The bioconcentration factor (BCF) is slightly higher for the marine fish than for the freshwater fish. The above phenomena indicate that BCF may vary due to the diversity of fish species, feeding habits, and metabolism of PAHs in fish

  5. Effect of water quality on the composition of fish communities in three coastal rivers of Karnataka, India

    Directory of Open Access Journals (Sweden)

    Arunkumar Shetty

    2015-02-01

    Full Text Available The fish assemblage and diversity in relation to water quality of three coastal rivers Sita, Swarna and Varahi of Udupi district, Karnataka, India was studied. 71 species representing 7 orders, 20 families and 41 genera were recorded from 21 sites along the three rivers. Species composition varied longitudinally in relation to the environmental factors of the habitat. The downstream change in the three rivers indicates that fish assemblage changed with increasing loss of riparian canopy cover and increasing agricultural land-use. The richness and abundance of fishes were correlated with land-use type, canopy cover, pH and turbidity. Diversion of water, discharge of domestic sewage and agricultural runoff were prominent among the disturbances that alter the habitat quality.

  6. CEPF Western Ghats Special Series: Freshwater fish fauna of Krishna River at Wai, northern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    S.S. Kharat

    2012-06-01

    Full Text Available Freshwater fish fauna of the Krishna River at Wai, and the Dhom reservoir upstream of Wai, was studied. Fifty one species belonging to 14 families and 33 genera were recorded; 13 endemic to the Western Ghats and two to the Krishna River system. Moderate to rare populations were found for six globally threatened species: Gonoproktopterus curmuca, Labeo potail, Schismatorhynchos nukta, Tor khudree, T. mussullah and Parapsilorhynchus discophorus. Fish in this area are under threat due to two introduced species and five transplanted species, and due to other anthropogenic activities such as overfishing and organic and inorganic pollution of the river. Site based conservation action plans are needed for conservation of rare and threatened fish in this area.

  7. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    Science.gov (United States)

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged

  8. Combining turbine blade-strike and life cycle models to assess mitigation strategies for fish passing dams

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J.W. [National Marine Fisheries Service, Seattle, WA (United States). Fish Ecology Div.; Swedish Univ. of Agricultural Sciences, Umea (Sweden). Dept. of Wildlife, Fish and Environmental Studies; Ploskey, G.R. [Battelle-Pacific Northwest National Laboratory, Richland, WA (United States); Zabel, R.W. [National Marine Fisheries Service, Seattle, WA (United States). Fish Ecology Div.; Lundqvist, H. [Swedish Univ. of Agricultural Sciences, Umea (Sweden). Dept. of Wildlife, Fish and Environmental Studies

    2008-08-15

    Many diadromous and resident fish populations migrate within riverine, freshwater, and marine habitats that have been altered by human activities. This paper developed a tool designed to analyze the effects of dams on fish populations. The model combined a blade-strike model of a hydroelectric turbine and a life cycle model in order to generate point estimates of mortality and incorporate dam passage impacts. The modelling tool was used to study populations of Atlantic salmon and sea trout populations in Sweden which were depressed due to damming, dredging, pollution, and siltation of the rivers. The downstream migrating fish in the rivers passed through a single dam and power station containing Kaplan and Francis turbines. A blade-strike model was developed as the primary mechanism of mortality for the fish. The mortality of juvenile and adult fish and mortality rates from blade-strikes were then entered into salmon life cycle models that incorporated life history variability in age of reproduction and spawning activities. The life cycle model populations in the river were then modelled in hypothetical scenarios. Results of the scenarios were compared with effects from the blade-strike mortality results. Results of the study showed that increases in the number of female salmon escaping above the dam after 20 years was significantly higher when both juveniles and adult fish populations were protected. The model will be used to evaluate strategies designed to conserve fish populations impacted by dams. 49 refs., 9 tabs., 6 figs.

  9. Combining turbine blade-strike and life cycle models to assess mitigation strategies for fish passing dams

    International Nuclear Information System (INIS)

    Ferguson, J.W.; Zabel, R.W.; Lundqvist, H.

    2008-01-01

    Many diadromous and resident fish populations migrate within riverine, freshwater, and marine habitats that have been altered by human activities. This paper developed a tool designed to analyze the effects of dams on fish populations. The model combined a blade-strike model of a hydroelectric turbine and a life cycle model in order to generate point estimates of mortality and incorporate dam passage impacts. The modelling tool was used to study populations of Atlantic salmon and sea trout populations in Sweden which were depressed due to damming, dredging, pollution, and siltation of the rivers. The downstream migrating fish in the rivers passed through a single dam and power station containing Kaplan and Francis turbines. A blade-strike model was developed as the primary mechanism of mortality for the fish. The mortality of juvenile and adult fish and mortality rates from blade-strikes were then entered into salmon life cycle models that incorporated life history variability in age of reproduction and spawning activities. The life cycle model populations in the river were then modelled in hypothetical scenarios. Results of the scenarios were compared with effects from the blade-strike mortality results. Results of the study showed that increases in the number of female salmon escaping above the dam after 20 years was significantly higher when both juveniles and adult fish populations were protected. The model will be used to evaluate strategies designed to conserve fish populations impacted by dams. 49 refs., 9 tabs., 6 figs

  10. Fishers' knowledge identifies environmental changes and fish abundance trends in impounded tropical rivers.

    Science.gov (United States)

    Hallwass, Gustavo; Lopes, Priscila F; Juras, Anastácio A; Silvano, Renato A M

    2013-03-01

    The long-term impacts of large hydroelectric dams on small-scale fisheries in tropical rivers are poorly known. A promising way to investigate such impacts is to compare and integrate the local ecological knowledge (LEK) of resource users with biological data for the same region. We analyzed the accuracy of fishers' LEK to investigate fisheries dynamics and environmental changes in the Lower Tocantins River (Brazilian Amazon) downstream from a large dam. We estimated fishers' LEK through interviews with 300 fishers in nine villages and collected data on 601 fish landings in five of these villages, 22 years after the dam's establishment (2006-2008). We compared these two databases with each other and with data on fish landings from before the dam's establishment (1981) gathered from the literature. The data obtained based on the fishers' LEK (interviews) and from fisheries agreed regarding the primary fish species caught, the most commonly used type of fishing gear (gill nets) and even the most often used gill net mesh sizes but disagreed regarding seasonal fish abundance. According to the interviewed fishers, the primary environmental changes that occurred after the impoundment were an overall decrease in fish abundance, an increase in the abundance of some fish species and, possibly, the local extinction of a commercial fish species (Semaprochilodus brama). These changes were corroborated by comparing fish landings sampled before and 22 years after the impoundment, which indicated changes in the composition of fish landings and a decrease in the total annual fish production. Our results reinforce the hypothesis that large dams may adversely affect small-scale fisheries downstream and establish a feasible approach for applying fishers' LEK to fisheries management, especially in regions with a low research capacity.

  11. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Cochnauer, Tim; Claire, Christopher

    2002-12-01

    Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South

  12. Factors affecting route selection and survival of steelhead kelts at Snake River dams in 2012 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison H. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Green, Ethan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    In 2012 and 2013, Pacific Northwest National Laboratory (PNNL) conducted a study that summarized the passage route proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged kelts. Kelts were also tagged with passive integrated transponder tags to monitor passage through juvenile bypass systems (JBS) and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify environmental, temporal, operational, individual, and behavioral variables that were related to forebay residence time, route of passage, and survival of steelhead kelts at FCRPS dams on the Snake River. Multiple approaches, including 3-D tracking, bivariate and multivariable regression modeling, and decision tree analyses were used to identify the environmental, temporal, operational, individual, and behavioral variables that had the greatest effect on forebay residence time, route of passage, and route-specific and overall dam passage survival probabilities for tagged kelts at Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams. In general, kelt behavior and discharge appeared to work independently to affect forebay residence times. Kelt behavior, primarily approach location, migration depth, and “searching” activities in the forebay, was found to have the greatest influence on their route of passage. The condition of kelts was the single most important factor affecting their survival. The information gathered in this study may be used by dam operators and fisheries managers to identify potential management actions to improve in-river survival of kelts or collection methods for kelt reconditioning programs to aid

  13. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  14. Fish, Corumbataí and Jacaré-Pepira river basins, São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Braga, F. M. S.

    2006-01-01

    Full Text Available Fish were studied in two river basins (Corumbataí and Jacaré-Pepira subjected to strong human pressure, in the interior of the State of São Paulo, southeastern Brazil. In the Corumbataí basin, four sites were sampled: Cabeça river, Lapa stream, Passa-Cinco river, and Corumbataí river; in the Jacaré-Pepira basin, three sites were sampled: Tamanduá stream, Jacaré-Pepira river, and Água Branca stream. A total of 4,050 specimens belonging to 48 species and 13 families were caught and analyzed.

  15. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  16. Distribution and abundance of fish populations in the Middle Wabash River

    International Nuclear Information System (INIS)

    Teppen, T.C.; Gammon, J.R.

    1976-01-01

    A field investigation was made of the distribution and abundance of fish within a 161-km portion of the Wabash River to determine effects of heated effluents as well as changes in water quality on ichthyofaunal communities within the river. Twenty-six sampling stations were electrofished, sequentially, four times in 1974 with extended sampling efforts made in the vicinity of two power-generating stations studied since 1967 and 1968. During August an overall rise in river temperature of 4 0 C was observed from upstream to downstream, with several chemical factors also showing slight increases. Although the majority of species populations were influenced either negatively or positively by the gradient of river conditions available to them, the only statistically significant parameters found in the analysis of community structure involved a lower diversity by weight below Terre Haute and a greater abundance of fish above the Cayuga generating station. Decreases occurred downstream in populations of redhorse (Moxostoma sp.), sauger (Stizostedion canadense), longear sunfish (Lepomis megalotis), and gizzard shad (Dorosoma cepedianum), with increases downstream observed in flathead catfish (Pylodictis olivaris), shortnose gar (Lepisosteus platostomus), longnose gar (E. osseus), and bowfin (Amia calva) populations. Carp (Cyprinus carpio) were present in large numbers throughout the study area with a tremendous population increase evident in recent years. Although species associations were variable among the segments, overall community parameters remained relatively unaffected

  17. Passage of American shad: paradigms and realities

    Science.gov (United States)

    Haro, Alex; Castro-Santos, Theodore

    2012-01-01

    Despite more than 250 years of development, the passage of American shad Alosa sapidissima at dams and other barriers frequently remains problematic. Few improvements in design based on knowledge of the swimming, schooling, and migratory behaviors of American shad have been incorporated into passage structures. Large-scale technical fishways designed for the passage of adult salmonids on the Columbia River have been presumed to have good performance for American shad but have never been rigorously evaluated for this species. Similar but smaller fishway designs on the East Coast frequently have poor performance. Provision of effective downstream passage for both juvenile and postspawning adult American shad has been given little consideration in most passage projects. Ways to attract and guide American shad to both fishway entrances and downstream bypasses remain marginally understood. The historical development of passage structures for American shad has resulted in assumptions and paradigms about American shad behavior and passage that are frequently unsubstantiated by supporting data or appropriate experimentation. We propose that many of these assumptions and paradigms are either unfounded or invalid and that significant improvements to American shad upstream and downstream passage can be made via a sequential program of behavioral experimentation, application of experimental results to the physical and hydraulic design of new structures, and controlled tests of large-scale prototype structures in the laboratory and field.

  18. Anthropogenic impacts on mercury concentrations and nitrogen and carbon isotope ratios in fish muscle tissue of the Truckee River watershed, Nevada, USA

    International Nuclear Information System (INIS)

    Sexauer Gustin, Mae; Saito, Laurel; Peacock, Mary

    2005-01-01

    The lower Truckee River originates at Lake Tahoe, California/Nevada (NV), USA and ends in the terminal water body, Pyramid Lake, NV. The river has minimal anthropogenic inputs of contaminants until it encounters the cities of Reno and Sparks, NV, and receives inflows from Steamboat Creek (SBC). SBC originates at Washoe Lake, NV, where there were approximately six mills that used mercury for gold and silver amalgamation in the late 1800s. Since then, mercury has been distributed down the creek to the Truckee River. In addition, SBC receives agricultural and urban nonpoint source pollution, and treated effluent from the Reno-Sparks water reclamation facility. Fish muscle tissue was collected from different species in SBC and the Truckee River and analyzed for mercury and stable isotopes. Nitrogen (?δ 15 N) and carbon (?δ 13 C) isotopic values in these tissues provide insight as to fish food resources and help to explain their relative Hg concentrations. Mercury concentrations, and ?δ 15 N and ?δ 13 C values in fish muscle from the Truckee River, collected below the SBC confluence, were significantly different than that found in fish collected upstream. Mercury concentrations in fish tissue collected below the confluence for all but three fish sampled were significantly greater (0.1 to 0.65 μg/g wet wt.) than that measured in the tissue collected above the confluence (0.02 to 0.1 μg/g). ?δ 15 N and ?δ 13 C isotopic values of fish muscle collected from the river below the confluence were higher and lower, respectively, than that measured in fish collected up river, most likely reflecting wastewater inputs. The impact of SBC inputs on muscle tissue isotope values declined down river whereas the impact due to Hg inputs showed the opposite trend

  19. Effects of Chiloquin Dam on spawning distribution and larval emigration of Lost River, shortnose, and Klamath largescale suckers in the Williamson and Sprague Rivers, Oregon

    Science.gov (United States)

    Martin, Barbara A.; Hewitt, David A.; Ellsworth, Craig M.

    2013-01-01

    Chiloquin Dam was constructed in 1914 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River (Deltistes luxatusChasmistes brevirostris) suckers, as well as other fish species. In 2002, the Bureau of Reclamation led a working group that examined several alternatives to improve fish passage at Chiloquin Dam. Ultimately it was decided that dam removal was the best alternative and the dam was removed in the summer of 2008. The U.S. Geological Survey conducted a long-term study on the spawning ecology of Lost River, shortnose, and Klamath largescale suckers (Catostomus snyderi) in the Sprague and lower Williamson Rivers from 2004 to 2010. The objective of this study was to evaluate shifts in spawning distribution following the removal of Chiloquin Dam. Radio telemetry was used in conjunction with larval production data and detections of fish tagged with passive integrated transponders (PIT tags) to evaluate whether dam removal resulted in increased utilization of spawning habitat farther upstream in the Sprague River. Increased densities of drifting larvae were observed at a site in the lower Williamson River after the dam was removed, but no substantial changes occurred upstream of the former dam site. Adult spawning migrations primarily were influenced by water temperature and did not change with the removal of the dam. Emigration of larvae consistently occurred about 3-4 weeks after adults migrated into a section of river. Detections of PIT-tagged fish showed increases in the numbers of all three suckers that migrated upstream of the dam site following removal, but the increases for Lost River and shortnose suckers were relatively small compared to the total number of fish that made a spawning migration in a given season. Increases for Klamath largescale suckers were more substantial. Post-dam removal monitoring

  20. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Directory of Open Access Journals (Sweden)

    Johannes Radinger

    Full Text Available Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049 and topological variables (e.g., stream order were included (AUC = +0.014. Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types and assessed longitudinal channel features (e.g., naturalness of river planform were also good predictors. These findings demonstrate (i the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables to predict fish presence, (ii the

  1. Contamination of freshwater fish from rivers Sava and Danube with polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Jankovic, S.; Radicevic, T.; Spiric, A.; Nedeljkovic, M.

    2002-01-01

    During air strikes, in april 1999, Institute of meat hygiene and technology have begun examination of freshwater fish to establish the degree of contamination. The information about damaged industrial facilities and toxic waste that have been spilled were hard to find, and was unofficial and contradicts. Because of that, at the first time we collected samples from different locations, but after first results, we concentrated our attention on locations on river Danube downstream from Pancevo and on river Sava upstream from Belgrade, the locations indicated as environmental 'hot spots'. According to our experience, knowledge, equipment and analytical skills we have chosen to determine the concentrations of PCBs in freshwater fish species, since aquatic fauna might be used as indicator organisms for the evaluation of water pollution. Polychlorinated biphenyls as contaminant of interest, have been chosen because large quantities of PCBs reached the soil and waste and ground waters from damaged transformers and capacitors, where they serve as dielectric fluids. Also, PCBs are highly toxic and due to their liposolubility and persistence, these compounds accumulate through food chain. In 1999, from April to December, we had collected 23 samples of different fish species on river Danube, downstream from Pancevo and 15 samples from locations on river Sava upstream from Belgrade. The concentrations of PCBs (mg/kg fat and mg/kg fresh weight) were expressed as the sum of individual congeners (IUPAC numbers 28, 52, 101, 138, 153, 180) and as Aroclor 1260 (peaks were identified as a fingerprint pattern by comparison with Aroclor standards). The concentrations of PCBs (mg/kg fat) are determined to evaluate the extent of contamination and concentrations of PCBs (mg/kg fresh weight) indicate daily intake and help us to estimate the risk for human health. Residues of PCBs in the fat extracted from fish sample were analysed according to the USDA Analytical Chemistry Guidebook. Gas

  2. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian S.; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers. PMID:29364953

  3. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Counihan, Timothy D.; Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.

  4. Effects of fish community on occurrences of Yangtze finless porpoise in confluence of the Yangtze and Wanhe Rivers.

    Science.gov (United States)

    Zhang, Xiaoke; Yu, Daoping; Wang, Huili; Wan, An; Chen, Minmin; Tao, Feng; Song, Zunrong

    2015-06-01

    The Yangtze finless porpoise is a subspecies of narrow-ridged finless porpoise endemic to the middle and lower reaches of the Yangtze River and the adjoining Poyang and Dongting Lakes. With the depletion of fish stocks in the Yangtze River in recent decades, food availability has become the most important factor affecting the survival of this subspecies. Despite this, the relationships between fish community and occurrences of porpoise are far from being fully understood. Therefore, during September 2013 to August 2014, the occurrences of porpoise were investigated in confluence of the Yangtze and Wanhe Rivers; fish community was also surveyed synchronously in confluence and two adjacent transects. The results showed that (1) the confluence had maximum fish species richness, and the main dominant species was upper fish, while the other two transects were mainly dominated by demersal fish. ANOVA analyses showed that individual number and yield of upper fish which can be eaten by porpoise (upper edible fish) in the confluence were significantly higher than other two transects. (2) Average group size of the porpoise was 3.7 ± 1.8 individuals. The occurrences of porpoise in different seasons had great differences, and the porpoise was more likely to be detected in autumn and winter. (3) Fish community had significant effects on occurrences of porpoise, and the main influencing factors were fish species richness, individual number, and yield of edible fish, especially the upper edible fish. The results of this study will have important implications for the conservation of porpoise.

  5. Fish, lower Ivinhema River basin streams, state of Mato Grosso do Sul, Brazil.

    Directory of Open Access Journals (Sweden)

    Súarez, Y. R.

    2008-01-01

    Full Text Available The Ivinhema River basin is one of the main tributaries of the western portion of Paraná River. However,few data are available on the fish communities of its streams. Monthly samples were made in seven streams of the lowerportion of the basin, in the state of Mato Grosso do Sul, using a rectangular sieve 1.2 x 0.8 m, with 2 mm mesh size.Forty-six fish species were found in these streams. The richness estimated according to the bootstrap procedure was 50species. At least two of the captured species were not previously recorded for the upper Paraná basin, indicating theneed of new sampling effort in this region.

  6. Investigation of head burns in adult salmonids: Phase 1: Examination of fish at Lower Granite Dam, July 2, 1996. Final report

    International Nuclear Information System (INIS)

    Elston, R.

    1996-08-01

    Head burn is a descriptive clinical term used by fishery biologists to describe exfoliation of skin and underlying connective tissue of the jaw and cranial region of salmonids, observed at fish passage facilities on the Columbia and Snake Rivers. The observations are usually made on upstream migrant adult salmon or steelhead. An expert panel, convened in 1996, to evaluate the risk and severity of gas bubble disease (GBD) in the Snake and Columbia River system believed that, while head burns appeared to be distinct from GBD, the relationship between dissolved gas saturation in the rivers and head burns was uncertain

  7. Migratory behavior of adult sea lamprey and cumulative passage performance through four fishways

    Science.gov (United States)

    Castro-Santos, Theodore R.; Shi, Xiaotao; Haro, Alexander

    2017-01-01

    This article describes a study of PIT-tagged sea lamprey (Petromyzon marinus) ascending four fishways comprising three designs at two dams on the Connecticut River, USA. Migration between dams was rapid (median migration rate = 23 km·day−1). Movement through the fishways was much slower, however (median = 0.02–0.33 km·day−1). Overall delay at dams was substantial (median = 13.6–14.6 days); many fish failed to pass (percent passage ranged from 29% to 55%, depending on fishway), and repeated passage attempts compounded delay for both passers and failers. Cox regression revealed that fishway entry rates were influenced by flow, temperature, and diel cycle, with most lampreys entering at night and at elevated flows, but with no apparent effect of sex or length. Overall delay was influenced by slow movement through the fishways, but repeated failures were the primary factor determining delay. These data suggest that although some lamprey were able to pass fishways, they did so with difficulty, and delays incurred as they attempted to pass may act to limit their distribution within their native range.

  8. Hydroacoustic Evaluation of Juvenile Salmonid Passage at The Dalles Dam Sluiceway, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Khan, Fenton; Hedgepeth, J; Mueller, Robert P.; Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.; Skalski, John R.

    2006-06-01

    The U.S. Army Corps of Engineers Portland District engaged the Pacific Northwest National Laboratory to evaluate fish passage at The Dalles Dam powerhouse in 2005. The goal of the study was to provide information on smolt passage that will inform decisions on long-term measures and operations to enhance sluiceway passage and reduce turbine passage to improve smolt survival at the dam. The study addressed one of the main programs dedicated to improving juvenile salmonid survival at The Dalles Dam: Surface Flow Bypass. The study objectives (see below) were met using a combination of hydroacoustic and hydraulic data. The study incorporated fixed-location hydroacoustic methods across the entire powerhouse, with especially intense sampling using multiple split-beam transducers at all sluiceway portals. We did not sample fish passage at the spillway in 2005. In the sluiceway nearfield, we used an acoustic camera to track fish movements. The fish data were interpreted with hydraulic data from a computational fluid dynamics (CFD) model. Fish passage data were collected in the framework of an “experiment” using a randomized block design (3-day treatments; two treatments) to compare two sluiceway operational configurations: Sluice 2+5 and Sluice 2+19 (six gates open for each configuration). Total project outflow was 76% of the 10-year average for spring and 71% of the 10-year average for summer. Based on these findings, we make the following recommendations: 1) The sluice should be operated 24 h/d from April until November. 2) Open six rather than three sluice gates to take advantage of the maximum hydraulic capacity of the sluiceway. 3) Open the three gates above the western-most operating main turbine unit and the three gates at MU 8 where turbine passage rates are relatively high. 4) Operate the turbine units below open sluice gates as a standard fish operations procedure. 5) Develop hydraulic and entrance enhancements to the sluiceway to tap the potential of The

  9. Spatial and seasonal patterns in fish assemblage in Corrego Rico, upper Parana River basin

    Directory of Open Access Journals (Sweden)

    Erico L. H Takahashi

    Full Text Available The upper Paraná River basin drains areas of intensive industry and agriculture, suffering negative impacts. The Córrego Rico flows through sugar cane fields and receives urban wastewater. The aim of this work is to describe and to compare the fish assemblage structure in Córrego Rico. Six standardized bimonthly samples were collected between August 2008 and June 2009 in seven different stretches of Córrego Rico. Fishes were collected with an experimental seine and sieves, euthanized, fixed in formalin and preserved in ethanol for counting and identification. Data were recorded for water parameters, instream habitat and riparian features within each stretch. Non-metric multidimensional scaling, species richness and diversity analysis were performed to examine spatial and seasonal variation in assemblage structure. Fish assemblage structure was correlated with instream habitat and water parameters. The fish assemblage was divided in three groups: upper, middle and lower reaches. High values of richness and diversity were observed in the upper and lower stretches due to connectivity with a small lake and Mogi Guaçu River, respectively. Middle stretches showed low values of richness and diversity suggesting that a small dam in the middle stretch negatively impacts the fish assemblage. Seasonal differences in fish assemblage structure were observed only in the lower stretches.

  10. Biodiversity of freshwater fish of a protected river in India: comparison with unprotected habitat

    Directory of Open Access Journals (Sweden)

    Uttam Kumar Sarkar

    2013-03-01

    Full Text Available In India, freshwater environments are experiencing serious threats to biodiversity, and there is an urgent priority for the search of alternative techniques to promote fish biodiversity conservation and management. With this aim, the present study was undertaken to assess the fish biodiversity within and outside a river protected area, and to evaluate whether the protected river area provides some benefits to riverine fish biodiversity. To assess this, the pattern of freshwater fish diversity was studied in river Gerua, along with some physicochemical conditions, from April 2000 to March 2004. For this, a comparison was made between a 15km stretch of a protected area (Katerniaghat Wildlife Sanctuary, and an unprotected one 85km downstream. In each site some physicochemical conditions were obtained, and fish were caught by normal gears and the diversity per site described. Our results showed that water temperature resulted warmest during the pre-monsoon season (25ºC and low during the winter (14-15ºC; turbidity considerably varied by season. In the protected area, a total of 87 species belonging to eight orders, 22 families and 52 genera were collected; while a maximum of 59 species belonging to six orders, 20 families and 42 genera were recorded from the unprotected areas. Cyprinids were found to be the most dominant genera and Salmostoma bacaila was the most numerous species in the sanctuary area. Other numerous species were Eutropiichthys vacha, Notopterus notopterus, Clupisoma garua and Bagarius bagarius. The results indicated more species, greater abundances, larger individuals, and higher number of endangered fishes within the sanctuary area when compared to the unprotected area. Analysis on the mean abundance of endangered and vulnerable species for the evaluated areas in the sanctuary versus unprotected ones indicated significant differences in fish abundance (p<0.05. These results showed that this riverine protected area could be

  11. An annotated bibliography for lamprey habitat in the White Salmon River, Washington

    Science.gov (United States)

    Allen, M. Brady

    2012-01-01

    The October 2011 decommissioning of Condit Dam on the White Salmon River at river kilometer (rkm) 5.3 removed a significant fish passage barrier from the White Salmon River basin for the first time in nearly a century. This affords an opportunity to regain a potentially important drainage basin for Pacific lamprey (Entosphenus tridentatus) production. In anticipation of Pacific lamprey recolonization or reintroduction, aquatic resource managers, such as the Yakama Nation (YN), are planning to perform surveys in the White Salmon River and its tributaries. The likely survey objectives will be to investigate the presence of lamprey, habitat conditions, and habitat availability. In preparation for this work, a compilation and review of the relevant aquatic habitat and biological information on the White Salmon River was conducted. References specific to the White Salmon River were collected and an annotated bibliography was produced including reports containing:

  12. Mercury assessment and evaluation of its impact on fish in the Cecina river basin (Tuscany, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Scerbo, R. [CNR Istituto di Biofisica, Area della Ricerca Pisa-S. Cataldo, Via G. Moruzzi 1, 56124 Pisa (Italy); Ristori, T. [CNR Istituto di Biofisica, Area della Ricerca Pisa-S. Cataldo, Via G. Moruzzi 1, 56124 Pisa (Italy); Stefanini, B. [CNR Istituto di Biofisica, Area della Ricerca Pisa-S. Cataldo, Via G. Moruzzi 1, 56124 Pisa (Italy); De Ranieri, S. [Dipartimento Scienze Uomo e Ambiente, Universita di Pisa, Via Volta 6, 56100 Pisa (Italy); Barghigiani, C. [CNR Istituto di Biofisica, Area della Ricerca Pisa-S. Cataldo, Via G. Moruzzi 1, 56124 Pisa (Italy)]. E-mail: barghigiani@cibm.it

    2005-05-01

    This paper reports the results of mercury contamination monitoring in the Cecina river basin (Tuscany, Italy). Mercury was measured in the waters, sediments and fish species of the river and its most important tributaries. In fish specimens the organic form was also determined. The results showed high mercury levels in most of the samples analysed. Particularly high concentrations were found in the sediments of the S. Marta canal flowing into the Cecina, where a chlor-alkali plant discharges its wastes, and high levels were still detectable 31 km downstream from the confluence. Near the S. Marta confluence many fish specimens were very contaminated and a study on Leuciscus cephalus cabeda growth suggested that at this site mercury accumulation occurs in these organisms since they are very young. - Mercury entering water from a chlor-alkali plant near Tuscany has led to contamination of river food webs.

  13. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    Science.gov (United States)

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  14. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  15. Configuration of multiple human stressors and their impacts on fish assemblages in Alpine river basins of Austria.

    Science.gov (United States)

    Schinegger, Rafaela; Pucher, Matthias; Aschauer, Christiane; Schmutz, Stefan

    2018-03-01

    This work addresses multiple human stressors and their impacts on fish assemblages of the Drava and Mura rivers in southern Austria. The impacts of single and multiple human stressors on riverine fish assemblages in these basins were disentangled, based on an extensive dataset. Stressor configuration, i.e. various metrics of multiple stressors belonging to stressor groups hydrology, morphology, connectivity and water quality were investigated for the first time at river basin scale in Austria. As biological response variables, the Fish Index Austria (FIA) and its related single as well as the WFD biological- and total state were investigated. Stressor-response analysis shows divergent results, but a general trend of decreasing ecological integrity with increasing number of stressors and maximum stressor is observed. Fish metrics based on age structure, fish region index and biological status responded best to single stressors and/or their combinations. The knowledge gained in this work provides a basis for advanced investigations in Alpine river basins and beyond, supports WFD implementation and helps prioritizing further actions towards multi-stressor restoration- and management. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems.

    Science.gov (United States)

    Teichert, Nils; Lepage, Mario; Sagouis, Alban; Borja, Angel; Chust, Guillem; Ferreira, Maria Teresa; Pasquaud, Stéphanie; Schinegger, Rafaela; Segurado, Pedro; Argillier, Christine

    2017-12-14

    The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall, the functional structure of fish assemblages in rivers is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation priorities.

  17. Hydraulic and biological analysis of the passability of select fish species at the U.S. Geological Survey streamgaging weir at Blackwells Mills, New Jersey

    Science.gov (United States)

    Haro, Alexander J.; Mulligan, Kevin; Suro, Thomas P.; Noreika, John; McHugh, Amy

    2017-10-16

    Recent efforts to advance river connectivity for the Millstone River watershed in New Jersey have led to the evaluation of a low-flow gauging weir that spans the full width of the river. The methods and results of a desktop modelling exercise were used to evaluate the potential ability of three anadromous fish species (Alosa sapidissima [American shad], Alosa pseudoharengus [alewife], and Alosa aestivalis [blueback herring]) to pass upstream over the U.S. Geological Survey Blackwells Mills streamgage (01402000) and weir on the Millstone River, New Jersey, at various streamflows, and to estimate the probability that the weir will be passable during the spring migratory season. Based on data from daily fishway counts downstream from the Blackwells Mills streamgage and weir between 1996 and 2014, the general migratory period was defined as April 14 to May 28. Recorded water levels and flow data were used to theoretically estimate water depths and velocities over the weir, as well as flow exceedances occurring during the migratory period.Results indicate that the weir is a potential depth barrier to fish passage when streamflows are below 200 cubic feet per second using a 1-body-depth criterion for American shad (the largest fish among the target species). Streamflows in that range occur on average 35 percent of the time during the migratory period. An increase of the depth criterion to 2 body depths causes the weir to become a possible barrier to passage when flows are below 400 cubic feet per second. Streamflows in that range occur on average 73 percent of the time during the migration season. Average cross-sectional velocities at several points along the weir do not seem to be limiting to the fish migration, but maximum theoretical velocities estimated without friction loss over the face of the weir could be potentially limiting.

  18. Hypoxia, blackwater and fish kills: experimental lethal oxygen thresholds in juvenile predatory lowland river fishes.

    Directory of Open Access Journals (Sweden)

    Kade Small

    Full Text Available Hypoxia represents a growing threat to biodiversity in freshwater ecosystems. Here, aquatic surface respiration (ASR and oxygen thresholds required for survival in freshwater and simulated blackwater are evaluated for four lowland river fishes native to the Murray-Darling Basin (MDB, Australia. Juvenile stages of predatory species including golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, Murray cod Maccullochella peelii, and eel-tailed catfish Tandanus tandanus were exposed to experimental conditions of nitrogen-induced hypoxia in freshwater and hypoxic blackwater simulations using dried river red gum Eucalyptus camaldulensis leaf litter. Australia's largest freshwater fish, M. peelii, was the most sensitive to hypoxia but given that we evaluated tolerances of juveniles (0.99 ± 0.04 g; mean mass ±SE, the low tolerance of this species could not be attributed to its large maximum attainable body mass (>100,000 g. Concentrations of dissolved oxygen causing 50% mortality (LC50 in freshwater ranged from 0.25 ± 0.06 mg l(-1 in T. tandanus to 1.58 ± 0.01 mg l(-1 in M. peelii over 48 h at 25-26 °C. Logistic models predicted that first mortalities may start at oxygen concentrations ranging from 2.4 mg l(-1 to 3.1 mg l(-1 in T. tandanus and M. peelii respectively within blackwater simulations. Aquatic surface respiration preceded mortality and this behaviour is documented here for the first time in juveniles of all four species. Despite the natural occurrence of hypoxia and blackwater events in lowland rivers of the MDB, juvenile stages of these large-bodied predators are vulnerable to mortality induced by low oxygen concentration and water chemistry changes associated with the decomposition of organic material. Given the extent of natural flow regime alteration and climate change predictions of rising temperatures and more severe drought and flooding, acute episodes of hypoxia may represent an underappreciated risk to riverine fish

  19. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    Science.gov (United States)

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    Science.gov (United States)

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  1. Fish communities and trophic metrics as measures of ecological degradation: a case study in the tributaries of the river Ganga basin, India.

    Science.gov (United States)

    Dubey, Vineet Kumar; Sarkar, Uttam Kumar; Pandey, Ajay; Lakra, Wazir Singh

    2013-09-01

    In India, freshwater aquatic resources are suffering from increasing human population, urbanization and shortage of all kind of natural resources like water. To mitigate this, all the major rivers have been planned for a river-interlinking through an interlinking canal system under a huge scheme; yet, the baseline information on ecological conditions of those tropical rivers and their fish communities is lacking at present. In view of that, the present study was undertaken to assess the ecological condition by comparing the trophic metrics of the fish community, conservation status and water chemistry of the two tropical rivers of the Ganga basin, from October 2007 to November 2009. The analysis of trophic niches of the available fish species indicated dominancy of carnivorous (19 species) in river Ken and omnivorous (23 species) in Betwa. The trophic level score of carnivorous species was recorded similar (33.33%) in both rivers, whereas omnivorous species were mostly found in Betwa (36.51%) than Ken (28.07%). Relatively undisturbed sites of Betwa (B1, B2 and B3) and Ken (K2, K3 and K5) were characterized by diverse fish fauna and high richness of threatened species. The higher mean trophic level scores were recorded at B4 of Betwa and K4 of Ken. The Bray-Curtis index for trophic level identified the carnivorous species (> 0.32) as an indicator species for pollution. Anthropogenic exposure, reflected in water quality as well as in fish community structure, was found higher especially in the lower stretches of both rivers. Our results suggest the importance of trophic metrics on fish community, for ecological conditions evaluation, which enables predictions on the effect of future morphodynamic changes (in the post-interlinking phases), and provide a framework and reference condition to support restoration efforts of relatively altered fish habitats in tropical rivers of India.

  2. Fish communities and trophic metrics as measures of ecological degradation: a case study in the tributaries of the river Ganga basin, India

    Directory of Open Access Journals (Sweden)

    Vineet Kumar Dubey

    2013-09-01

    Full Text Available In India, freshwater aquatic resources are suffering from increasing human population, urbanization and shortage of all kind of natural resources like water. To mitigate this, all the major rivers have been planned for a river-interlinking through an interlinking canal system under a huge scheme; yet, the baseline information on ecological conditions of those tropical rivers and their fish communities is lacking at present. In view of that, the present study was undertaken to assess the ecological condition by comparing the trophic metrics of the fish community, conservation status and water chemistry of the two tropical rivers of the Ganga basin, from October 2007 to November 2009. The analysis of trophic niches of the available fish species indicated dominancy of carnivorous (19 species in river Ken and omnivorous (23 species in Betwa. The trophic level score of carnivorous species was recorded similar (33.33% in both rivers, whereas omnivorous species were mostly found in Betwa (36.51% than Ken (28.07%. Relatively undisturbed sites of Betwa (B1, B2 and B3 and Ken (K2, K3 and K5 were characterized by diverse fish fauna and high richness of threatened species. The higher mean trophic level scores were recorded at B4 of Betwa and K4 of Ken. The Bray-Curtis index for trophic level identified the carnivorous species (>0.32 as an indicator species for pollution. Anthropogenic exposure, reflected in water quality as well as in fish community structure, was found higher especially in the lower stretches of both rivers. Our results suggest the importance of trophic metrics on fish community, for ecological conditions evaluation, which enables predictions on the effect of future morphodynamic changes (in the post-interlinking phases, and provide a framework and reference condition to support restoration efforts of relatively altered fish habitats in tropical rivers of India.

  3. Explorations on Temperature, Oxygen, Nutrients and Habitat Demands of Fish Species Found in River Coruh

    Directory of Open Access Journals (Sweden)

    Bilal Akbulut

    2009-04-01

    Full Text Available For the protection of our natural resources, fish species being economic and ecological richness of the natural in the basin of the Çoruh to know their request is extremely a vital important issue. In this study, temperature and oxygen demand, food and habitat of 18 fish species in six families found in river Çoruh assessed and discussed with the literature and database. Limiting the impact of water temperature on the reproductive, growth and nutrition emphasized. The fish species in the basin spawn at temperatures between 14-30°C according to database. Three species belonging to a family feed with animal food floating in the water. The species belonging to the other families more feed mixed with plant and animal foods diet in the floor or near the ground. Importance of their environmental demands has clarified for conservation and sustainable use of these fish species inhabiting in Çoruh River.

  4. Ecological studies on the freshwater fishes of the Alligator Rivers Region, Northern Territory

    International Nuclear Information System (INIS)

    Bishop, K.A.; Allen, S.A.; Pollard, D.A.; Cook, M.G.

    1986-01-01

    The tropical climate of the Alligator Rivers Region of the Northern Territory has a distinctive Wet-Dry cycle resulting in seasonal flows in the creeks and rivers of its catchments. The present study, begun during August 1978, aimed at developing an ecological monitoring system that would detect changes in freshwater fish communities brought about by recent uranium mining and processing in the lowlands of the region

  5. Mussel Spat Ropes Assist Redfin Bully Gobiomorphus huttoni Passage through Experimental Culverts with Velocity Barriers

    Directory of Open Access Journals (Sweden)

    Liam A.H. Wright

    2012-09-01

    Full Text Available The application of mussel spat rope for enabling the passage of redfin bully Gobiomorphus huttoni through culverts, which create velocity barriers, was trialled in the laboratory. No fish were able to access the un-roped control pipes whereas 52% successfully negotiated the pipes in the rope treatments. The success of fish ascending treatment pipes suggests mussel spat rope may be effective for enabling the passage of this and other similar fish species through otherwise impassable culverts with velocity barriers.

  6. Two-Dimensional (2-D) Acoustic Fish Tracking at River Mile 85, Sacramento River, California

    Science.gov (United States)

    2013-06-01

    on fish become known (USACE 2004). Levee repair and constructed habitat features included (1) protection of the toe and upper slopes of the bank...be recovered rather than being lost due to sediment dunes , large woody material floating downstream, and vandalism. The RM 85 site was a relatively...into the river channel. The addition of this material narrowed the channel and created a scour feature along the toe of the repair site. VPS array

  7. Fish, Corumbataí and Jacaré-Pepira river basins, São Paulo State, Brazil

    OpenAIRE

    Gomiero, Leandro; Braga, Francisco

    2006-01-01

    Fish were studied in two river basins (Corumbataí and Jacaré-Pepira) subjected to strong human pressure, in the interior of the State of São Paulo, southeastern Brazil. In the Corumbataí basin, four sites were sampled: Cabeça river, Lapa stream, Passa-Cinco river, and Corumbataí river; in the Jacaré-Pepira basin, three sites were sampled: Tamanduá stream, Jacaré-Pepira river, and Água Branca stream. A total of 4,050 specimens belonging to 48 species and 13 families were caught and analyzed....

  8. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2) in Colbert County, Alabama, USA.

    Science.gov (United States)

    Jacquemin, Stephen J; Ebersole, Jun A; Dickinson, William C; Ciampaglio, Charles N

    2016-01-01

    The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (∼10,000 to 30,000 years B.P.) leading to modern Holocene fish diversity patterns. The objective of this study was to describe the fish assemblages of the Tennessee River Basin from the late Pleistocene using a series of faunas from locales throughout the basin documented from published literature, unpublished reports, and an undocumented fauna from Bell Cave (site ACb-2, Colbert County, AL). Herein we discuss 41 unequivocal taxa from 10 late Pleistocene localities within the basin and include a systematic discussion of 11 families, 19 genera, and 24 identifiable species (28 unequivocal taxa) specific to the Bell Cave locality. Among the described fauna are several extirpated (e.g., Northern Pike Esox lucius, Northern Madtom Noturus stigmosus) and a single extinct (Harelip Sucker Moxostoma lacerum) taxa that suggest a combination of late Pleistocene displacement events coupled with more recent changes in habitat that have resulted in modern basin diversity patterns. The Bell Cave locality represents one of the most intact Pleistocene freshwater fish deposits anywhere in North America. Significant preservational, taphonomic, sampling, and identification biases preclude the identification of additional taxa. Overall, this study provides a detailed look into paleo-river ecology, as well as freshwater fish diversity and distribution leading up to the contemporary biodiversity patterns of the Tennessee River Basin and Mississippi River Basin as a whole.

  9. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2 in Colbert County, Alabama, USA

    Directory of Open Access Journals (Sweden)

    Stephen J. Jacquemin

    2016-02-01

    Full Text Available The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (∼10,000 to 30,000 years B.P. leading to modern Holocene fish diversity patterns. The objective of this study was to describe the fish assemblages of the Tennessee River Basin from the late Pleistocene using a series of faunas from locales throughout the basin documented from published literature, unpublished reports, and an undocumented fauna from Bell Cave (site ACb-2, Colbert County, AL. Herein we discuss 41 unequivocal taxa from 10 late Pleistocene localities within the basin and include a systematic discussion of 11 families, 19 genera, and 24 identifiable species (28 unequivocal taxa specific to the Bell Cave locality. Among the described fauna are several extirpated (e.g., Northern Pike Esox lucius, Northern Madtom Noturus stigmosus and a single extinct (Harelip Sucker Moxostoma lacerum taxa that suggest a combination of late Pleistocene displacement events coupled with more recent changes in habitat that have resulted in modern basin diversity patterns. The Bell Cave locality represents one of the most intact Pleistocene freshwater fish deposits anywhere in North America. Significant preservational, taphonomic, sampling, and identification biases preclude the identification of additional taxa. Overall, this study provides a detailed look into paleo-river ecology, as well as freshwater fish diversity and distribution leading up to the contemporary biodiversity patterns of the Tennessee River Basin and Mississippi River Basin as a whole.

  10. Fish community of the river Tiber basin (Umbria-Italy: temporal changes and possible threats to native biodiversity

    Directory of Open Access Journals (Sweden)

    Carosi A.

    2015-01-01

    Full Text Available The introduction of exotic fish species in the river Tiber basin has probably caused a serious alteration of original faunal composition. The purpose of this research was to assess the changes occurred over time in the state of the fish communities with particular reference to the reduction of local communities of endemic species. The study area comprised 68 watercourses of the Umbrian portion of the River Tiber basin; the analyses were carried out using the data of the Regional Fish Map of 1st and 2nd level and the 1st update, respectively collected during the periods between the 1990–1996, 2000–2006 and 2007–2014, in 125 sampling stations. The results show a progressive alteration of the fish communities’ structure, as confirmed by the appearance in recent times of new alien species. A total of 40 species was found, only 14 native. The qualitative change of the fish communities appear to be closely related to the longitudinal gradient of the river. The results shows that particularly in the downstream reaches, the combined action of pollution and introduction of exotic species resulted in a gradual decrease in the indigenous component of fish communities. The information collected are the indispensable premise for taking the necessary strategies for conservation of endangered species.

  11. Pesticides residues in the Prochilodus costatus (Valenciennes, 1850) fish caught in the São Francisco River, Brazil.

    Science.gov (United States)

    Oliveira, Fabiano A; Reis, Lilian P G; Soto-Blanco, Benito; Melo, Marília M

    2015-01-01

    The objective of this study was to determine the levels of pesticides in the fish Prochilodus costatus caught in São Francisco River, one of most important rivers in Brazil. Thirty-six fish were captured in three different areas, and samples of the dorsal muscle and pooled viscera were collected for toxicological analysis. We evaluated the presence of 150 different classes of insecticides, fungicides, herbicides and acaricides by multiresidue analysis technique using liquid chromatography-tandem mass spectrometry (LC-MS/MS), with the limit of detection of 5 ppb. In this study, organophosphorus and carbamate pesticides were detected at the highest levels in the caught fish. Among the 41 organophosphorus pesticides surveyed, nine types were detected (chlorpyrifos, diazinon, dichlorvos, disulfoton, ethion, etrimfos, phosalone, phosmet and pyrazophos) in the muscle, viscera pool, or both in 22 (61.1%) fish. Sampled tissues of 20 (55.6%) fish exhibited at least one of the eight evaluated carbamate pesticides and their metabolites: aldicarb, aldicarb sulfoxide, carbaryl, carbofuran, carbosulfan, furathiocarb, methomyl and propoxur. Fungicides (carbendazim, benalaxyl, kresoxim-methyl, trifloxystrobin, pyraclostrobin and its metabolite BF 500 pyraclostrobin), herbicides (pyridate and fluasifop p-butyl), acaricide (propargite) and pyrethroid (flumethrin) were also detected. In conclusion, P. costatus fish caught in the São Francisco River contained residues of 17 different pesticides, in both muscles and the viscera pool, indicating heavy environmental contamination by pesticides in the study area.

  12. How fish benefit from floodplain restoration along the lower River Rhine

    NARCIS (Netherlands)

    Grift, R.E.

    2001-01-01

    The objectives of this study were to test the beneficial value of newly created secondary channels and reconnected oxbow lakes along the lower River Rhine for fish and to give advice on position, shape and character of future water bodies. These water bodies should contribute to the

  13. Diel pattern of utilization of shallow sandy habitats by fishes in temperate lowland rivers of various size

    Directory of Open Access Journals (Sweden)

    Michał Nowak

    2015-12-01

    This suggests that overall changeover of fish assemblage reflects interspecific interactions ongoing in a given stream section and species composition might explain differences observed between various rivers better than the river discharge.

  14. Relation between environmental variables and the fish community structure in streams of das Mortes and Xingu river basins – MT, Brazil

    Directory of Open Access Journals (Sweden)

    Priscylla Rodrigues Matos

    2013-09-01

    Full Text Available Environmental variables may determine and structure the composition of fish fauna. Studies comparing differences between physical and chemical variables of water between close river basins are few. This paper aimed to check which limnological variables are related to the distribution of fish species in two river basins. For this, 20 streams were sampled, divided between das Mortes and Xingu river basins. At each point one measured a total of 8 environmental variables. Fishes were collected through trawl. Total richness was 57 species, 29 of them from Xingu river basin, 35 from das Mortes river basin, and 7 species common to both river basins. The analyses showed that the streams in these two basins have distinct limnological and faunal features. The streams in Xingu river basin had lower pH values which may have been influenced by the high rates of organic decomposition. The streams of das Mortes river showed higher values of suspended matter and chlorophyll, probably due to higher degradation of streams and lower vegetation cover levels.

  15. Organochlorine compounds and trace elements in fish tissue and bed sediments in the lower Snake River basin, Idaho and Oregon

    Science.gov (United States)

    Clark, Gregory M.; Maret, Terry R.

    1998-01-01

    Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected

  16. Using computational fluid dynamics to address fish passage concerns at the Grand Falls-Windsor hydroelectric development

    International Nuclear Information System (INIS)

    Woolgar, R.; Eddy, W.

    2006-01-01

    As a result of replacing the penstocks used to divert water to the generating station with a power canal, the study of out-migration survival of Atlantic salmon at Abitibi-Consolidated Company of Canada's (Abitibi) Grand Falls-Windsor Hydroelectric Development began in 1997. Using a behavioral louvre system, a fish bypass diversion system was implemented within the power canal. When the power canal first commenced operation in 1997 and after a new 30 MW Unit was installed in 2003, the efficiency of the system to divert the migrating smolt was low. In order to test improvements to the system, physical modeling was conducted at the University of Waterloo between 1997 and 2002. This led to increased efficiencies of fish passage before the new unit was installed. However, recent results of the physical modeling, including the new unit, did not detail the extent of changes required to the system to increase fish bypass efficiency. Abitibi then engaged SGE Acres Limited in the winter of 2004 to investigate alternatives for increasing the effectiveness of the Grand Falls Power Canal Fish Bypass Diversion System. Abitibi then re-engaged SGE Acres in July 2005 for follow-up work after the collection of physical data in the power canal by Environment Canada in June 2005. This paper presented documentation on the original analysis conducted in 2004 and 2005, and the follow-up work conducted in 2005 and 2006. Specifically, the paper discussed the development of a computational fluid dynamics model (FLOW-3D) to represent the existing condition of the power canal; simulations of the existing condition for various flows; review of model results to confirm if the model is representing overall canal hydraulics; simulation of various alternatives to increase fish bypass efficiency; and, selection of a preferred alternative. As part of the follow-up work, the paper presented a review of Environment Canada measurements and comparison with FLOW-3D model results, and additional

  17. Biological Evaluations of an Off-Stream Channel, Horizontal Flat-Plate Fish Screen-The Farmers Screen

    Science.gov (United States)

    Mesa, Matthew G.; Rose, Brien P.; Copeland, Elizabeth S.

    2010-01-01

    Screens are commonly installed at water diversion sites to reduce entrainment of fish. Recently, the Farmers Irrigation District in Hood River, Oregon, developed a new flat-plate screen design that offers passive operation and may result in reduced operation and installation costs to irrigators. To evaluate the performance (its biological effect on fish) of this type of screen, two size classes of juvenile coho salmon (Oncorhynchus kistuch) were released over a small version of this screen in the field-the Herman Creek screen. The performance of the screen was evaluated over a range of inflow [0.02 to 0.42 m3/s (cubic meters per second)] and diversion flows (0.02 to 0.34 m3/s) at different weir wall heights. The mean approach velocities for the screen ranged from 0 to 5 cm/s (centimeters per second) and mean sweeping velocities ranged from 36 to 178 cm/s. Water depths over the screen surface ranged from 1 to 25 centimeters and were directly related to weir wall height and inflow. Passage of juvenile coho salmon over the screen under a variety of hydraulic conditions did not severely injure them or cause delayed mortality. For all fish, the mean percentage of body surface area that was injured after passage over the screen ranged from about 0.4 to 3.0%. This occurred even though many fish contacted the screen surface during passage. No fish were observed becoming impinged on the screen surface (greater than 1 second contact with the screen). When operated within its design criteria (diversion flows of about 0.28 m3/s), the screen provided safe and effective downstream passage of juvenile salmonids under a variety of hydraulic conditions. However, we do not recommend operating the screen at inflows less than 0.14 m3/s (5 ft3/s) because water depth can get quite shallow and the screen can completely dewater, particularly at very low flows.

  18. Assessment of the St. Louis River AOC fish tumors and other deformities beneficial use impairment

    Science.gov (United States)

    The Fish Tumors and Other Deformities Beneficial Use Impairment (BUI) was listed as one of nine BUIs at the time the St. Louis River AOC was designated in 1987. At the time, no formal studies had been conducted to estimate the prevalence of either fish tumors or deformities. To a...

  19. Estuary fish data - Juvenile salmon in migratory corridors of lower Columbia River estuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sampling juvenile salmon and associated fishes in open waters of the lower Columbia River estuary. Field work includes bi-weekly sampling during the spring...

  20. Fish injury and mortality during passage through pumping stations

    NARCIS (Netherlands)

    Esch, van B.P.M.

    2012-01-01

    An unwanted side effect of pumping stations is that fish suffer from injury and mortality when passing through the pumps and that fish migration is hampered. In recent years, the development of so-called fish-friendly pumping stations has received increasing attention from European governmental

  1. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    Science.gov (United States)

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  2. Lead levels in rivers, sediments and fish ponds in the Ibadan ...

    African Journals Online (AJOL)

    Lead levels in rivers, sediments and fish ponds in the Ibadan metropolitan area, south-west Nigeria. ... The present situation therefore indicates severe lead contamination of aquatic systems in Ibadan City, which portends a serious public health risk to humans. A detailed assessment of other sources of lead pollution in the ...

  3. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  4. Spatiotemporal Distribution and Assemblages of Fishes below the Lowermost Dam in Protected Reach in the Yangtze River Main Stream: Implications for River Management

    Science.gov (United States)

    Li, Junyi; Zhang, Hui; Lin, Danqing; Wu, Jinming; Wang, Chengyou; Xie, Xuan

    2016-01-01

    Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon (Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TS in five hydroacoustic detections were −59.98 dB, −54.70 dB, −56.16 dB, −57.90 dB, and −59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson). In the longitudinal direction, fish preferred to stay in some specific sections like reaches 2, 4, 7, 8, 11, and 16. Since hydrology factors change greatly in different seasons, environmental characteristics vary along the reaches, and human activities play an important role in the fish behavior, it is concluded that great cross-season changes in hydrology lead to the differences in TS and fish assemblages and that geography characteristics, especially channel geography, together with human activities influence fish longitudinal distribution. This finding provides basic knowledge of spatiotemporal distribution and assemblages of fishes in the extended reaches downstream Gezhouba Dam. In addition, it offers implications for river management. It could also serve as reference of future research on fish habitat. PMID:27843943

  5. Impact of habitat diversity on the sampling effort required for the assessment of river fish communities and IBI

    NARCIS (Netherlands)

    Van Liefferinge, C.; Simoens, I.; Vogt, C.; Cox, T.J.S.; Breine, J.; Ercken, D.; Goethals, P.; Belpaire, C.; Meire, P.

    2010-01-01

    The spatial variation in the fish communities of four small Belgian rivers with variable habitat diversity was investigated by electric fishing to define the minimum sampling distance required for optimal fish stock assessment and determination of the Index of Biotic Integrity. This study shows that

  6. Fish populations under stress. The example of the Lower Neckar river; Fischpopulationen unter Stress. Das Beispiel des Unteren Neckars

    Energy Technology Data Exchange (ETDEWEB)

    Braunbeck, Thomas; Brauns, Annika; Keiter, Steffen [Sektion Aquatische Oekologie und Toxikologie, Univ. Heidelberg (Germany); Hollert, Henner [Inst. fuer Umweltforschung (Biologie V), Lehr- und Forschungsgebiet Oekosystemanalyse, Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany); Schwartz, Patrick [Basel Univ. (CH). Mensch-Gesellschaft-Umwelt (MGU)

    2009-04-15

    Background, aim, and scope: Reports about declines or unusual structures of fish populations in native aquatic systems in Central Europe and North America are in sharp contrast to an obvious improvement of general water quality. The Neckar River may serve as an example of a formerly severely contaminated freshwater system in Southern Germany, the ecological situation of which could be substantially improved over the last three decades. Nevertheless, there are still deficits in the composition of the fish fauna, which cannot be explained by conventional chemical-analytical, hydromorphological and limnological methodologies. Therefore, in search of explanations for ecological deficits, ecotoxicological investigations with an increasing focus on sediment contamination have been performed along the Lower Neckar River over a period of 10 years. In addition to sediment tests, fish populations were screened for genotoxic and embryotoxic effects as well as alterations in the structure of central metabolic organs such as the liver. Materials and methods: Roach (Rutilus rutilus) and gudgeon (Gobio gobio) from the Lower Neckar River were studied with respect to histo- and cytological alterations of the liver as well as the induction of genotoxicity in liver, gut, gills and blood cells by means of the comet and micronucleus assays. At the same time, both native sediments and acetonic sediment extracts were tested for toxicity to zebrafish (Danio rerio) embryos and permanent fish cell cultures. Results: Massive disturbances of the liver ultrastructure indicate severe stress in the fish from the Lower Neckar River despite good supply of nutrition. Both cyto- and embryotoxicity tests document a considerable toxic potential of sediments from the Lower Neckar River, and results of both the comet assay and the micronucleus test provide evidence of the presence of genotoxic agents in the sediments and their effects in fish. There has been no decrease of genotoxicity over the last 10

  7. Evidence for serial discontinuity in the fish community of a heavily impounded river

    Science.gov (United States)

    Miranda, Leandro E.; Dembkowski, D.J.

    2016-01-01

    In the Tennessee River, USA, we examined lengthwise patterns in fish community structure and species richness within and among nine reservoirs organized in sequence and connected through navigational locks. Within reservoirs, the riverine, transition and lacustrine zones supported distinct, although overlapping, nearshore fish assemblages; differences were also reflected in measures of species richness. Spatial patterns were most apparent for rheophilic species, which increased in species richness and representation upstream within each reservoir and downstream across the chain of reservoirs. This pattern resembled a sawtooth wave, with the amplitude of the wave peaking in the riverine zone below each dam, and progressively higher wave amplitude developing downstream in the reservoir chain. The observed sawtooth pattern supports the serial discontinuity concept in that the continuity of the riverine fish community is interrupted by the lacustrine conditions created behind each dam. Upstream within each reservoir, and downstream in the chain of reservoirs, habitat characteristics become more riverine. To promote sustainability of rheophilic fishes and maintain biodiversity in impounded rivers, conservation plans could emphasize maintenance and preservation of riverine environments of the reservoir's upper reaches, while remaining cognizant of the broader basin trends that provide opportunities for a lengthwise array of conservation and management policy. 

  8. Spatial Structure and Temporal Variation of Fish Communities in the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Chick, John H; Ickes, Brian S; Pegg, Mark A; Barko, Valerie A; Hrabik, Robert A; Herzog, David P

    2005-01-01

    Variation in community composition (presence/absence data) and structure (relative abundance) of Upper Mississippi River fishes was assessed using data from the Long Term Resource Monitoring Program...

  9. DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River.

    Science.gov (United States)

    Shen, Yanjun; Guan, Lihong; Wang, Dengqiang; Gan, Xiaoni

    2016-05-01

    The Yangtze River is the longest river in China and is divided into upstream and mid-downstream regions by the Three Gorges (the natural barriers of the Yangtze River), resulting in a complex distribution of fish. Dramatic changes to habitat environments may ultimately threaten fish survival; thus, it is necessary to evaluate the genetic diversity and propose protective measures. Species identification is the most significant task in many fields of biological research and in conservation efforts. DNA barcoding, which constitutes the analysis of a short fragment of the mitochondrial cytochrome c oxidase subunit I (COI) sequence, has been widely used for species identification. In this study, we collected 561 COI barcode sequences from 35 fish from the midstream of the Yangtze River. The intraspecific distances of all species were below 2% (with the exception of Acheilognathus macropterus and Hemibarbus maculatus). Nevertheless, all species could be unambiguously identified from the trees, barcoding gaps and taxonomic resolution ratio values. Furthermore, the COI barcode diversity was found to be low (≤0.5%), with the exception of H. maculatus (0.87%), A. macropterus (2.02%) and Saurogobio dabryi (0.82%). No or few shared haplotypes were detected between the upstream and downstream populations for ten species with overall nucleotide diversities greater than 0.00%, which indicated the likelihood of significant population genetic structuring. Our analyses indicated that DNA barcoding is an effective tool for the identification of cyprinidae fish in the midstream of the Yangtze River. It is vital that some protective measures be taken immediately because of the low COI barcode diversity.

  10. Microbiological Quality Parameters in Fish of Dicle(Tigris River Near Diyarbakır City

    Directory of Open Access Journals (Sweden)

    Aydın Vural

    2006-01-01

    Full Text Available In this study microbiological quality parameters of total 51 fish samples of were obtained randomly from three different points in Dicle (Tigris River were analysed from May to August 2005.The numbers of total mesophilic aerob bacteria, psychrofil bacteria, coliforms, faecal coliform, Escherichia coli, Staphylococcus-Micrococcus, Staphylococcus aureus, yeasts and moulds, Yersinia enterocolitica, Vibrio parahaemolyticus, Vibrio cholerae, anaerob bacteria with Salmonella spp., Listeria monocytogenes, E. coli O157:H7 were analyzed in the fish samples. The total mesophilic aerob bacteria were between 5.83 to 7.07 log10 cfu/g. Salmonella spp., Listeria monocytogenes and E. coli O157:H7 were detected in 15.69 %, 3.92 % and 5.88 % of samples, respectively.According to our study we observed that microbiological quality of fish samples in Dicle(Tigris River in Diyarbakır is poor and it would be formed the potential risk for public health.

  11. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  12. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    Science.gov (United States)

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  13. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin; 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Suzanne M.; Kern, J. Chris; Carmichael, Richard W. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-01-01

    This is the second year report of a multi-year project that monitors the outmigration and survival of hatchery and naturally-produced juvenile salmonids in the lower Umatilla River. This project supplements and complements ongoing or completed fisheries projects in the Umatilla River basin. Knowledge gained on outmigration and survival will assist researchers and managers in adapting hatchery practices, flow enhancement strategies, canal operations, and supplementation and enhancement efforts for natural and restored fish populations. The authors also report on tasks related to evaluating juvenile salmonid passage at Three Mile Falls Dam and West Extension Canal.

  14. Evaluation of juvenile salmonid outmigration and survival in the lower Umatilla River basin. Annual report, 1996

    International Nuclear Information System (INIS)

    Knapp, S.M.; Kern, J.C.; Cameron, W.A.; Snedaker, S.M.; Carmichael, R.W.

    1996-01-01

    This is the second year report of a multi-year project that monitors the outmigration and survival of hatchery and naturally-produced juvenile salmonids in the lower Umatilla River. This project supplements and complements ongoing or completed fisheries projects in the Umatilla River basin. Knowledge gained on outmigration and survival will assist researchers and managers in adapting hatchery practices, flow enhancement strategies, canal operations, and supplementation and enhancement efforts for natural and restored fish populations. The authors also report on tasks related to evaluating juvenile salmonid passage at Three Mile Falls Dam and West Extension Canal

  15. Qualitative inventory of fish fauna from Danube River around Cama Dinu islets

    Directory of Open Access Journals (Sweden)

    NASTASE Aurel

    2006-09-01

    Full Text Available The purpose of fish fauna inventory was to find out scientific grounds that protected species are present and need declaration of Cama Dinu islets as protected area. The inventory was undertaken in June 2004, by fish sampling, questionnaires and fishery observation. A number of 55 out of 65 species reviewed from Romanian and Bulgarian authors have found. The Danube River has valuable ecologically fish species to justify declaration of Cama Dinu islets as protected area according with Romanian Law 462/2001: 12 species which conservation need establish of protected area - annex 3; 4 species that need a strict protection - annex 4; 9 species of European Community interest that need special management measures.

  16. The fish fauna of Anambra river basin, Nigeria: species abundance and morphometry

    Directory of Open Access Journals (Sweden)

    Gregory Ejikeme Odo

    2009-06-01

    Full Text Available The fish yields of most Nigeria inland waters are generally on the decline for causes that may range from inadequate management of the fisheries to degradation of the water bodies. Sustainable exploitation requires knowledge of the ichthyofaunal composition in the water bodies. We did a survey of fish species in Anambra river basin for 22 months. Fish samples were collected using four different gears -hook and line of size 13, caste nets, gill nets, and cages of mesh sizes of 50mm, 75mm, and 100mm each. We recorded 52 fish species belonging to 17 families: 171, 236, and 169 individuals at Ogurugu, Otuocha, and Nsugbe stations respectively. Two families, Characidae, 19.5 %, and Mochokidae, 11.8%, constituted the dominant fish families in the river. The dominant fish species were Citherinus citherius, 9.02%, and Alestes nurse, 7.1%. Other fish species with significant abundance were Synodontis clarias 6.9%, Macrolepidotus curvier 5.7%, Labeo coubie 5.4%, Distichodus rostrtus 4.9%, and Schilbe mystus 4.5%. The meristic features of the two most abundant fish species caught are as follows: Citharinus citharius dorsal fins 20, anal fins 30, caudal fins 21, pectoral fins, 9 and 8 ventral fins, and Alestes nurse 10 dorsal fins, 14 anal fins, 31 caudal fins, 7 pectoral fins and 6 ventral fins. The morphometric features of the two most abundant fish species are Citharinus citharius total length 300mm, standard length 231mm, head length 69mm, body length 101mm, body girth 176 mm, body weight 900mg. Alestes nurse total length 200, standard length 140mm, head length 60mm, body length 80mm, body girth120mm, body weight 400mg. The most abundant animal utilizing the basin was Ardea cinerea(D3 with 22.2% occurrence (D4 and this was followed by Caprini with 13.51%, and Varanus niloticus, 10.04%. The least abundant animals utilizing basin were Chephalophus rufilatus, and Erythrocebus patas, with 0.58% each of occurrence. Rev. Biol. Trop. 57 (1-2: 177-186. Epub

  17. Appropriate Model for Zoning Local Fish Conservation in front of Buddhist Temple on the Bank of the Chi River by Sustainable Community Participation

    OpenAIRE

    Somchob Poo-Inna; Song-Koon Jantakajon; Terdthai Pantachai

    2009-01-01

    Problem statement: The fresh water fish in The Chi River was a major source of food of people living in this area. The objectives of this research were: (1) to study the historical background, current situation and problems of local fish conservation in front of The Chi River by community participation and (2) to find the opriate model for zoning the local fish conservation on the bank of The Chi River by sustainable community participation. Approach: The research area in Esan Reg...

  18. Fish assemblages in borrow-pit lakes of the Lower Mississippi River

    Science.gov (United States)

    Miranda, Leandro E.; Killgore, K. J.; Hoover, J.J.

    2013-01-01

    Borrow-pit lakes encompass about a third of the lentic water habitats (by area) in the active floodplain of the Lower Mississippi River, yet little is known about their fish assemblages. We investigated whether fish assemblages supported by borrow-pit lakes resembled those in oxbow lakes to help place the ecological relevance of borrow-pit lakes in context with that of natural floodplain lakes. In all, we collected 75 fish species, including 65 species in eight borrow-pit lakes, 52 species in four riverside oxbow lakes, and 44 species in eight landside oxbow lakes. Significant differences in several species richness metrics were evident between borrow-pit lakes and landside oxbow lakes but not between borrow-pit lakes and riverside oxbow lakes. All three lake types differed in fish assemblage composition. Borrow-pit lakes and riverside oxbow lakes tended to include a greater representation of fish species that require access to diverse environments, including lentic, lotic, and palustrine habitats; fish assemblages in landside oxbow lakes included a higher representation of lacustrine species. None of the fish species collected in borrow-pit lakes was federally listed as threatened or endangered, but several were listed as species of special concern by state governments in the region, suggesting that borrow-pit lakes provide habitat for sensitive riverine and wetland fish species. Differences in fish assemblages among borrow-pit lakes were linked to engineered morphologic features, suggesting that diversity in engineering can contribute to diversity in fish assemblages; however, more research is needed to match engineering designs with fish assemblage structures that best meet conservation needs.

  19. Determination of Heavy Metals in Freshwater Fishes of the Tigris River in Baghdad

    Directory of Open Access Journals (Sweden)

    Montazer Mensoor

    2018-06-01

    Full Text Available The presence of heavy metals in freshwater fish represents a global public health issue. The current study aimed to determine the heavy metal concentration and toxicity in some freshwater fish species collected from the Tigris River in Baghdad. Out of the many fish species in Iraq, the current study selected the Genus Barbus as it represents the most popular fish food in Iraq. The sample included twenty fishes and the selected sample locations covered two industrial areas in Baghdad (one north of Baghdad and one south of Baghdad. The levels of heavy metals were determined by using an atomic absorption spectrophotometer (AAS. The results showed that concentrations of heavy metals in the sampled fishes exceeded the acceptable levels for food sources for human consumption. The results of this study showed high levels of cadmium and chromium levels in the tissues of the selected fish sample. Cd and Cr were among the highest concentrations and both exceeded the World Health Organization and Food and Agriculture Organization of the United Nations acceptable levels for heavy metals in fishes.

  20. Land use structures fish assemblages in reservoirs of the Tennessee River

    Science.gov (United States)

    Miranda, Leandro E.; Bies, J. M.; Hann, D. A.

    2015-01-01

    Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.

  1. Escapement monitoring of adult chinook salmon in the Secesh River and Lake Creek, Idaho, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Faurot, Dave; Kucera, Paul A.

    2001-01-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  2. Patterns of presence and concentration of pesticides in fish and waters of the Júcar River (Eastern Spain).

    Science.gov (United States)

    Belenguer, Vicent; Martinez-Capel, Francisco; Masiá, Ana; Picó, Yolanda

    2014-01-30

    The Júcar River, in a typical Mediterranean Basin, is expected to suffer a decline in water quality and quantity as a consequence of the climate change. This study is focused on the presence and distribution of pesticides in water and fish, using the first extensive optimization and application of the QuEChERS method to determine pesticides in freshwater fish. Majority pesticides in water - in terms of presence and concentration - were dichlofenthion, chlorfenvinphos, imazalil, pyriproxyfen and prochloraz (associated with a frequent use in farming activities), as well as buprofezin, chlorpyriphos and hexythiazox. In fish, the main compounds were azinphos-ethyl, chlorpyriphos, diazinon, dimethoate and ethion. The analysis of bio-concentration in fish indicated differences by species. The maximum average concentration was detected in European eel (a critically endangered fish species). The wide presence of pesticides in water and fish suggests potential severe effects on fish populations and other biota in future scenarios of climate change, in a river basin with several endemic and endangered fish species. The potential effects of pesticides in combination with multiple stressors require further research to prioritize the management of specific chemicals and suggest effective restoration actions at the basin scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The Radioactivity α and β Evaluation in Fish, Lobster and Shrimps from Donan's River Cilacap

    International Nuclear Information System (INIS)

    Sutjipto; Zainul Kamal

    2002-01-01

    The radioactivity α and β total evaluation in fish, lobster and shrimps from Donan's river Cilacap have been done The determination of α and β total using α and β spectrometry. The result of experimentation showed that radioactivity α and β in fish, lobster and shrimps. Could not use as shore quality because unprepared of the threshold value. (author)

  4. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004

    International Nuclear Information System (INIS)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems

  5. The fish community of the Berg River estuary and an assessment of ...

    African Journals Online (AJOL)

    Zoology Department and Marine Biology Research Institute, University of Cape Town, Rondebosch, 7700. Republic of South Africa. Received I May 1993; accepted 6 October /993. Data concerning the species composition, abundance and distribution of fishes inhab~ing the Berg River estuary are presented and used to ...

  6. DEVELOPMENTAL STABILITY AND CYTOGENETIC HOMEOSTASIS OF FISH FAUNA OF THE SLUCH RIVER IN CURRENT CONDITIONS OF ANTHROPOGENIC STRESS

    Directory of Open Access Journals (Sweden)

    O. Bedunkova

    2015-03-01

    Full Text Available Purpose. To assess the developmental stability and cytogenetic homeostasis of fish populations in the Sluch River in the watercourse areas subjected to anthropogenic stress of different intensities. Methodology. Studies of fish populations in the Sluch River were carried out within Berezne district of Rivne region. The condition of individual fish in the populations were evaluated integrally using morphological (evaluation of the stability of development based on the level of fluctuating asymmetry (FA and cytogenetic (micronucleus (MN test of peripheral blood erythrocytes of fish methods. The methods used allowed identifying the destabilization level of organism development, even in the cases when there is no direct disturbance of population homeostasis. Findings. The found FA levels reflect minor (initial deviations from the normal developmental processes of fish populations in in the studied watercourse areas. Especially significantly this is reflected in a high proportion of individuals with FA in the samples of roach (Rutilus rutilus, bleak (Alburnus alburnus, bream (Abramis brama and perch (Perca fluviatilis. An excess in the frequency of MN erythrocyte cells in roach and pike (Esox lucius blood relatively the level of spontaneous mutagenesis was observed in the cross section №2, which is exposed to sewage waters. The observed manifestation of degenerative processes in fish organisms at this stage can be evaluated as an increased reactivity of sensitive species to the presence of mutagenic agents in the composition of river pollution. The functioning of spawning populations gives reason to believe that the current level of human impact is not critical for the hydroecosystem. Originality. For the first time we obtained data on the stability of development and cytogenetic homeostasis of fish populations in the hydroecosystem of Rivne region in current conditions of anthropogenic stress. Practical value. The obtained results can be used for

  7. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  8. Monitoring and evaluation of smolt migration in the Columbia River Basin; Volume 1; Evaluation of the 1995 predictions of the run-timing of wild migrant subyearling chinook in the Snake River Basin using Program RealTime

    International Nuclear Information System (INIS)

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1997-01-01

    This project was initiated in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of the project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and to help identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to assist in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; and (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community

  9. Study of risk of pollution by the heavy metals of the water and fishes of the Congo river

    International Nuclear Information System (INIS)

    Tuakashikila, M.; Mbuyi, K.M.; Kabwe, C.; Malumba, M.; Kapembo, L.; Lusamba, N.; Lundemba, S.; Barutti, Y.

    2010-01-01

    In order to conduct property this study, we have chosen to evaluate cadmium and lead concentration in Congo River water and un three species of fishes (Oreochromis niloticus nilotucus, Schilbe mystus and Campylomormyrus). These fishes have been collected from three sites in Congo River during the time from August to November 2009. Sample analysis (water and fishes) revealed that cadmium and concentration were lower then world heath organization (Who) acceptable standards. The campulomormyrus species present the highest lead concentration of all studied species and further mose this concentration has been found in Kinsuka. This could be justified by the position Kinsuka site which is the down stream section compared to Kinkole and Maluku position in Congo River. Therefor harmful effects are not expected in short time, however they are dangerous in long time because these metals are both toxic and cumulative, may damage concerned organs

  10. MACROZOOBENTHOS OF MOUNTAIN RIVERS OF THE TRANSCARPATHIAN REGION AS A FORAGE BASE OF BENTHOPHAGOUS FISHES AND SAPROBITY INDICATOR

    Directory of Open Access Journals (Sweden)

    S. Kruzhylina

    2014-12-01

    Full Text Available Purpose. To study qualitative and qualitative indices of macrozoobenthos as one of main components of the forage base of benthophagous fishes in mountain river reaches of the Transcarpathian region and determination of their saprobity level. Methodology. Thhj,9.e study was carried out in summer period of 2009 in mountain river reaches of the Tisa river catchment. Zoobenthos samples were collected by a Surber sampler (25 × 25 cm on the bottoms of different fractions with different water flow rate (riffle, run, pool. Collection, processing and interpretation of the obtained data was carried out according to generally accepted hydrobiological methods developed for mountain river studies. Saprobity was of the studied rivers was calculated by Pantle-Buck formula. The Zelinka-Marvan saprobity index was used for calculations. Findings. Qualitative and quantitative macrozoobenthos indices have been studied. The number of zoobenthos on the investigated river sections ranged from 416 to 7712 ind./m2 with biomasses from 2.96 to 83.84 g/m2. The major portion of the zoobenthic biomass in the majority of rivers was due to caddis fly larvae composing up to 93% of the total biomass. An important role in the total biomass of the zoobenthos also belonged to mayfly (up to 53% and stonefly (up to 55% larvae and in lower degree amphipods (up to 39%, chironomid larvae (up to 14% and aquatic coleopterans (up to 5%. According to the calculated potential fish productivity, the mountain rivers can be apparently separated into three groups: little productive (4.2–12.7 kg/ha, medium productive (13.2–21.6 kg/ha and high productive (25.3–85.3 kg/ha. Mountain river reaches of the Transcarpathian region were found to belong to pure χ-saprobic, and о- і β-mesosaprobic zones, the saprobity index in which ranged from 0.35 (Rika river to 1.7 (Shipot river. Originality. For further calculation and assessment of brown trout (Salmo trutta and European grayling (Thymallus

  11. Tissue levels of the antioxidant enzymes superoxide dismutase and catalase in fish Astyanax bimaculatus from the Una River Basin

    Directory of Open Access Journals (Sweden)

    Maria Tereza Oliveira Batista

    2014-10-01

    Full Text Available STRACT This paper seeks to identify the biomarker response to oxidative stress in Astyanax bimaculatus, a freshwater fish, collected from the Una River and its associated water bodies. The fish were collected using fishing nets at three different points on the river basin, namely Fazenda Piloto (FP, Ipiranga (IP and Remédios (RM, during the period from December 2013 to March 2014. Physical and chemical analyses of the water at the sample locations indicate that IP and RM possibly have larger concentration of either natural or anthropic pollutants as compared to FP. FP can therefore be considered as the point less impacted by pollutants than other points. Hepatic activity of antioxidant stress enzymes, superoxide dismutase (SOD and catalase (CAT, were measured in the specimens. The levels of SOD were reduced at RM while they were elevated in fish collected at IP. The CAT levels for the fish at RM and IP were about 148.9% and 202.4% above the values at FP, respectively. These results suggest that antioxidant enzymes could be used as biomarkers to measure oxidative stress caused by pollutants in the Una River Basin.

  12. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  13. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  14. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    Science.gov (United States)

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Concentration factors of stable elements and radionuclides in Po river fish

    International Nuclear Information System (INIS)

    Achilli, M.; Ciceri, G.; Bozzani, A.; Guzzi, L.; Queirazza, G.

    1988-01-01

    The concentration factors (CF) of stable Co, Cs, Mn, Fe, Zn and Sr in different fish from six stretches in the middle course of the Po river (N. Italy) have been investigated. The space-time variation in water has been followed for 14 months. The investigation has been undertaken to study CF variations in the same fish species as a function of the physico-chemical form of the different elements in water (dissolved, dissolved and exchangeable fraction of the particulate, total). CF values of 103 Ru, 131 I and 134 - 137 Cs were also investigated for Cyprinus carpio reared, with artificial food, in two semi-natural environments

  16. Multicriteria assessment in restoring migratory fish stocks in the river Iijoki; Monitavoitearviointi Iijoen vaelluskalakantojen palauttamisen tukena

    Energy Technology Data Exchange (ETDEWEB)

    Karjalainen, T.P.; Rytkoenen, A.-M.; Marttunen, M.; Maeki-Petaeys, A.; Autti, O.

    2011-05-15

    The Iijoki is one of Finland's most important former salmon rivers. Construction of multiple main stem dams on the river in the 1960s effectively blocked the migration corridors of migratory fish. Suitable spawning and nursery habitats above the dams span an estimated 600-800 hectares. With riverside residents are very much in favour of the return of migratory fish, watershed planning for this has been set as a target. Such measures are rendered urgent by the fact that there is still a possibility of replenishing the Iijoki's own salmon stock, thereby restoring the fishes' natural lifecycle and natural selection. This report has been completed as part of the project 'The return of migratory fish to the River Iijoki (2008-2010)', where the main object was reconciling the target of enhancing the natural life cycle of migratory fish with the continued generation of hydropower. Under a multicriteria assessment, various alternatives and measures for improving migratory fish stocks were clarified and their desirability, costs and benefits systematically and transparently evaluated. Furthermore, interest groups' views of the three options and their effects (as distinct from the expert evaluation) were clarified with the help of computer aided interviews. The alternatives were transferring salmon above the main stem dams and two fish-ladder options. The multicriteria assessment viewed the construction of fish ladders, alongside other large-scale support measures, as the best option. Based on all of the criteria applied in a cost-benefit analysis, the stock transfer alternative was the most economically viable, because its net product value was positive in all cases. The fish ladder options were the most expensive due to the construction costs involved, but they also provided the greatest benefits. Above all, fish ladder construction is supported by the fact that it would return migratory fish to their natural lifecycle and attain the EU

  17. Fishing activities

    Science.gov (United States)

    Oberle, Ferdinand; Puig, Pere; Martin, Jacobo; Micallef, Aaron; Krastel, Sebastian; Savini, Alessandra

    2018-01-01

    Unlike the major anthropogenic changes that terrestrial and coastal habitats underwent during the last centuries such as deforestation, river engineering, agricultural practices or urbanism, those occurring underwater are veiled from our eyes and have continued nearly unnoticed. Only recent advances in remote sensing and deep marine sampling technologies have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention among the scientific community, policy makers and the general public due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.

  18. Culvert Length and Interior Lighting Impacts to Topeka Shiner Passage

    Science.gov (United States)

    2017-11-01

    Culverts can act as barriers to fish passage for a number of reasons including insufficient water depth or excess velocity. In addition, concern is being raised over behavioral barriers where culvert conditions elicit an avoidance response that deter...

  19. A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 1,994 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1993...

  20. Ecological studies on the freshwater fishes of the Alligator Rivers region, Northern Territory

    International Nuclear Information System (INIS)

    Bishop, K.A.; Allen, S.A.; Pollard, D.A.; Cook, M.G.

    1990-01-01

    The tropical climate of the Alligator Rivers Region (ARR) has a distinctive wet-dry cycle , resulting in seasonal flows in the creeks and rivers of its catchments. The present study, begun in August 1978, was aimed at developing an ecological monitoring system that would detect any changes to the freshwater fish communities brought about by recent uranium mining and processing in the lowlands of the ARR. The focus of the synecological studies, was a description of spatial and temporal patterns in the community structure of the fish fauna. Interpretation of these patterns was made possible by the collection of detailed environmental data from the study sites. It was found that of the ARR seasonal changes in environmental conditions were so marked that they often obscured the effects of environmental gradients along a watercourse and differing environmental conditions characteristics of different types of waterbody. Hence it may not be entirely satisfactory to define environmental zones in these catchments based on overall environmental conditions through the whole seasonal cycle, because changes in any one such zone between seasons result in very marked changes in the fish communities of habitats in that zone. 34 refs., 22 tabs., 45 figs., 3 maps

  1. Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    2001-04-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  2. Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental contaminants, health indicators, and reproductive biomarkers in fish from the Mobile, Apalachicola-Chattahoochee-Flint, Savannah, and Pee Dee River Basins

    Science.gov (United States)

    Hinck, Jo Ellen; Blazer, Vicki; Denslow, Nancy D.; Echols, Kathy R.; Gale, Robert W.; May, Tom W.; Claunch, Rachael; Wieser, Carla; Anderson, Patrick J.; Coyle, James J.; Gross, Timothy S.; Tillitt, Donald E.

    2007-01-01

    Largemouth bass (Micropterus salmoides) and common carp (Cyprinus carpio) were collected from 13 sites in 4 river basins in the southeastern United States to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8- tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Fish were field-examined for external and internal anomalies, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Mercury concentrations in bass samples from all sites exceeded toxicity thresholds for mammals [>0.1 micrograms per gram wet weight (ug/g ww)], fish (>0.2 ug/g ww), and birds (>0.3 ug/g ww) and were greatest (>0.5 ug/g ww) in samples from the Alabama River at Eureka Landing, Alabama; the Mobile River at Bucks, Alabama; the Apalachicola River at Blountstown, Florida; the Savannah River at Sylvania, Georgia; and the Pee Dee River at Bucksport, South Carolina. Selenium concentrations were relatively high (>0.75 ug/g ww) in fish from the Tombigbee River at Lavaca, Alabama; the Mobile River at Bucks; and the Chattahoochee River at Omaha, Georgia compared to those from other sites. Concentrations of 2,2-bis (p-chlorophenyl)- 1,1-dichloroethylene (p,p'-DDE) were high in fish from the Chattahoochee River at Omaha and the Mobile River near Bucks, which was near a 2,2-bis (p-chlorophenyl)-1,1- dichloroethylene (DDT) formulating facility that historically discharged into the lower Mobile River. Toxaphene concentrations in fish from the Flint River near Albany, Georgia (60-100 nanograms per gram (ng/g) ww) may pose a risk to fish. Concentrations of other formerly used (total chlordanes, dieldrin, endrin, aldrin, mirex, and hexachlorobenzene) and currently used (pentachlorobenzene, pentachloroanisole

  3. Mercury bioaccumulation in fish in a region affected by historic gold mining; the South Yuba River, Deer Creek, and Bear River watersheds, California, 1999

    Science.gov (United States)

    May, Jason T.; Hothem, Roger L.; Alpers, Charles N.; Law, Matthew A.

    2000-01-01

    Mercury that was used historically for gold recovery in mining areas of the Sierra Nevada continues to enter local and downstream water bodies, including the Sacramento Delta and the San Francisco Bay of northern California. Methylmercury is of particular concern because it is the most prevalent form of mercury in fish and is a potent neurotoxin that bioaccumulates at successive trophic levels within food webs. In April 1999, the U.S. Geological Survey, in cooperation with several other agencies the Forest Service (U.S. Department of Agriculture), the Bureau of Land Management, the U.S. Environmental Protection Agency, the California State Water Resources Control Board, and the Nevada County Resource Conservation District began a pilot investigation to characterize the occurrence and distribution of mercury in water, sediment, and biota in the South Yuba River, Deer Creek, and Bear River watersheds of California. Biological samples consisted of semi-aquatic and aquatic insects, amphibians, bird eggs, and fish. Fish were collected from 5 reservoirs and 14 stream sites during August through October 1999 to assess the distribution of mercury in these watersheds. Fish that were collected from reservoirs included top trophic level predators (black basses, Micropterus spp.) intermediate trophic level predators [sunfish (blue gill, Lepomis macrochirus; green sunfish, Lepomis cyanellus; and black crappie, Poxomis nigromaculatus)] and benthic omnivores (channel catfish, Ictularus punctatus). At stream sites, the species collected were upper trophic level salmonids (brown trout, Salmo trutta) and upper-to-intermediate trophic level salmonids (rainbow trout, Oncorhynchus mykiss). Boneless and skinless fillet portions from 161 fish were analyzed for total mercury; 131 samples were individual fish, and the remaining 30 fish were combined into 10 composite samples of three fish each of the same species and size class. Mercury concentrations in samples of black basses

  4. Effect of abiotic variables on fish eggs and larvae distribution in headwaters of Cuiabá River, Mato Grosso State, Brazil

    Directory of Open Access Journals (Sweden)

    Simoni Ramalho Ziober

    Full Text Available Researches on ichthyoplankton seems to be an important tool to identification of spawning areas and periods for freshwater fish. Ichthyoplankton was sampled monthly in the headwaters of the Cuiabá River, upper Paraguay River basin, (Mato Grosso State, Brazil, and in four of its tributaries, between November 2007 and March 2008, to evaluate the spatial and temporal distribution of fish eggs and larvae and the influence of regional and local variables on their distribution. In total, 22,067 eggs and 1,045 larvae were collected. A significant negative correlation was found between egg density and the variables of river level and flow volume. Larval density was not significantly correlated with any of the regional variables. The egg and larval densities were significantly higher at the sampling sites in the main river. The highest densities were found in environments with greater river widths, intermediate depths and lowest values of dissolved oxygen, electrical conductivity, and transparency. Anostomidae, Zungaro zungaro, Bryconamericus spp., Pimelodus spp., Pimelodidae, Auchenipteridae, and Siluriformes were the most abundant groups of larvae, and were observed at the sampling sites in the main river. The study site is an important spawning area for migratory and, non-migratory fish species, and highlight the importance of the main river to the reproductive event, by the influence of local variables transparency and river width, which in turn maybe temporally influenced by the river level.

  5. Habitat use by 0+ cyprinid fish in the River Great Ouse, East Anglia

    OpenAIRE

    Garner, Paul

    1997-01-01

    This study was designed to examine the habitat use of several species of 0+ cyprinid in the regulated River Great Ouse and to determine the reasons for specific habitat use. In general, all fish species were found associated with the marginal zone, with little diel variation. Use of shallow habitats in the presence of macrophytes correlated well with the distribution of zooplankton in the river channel, the preferred food source of 0+ cyprinids. During the early to late larval phase, all spec...

  6. Adaption of egg and larvae sampling techniques for lake sturgeon and broadcast spawning fishes in a deep river

    Science.gov (United States)

    Roseman, Edward F.; Kennedy, Gregory W.; Craig, Jaquelyn; Boase, James; Soper, Karen

    2011-01-01

    In this report we describe how we adapted two techniques for sampling lake sturgeon (Acipenser fulvescens) and other fish early life history stages to meet our research needs in the Detroit River, a deep, flowing Great Lakes connecting channel. First, we developed a buoy-less method for sampling fish eggs and spawning activity using egg mats deployed on the river bottom. The buoy-less method allowed us to fish gear in areas frequented by boaters and recreational anglers, thus eliminating surface obstructions that interfered with recreational and boating activities. The buoy-less method also reduced gear loss due to drift when masses of floating aquatic vegetation would accumulate on buoys and lines, increasing the drag on the gear and pulling it downstream. Second, we adapted a D-frame drift net system formerly employed in shallow streams to assess larval lake sturgeon dispersal for use in the deeper (>8 m) Detroit River using an anchor and buoy system.

  7. Quantifying seining detection probability for fishes of Great Plains sand‐bed rivers

    Science.gov (United States)

    Mollenhauer, Robert; Logue, Daniel R.; Brewer, Shannon K.

    2018-01-01

    Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes and across sampling conditions. We observed a quadratic relationship between water depth and detection probability, in which the exact nature of the relationship was species‐specific and dependent on water clarity. Similarly, the direction of the relationship between water clarity and detection probability was species‐specific and dependent on differences in water depth. The relationship between water temperature and detection probability was also species dependent, where both the magnitude and direction of the relationship varied among fishes. We showed how ignoring detection error confounded an underlying relationship between species occurrence and water depth. Despite imperfect and heterogeneous detection, our results support that determining species absence can be accomplished with two to six spatially replicated seine hauls per 200‐m reach under average sampling conditions; however, required effort would be higher under certain conditions. Detection probability was low for the Arkansas River Shiner Notropis girardi, which is federally listed as threatened, and more than 10 seine hauls per 200‐m reach would be required to assess presence across sampling conditions. Our model allows scientists to estimate sampling effort to confidently assess species occurrence, which

  8. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.

  9. Patterns of fish diversity and assemblage structure and water quality in the longest Asian tropical river (Mekong)

    Science.gov (United States)

    Chea, R.; Lek, S.; Grenouillet, G.

    2016-12-01

    Although the Mekong River is one of the world's 35 biodiversity hotspots, the large-scale patterns of fish diversity and assemblage structure remain poorly addressed. The present study aimed to investigate the spatial variability of water quality in the Lower Mekong Basin and the fish distribution patterns in the Lower Mekong River (LMR) and to identify their environmental determinants. Daily fish catch data at 38 sites distributed along the LMR were related to 15 physicochemical and 19 climatic variables. As a result, four different clusters were defined according to the similarity in assemblage composition and 80 indicator species were identified. While fish species richness was highest in the Mekong delta and lowest in the upper part of the LMR, the diversity index was highest in the middle part of the LMR and lowest in the delta. We found that fish assemblages changed along the environmental gradients and that the main drivers affecting the fish assemblage structure were the seasonal variation of temperature, precipitation, dissolved oxygen, pH, and total phosphorus. Specifically, upstream assemblages were characterized by cyprinids and Pangasius catfish, well suited to low temperature, high dissolved oxygen and high pH. Fish assemblages in the delta were dominated by perch-like fish and clupeids, more tolerant to high temperatures, and high levels of nutrients (nitrates and total phosphorus) and salinity. Overall, the patterns were consistent between seasons. Our study contributes to establishing the first holistic fish community study in the LMR. Overall of the LMR water quality, we found that the water in the mainstream was less polluted than its tributaries; eutrophication and salinity could be key factors affecting water quality in LMR. Moreover, the seasonal variation of water quality seemed to be less marked than spatial variation occurring along the longitudinal gradient of Mekong River. Significant degradations were mainly associated with human

  10. Projected risk of population declines for native fish species in the Upper Mississippi River

    Science.gov (United States)

    Crimmins, S.M.; Boma, P.; Thogmartin, W.E.

    2015-01-01

    Conservationists are in need of objective metrics for prioritizing the management of habitats. For individual species, the threat of extinction is often used to prioritize what species are in need of conservation action. Using long-term monitoring data, we applied a Bayesian diffusion approximation to estimate quasi-extinction risk for 54 native fish species within six commercial navigation reaches along a 1350-km gradient of the upper Mississippi River system. We found a strong negative linear relationship between quasi-extinction risk and distance upstream. For some species, quasi-extinction estimates ranged from nearly zero in some reaches to one in others, suggesting substantial variability in threats facing individual river reaches. We found no evidence that species traits affected quasi-extinction risk across the entire system. Our results indicate that fishes within the upper Mississippi River system face localized threats that vary across river impact gradients. This suggests that conservation actions should be focused on local habitat scales but should also consider the additive effects on downstream conditions. We also emphasize the need for identification of proximate mechanisms behind observed and predicted population declines, as conservation actions will require mitigation of such mechanisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  11. Innovation in utilization of fish tanks for fish culture among fish ...

    African Journals Online (AJOL)

    This study investigated innovation in utilization of fish tanks for fish culture among fish farmers in Obio/Akpor Local Government Area of Rivers State, Nigeria. Data for this study was obtained through the administration of questionnaire and scheduled interview to 120 sampled fish farmers randomly selected from the study ...

  12. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river.

    Science.gov (United States)

    Kalogianni, Eleni; Vourka, Aikaterini; Karaouzas, Ioannis; Vardakas, Leonidas; Laschou, Sofia; Skoulikidis, Nikolaos Th

    2017-12-15

    Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish

  13. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  14. Mercury and Methylmercury Concentrations in Muscle Tissue of Fish Caught in Major Rivers of the Czech Republic

    Directory of Open Access Journals (Sweden)

    K. Kružíková

    2008-01-01

    Full Text Available The aim of the study was to evaluate mercury contamination at twelve outlet sites of rivers in the Czech Republic (Labe, Ohře, Vltava, Berounka, Sázava, Otava, Lužnice, Svratka, Dyje, Morava and Odra. As an indicator, we used muscle tissue of the chub (Leuciscus cephalus caught at selected sites in 2007. A total of 96 fish were examined. Total mercury was determined by atomic absorption spectrophotometry using the AMA 254 analyzer and methylmercury was determined by gas chromatography with electron-capture detection. Total mercury (THg and methylmercury (MeHg concentrations ranged 0.039–0.384 mg kg-1 fresh weight and 0.033–0.362 mg kg-1 fresh weight, respectively. Mercury bound in methylmercury (HgMe made up on average about 82.2% of total mercury. The highest mercury concentrations were found in fish from Obříství, a site on Labe (THg 0.263 ± 0.086 mg kg-1; MeHg 0.256 ± 0.084 mg kg-1. Mercury concentrations in fish from rivers that cross the borders of the Czech Republic (Labe, Odra and Morava were low. The Czech Republic therefore does not contribute significantly to river pollution outside its national borders. Hazard indices of the sites monitored were well below 1, and reached 1.365 only in Obříství on Labe for fisherman’s family members (i.e. in the case of annual consumption of 10 kg fish. This indicates possible hazards involved in eating meat of fish caught in that location. Based on PTWI for methylmercury, the maximum amount of fish meat allowed for consumption per week was calculated. The site with the lowest value was Obříství on Labe (0.44 kg. The results of this study present a partial contribution to health risk assessment on the major rivers in Czech Republic.

  15. Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of north-western South America.

    Science.gov (United States)

    Jiménez-Segura, L F; Galvis-Vergara, G; Cala-Cala, P; García-Alzate, C A; López-Casas, S; Ríos-Pulgarín, M I; Arango, G A; Mancera-Rodríguez, N J; Gutiérrez-Bonilla, F; Álvarez-León, R

    2016-07-01

    The remarkable fish diversity in the Caribbean rivers of north-western South America evolved under the influences of the dramatic environmental changes of neogene northern South America, including the Quechua Orogeny and Pleistocene climate oscillations. Although this region is not the richest in South America, endemism is very high. Fish assemblage structure is unique to each of the four aquatic systems identified (rivers, streams, floodplain lakes and reservoirs) and community dynamics are highly synchronized with the mono-modal or bi-modal flooding pulse of the rainy seasons. The highly seasonal multispecies fishery is based on migratory species. Freshwater fish conservation is a challenge for Colombian environmental institutions because the Caribbean trans-Andean basins are the focus of the economic development of Colombian society, so management measures must be directed to protect aquatic habitat and their connectivity. These two management strategies are the only way for helping fish species conservation and sustainable fisheries. © 2016 The Fisheries Society of the British Isles.

  16. Summary of the Big Lost River fish study on the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Overton, C.K.; Johnson, D.W.

    1978-01-01

    Winter fish mortality and fish migration in the Big Lost River were related to natural phenomenon and man-created impacts. Low winter flows resulted in a reduction in habitat and increased rainbow trout mortality. Man-altered flows stimulated movement and created deleterious conditions. Migratory patterns were related to water discharge and temperature. A food habit study of three sympatric salmonid fishes was undertaken during a low water period. The ratio of food items differed between the three species. Flesh of salmonid fishes from within the INEL Site boundary was monitored for three years for radionuclides. Only one trout contained Cs-137 concentrations above the minimum detection limits

  17. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (<1 m), and (2) a vertical antenna (2.7 × 1.2 m) for detecting fish in deeper pools (≥1 m). Detection distances of the horizontal antenna were between 0.7 and 1.0 m, and detection probability was 0.32 ± 0.02 (mean ± SE) in a field test using rocks marked with 32-mm PIT tags. Detection probability of PIT-tagged fish in the Cache la Poudre River, Colorado, using the raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  18. Pools and rapids as spawning and nursery areas for fish in a river stretch without floodplains

    Directory of Open Access Journals (Sweden)

    Sunshine de Ávila-Simas

    Full Text Available This study aimed to evaluate the importance of two environments situated in the main channel of the Peixe River (a tributary of the upper Uruguay River on fish reproduction and initial growth. Ichthyoplankton, macrozooplankton, and zoobenthos collections were taken on a monthly basis from October 2011 to March 2012, sampling a rapids and a pool environment. The instrument used for the capture of the ichthyoplankton in both environments was a light trap. In total, 795 eggs and 274 larvae were captured. The species that presented higher abundance and occurrence frequency out of the total captured in both environments were Leporinus obtusidens, Bryconamericus iheringii, and Bryconamericus stramineus. The evaluation of the feeding activity reveals a major repletion degree of the larvae in more advanced stages in the pool. The pool environment presented a higher abundance of larvae in more advanced development stages. We conclude that the channel of the Peixe River is important for the reproduction and initial growth of fish and that each river environment seems to fulfill a different role in the life cycle of the ichthyoplankton community.

  19. Fish invasions in the world's river systems: when natural processes are blurred by human activities.

    Directory of Open Access Journals (Sweden)

    Fabien Leprieur

    2008-02-01

    Full Text Available Because species invasions are a principal driver of the human-induced biodiversity crisis, the identification of the major determinants of global invasions is a prerequisite for adopting sound conservation policies. Three major hypotheses, which are not necessarily mutually exclusive, have been proposed to explain the establishment of non-native species: the "human activity" hypothesis, which argues that human activities facilitate the establishment of non-native species by disturbing natural landscapes and by increasing propagule pressure; the "biotic resistance" hypothesis, predicting that species-rich communities will readily impede the establishment of non-native species; and the "biotic acceptance" hypothesis, predicting that environmentally suitable habitats for native species are also suitable for non-native species. We tested these hypotheses and report here a global map of fish invasions (i.e., the number of non-native fish species established per river basin using an original worldwide dataset of freshwater fish occurrences, environmental variables, and human activity indicators for 1,055 river basins covering more than 80% of Earth's surface. First, we identified six major invasion hotspots where non-native species represent more than a quarter of the total number of species. According to the World Conservation Union, these areas are also characterised by the highest proportion of threatened fish species. Second, we show that the human activity indicators account for most of the global variation in non-native species richness, which is highly consistent with the "human activity" hypothesis. In contrast, our results do not provide support for either the "biotic acceptance" or the "biotic resistance" hypothesis. We show that the biogeography of fish invasions matches the geography of human impact at the global scale, which means that natural processes are blurred by human activities in driving fish invasions in the world's river systems

  20. Bull trout in the Boundary System: managing connectivity and the feasibility of a reintroduction in the lower Pend Oreille River, northeastern Washington

    Science.gov (United States)

    Dunham, Jason B.; Taylor, Eric B.; Allendorf, Fred W.

    2014-01-01

    Many of the World’s rivers are influenced by large dams (>15 m high) most of which have fragmented formerly continuous habitats, and significantly altered fish passage, natural flow, temperature, and sediment fluxes (Nilsson and others, 2005; Arthington, 2012; Liermann and others, 2012). In the Pacific Northwest, dams on major rivers have been a major focus for fishery managers, primarily in regard to passage of anadromous salmonids (principally Pacific salmon and steelhead trout [Oncorhynchus mykiss], for example, Ferguson and others, 2011), but more recently other species, such as Pacific lamprey (Entosphenus tridentatus) and resident (non-anadromous) salmonids, are receiving more attention (Neraas and Spruell, 2001; Moser and others, 2002; Muhlfeld and others, 2012). In the case of resident salmonids, fish can adopt a wide range of migratory behaviors that often bring them into mainstem rivers where they can come into direct contact with large dams. When this occurs, some of the most important direct effects of dams on salmonids include barriers to upstream and downstream movement and mortality associated with entrainment within the dam or spill over dams. Biologically, these direct impacts can lead to (1) disruption of natural historical (pre-dam) genetic and demographic connectivity among local populations, (2) loss of access to historically used migratory destinations, (3) loss of individuals to the population through mortality associated with entrainment.

  1. Experimental stocking of sport fish in the regulated Tallapoosa River to determine critical periods for recruitment

    Science.gov (United States)

    Lloyd, M. Clint; Lai, Quan; Sammons, Steve; Irwin, Elise R.

    2017-01-01

    The stocking of fish in riverine systems to re-establish stocks for conservation and management appears limited to a few species and often occurs in reaches impacted by impoundments. Stocking of sport fish species such as centrarchids and ictalurids is often restricted to lentic environments, although stocking in lotic environments is feasible with variable success. R. L. Harris Dam on the Tallapoosa River, Alabama is the newest and uppermost dam facility on the river (operating since 1983); flows from the dam have been managed adaptively for multiple stakeholder objectives since 2005. One of the stakeholders’ primary objectives is to provide quality sport fisheries in the Tallapoosa River in the managed area below the dam. Historically, ictalurids and cyprinids dominated the river above Lake Martin. However, investigations after Harris Dam closed have detected a shift in community structure to domination by centrarchids. Flow management (termed the Green Plan) has been occurring since March 2005; however, sport fish populations as measured by recruitment of age-1 sport fishes below the dam has not responded adequately to flow management. The objectives of this research were to: (1) determine if stocking Channel Catfish Ictalurus punctatus and Redbreast Sunfish Lepomis auritus influences year-class strength; (2) estimate vital rates (i.e. growth, mortality, and recruitment) for Channel Catfish populations for use in an age-based population model; and (3) identify age-specific survivorship and fecundity rates contributing to Channel Catfish population stability. No marked Redbreast Sunfish were recaptured due to poor marking efficacy and therefore no further analysis was conducted with this species. Stocked Channel Catfish, similarly, were not recaptured, leaving reasons for non-recapture unknown. Matrix models exploring vital rates illustrated survival to age-1 for Channel Catfish to be less than 0.03% and that survival through ages 2 – 4 had equal contribution

  2. Abundance, Distribution and Estimated Consumption (kg fish) of Piscivorous Birds Along the Yakima River, Washington State; Implications for Fisheries Management, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Major, III, Walter; Grassley, James M.; Ryding, Kristen E. (University of Washington, Quantitive Ecology Program, Seattle, WA)

    2003-05-01

    This report is divided into two chapters. The abstract for chapter one is--Understanding of the abundance and spatial and temporal distributions of piscivorous birds and their potential consumption of fish is an increasingly important aspect of fisheries management. During 1999-2002, we determined the abundance and distribution and estimated the maximum consumption (kg biomass) of fish-eating birds along the length of the Yakima River in Washington State. Sixteen different species were observed during the 4-yr study, but only half of those were observed during all years. Abundance and estimated consumption of fish within the upper and middle sections of the river were dominated by common mergansers (Mergus merganser) which are known to breed in those reaches. Common mergansers accounted for 78 to 94% of the estimated total fish take for the upper river or approximately 28,383 {+-} 1,041 kg over the 4 yrs. A greater diversity of avian piscivores occurred in the lower river and potential impacts to fish populations was more evenly distributed among the species. In 1999-2000, great blue herons potentially accounted for 29 and 36% of the fish consumed, whereas in 2001-2002 American white pelicans accounted for 53 and 55%. We estimated that approximately 75,878 {+-} 6,616 kg of fish were consumed by piscivorous birds in the lower sections of the river during the study. Bird assemblages differed spatially along the river with a greater abundance of colonial nesting species within the lower sections of the river, especially during spring and the nesting season. The abundance of avian piscivores and consumption estimates are discussed within the context of salmonid supplementation efforts on the river and juvenile out-migration. The abstract for chapter two is--Consumption of fish by piscivorous birds may be a significant constraint on efforts to enhance salmonid populations within tributaries to the Columbia River in Washington State. During 1999-2002, we determined the

  3. Novel contaminants identified in fish kills in the Red River watershed, 2011–2013

    Science.gov (United States)

    Provisional molecular weights and chemical formulas were assigned to four significant previously unidentified contaminants present during active fish kills in the Red River region of Oklahoma. The provisional identifications of these contaminants were determined using high-resolu...

  4. Induced cytochrome P450 1A activity in cichlid fishes from Guandu River and Jacarepagua Lake, Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Parente, Thiago E.M.; Oliveira, Ana C.A.X. de; Paumgartten, Francisco J.R.

    2008-01-01

    The induction of cytochrome P4501A-mediated activity (e.g. ethoxyresorufin-O-deethylation, EROD) has been used as a biomarker for monitoring fish exposure to AhR-receptor ligands such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and polychlorinated dibenzo-dioxins/furans (PCDD/Fs). In this study we found that hepatic EROD is induced in fish ('Nile tilapia', Oreochromis niloticus and 'acara', Geophagus brasiliensis) from the Guandu River (7-17-fold) and Jacarepagua Lake (7-fold), Rio de Janeiro, Brazil. Since both cichlid fish are consumed by the local population and the Guandu River is the main source of the drinking water supply for the greater Rio de Janeiro metropolitan area, pollution by cytochrome P4501A-inducing chemicals is a cause for concern and should be further investigated in sediments, water and biota. We additionally showed that EROD activity in the fish liver post-mitochondrial supernatant-simpler, cheaper and less time consuming to prepare than the microsomal fraction-is sufficiently sensitive for monitoring purposes. - Increased EROD activity in the liver of cichlid fishes indicated that Guandu River, the source of drinking water supply for Rio de Janeiro is polluted by CYP1A-inducing chemicals

  5. Ecological characterization of two species of exotic fish, pumpkinseed sunfish (Lepomis gibbosus and largemouth bass (Micropterus salmoides in the international Minho river

    Directory of Open Access Journals (Sweden)

    Ana Cristina Lages

    2015-11-01

    Full Text Available The introduction of exotic species is considered the main cause for the decline of native species. The largemouth bass (Micropterus salmoides and pumpkinseed sunfish (Lepomis gibbosus are two native species from North America, introduced in Portugal to enhance sport fishing. However, their diet and great adaptability made them considered predatory and harmful. In order to understand the ecological impact of M. salmoides and L. gibbosus in the international section of the Minho River, three sampling sites were selected: two in Vila Nova de Cerveira and one in Lapela, at distance of the mouth of the river of 17 and 45 Km, respectively. The fish were gathered using fyke nets and trammel nets, electric fishing and fishing rod, with performed samplings since July 2014 until October 2015. For all fish caught the biometric data (weight, total and fork length, gonad and liver weight, sex, stomach contents analysis were registered as well as collection of otoliths and scales for age reading. Both species feed on small macroinvertebrates specially the juveniles while adults of largemouth bass and pumpkinseed sunfish prefer eat fish and gastropods, respectively. Because L. gibbosus is a recent introduction in the Minho river estuary its abundance increased a lot in the last two years and it was possible verify the increase of the fish population average length. With this work it is intended to evaluate the impact in the Minho River estuary of both exotic species studying the population structure, trophic webs and reproduction.

  6. Prevalence and morphology of helminth parasites of fish from river swat, khyber pakhtunkhwa

    International Nuclear Information System (INIS)

    Ahmed, N.; Ayaz, S.; Shams, S.

    2014-01-01

    A study of the helminth parasites of fish of river swat was conducted from September, 2012 to August, 2013. A total of 250 fish belonging to five genera and six species were examined. The parasites collected were diplozoon khyberensis, bathybothrium rectangulum, bothriocephalus, nippotaenia, cucullanidae, proteocephalus, rhabdochona charsaddiensis, rhabdochona schizothoracis and neoechynorhynchus devdevi. They were indentified by morphological characteristics through microscopic techniques. Overall prevalence of the fish parasites was 58% (145/250. Among these schizothorax plageostomus fish 93.04% |(107/115), schizothorax labiatus 61.11% (33/54), salmo trutta fario 17.85% (05/28), Gara gotyla 0% (0/09), rita rita 0% (0/25) and oncorhynchus mykiss were 0% |(0/19). The intensity of the parasite varied from 1% to 9.2%. Among them high intensity was noted in rhabdochona schizothoracis (9.2%) and schizothorax labiatus. (author)

  7. Europa Passage, Hamburg. Pumps ensure thermal comfort at all levels; Die Europa Passage in Hamburg. Pumpen sorgen fuer Komfort auf allen Ebenen

    Energy Technology Data Exchange (ETDEWEB)

    Teders, Klaus

    2009-07-01

    The Europa Passage at Hamburg is a new shopping mall located directly on the Binnenalster river. It was constructed in 2006 and has 30,000 m{sup 2} of shop floor on five levels, which makes it one of Germany's biggest shopping malls. It is frequented every day by up to 40,000 visitors and more than 50,000 visitors on saturdays. In order to ensure optimum comfort even in peak times, the passage is equipped with state-of-the-art technical facilities. Energy-efficient pumps ensure reliable supply of all technical facilities. (orig.)

  8. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam, 2009-2010

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2010-07-31

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2009 through early spring 2010. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines for fisheries managers and engineers to use in decision-making relative to sluiceway operations. The study was from November 1, 2009 to April 10, 2010. The study was divided into three study periods: Period 1, November 1 - December 15, 2009 for a fall/winter sluiceway and turbine study; Period 2, December 16, 2009 - February 28, 2010 for a turbine only study; Period 3, March 1 - April 10, 2010 for a spring sluiceway and turbine study. Sluiceway operations were scheduled to begin on March 1 for this study; however, because of an oil spill cleanup near the sluice outfall, sluiceway operations were delayed until March 8, 2010, therefore the spring study period did not commence until March 8. The study objectives were to (1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA between November 1 and December 15, 2009 and March 1 and April 10, 2010, and (2) estimate the numbers and distribution of adult steelhead and kelt-sized targets passing into turbine units between December 16, 2009 and February 28, 2010. We obtained fish passage data using fixed-location hydroacoustics. For Period 1, overwintering summer steelhead fallback occurred throughout the 45-day study period. A total of 879 {+-} 165 (95% CI) steelhead targets passed through the powerhouse and sluiceway during November 1 to December 15, 2009. Ninety two

  9. Characterizing fish responses to a river restoration over 21 years based on species' traits.

    Science.gov (United States)

    Höckendorff, Stefanie; Tonkin, Jonathan D; Haase, Peter; Bunzel-Drüke, Margret; Zimball, Olaf; Scharf, Matthias; Stoll, Stefan

    2017-10-01

    Understanding restoration effectiveness is often impaired by a lack of high-quality, long-term monitoring data and, to date, few researchers have used species' trait information to gain insight into the processes that drive the reaction of fish communities to restoration. We examined fish-community responses with a highly resolved data set from 21 consecutive years of electrofishing (4 years prerestoration and 17 years postrestoration) at multiple restored and unrestored reaches from a river restoration project on the Lippe River, Germany. Fish abundance peaked in the third year after the restoration; abundance was 6 times higher than before the restoration. After 5-7 years, species richness and abundance stabilized at 2 and 3.5 times higher levels relative to the prerestoration level, respectively. However, interannual variability of species richness and abundance remained considerable, illustrating the challenge of reliably assessing restoration outcomes based on data from individual samplings, especially in the first years following restoration. Life-history and reproduction-related traits best explained differences in species' responses to restoration. Opportunistic short-lived species with early female maturity and multiple spawning runs per year exhibited the strongest increase in abundance, which reflected their ability to rapidly colonize new habitats. These often small-bodied and fusiform fishes typically live in dynamic and ephemeral instream and floodplain areas that river-habitat restorations often aim to create, and in this case their increases in abundance indicated successful restoration. Our results suggest that a greater consideration of species' traits may enhance the causal understanding of community processes and the coupling of restoration to functional ecology. Trait-based assessments of restoration outcomes would furthermore allow for easier transfer of knowledge across biogeographic borders than studies based on taxonomy. © 2017 Society for

  10. Iteroparity in Columbia River summer-run steelhead (Oncorhynchus mykiss) : implications for conservation

    International Nuclear Information System (INIS)

    Keefer, M.L.; Boggs, C.T.; Peery, C.A.; Evans, A.F.

    2008-01-01

    This study examined the outmigration environment for steelhead kelts (anadromous rainbow trout, Oncorhynchus mykiss) in the Columbia River Basin, where summer-run kelts must pass up to 9 hydroelectric dams and reservoirs to reach the Pacific Ocean. Such fish passage barriers present many direct and indirect mortality hazards for outmigrating kelts. In some years, kelt migration mortality in the impounded portion of the system can be higher than 95 per cent. Current efforts to improve kelt survival in the Columbia system include increasing iteroparity to take advantage of genetic and demographic benefits of repeat spawners. Some of the basic iteroparity information gaps in the aggregated summer-run steelhead population of the interior Columbia River Basin were addressed in this study. Kelt demographics were collected along the outmigration corridor. Repeat spawner return rates were examined along with kelt demographics, outmigration timing and collection location and year. The roles of these factors in predicting repeat spawner returns were evaluated using an information-theoretic approach. The life history characteristics of returning fish was examined with reference to breeding interval, migration timing and distribution within the Columbia River Basin. The study tested whether repeat spawner return rates would be affected by outmigration distance and whether they would differ among demographic groups. It was concluded that the expression of iteroparity among interior Columbia River steelhead has persisted despite decades of impoundment-related selection pressures. Post spawn kelts and repeat spawners in downstream fish bypass systems at the Columbia River and Snake River dams were found to be disproportionately female and of wild origin. The results of this study provide baseline data for evaluating kelt mortality mitigation efforts and basic life history information for steelhead conservation planning. 78 refs., 4 tabs., 4 figs

  11. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    White, Tara

    2007-02-01

    This report summarizes activities conducted by the Oregon Department of Fish and Wildlife's Juvenile Outmigration and Survival M&E project in the Umatilla River subbasin between 2004-2006. Information is used to make informed decisions on hatchery effectiveness, natural production success, passage improvement and flow enhancement strategies. Data collected includes annual estimates of smolt abundance, migration timing, and survival, life history characteristics and productivity status and trends for spring and fall Chinook salmon, coho salmon and summer steelhead. Productivity data provided is the key subbasin scale measure of the effectiveness of salmon and steelhead restoration actions in the Umatilla River. Information is also used for regional planning and recovery efforts of Mid-Columbia River (MCR) ESA-listed summer steelhead. Monitoring is conducted via smolt trapping and PIT-tag interrogation at Three Mile Falls Dam. The Umatilla Juvenile Outmigration and Survival Project was established in 1994 to evaluate the success of management actions and fisheries restoration efforts in the Umatilla River Basin. Project objectives for the 2004-2006 period were to: (1) operate the PIT tag detection system at Three Mile Falls Dam (TMFD), (2) enhance provisional PIT-tag interrogation equipment at the east bank adult fish ladder, (3) monitor the migration timing, abundance and survival of naturally-produced juvenile salmonids and trends in natural production, (4) determine migration parameters and survival of hatchery-produced fish representing various rearing, acclimation and release strategies, (5) evaluate the relative survival between transported and non-transported fish, (6) monitor juvenile life history characteristics and evaluate trends over time, (7) investigate the effects of river, canal, fishway operations and environmental conditions on smolt migration and survival, (8) document the temporal distribution and diversity of resident fish species, and (9

  12. Effects of cooking on radiocesium in fish from the Savannah River: exposure differences for the public.

    Science.gov (United States)

    Burger, Joanna; Gaines, Karen F; Boring, C Shane; Snodgrass, J; Stephens, W L; Gochfeld, M

    2004-02-01

    Understanding the factors that contribute to the risk from fish consumption is an important public health concern because of potential adverse effects of radionuclides, organochlorines, other pesticides, and mercury. Risk from consumption is normally computed on the basis of contaminant levels in fish, meal frequency, and meal size, yet cooking practices may also affect risk. This study examines the effect of deep-frying on radiocesium (137Cs) levels and risk to people fishing along the Savannah River. South Carolina and Georgia have issued consumption advisories for the Savannah River, based partly on 137Cs. 137Cs levels were significantly higher in the cooked fish compared to the raw fish on a wet weight basis. Mean 137Cs levels were 0.61 pCi/g (wet weight basis) in raw fish, 0.81 pCi/g in cooked-breaded, and 0.99 pCi/g in cooked-unbreaded fish. Deep-frying with and without breading resulted in a weight loss of 25 and 39%, while 137Cs levels increased by 32 and 62%, respectively. Therefore, the differences were due mainly to weight loss during cooking. However, the data suggest that risk assessments should be based on cooked portion size for contaminant analysis, or the risk from 137Cs in fish will be underestimated. People are likely to estimate the amounts of fish they eat based on a meal size of the cooked portion, while risk assessors determine 137Cs levels in raw fish. A conversion factor of at least two for 137Cs increase during cooking is reasonable and conservative, given the variability in 137Cs levels. The data also suggest that surveys determining consumption should specifically ask about portion size before or after cooking and state which was used in their methods.

  13. Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

    2009-06-09

    During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

  14. A survey of sport fish use on the Copper River Delta, Alaska.

    Science.gov (United States)

    Dirk W. Lang

    2010-01-01

    Aerial counts, in-person interviews, and mail-in questionnaires were used to survey sport fish use during the coho salmon (Oncorhynchus kisutch Walbaum) season on the Copper River Delta, Alaska from 2002 through 2006. Angler counts provided an index of use on individual streams and were used to develop a spatial database exhibiting patterns of use...

  15. Relations of Environmental Factors with Mussel-Species Richness in the Neversink River, New York

    Science.gov (United States)

    Baldigo, Barry P.; Ernst, Anne G.; Schuler, George E.; Apse, Colin D.

    2007-01-01

    INTRODUCTION Declines in the distribution, abundance, and diversity of freshwater-mussel species (family Unionidae1) have been reported worldwide (Bogan, 1993; Strayer and Jirka, 1997). The principal causes of the observed declines are difficult to confirm, however, because only a few of the many factors that affect mussel-species populations have been identified (Strayer and Ralley, 1993; Strayer, 1999; Baldigo and others, 2003; Strayer and others, 2006). The Neversink River, which drains the Catskill Mountains in southeastern New York (fig. 1), contains seven species of mussels (Strayer and Ralley, 1991; Strayer and Jirka, 1997). Populations of the endangered dwarf wedgemussel (Alasmidonta heterodon) and the threatened swollen wedgemussel (Alasmidonta varicosa) coexist with other unionid mussels in the Neversink River (Strayer and Ralley, 1991, 1993; Baldigo and others, 2003). Dwarf wedgemussel populations had previously been found only downstream from the site of an abandoned dam in the lower part of the river at Cuddebackville (fig. 1), and swollen wedgemussels were only found in the lower and middle reaches of the river. The limited distribution of these two species suggests that they may be susceptible to local extinctions. The distribution of mussel populations can be limited by impoundments. Mussel larvae develop in species-specific host fish; thus, impoundments that restrict passage of these host fish also restrict the extent of mussels. The Neversink River is impounded by the Neversink Reservoir [241 square kilometers (km2)], a major source of drinking water for the City of New York, and was also impounded 50 km downstream by the Cuddebackville Dam until 2004, when the latter was removed by The Nature Conservancy (TNC) and the U.S. Army Corps of Engineers to improve fish passage. The removal of this dam has provided previously unavailable habitat for diadromous and other fish species that act as hosts for rare mussel species. In addition, releases from

  16. Passage and behaviour of cultured Lake Sturgeon in a prototype side-baffle fish ladder: I. Ladder hydraulics and fish ascent

    Science.gov (United States)

    Kynard, B.; Pugh, D.; Parker, T.

    2011-01-01

    Research and development of a fish ladder for sturgeons requires understanding ladder hydraulics and sturgeon behaviour in the ladder to insure the ladder is safe and provides effective passage. After years of research and development, we designed and constructed a full-scale prototype side-baffle ladder inside a spiral flume (38.3m long??1m wide??1m high) on a 6% (1:16.5) slope with a 1.92-m rise in elevation (bottom to top) to test use by sturgeons. Twenty-eight triangular side baffles, each extending part way across the flume, alternated from inside wall to outside wall down the ladder creating two major flow habitats: a continuous, sinusoidal flow down the ladder through the vertical openings of side-baffles and an eddy below each side baffle. Ascent and behaviour was observed on 22 cultured Lake Sturgeon=LS (Acipenser fulvescens) repeatedly tested in groups as juveniles (as small as 105.1cm TL, mean) or as adults (mean TL, 118cm) during four periods (fall 2002 and 2003; spring 2003 and 2007). Percent of juveniles entering the ladder that ascended to the top was greater in spring (72.7%) than in fall (40.9-45.5%) and 90.9% of 11 adults, which ascended as juveniles, ascended to the top. Six LS (27.3%) never swam to the top and seven (31.8%) swam to the top in all tests, indicating great variability among individuals for ascent drive. Some LS swam directly to the top in <1min, but most rested in an eddy during ascent. Juveniles swimming through outside wall baffle slots (mean velocity, 1.2ms-1) swam at 1.8-2.2body lengthss-1 and 3.2-3.3tail beatss-1, either at or approaching prolonged swimming speed. The side-baffle ladder was stream-like and provided key factors for a sturgeon ladder: a continuous flow and no full cross-channel walls, abundant eddies for resting, an acceptable water depth, and a water velocity fish could ascend swimming 2bls-1. A side-baffle ladder passes LS and other moderate-swimming fishes. ?? 2011 Blackwell Verlag, Berlin.

  17. Ascent ability of brown trout, Salmo trutta, and two Iberian cyprinids − Iberian barbel, Luciobarbus bocagei, and northern straight-mouth nase, Pseudochondrostoma duriense − in a vertical slot fishway

    Science.gov (United States)

    Sanz-Ronda, Fco. Javier; Bravo-Cordoba, F.J.; Fuentes-Perez, J.F.; Castro-Santos, Theodore R.

    2016-01-01

    Passage performance of brown trout (Salmo trutta), Iberian barbel (Luciobarbus bocagei), and northern straight-mouth nase (Pseudochondrostoma duriense) was investigated in a vertical slot fishway in the Porma River (Duero River basin, Spain) using PIT telemetry. We analysed the effects of different fishway discharges on motivation and passage success. Both cyprinid species ascended the fishway easily, performing better than the trout despite their theoretically weaker swimming performance. Fishway discharge affected fish motivation although it did not clearly influence passage success. Observed results can guide design and operation criteria of vertical slot fishways for native Iberian fish.

  18. Comparison of fishes in nearshore areas of the St. Lawrence River, New York over 35 years

    Science.gov (United States)

    Carlson, Douglas M.; McKenna, James E.

    2014-01-01

    Fishes of the nearshore waters of the St. Lawrence River provide forage for valuable sport fisheries and are important biological indicators of condition and change. This fish community differs slightly among various reaches of the St. Lawrence River from New York to Quebec (Carlson et al. 2006, Eckert and Hanlon 1977, Kapuscinski 2011, LaViolette et al. 2003, Mandrak et al. 2006, McKenna et al. 2005). Nearshore habitat has been described by McKenna et al. (2012), and others have suggested that there were changes over the last few decades (Clapsadl 1993, Kapuscinski and Farrell 2013). More definitive work needs to be completed on submerged aquatic vegetation habitats. In this paper, changes in the nearshore fish species composition for the New York reach from Cape Vincent to Moses-Saunders Dam are examined through comparison of results from 2009-2010 (McKenna et al. 2012) and 1976 surveys (Eckert and Hanlon 1977).

  19. Survival of fishes after impingement on traveling screens at Hudson River power plants

    International Nuclear Information System (INIS)

    Muessig, P.H.; Hutchison, J.B.; King, L.R.; Ligotino, R.J.; Daley, M.

    1988-01-01

    The survival of Hudson River fishes, juveniles and adults, after they had been impinged on continuously rotated traveling screens at the Bowline Point and Danskammer Point power plants was examined. Survival of principal species was similar at the two plants, and estimates of survival improved as monitoring stress was reduced. Adjusted for survival of control fish, survival over 84-108 h after fish were recovered from the screens was highest for Atlantic tomcod, striped bass, and white perch (50-90%) and lowest for bay anchovy, alewife, and blueback herring; other species showed intermediate survival. Survival of striped bass and white perch was positively correlated with water temperature in winter and with conductivity in spring and fall. Continual rotation of the screens, which shortens the average time that fish are impinged, increased survival over that associated with intermittent rotation. 24 refs., 9 figs., 4 tabs

  20. A prospective monitoring of natural and anthropical fish populations in the basin of the Trotus river

    Directory of Open Access Journals (Sweden)

    URECHE Dorel

    2006-09-01

    Full Text Available As a major part of the Siret river hidrography, though less known ichthyologically, the Trotus has a series of tributaries worth mentioning for their natural sources of water pollution (the Slanic River for sodium chloride, the Tazlau River for potassium chloride and the Tazlaul Sarat for petroleum derivatives as well as for the chemical pollution from the plants in Darmanesti and Onesti. All these in mind the impact of the pollution over the fish fauna of the above mentioned area was determined. The basinal analysis of the ichthyocenosis was performed in three locations the selection of which was based on the particulars of the habitat: upper Trotus free of chemical and urban waste, the Tazlau and middle and downstream Trotus – an area affected by chemical and urban waste upstream Comanesti. A total number of sampling stations was chosen so as to cover all particular fish breeding associations and changes in spreading of the species.

  1. Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry.

    Science.gov (United States)

    Capra, Hervé; Plichard, Laura; Bergé, Julien; Pella, Hervé; Ovidio, Michaël; McNeil, Eric; Lamouroux, Nicolas

    2017-02-01

    Modeling individual fish habitat selection in highly variable environments such as hydropeaking rivers is required for guiding efficient management decisions. We analyzed fish microhabitat selection in the heterogeneous hydraulic and thermal conditions (modeled in two-dimensions) of a reach of the large hydropeaking Rhône River locally warmed by the cooling system of a nuclear power plant. We used modern fixed acoustic telemetry techniques to survey 18 fish individuals (five barbels, six catfishes, seven chubs) signaling their position every 3s over a three-month period. Fish habitat selection depended on combinations of current microhabitat hydraulics (e.g. velocity, depth), past microhabitat hydraulics (e.g. dewatering risk or maximum velocities during the past 15days) and to a lesser extent substrate and temperature. Mixed-effects habitat selection models indicated that individual effects were often stronger than specific effects. In the Rhône, fish individuals appear to memorize spatial and temporal environmental changes and to adopt a "least constraining" habitat selection. Avoiding fast-flowing midstream habitats, fish generally live along the banks in areas where the dewatering risk is high. When discharge decreases, however, they select higher velocities but avoid both dewatering areas and very fast-flowing midstream habitats. Although consistent with the available knowledge on static fish habitat selection, our quantitative results demonstrate temporal variations in habitat selection, depending on individual behavior and environmental history. Their generality could be further tested using comparative experiments in different environmental configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Tissue distribution of organochlorine pesticides in fish collected from the Pearl River Delta, China: Implications for fishery input source and bioaccumulation

    International Nuclear Information System (INIS)

    Guo Ying; Meng Xiangzhou; Tang Honglei; Zeng, Eddy Y.

    2008-01-01

    Fish tissues from different fishery types (freshwater farmed, seawater farmed and seawater wild) were analyzed for organochlorine pesticides (OCPs), with the aim to further our understanding of bioaccumulation, and reflect the state of different fishery environments. Significantly higher ΣOCP levels were found in seawater farmed fish than others, and among three freshwater farmed species, the lowest levels occurred in filter-feeding fish (bighead carp). Liver contained the highest ΣOCP levels, while no significant differences were found among other tissues. Among DDT components, p,p'-DDT was abundant in seawater fish, while for freshwater fish, p,p'-DDE was the predominant congeners, except for northern snakehead (34% for p,p'-DDE and 30% for p,p'-DDT). The new source of DDTs to freshwater fish ponds was partly attributed to dicofol, whereas sewage discharged from the Pearl River Delta and anti-fouling paint were likely the DDTs sources to seawater farmed fish. - Occurrence of organochlorine pesticides in fish tissues was examined to assess input sources and modes of bioaccumulation in the Pearl River Delta, China

  3. Phytoplankton Regulation in a Eutrophic Tidal River (San Joaquin River, California

    Directory of Open Access Journals (Sweden)

    Alan D. Jassby

    2005-03-01

    Full Text Available As in many U.S. estuaries, the tidal San Joaquin River exhibits elevated organic matter production that interferes with beneficial uses of the river, including fish spawning and migration. High phytoplankton biomass in the tidal river is consequently a focus of management strategies. An unusually long and comprehensive monitoring dataset enabled identification of the determinants of phytoplankton biomass. Phytoplankton carrying capacity may be set by nitrogen or phosphorus during extreme drought years but, in most years, growth rate is light-limited. The size of the annual phytoplankton bloom depends primarily on river discharge during late spring and early summer, which determines the cumulative light exposure in transit downstream. The biomass-discharge relationship has shifted over the years, for reasons as yet unknown. Water diversions from the tidal San Joaquin River also affect residence time during passage downstream and may have resulted in more than a doubling of peak concentration in some years. Dam construction and accompanying changes in storage-and-release patterns from upstream reservoirs have caused a long-term decrease in the frequency of large blooms since the early 1980s, but projected climate change favors a future increase. Only large decreases in nonpoint nutrient sources will limit phytoplankton biomass reliably. Growth rate and concentration could increase if nonpoint source management decreases mineral suspensoid load but does not decrease nutrient load sufficiently. Small changes in water storage and release patterns due to dam operation have a major influence on peak phytoplankton biomass, and offer a near-term approach for management of nuisance algal blooms.

  4. Induced cytochrome P450 1A activity in cichlid fishes from Guandu River and Jacarepagua Lake, Rio de Janeiro, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Parente, Thiago E.M.; Oliveira, Ana C.A.X. de [Laboratorio de Toxicologia Ambiental, Escola Nacional de Saude Publica - FIOCRUZ, Av Brasil 4036, Predio de Expansao do Campus, Rio de Janeiro, RJ 21041-361 (Brazil); Paumgartten, Francisco J.R. [Laboratorio de Toxicologia Ambiental, Escola Nacional de Saude Publica - FIOCRUZ, Av Brasil 4036, Predio de Expansao do Campus, Rio de Janeiro, RJ 21041-361 (Brazil)], E-mail: paum@ensp.fiocruz.br

    2008-03-15

    The induction of cytochrome P4501A-mediated activity (e.g. ethoxyresorufin-O-deethylation, EROD) has been used as a biomarker for monitoring fish exposure to AhR-receptor ligands such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and polychlorinated dibenzo-dioxins/furans (PCDD/Fs). In this study we found that hepatic EROD is induced in fish ('Nile tilapia', Oreochromis niloticus and 'acara', Geophagus brasiliensis) from the Guandu River (7-17-fold) and Jacarepagua Lake (7-fold), Rio de Janeiro, Brazil. Since both cichlid fish are consumed by the local population and the Guandu River is the main source of the drinking water supply for the greater Rio de Janeiro metropolitan area, pollution by cytochrome P4501A-inducing chemicals is a cause for concern and should be further investigated in sediments, water and biota. We additionally showed that EROD activity in the fish liver post-mitochondrial supernatant-simpler, cheaper and less time consuming to prepare than the microsomal fraction-is sufficiently sensitive for monitoring purposes. - Increased EROD activity in the liver of cichlid fishes indicated that Guandu River, the source of drinking water supply for Rio de Janeiro is polluted by CYP1A-inducing chemicals.

  5. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    Science.gov (United States)

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  6. Residues of lindane and endosulfan in water and fish samples from rivers, farms in Besease, Agogo and Akomadan in the Ashanti region of Ghana

    International Nuclear Information System (INIS)

    Osafo-Acquaah, S.; Frimpong, E.

    1997-01-01

    Pesticide residue analyses were performed on water and fish samples from River Oda in Besease, River Aframso in Nobewam near Kumasi, River Atwetwe in Akomadan, and River Kowire at Agogo. Residues of lindane and endosulfan were found in water and fish (Oreochromis niloticus, Tilapia zillii, Barbus trispulis, Heterobranchus sp., Tilapia busumana, Ophiocephalus obscura and Chana obscura) samples. The residues of lindane varied between the years and months in the year but were in the range of 0.3 - 15 ng L -1 (1993-94) and 8.7-32.0 ng L -1 (1995) for the water samples and 0.2-24 ng g -1 (1993-93) and 8.4-120.4 ng g -1 (1995) for the fish samples. Residues of endosulfan in the water and the fish samples were zero in 1993-1994 but, in 1995, were in the range of 6.4-35.2 ng L -1 for the water samples and 5.0-267.5 ng g -1 for the fish samples. In all cases the lindane and ensofulfan concentrations in the water were 10,000-20,000 times lower than known toxic concentration levels and therefore unlikely to cause fish toxicity problems. (author). 11 refs, 4 tabs

  7. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems.

  8. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  9. Prevalence of Clonorchis sinensis Metacercariae in Fish from Water Systems of Seomjin-gang (River).

    Science.gov (United States)

    Sohn, Woon-Mok; Na, Byoung-Kuk; Cho, Shin-Hyeong; Park, Mi-Yeoun; Kim, Cheon-Hyeon; Hwang, Min-Ah; No, Kyeong-Woo; Yoon, Ki-Bok; Lim, Hyun-Cheol

    2017-06-01

    The prevalence of Clonorchis sinensis metacercariae ( Cs Mc) was examined in freshwater fish from the water systems of Seomjin-gang (River), the Republic of Korea. Total 1,604 fish from 7 local sites of Seomjin-gang were examined by artificial digestion methods. The metacercariae of C. sinensis were detected in 102 (39.8%) out of 256 fish (14 species) from the upper reaches of Seomjin-gang, i.e., Osucheon (22.3% in 6 fish species) in Imsil-gun, and Seomjin-gang (63.9% in 9 fish species) in Sunchang-gun, Jeollabuk-do. Their average density was 9.0 per infected fish. They were also found in 132 (48.0%) out of 275 fish (12 spp.) from the middle reaches of Seomjin-gang, i.e., Songdaecheon (58.9% in 4 fish species) in Namwon-si, Jeollabuk-do, and Seomjin-gang (45.2% in 10 fish species) in Gokseong-gun, Jeollanam-do. Their average density was 21.0 per infected fish. Cs Mc were detected in 77 (56.6%) out of 136 fish (11 species) from the lower reaches of Seomjin-gang, i.e., Seomjin-gang (73.3% in 11 fish species) in Gurye-gun, Jeollanam-do, and Namsancheon (8.6% in 1 fish species) in Hadong-gun, Gyeongsangnam-do. Their average density was 64.9 per infected fish. The metacercariae of Metorchis orientalis were also detected in 6 fish species from 4 sites of Seomjin-gang. Conclusively, it has been confirmed that Cs Mc are more or less prevalent in fish from some water systems of Seomjin-gang in Korea.

  10. Analysis of impingement impacts on Hudson River fish populations

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; van Winkle, W.

    1988-01-01

    Impacts of impingement, expressed as reductions in year-class abundance, were calculated for six Hudson River fish populations. Estimates were made for the 1974 and 1975 year classes of white perch, striped bass, Atlantic tomcod, and American shad, and the 1974 year classes of alewife and blueback herring. The maximum estimated reductions in year-class abundance were less than 5% for all year classes except the 1974 and 1975 white perch year classes and the 1974 striped bass year class. Only for white perch were the estimates greater than 10% per year. For striped bass, the 146,000 fish from the 1974 year class that were killed by impingement could have produced 12,000-16,000 5-year-old fish or 270-300 10-year-olds. Also estimated were the reductions in mortality that could have been achieved had closed-cycle cooling systems been installed at one or more of three power plants (Bowline point, Indian Point, and Roseton) and had the screen-wash systems at Bowline Point and Indian Point been modified to improve the survival of impinged fish. Closed-cycle cooling at all three plants would have reduced impingement impacts on white perch, striped bass, and Atlantic tomcod by 75% or more; installation of closed-cycle cooling at Indian Point alone would have reduced impingement impacts on white perch and Atlantic tomcod by 50%-80%. Modified traveling screens would have been less effective than closed-cycle cooling, but still would have reduced impingement impacts on white perch by roughly 20%. 23 refs., 1 fig., 3 tabs

  11. Emergent Sandbar Construction for Least Terns on the Missouri River: Effects on Forage Fishes in Shallow-Water Habitats

    Science.gov (United States)

    Stucker, J.H.; Buhl, D.A.; Sherfy, M.H.

    2011-01-01

    Emergent sandbars on the Missouri River are actively managed for two listed bird species, piping plovers and interior least terns. As a plunge-diving piscivore, endangered least terns rely on ready access to appropriately sized slender-bodied fish: nesting habitat for plovers and terns, the U.S. Army Corps of Engineers mechanically created several emergent sandbars on the Missouri River. However, it was unknown whether sandbar construction is a benefit or a detriment to forage abundance for least terns. Therefore, we studied the shallowwater (nesting seasons (2006-2008). We sampled every 2 weeks each year from late May to July within 15-16 areas to document the relative abundance, species richness and size classes of fish. Fish relative abundance was negatively related to depth. Catches were dominated by schooling species, including emerald shiner, sand shiner, spotfin shiner and bigmouth buffalo. Significant inter-annual differences in relative abundance were observed, with generally increasing trends in intra-seasonal relative abundance of shiners and the smallest size classes of fish (<34 mm). Significant differences in the fish communities between the sandbar types were not detected in this study. Results suggest that mechanical sandbar habitats host comparable fish communities at similar levels of relative abundance. Further analyses are required to evaluate if the levels of fish relative abundance are adequate to support least tern foraging and reproduction.

  12. Water quality assessment in the "German River of the years 2014/2015": how a case study on the impact of a storm water sedimentation basin displayed impairment of fish health in the Argen River (Southern Germany).

    Science.gov (United States)

    Thellmann, Paul; Kuch, Bertram; Wurm, Karl; Köhler, Heinz-R; Triebskorn, Rita

    2017-01-01

    The present work investigates the impact of discharges from a storm water sedimentation basin (SSB) receiving runoff from a connected motorway in southern Germany. The study lasted for almost two years and was aimed at assessing the impact of the SSB on the fauna of the Argen River, which is a tributary of Lake Constance. Two sampling sites were examined up- and downstream of the SSB effluent. A combination of different diagnostic methods (fish embryo test with the zebrafish, histopathology, micronucleus test) was applied to investigate health impairment and genotoxic effects in indigenous fish as well as embryotoxic potentials in surface water and sediment samples of the Argen River, respectively, in samples of the SSB effluent. In addition, sediment samples from the Argen River and tissues of indigenous fish were used for chemical analyses of 33 frequently occurring pollutants by means of gas chromatography. Furthermore, the integrity of the macrozoobenthos community and the fish population were examined at both investigated sampling sites. The chemical analyses revealed a toxic burden with trace substances (originating from traffic and waste water) in fish and sediments from both sampling sites. Fish embryo tests with native sediment and surface water samples resulted in various embryotoxic effects in exposed zebrafish embryos (Fig. 1). In addition, the health condition of the investigated fish species (e.g., severe alterations in the liver and kidney) provided clear evidence of water contamination at both Argen River sites (Fig. 2). At distinct points in time, some parameters (fish development, kidney and liver histopathology) indicated stronger effects at the sampling site downstream of the SSB effluent than at the upstream site. Our results clearly showed that the SSB cannot be assigned as the main source of pollutants that are released into the investigated Argen River section. Moreover, we showed that there is moderate background pollution with substances

  13. Invasibility of Mediterranean-climate rivers by non-native fish: the importance of environmental drivers and human pressures.

    Directory of Open Access Journals (Sweden)

    Maria Ilhéu

    Full Text Available Invasive species are regarded as a biological pressure to natural aquatic communities. Understanding the factors promoting successful invasions is of great conceptual and practical importance. From a practical point of view, it should help to prevent future invasions and to mitigate the effects of recent invaders through early detection and prioritization of management measures. This study aims to identify the environmental determinants of fish invasions in Mediterranean-climate rivers and evaluate the relative importance of natural and human drivers. Fish communities were sampled in 182 undisturbed and 198 disturbed sites by human activities, belonging to 12 river types defined for continental Portugal within the implementation of the European Union's Water Framework Directive. Pumpkinseed sunfish, Lepomis gibbosus (L., and mosquitofish, Gambusia holbrooki (Girard, were the most abundant non-native species (NNS in the southern river types whereas the Iberian gudgeon, Gobio lozanoi Doadrio and Madeira, was the dominant NNS in the north/centre. Small northern mountain streams showed null or low frequency of occurrence and abundance of NNS, while southern lowland river types with medium and large drainage areas presented the highest values. The occurrence of NNS was significantly lower in undisturbed sites and the highest density of NNS was associated with high human pressure. Results from variance partitioning showed that natural environmental factors determine the distribution of the most abundant NNS while the increase in their abundance and success is explained mainly by human-induced disturbance factors. This study stresses the high vulnerability of the warm water lowland river types to non-native fish invasions, which is amplified by human-induced degradation.

  14. Primary investigation on contamination pattern of legacy and emerging halogenated organic pollutions in freshwater fish from Liaohe River, Northeast China

    International Nuclear Information System (INIS)

    Ren Guofa; Wang Zhao; Yu Zhiqiang; Wang Yang; Ma Shengtao; Wu Minghong; Sheng Guoying; Fu Jiamo

    2013-01-01

    Legacy halogenated compounds, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and emerging organo-halogen pollutants such as Dechlorane Plus (DP), were detected in fish from an old industrial region in Northeast China. PCBs and PBDEs were detected in all of the samples, with concentrations ranging from 38.15 to 170.51 ng/g lipid weight, and 9.40–39.69 ng/g lipid weight, respectively. DP was detected in more than 90% of the samples with concentrations ranging from not detected (ND) to 470 pg g/g lipid weight. Compared with similar data in other areas of the world, PCBs, PBDEs and DP in fish from Liaohe River were at medium or low level. An unusually high percentage of PCB-209 was first reported in the fish samples collected from China. Other halogenated pollutions, such as dichlorodiphenyltrichloroethane (DDT) and its metabolites, octachlorostyrene, chlorinated anisole, chlorinated thioanisole, triclosan-methyl, and other pesticides, have also been identified in the fish samples. - Highlights: ► DP was reported in fish samples from river close to an old industrial base in China. ► The first report on the unusually high fraction of PCB-209 in samples from China. ► GC × GC–TOFMS was used to identify non-targeted halogenated pollutants. - An unusually high percentage of PCB-209 was first reported in the fish samples collected from China, which might indicate that there were distinct sources of pure PCB-209 in the region of Liaohe River.

  15. Phylogenetic signal and major ecological shifts in the ecomorphological structure of stream fish in two river basins in Brazil

    Directory of Open Access Journals (Sweden)

    Camilo Andrés Roa-Fuentes

    Full Text Available We tested the contribution of the phylogenetic and specific components to the ecomorphological structure of stream fish from the upper Paraguai River and upper São Francisco River basins, and identified nodes in the phylogenetic tree at which major ecological shifts occurred. Fish were sampled between June and October of 2008 in 12 streams (six in each basin. In total, 22 species from the upper Paraguai River basin and 12 from the upper São Francisco River were analyzed. The ecomorphological patterns exhibited phylogenetic signal, indicating that the ecomorphological similarity among species is associated with the degree of relatedness. A strong habitat template is most likely to be the primary cause for a high phylogenetic signal. A significant contribution from the specific component was also detected, supporting the idea that the phylogenetic signal occurs in some clades for some traits, but not in others. The major ecological shifts were observed in the basal nodes, suggesting that ecological niche differences appear to accumulate early in the evolutionary history of major clades. This finding reinforces the role of key traits in the diversification of Neotropical fishes. Ecological shifts in recent groups could be related to morphological modifications associated with habitat use.

  16. Fish Individual-based Numerical Simulator (FINS): A particle-based model of juvenile salmonid movement and dissolved gas exposure history in the Columbia River Basin

    International Nuclear Information System (INIS)

    Scheibe, Timothy D.; Richmond, Marshall C.

    2002-01-01

    This paper describes a numerical model of juvenile salmonid migration in the Columbia and Snake Rivers. The model, called the Fish Individual-based Numerical Simulator or FINS, employs a discrete, particle-based approach to simulate the migration and history of exposure to dissolved gases of individual fish. FINS is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories can be input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. Therefore, FINS serves as a critical linkage between hydrodynamic models of the river system and models of biological impacts. FINS was parameterized and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998 . A quasi-inverse approach was used to decouple fish swimming movements from advection with the local water velocity, allowing inference of time series of non-advective displacements of individual fish from the radiotelemetry data. Statistical analyses of these displacements are presented, and confirm that strong temporal correlation of fish swimming behavior persists in some cases over several hours. A correlated random-walk model was employed to simulate the observed migration behavior, and parameters of the model were estimated that lead to close correspondence between predictions and observations

  17. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

  18. Diet composition of age-0 fishes in created habitats of the Lower Missouri River

    Science.gov (United States)

    Starks, Trevor A.; Long, James M.

    2017-01-01

    Channelization of the Missouri River has greatly reduced the availability of shallow water habitats used by many larval and juvenile fishes and contributed to imperilment of floodplain-dependent biota. Creation of small side channels, or chutes, is being used to restore shallow water habitat and reverse negative environmental effects associated with channelization. In the summer of 2012, the U.S. Army Corps of Engineers collected early life stages of fishes from constructed chutes and nearby unrestored shallow habitats at six sites on the Missouri River between Rulo, Nebraska and St. Louis, Missouri. We compared the diets of two abundant species of fishes to test the hypothesis that created shallow chutes provided better foraging habitat for early life stages than nearby unrestored shallow habitats. Graphical analysis of feeding patterns of freshwater drum indicated specialization on chironomid larvae, which were consumed in greater numbers in unrestored mainstem reaches compared to chutes. Hiodon spp. were more generalist feeders with no differences in prey use between habitat types. Significantly greater numbers of individuals with empty stomachs were observed in chute shallow-water habitats, indicating poor foraging habitat. For these two species, constructed chute shallow-water habitat does not appear to provide the hypothesized benefits of higher quality foraging habitat.

  19. Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks.

    Science.gov (United States)

    Alamdar, Ambreen; Eqani, Syed Ali Musstjab Akber Shah; Hanif, Nida; Ali, Syeda Maria; Fasola, Mauro; Bokhari, Habib; Katsoyiannis, Ioannis A; Shen, Heqing

    2017-02-01

    This study provided the first hand data of trace elements into fish muscles (N = 65) collected from river Chenab in Pakistan during 2013, using inductively coupled plasma mass spectrometry (ICP-MS). We monitored the health risk associated with consumption of contaminated fish of river Chenab, by the local population. The mean concentrations (μg/g, wet weight), in descending order were: Zn (35.5-54.4), Cu (1.38-4.57), Mn (2.43-4.5), As (0.23-1.21), Cr (0.21-0.67), Ni (0.14-0.34), Pb (0.14-0.31), Co (0.09-0.12), Cd (0.07-0.12) with higher concentration to be observed in the herbivore fish species (i.e., Cirrhinus reba and Catla catla). The levels of trace elements in different fish species found in this study were compared with similar data worldwide, and with the international standards for consumption. The concentration (μg/g) of arsenic in many cases (>65%) exceeded the FAO/WHO expert committee on food additives permissible limits. From the human health point of view, this study highlights that the local inhabitants, (i.e., fisher folk communities and population frequently consuming fish at about 100 g/day) along the river Chenab are exposed chronically to arsenic pollution with carcinogenic (10 -4 to 10 -6 ) and non-carcinogenic (THQ>1) risks, especially from the intake of Cirrhinus reba. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Monitoring of downstream salmon and steelhead at federal hydroelectric facilities - 1996. Annual report

    International Nuclear Information System (INIS)

    Martinson, R.D.; Graves, R.J.; Mills, R.B.; Kamps, J.W.

    1997-08-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia River in 1996 The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. The purpose of the SMP is to monitor the migration of the juvenile salmonid stocks in the Columbia basin and make flow and spill recommendations designed to facilitate fish passage. Data are also used for travel time, migration timing, and relative run size analysis. The purpose of the NMFS portion of the program is to provide the FPC with species and project specific real time data from John Day and Bonneville Dams. Monitoring data collected included: river conditions; total numbers of fish; numbers of fry, adult salmon, and incidental catch; daily and seasonal passage patterns; and fish condition. 10 refs., 16 figs., 5 tabs