WorldWideScience

Sample records for river currents

  1. ADCP measurements of gravity currents in the Chicago River, Illinois

    Science.gov (United States)

    Garcia, C.M.; Oberg, K.; Garcia, M.H.

    2007-01-01

    A unique set of observations of stratified flow phenomena in the Chicago River was made using an upward-looking acoustic Doppler current profiler (ADCP) during the period November 20, 2003 to February 1, 2004. Water density differences between the Chicago River and its North Branch (NB) seem to be responsible for the development of gravity currents. With the objective of characterizing the occurrence, frequency, and evolution of such currents, the ADCP was configured to continuously collect high-resolution water velocity and echo intensity profiles in the Chicago River at Columbus Drive. During the observation period, 28 gravity current events were identified, lasting a total of 77% of the time. Sixteen of these events were generated by underflows from the NB and 12 of these events were generated by overflows from the NB. On average, the duration of the underflow and overflow events was 52.3 and 42.1 h, respectively. A detailed analysis of one underflow event, which started on January 7, 2004, and lasted about 65h, was performed. This is the first time that ADCP technology has been used to continuously monitor gravity currents in a river. ?? 2007 ASCE.

  2. Thermography of the New River Inlet plume and nearshore currents

    Science.gov (United States)

    Chickadel, C.; Jessup, A.

    2012-12-01

    As part of the DARLA and RIVET experiments, thermal imaging systems mounted on a tower and in an airplane captured water flow in the New River Inlet, NC, USA. Kilometer-scale, airborne thermal imagery of the inlet details the ebb flow of the estuarine plume water mixing with ocean water. Multiple fronts, corresponding to the preferred channels through the ebb tidal delta, are imaged in the aerial data. A series of internal fronts suggest discreet sources of the tidal plume that vary with time. Focused thermal measurements made from a tower on the south side of the inlet viewed an area within a radius of a few hundred meters. Sub-meter resolution video from the tower revealed fine-scale flow features and the interaction of tidal exchange and wave-forced surfzone currents. Using the tower and airborne thermal image data we plan to provide geophysical information to compare with numerical models and in situ measurements made by other investigators. From the overflights, we will map the spatial and temporal extent of the estuarine plume to correlate with tidal phase and local wind conditions. From the tower data, we will investigate the structure of the nearshore flow using a thermal particle image velocimetry (PIV) technique, which is based on tracking motion of the surface temperature patterns. Long term variability of the mean and turbulent two-dimensional PIV currents will be correlated to local wave, tidal, and wind forcing parameters.

  3. The ESA River & Lake System: Current Capabilities and Future Potential

    DEFF Research Database (Denmark)

    Smith, Richard G.; Salloway, Mark; Berry, Philippa A. M.

    Measuring the earth's river and lake resources using satellite radar altimetry offers a unique global monitoring capability, which complements the detailed measurements made by the steadily decreasing number of in-situ gauges. To exploit this unique remote monitoring capability, a global pilot...

  4. Sediment pollution of the Elbe River side structures - current research

    Science.gov (United States)

    Chalupova, Dagmar; Janský, Bohumír

    2016-04-01

    The contribution brings the summarized results of a long-term research on sediment pollution of side structures of the Elbe River over the last 14 years. The investigation has been focused on old anthropogenic pollution of sediment cores taken from fluvial lakes and floodplain, as the sampling of deeper sediments outside the riverbed is not a part of systematic monitoring of sediment pollution of the Elbe. The Elbe River floodplain has been influenced by human activities since the Middle Ages, but the main anthropogenic pollution have been produced in the 20th century. The studied localities were chosen with the respect to the distance from the source of industrial pollution, the intensity of hydrological communication with the river and the surrounding landuse to determine the extend and the level of anthropogenic contamination in the Elbe River floodplain ecosystem. Apart from bathymetric measurements, observation of the hydrological regime in several fluvial lakes or water quality sampling at some localities, the research was focused above all on determination of metal concentrations (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in all taken sediment cores, specific organic compounds (PCBs, DDT, HCH, HCB, PAHs etc.), total organic carbon at some localities and grain structure analyses. The data were also compared with the results of systematic sediment monitoring from the nearest riverbed sampling stations on the Elbe River. The highest concentrations of metals and specific organic compounds were determined in the sediments taken from fluvial lakes and floodplain (Zimní přístav PARAMO, Rosice fuvial Lake, Libiš pool etc.) situated in the vicinity of the main Elbe River polluters - Synthesia chemical plant and PARAMO refinery in Pardubice or Spolana chemical plant near Neratovice. However, there was also determined a significant role of the hydrological communication with the river proved with lower sediment pollution in separated localities. The realization of the

  5. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Buschman, F.A.; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP

  6. Bank Topography, Bathymetry, and Current Velocity of the Lower Elwha River, Clallam County, Washington, May 2006

    Science.gov (United States)

    Curran, Christopher A.; Konrad, Christopher P.; Dinehart, Randal L.; Moran, Edward H.

    2008-01-01

    The removal of two dams from the mainstem of the Elwha River is expected to cause a broad range of changes to the river and nearby coastal ecosystem. The U.S. Geological Survey has documented aspects of the condition of the river to allow analysis of ecological responses to dam removal. This report documents the bank topography, river bathymetry, and current velocity data collected along the lower 0.5 kilometer of the Elwha River, May 15-17, 2006. This information supplements nearshore and beach surveys done in 2006 as part of the U.S. Geological Survey Coastal Habitats in Puget Sound program near the Elwha River delta in the Strait of Juan de Fuca, Washington.

  7. Studies on the current state of water quality in the Segamat River

    Science.gov (United States)

    Razelan, Faridah Mohd; Tahir, Wardah; E. M Yahaya, Nasehir Khan

    2018-04-01

    Nowadays, pollution has become a major concern in developed and developing countries. In a study on the current state of Segamat River water quality; on-site data collection and observation and also laboratory data analysis have been implemented. Studies showed that the downstream of the Segamat River has recorded a significant reduction in quality of water during the dry season compared to the wet season. The deterioration of water quality is caused by the activities along the river such as palm oil plantation, municipal waste and waste from settlements. It was also recorded that the point sources were dominating the pollution at Segamat River during the dry season. However, during the wet season, the water quality was impaired by the non-point sources which originated from the upstream of the river.

  8. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    Science.gov (United States)

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    This report summarizes the current understanding of floodplain processes and landforms for the Willamette River and its major tributaries. The area of focus encompasses the main stem Willamette River above Newberg and the portions of the Coast Fork Willamette, Middle Fork Willamette, McKenzie, and North, South and main stem Santiam Rivers downstream of U.S. Army Corps of Engineers dams. These reaches constitute a large portion of the alluvial, salmon-bearing rivers in the Willamette Basin. The geomorphic, or historical, floodplain of these rivers has two zones - the active channel where coarse sediment is mobilized and transported during annual flooding and overbank areas where fine sediment is deposited during higher magnitude floods. Historically, characteristics of the rivers and geomorphic floodplain (including longitudinal patterns in channel complexity and the abundance of side channels, islands and gravel bars) were controlled by the interactions between floods and the transport of coarse sediment and large wood. Local channel responses to these interactions were then shaped by geologic features like bedrock outcrops and variations in channel slope. Over the last 150 years, floods and the transport of coarse sediment and large wood have been substantially reduced in the basin. With dam regulation, nearly all peak flows are now confined to the main channels. Large floods (greater than 10-year recurrence interval prior to basinwide flow regulation) have been largely eliminated. Also, the magnitude and frequency of small floods (events that formerly recurred every 2–10 years) have decreased substantially. The large dams trap an estimated 50–60 percent of bed-material sediment—the building block of active channel habitats—that historically entered the Willamette River. They also trap more than 80 percent of the estimated bed material in the lower South Santiam River and Middle and Coast Forks of the Willamette River. Downstream, revetments further

  9. WATER AND HYGIENE IN THE KHARAA RIVER BASIN, MONGOLIA: CURRENT KNOWLEDGE AND RESEARCH NEEDS

    Directory of Open Access Journals (Sweden)

    D. Karthe

    2017-01-01

    Full Text Available The Kharaa River Basin has some of the highest densities of population, agricultural and industrial activities in Mongolia. This puts the naturally limited water resources under pressure in both a quantitative and qualitative perspective. Besides mining, key sources of surface water contamination include large numbers of livestock in riverine floodplains and the discharge of untreated or poorly treated waste waters, both into rivers and by soil infiltration. Since both shallow groundwater and river water are used by people and for livestock, there are at least theoretical risks related to the transmission of water-borne pathogens. Only a very limited number of studies on water and hygiene have so far been conducted in Mongolia, all indicating (potential risks to water users. However, a lack of current and reliable water microbiology data leads to the need of systematic screening of water hygiene in order to derive conclusions for public health and drinking water management at the local and regional scale.

  10. BIOLOGICAL CHARACTERISTICS OF PIKE (ESOX LUCIUS LINNAEUS, 1758 OF THE LOWER DNIEPER RIVER IN CURRENT CONDITIONS

    Directory of Open Access Journals (Sweden)

    K. Geina

    2015-03-01

    Full Text Available Purpose. To analyze major biological characteristics of pike (Esox lucius L., 1758 stock in the lower Dnieper River in the conditions of transformed flow. Methodology. Collection of the ichthyological material was carried out in the lower Dnieper River from commercial fishing gears, including beach seines, drag seines, fyke-nets. Field, laboratory processing of samples and mathematical analysis of the obtained results were carried out according to generally accepted methods and guidelines with some assumptions regarding the duration of pike fattening directly in the lower Dnieper River. Findings. Recent years, there is an increase in the specific weight of younger age groups in the pike stock in the lower Dnieper River. Analysis of linear growth indicates on satisfactory environmental conditions for pike. Current commercial contingent of pike is based on size classes of 46–50 cm versus 22–32 cm in the first half of the last century. Reproductive properties of pike, in particular fecundity, egg size and maturity coefficients did not virtually change compared to those of the last century. Depending on linear sizes, the absolute fecundity is 32.3–155.8 thousand eggs and the maturation coefficient is 11.1–15.7%. Morphologic variability of pike in the lower Dnieper River during the period from 1980s to the present time was observed for plastic features, which characterized fin sizes. Sexual dimorphism in current conditions was observed only for maximum body depth. No significant differences for other plastic features between males and females of pike in the lower Dnieper River. Originality. The data on biological characteristics of pike stock from the lower Dnieper River have been updated. Current fecundity of females of different size groups recorded in commercial catches was been determined. An analysis of morphological variability of major plastic features of pike in the process of the transformation of the Dnieper River flow has been

  11. Comparison of acoustic doppler current profiler and Price AA mechanical current meter measurements made during the 2011 Mississippi River Flood

    Science.gov (United States)

    O'Brien, Patrick; Mueller, David; Pratt, Thad

    2012-01-01

    The Mississippi River and Tributaries project performed as designed during the historic 2011 Mississippi River flood, with many of the operational decisions based on discharge targets as opposed to stage. Measurement of discharge at the Tarbert Landing, Mississippi range provides critical information used in operational decisions for the floodways located in Louisiana. Historically, discharge measurements have been made using a Price AA current meter and the mid-section method, and a long record exists based on these types of measurements, including historical peak discharges. Discharge measurements made using an acoustic Doppler current profiler from a moving boat have been incorporated into the record since the mid 1990's, and are used along with the Price AA mid-section measurements. During the 2011 flood event, both methods were used and appeared to provide different results at times. The apparent differences between the measurement techniques are due to complex hydrodynamics at this location that created large spatial and temporal fluctuations in the flow. The data and analysis presented herein show the difference between the two methods to be within the expected accuracy of the measurements when the measurements are made concurrently. The observed fluctuations prevent valid comparisons of data collected sequentially or even with different observation durations.

  12. Application of current and future satellite missions to hydrologic prediction in transboundary rivers

    Science.gov (United States)

    Biancamaria, S.; Clark, E.; Lettenmaier, D. P.

    2010-12-01

    More than 256 major global river basins, which cover about 45% of the continental land surface, are shared among two or more countries. The flow of such a large part of the global runoff across international boundaries has led to tension in many cases between upstream and downstream riparian countries. Among many examples, this is the case of the Ganges and the Brahmaputra Rivers, which cross the boundary between India and Bangladesh. Hydrological data (river discharge, reservoir storage) are viewed as sensitive by India (the upstream country) and are therefore not shared with Bangladesh, which can only monitor river discharge and water depth at the international border crossing. These measurements only allow forecasting of floods in the interior and southern portions of the country two to three days in advance. These forecasts are not long enough either for agricultural water management purposes (for which knowledge of upstream reservoir storage is essential) or for disaster preparedness purposes. Satellite observations of river spatial extent, surface slope, reservoir area and surface elevation have the potential to make tremendous changes in management of water within the basins. In this study, we examine the use of currently available satellite measurements (in India) and in-situ measurements in Bangladesh to increase forecast lead time in the Ganges and Brahmaputra Rivers. Using nadir altimeters, we find that it is possible to forecast the discharge of the Ganges River at the Bangladesh border with lead time 3 days and mean absolute error of around 25%. On the Ganges River, 2-day forecasts are possible with a mean absolute error of around 20%. When combined with optical/infra-red MODIS images, it is possible to map water elevations along the river and its floodplain upstream of the boundary, and to compute water storage. However, the high frequency of clouds in this region results in relatively large errors in the water mask. Due to the nadir altimeter

  13. A review of current and possible future human-water dynamics in Myanmar's river basins

    Science.gov (United States)

    Taft, Linda; Evers, Mariele

    2016-12-01

    Rivers provide a large number of ecosystem services and riparian people depend directly and indirectly on water availability and quality and quantity of the river waters. The country's economy and the people's well-being and income, particularly in agriculturally dominated countries, are strongly determined by the availability of sufficient water. This is particularly true for the country of Myanmar in South-east Asia, where more than 65 % of the population live in rural areas, working in the agricultural sector. Only a few studies exist on river basins in Myanmar at all and detailed knowledge providing the basis for human-water research is very limited. A deeper understanding of human-water system dynamics in the country is required because Myanmar's society, economy, ecosystems and water resources are facing major challenges due to political and economic reforms and massive and rapid investments from neighbouring countries. However, not only policy and economy modify the need for water. Climate variability and change are other essential drivers within human-water systems. Myanmar's climate is influenced by the Indian Monsoon circulation which is subject to interannual and also regional variability. Particularly the central dry zone and the Ayeyarwady delta are prone to extreme events such as serious drought periods and extreme floods. On the one hand, the farmers depend on the natural fertiliser brought by regular river inundations and high groundwater levels for irrigation; on the other hand, they suffer from these water-related extreme events. It is expected that theses climatic extreme events will likely increase in frequency and magnitude in the future as a result of global climate change. Different national and international interests in the abundant water resources may provide opportunities and risks at the same time for Myanmar. Several dam projects along the main courses of the rivers are currently in the planning phase. Dams will most likely modify the

  14. Characterization of the current status of ichthyofauna in the Techa river

    Energy Technology Data Exchange (ETDEWEB)

    Pryakhin, E.; Tryapitsina, G.; Akleyev, A. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation); Rudolfsen, G. [Norwegian Radiation Protection Authority - NRPA, and University of Tromsoe (Norway); Teien, H.C. [Norwegian University of Life Sciences - UMB, Center of Excellence in Environmental Radioactivity - CERAD (Norway)

    2014-07-01

    associated with radiation exposure, were revealed in the course of the study of the current status of ichthyofauna in the Techa River: increase in the frequency of erythrocytes with micronuclei; increase in the frequency of erythrocytes with division pathology; increase in the proliferative activity of erythroid cells which is not accompanied by increase in the number of mature cells; decrease in sperm cells motility; changes in fin coloration; increase in frequency of trypanosoma invasion which can indicate a decrease in immunological reactivity of fish; changes in the body shape in the population of perch from the Techa river. Document available in abstract form only. (authors)

  15. A Tale of Two Inlets: Tidal Currents at Two Adjacent Inlets in the Indian River Lagoon

    Science.gov (United States)

    Webb, B. M.; Weaver, R. J.

    2012-12-01

    The tidal currents and hydrography at two adjacent inlets of the Indian River Lagoon estuary (Florida) were recently measured using a personal watercraft-based coastal profiling system. Although the two inlets—Sebastian Inlet and Port Canaveral Inlet—are separated by only 60 km, their characteristics and dynamics are quite unique. While Sebastian Inlet is a shallow (~4 m), curved inlet with a free connection to the estuary, Port Canaveral Inlet is dominated by a deep (~13 m), straight ship channel and has limited connectivity to the Banana River through a sector gate lock. Underway measurements of tidal currents were obtained using a bottom tracking acoustic Doppler current profiler; vertical casts of hydrography were obtained with a conductivity-temperature-depth profiling instrument; and continuous underway measurements of surface water hydrography were made using a Portable SeaKeeper system. Survey transects were performed to elucidate the along-channel variability of tidal flows, which appears to be significant in the presence of channel curvature. Ebb and flood tidal currents in Sebastian Inlet routinely exceeded 2.5 m/s from the surface to the bed, and an appreciable phase lag exists between tidal stage and current magnitude. The tidal currents at Port Canaveral Inlet were much smaller (~0.2 m/s) and appeared to be sensitive to meteorological forcing during the study period. Although the lagoon has free connections to the ocean 145 km to the north and 45 km to the south, Sebastian Inlet likely drains much of the lagoon to its north, an area of ~550 sq. km.

  16. Predictability of current and future multi-river discharges: Ganges, Brahmaputra, Yangtze, Blue Nile, and Murray-Darling rivers

    Science.gov (United States)

    Jian, Jun

    2007-12-01

    Determining river discharge is of critical importance to many societies as they struggle with fresh water supply and risk of flooding. In Bangladesh, floods occur almost every year but with sufficient irregularity to have adverse social and economical consequences. Important goals are to predict the discharge to be used for the optimization of agricultural practices, disaster mitigation and water resource management. The aim of this study is to determine the predictability of river discharge in a number of major rivers on time scale varying from weeks to a century. We investigated predictability considering relationship between SST and discharge. Next, we consider IPCC model projections of river discharge while the models are statistically adjusted against observed discharges. In this study, we consider five rivers, the Ganges, the Brahmaputra, the Yangtze, the Blue Nile, and the Murray-Darling Rivers. On seasonal time scales, statistically significant correlations are found between mean monthly equatorial Pacific sea surface temperature (SST) and the summer Ganges discharge with lead times of 2-3 months due to oscillations of the El Nino-Southern Oscillation (ENSO) phenomena. In addition, there are strong correlations in the southwest and northeast Pacific. These, too, appear to be tied to the ENSO cycle. The Brahmaputra discharge, on the other hand, shows somewhat weaker relationships with tropical SST. Strong lagged correlations relationships are found with SST in the Bay of Bengal but these are the result of very warm SSTs and exceptional Brahmaputra discharge during the summer of 1998. When this year is removed from the time series, relationships weaken everywhere except in the northwestern Pacific for the June discharge and in areas of the central Pacific straddling the equator for the July discharge. The relationships are relative strong, but they are persistent from month to month and suggest that two different and sequential factors influence Brahmaputra

  17. Use of preserved museum fish to evaluate historical and current mercury contamination in fish from two rivers in Oklahoma, USA.

    Science.gov (United States)

    Hill, J Jaron; Chumchal, Matthew M; Drenner, Ray W; Pinder, John E; Drenner, S Matthew

    2010-02-01

    We examined the effects of a commonly used preservation technique on mercury concentration in fish tissue. After fixing fish muscle tissue in formalin followed by preservation in isopropanol, we found that mercury concentration in fish muscle tissue increased by 18%, reaching an asymptote after 40 days. We used formalin-isopropanol-preserved longear sunfish (Lepomis megalotis) from the Sam Noble Oklahoma Museum of Natural History to examine historical changes and predict current mercury concentrations in fish from two rivers in southeastern Oklahoma. Glover River was free-flowing, while Mountain Fork River was impounded in 1970 and a coldwater trout fishery was established upstream from the collection site in 1989. Mercury concentrations in longear sunfish from Glover River showed no historical changes from 1963 to 2001. Mercury concentrations in longear sunfish from Mountain Fork River showed no change from 1925 to 1993 but declined significantly from 1993 to 2003. We also compared mercury concentrations of the most recently collected longear sunfish in the museum to mercury concentrations of unpreserved fish collected from the rivers in 2006. Concentrations of mercury in museum fish were not significantly different from mercury concentrations in unpreserved fish we collected from the rivers. Our study indicates that preserved museum fish specimens can be used to evaluate historical changes and predict current levels of mercury contamination in fish.

  18. Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers

    Science.gov (United States)

    Boldt, Justin A.; Oberg, Kevin A.

    2015-01-01

    The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.

  19. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  20. The anthropogenic nature of present-day low energy rivers in western France and implications for current restoration projects

    Science.gov (United States)

    Lespez, L.; Viel, V.; Rollet, A. J.; Delahaye, D.

    2015-12-01

    As in other European countries, western France has seen an increase in river restoration projects. In this paper, we examine the restoration goals, methods and objectives with respect to the long-term trajectory and understanding of the contemporary dynamics of the small low energy rivers typical of the lowlands of Western Europe. The exhaustive geomorphological, paleoenvironmental and historical research conducted in the Seulles river basin (Normandy) provides very accurate documentation of the nature and place of the different legacies in the fluvial systems we have inherited. The sedimentation rate in the Seulles valley bottom has multiplied by a factor of 20 since the end of the Bronze Age and has generated dramatic changes in fluvial forms. Hydraulic control of the rivers and valley bottoms drainage throughout the last millennium has channelized rivers within these deposits. The single meandering channel which characterizes this river today is the legacy of the delayed and complex effects of long term exploitation of the river basin and the fluvial system. Bring to light that the "naturalness" of the restored rivers might be questioned. Our research emphasizes the gap between the poor knowledge of the functioning of these rivers and the concrete objectives of the restoration works undertaken, including dam and weir removal. Account of the long-term history of fluvial systems is required, not only to produce a pedagogic history of the "river degradation" but more fundamentally (i) to situate the current functioning of the fluvial system in a trajectory to try to identify thresholds and anticipate the potential turning points in a context of climate and land use change, (ii) to understand the role of morphosedimentary legacies on the current dynamics, (iii) to open the discussion on reference functioning or expected states and (iv) to open discussion on the sustainability of ecological restoration. To conclude, we point out the necessity to take into account the

  1. Preliminary assessment of current radiation doses to the population of Brodokalmak from contamination of the Techa River

    International Nuclear Information System (INIS)

    Cabianca, T.; Bexon, A.P.; Pozolotina, V.; Trapeznikov, A.; Simmonds, J.

    2000-01-01

    Significant quantities of liquid radioactive waste were discharged to the Techa River in the southern Urals region of Russia in the early years of operation of the Mayak PA plant (1948-1951). A collaborative project is underway under contract to the European Commission to consider the radiological impact of radioactive contamination in the Southern Urals. Part of this project involves the calculation of radiation doses currently received by the population of Brodokalmak on the Techa river. The assessment made use of local data on the habits of the population and measurements of radionuclide activity concentrations in food and water. Exposure pathways included in the assessment were ingestion of foods and external exposure to gamma radiation from radionuclides deposited on the banks of the river. A range of doses was calculated for different age groups, firstly, assuming that the restrictions in place are retained and, secondly, assuming that there are no restrictions. These restrictions include bans on drinking river water, fishing and bathing in the river and the prohibition of use of the river and surrounding flood plains by humans and cattle. With restrictions the highest dose estimated was 0.56 mSv y -1 for the most exposed adults and without restrictions this increased to 3.4 mSv y -1

  2. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions.

    Science.gov (United States)

    Keupers, Ingrid; Willems, Patrick

    2013-01-01

    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  3. Fisher research and the Kings River Sustainable Forest Ecosystem Project: current results and future efforts

    Science.gov (United States)

    Brian B. Boroski; Richard T. Golightly; Amie K. Mazzoni; Kimberly A. Sager

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project was initiated on the Kings River Ranger District of the Sierra National Forest, California, in 1993, with fieldwork beginning in 1994. Knowledge of the ecology of the fisher (Martes pennanti) in the Project area, and in the Sierra Nevada of California in general, is insufficient to develop...

  4. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  5. California coast nearshore processes study. [nearshore currents, sediment transport, estuaries, and river discharge

    Science.gov (United States)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.

  6. Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site

    International Nuclear Information System (INIS)

    Wyatt, D.E.; Cumbest, R.J.

    1996-04-01

    The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated

  7. Current status of Marsh Crocodiles Crocodylus palustris (Reptilia: Crocodylidae in Vishwamitri River, Vadodara City, Gujarat, India

    Directory of Open Access Journals (Sweden)

    R. Vyas

    2012-11-01

    Full Text Available Data presented here is based on a three year study (2008-2010 on a population of Mugger Crocodylus palustris inhabiting Vishwamitri River near Vadodara City, Gujarat State, India. In total, 155 Muggers were counted in the 25km river stretch during 2010. In all, 40 burrows were observed along the river bank, and the same were clumped in certain sections of the river. Muggers fed eight species of birds, and domestic livestock in addition to scavenging. Eight instances of human-crocodile conflicts were observed including four human causalities. A total 90 Muggers were rescued from the urban areas and the same were relocated elsewhere in the river system. Various types of threats to Mugger were also noticed including habitat loss, alteration and soil erosion and mortality due to rail traffic. The present study suggests further research to propose strategies to conserve this population.

  8. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading

    Science.gov (United States)

    Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.

    2009-01-01

    There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.

  9. Change in Sediment Provenance Near the Current Estuary of Yellow River Since the Holocene Transgression

    Science.gov (United States)

    Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li

    2018-06-01

    Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1-23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.

  10. Biomonitoring of intermittent rivers and ephemeral streams in Europe: Current practice and priorities to enhance ecological status assessments.

    Science.gov (United States)

    Stubbington, Rachel; Chadd, Richard; Cid, Núria; Csabai, Zoltán; Miliša, Marko; Morais, Manuela; Munné, Antoni; Pařil, Petr; Pešić, Vladimir; Tziortzis, Iakovos; Verdonschot, Ralf C M; Datry, Thibault

    2018-03-15

    Intermittent rivers and ephemeral streams (IRES) are common across Europe and dominate some Mediterranean river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in biomonitoring programmes implemented to characterize EU Water Framework Directive ecological status. We report the results of a survey completed by representatives from 20 European countries to identify current challenges to IRES status assessment, examples of best practice, and priorities for future research. We identify five major barriers to effective ecological status classification in IRES: 1. the exclusion of IRES from Water Framework Directive biomonitoring based on their small catchment size; 2. the lack of river typologies that distinguish between contrasting IRES; 3. difficulties in defining the 'reference conditions' that represent unimpacted dynamic ecosystems; 4. classification of IRES ecological status based on lotic communities sampled using methods developed for perennial rivers; and 5. a reliance on taxonomic characterization of local communities. Despite these challenges, we recognize examples of innovative practice that can inform modification of current biomonitoring activity to promote effective IRES status classification. Priorities for future research include reconceptualization of the reference condition approach to accommodate spatiotemporal fluctuations in community composition, and modification of indices of ecosystem health to recognize both taxon-specific sensitivities to intermittence and dispersal abilities, within a landscape context. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Current status of the waste identification program at AECL's Chalk River Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Edwards, N.W.; TerHuurne, M.A.

    1998-01-01

    The management of routine operating waste by Waste Management and Decommissioning (WM and D) at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) is supported by the Waste Identification (WI) Program. The principal purpose of the WI Program is to minimize the cost and the effort associated with waste characterization and waste tracking, which are needed to optimize waste handling, storage and disposal. The major steps in the WI Program are: (1) identify and characterize the processes that generate the routine radioactive wastes accepted by WM and D - radioisotope production, radioisotope use, reactor operation, fuel fabrication, et cetera (2) identify and characterize the routine blocks of waste generated by each process or activity - the initial characterization is based on inference (process knowledge) (3) prepare customized, template data sheets for each routine waste block - templates contain information such as package type, waste material, waste type, solidifying agent, the average non-radiological contaminant inventory, the average radiological contaminant inventory, and the waste class (4) ensure generators 'use the right piece of paper with the right waste' when they transfer waste to WM and D - that is they use the correct template data sheets to transfer routine wastes, by: identifying and marking waste collection points in the generator's facility; ensuring that generators implement effective waste collection/segregation procedures; implementing standard procedures to transfer waste to WM and D; and, auditing waste collection and segregation within a generator's facility (5) determine any additional waste block characterization requirements (is anything needed beyond the original characterization by process knowledge?) This paper describes the WI Program, it provides an example of its implementation, and it summarizes the current status of its implementation for both CRL and non-CRL waste generators. (author)

  12. Gravel sediment routing from widespread, low-intensity landscape disturbance, Current River basin, Missouri

    Science.gov (United States)

    Jacobson, Robert B.; Gran, K.B.

    1999-01-01

    During the last 160 years, land-use changes in the Ozarks have had the potential to cause widespread, low-intensity delivery of excess amounts of gravel-sized sediment to stream channels. Previous studies have indicated that this excess gravel bedload is moving in wave-like forms through Ozarks drainage basins. The longitudinal, areal distribution of gravel bars along 160 km of the Current River, Missouri, was evaluated to determine the relative effects of valley-scale controls, tributary basin characteristics, and lagged sediment transport in creating areas of gravel accumulations. The longitudinal distribution of gravel-bar area shows a broad scale wave-like form with increases in gravel-bar area weakly associated with tributary junctions. Secondary peaks of gravel area with 1·8–4·1 km spacing (disturbance reaches) are superimposed on the broad form. Variations in valley width explain some, but not all, of the short-spacing variation in gravel-bar area. Among variables describing tributary drainage basin morphometry, present-day land use and geologic characteristics, only drainage area and road density relate even weakly to gravel-bar areal inventories. A simple, channel network-based sediment routing model shows that many of the features of the observed longitudinal gravel distribution can be replicated by uniform transport of sediment from widespread disturbances through a channel network. These results indicate that lagged sediment transport may have a dominant effect on the synoptic spatial distribution of gravel in Ozarks streams; present-day land uses are only weakly associated with present-day gravel inventories; and valley-scale characteristics have secondary controls on gravel accumulations in disturbance reaches.

  13. FLOODPLAIN-CHANNEL COMPLEX OF SMALL RIVER: ASSESSMENT OF CURRENT STATE, OPTIMIZATION MEASURES

    Directory of Open Access Journals (Sweden)

    Kovalchuk I.

    2016-05-01

    Full Text Available The article describes main methodological principles of geoecological assessment of riverbed-floodplain complex condition of one of the small rivers in Ukrainian Carpathians. According to our long-term field, cartographic, laboratory and remote sensing research, division of riverbed into homogeneous geoecological segments was made, as well as their standardization in accordance to the trends of unfavorable processes. Main reasons for deterioration of quality characteristics of channel-floodplain river complex were outlined; the role of natural and anthropogenic factors in deterioration of geoecological condition of the river and its floodplain complex was analyzed. Based on the assessment results it is possible to state that the condition of study segments of the Berezhnytsya river flood-plain and stream-way complex was marked as “excellent”, “good” and “satisfactory”. “Unsatisfactory” and “catastrophic” river and flood-plain condition has not been detected yet, although within Dashava urban settlement the river area condition is close to the “satisfactory” grade. The best situation is at the river head as human impact is minimized here and natural vegetation is preserved. Downstream we trace the tendency of condition worsening as anthropogenic load on the basin system and flood-plain and stream-way complex increases. Its negative impact is balanced by large forests, thus in segments limited by Banya Lysovytska village and Lotatnyky village the river and flood-plain condition is rated as “good”. So, downstream from the named village the value of such an important natural barrier as forest is reducing and anthropogenic load on the river significantly increases. The latter manifests in an intensive agricultural reclamation and housing development of flood-plains. Since degradation processes are rapidly developing over a considerable part of the Berezhnytsya river, negative changes are visible and only the study area

  14. Regional economic analysis of current and proposed management alternatives for Rappahannock River Valley National Wildlife Refuge

    Science.gov (United States)

    Koontz, Lynne; Sexton, Natalie; Donovan, Ryan

    2009-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan. The Comprehensive Conservation Plan must describe the desired future conditions of a refuge and provide long-range guidance and management direction to achieve refuge purposes. The Rappahannock River Valley National Wildlife Refuge (refuge) is in the process of developing a range of management goals, objectives, and strategies for the Comprehensive Conservation Plan. The Comprehensive Conservation Plan for the refuge must contain an analysis of expected effects associated with current and proposed refuge management strategies. The purpose of this study was to assess the regional economic implications associated with draft Comprehensive Conservation Plan management strategies. Special interest groups and local residents often criticize a change in refuge management, especially if there is a perceived negative impact to the local economy. Having objective data on economic impacts may show that these fears are overstated. Quite often, the extent of economic benefits a refuge provides to a local community is not fully recognized, yet at the same time the effects of negative changes is overstated. Spending associated with refuge recreational activities, such as wildlife viewing and hunting, can generate considerable tourist activity for surrounding communities. Additionally, refuge personnel typically spend considerable amounts of money purchasing supplies in local stores, repairing equipment and purchasing fuel at the local service stations, and reside and spend their salaries in the local community. For refuge Comprehensive Conservation Plan planning, a regional economic assessment provides a means of estimating how current management (no action alternative) and proposed management activities (alternatives) could affect the local economy. This type of analysis provides two critical pieces of

  15. Linking current river pollution to historical pesticide use: Insights for territorial management?

    Science.gov (United States)

    Della Rossa, Pauline; Jannoyer, Magalie; Mottes, Charles; Plet, Joanne; Bazizi, Abderazak; Arnaud, Luc; Jestin, Alexandra; Woignier, Thierry; Gaude, Jean-Marie; Cattan, Philippe

    2017-01-01

    Persistent organic pollutants like organochlorine pesticides continue to contaminate large areas worldwide raising questions concerning their management. We designed and tested a method to link soil and water pollution in the watershed of the Galion River in Martinique. We first estimated the risk of soil contamination by chlordecone by referring to past use of land for banana cultivation and took 27 soil samples. We then sampled surface waters at 39 points and groundwater at 16 points. We tested three hypotheses linked to the source of chlordecone pollution at the watershed scale: (i) soils close to the river, (ii) soils close to the sampling point, (iii) throughout the sub-watershed generated at the sampling point. Graphical and statistical analysis showed that contamination of the river increased when it passed through an area with contaminated plots and decreased when it passed through area not contaminated by chlordecone. Modeling showed that the entire surface area of the watershed contributed to river pollution, suggesting that the river was mainly being contaminated by the aquifers and groundwater flows. Our method proved to be a reliable way to identify areas polluted by chlordecone at the watershed scale and should help stakeholders focus their management actions on both hot spots and the whole watershed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Declining groundwater level caused by irrigation to row crops in the Lower Mississippi River Basin, Current Situation and Trends

    Science.gov (United States)

    Feng, G.; Gao, F.; Ouyang, Y.

    2017-12-01

    The Mississippi River is North America's largest river and the second largest watershed in the world. It flows over 3,700 km through America's heartland to the Gulf of Mexico. Over 3 million hectares in the Lower Mississippi River Basin represent irrigated cropland and 90 percent of those lands currently rely on the groundwater supply. The primary crops grown in this region are soybean, corn, cotton, and rice. Increased water withdrawals for irrigating those crops and stagnant recharging jeopardize the long-term availability of the aquifer and place irrigation agriculture in the region on an unsustainable path. The objectives of this study were to: 1) analyze the current groundwater level in the Lower Mississippi River Basin based on the water table depth observed by Yazoo Mississippi Delta Joint Water Management District from 2000 and 2016; 2) determine trends of change in groundwater level under conventional and groundwater saving irrigation management practices (ET or soil moisture based full irrigation scheduling using all groundwater or different percentages of ground and surface water). The coupled SWAT and MODFLOW model was applied to investigate the trends. Observed results showed that the groundwater level has declined from 33 to 26 m at an annual decrease rate of 0.4 m in the past 17 years. Simulated results revealed that the groundwater storage was decreased by 26 cm/month due to irrigation in crop season. It is promising that the groundwater storage was increased by 23 cm/month, sometimes even 60 cm/month in crop off-growing season because of recharge from rainfall. Our results suggest that alternative ET or soil moisture based groundwater saving irrigation scheduling with conjunctive use of surface water is a sustainable practice for irrigated agriculture in in the Lower Mississippi River Basin.

  17. Current trends of some organochlorinated pesticides in Yamuna River sediments around Delhi

    Digital Repository Service at National Institute of Oceanography (India)

    Sethi, P.K.; Bhattacharyya, A.K.; Sarkar, A.

    selected for the purpose of study. Among the organochlorine pesticides detected, t-DDT was the most predominant in the sediments of Yamuna River. The concentration of t-DDT was in the range of 63.0-236.0 ng/g during the pre-monsoon and decreased...

  18. Current status of non-native fish species in the St. Louis River estuary

    Science.gov (United States)

    The fish community of the St. Louis River estuary is well characterized, thanks to fishery assessment and invasive species early detection monitoring by federal, state, and tribal agencies. This sampling includes long-standing adult/juvenile fish surveys, larval fish surveys beg...

  19. Keeping current, June 1998. Issues 98: Securing the value of the federal Columbia River power system

    International Nuclear Information System (INIS)

    1998-06-01

    This report focuses on issues which will enhance the value of the Columbia River for the future. Many important decisions must be made about the Bonneville Power Administration in the coming months. These issues include the following: cost management; future fish and wildlife funding; power markets, revenues and subscription; transmission issues; and risk management

  20. The current pollution status of the new Calabar river in the Niger ...

    African Journals Online (AJOL)

    Administrator

    area are directly dependent on the river for their agricul- ... the water itself, but also to the danger of diffusion of toxic substances into other ... Temperature and pH of the water samples were ... phosphate, nitrate, oil and grease, cadmium, copper, nickel, lead, mercury ..... composition and molecular mechanisms including cell.

  1. Securing the Value of the Federal Columbia River Power System, Keeping Current, June 1998, Issue 98.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-06-01

    This report focuses on issues which will enhance the value of the Columbia River for the future. Many important decisions must be made about the Bonneville Power Administration in the coming months. These issues include the following: cost management; future fish and wildlife funding; power markets, revenues and subscription; transmission issues; and risk management.

  2. Experience of Assessment of Current Radiation Doses to the Population from the Contamination of the Techa River (The Urals, Russia)

    International Nuclear Information System (INIS)

    Bolshakov, V. N.; Pozolotina, V. N.; Cabianca, T.; Simmonds, J.

    2001-01-01

    Full text: Significant quantities (about 108 PBq) of liquid radioactive waste were discharged to the Techa River in the Urals region of Russia in the early years of operation of the MAYK Production Association (1948-1951). The compositions of the releases consisted mainly of medium and long-lived beta emitting radionuclides: 103,106 Ru (28 PBq), 95 Zr/Nb (14 PBq), 137 Cs (13 PBq), 90 Sr (12 PBq). More than 120,000 people received high levels of radiation as a result of this contamination of the Techa River. The objective of this study is preliminary assessment of current and future radiation doses received by the population living in the affected area (Brodokalmak village). The assessment made use of local habit data and measurements of radionuclides concentrations in food and water, supplemented by model predictions whenever measurements in environmental materials were not available. Exposure pathways included in the calculations were ingestion of foods and external exposure to gamma radiation from radionuclides deposited on the banks of the river. Doses were calculated for three age groups (adults, children, infants) and two types of individuals: average consumers and users of the river banks, and individuals most likely to receive the highest dose. Two scenarios were considered in the calculations. In the first scenario is was assumed that access to the river banks, for both people and cattle, was restricted. For the second scenario, doses were calculated assuming that restrictions were lifted and people had free access to all areas in the village. With restrictions the highest dose estimated was 0.56 mSv/y for the most exposed adults and without restrictions this increased to 3.4 mSv/y. (author)

  3. DEVELOPMENTAL STABILITY AND CYTOGENETIC HOMEOSTASIS OF FISH FAUNA OF THE SLUCH RIVER IN CURRENT CONDITIONS OF ANTHROPOGENIC STRESS

    Directory of Open Access Journals (Sweden)

    O. Bedunkova

    2015-03-01

    Full Text Available Purpose. To assess the developmental stability and cytogenetic homeostasis of fish populations in the Sluch River in the watercourse areas subjected to anthropogenic stress of different intensities. Methodology. Studies of fish populations in the Sluch River were carried out within Berezne district of Rivne region. The condition of individual fish in the populations were evaluated integrally using morphological (evaluation of the stability of development based on the level of fluctuating asymmetry (FA and cytogenetic (micronucleus (MN test of peripheral blood erythrocytes of fish methods. The methods used allowed identifying the destabilization level of organism development, even in the cases when there is no direct disturbance of population homeostasis. Findings. The found FA levels reflect minor (initial deviations from the normal developmental processes of fish populations in in the studied watercourse areas. Especially significantly this is reflected in a high proportion of individuals with FA in the samples of roach (Rutilus rutilus, bleak (Alburnus alburnus, bream (Abramis brama and perch (Perca fluviatilis. An excess in the frequency of MN erythrocyte cells in roach and pike (Esox lucius blood relatively the level of spontaneous mutagenesis was observed in the cross section №2, which is exposed to sewage waters. The observed manifestation of degenerative processes in fish organisms at this stage can be evaluated as an increased reactivity of sensitive species to the presence of mutagenic agents in the composition of river pollution. The functioning of spawning populations gives reason to believe that the current level of human impact is not critical for the hydroecosystem. Originality. For the first time we obtained data on the stability of development and cytogenetic homeostasis of fish populations in the hydroecosystem of Rivne region in current conditions of anthropogenic stress. Practical value. The obtained results can be used for

  4. Direct-current resistivity profiling at the Pecos River Ecosystem Project study site near Mentone, Texas, 2006

    Science.gov (United States)

    Teeple, Andrew; McDonald, Alyson K.; Payne, Jason; Kress, Wade H.

    2009-01-01

    The U.S. Geological Survey, in cooperation with Texas A&M University AgriLife, did a surface geophysical investigation at the Pecos River Ecosystem Project study site near Mentone in West Texas intended to determine shallow (to about 14 meters below the water [river] surface) subsurface composition (lithology) in and near treated (eradicated of all saltcedar) and control (untreated) riparian zone sites during June-August 2006. Land-based direct-current resistivity profiling was applied in a 240-meter section of the riverbank at the control site, and waterborne direct-current continuous resistivity profiling (CRP) was applied along a 2.279-kilometer reach of the river adjacent to both sites to collect shallow subsurface resistivity data. Inverse modeling was used to obtain a nonunique estimate of the true subsurface resistivity from apparent resistivity calculated from the field measurements. The land-based survey showed that the sub-surface at the control site generally is of relatively low resis-tivity down to about 4 meters below the water surface. Most of the section from about 4 to 10 meters below the water surface is of relatively high resistivity. The waterborne CRP surveys convey essentially the same electrical representation of the lithology at the control site to 10 meters below the water surface; but the CRP surveys show considerably lower resistivity than the land-based survey in the subsection from about 4 to 10 meters below the water surface. The CRP surveys along the 2.279-kilometer reach of the river adjacent to both the treated and control sites show the same relatively low resistivity zone from the riverbed to about 4 meters below the water surface evident at the control site. A slightly higher resistivity zone is observed from about 4 to 14 meters below the water surface along the upstream approximately one-half of the profile than along the downstream one-half. The variations in resistivity could not be matched to variations in lithology because

  5. Current contamination by 137Cs and 90Sr of the Techa River Basin in the South Urals

    International Nuclear Information System (INIS)

    Kravtsova, O.S.; Shutov, V.N.; Travnikova, I.G.; Bruk, G.Ya.; Kravtsova, E.M.; Gavrilov, A.P.; Mubasarov, A.A.

    2002-01-01

    The objective of this paper is to conduct a preliminary assessment of the current radioactive contamination of soil, vegetation and foodstuffs in the two remaining villages closest to the Mayak site, Muslyumovo and Brodokalmak. Previous release of radioactivity from the Mayak Production Association plant in the South Urals have resulted in considerable radionuclide contamination of the Techa River, and consequent high radiation doses during the late 1940s and 1950s to residents of villages along the Techa river. The most contaminated villages close to the site were evacuated in the period 1954-1962. Nowadays the highest contamination levels in soil were found in the flood plain at 5.5 MBq m -2 for 1 37C s and 1.0 MBq m -2 for 9 0S r. The radionuclide contamination in soil of the two mentioned above villages was much lower, but exceeded that expected from global fallout. Data from 1207 measurements of 1 37C s in milk and 1180 for 9 0S r in milk for the period 1992-1999 were collated. There was no change with time in the 9 0S r or 1 37C s activity concentration in milk over the measured period. There were significantly higher 1 37C s activity concentrations in milk sampled during the stalled period in Muslyumovo compared with the grazing summer period, but no difference between that for Brodokalmak or for either settlement for 9 0S r. The highest measured activity concentrations in food products of 1 37C s and 9 0S r were found in river fish, waterfowl, poultry and milk. The measured activity concentration of 1 37C s and 9 0S r of some animal products were higher than that expected from that of soil and vegetation from fields and pasture in the villages (not including the flood plain) confirming that the highly contaminated flood plains are contributing to contamination of some animal products

  6. Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower.

    Science.gov (United States)

    Gallagher, John; Styles, David; McNabola, Aonghus; Williams, A Prysor

    2015-05-19

    Globally, the hydropower (HP) sector has significant potential to increase its capacity by 2050. This study quantifies the energy and resource demands of small-scale HP projects and presents methods to reduce associated environmental impacts based on potential growth in the sector. The environmental burdens of three (50-650 kW) run-of-river HP projects were calculated using life cycle assessment (LCA). The global warming potential (GWP) for the projects to generate electricity ranged from 5.5-8.9 g CO2 eq/kWh, compared with 403 g CO2 eq/kWh for UK marginal grid electricity. A sensitivity analysis accounted for alternative manufacturing processes, transportation, ecodesign considerations, and extended project lifespan. These findings were extrapolated for technically viable HP sites in Europe, with the potential to generate 7.35 TWh and offset over 2.96 Mt of CO2 from grid electricity per annum. Incorporation of ecodesign could provide resource savings for these HP projects: avoiding 800 000 tonnes of concrete, 10 000 tonnes of steel, and 65 million vehicle miles. Small additional material and energy contributions can double a HP system lifespan, providing 39-47% reductions for all environmental impact categories. In a world of finite resources, this paper highlights the importance of HP as a resource-efficient, renewable energy system.

  7. Tidal current energy potential of Nalón river estuary assessment using a high precision flow model

    Science.gov (United States)

    Badano, Nicolás; Valdés, Rodolfo Espina; Álvarez, Eduardo Álvarez

    2018-05-01

    Obtaining energy from tide currents in onshore locations is of great interest due to the proximity to the points of consumption. This opens the door to the feasibility of new installations based on hydrokinetic microturbines even in zones of moderate speed. In this context, the accuracy of energy predictions based on hydrodynamic models is of paramount importance. This research presents a high precision methodology based on a multidimensional hydrodynamic model that is used to study the energetic potential in estuaries. Moreover, it is able to estimate the flow variations caused by microturbine installations. The paper also shows the results obtained from the application of the methodology in a study of the Nalón river mouth (Asturias, Spain).

  8. River Diversions and Shoaling

    National Research Council Canada - National Science Library

    Letter, Jr., Joseph V; Pinkard, Jr., C. F; Raphelt, Nolan K

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note describes the current knowledge of the potential impacts of river diversions on channel morphology, especially induced sedimentation in the river channel...

  9. Changes in the world rivers' discharge projected from an updated high resolution dataset of current and future climate zones

    Science.gov (United States)

    Santini, Monia; di Paola, Arianna

    2015-12-01

    In this paper, an updated global map of the current climate zoning and of its projections, according to the Köppen-Geiger classification, is first provided. The map at high horizontal resolution (0.5° × 0.5°), representative of the current (i.e. 1961-2005) conditions, is based on the Climate Research Unit dataset holding gridded series of historical observed temperature and precipitation, while projected conditions rely on the simulated series, for the same variables, by the General Circulation Model CMCC-CM. Modeled variables were corrected for their bias and then projections of climate zoning were generated for the medium term (2006-2050) and long term (2056-2100) future periods, under RCP 4.5 and RCP 8.5 emission scenarios. Results show that Equatorial and Arid climates will spread at the expenses of Snow and Polar climates, with the Warm Temperate experiencing more moderate increase. Maps of climate zones are valuable for a wide range of studies on climate change and its impacts, especially those regarding the water cycle that is strongly regulated by the combined conditions of precipitation and temperature. As example of large scale hydrological applications, in this work we tested and implemented a spatial statistical procedure, the geographically weighted regression among climate zones' surface and mean annual discharge (MAD) at hydrographic basin level, to quantify likely changes in MAD for the main world rivers monitored through the Global Runoff Data Center database. The selected river basins are representative of more than half of both global superficial freshwater resources and world's land area. Globally, a decrease in MAD is projected both in the medium term and long term, while spatial differences highlight how some areas require efforts to avoid consequences of amplified water scarcity, while other areas call for strategies to take the opportunity from the expected increase in water availability. Also the fluctuations of trends between the

  10. Geohydrologic Investigations and Landscape Characteristics of Areas Contributing Water to Springs, the Current River, and Jacks Fork, Ozark National Scenic Riverways, Missouri

    Science.gov (United States)

    Mugel, Douglas N.; Richards, Joseph M.; Schumacher, John G.

    2009-01-01

    The Ozark National Scenic Riverways (ONSR) is a narrow corridor that stretches for approximately 134 miles along the Current River and Jacks Fork in southern Missouri. Most of the water flowing in the Current River and Jacks Fork is discharged to the rivers from springs within the ONSR, and most of the recharge area of these springs is outside the ONSR. This report describes geohydrologic investigations and landscape characteristics of areas contributing water to springs and the Current River and Jacks Fork in the ONSR. The potentiometric-surface map of the study area for 2000-07 shows that the groundwater divide extends beyond the surface-water divide in some places, notably along Logan Creek and the northeastern part of the study area, indicating interbasin transfer of groundwater between surface-water basins. A low hydraulic gradient occurs in much of the upland area west of the Current River associated with areas of high sinkhole density, which indicates the presence of a network of subsurface karst conduits. The results of a low base-flow seepage run indicate that most of the discharge in the Current River and Jacks Fork was from identified springs, and a smaller amount was from tributaries whose discharge probably originated as spring discharge, or from springs or diffuse groundwater discharge in the streambed. Results of a temperature profile conducted on an 85-mile reach of the Current River indicate that the lowest average temperatures were within or downstream from inflows of springs. A mass-balance on heat calculation of the discharge of Bass Rock Spring, a previously undescribed spring, resulted in an estimated discharge of 34.1 cubic feet per second (ft3/s), making it the sixth largest spring in the Current River Basin. The 13 springs in the study area for which recharge areas have been estimated accounted for 82 percent (867 ft3/s of 1,060 ft3/s) of the discharge of the Current River at Big Spring during the 2006 seepage run. Including discharge from

  11. Estimation of Acoustic Particle Motion and Source Bearing Using a Drifting Hydrophone Array Near a River Current Turbine to Assess Disturbances to Fish

    Science.gov (United States)

    Murphy, Paul G.

    River hydrokinetic turbines may be an economical alternative to traditional energy sources for small communities on Alaskan rivers. However, there is concern that sound from these turbines could affect sockeye salmon (Oncorhynchus nerka), an important resource for small, subsistence based communities, commercial fisherman, and recreational anglers. The hearing sensitivity of sockeye salmon has not been quantified, but behavioral responses to sounds at frequencies less than a few hundred Hertz have been documented for Atlantic salmon (Salmo salar), and particle motion is thought to be the primary mode of stimulation. Methods of measuring acoustic particle motion are well-established, but have rarely been necessary in energetic areas, such as river and tidal current environments. In this study, the acoustic pressure in the vicinity of an operating river current turbine is measured using a freely drifting hydrophone array. Analysis of turbine sound reveals tones that vary in frequency and magnitude with turbine rotation rate, and that may sockeye salmon may sense. In addition to pressure, the vertical components of particle acceleration and velocity are estimated by calculating the finite difference of the pressure signals from the hydrophone array. A method of determining source bearing using an array of hydrophones is explored. The benefits and challenges of deploying drifting hydrophone arrays for marine renewable energy converter monitoring are discussed.

  12. Current status of emerging hypoxia in a eutrophic estuary: The lower reach of the Pearl River Estuary, China

    Science.gov (United States)

    Qian, Wei; Gan, Jianping; Liu, Jinwen; He, Biyan; Lu, Zhongming; Guo, Xianghui; Wang, Deli; Guo, Liguo; Huang, Tao; Dai, Minhan

    2018-05-01

    We examine the current status of dissolved oxygen (DO) and its trend over the past 25 years in the lower Pearl River Estuary, a large eutrophic estuary located in Southern China and surrounded by large cities including Hong Kong, Shenzhen and Guangzhou. Monthly cruises conducted from April 2010 to March 2011 clearly show that DO depletion began to emerge in the bottom layer of the lower estuary off Hong Kong in June, and became fully developed in July and August when oxygen-deficient water occupied ∼1000 km2 before gradually becoming re-oxygenated in September and October. The development of the low oxygen zone was closely coupled with phytoplankton blooms in the surface water, which was supersaturated with respect to DO suggesting the importance of autochthonous organic matter in fueling bottom DO consumption after settling through the pycnocline. Long-term monitoring data collected in the study area adjacent to Hong Kong by the Hong Kong Environmental Protection Department showed a decreasing trend of ∼2 ± 0.9 μmol kg-1 yr-1 in the annual minimum DO concentration in bottom water over the past 25 years. Associated with the decrease in DO was an increase in the annual maximum surface concentration of dissolved inorganic nitrogen (DIN) at a rate of ∼1.4 ± 0.3 μmol kg-1 yr-1, suggesting again that eutrophication is the most plausible driver of oxygen deficiency in this region. Therefore, our monthly cruises, along with the decadal monitoring data, reveal a large low oxygen zone, likely developing into a large hypoxic zone driven primarily by anthropogenic eutrophication. This new development suggests environmental stressors such as eutrophication may have a cascading effect, with important and expensive consequences for the regional environment.

  13. Integrating river incision rates over timescales in the Ecuadorian Andes: from uplift history to current erosion rates

    Science.gov (United States)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Tenorio, Gustavo

    2013-04-01

    River profile development is studied at different timescales, from the response to uplift over millions of years over steady state erosion rates over millennia to the response to a single event, such as a major landslide. At present, few attempts have been made to compare data obtained over various timescales. Therefore we do not know to what extent data and model results are compatible: do long-term river profile development models yield erosion rates that are compatible with information obtained over shorter time spans, both in terms of absolute rates and spatial patterns or not? Such comparisons could provide crucial insights into the nature of river development and allow us to assess the confidence we may have when predicting river response at different timescales (e.g. Kirchner et al., 2001). A major issue hampering such comparison is the uncertainty involved in the calibration of long-term river profile development models. Furthermore, calibration data on different timescales are rarely available for a specific region. In this research, we set up a river profile development model similar to the one used by Roberts & White (2010) and successfully calibrated it for the northern Ecuadorian Andes using detailed uplift and sedimentological data. Subsequently we used the calibrated model to simulate river profile development in the southern Ecuadorian Andes. The calibrated model allows to reconstruct the Andean uplift history in southern Ecuador, which is characterized by a very strong uplift phase during the last 5 My. Erosion rates derived from the modeled river incision rates were then compared with 10Be derived basin-wide erosion rates for a series of basins within the study area. We found that the model-inferred erosion rates for the last millennia are broadly compatible with the cosmogenic derived denudation rates, both in terms of absolute erosion rates as well as in terms of their spatial distribution. Hence, a relatively simple river profile development

  14. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River)

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Alexander I. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation)]. E-mail: nikitin@typhoon.obninsk.ru; Chumichev, Vladimir B. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Valetova, Nailia K. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Katrich, Ivan Yu. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Kabanov, Alexander I. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Dunaev, Gennady E. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Shkuro, Valentina N. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Rodin, Victor M. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation); Mironenko, Alexander N. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation); Kireeva, Elena V. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation)

    2007-07-15

    Data on content of {sup 90}Sr, {sup 137}Cs, {sup 239,240}Pu and {sup 3}H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the 'Mayak' PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of {sup 137}Cs, {sup 90}Sr and {sup 3}H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of 'Mayak' PA waste transport by {sup 90}Sr is distinctly traced as far as the area of the Irtysh and Ob confluence.

  15. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River)

    International Nuclear Information System (INIS)

    Nikitin, Alexander I.; Chumichev, Vladimir B.; Valetova, Nailia K.; Katrich, Ivan Yu.; Kabanov, Alexander I.; Dunaev, Gennady E.; Shkuro, Valentina N.; Rodin, Victor M.; Mironenko, Alexander N.; Kireeva, Elena V.

    2007-01-01

    Data on content of 90 Sr, 137 Cs, 239,240 Pu and 3 H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the 'Mayak' PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of 137 Cs, 90 Sr and 3 H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of 'Mayak' PA waste transport by 90 Sr is distinctly traced as far as the area of the Irtysh and Ob confluence

  16. Characterization of the current biological communities within the Nanticoke River in the vicinity of the Vienna SES

    International Nuclear Information System (INIS)

    Stroup, C.F.; Brindley, A.; Kazyak, P.F.

    1991-07-01

    Pursuant to a utility's intent to file for permission to build a generating station along the Nanticoke River, Maryland, a field program was conducted to update characterizations of major aquatic biota of the river in proximity to the existing power plant and a potential intake/discharge location. This characterization sampled five stations on the Nanticoke River, spanning 14 miles from Chapter Point to Riverton, between July 1988 and October 1989. During the study period, the juvenile and adult fish community was dominated by white perch, Atlantic menhaden, bay anchovy, hogchoker, and spot. Spring ichthyoplankton was composed of white perch, striped bass, yellow perch, and alosids, while summer ichthyoplankton was dominated by naked gobies and bay anchovy. Acartia tonsa, Eurytemora affinis and Bosmina longirostris dominated zooplankton samples. The phytoplankton community was composed primarily of diatoms, green algae, and monads. Polychaetes and crustaceans were the dominant macrobenthic taxa, with molluscs contributing to total abundance primarily during spring recruitment. The final report presents the results of fish, ichthyoplankton, zooplankton, and benthic surveys conducted between July 1988 and October 1989 in the middle portion of the Nanticoke River, Maryland. During the dry conditions of 1988, aquatic communities were dominated by estuarine species, while the lower saline environment of 1989 resulted in the presence of more freshwater species

  17. Water Resources Status and Availability Assessment in Current and Future Climate Change Scenarios for Beas River Basin of North Western Himalaya

    Science.gov (United States)

    Aggarwal, S. P.; Thakur, P. K.; Garg, V.; Nikam, B. R.; Chouksey, A.; Dhote, P.; Bhattacharya, T.

    2016-10-01

    daily surface wind speed. The GFDL model also gives validation phase scenarios from 2006 to 2015, which are used to test the overall model performance with current data. The current assessment made by hydrological water balance based approach has given reasonable good results in Beas river basin. The main limitation of this study is lack of full representation of glacier melt flow using fully energy balance model. This component will be addressed in coming time and it will be integrated with tradition hydrological and snowmelt runoff models. The other limitation of current study is dependence on NCEP or other reanalysis of climate forcing data for hydrological modelling, this leads to mismatch between actual and simulated water balance components. This problem can be addressed if more ground based and fine resolution grid based hydro meteorological data are used as input forcing data for hydrological modelling.

  18. WATER RESOURCES STATUS AND AVAILABILITY ASSESSMENT IN CURRENT AND FUTURE CLIMATE CHANGE SCENARIOS FOR BEAS RIVER BASIN OF NORTH WESTERN HIMALAYA

    Directory of Open Access Journals (Sweden)

    S. P. Aggarwal

    2016-10-01

    precipitation and daily surface wind speed. The GFDL model also gives validation phase scenarios from 2006 to 2015, which are used to test the overall model performance with current data. The current assessment made by hydrological water balance based approach has given reasonable good results in Beas river basin. The main limitation of this study is lack of full representation of glacier melt flow using fully energy balance model. This component will be addressed in coming time and it will be integrated with tradition hydrological and snowmelt runoff models. The other limitation of current study is dependence on NCEP or other reanalysis of climate forcing data for hydrological modelling, this leads to mismatch between actual and simulated water balance components. This problem can be addressed if more ground based and fine resolution grid based hydro meteorological data are used as input forcing data for hydrological modelling.

  19. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    Science.gov (United States)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  20. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    Science.gov (United States)

    Deems, Jeffrey S.; Painter, Thomas H.; Barsugli, Joseph J.; Belnap, Jayne; Udall, Bradley

    2013-01-01

    The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases

  1. Nutrient inputs and hydrology together determine biogeochemical status of the Loire River (France): Current situation and possible future scenarios.

    Science.gov (United States)

    Garnier, Josette; Ramarson, Antsiva; Billen, Gilles; Théry, Sylvain; Thiéry, Dominique; Thieu, Vincent; Minaudo, Camille; Moatar, Florentina

    2018-05-10

    The Grafs-Seneque/Riverstrahler model was implemented for the first time on the Loire River for the 2002-2014 period, to explore eutrophication after improvement of wastewater treatments. The model reproduced the interannual levels and seasonal trends of the major water quality variables. Although eutrophication has been impressively reduced in the drainage network, a eutrophication risk still exists at the coast, as shown by the N-ICEP indicator, pointing out an excess of nitrogen over silica and phosphorus. From maximum biomass exceeding 120 μgChla l -1 in the 1980's, we observed decreasing maximum values from 80 to 30 μgChla l -1 during the period studied. Several scenarios were explored. Regarding nutrient point sources, a low wastewater treatment scenario, similar to the situation in the 1980's, was elaborated, representing much greater pollution than the reference period (2002-2014). For diffuse sources, two agricultural scenarios were elaborated for reducing nitrogen, one with a strict application of the agricultural directives and another investigating the impact of radical structural changes in agriculture and the population's diet. Although reduced, a risk of eutrophication would remain, even with the most drastic scenario. In addition, a pristine scenario, with no human activity within the basin, was devised to assess water quality in a natural state. The impact of a change in hydrology on the Loire biogeochemical functioning was also explored according to the effect of climate change by the end of the 21st century. The EROS hydrological model was used to force Riverstrahler, considering the most pessimistic SRES A2 scenario run with the ARPEGE model. Nutrient fluxes all decreased due to a >50% reduction in the average annual discharge, overall reducing the risk of coastal eutrophication, but worsening the water quality status of the river network. The Riverstrahler model could be useful to help water managers contend with future threats in the

  2. The current threat level of fish in river network of individual sea-drainage areas in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Lusk Stanislav

    2015-12-01

    Full Text Available The assessment of changes in the population spread of individual ichthyofauna species (lampreys and fishes as well as the identification of unfavourable impacts is the necessary prerequisite for the correct selection of corrective measures. The river network in the Czech Republic belongs to the three sea-drainage areas (North Sea, Baltic Sea, and Black Sea. The species composition of the original ichthyofauna and the extent of the threat to some species differs in the individual sea-drainage areas. The original ichthyofauna in the Czech Republic consists of 4 lamprey species and 55 fish species. Out of this, only one lamprey species and 31 fish species originate in all three sea-drainage areas. There are 37 fish species considered as the original ones in the North Sea drainage area, there of 4 species are EX, 1 species EW, and 11 species (29.7% are threatened. In the Baltic Sea drainage area, there are 4 species EX, 1 species EW, and 8 species (22.8% threatened out of the total 35 assessed species. Out of 49 species in the Black Sea drainage area, there are 4 species EX and 23 species (46.9 % threatened.

  3. Modeling the Impacts of Suspended Sediment Concentration and Current Velocity on Submersed Vegetation in an Illinois River Pool, USA

    National Research Council Canada - National Science Library

    Best, Elly

    2004-01-01

    This technical note uses a modeling approach to examine the impacts of suspended sediment concentrations and current velocity on the persistence of submersed macrophytes in a shallow aquatic system...

  4. Annual Report to the Bonneville Power Administration, Reporting Period: April 2008 - February 2009 [re: "Survival and Growth in the Columbia River Plume and north California Current"].

    Energy Technology Data Exchange (ETDEWEB)

    Northwest Fisheries Science Center, NOAA Fisheries; Cooperative Institute for Marine Resources Studies, Oregon State University; OGI School of Science & Engineering, Oregon Health Sciences University.

    2009-07-17

    We have made substantial progress toward our objectives outlined in our BPA supported proposal entitled 'Columbia River Basin Juvenile Salmonids: Survival and Growth in the Columbia River Plume and northern California Current' which we report on herein. During 2008, we were able to successfully conduct 3 mesoscale cruises. We also were able to conduct 7 biweekly predator cruises, along with substantial shore-based visual observations of seabirds. Detailed results of the mesoscale cruises are available in the Cruise Reports and summarized in the next section. We have taken a proactive approach to getting the results of our research to fisheries managers and the general public. We have begun to make annual predictions based on ocean conditions of the relative survival of juvenile coho and Chinook salmon well before they return as adults. This is based on both biological and physical indicators that we measure during our surveys or collect from outside data sources. Examples of our predictions for 2009 and 2010 are available on the following web site: http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/a-ecinhome.cfm.

  5. Sensitivity Analysis of Flow and Temperature Distributions of Density Currents in a River-Reservoir System under Upstream Releases with Different Durations

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2015-11-01

    Full Text Available A calibrated three-dimensional Environmental Fluid Dynamics Code model was applied to simulate unsteady flow patterns and temperature distributions in the Bankhead river-reservoir system in Alabama, USA. A series of sensitivity model runs were performed under daily repeated large releases (DRLRs with different durations (2, 4 and 6 h from Smith Dam Tailrace (SDT when other model input variables were kept unchanged. The density currents in the river-reservoir system form at different reaches, are destroyed at upstream locations due to the flow momentum of the releases, and form again due to solar heating. DRLRs (140 m3/s with longer durations push the bottom cold water further downstream and maintain a cooler bottom water temperature. For the 6-h DRLR, the momentum effect definitely reaches Cordova (~43.7 km from SDT. Positive bottom velocity (density currents moving downstream is achieved 48.4%, 69.0% and 91.1% of the time with an average velocity of 0.017, 0.042 and 0.053 m/s at Cordova for the 2-h, 4-h and 6-h DRLR, respectively. Results show that DRLRs lasting for at least 4 h maintain lower water temperatures at Cordova. When the 4-h and 6-h DRLRs repeat for more than 6 and 10 days, respectively, bottom temperatures at Cordova become lower than those for the constant small release (2.83 m3/s. These large releases overwhelm the mixing effects due to inflow momentum and maintain temperature stratification at Cordova.

  6. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    Science.gov (United States)

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview

  7. Remote sensing of surface currents in the Fraser River plume with the SeaSonde HF radar

    International Nuclear Information System (INIS)

    Hodgins, D.O.; Hardy, J.S.; Tinis, S.E.

    1994-09-01

    The SeaSonde 12.5-MHz radar system was deployed to measure surface currents in the Juan de Fuca Strait in July 1992. Reliable data were obtained from the two radars installed, and successful trials were conducted with the Infosat satellite link to transmit data from the remote site. Data recovery from the SeaSonde was generally good, with maximum ranges varying from 15 km to over 30 km. Sea echo return strength at both radars was correlated with wind, consistent with lower Bragg scattering at lower wind speeds. A simple surface current forecasting algorithm, based on decomposing the signal into tidal and residual bands, was examined. It was found that tides account for the greatest portion of currents in the study area, and could be forecasted out to 48 h with 1-2 d of input data. The nonpredictable, fluctuating part of the current signal was isolated and its statistics were calculated. The algorithm tests showed that the SeaSonde data can be used to measure and predict the slowly varying tidal and mean flow velocities, as well as the random part of the signal, both of which are important in oil spill modelling. Surface flow patterns and time-series data from the SeaSonde measurements, and from a three-dimensional hydrodynamic model, were compared from an oil spill modelling perspective. In general, surface flow patterns from the model were smoother than those observed. The differences were most noticeable in the cross-channel direction. The radar data indicate that a flow-dependent eddy viscosity formulation, with coefficients calibrated to reproduce the features observed with the radar, would improve agreement and yield a good model for data assimilation. 21 refs., 478 figs., 3 tabs

  8. On the dynamics of the Mouth of the Columbia River: Results from a three-dimensional fully coupled wave-current interaction model

    Science.gov (United States)

    Akan, Çiǧdem; Moghimi, Saeed; Özkan-Haller, H. Tuba; Osborne, John; Kurapov, Alexander

    2017-07-01

    Numerical simulations were performed using a 3-D ocean circulation model (ROMS) two-way coupled to a phase-averaged wave propagation model (SWAN), to expand our understanding of the dynamics of wave-current interactions at the Mouth of the Columbia River (MCR). First, model results are compared with water elevations, currents, temperature, salinity, and wave measurements obtained by the U.S. Army Corp of Engineers during the Mega-Transect Experiment in 2005. We then discuss the effects of the currents on the waves and vice versa. Results show that wave heights are intensified notably at the entrance of the mouth in the presence of the tidal currents, especially in ebb flows. We also find nonlocal modifications to the wave field because of wave focusing processes that redirect wave energy toward the inlet mouth from adjacent areas, resulting in the presence of a tidal signatures in areas where local currents are weak. The model also suggests significant wave amplification at the edge of the expanding plume in the later stages of ebb, some tens of kilometers offshore of the inlet mouth, with potential implications for navigation safety. The effect of waves on the location of the plume is also analyzed, and results suggest that the plume is shifted in the down-wave direction when wave effects are considered, and that this shift is more pronounced for larger waves, and consistent with the presence of alongshore advection terms in the salt advection equation, which are related to the Stokes velocities associated with waves.

  9. Current and projected water demand and water availability estimates under climate change scenarios in the Weyib River basin in Bale mountainous area of Southeastern Ethiopia

    Science.gov (United States)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-07-01

    This study intended to estimate the spatial and temporal variation of current and projected water demand and water availability under climate change scenarios in Weyib River basin, Bale mountainous area of Southeastern Ethiopia. Future downscaled climate variables from three Earth System Models under the three RCP emission scenarios were inputted into ArcSWAT hydrological model to simulate different components of water resources of a basin whereas current and projected human and livestock population of the basin is considered to estimate the total annual water demand for various purposes. Results revealed that the current total annual water demand of the basin is found to be about 289 Mm3, and this has to increase by 83.47% after 15 years, 200.67% after 45 years, and 328.78% after 75 years by the 2020s, 2050s, and 2080s, respectively, from base period water demand mainly due to very rapid increasing population (40.81, 130.80, and 229.12% by the 2020s, 2050s, and 2080s, respectively) and climatic variability. The future average annual total water availability in the basin is observed to be increased by ranging from 15.04 to 21.61, 20.08 to 23.34, and 16.21 to 39.53% by the 2020s, 2050s, and 2080s time slice, respectively, from base period available water resources (2333.39 Mm3). The current water availability per capita per year of the basin is about 3112.23 m3 and tends to decline ranging from 11.78 to 17.49, 46.02 to 47.45, and 57.18 to 64.34% by the 2020s, 2050s, and 2080s, respectively, from base period per capita per year water availability. This indicated that there might be possibility to fall the basin under water stress condition in the long term.

  10. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    Science.gov (United States)

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  11. Massive Rock Detachments from the Continental slope of the Balsas River Submarine Delta that occur due to Instability of Sediments which Produce Turbidity Currents and Tsunamis

    Science.gov (United States)

    Sandoval-Ochoa, J.; Aguayo-Camargo, J.

    2007-05-01

    During the NOAA oceanographic delivery cruise of the US R/V "Roger Revelle" to the Scripps Institution of Oceanography at the University of California in San Diego, California USA, in July 1996; a well calibrated bathymetric equipment, the SeaBeam* 2012, was tested. Good resolutions in data allowed bathymetric mapping to visualize the sea floor relief. Detailed colorful chartographic images showed a portion of the continental slope between the Balsas River Delta and the Middle America Trench and between the Balsas Canyon and La Necesidad Canyon. The surveyed area covered more than 3 000 square kilometers. After the delivery cruise, one of the goals was to measure and analyze the Morphobathymetry of the uneven lower portion of the Balsas River Submarine Delta. So far some of the findings with the morphometric analyses consist of several isolated slump scars that each comprise more than 12 cubic kilometers in volume and a multiple slump scar with an evident steep hollow about 200 cubic kilometers absent of rock. These volumes of rock apparently underwent a remobilization from the slope during the Late Quaternary. The rock detachments occured in relatively small portions but in instantaneous massive displacements because of their instability as well as other identified factors in the region. Over time more and more authors have accepted that coastal cuts or submarine slump scars have been left by sudden movements of rock and fluids. The phenomena that occur in the region in general, are accompanied on one side by potential and kinetic energies like falling bodies, flows and gravity waves, and on the other side, by mass transfer of rock and fluid mobilization like turbidity currents, accumulations, sea wave surges or tsunamis. In some cases the phenomena is produced by another natural triggering forces or by an earthquake. We propose that events like these, i.e. massive detachments and their products such as accumulations, turbidity currents and depositional debrites

  12. Down to the River

    DEFF Research Database (Denmark)

    Wessels, Josepha Ivanka

    2015-01-01

    Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from the persp......Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from...

  13. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis.

    Science.gov (United States)

    Shao, Diwei; Zhan, Yu; Zhou, Wenjun; Zhu, Lizhong

    2016-12-01

    While the spatial distributions of heavy metals in farmland soil of China have been comprehensively delineated, their temporal trends are rarely investigated but are important for environmental risk management. In this study, the current status and temporal trends of heavy metals in the farmland soil of Yangtze River Delta (YRD) were evaluated through field survey and meta-analysis. The field survey conducted in 2014 showed that the concentrations of Cd, Pb, Cu, Zn, and Ni in the farmland topsoil were 0.23 ± 0.14, 37.63 ± 15.60, 25.83 ± 41.62, 88.38 ± 43.30, and 29.21 ± 12.41 mg kg -1 (mean ± standard deviation), respectively. The heavy metals showed relatively higher concentrations on the borders among Zhejiang, Jiangsu, and Shanghai. In the meta-analysis, we selected 68 published studies related to heavy metal pollution in farmland topsoil of YRD from 2000 to the year (2014) when the field survey was conducted. The results show an increasing trend for Cd (p soil remediation are needed to protect food safety and ecosystem from heavy metal pollution, especially Cd. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Current levels and composition profiles of PBDEs and alternative flame retardants in surface sediments from the Pearl River Delta, southern China: Comparison with historical data

    International Nuclear Information System (INIS)

    Chen, She-Jun; Feng, An-Hong; He, Ming-Jing; Chen, Man-Ying; Luo, Xiao-Jun; Mai, Bi-Xian

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) and alternative flame retardants were measured in surface sediments collected during 2009–2010 from the Pearl River Delta, southern China (a large manufacturing base for electronics/electrical products), to evaluate the influence of China's RoHS directive (adopted in 2006) on their environmental occurrence. The concentrations in sediments from different water systems ranged from 3.67 to 2520 ng/g (average of 17.1–588 ng/g) for PBDEs and from 0.22 to 5270 ng/g (average of 11.3–454 ng/g) for the alternative retardants. Although the PBDE levels have decreased significantly compared with those in sediments collected in 2002 in this region, the levels of alternative decabromodiphenyl ethane (DBDPE) have exceeded those of BDE209 (two predominant halogenated flame retardants (HFRs) in China) in the majority of sediments. This finding suggests a different contaminant pattern of HFRs in current sediments due to the replacement of the deca-BDE mixture with DBDPE in this region. In addition, sediment concentrations of discontinued PBDEs in the rural area are clearly elevated due to e-waste dismantling. The congener profiles of PBDEs in the current sediments (with more abundant lower-brominated congeners) differed substantially from those in 2002 and from the technical products, suggesting that biological or photolytic debromination of PBDEs may have occurred in the environment. - Highlights: ► PBDE levels in sediments have decreased substantially since China's RoHS directive. ► Contamination of novel DBDPE has exceeded that of deca-BDE in the PRD sediments. ► The congener profiles of PBDEs in the sediments have changed significantly. ► Significant biological or photolytic degradation of PBDEs may occur in the environment

  15. Assessing the effects of urbanization on the environment with soil legacy and current-use insecticides: a case study in the Pearl River Delta, China.

    Science.gov (United States)

    Wei, Yan-Li; Bao, Lian-Jun; Wu, Chen-Chou; He, Zai-Cheng; Zeng, Eddy Y

    2015-05-01

    To evaluate the impacts of anthropogenic events on the rapid urbanized environment, the levels of legacy organochlorine pesticides (OCPs) and current-use insecticides (CUPs), i.e., dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), pyrethroids and organophosphates in soil of the Pearl River Delta (PRD) and surrounding areas were examined. Spatial concentration distributions of legacy OCPs and CUPs shared similar patterns, with higher concentrations occurred in the central PRD with more urbanization level than that in the PRD's surrounding areas. Furthermore, relatively higher concentrations of OCPs and CUPs were found in the residency land than in other land-use types, which may be attributed to land-use change under rapid urbanization. Moderate correlations between gross domestic production or population density and insecticide levels in fifteen administrative districts indicated that insecticide spatial distributions may be driven by economic prosperity. The soil-air diffusive exchanges of DDTs and HCHs demonstrated that soil was a sink of atmospheric o,p'-DDE, o,p'-DDD, p,p'-DDD and o,p'-DDT, and was a secondary source of HCHs and p,p'-DDT to atmosphere. The soil inventories of DDTs and HCHs (100 ± 134 and 83 ± 70 tons) were expected to decrease to half of their current values after 18 and 13 years, respectively, whereas the amounts of pyrethroids and organophosphates (39 and 6.2 tons) in soil were estimated to decrease after 4 and 2 years and then increase to 87 and 1.0 tons after 100 years. In this scenario, local residents in the PRD and surrounding areas will expose to the high health risk for pyrethroids by 2109. Strict ban on the use of technical DDTs and HCHs and proper training of famers to use insecticides may be the most effective ways to alleviate the health effect of soil contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Radionuclides, Trace Metals, and Organic Compounds in Shells of Native Freshwater Mussels Along the Hanford Reach of the Columbia River: 6000 Years Before Present to Current Times

    Energy Technology Data Exchange (ETDEWEB)

    B. L. Tiller; T. E. Marceau

    2006-01-25

    This report documents concentrations of radionuclides, trace metals, and semivolatile organic compounds measured in shell samples of the western pearl shell mussel collected along the Hanford Reach of the Columbia River.

  17. 77 FR 47331 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Science.gov (United States)

    2012-08-08

    ...-AA11 Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl... navigable waters of New Haven Harbor, Quinnipiac River and Mill River. The current RNA pertains only to the..., Quinnipiac River, and Mill River RNA. The proposed amendment would give the Captain of the Port Sector Long...

  18. 77 FR 67563 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Science.gov (United States)

    2012-11-13

    ... 1625-AA11 Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT... Haven Harbor, Quinnipiac River and Mill River. The current RNA pertains only to the operation of tugs...) entitled Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

  19. Radioactive Waste Evaporation: Current Methodologies Employed for the Development, Design, and Operation of Waste Evaporators at the Savannah River Site and Hanford Waste Treatment Plant

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2003-01-01

    Evaporation of High level and Low Activity (HLW and LAW) radioactive wastes for the purposes of radionuclide separation and volume reduction has been conducted at the Savannah River and Hanford Sites for more than forty years. Additionally, the Savannah River Site (SRS) has used evaporators in preparing HLW for immobilization into a borosilicate glass matrix. This paper will discuss the methodologies, results, and achievements of the SRTC evaporator development program that was conducted in support of the SRS and Hanford WTP evaporator processes. The cross pollination and application of waste treatment technologies and methods between the Savannah River and Hanford Sites will be highlighted. The cross pollination of technologies and methods is expected to benefit the Department of Energy's Mission Acceleration efforts by reducing the overall cost and time for the development of the baseline waste treatment processes

  20. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  1. Turbidity Current Bedforms

    NARCIS (Netherlands)

    Cartigny, Matthieu; Postma, G.

    2017-01-01

    Turbidity currents in the submarine seascape are what river flows are in terrestrial landscapes. While rivers transport sediment from the mountains through valleys towards the sea, turbidity currents transport sediment from the shallow marine realms through canyons towards the deeper abyssal plains.

  2. On the ecology of the fauna of stones in the current in a South African river supporting a very large simulium (Diptera) population

    CSIR Research Space (South Africa)

    Chutter, FM

    1968-12-01

    Full Text Available the studies described here were made. The first aim of this work was to record the density of the Simulium larvae and also of the other invertebrate animals in the river at different times of the year from Warrenton down to Barkly West....

  3. Investing in river health.

    Science.gov (United States)

    Bennett, J

    2002-01-01

    Rivers provide society with numerous returns. These relate to both the passive and extractive uses of the resources embodied in river environments. Some returns are manifest in the form of financial gains whilst others are non-monetary. For instance, rivers are a source of monetary income for those who harvest their fish. The water flowing in rivers is extracted for drinking and to water crops and livestock that in turn yield monetary profits. However, rivers are also the source of non-monetary values arising from biological diversity. People who use them for recreation (picnicking, swimming, boating) also receive non-monetary returns. The use of rivers to yield these returns has had negative consequences. With extraction for financial return has come diminished water quantity and quality. The result has been a diminished capacity of rivers to yield (non-extractive) environmental returns and to continue to provide extractive values. A river is like any other asset. With use, the value of an asset depreciates because its productivity declines. In order to maintain the productive capacity of their assets, managers put aside from their profits depreciation reserves that can be invested in the repair or replacement of those assets. Society now faces a situation in which its river assets have depreciated in terms of their capacity to provide monetary and non-monetary returns. An investment in river "repair" is required. But, investment means that society gives up something now in order to achieve some benefit in the future. Society thus has to grapple wih the choice between investing in river health and other investments--such as in hospitals, schools, defence etc. - as well as between investing in river health and current consumption--such as on clothes, food, cars etc. A commonly used aid for investment decision making in the public sector is benefit cost analysis. However, its usefulness in tackling the river investment problem is restricted because it requires all

  4. [Limnetic zooplankton run-off a high-head dam and their fate in a river with high current velocity (case of the Krasnoiarsk hydroelectric power station on the Yenisei river].

    Science.gov (United States)

    Dubovskaia, O P; Gladyshev, M I; Makhutova, O N

    2004-01-01

    The vertical distribution of net zooplankton in head-water of Krasnoyarsk hydroelectric power station and its horizontal distribution in the tail-water were studied during two years in winter and summer seasons. In order to distinguish living and dead individuals the special staining was used. It was revealed that on average 77% of living plankton pass through high-head dam with deep water scoop to the tailwater. While passing through dam aggregates some individuals of the reservoir plankton are traumatized and die, that results in some increase of portion of dead individuals in the tail water near dam (from 3 to 6%). Alive zooplankton passed through the dam aggregates is eliminated under the Upper Yenisei highly turbulent conditions. There is approximately 10% of it in 32 km from the dam if compare with biomass in 20-40 m layer of reservoir, the portion of dead increases to 11%. The biomass of zooplankton suspended in the water column of the tail-water sometimes increases (till > 1 g/m3) due to large Copepoda Heteroscope borealis, which inhabits near-bottom and near-shore river zones and can be found in the central part of the river during reproductive period. Limnetic zooplankton from the reservoir cannot be considered as important food for planktivores in the tail-water.

  5. Charles River

    Science.gov (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  6. Recent changes (1973-2014 versus 1903-1972) in the flow regime of the Lower Paraná River and current fluvial pollution warnings in its Delta Biosphere Reserve.

    Science.gov (United States)

    Puig, Alba; Olguín Salinas, Héctor F; Borús, Juan A

    2016-06-01

    Alterations in flow regimes of large rivers may originate or increase risks to ecosystems and humans. The Paraná River basin (South America) undergoes human pressures (e.g., heavy damming in the upper basin, deforestation, and mixed pollution) that may affect the water quantity and quality of its terminal Delta (Argentina). In this study, after applying univariate and multivariate change-point detection and trend analyses to the daily data series of flows incoming to the Delta (Paraná-Santa Fe section), flow characteristics were compared by Indicators of Hydrologic Alteration (IHA) and Environmental Flow Components (EFC). Some flood characteristics were also compared from hydrometric levels in the middle Delta (San Pedro station). Chemical and microbiological water variables in the main rivers of the "Paraná Delta" Biosphere Reserve were examined during two extreme hydrologic years (October 2008 to July 2010) to detect potential risk factors in association with hydrologic conditions. In the Lower Paraná River, a historical period (1903-1972) and two more altered periods (1973-1999 wet period and 2000-2014 dry period) were identified. Flow duration curves evidenced different changes in both altered periods, reflecting the joint effect of climatic variability and human influence. The most evident alterations in the flow regime were the lack of record of the extreme-low-flow component, the attenuation of monthly flow seasonality, and the increase in the number of reversals (dry period) and in the variability of maximum and minimum flow dates. These alterations are consistent with the monthly and daily flow regulation by upstream dams evidenced by available data from the current dry period. In the middle Delta, the marked monthly seasonality in flood days decreased only in the wet period. The proportion between the number of flood days exceeding the evacuation level and that of those exceeding the warning level doubled in the wet period but decreased only

  7. Current Assessment and Future Outlook for Water Resources Considering Climate Change and a Population Burst: A Case Study of Ciliwung River, Jakarta City, Indonesia

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar

    2017-06-01

    Full Text Available Modeling insecurity under future climate change and socio-economic development is indispensable for adaptive planning and sustainable management of water resources. This case study strives to assess the water quality and quantity status for both the present and the near future in the Ciliwung River basin inside the Jakarta Province under different scenarios using population growth with planned additional wastewater management infrastructure by 2030 as mentioned in the local master plan, and comparing the above conditions with the addition of the effects of climate change. Biochemical oxygen demand (BOD, chemical oxygen demand (COD and nitrate (NO3, the three important indicators of aquatic ecosystem health, were simulated to assess river pollution. Simulation results suggest that water quality in year 2030 will further deteriorate compared to the base year 2000 due to population growth and climate change, even considering the planned wastewater management infrastructure. The magnitude of impact from population growth is far greater than that from climate change. Simulated values of NO3, BOD and COD ranged from 6.07 to 13.34 mg/L, 7.65 to 11.41 mg/L, and 20.16 to 51.01 mg/L, respectively. Almost all of the water quality parameters exceeded the safe limit suitable for a healthy aquatic system, especially for the year 2030. The situation of water quality is worse for the downstream sampling location because of the cumulative effect of transport of untreated pollutants coming from upstream, as well as local dumping. This result will be useful for local policy makers and stakeholders involved in the water sector to formulate strategic and adaptive policies and plan for the future. One of the potential policy interventions is to implement a national integrated sewerage and septage management program on a priority basis, considering various factors like population density and growth, and global changes for both short- and long-term measures.

  8. Large scale groundwater flow and hexavalent chromium transport modeling under current and future climatic conditions: the case of Asopos River Basin.

    Science.gov (United States)

    Dokou, Zoi; Karagiorgi, Vasiliki; Karatzas, George P; Nikolaidis, Nikolaos P; Kalogerakis, Nicolas

    2016-03-01

    In recent years, high concentrations of hexavalent chromium, Cr(VI), have been observed in the groundwater system of the Asopos River Basin, raising public concern regarding the quality of drinking and irrigation water. The work described herein focuses on the development of a groundwater flow and Cr(VI) transport model using hydrologic, geologic, and water quality data collected from various sources. An important dataset for this goal comprised an extensive time series of Cr(VI) concentrations at various locations that provided an indication of areas of high concentration and also served as model calibration locations. Two main sources of Cr(VI) contamination were considered in the area: anthropogenic contamination originating from Cr-rich industrial wastes buried or injected into the aquifer and geogenic contamination from the leaching process of ophiolitic rocks. The aquifer's response under climatic change scenario A2 was also investigated for the next two decades. Under this scenario, it is expected that rainfall, and thus infiltration, will decrease by 7.7 % during the winter and 15 % during the summer periods. The results for two sub-scenarios (linear and variable precipitation reduction) that were implemented based on A2 show that the impact on the study aquifer is moderate, resulting in a mean level decrease less than 1 m in both cases. The drier climatic conditions resulted in higher Cr(VI) concentrations, especially around the industrial areas.

  9. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    sail on the Niger River between Nigeria and Mali. Crossing villages, borders and cultures, they stop only to rest by setting up camp on riverbanks or host villages. In River Nomads, we join the nomadic Kebbawa fishermen on one of their yearly crossing, experiencing their relatively adventurous...

  10. River Piracy

    Indian Academy of Sciences (India)

    There was this highly venerated river Saraswati flowing through. Haryana, Marwar and Bahawalpur in Uttarapath and emptying itself in the Gulf ofKachchh, which has been described in glowing terms by the Rigveda. "Breaking through the mountain barrier", this "swift-flowing tempestuous river surpasses in majesty and.

  11. Current and Future Dynamics of the Red-Cockaded Woodpecker Population Inhabiting the Savannah River National Environmental Research Park: Managing For Population Growth

    International Nuclear Information System (INIS)

    Walters, J.R.; Taylor, T.B.; Daniels, S.J.; Crowder, L.B.; Pridd, J.A.

    2001-01-01

    Research aimed to study the dynamics of the SRS population of Red-Cockaded woodpecker and compare to those of other populations to identify factors limiting population growth; recruitment clusters were evaluated to determine what properties of individual cavity trees, surrounding habitat and the surrounding landscape might limit occupancy through natural dispersal. A spatial simulation model was used to project expected dispersal rates and population growth under current conditions and compare those estimates to observed dispersal and population growth. Red cockaded woodpecker populations at SRS are stable considering size. Research reveals that closer placement of recruitment clusters to active territories would produce higher growth rates while decreasing management intensity

  12. Current and Future Dynamics of the Red-Cockaded Woodpecker Population Inhabiting the Savannah River National Environmental Research Park: Managing For Population Growth

    Energy Technology Data Exchange (ETDEWEB)

    Walters, J.R.; Taylor, T.B.; Daniels, S.J.; Crowder, L.B.; Pridd, J.A.

    2001-01-01

    Research aimed to study the dynamics of the SRS population of Red-Cockaded woodpecker and compare to those of other populations to identify factors limiting population growth; recruitment clusters were evaluated to determine what properties of individual cavity trees, surrounding habitat and the surrounding landscape might limit occupancy through natural dispersal. A spatial simulation model was used to project expected dispersal rates and population growth under current conditions and compare those estimates to observed dispersal and population growth. Red cockaded woodpecker populations at SRS are stable considering size. Research reveals that closer placement of recruitment clusters to active territories would produce higher growth rates while decreasing management intensity.

  13. DOE ORDER 435.1, IMPLEMENTATION AND COMPLIANCE DECLARATION AT THE SAVANNAH RIVER SITE AND ACROSS THE DOE COMPLEX IN CONTRAST TO CURRENT PUSHBACK EFFORTS FROM THE ''TOP-TO-BOTTOM'' REVIEW

    International Nuclear Information System (INIS)

    GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV.

    2003-01-01

    DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the many problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review

  14. Missouri River, Natural Resources Bibliography.

    Science.gov (United States)

    1997-07-01

    1971. Thermal study of the 366. CUNDAY TW, BROOKS KN. 1981. Calibrating Missouri River in North Dakota using infrared and verifying the SSARR model...in North and South 1612. SCHUELER RL, SULLIVAN JK. 1967. Quantifying Dakota using NOAA-5 infrared data. In: current and potential commercial fishery...use survey, 1984. South Dakota River. Journal of the Waterways Department of Game, Fish and Parks. Pierre, 101( WW2 ):119-33. SD. Interim report. South

  15. Antecedent Rivers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Antecedent Rivers - Ganga Is Older Than Himalaya. K S Valdiya. General Article Volume 1 Issue 8 August 1996 pp 55-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/08/0055-0063 ...

  16. RIVER STATE

    African Journals Online (AJOL)

    principals randomly selected from one hundred secondary schools in Cross River State. The data collected ... There was no siyriificant influerlce of gender on principals' leadership styles effectiveness. ... result of the cultural stereotyping of males and females by .... schools were single sex boys, another 10 were single sex ...

  17. Antecedent Rivers

    Indian Academy of Sciences (India)

    far north of the high NandaDevi (7,817 m) - Api Nampa. (7,132 m) range of the Himadri. The Sindhu flows northwestwards, the Satluj goes west, the Karnali takes the southerly course and the Tsangpo flows east. These rivers flow through their pristine channels, carved out at the very outset about 50 to 55 m.y (million years) ...

  18. Development and Testing of Infrared Water Current Meter | Ezenne ...

    African Journals Online (AJOL)

    Continuous monitoring of the river flow is essential for assessing water availability. River flow velocity is crucial to simulate discharge hydrographs of water in the hydrological system.This study developed a digital water current meter with infrared. The infrared current meter was tested using Ebonyi River at Obollo-Etiti and ...

  19. RiverHeath: Neighborhood Loop Geothermal Exchange System

    Energy Technology Data Exchange (ETDEWEB)

    Geall, Mark [RiverHeath LLC, Appleton, WI (United States)

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  20. Management of Fishery Resources in Yangtze River Estuary

    OpenAIRE

    Li, Meiling; Huang, Shuolin

    2009-01-01

    We introduce the fish fauna composition and main commercial fishes in Yangtze River estuary. We also analyze the current situation of resources and environment in Yangtze River estuary as well as the influential factors. Finally, related countermeasures are put forward on how to protect and use the fishery resources in Yangtze River.

  1. H-ADCP discharge monitoring of a large tropical river

    NARCIS (Netherlands)

    Hidayat, H.; Sassi, M.G.; Vermeulen, B.

    2012-01-01

    River flow can be continuously monitored through velocity measurements with an acoustic Doppler current profiler, deployed horizontally at a river bank (H-ADCP). This approach was adopted to obtain continuous discharge estimates at two cross-sections in the River Mahakam, i.e. at an upstream station

  2. River Corridor Easements

    Data.gov (United States)

    Vermont Center for Geographic Information — A River Corridor Easement (RCE) is an area of conserved land adjacent to a river or stream that was conserved to permanently protect the lateral area the river needs...

  3. Past and current sediment dispersion pattern estimates through numerical modeling of wave climate: an example of the Holocene delta of the Doce River, Espírito Santo, Brazil

    Directory of Open Access Journals (Sweden)

    Abílio C.S.P. Bittencourt

    2007-06-01

    Full Text Available This paper presents a numerical modeling estimation of the sediment dispersion patterns caused by waves inciding through four distinct coastline contours of the delta plain of the Doce River during the Late Holocene. For this, a wave climate model based on the construction of wave refraction diagrams, as a function of current boundary conditions, was defined and was assumed to be valid for the four coastlines. The numerical modeling was carried out on basis of the refraction diagrams, taking into account the angle of approximation and the wave height along the coastline. The results are shown to be comparable with existing data regarding the directions of net longshore drift of sediments estimated from the integration of sediment cores, interpretation of aerial photographs and C14 datings. This fact apparently suggests that, on average, current boundary conditions appear to have remained with the same general characteristics since 5600 cal yr BP to the present. The used approach may prove useful to evaluate the sediment dispersion patterns during the Late Holocene in the Brazilian east-northeast coastal region.O presente trabalho apresenta uma estimativa, por modelagem numérica, dos padrões de dispersão de sedimentos causados por ondas ao longo de quatro distintos traçados da linha decosta durante o Holoceno Tardio na planície deltaica do Rio Doce. Para tanto, foi definido um modelo de clima de ondas baseado na construção de diagramas de refração de ondas, em função das condições de contorno atuais, que foi assumido como válido para as quatro linhas de costa. A modelagem numérica foi realizada a partir dos diagramas de refração, levando-se em conta o ângulo de aproximação e a altura da onda ao longo da linha de costa. Os resultados obtidos mostraram-se compatíveis com os dados existentes relativos aos sentidos da deriva litorânea efetiva de sedimentos estimados a partir da integração de testemunhos de vibra

  4. Hydrological River Drought Analysis (Case Study: Lake Urmia Basin Rivers

    Directory of Open Access Journals (Sweden)

    Mohammad Nazeri Tahrudi

    2017-02-01

    to investigatethe accuracy of this method, 3 methods (moment, maximum likelihood and Logarithm of applied moment observations were used and 4 mentioned methods for all of rivers were calculated. The most river drought relating to Gadar-Chai river with 1742 million cubic meters low volume and the lowest of it relating to Mardoq-Chai river with 68 million cubic meters low volume in 10000 year return period. After Gadar-Chai river the most low volume of discharge relating the Zarineh-rood river. Two Zarineh-rood and Gadar-Chai rivers among other rivers have a higher average discharge. Log Normal III, Gamma, Wikeby and GEV distributions have a good fitting on river flows data and no difference in investigation models that corresponded with Mosaedi et al (13 and NazeriTahroudi et al (15. The results of Grifits (7 also introduced the Wikeby distribution has a better than Beta distribution. Lee (12 also with evaluation the rainfall frequency in the study the rainfall concentration properties in Chia-Nan (Taiwan introduced the Log Pearson type III as the best distribution function between the common distribution function. Results of Chi-Squared test in methods of parameter estimation showed that all methods are acceptable. Conclusion: Drought occurrence can be estimated bythe analysis of historical data for different regions and using the results of predicting problems can be reduced. In this research daily river flow of Lake Urmia basin applied to calculate drought volume of rivers. Log Pearson III distribution selected among current hydrological distribution functions for fitting drought volume of rivers. Using selected distribution function and Sundry Average Moment method for estimating parameters return period of drought from 2 to 10000 years extracted. Results showed that volume of drought for Shahar-chai , Barandoz-chai, Nazlu-Chai, Mahabad-Chai, Rozeh-Chai, Gadar-chai, Simineh-rood, Zola-chai, Aji-chai, Sofi-chai, Leilan-chai and Mardoq-chay rivers in the return

  5. Application of MIKE21 Software in Flood Routing of Tidal Rivers: A Case Study of the Zohre River

    Directory of Open Access Journals (Sweden)

    Ali Karami Khaniki

    2007-01-01

    Full Text Available Flood routing is of special importance from different aspects of river engineering such as flood zoning, flood forecasting, etc. There are two methods employed in river flood routing, hydraulic and hydrological. Hydrological methods are used when the river is at low tide and, hence, cannot be employed to analyze floods caused by the tide. Hydraulic methods must be employed in tidal rivers when the direction of the current reverses at high tide. In this research,MIKE21 modeling software was used for the flood routing of the Zohreh tidal river. The model was calibrated by surveying the river, taking samples form the river bed, measuring sea water level and the velocity of the river flow. Analyzing the sensitivity of the model showed that the coefficient of determination, root mean square error and relative error were 0.95, 0.032, and 0.27, respectively, all indicating the efficacy of the model in simulating different parameters such as velocity, flow rate, and water surface profile. The flood routing results of the tidal currents showed that the hydrograph of the influent and effluent to the reach at high tide (when the current direction is from sea to the river was similar to the normal flood routing of the river, but at low tide (when the current direction is from the sea to the river influent and effluent hydrograph would not follow the laws of normal flood routing.

  6. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  7. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  8. Coherence between coastal and river flooding along the California coast

    Science.gov (United States)

    Odigie, Kingsley O.; Warrick, Jonathan

    2018-01-01

    Water levels around river mouths are intrinsically determined by sea level and river discharge. If storm-associated coastal water-level anomalies coincide with extreme river discharge, landscapes near river mouths will be flooded by the hydrodynamic interactions of these two water masses. Unfortunately, the temporal relationships between ocean and river water masses are not well understood. The coherence between extreme river discharge and coastal water levels at six California river mouths across different climatic and geographic regions was examined. Data from river gauges, wave buoys, and tide gauges from 2007 to 2014 were integrated to investigate the relationships between extreme river discharge and coastal water levels near the mouths of the Eel, Russian, San Lorenzo, Ventura, Arroyo Trabuco, and San Diego rivers. Results indicate that mean and extreme coastal water levels during extreme river discharge are significantly higher compared with background conditions. Elevated coastal water levels result from the combination of nontidal residuals (NTRs) and wave setups. Mean and extreme (>99th percentile of observations) NTRs are 3–20 cm and ∼30 cm higher during extreme river discharge conditions, respectively. Mean and extreme wave setups are up to 40 cm and ∼20–90 cm higher during extreme river discharge than typical conditions, respectively. These water-level anomalies were generally greatest for the northern rivers and least for the southern rivers. Time-series comparisons suggest that increases in NTRs are largely coherent with extreme river discharge, owing to the low atmospheric pressure systems associated with storms. The potential flooding risks of the concurrent timing of these water masses are tempered by the mixed, semidiurnal tides of the region that have amplitudes of 2–2.5 m. In summary, flooding hazard assessments for floodplains near California river mouths for current or future conditions with sea-level rise should include the temporal

  9. Advances in understanding river-groundwater interactions

    Science.gov (United States)

    Brunner, Philip; Therrien, René; Renard, Philippe; Simmons, Craig T.; Franssen, Harrie-Jan Hendricks

    2017-09-01

    River-groundwater interactions are at the core of a wide range of major contemporary challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state of the art approaches in characterizing and modeling river and groundwater interactions. Our review covers a wide range of approaches, including remote sensing to characterize the streambed, emerging methods to measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant to the river-groundwater interface. We discuss approaches for automated calibration, and real-time modeling, which improve the simulation and understanding of river-groundwater interactions. Although the integration of these various approaches and disciplines is advancing, major research gaps remain to be filled to allow more complete and quantitative integration across disciplines. New possibilities for generating realistic distributions of streambed properties, in combination with more data and novel data types, have great potential to improve our understanding and predictive capabilities for river-groundwater systems, especially in combination with the integrated simulation of the river and groundwater flow as well as calibration methods. Understanding the implications of different data types and resolution, the development of highly instrumented field sites, ongoing model development, and the ultimate integration of models and data are important future research areas. These developments are required to expand our current understanding to do justice to the complexity of natural systems.

  10. Analysis of Cruise Tourism on Croatian Rivers

    Directory of Open Access Journals (Sweden)

    Astrid Zekić

    2017-03-01

    Full Text Available Cruise trips have been rising in popularity since the 1970sand are currently a trend in the tourism market. This is particularly true of river cruises, which record a constant growth in the number of ship calls. The general upward trend in the number of river cruise passengers and dockings is also present in Croatia. Prerequisites for the development of cruising on Croatian rivers include, in addition to other geographical features, also the length of navigable water ways, but a systematic approach to this issue is needed for further development. The authors investigate the level of development of infrastructure on Croatian rivers and analyse the passenger and ship traffic on them. Special attention is given to the importance of cruises for tourism on European rivers and worldwide. In accordance with the Croatian Tourism Development Strategy until 2020, the authors explore geographical and other conditions necessary for the development of river cruise tourism. The aim of the paper is to point to the importance of building infrastructure for accommodation of vessels sailing on Croatian rivers, and in particular to the need to improve tourism offer in river destinations.

  11. Volume 90, Issue1 (February 2005)Articles in the Current Issue:Original PaperSeasonal Dynamics of Benthic and Planktonic Algae in a Nutrient-Rich Lowland River (Spree, Germany)

    Science.gov (United States)

    Werner, Petra; Köhler, Jan

    2005-02-01

    We studied chlorophyll a (chl. a), biovolume and species composition of benthic algae and phytoplankton in the eutrophic lower River Spree in 1996. The chl. a concentration was estimated as 3.5 (2.7-4.5) μg/cm2 for epipsammon, 9.4 (7.4-11.9) μg/cm2 for epipelon and 6.7 (5.7-7.8) μg/cm2 for the epilithon (median and 95% C. L.). The mean total biomass of benthic algae was significantly higher (6.0 μg chl. a/cm2) than the areal chl. a content of the pelagic zone (1.6 μg chl. a/cm2). Although certain phytoplankton taxa were abundant in the periphyton, benthic taxa generally dominated the assemblages. Seasonal dynamics of benthic algae were probably controlled by light and nitrate supply (sand), discharge fluctuations (sand, mud) and invertebrate grazing (stones). This paper shows the importance of benthic algae even in phytoplankton-rich lowland rivers with sandy or muddy sediments.

  12. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  13. Columbia River Component Data Gap Analysis

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Hulstrom

    2007-10-23

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  14. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  15. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    Science.gov (United States)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local

  16. Alligator Rivers analogue project

    International Nuclear Information System (INIS)

    Duerden, P.

    1990-01-01

    Australian Nuclear Science and Technology Organization has extensively evaluated uranium ore bodies in the Alligator Rivers Uranium Province in Australia as analogues of radioactive waste repositories. The work was extended for a three-year program as an international project based on the Koongarra uranium deposit and sponsored by the OECD Nuclear Energy Agency. The technical program comprises six major sub-projects involving modelling and experimental work: modelling of radionuclide migration; hydrogeology of the Koongarra uranium deposit; uranium/thorium series disequilibria studies; groundwater and colloid studies; fission product studies; transuranic nuclide studies; an outline of the technical programs and a summary of progress in the technical sub-projects is given. This is followed by a series of technical reports which briefly describe current research tasks, and which have been separately indexed

  17. Some aspects of the ecology of the Groot Letaba River in the ...

    African Journals Online (AJOL)

    Some aspects of the ecology of the Groot Letaba River in the Northern Province, South Africa. ... Open Access DOWNLOAD FULL TEXT ... current ecological status of the Groot Letaba River and to compare this information with historical data.

  18. Flowing with Rivers

    Science.gov (United States)

    Anderson, Heather

    2004-01-01

    This article describes a lesson in which students compare how artists have depicted rivers in paintings, using different styles, compositions, subject matter, colors, and techniques. They create a watercolor landscape that includes a river. Students can learn about rivers by studying them on site, through environmental study, and through works of…

  19. Preface to the volume Large Rivers

    Science.gov (United States)

    Latrubesse, Edgardo M.; Abad, Jorge D.

    2018-02-01

    The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).

  20. RiverCare: towards self-sustaining multifunctional rivers

    Science.gov (United States)

    Augustijn, Denie; Schielen, Ralph; Hulscher, Suzanne

    2014-05-01

    Rivers are inherently dynamic water systems involving complex interactions among hydrodynamics, morphology and ecology. In many deltas around the world lowland rivers are intensively managed to meet objectives like safety, navigation, hydropower and water supply. With the increasing pressure of growing population and climate change it will become even more challenging to reach or maintain these objectives and probably also more demanding from a management point of view. In the meantime there is a growing awareness that rivers are natural systems and that, rather than further regulation works, the dynamic natural processes should be better utilized (or restored) to reach the multifunctional objectives. Currently many integrated river management projects are initiated all over the world, in large rivers as well as streams. Examples of large scale projects in the Netherlands are 'Room for the River' (Rhine), the 'Maaswerken' (Meuse), the Deltaprogramme and projects originating from the European Water Framework Directive (WFD). These projects include innovative measures executed never before on this scale and include for example longitudinal training dams, side channels, removal of bank protection, remeandering of streams, dredging/nourishment and floodplain rehabilitation. Although estimates have been made on the effects of these measures for many of the individual projects, the overall effects on the various management objectives remains uncertain, especially if all projects are considered in connection. For all stakeholders with vested interests in the river system it is important to know how that system evolves at intermediate and longer time scales (10 to 100 years) and what the consequences will be for the various river functions. If the total, integrated response of the system can be predicted, the system may be managed in a more effective way, making optimum use of natural processes. In this way, maintenance costs may be reduced, the system remains more natural

  1. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  2. Urban rivers as hotspots of regional nitrogen pollution

    International Nuclear Information System (INIS)

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-01-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3–5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. - Highlights: • Nitrogen concentrations in urban rivers are much higher than that in regional rivers. • Domestic wastewater is the main source of urban river pollution in Hangzhou. • Pollutant collecting and water diversion can sharply reduce the urban river pollution. - Urban river pollution is not being measured by the current monitoring networks that are designed to measure regional patterns causing an underestimation

  3. Lower Charles River Bathymetry: 108 Years of Fresh Water

    Science.gov (United States)

    Yoder, M.; Sacarny, M.

    2017-12-01

    The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.

  4. Biomarker as an Indicator of River Water Quality Degradation

    Directory of Open Access Journals (Sweden)

    Dwina Roosmini

    2006-11-01

    Full Text Available Generally physical and chemical methods are use in river water quality monitoring; currently biomarker is developed as alternative biomonitoring method. The aim of this study is to look at the probability using aquatic species in monitoring river water pollutants exposure. This study was done by using Hyposarcus pardalis as biomarker to analyze river water quality in Upstream Citarum River. Hyposarcus pardalis were taken along the river at five sampling point and look at the Cu and Zn concentration. Results from this study show that there was an indication that river water quality has been degrading along the river from upstream to downstream. Zn concentration in Hyposarcus pardalis were increasing as well as Cu concentration. The increase of Zn concentration in Hyposarcus pardalis indicating that the river was polluted by Zn. Secondary data and observation at sampling location shown that textile was the dominant industry which may contribute the Zn concentration in river as they received the effluent. Cu is use in metal coating process, as well as textile industry metal industries were identified at Majalaya, Bantar Panjang, Dayeuh Kolot and Katapang in Bandung-Indonesia. As a receiving water from many activities along the river, upstream Citarum River water quality become degrading as the increasing of heavy metal Zn and Cu concentration in Hyposarcus pardalis.

  5. Physical, meteorological, wave spectra, and other data from CTD casts and current meters aboard NOAA Ship McARTHUR in the Columbia River (Wash./Oregon) from 1981-05-06 to 1981-11-25 (NODC Accession 8300033)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, wave spectra, and other data were collected from CTD casts and current meters from NOAA Ship McARTHUR and other platforms in the Columbia...

  6. Buck Creek River Flow Analysis

    Science.gov (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  7. Operation of river systems. The Otra river

    International Nuclear Information System (INIS)

    Harby, A.; Vaskinn, K.A.; Wathne, M.; Heggenes, J.; Saltveit, S.J.

    1993-12-01

    The purpose of the project described in this report was to prepare an operative tool for making decisions about the operation of the power system on the river Otra (Norway) with regard to how this operation might affect the various users of the river system. Above all this affects fish, outdoor life and esthetic values. The connection between water quality and volume of discharge has been examined in a sub project. How suitable parts of the river are as habitats for trout has been simulated on a computer. From field investigation it is concluded that near the Steinfoss power station the physical conditions for trout depend on the operation of the river system. Outdoor life is not much affected downstream Vikeland. 11 refs., 22 figs., 2 tabs

  8. 76 FR 51887 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-08-19

    ...-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone during the ``NAS Patuxent River... held over certain waters of the Patuxent River adjacent to Patuxent River, Maryland from September 1...

  9. Assessing the Global Extent of Rivers Observable by SWOT

    Science.gov (United States)

    Pavelsky, T.; Durand, M. T.; Andreadis, K.; Beighley, E.; Allen, G. H.; Miller, Z.

    2013-12-01

    Flow of water through rivers is among the key fluxes in the global hydrologic cycle and its knowledge would advance the understanding of flood hazards, water resources management, ecology, and climate. However, gauges providing publicly accessible measurements of river stage or discharge remain sparse in many regions. The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and the French Centre National d'Etudes Spatiales (CNES) that would provide the first high-resolution images of simultaneous terrestrial water surface height, inundation extent, and ocean surface elevation. Among SWOT's primary goals is the direct observation of variations in river water surface elevation and, where possible, estimation of river discharge from SWOT measurements. The mission science requirements specify that rivers wider than 100 m would be observed globally, with a goal of observing rivers wider than 50m. However, the extent of anticipated SWOT river observations remains fundamentally unknown because no high-resolution, global dataset of river widths exists. Here, we estimate the global extent of rivers wider than 50 m-100 m thresholds using established relationships among river width, discharge, and drainage area. We combine a global digital elevation model with in situ river discharge data to estimate the global extent of SWOT-observable rivers, and validate these estimates against satellite-derived measurements of river width in two large river basins (the Yukon and the Ohio). We then compare the extent of SWOT-observed rivers with the current publicly-available, global gauge network included in the Global Runoff Data Centre (GRDC) database to examine the impact of SWOT on the availability of river observation over continental and global scales. Results suggest that if SWOT observes 100 m wide rivers, river basins with areas greater than 50,000 km2 will commonly be measured. If SWOT could observe 50 m wide rivers, then most 10,000 km2 basins

  10. Mississippi National River and Recreation Area Water Trail Plan.

    Science.gov (United States)

    2017-05-05

    The Water Trail Plan describes the current conditions of and future plans for the Mississippi National River and Recreation Area (NRRA), a 72-mile stretch of the Mississippi River running through the Twin Cities region of Minnesota. In 2012, the NRRA...

  11. Fish distributions in the Rondegat River, Cape Floristic Region ...

    African Journals Online (AJOL)

    Alien fishes are considered the most serious threat to native headwater stream fishes in South Africa. A 4 km reach of the Rondegat River is the first section of a South African river to be rehabilitated through the attempted removal of alien fish by using the piscicide rotenone. The objectives of the current study were to ...

  12. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  13. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  14. Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems

    Science.gov (United States)

    Ashley M. Helton; Geoffrey C. Poole; Judy L. Meyer; Wilfred M. Wollheim; Bruce J. Peterson; Patrick J. Mulholland; Emily S. Bernhardt; Jack A. Stanford; Clay Arango; Linda R. Ashkenas; Lee W. Cooper; Walter K. Dodds; Stanley V. Gregory; Robert O. Hall; Stephen K. Hamilton; Sherri L. Johnson; William H. McDowell; Jody D. Potter; Jennifer L. Tank; Suzanne M. Thomas; H. Maurice Valett; Jackson R. Webster; Lydia Zeglin

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate...

  15. River Corridors (Jan 2, 2015)

    Data.gov (United States)

    Vermont Center for Geographic Information — River corridors are delineated to provide for the least erosive meandering and floodplain geometry toward which a river will evolve over time. River corridor maps...

  16. In Brief: Improving Mississippi River water quality

    Science.gov (United States)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  17. Morphology of Tigris River within Baghdad City

    Directory of Open Access Journals (Sweden)

    A. A. Ali

    2012-10-01

    Full Text Available In recent years, substantial changes have occurred in the morphology of the River Tigris within Baghdad City. Although huge volumes of sediment are being trapped in recently constructed headwater reservoirs, the number of islands in the Tigris at Baghdad is increasing. The debris of bridges destroyed in the wars of 1991 and 2003 and their subsequent reconstruction have enhanced the development of these islands. As a consequence the ability of the river to carry the peaks of flood waters has been reduced. This has led to potential increase of flooding in parts of the city.

    The bed of the River Tigris has been surveyed on three occasions (1976, 1991, and 2008. The most recent survey was conducted by the Ministry of Water Resources, extended 49 km from the Al-Muthana Bridge north Baghdad to the confluence with the Diyala River south Baghdad. It yielded cross-section profiles at 250 m intervals. The data are used to predict the maximum flood capacity for the river using the one-dimensional hydraulic model for steady flow "HEC-RAS" modeling. Calibration of the model was carried out using field measurements for water levels along the last 15 km of the reach and the last 10 yr of observation at the Sarai Baghdad gauging station.

    The model showed a significant predicted reduction in the current river capacity below that which the river had carried during the floods of 1971 and 1988. The three surveys conducted on the same reach of the Tigris indicated that the ability of the river to transport water has decreased.

  18. Preserving the Dnipro River

    International Development Research Centre (IDRC) Digital Library (Canada)

    Humanity inherited the true sense of proportion, synergy, and harmony from the natural environment. ..... In Ukraine, the middle and lower sections of the Dnipro have a drainage ... The following large cities are located in the Dnipro basin: in Russia, .... In Kherson Oblast and in river basins of some small rivers it is as high as ...

  19. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    / reservoir and river operations including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. In addition to the operations and streamflow-routing modules, the modeling system is structured to allow integration of other modules, such as water-quality and precipitation-runoff modules. The USGS Truckee River Basin operations model was designed to provide simulations that allow comparison of the effects of alternative management practices or allocations on streamflow or reservoir storages in the Truckee River Basin over long periods of time. Because the model was not intended to reproduce historical streamflow or reservoir storage values, a traditional calibration that includes statistical comparisons of observed and simulated values would be problematic with this model and database. This report describes a chronology and background of decrees, agreements, and laws that affect Truckee River operational practices; the construction of the Truckee River daily operations model; the simulation of Truckee River Basin operations, both current and proposed under the draft TROA and WQSA; and suggested model improvements and limitations. The daily operations model uses Hydrological Simulation Program?FORTRAN (HSPF) to simulate flow-routing and reservoir and river operations. The operations model simulates reservoir and river operations that govern streamflow in the Truckee River from Lake Tahoe to Pyramid Lake, including diversions through the Truckee Canal to Lahontan Reservoir in the Carson River Basin. A general overview is provided of daily operations and their simulation. Supplemental information that documents the extremely complex operating rules simulated by the model is available.

  20. Data Compendium for the Columbia River comprehensive impact assessment

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Huesties, L.R.; Maughan, A.D.; Miley, T.B.; Walters, W.H.

    1994-04-01

    The Columbia River Comprehensive Impact Assessment (CRCIA). The CRCIA is conducted by the Pacific Northwest Laboratory (PNL). The purpose of the CRCIA is to evaluate the current human and ecological risk from the Columbia River attributable to past and present activities on the Hanford Site. Human risk will be addressed for radioactive and hazardous materials over a range of river use options. Ecological risk will be evaluated relative to the health of the current river ecosystem. The initial effort for the CRCIA is the development of a compendium of existing data on Columbia River contamination. This document provides the data compendium. It also includes a discussion of data sources, descriptions of the physical format of the data, and descriptions of the search process used to identify data

  1. Atmospheric River Characteristics under Decadal Climate Variability

    Science.gov (United States)

    Done, J.; Ge, M.

    2017-12-01

    How does decadal climate variability change the nature and predictability of atmospheric river events? Decadal swings in atmospheric river frequency, or shifts in the proportion of precipitation falling as rain, could challenge current water resource and flood risk management practice. Physical multi-scale processes operating between Pacific sea surface temperatures (SSTs) and atmospheric rivers over the Western U.S. are explored using the global Model for Prediction Across Scales (MPAS). A 45km global mesh is refined over the Western U.S. to 12km to capture the major terrain effects on precipitation. The performance of the MPAS is first evaluated for a case study atmospheric river event over California. Atmospheric river characteristics are then compared in a pair of idealized simulations, each driven by Pacific SST patterns characteristic of opposite phases of the Interdecadal Pacific Oscillation (IPO). Given recent evidence that we have entered a positive phase of the IPO, implications for current reservoir management practice over the next decade will be discussed. This work contributes to the NSF-funded project UDECIDE (Understanding Decision-Climate Interactions on Decadal Scales). UDECIDE brings together practitioners, engineers, statisticians, and climate scientists to understand the role of decadal climate information for water management and decisions.

  2. assessement of information resource of public libraries in rivers state

    African Journals Online (AJOL)

    Information Impact | Journal of Information and Knowledge Management

    users, awareness of resources provided by public libraries in Rivers State is low, ... decision making, and culture development of individuals and social groups. ..... programmes, current affairs, fish production, human right, business, oil spillage,.

  3. Climate change adaptation in European river basins

    NARCIS (Netherlands)

    Huntjens, P.; Pahl-Wostl, C.; Grin, J.

    2010-01-01

    This paper contains an assessment and standardized comparative analysis of the current water management regimes in four case-studies in three European river basins: the Hungarian part of the Upper Tisza, the Ukrainian part of the Upper Tisza (also called Zacarpathian Tisza), Alentejo Region

  4. River Bed Sediment Classification Using ADCP

    Science.gov (United States)

    Description of physical aquatic habitat in rivers often includes data describing distributions of water depth, velocity and bed material type. Water depth and velocity in streams deeper than about 1 m may be continuously mapped using an acoustic Doppler current profiler from a moving boat. Herein ...

  5. Upper Illinois River basin

    Science.gov (United States)

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  6. Assessing river health in Europe and Switzerland

    Science.gov (United States)

    Milano, Marianne; Chèvre, Nathalie; Reynard, Emmanuel

    2017-04-01

    River conditions and welfare of aquatic ecosystems are threatened by anthropogenic and climatic changes. The release of personal-care products, pharmaceuticals and crop protection products is increasing and climate change is likely to cause significant changes in hydrological regimes affecting water resources' capacity to dissolve pollutants. Assessing river health, i.e. the ability of a river to support and maintain a balanced ecosystem close to the natural habitat, is thus of major concern to ensure the development of ecosystems and to provide enough clean useable water to users. Such studies involve physical, chemical and biological processes and characteristics. In Europe and Switzerland, standardized procedures have been developed to assess the hydromorphological, ecological and toxicological status of rivers. The European Water Framework Directive sets ecological requirements and chemical guidelines while the Swiss Modular Stepwise Procedure suggests methods to apprehend ecological deficits and promote water management plans. In this study, both procedures were applied and compared in order (i) to address their capacity to follow-up the spatial and temporal variability of the river's water quality and (ii) to identify challenges that still need to be addressed to assess river's health. Applied on the Boiron River (canton of Vaud, Switzerland) for a 11-year period (2005-2015), both frameworks highlight that no section of the river currently meets a good environmental state. This river flows through a diversified agricultural area causing a progressive deterioration of its chemical and biological quality. The two methods also identify two periods of time with significant changes of the river's water quality. The 2009-2011 period is characterized by a significant deterioration of the river's ecological and toxicological state due to severe low flows and an increased use of pesticides. However, since 2013, an improvement in water quality is identified in

  7. Numerical modelling of river processes: flow and river bed deformation

    NARCIS (Netherlands)

    Tassi, P.A.

    2007-01-01

    The morphology of alluvial river channels is a consequence of complex interaction among a number of constituent physical processes, such as flow, sediment transport and river bed deformation. This is, an alluvial river channel is formed from its own sediment. From time to time, alluvial river

  8. Current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, D.H. [Sandia National Labs., Albuquerque, NM (United States). Systems Surety Assessment Dept.; Noren, K. [Univ. of Idaho, Moscow, ID (United States). Dept. of Electrical Engineering

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  9. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  10. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  11. Morphodynamics of the Final 500 Kilometers of the Mississippi River

    Science.gov (United States)

    Wang, B.; Xu, Y. J.

    2017-12-01

    Channel dynamics of alluvial rivers in their lower reaches can strongly influence deltaic development. In this study, we analyzed over 6,000 single-beam cross-sectional measurements surveyed in 1992, 2004, and 2013 in the last 500-km reach of the highly engineered Mississippi River, a.k.a. the lowermost Mississippi River (LmMR), starting from the river's Gulf outlet to its avulsion into the Atchafalaya River. We applied Inverse Distance Weighted interpolation to downscale the survey records into 10 x 10 m Digital Elevation Models. We assessed riverbed deformation from bank to bank and quantified georeferenced changes in riverbed sediment volume and mass. We intended to test the hypothesis that the lower reach of a large alluvial river can function as a conduit for sediment transport under the current engineering focus of navigation safety and flood control. Our analysis shows that in the past two decades, nearly 70% of the riverine sand is trapped within the LmMR, and that continuous riverbed aggradation occurred below the Mississippi-Atchafalaya diversion, presenting favorable backwater conditions for avulsion. Backwater effects have mainly controlled riverbed deformation in the LmMR, while flow reduction may have also contributed to channel aggradation in the uppermost and lowermost reaches. The study reveals the considerable complexity of geomorphic responses of a large alluvial river to human interventions, strongly suggesting that future river engineering and management need also to focus on strategies that will improve sediment transport to the downstream river delta.

  12. Species for the screening assessment. Columbia River Comprehensive Impact Assessment

    International Nuclear Information System (INIS)

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O'Neil, T.K.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area

  13. Species for the screening assessment. Columbia River Comprehensive Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O`Neil, T.K.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area.

  14. Savannah River Plant environment

    International Nuclear Information System (INIS)

    Dukes, E.K.

    1984-03-01

    On June 20, 1972, the Atomic Energy Commission designated 192,323 acres of land near Aiken, SC, as the nation's first National Environmental Research Park. The designated land surrounds the Department of Energy's Savannah River Plant production complex. The site, which borders the Savannah River for 17 miles, includes swampland, pine forests, abandoned town sites, a large man-made lake for cooling water impoundment, fields, streams, and watersheds. This report is a description of the geological, hydrological, meteorological, and biological characteristics of the Savannah River Plant site and is intended as a source of information for those interested in environmental research at the site. 165 references, 68 figures, 52 tables

  15. Floodplain hydrodynamic modelling of the Lower Volta River in Ghana

    Directory of Open Access Journals (Sweden)

    Frederick Yaw Logah

    2017-12-01

    Full Text Available The impacts of dam releases from re-operation scenarios of the Akosombo and Kpong hydropower facilities on downstream communities along the Lower Volta River were examined through hydrodynamic modelling using the HEC-RAS hydraulic model. The model was used to simulate surface water elevation along the river reach for specified discharge hydrographs from proposed re-operation dam release scenarios. The morphology of the river and its flood plains together with cross-sectional profiles at selected river sections were mapped and used in the hydrodynamic modelling. In addition, both suspended and bed-load sediment were sampled and analysed to determine the current sediment load of the river and its potential to carry more sediment. The modelling results indicate that large areas downstream of the dam including its flood plains would be inundated if dam releases came close to or exceeded 2300 m3/s. It is therefore recommended to relocate communities along the banks and in the flood plains of the Lower Volta River when dam releases are to exceed 2300 m3/s. Suspended sediment transport was found to be very low in the Lower Volta River and the predominant soil type in the river banks and bed is sandy soil. Thus, the geomorphology of the river can be expected to change considerably with time, particularly for sustained high releases from the Akosombo and Kpong dams. The results obtained from this study form a basis for assessing future sedimentation problems in the Lower Volta River and for underpinning the development of sediment control and management strategies for river basins in Ghana. Keywords: Geomorphology, HEC-RAS model, Dam release, Floodplain, Lower Volta River, Ghana

  16. River plastic emissions to the world's oceans

    Science.gov (United States)

    Lebreton, Laurent C. M.; van der Zwet, Joost; Damsteeg, Jan-Willem; Slat, Boyan; Andrady, Anthony; Reisser, Julia

    2017-06-01

    Plastics in the marine environment have become a major concern because of their persistence at sea, and adverse consequences to marine life and potentially human health. Implementing mitigation strategies requires an understanding and quantification of marine plastic sources, taking spatial and temporal variability into account. Here we present a global model of plastic inputs from rivers into oceans based on waste management, population density and hydrological information. Our model is calibrated against measurements available in the literature. We estimate that between 1.15 and 2.41 million tonnes of plastic waste currently enters the ocean every year from rivers, with over 74% of emissions occurring between May and October. The top 20 polluting rivers, mostly located in Asia, account for 67% of the global total. The findings of this study provide baseline data for ocean plastic mass balance exercises, and assist in prioritizing future plastic debris monitoring and mitigation strategies.

  17. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data...... of political unwillingness to share data which is a common problem in particular in transboundary settings. In this context, remote sensing (RS) datasets provide an appealing alternative to traditional in-situ data and much research effort has gone into the use of these datasets for hydrological applications...... response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...

  18. Hunting camp. River Murray

    OpenAIRE

    ? Bayliss, Charles, 1850-1897, photographer

    2003-01-01

    200 x 149 mm. A good photograph showing a group of aborigines (in European clothes) with two hunting dogs, holding spears and standing in front of rough wooden cabins; with the river in the background. Photograph unknown, possible Charles Bayliss.

  19. Wild and Scenic Rivers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer portrays the linear federally-owned land features (i.e., national parkways, wild and scenic rivers, etc.) of the United States, Puerto Rico, and the...

  20. Neutral currents

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1977-01-01

    It is stated that over the past few years considerable progress has been made in the field of weak interactions. The existence of neutral currents involving leptons and hadrons has been established and some of the questions concerning their detailed structure have been answered. This imposes constraints on the gauge theories and has eliminated large classes of models. New questions have also been raised, one of which concerns the conservation laws obeyed by neutral currents. The wide range of investigations is impressive and is expected to continue with new results from particle, nuclear, and atomic physics. Headings include - various aspects of a gauge theory (choice of group, the symmetry breaking scheme, representation assignments for fermion fields); space-time structure; isospin structure; leptonic neutral currents; and atomic experiments. (U.K.)

  1. Identification of contaminants of concern Columbia River Comprehensive Impact Assessment

    International Nuclear Information System (INIS)

    Napier, B.A.; Batishko, N.C.; Heise-Craff, D.A.; Jarvis, M.F.; Snyder, S.F.

    1995-01-01

    The Columbia River Comprehensive Impact Assessment (CRCIA) Project at the Pacific Northwest Laboratory (PNL) is evaluating the current human and ecological risks from contaminants in the Columbia River. The risks to be studied are those attributable to past and present activities on the Hanford Site. The Hanford Site is located in southcentral Washington State near the town of Richland. Human risk from exposure to radioactive and hazardous materials will be addressed for a range of river use options. Ecological risk will be evaluated relative to the health of the current river ecosystem. The overall purpose of the project is to determine if enough contamination exists in the Columbia River to warrant cleanup actions under applicable environmental regulations. This report documents an initial review, from a risk perspective, of the wealth of historical data concerning current or potential contamination in the Columbia River. Sampling data were examined for over 600 contaminants. A screening analysis was performed to identify those substances present in such quantities that they may pose a significant human or ecological risk. These substances will require a more detailed analysis to assess their impact on humans or the river ecosystem

  2. A Survey of Current Computer Information Science (CIS) Students.

    Science.gov (United States)

    Los Rios Community Coll. District, Sacramento, CA. Office of Institutional Research.

    This document is a survey designed to be completed by current students of Computer Information Science (CIS) in the Los Rios Community College District (LRCCD), which consists of three community colleges: American River College, Cosumnes River College, and Sacramento City College. The students are asked about their educational goals and how…

  3. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    Directory of Open Access Journals (Sweden)

    P. Normatov

    2014-09-01

    Full Text Available The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  4. Dynamic network expansion, contraction, and connectivity in the river corridor of mountain stream network

    Science.gov (United States)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.

    2017-12-01

    River networks are broadly recognized to expand and contract in response to hydrologic forcing. Additionally, the individual controls on river corridor dynamics of hydrologic forcing and geologic setting are well recognized. However, we currently lack tools to integrate our understanding of process dynamics in the river corridor and make predictions at the scale of river networks. In this study, we develop a perceptual model of the river corridor in mountain river networks, translate this into a reduced-complexity mechanistic model, and implement the model in a well-studied headwater catchment. We found that the river network was most sensitive to hydrologic dynamics under the lowest discharges (Qgauge managers of water resources who need to estimate connectivity and flow initiation location along the river corridor over broad, unstudied catchments.

  5. Neutral currents

    International Nuclear Information System (INIS)

    Aubert, B.

    1994-11-01

    The evidence for the existence of weak neutral current has been a very controverted topics in the early 1970's, as well as the muon did in the 1930's. The history is very rich considering the evolution of the experimental techniques in high energy particle physics. The history of the discovery and the study of weak neutral current is reviewed. Later the quest of the intermediate vector boson continues with the decision of the community to build a large proton antiproton collider. (K.A.). 14 refs., 1 fig

  6. An Evaluation of the Importance of Self- Purification Capacity of Rivers in Developing Effluent Discharge Standards

    International Nuclear Information System (INIS)

    Asheg Moalla, M.; Malek Mohammadi, B.; Torabian, A.

    2016-01-01

    In current effluent discharge standards of the most countries such as Iran, self-purification capacity of rivers have not been considered. These standards developed a similar effluent discharge standard for all of the rivers without considering hydrological and hydraulic conditions of rivers. In this paper in order to show the importance of self-purification capacity and differences between the rivers, in developing effluent discharge standard, two rivers- Gheshlagh River in Kurdistan and Sabzkooh River in Chaharmahal Bakhtiari- as samples were selected., and with applying Qual2kw model, current Iran effluent discharge standards were used to simulate the state of each river. The simulation showed that compliance with this standard maintain an appropriate qualitative condition of Gheshlagh River but in Sabzkoh River, due to the large number of pollution sources, these standards not only does not help to maintain the water quality but will have a very negative impact on water quality. Then Using simulation of river quality, the authorized appropriate limit based on self-purification capacity and the number and type of pollutants were estimated and showed that to develop accurate and efficient standards the self-purification capacity, the number of pollution sources, the amount of waste load and other different conditions of rivers also should be considered.

  7. Current algebra

    International Nuclear Information System (INIS)

    Jacob, M.

    1967-01-01

    The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr

  8. Current Titles

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2006-06-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

  9. Current scenario

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Current scenario. India , like other parts of the world, is also facing the problem of increase in the incidence of drug resistance in tuberculosis. Multi-drug resistance (MDR, resistance to RIF & INH) and extensively drug resistant strains (X-DR, resistance to RIF, INH, FQs ...

  10. Climatic control of Mississippi River flood hazard amplified by river engineering

    Science.gov (United States)

    Munoz, Samuel E.; Giosan, Liviu; Therrell, Matthew D.; Remo, Jonathan W. F.; Shen, Zhixiong; Sullivan, Richard M.; Wiman, Charlotte; O’Donnell, Michelle; Donnelly, Jeffrey P.

    2018-04-01

    Over the past century, many of the world’s major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river’s sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.

  11. Development of river sediment monitoring in Croatia

    Science.gov (United States)

    Frančišković-Bilinski, Stanislav; Bilinski, Halka; Mlakar, Marina; Maldini, Krešimir

    2017-04-01

    Establishment of regular river sediment monitoring, in addition to water monitoring, is very important. Unlike water, which represents the current state of a particular watercourse, sediment represents a sort of record of the state of pollution in the long run. Sediment monitoring is crucial to gain a real insight into the status of pollution of particular watercourses and to determine trends over a longer period of time. First scientific investigations of river sediment geochemistry in Croatia started 1989 in the Krka River estuary [1], while first systematic research of a river basin in Croatia was performed 2005 in Kupa River drainage basin [2]. Up to now, several detailed studies of both toxic metals and organic pollutants have been conducted in this drainage basin and some other rivers, also Croatian scientists participated in river sediment research in other countries. In 2008 Croatian water authorities (Hrvatske Vode) started preliminary sediment monitoring program, what was successfully conducted. In the first year of preliminary program only 14 stations existed, while in 2014 number of stations increased to 21. Number of monitored watercourses and of analysed parameters also increased. Current plan is to establish permanent monitoring network of river sediments throughout the state. The goal is to set up about 80 stations, which will cover all most important and most contaminated watercourses in all parts of the country [3]. Until the end of the year 2016, regular monitoring was conducted at 31 stations throughout the country. Currently the second phase of sediment monitoring program is in progress. At the moment parameters being determined on particular stations are not uniform. From inorganic compounds it is aimed to determine Cd, Pb, Ni, Hg, Cu, Cr, Zn and As on all stations. The ratio of natural concentrations of those elements vs. anthropogenic influence is being evaluated on all stations. It was found that worse situation is with Ni, Hg and Cr, who

  12. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Frest, T.J.

    1992-08-01

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries

  13. Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009

    Science.gov (United States)

    Kinzel, P.J.; Runge, J.T.

    2010-01-01

    Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated

  14. Developing a broader scientific foundation for river restoration: Columbia River food webs

    Science.gov (United States)

    Robert J. Naiman; J. Richard Alldredge; David A. Beauchamp; Peter A. Bisson; James Congleton; Charles J. Henny; Nancy Huntly; Roland Lamberson; Colin Levings; Erik N. Merrill; William G. Pearcy; Bruce E. Rieman; Gregory T. Ruggerone; Dennis Scarnecchia; Peter E. Smouse; Chris C. Wood

    2012-01-01

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure-without explicitly considering food webs-has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on...

  15. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  16. Diazotrophy in alluvial meadows of subarctic river systems.

    Directory of Open Access Journals (Sweden)

    Thomas H DeLuca

    Full Text Available There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1 yr(-1 and was down regulated from over 60 kg N ha(-1 yr(-1 to 0 kg N ha(-1 yr(-1 by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  17. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  18. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  19. Current awareness.

    Science.gov (United States)

    Compagno, C; Brambilla, L; Capitanio, D; Boschi, F; Ranzi, B M; Porro, D

    2001-05-01

    In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (4 weeks journals - search completed 7th Mar. 2001)

  20. Current titles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Gretchen Hermes at (510) 486-5006 or address below for a User`s Guide. Copies of available papers can be ordered from: Theda Crawford National Center for Electron Microscopy, Lawrence Berkeley Laboratory, One Cyclotron Rd., MS72, Berkeley, California, USA 94720.

  1. Current epidemiology of hypertension in Port Harcourt metropolis ...

    African Journals Online (AJOL)

    Current epidemiology of hypertension in Port Harcourt metropolis, Rivers State ... the University of Port Harcourt Teaching Hospital formed the cohort for this study. ... is high and only a small fraction of hypertensives are aware of their condition.

  2. Current State of Public Cemeteries in Rivers State, Nigeria

    African Journals Online (AJOL)

    DATONYE ALASIA

    Department of Community Medicine, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria. .... Even a place for the dead has its benefits! ... tourism. This can be seen at Westminster Abbey and the 9/11 ground zero respectively.

  3. Merging Imagery and Models for River Current Prediction

    Science.gov (United States)

    2011-01-01

    synthetically generated bathymetry. Measured Batbymel ry Synthetic Batbymel rj Mooring Mean Difference (nn/s) Correlation Mian Difference (cm s...8217orrelal ion Al Mi 0.90 27 077 A 2 17 0.86 21 n 36 Bl 17 0.87 21 B2 17 0.89 2 1 DJO 133 li , 0.87 23 0.87 is that mean differences between tlie

  4. Current ornithology

    CERN Document Server

    1983-01-01

    The appearance of the first volume of a projected series is the occasion for comment on scope, aims, and genesis of the work. The scope of Current Ornithology is all of the biology of birds. Ornithology, as a whole-organism science, is concerned with birds at every level of bi­ ological organization, from the molecular to the community, at least from the Jurassic to the present time, and over every scholarly discipline in which bird biology is done; to say this is merely to expand a dic­ tionary definition of "ornithology. " The aim of the work, to be realized over several volumes, is to present reviews or position statements con­ cerning the active fields of ornithological research. The reviews will be relatively short, and often will be done from the viewpoint of a readily­ identified group or school. Such a work could have come into being at any time within the past fifty years, but that Current Ornithology appears now is a result of events that are only seven to eight years old. One important event wa...

  5. Application of two quality indices as monitoring and management tools of rivers. Case study: the Imera Meridionale River, Italy.

    Science.gov (United States)

    Bonanno, Giuseppe; Lo Giudice, Rosa

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily's largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  6. Dating sediment cores from Hudson River marshes

    International Nuclear Information System (INIS)

    Robideau, R.; Bopp, R.F.

    1993-01-01

    There are several methods for determining sediment accumulation rates in the Hudson River estuary. One involves the analysis of the concentration of certain radionuclides in sediment core sections. Radionuclides occur in the Hudson River as a result of: natural sources, fallout from nuclear weapons testing and low level aqueous releases from the Indian Point Nuclear Power Facility. The following radionuclides have been studied in the authors work: Cesium-137, which is derived from global fallout that started in the 1950's and has peaked in 1963. Beryllium-7, a natural radionuclide with a 53 day half-life and found associated with very recently deposited sediments. Another useful natural radionuclide is Lead-210 derived from the decay of Radon-222 in the atmosphere. Lead-210 has a half-life of 22 years and can be used to date sediments up to about 100 years old. In the Hudson River, Cobalt-60 is a marker for Indian Point Nuclear Reactor discharges. The author's research involved taking sediment core samples from four sites in the Hudson River Estuarine Research Reserve areas. These core samples were sectioned, dried, ground and analyzed for the presence of radionuclides by the method of gamma-ray spectroscopy. The strength of each current pulse is proportional to the energy level of the gamma ray absorbed. Since different radionuclides produce gamma rays of different energies, several radionuclides can be analyzed simultaneously in each of the samples. The data obtained from this research will be compared to earlier work to obtain a complete chronology of sediment deposition in these Reserve areas of the river. Core samples may then by analyzed for the presence of PCB's, heavy metals and other pollutants such as pesticides to construct a pollution history of the river

  7. Radiation monitoring of Syr-Darya river

    International Nuclear Information System (INIS)

    Barber, D.S.; Howard, H.D.; Betsill, J.D.; Matthews, R.; Yuldashev, B.S.; Salikhbaev, U.S.; Radyuk, R.I.; Vdovina, E.D.; Solodukhin, V.P.; Poznyak, V.L.; Vasiliev, I.A.; Alekhina, V.M.; Juraev, A.A.

    2003-01-01

    The article contains the results obtained during the radiation monitoring of Syr-Darya River, which was conducted within the frames of international collaboration of Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and USA. The data on the nature of salinity of water, alfa- and beta-activity of water, bottom, water plants, and soil was obtained. Dependence of the obtained results on the distance form the source is discussed. The major life-providing arteries for the great region of Central Asia are Syr-Darya and Amu Darya rivers. There are many countries next to the pools of these rivers: Tajikistan, Afghanistan, Turkmenistan, Uzbekistan, Kyrgyzstan, and Kazakhstan. There is a great concern caused by the shortage of supply of fresh water, severe epidemiological situation, and radiation conditions along of the pools of these rivers. Such conditions have developed as a result of intensive economic and industrial activities, and also of geological and geochemical features of this region. One of the most serious aspects of this problem is the weak scrutiny level of influence of large deposits of natural uranium and consequences of technological and industrial activities. Since November, 2000 Scientifics of four of the listed countries (Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan) have come to an agreement carrying out the teamwork on studying and monitoring the environment in the pools of Syr-Darya and Amu Darya rivers [1]. Collaborator of these works is Cooperative Monitoring Center at Sandia National Laboratories, USA. During three expeditions each country in 15 control sites on their territory has conducted field researches and has obtained the samples of elements of the environment. Laboratory researches were carried out in Kazakhstan and Uzbekistan. The first results were obtained in (2,3) and later in [4].Currently, the analysis of the data on salinity of water and alpha- and beta- activities of samples along Syr-Darya River is presented

  8. INFLUENCE OF EXTREME DISCHARGE ON RESTORATION WORKS IN MOUNTAIN RIVER – A CASE STUDY OF THE KRZCZONÓWKA RIVER (SOUTHERN POLAND

    Directory of Open Access Journals (Sweden)

    Anna Lenar-Matyas

    2015-06-01

    Full Text Available The research was conducted on the Krzczonówka River channel, one of the gravel-bedded, regulated mountain river in Polish Carpathians. The main morphological and ecological problem of the river was lack of sediment and channel downcutting. The area is currently associated with an on-going project called “the Upper Raba River Spawning Grounds”. Lowering of an existing debris dam on Krzczonówka River is a part of the project. In 2013 twelve artificial riffles have been created by heaping up stones at points within the segment of the river channel below the debris dam. The riffles are to introduce variety to the longitudinal profile of the river and to reduce the river’s slope. Consequently, these are to decrease sediment transport and to prevent further deepening of the river channel. Post-project monitoring of river restoration works is conducted to determine channel changes and development. In May, 2014, extreme flooding occurred, which caused unexpected changes in channel development. This paper describes maintenance work performed in the riverbed of the Krzczonówka River. Observations and calculations concerning changes in conditions of water flow and sediment transport are also presented. The main purpose is to characterize the influence of an extreme flow event on morphology and functioning of the recently restored gravel-bed river.

  9. Communicating River Level Data and Information to Stakeholders with Different Interests

    Science.gov (United States)

    Macleod, K.; Sripada, S.; Ioris, A.; Arts, K.; van der Wal, R.

    2012-12-01

    There is a need to increase the effectiveness of how river level data are communicated to a range of stakeholders with an interest in river level information to increase the use of data collected by regulatory agencies. Currently, river level data is provided to members of the public through a web site without any formal engagement with river users having taken place. In our research project called wikiRivers, we are working with the suppliers of river level data as well as the users of this data to explore and improve from the user perspective how river level data and information is made available online. We are focusing on the application of natural language generation technology to create textual summaries of river level data tailored for specific interest groups. These tailored textual summaries will be presented among other modes of information presentation (e.g. maps and visualizations) with the aim to increase communication effectiveness. Natural language generation involves developing computational models that use non-linguistic input data to produce natural language as their output. Acquiring accurate correct system knowledge for natural language generation is a key step in developing such an effective computer software system. In this paper we set out the needs for this project based on discussions with the stakeholder who supplies the river level data and current cyberinfrastructure and report on what we have learned from those individuals and groups who use river level data. Stages in the wikiRivers stakeholder identification, engagement and cyberinfrastructure development. S1- interviews with collectors and suppliers of river level data. S2- river level data stakeholder analysis, including analysis of their interests in individual river networks in Scotland and what they require from the cyberinfrastructure. S3-5 Iterative development and testing of cyberinfrastructure and modelling of river level data with domain and stakeholder knowledge.

  10. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  11. Skjern River Restoration Counterfactual

    DEFF Research Database (Denmark)

    Clemmensen, Thomas Juel

    2014-01-01

    In 2003 the Skjern River Restoration Project in Denmark was awarded the prestigious Europa Nostra Prize for ‘conserving the European cultural heritage’ (Danish Nature Agency 2005). In this case, however, it seems that the conservation of one cultural heritage came at the expense of another cultural...... this massive reconstruction work, which involved moving more than 2,7 million cubic meters of earth, cause a lot of ‘dissonance’ among the local population, the resulting ‘nature’ and its dynamic processes are also constantly compromising the preferred image of the restored landscape (Clemmensen 2014......). The presentation offers insight into an on-going research and development project - Skjern River Restoration Counterfactual, which question existing trends and logics within nature restoration. The project explores how the Skjern River Delta could have been ‘restored’ with a greater sensibility for its cultural...

  12. Missouri River 1943 Compact Line

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Flood Control, Bank Stabilization and development of a navigational channel on the Missouri River had a great impact on the river and adjacent lands. The new...

  13. Haw River PFCs Data Set

    Data.gov (United States)

    U.S. Environmental Protection Agency — PFAS concentrations in river and drinking water in and around the Haw River in North Carolina. This dataset is associated with the following publication: Sun, M., E....

  14. Documented changes in annual runoff and attribution since the 1950s within selected rivers in China

    Directory of Open Access Journals (Sweden)

    Lü-Liu Liu

    2017-03-01

    Full Text Available To enable local water resource management and maintenance of ecosystem integrity and to protect and mitigate against flood and drought, it is necessary to determine changes in long-term series of streamflow and to distinguish the roles that climate change and human disturbance play in these changes. A review of previous research on the detection and attribution of observed changes in annual runoff in China shows a decrease in annual runoff since the 1950s in northern China in areas such as the Songhuajiang River water resources zone, the Liaohe River water resources zone, the Haihe River water resources zone, the Yellow River water resources zone, and the Huaihe River water resources Zone. Furthermore, abrupt changes in annual runoff occurred mostly in the 1970s and 1980s in all the above zones, except for some of the sub-basins in the middle Yellow River where abrupt change occurred in the 1990s. Changes in annual runoff are found to be mainly caused by climate change in the western Songhuajiang River basin, the upper mainstream of the Yangtze River, and the western Pearl River basin, which shows that studies on the impact of climate change on future water resources under different climate change scenarios are required to enable planning and management by agencies in these river basins. However, changes in annual runoff were found to be mainly caused by human activities in most of the catchments in northern China (such as the southern Songhuajiang River, Liaohe River, Haihe River, the lower reach and some of the catchments within the middle Yellow River basin and in middle-eastern China, such as the Huaihe River and lower mainstream of the Yangtze River. This suggests that current hydro-climatic data can continue to be used in water-use planning and that policymakers need to focus on water resource management and protection.

  15. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  16. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, QUAL2E and similar models do not address a number of practical problems such as stormwater-flow events, nonpoint source pollution, and transient streamflow. Limitations in model formulation affect the ability to close mass balances, to represent sessile bacteria and other benthic processes......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  17. A framework for global river flood risk assessments

    NARCIS (Netherlands)

    Winsemius, H.C.; van Beek, L.P.H.|info:eu-repo/dai/nl/14749799X; Jongman, B.; Ward, P.J.; Bouwman, A.

    2013-01-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and

  18. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  19. The Gediz River fluvial archive

    NARCIS (Netherlands)

    Maddy, D.; Veldkamp, A.; Demir, T.; Gorp, van W.; Wijbrans, J.R.; Hinsbergen, van D.J.J.; Dekkers, M.J.; Schreve, D.; Schoorl, J.M.; Scaife, R.

    2017-01-01

    The Gediz River, one of the principal rivers of Western Anatolia, has an extensive Pleistocene fluvial archive that potentially offers a unique window into fluvial system behaviour on the western margins of Asia during the Quaternary. In this paper we review our work on the Quaternary Gediz River

  20. Thermal pollution impacts on rivers and power supply in the Mississippi River watershed

    Science.gov (United States)

    Miara, Ariel; Vörösmarty, Charles J.; Macknick, Jordan E.; Tidwell, Vincent C.; Fekete, Balazs; Corsi, Fabio; Newmark, Robin

    2018-03-01

    Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05°) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable of uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. These dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome

  1. Geomorphic classification of rivers

    Science.gov (United States)

    J. M. Buffington; D. R. Montgomery

    2013-01-01

    Over the last several decades, environmental legislation and a growing awareness of historical human disturbance to rivers worldwide (Schumm, 1977; Collins et al., 2003; Surian and Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and Merritts, 2008) have fostered unprecedented collaboration among scientists, land managers, and stakeholders to better understand,...

  2. Savannah River Technology Center

    International Nuclear Information System (INIS)

    1993-01-01

    This is a monthly progress report from the Savannah River Laboratory for the month of January 1993. It has sections with work in the areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns

  3. Alligator Rivers Region

    International Nuclear Information System (INIS)

    1992-01-01

    An introduction to the Alligator Rivers Region is presented. It contains general information regarding the physiography, climate, hydrology and mining of the region. The Alligator Rivers Region is within an ancient basin, the Pine Creek Geosyncline, which has an area of approximately 66000 km 2 . The Geosyncline has a history of mineral exploitation dating back to 1865, during which time 16 metals have been extracted (silver, arsenic, gold, bismuth, cadmium, cobalt, copper, iron, manganese, molybdenum, lead, tin, tantalum, uranium, tungsten, zinc). Uranium exploration in the Pine Creek Geosyncline was stimulated by the discovery in 1949 of secondary uranium mineralisation near Rum June, 70 km south-east of Darwin. This was followed by a decade of intense exploration activity resulting in the discoveries of economic uranium ore bodies at Rum Jungle and in the upper reaches of the South Alligator River Valley. All the known major uranium deposits of the East Alligator River uranium field have been discovered since 1969. The present known resources of the Geosyncline are approximately 360 000 tonnes of contained U 3 O 8 . 2 refs., 2 figs., 1 tab

  4. Discover the Nile River

    Science.gov (United States)

    Project WET Foundation, 2009

    2009-01-01

    Bordering on the Fantastic. As the longest river on earth, the Nile passes through 10 countries. Presented through a wide range of activities and a winning array of games, it's also unsurpassed at taking young minds into exploring the world of water, as well as natural and man made wonders.

  5. Two Pontic rivers

    DEFF Research Database (Denmark)

    Bekker-Nielsen, Tønnes; Jensen, Marit

    2015-01-01

    The accounts of the landscape around the Iris (Yeşilirmak) and the Thermodon (Terme) given by ancient authors are diverse and often contradictory. The Periegesis of the World by Dionysius of Alexandria, a didactic poem written in the early IInd c. A.D., established an image of the two rivers that...

  6. Performance of a Tilt Current Meter in the Surf Zone

    DEFF Research Database (Denmark)

    Hansen, Asger Bendix; Carstensen, Stefan; Christensen, Drude Fritzbøger

    2017-01-01

    Tilt Current Meters (TCM’s) are relatively simple and inexpensive instruments for measuring currents in rivers and inthe sea. Their low cost and easy deployment means that a relatively large number of TCM’s can be deployed comparedto more conventional current meters such as Acoustic Doppler...

  7. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  8. Disruption of River Networks in Nature and Models

    Science.gov (United States)

    Perron, J. T.; Black, B. A.; Stokes, M.; McCoy, S. W.; Goldberg, S. L.

    2017-12-01

    Many natural systems display especially informative behavior as they respond to perturbations. Landscapes are no exception. For example, longitudinal elevation profiles of rivers responding to changes in uplift rate can reveal differences among erosional mechanisms that are obscured while the profiles are in equilibrium. The responses of erosional river networks to perturbations, including disruption of their network structure by diversion, truncation, resurfacing, or river capture, may be equally revealing. In this presentation, we draw attention to features of disrupted erosional river networks that a general model of landscape evolution should be able to reproduce, including the consequences of different styles of planetary tectonics and the response to heterogeneous bedrock structure and deformation. A comparison of global drainage directions with long-wavelength topography on Earth, Mars, and Saturn's moon Titan reveals the extent to which persistent and relatively rapid crustal deformation has disrupted river networks on Earth. Motivated by this example and others, we ask whether current models of river network evolution adequately capture the disruption of river networks by tectonic, lithologic, or climatic perturbations. In some cases the answer appears to be no, and we suggest some processes that models may be missing.

  9. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  10. Modelling the combined impact of radionuclide discharges reaching rivers

    International Nuclear Information System (INIS)

    Hilton, J.; Small, S.; Hornby, D.; Scarlett, P.; Harvey, M.; Simmonds, J.; Bexon, A.; Jones, A.

    2003-01-01

    The Agency currently authorises direct and indirect (via sewerage systems) discharges of liquid radioactive wastes to rivers from nuclear sites and other registered users of radioactivity. Discharges are normally authorised on a site-by-site basis, taking into account the radiological assessment. Radiological assessments are normally made using dilution models to estimate radionuclide activities in the effluents themselves and in the receiving rivers. These data are then combined with information on habits and dose factor information to give a dose assessment for individuals exposed to the discharge. For each site the highest radiological impact is expected immediately downstream of the disposal point where concentrations of radionuclides and resulting doses are highest. The concentration and doses are expected to decline with increasing distance downstream of the disposal point. However, if discharges are made into the river from other establishments higher up the catchment, the total dose may be higher. Recent Environment Agency research projects provided evidence of the potential radiological significance of multiple discharges to a single river. In the light of these studies, the Agency require a robust modelling tool to assist in the assessment of the effects of combined discharges to river systems. The aim of this R and D project was to develop and test modelling tools that could be used to make assessments of the impact of multiple radiological discharge into river systems and to trial them on the upper Thames river system

  11. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  12. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    Science.gov (United States)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  13. Understanding uncertainties in future Colorado River streamflow

    Science.gov (United States)

    Julie A. Vano,; Bradley Udall,; Cayan, Daniel; Jonathan T Overpeck,; Brekke, Levi D.; Das, Tapash; Hartmann, Holly C.; Hidalgo, Hugo G.; Hoerling, Martin P; McCabe, Gregory J.; Morino, Kiyomi; Webb, Robert S.; Werner, Kevin; Lettenmaier, Dennis P.

    2014-01-01

    The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamf low changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamf lows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.

  14. 1992 Columbia River salmon flow measures Options Analysis/EIS

    International Nuclear Information System (INIS)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described

  15. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  16. Sapucai River Project

    International Nuclear Information System (INIS)

    Duarte, A.L.; Rosa, M.J.

    1988-01-01

    The Sapucai River Project is a gold, ilmenite, monazite and zircon alluvial deposit. It is located on Sapucai River valley in the south of Minas Gerais State. The reserves are 28.000.000 m 3 of pay bed. The production will be 1.400.000 m 3 /year and the mine's life 20 years. A cutterhead suction dredge will do the overburden removal. The pay bed will be mined with an underwater bucket-wheel dredge. The ROM will be concentrated in a washing plant. The gold will be recovered by leaching method. The other heavy minerals will be recovered by electrostatic, magnetic and gravitic methods. SAMITRI believes that it's possible to implant and operate the Project without ecological damage. (author) [pt

  17. Geomorphology and River Management

    Directory of Open Access Journals (Sweden)

    GARY BRIERLEY

    2008-01-01

    Full Text Available Engineering-dominated practices, visible in a "command and control" outlook on natural systems, have induced enormous damage to the environment. Biodiversity losses and declining provision of ecosystem services are testimony to the non-sustainable outcomes brought about by such practices. More environmentally friendly approaches that promote a harmonious relationship between human activities and nature are required. Moves towards an "ecosystem approach" to environmental management require coherent (integrative scientific guidance. Geomorphology, the study of the form of the earth, provides a landscape template with which to ground this process. This way of thinking respects the inherent diversity and complexity of natural systems. Examples of the transition toward such views in environmental practice are demonstrated by the use of science to guide river management, emphasising applications of the River Styles framework.

  18. Heat dispersion in rivers

    International Nuclear Information System (INIS)

    Shaw, T.L.

    1974-01-01

    One of the tasks of the Sonderforschungsbereich 80 is to study the dispersion of heat discharged into rivers and other bodies of water and to develop methods which permit prediction of detrimental effects caused by the heated discharges. In order to help the SFB 80 to specify this task, Dr. Shaw, lecturer of Civil Engineering at the Bristol University, conducted a literature survey on heat-dispersion studies during the two months which he spent as a visiting research fellow with the SFB 80 at the University of Karlsruhe in the summer of 1973. The following report is the outcome of this survey. It gives Dr. Shaw's assessment of the present state of knowledge - based almost exclusively on literature in the English language - and compares this with the knowledge required by river planners. The apparent discrepancy leads to suggestions for future research. Selected references as well as a representative bibliography can be found at the end of the report. (orig.) [de

  19. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  20. Geomorphic status of regulated rivers in the Iberian Peninsula.

    Science.gov (United States)

    Lobera, G; Besné, P; Vericat, D; López-Tarazón, J A; Tena, A; Aristi, I; Díez, J R; Ibisate, A; Larrañaga, A; Elosegi, A; Batalla, R J

    2015-03-01

    River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation

  1. Onilahy River, Madagascar

    Science.gov (United States)

    1982-01-01

    Near the southern tip of Madagascar, the Onilahy River (23.5S, 44E) drains a near barren landscape, the result of rapid deforestation for quick profits from the lumber industry with no regard to the environmental impact. At the turn of the century, the island was a lush tropical paradise with about 90 percent of the surface forested. Now, at the close of the century, only about 10 percent of the forests remain in inaccessible rugged terrain.

  2. Charles River Crossing

    Science.gov (United States)

    2012-04-06

    duration, deck sections will be prefabricated off-site and delivered just-in-time for assembly and installation. The schedule assumes that the parts of...on one side (the side which abuts the existing bridges) there will be the appearance that the new bridges cantilever off the existing bridges. (See...many events that takes place on the Charles River such as crew racings and the “Head of the Charles”. Prefabricated off 19  ANCHORAGE GROUP, LTD

  3. AHP 45: Review: River

    Directory of Open Access Journals (Sweden)

    Phun tshogs dbang rgyal ཕུན་ཚོགས་དབང་རྒྱལ།

    2017-03-01

    Full Text Available Zon thar rgyal says that inspiration for River came with the arrival of his second child (a son, which made his daughter very uncomfortable. "At first, I just wanted to make a simple movie for children as a gift for my daughter,"6 he said during an interview in Lha sa. Later, however, the film became more elaborate with the addition of a grandfather, creating a story that embraces three generations.

  4. AFSC/NMML/CCEP: Diet of Pacific harbor seals at Umpqua River, Oregon and Columbia River, Oregon/Washington during 1994 through 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1994 to 2005, The National Marine Mammal Laboratories' California Current Ecosystem Program (AFSC/NOAA) collected fecal samples at the Umpqua River, Oregon and...

  5. Characterization of Savannah River Plant waste glass

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria

  6. Columbia River pathway report

    International Nuclear Information System (INIS)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab

  7. The river ecosystem

    International Nuclear Information System (INIS)

    Descy, J.P.; Lambinon, J.

    1984-01-01

    From the standpoint of the ecologist, a river is an ecosystem characterized by its biocoenosis, in dynamic equilibrium with the abiotic environment. This ecosystem can be envisaged at the structural level by examining its physical, chemical and biological properties, together with the relationships existing between these compartments. The biocoenotic structure of a river is relatively complex: it manifests, among other specific features, the presence of plankton communities which show marked space-time variations. The function of the river ecosystem can be approximated by a study of the relationships between the biotic and abiotic components: primary production, secondary production, recycling of organic matter, etc. Lotic environments are subject to frequent disturbance from various forms of man-made pollution: organic pollution, eutrophization, thermal pollution, mineral pollution, contamination by organic and mineral micropollutants, as well as by radionuclides, mechanical pollution and physical degradation. The biocoenotic effects of these forms of pollution may be evaluated, in particular, using biological indicators (bioindicators): these are either able to show the overall impact of the pollution on the biocoenosis or else they permit the detection and evaluation of certain pollutant forms. (author)

  8. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  9. Risk ranking of environmental contaminants in Xiaoqing River, a heavily polluted river along urbanizing Bohai Rim.

    Science.gov (United States)

    Li, Qifeng; Zhang, Yueqing; Lu, Yonglong; Wang, Pei; Suriyanarayanan, Sarvajayakesavalu; Meng, Jing; Zhou, Yunqiao; Liang, Ruoyu; Khan, Kifayatullah

    2018-08-01

    Xiaoqing River, located in the Laizhou Bay of Bohai Sea, is heavily polluted by various pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), perfluoroalkyl acids (PFAAs), bisphenol A (BPA) and pharmaceutical and personal care products (PPCPs). The aim of this study is to identify the relative risks of such contaminants that currently affect the coastal ecosystem. The median and highest concentrations of PFAAs and perfluorooctanoic acid (PFOA) were 3.23 μg L -1 and 325.28 μg L -1 , and 0.173 μg L -1 and 276.24 μg L -1 , respectively, which were ranked higher when compared with global level concentrations. To assess the relative risk levels of perfluorooctane sulfonic acid (PFOS), PFOA, and other contaminants in the upstream and downstream of the Xiaoqing River and in its tributary, a risk ranking analysis was carried out. Copper (Cu), Zinc (Zn), and arsenic (As) showed the highest risk values in the Xiaoqing River, while the relative risks of PFOA and PFOS differed across the various segments. The risk ranking of PFOA was the second highest in the tributary and the fourth highest in the downstream portion of the river, whereas the PFOS was found to be the lowest in all the segments. Heavy metals and PFOA are the main chemicals that should be controlled in the Xiaoqing River. The results of the present study provide a better understanding of the potential ecological risks of the contaminants in Xiaoqing River. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Dynamics of 30 large channel bars in the Lower Mississippi River in response to river engineering from 1985 to 2015

    Science.gov (United States)

    Wang, Bo; Xu, Y. Jun

    2018-01-01

    Channel bars are a major depositional feature in alluvial rivers and their morphodynamics has been investigated intensively in the past several decades. However, relatively less is known about how channel bars in alluvial rivers respond to river engineering and regulations. In this study, we assessed 30-yr morphologic changes of 30 large emerged bars located in a 223 km reach of the highly regulated Lower Mississippi River from Vicksburg, Mississippi, to the Mississippi-Atchafalaya River diversion. Landsat imagery and river stage data between 1985 and 2015 were utilized to characterize bar morphologic features and quantify decadal changes. Based on bar surface areas estimated with the satellite images at different river stages, a rating curve was developed for each of the 30 bars to determine their volumes. Results from this study show that the highly regulated river reach favored the growth of mid-channel and attached bars, while more than half of the point bars showed degradation. Currently, the mid-channel and attached bars accounted for 38% and 34% of the total volume of the 30 bars. The average volume of a single mid-channel bar is over two times that of an attached bar and over four times that of a point bar. Overall, in the past three decades, the total volume of the studied 30 bars increased by 110,118,000 m3 (41%). Total dike length in a dike field was found mostly contributing to the bar volume increase. Currently, the emerged volume of the 30 bars was estimated approximately 378,183,000 m3. The total bar volume is equivalent to 530 million metric tons of coarse sand, based on an average measured bulk density of 1.4 t/m3 for the bar sediment. The findings show that these bars are large sediment reservoirs.

  11. Surficial sediments of the wave-dominated Orange River Delta and ...

    African Journals Online (AJOL)

    The textural and compositional characteristics of the surficial shelf sediments north and south of the Orange River Delta are reviewed and compared. Sediments are fractionated and dispersed both north- and southwards of the Orange River mouth by wave action, longshore drift and subsurface currents. The mean grain ...

  12. 78 FR 78717 - Reservoirs at Headwaters of the Mississippi River; Use and Administration

    Science.gov (United States)

    2013-12-27

    ... Headwaters of the Mississippi River; Use and Administration AGENCY: U.S. Army Corps of Engineers, DoD. ACTION... administration of the reservoirs at the headwaters of the Mississippi River by deleting from the Code of Federal... values that differ from those currently codified in the Code of Federal Regulations. Deleting all...

  13. Different compositions of pharmaceuticals in Dutch and Belgian rivers explained by consumption patterns and treatment efficiency

    NARCIS (Netherlands)

    Laak, ter T.L.; Kooij, P.J.F.; Tolkamp, H.; Hofman, J.

    2014-01-01

    In the current study, 43 pharmaceuticals and 18 transformation products were studied in the river Meuse at the Belgian-Dutch border and four tributaries of the river Meuse in the southern part of the Netherlands. The tributaries originate from Belgian, Dutch and mixed Dutch and Belgian catchments.

  14. Extreme river flow dependence in Northern Scotland

    Science.gov (United States)

    Villoria, M. Franco; Scott, M.; Hoey, T.; Fischbacher-Smith, D.

    2012-04-01

    predominantly impermeable bedrock, with the Ewe's one being very wet. The Lossie(216km2) and Dulnain (272.2km2) both contain significant areas of glacial deposits. River flow in the Dulnain is usually affected by snowmelt. In all cases, the conditional probability of each of the three rivers (Dulnain, Lossie, Ewe) decreases as the event in the conditioning river (Ness) becomes more extreme. The Ewe, despite being the furthest of the three sites from the Ness shows the strongest dependence, with relatively high (>0.4) conditional probabilities even for very extreme events (>0.995). Although the Lossie is closer geographically to the Ness than the Ewe, it shows relatively low conditional probabilities and can be considered independent of the Ness for very extreme events (> 0.990). The conditional probabilities seem to reflect the different catchment characteristics and dominant precipitation generating events, with the Ewe being more similar to the Ness than the other two rivers. This interpretation suggests that the conditional method may yield improved estimates of extreme events, but the approach is time consuming. An alternative model that is easier to implement, using a spatial quantile regression, is currently being investigated, which would also allow the introduction of further covariates, essential as the effects of climate change are incorporated into estimation procedures.

  15. 78 FR 28492 - Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Science.gov (United States)

    2013-05-15

    ...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... establishing a special local regulation on the waters of the Wando River, Cooper River, and Charleston Harbor... rulemaking (NPRM) entitled, ``Special Local Regulation; Low Country Splash, Wando River, Cooper River, and...

  16. 78 FR 18277 - Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Science.gov (United States)

    2013-03-26

    ...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... proposes to issue a special local regulation on the waters of the Wando River, Cooper River, and Charleston... Country Splash is scheduled to take place on the waters of the Wando River, Cooper River, and Charleston...

  17. Striped Bass Spawning in Non-Estuarine Portions of the Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.; Paller, M.

    2007-04-17

    Historically, the estuarine portions of the Savannah River have been considered to be the only portion of the river in which significant amounts of striped bass (Morone saxatilis) spawning normally occur. A reexamination of data from 1983 through 1985 shows a region between River Kilometers 144 and 253 where significant numbers of striped bass eggs and larvae occur with estimated total egg production near that currently produced in the estuarine reaches. It appears possible that there are two separate spawning populations of striped bass in the Savannah River.

  18. Determination of re-aeration coefficients on high mountain rivers using nuclear techniques

    International Nuclear Information System (INIS)

    Fajardo, Marco

    2001-01-01

    The rivers Machangara and Guayllabamba in Quito, Ecuador, currently are highly polluted, mainly due to human and industrial residues from the city. The objective of this survey is to establish the dynamics of dissolved oxygen in these rivers using the Krypton 85 method to determine the re aeration coefficient in representative sectors of the rivers. In addition, conventional test tracers establish mean flow speed and flow longitudinal dispersion coefficients. The results of this study will be useful for future water quality modelling of these rivers, in order to define their behaviour and auto depurative capacity to treat sludge waters from Quito

  19. River Basin Standards Interoperability Pilot

    Science.gov (United States)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  20. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    2014-06-01

    Full Text Available River plumes are one of the most important mechanisms that transport the terrestrial materials to the coast and the ocean. Some examples of those materials are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing modifications on the bathymetry affecting the navigation channels. The mixing between the riverine and the oceanic waters can induce instabilities, which might generate bulges, filaments, and buoyant currents over the continental shelf. Offshore, the buoyant riverine water could form a front with the oceanic waters often related with the occurrence of current-jets, eddies and strong mixing. The study and modelling of the river plumes is a key factor for the complete understanding of sediment transport mechanisms and patterns, and of coastal physics and dynamic processes. On this study the Douro River plume will be simulated. The Douro River is located on the north-west Iberian coast and its daily averaged freshwater discharge can range values from 0 to 13000 m3/s. This variability impacts the formation of the river plumes and its dispersion along the continental shelf. This study builds on the long-term objective of generate a Douro River plume forecasting system as part of the RAIA and RAIA.co projects. Satellite imagery was analyzed showing that the river Douro is one of the main sources of suspended particles, dissolved material and chlorophyll in the NW Iberian Shelf. The Regional Oceanic Modeling System (ROMS model was selected to reproduce scenarios of plume generation, retention and dispersion. Whit this model, three types of simulations were performed: (i schematic winds simulations with prescribed river flow, wind speed and direction; (ii multi-year climatological simulation, with river flow and temperature change for each month; (iii extreme case simulation, based on the Entre-os-Rios accident situation. The schematic wind case-studies suggest that the

  1. River salinity on a mega-delta, an unstructured grid model approach.

    Science.gov (United States)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  2. Discharge and other hydraulic measurements for characterizing the hydraulics of Lower Congo River

    Science.gov (United States)

    Oberg, Kevin; Shelton, John M.; Gardiner, Ned; Jackson, P. Ryan

    2009-01-01

    The first direct measurements of discharge of the Lower Congo River below Malebo Pool and upstream from Kinganga, Democratic Republic of Congo (DRC) were made in July 2008 using acoustic Doppler current profilers, differential GPS, and echo sounders. These measurements were made in support of research that is attempting to understand the distribution of fish species in the Lower Congo River and reasons for separation of species within this large river. Analyses of these measurements show that the maximum depth in the Lower Congo River was in excess of 200 m and maximum water velocities were greater than 4 m/s. The discharge measured near Luozi, DRC was 35,800 m3/s, and decreased slightly beginning midway through the study. Local bedrock controls seem to have a large effect on the flow in the river, even in reaches without waterfalls and rapids. Dramatic changes in bed topography are evident in transects across the river.

  3. River banks and channel axis curvature: Effects on the longitudinal dispersion in alluvial rivers

    Science.gov (United States)

    Lanzoni, Stefano; Ferdousi, Amena; Tambroni, Nicoletta

    2018-03-01

    The fate and transport of soluble contaminants released in natural streams are strongly dependent on the spatial variations of the flow field and of the bed topography. These variations are essentially related to the presence of the channel banks and to the planform configuration of the channel. Large velocity gradients arise near to the channel banks, where the flow depth decreases to zero. Moreover, single thread alluvial rivers are seldom straight, and usually exhibit meandering planforms and a bed topography that deviates from the plane configuration. Channel axis curvature and movable bed deformations drive secondary helical currents which enhance both cross sectional velocity gradients and transverse mixing, thus crucially influencing longitudinal dispersion. The present contribution sets up a rational framework which, assuming mild sloping banks and taking advantage of the weakly meandering character often exhibited by natural streams, leads to an analytical estimate of the contribution to longitudinal dispersion associated with spatial non-uniformities of the flow field. The resulting relationship stems from a physics-based modeling of the flow in natural rivers, and expresses the bend averaged longitudinal dispersion coefficient as a function of the relevant hydraulic and morphologic parameters. The treatment of the problem is river specific, since it relies on an explicit spatial description, although linearized, of the flow field that establishes in the investigated river. Comparison with field data available from tracer tests supports the robustness of the proposed framework, given also the complexity of the processes that affect dispersion dynamics in real streams.

  4. River Restoration and Meanders

    Directory of Open Access Journals (Sweden)

    G. Mathias Kondolf

    2006-12-01

    Full Text Available Among the most visually striking river restoration projects are those that involve the creation of a new channel, often in a new alignment and generally with a form and dimensions that are different from those of the preproject channel. These channel reconstruction projects often have the objective of creating a stable, single-thread, meandering channel, even on rivers that were not historically meandering, on rivers whose sediment load and flow regime would not be consistent with such stable channels, or on already sinuous channels whose bends are not symmetrical. Such meandering channels are often specified by the Rosgen classification system, a popular restoration design approach. Although most projects of this type have not been subject to objective evaluation, completed postproject appraisals show that many of these projects failed within months or years of construction. Despite its, at best, mixed results, this classification and form-based approach continues to be popular because it is easy to apply, because it is accessible to those without formal training in fluvial geomorphology, and probably because it satisfies a deep-seated, although unrecognized, cultural preference for single-thread meandering channels. This preference is consistent with 18th-century English landscape theories, which held the serpentine form to be ideal and led to widespread construction of meandering channels on the country estates of the era. The preference for stability in restored channels seems to be widely accepted by practitioners and funders despite the fact that it is antithetical to research showing that dynamically migrating channels have the greatest ecological richness.

  5. Remote sensing of wetlands at the Savannah River Plant

    International Nuclear Information System (INIS)

    Christensen, E.J.; Jensen, J.R.; Sharitz, R.R.

    1985-01-01

    The Savannah River Plant (SRP) occupies about 300 sq mi along a 10-mile stretch of the Savannah River. Large areas of wetlands cover the site, especially along tributary stream floodplains and the Savannah River. Some of these areas have been altered by cooling water discharges from nuclear production reactors onsite. To assess the effects of current and future plant operations on SRP and regional wetlands, an accurate quantitative survey was needed. Several studies were initiated to provide wetland acreage and distribution information: regional wetland inventories were provided from an analysis of LANDSAT multispectral scanner (MSS) satellite data. Wetlands were mapped throughout the entire Savannah River watershed and in the Savannah River floodplain. SRP wetlands were identified using a combination of LANDSAT MSS and Thematic Mapper satellite data and aerial photography. Wetlands in the SRP Savannah River swamp and thermally affected areas were mapped using high resolution MSS data collected from a low-flying aircraft. Vegetation communities in areas receiving cooling water discharges were then compared to surface temperatures measured from the airborne scanner at the same time to evaluate plant temperature tolerance. Historic changes to SRP wetlands from cooling water discharges were tabulated using aerial photography

  6. Bacterial Pollution in River Waters and Gastrointestinal Diseases

    Directory of Open Access Journals (Sweden)

    Lilia Rodríguez-Tapia

    2017-05-01

    Full Text Available Currently, one of Mexico’s most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk.

  7. Bacterial Pollution in River Waters and Gastrointestinal Diseases.

    Science.gov (United States)

    Rodríguez-Tapia, Lilia; Morales-Novelo, Jorge A

    2017-05-04

    Currently, one of Mexico's most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk.

  8. Evaluation of Environmental Flows in Rivers Using Hydrological Methods (Case study: The Barandozchi River- Urmia Lake Basin

    Directory of Open Access Journals (Sweden)

    S. Mostafavi

    2017-01-01

    Full Text Available Introduction Development of water resources projects are accompanied by several environmental impacts, among them, the changes in the natural flow regime and the reduction of downstream water flows. With respect to the water shortages and non-uniform distribution of rainfall, sustainable management of water resources would be inevitable. In order to prevent negative effects on long-term river ecosystems, it is necessary to preserve the ecological requirements of the river systems. The assessment of environmental flow requirements in a river ecosystem is a challenging practice all over the world, and in particular, in developing countries such as Iran. Environmental requirements of rivers are often defined as a suite of flow discharges of certain magnitude, timing, frequency and duration. These flows ensure a flow regime capable of sustaining a complex set of aquatic habitats and ecosystem processes and are referred to as "environmental flows". There are several methods for determining environmental flows. The majority of these methods can be grouped into four reasonably distinct categories, namely as: hydrological, hydraulic rating, habitat simulation (or rating, and holistic methodologies. However, the current knowledge of river ecology and existing data on the needs of aquatic habitats for water quantity and quality is very limited. It is considered that there is no unique and universal method to adapt to different rivers and/or different reaches in a river. The main aim of the present study was to provide with a framework to determine environmental flow requirements of a typical perennial river using eco-hydrological methods. The Barandozchi River was selected as an important water body in the Urmia Lake Basin, Iran. The preservation of the river lives, the restoration of the internationally recognized Urmia Lake, and the elimination of negative impact from the construction of the Barandoz dam on this river were the main concerns in this

  9. Saga of Clinch River

    International Nuclear Information System (INIS)

    Young, W.H.

    1984-01-01

    An epic struggle in the US Congress between what the author calls the forces of transcendence and the forces of experience over development of a breeder reactor for electric power generation is described in this article. The project was started by President Nixon, survived repeated attacks under President Carter, and ironically succumbed under a strong supporter, President Reagan, as a result of an unlikely coalition of conservative organizations and Republican politicians. The broader meanings of the demise of the Clinch River project are examined on several levels, examining the significance for the nation's energy future and for the nation's political future

  10. Savannah River Site 1996 epidemiologic surveillance report

    International Nuclear Information System (INIS)

    2000-01-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996

  11. Savannah River Site 1997 epidemiologic surveillance report

    International Nuclear Information System (INIS)

    2000-01-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997

  12. Urban River Restoration in Tehran: Challenges and Opportunities

    Science.gov (United States)

    Azizi, S.; Mousavi, H.; Farshad, F.; Hoseinzade Vahedi, N.; Zanjanian, M.; Khamesi, A.; Shojaee, M.; Safdarnejad, S. M.; Mirrahimi, H.; Ahmari, N.

    2015-12-01

    The typical treatment of urban river streams in Tehran has been limited channelization over the last 30 years. Changes in stream hydrology resulting from urbanization causes a widening gap between river and neighborhoods that results in the ecological and visual division between built and natural environments. To address these problems, a new management perspective in Tehran municipality seeks creating a sequence of thematic green spaces which serve as meeting points for adjacent neighborhoods. Implementation of pilot projects has proved that restoration of urban rivers requires a holistic approach with a range of technologies and tools that contribute to the goal of integrated planning. Currently, our team is working on Darband and Darabad catchments in north east Tehran,to provide opportunities for restoration of natural life in order to improve the amenity, ecology and sustainability of an urban river environment based on 4 key planning principles of: Demonstrating characteristics of the city's unique relationship to the river in the riverfront design; Knowing the river ecosystem and planning for a scale larger than the river front; minimizing new floodplain development; and Providing public access, connections, and recreational uses. This presentation will discuss the process of developing a new integrated GIS-based catchment planning system which helped the City shape its strategic plan for two catchments for the 2015-2030 period through multi-objective and multi-criteria optimization. The strategic plan is expected to enable the city to project the effects of introducing any future development in the catchment area on the river system, helping it to prevent such development activities which can have unintended long-term impacts.

  13. Lowland river systems - processes, form and function

    DEFF Research Database (Denmark)

    Pedersen, M. L.; Kronvang, B.; Sand-Jensen, K.

    2006-01-01

    Present day river valleys and rivers are not as dynamic and variable as they used to be. We will here describe the development and characteristics of rivers and their valleys and explain the background to the physical changes in river networks and channel forms from spring to the sea. We seek...... to answer two fundamental questions: How has anthropogenic disturbance of rivers changed the fundamental form and physical processes in river valleys? Can we use our understanding of fl uvial patterns to restore the dynamic nature of channelised rivers and drained fl oodplains in river valleys?...

  14. Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan

    Science.gov (United States)

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.; Kuo, A.Y.

    2007-01-01

    A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow condition in the Danshuei River estuarine system. The model results reveal that the characteristic two-layered estuarine circulation prevails most of the time at Kuan-Du station near the river mouth. Comparing the estuarine circulation under low- and mean flow conditions, the circulation strengthens during low-flow period and its strength decreases at moderate river discharge. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system. A correlation between the distance of salt intrusion and freshwater discharge has been established allowing prediction of salt intrusion for different inflow conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  15. Coastal processes of the Elwha River delta: Chapter 5 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Warrick, Jonathan A.; Stevens, Andrew W.; Miller, Ian M.; Gelfenbaum, Guy; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    To understand the effects of increased sediment supply from dam removal on marine habitats around the Elwha River delta, a basic understanding of the region’s coastal processes is necessary. This chapter provides a summary of the physical setting of the coast near the Elwha River delta, for the purpose of synthesizing the processes that move and disperse sediment discharged by the river. One fundamental property of this coastal setting is the difference between currents in the surfzone with those in the coastal waters offshore of the surfzone. Surfzone currents are largely dictated by the direction and size of waves, and the waves that attack the Elwha River delta predominantly come from Pacific Ocean swell from the west. This establishes surfzone currents and littoral sediment transport that are eastward along much of the delta. Offshore of the surfzone the currents are largely influenced by tidal circulation and the physical constraint to flow provided by the delta’s headland. During both ebbing and flooding tides, the flow separates from the coast at the tip of the delta’s headland, and this produces eddies on the downstream side of the headland. Immediately offshore of the Elwha River mouth, this creates a situation in which the coastal currents are directed toward the east much more frequently than toward the west. This suggests that Elwha River sediment will be more likely to move toward the east in the coastal system.

  16. Energy from rivers and oceans

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role energy from rivers and oceans may have in the energy future of the US. The topics discussed in the chapter include historical aspects of using energy from rivers and oceans, hydropower assessment including resources, technology and costs, and environmental and regulatory issues, ocean thermal energy conversion including technology and costs and environmental issues, tidal power, and wave power

  17. Site Outcomes Baseline Multi Year Work Plan Volume 1, River Corridor Restoration Baseline

    International Nuclear Information System (INIS)

    Wintczak, T.M.

    2001-01-01

    The River Corridor Restoration volume is a compilation of Hanford Site scope, which excludes the approximately 194 km 2 Central Plateau. The River Corridor scope is currently contractually assigned to Fluor Hanford, Bechtel Hanford, inc., DynCorp, and Pacific Northwest National Laboratory, and others. The purpose of this project specification is to provide an overall scoping document for the River Corridor Restoration volume, and to provide a link with the overall Hanford Site River Corridor scope. Additionally, this specification provides an integrated and consolidated source of information for the various scopes, by current contract, for the River Corridor Restoration Baseline. It identifies the vision, mission, and goals, as well as the operational history of the Hanford Site, along with environmental setting and hazards

  18. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [BA-PIRC, Spokane, WA (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  19. Radionuclides from past uranium mining in rivers of Portugal.

    Science.gov (United States)

    Carvalho, Fernando P; Oliveira, João M; Lopes, Irene; Batista, Aleluia

    2007-01-01

    During several decades and until a few years ago, uranium mines were exploited in the Centre of Portugal and wastewaters from uranium ore milling facilities were discharged into river basins. To investigate enhancement of radioactivity in freshwater ecosystems, radionuclides of uranium and thorium series were measured in water, sediments, suspended matter, and fish samples from the rivers Vouga, Dão, Távora and Mondego. The results show that these rivers carry sediments with relatively high naturally occurring radioactivity, and display relatively high concentrations of radon dissolved in water, which is typical of a uranium rich region. Riverbed sediments show enhanced concentrations of radionuclides in the mid-section of the Mondego River, a sign of past wastewater discharges from mining and milling works at Urgeiriça confirmed by the enhanced values of (238)U/(232)Th radionuclide ratios in sediments. Radionuclide concentrations in water, suspended matter and freshwater fish from that section of Mondego are also enhanced in comparison with concentrations measured in other rivers. Based on current radionuclide concentrations in fish, regular consumption of freshwater species by local populations would add 0.032 mSv a(-1) of dose equivalent (1%) to the average background radiation dose. Therefore, it is concluded that current levels of enhanced radioactivity do not pose a significant radiological risk either to aquatic fauna or to freshwater fish consumers.

  20. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming

  1. Sediment discharge division at two tidally influenced river bifurcations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.; Hidayat, H.

    2013-01-01

    [1] We characterize and quantify the sediment discharge division at two tidally influenced river bifurcations in response to mean flow and secondary circulation by employing a boat-mounted acoustic Doppler current profiler (ADCP), to survey transects at bifurcating branches during a semidiurnal

  2. Comparative Measurement of Stream Flow in the Ethiope River for ...

    African Journals Online (AJOL)

    This study investigates comparative measurement of stream flow in the Ethiope River for small hydropower development. Two methods – the Float and Current Meter or Bridge Broom Methods were investigated and values compared to determine best method for optimal power generation. Depth and width measurements ...

  3. Geomorphology and river dynamics of the lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  4. Cesium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of 137 Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of 137 Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope 137 Cs releases have resulted in a negligible risk to the environment and the population it supports

  5. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  6. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  7. Savannah River Plant airborne emissions and controls

    International Nuclear Information System (INIS)

    Dukes, E.K.; Benjamin, R.W.

    1982-12-01

    The Savannah River Plant (SRP) was established to produce special nuclear materials, principally plutonium and tritium, for national defense needs. Major operating facilities include three nuclear reactors, two chemical separations plants, a fuel and target fabrication plant, and a heavy-water rework plant. An extensive environmental surveillance program has been maintained continuously since 1951 (before SRP startup) to determine the concentrations of radionuclides in a 1200-square-mile area centered on the plant, and the radiation exposure of the population resulting from SRP operations. This report provides data on SRP emissions, controls systems, and airborne radioactive releases. The report includes descriptions of current measurement technology. 10 references, 14 figures, 9 tables

  8. Riverbed Micromorphology of the Yangtze River Estuary, China

    Directory of Open Access Journals (Sweden)

    Shuaihu Wu

    2016-05-01

    reaches, and the turbidity maximum zone of the Yangtze River estuary face predominantly towards tides because of the ebb-dominated currents. Sharp windward slope angles in the lower reach of the North Passage show the influence of flood-dominated currents on dunes. It is likely that the scale of dunes will increase in the future in the South Channel because of a sharp decline of sediment discharge caused by recent human activities.

  9. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  10. Application of Two Quality Indices as Monitoring and Management Tools of Rivers. Case Study: The Imera Meridionale River, Italy

    Science.gov (United States)

    Bonanno, Giuseppe; Giudice, Rosa Lo

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily’s largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  11. Global relationships in river hydromorphology

    Science.gov (United States)

    Pavelsky, T.; Lion, C.; Allen, G. H.; Durand, M. T.; Schumann, G.; Beighley, E.; Yang, X.

    2017-12-01

    Since the widespread adoption of digital elevation models (DEMs) in the 1980s, most global and continental-scale analysis of river flow characteristics has been focused on measurements derived from DEMs such as drainage area, elevation, and slope. These variables (especially drainage area) have been related to other quantities of interest such as river width, depth, and velocity via empirical relationships that often take the form of power laws. More recently, a number of groups have developed more direct measurements of river location and some aspects of planform geometry from optical satellite imagery on regional, continental, and global scales. However, these satellite-derived datasets often lack many of the qualities that make DEM=derived datasets attractive, including robust network topology. Here, we present analysis of a dataset that combines the Global River Widths from Landsat (GRWL) database of river location, width, and braiding index with a river database extracted from the Shuttle Radar Topography Mission DEM and the HydroSHEDS dataset. Using these combined tools, we present a dataset that includes measurements of river width, slope, braiding index, upstream drainage area, and other variables. The dataset is available everywhere that both datasets are available, which includes all continental areas south of 60N with rivers sufficiently large to be observed with Landsat imagery. We use the dataset to examine patterns and frequencies of river form across continental and global scales as well as global relationships among variables including width, slope, and drainage area. The results demonstrate the complex relationships among different dimensions of river hydromorphology at the global scale.

  12. Flood-inundation Maps for the Deerfield River, Franklin County, Massachusetts, from the Confluence with the Cold River Tributary to the Connecticut River

    Science.gov (United States)

    Lombard, Pamela J.; Bent, Gardner C.

    2015-09-02

    The U.S. Geological Survey developed flood elevations in cooperation with the Federal Emergency Management Agency for a 30-mile reach of the Deerfield River from the confluence of the Cold River tributary to the Connecticut River in the towns of Charlemont, Buckland, Shelburne, Conway, Deerfield, and Greenfield in Franklin County, Massachusetts to assist land owners, and emergency management workers prepare for and recover from floods. Peak flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities were computed for the reach from updated flood-frequency analyses. These peak flows were routed through a one-dimensional step-backwater hydraulic model to obtain the corresponding peak water-surface elevations and to place the tropical storm Irene flood of August 28, 2011 into historical context. The hydraulic model was calibrated by using current [2015] stage-discharge relations at two U.S. Geological Survey streamgages in the study reach—Deerfield River at Charlemont, MA (01168500) and Deerfield River near West Deerfield, MA (01170000)—and from documented high-water marks from the tropical storm Irene flood, which had between a 1- and 0.2-percent AEP.

  13. Post-flood status of the Endangered Ganges River Dolphin Platanista gangetica gangetica (Cetartiodactyla: Platanistidae in the Koshi River, Nepal

    Directory of Open Access Journals (Sweden)

    T.B. Khatri

    2010-12-01

    Full Text Available The breach of the eastern embankment of the Koshi Barrage at Paschim Kusaha Village of Sunsari District on 18 August 2008, created havoc for wildlife and their habitats, as well as people’s livelihood and welfare. The Koshi River flowed through the breach for five months. Following the breach, a population assessment survey of the Endangered Ganges River Dolphin Platanista gangetica gangetica was made between March and November 2009 in the Koshi River main channel starting from Chatara to 2km south of Koshi Barrage to ascertain their status. A direct count survey was conducted by two teams of researchers simultaneously searching for animals by boat from Chatara to the Koshi Barrage including the Triyuga River and on foot along the river banks downstream of Koshi Barrage and along the Mariya River. Standard protocols were followed to record the number of sighted dolphins. A total of 11 dolphins were recorded in the entire 49-km river stretch with an encounter rate of 0.23 dolphins per km. The current result showed an encouraging population of dolphins in the Koshi Tappu Wildlife Reserve and its buffer zone but the threats for conservation still remain challenging. Close monitoring of dolphins and their habitats involving local communities are required for long term conservation of the river dolphins in Nepal. The breach of the eastern embankment of the Koshi Barrage at Paschim Kusaha Village of Sunsari District on 18 August 2008, created havoc for wildlife and their habitats, as well as people’s livelihood and welfare. The Koshi River flowed through the breach for five months. Following the breach, a population assessment survey of the Endangered Ganges River Dolphin Platanista gangetica gangetica was made between March and November 2009 in the Koshi River main channel starting from Chatara to 2km south of Koshi Barrage to ascertain their status. A direct count survey was conducted by two teams of researchers simultaneously searching for

  14. River-Based Experiential Learning: the Bear River Fellows Program

    Science.gov (United States)

    Rosenberg, D. E.; Shirley, B.; Roark, M. F.

    2012-12-01

    The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the

  15. Late Quaternary river channel migrations of the Kura River in Transcaucasia - tectonic versus climatic causes

    Science.gov (United States)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik

    2015-04-01

    Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold

  16. What would happen if the Mississippi River changed its course to the Atchafalaya?

    Science.gov (United States)

    Xu, Y. J.

    2017-12-01

    The Mississippi River Delta faces an uncertain future as sea level keeps rising while the land continues to subside. In its latest Master Plan draft of 2017, the Louisiana Coastal Protection and Restoration Authority has outlined a $50 billion investment for 120 projects designed to build and maintain coastal Louisiana. These projects are all developed under the assumption that the Mississippi River (MR) would remain on its current course, which is artificially maintained through a control structure built in 1963 (also known as the Old River Control Structure, or ORCS) after it was realized that the river attempted to change its course back to its old river channel - the Atchafalaya River (AR). Since the ORCS is in operation of controlling only about 25% of the MR flow into the AR, little attention has been paid to the importance of possible riverbed changes downstream the avulsion node on the MR course switch. As one of the largest alluvial river in the world, the MR avulsed every 1,000-1,500 years in the past. Alluvial rivers avulse when two conditions are met: a sufficient in-channel aggradation and a major flood. In our ongoing study on sediment transport and channel morphology of the lower Mississippi River, we found that the first 30-mile reach downstream the ORCS has been experiencing rapid bed aggradation and channel narrowing in the past three decades. A mega flood could be a triggering point to overpower the man-made ORCS and allow the river abandon its current channel - the MR main stem. This is not a desirable path; however, nature has its own mechanism of choosing river flows, which do not bow to our expectation. The Missisippi River's flow is projected to increase in the future as global temperature continues to rise and hydrologic cycle intensifies. Additionally, rapid urbanization in the river basin will create conditions that foster the emergence of mega floods. It would be impractical to spend considerable resources for a river delta without

  17. Radionuclide concentrations in white sturgeon from the Columbia River

    International Nuclear Information System (INIS)

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1993-11-01

    The objectives of this study were to (1) review and summarize historical data on radionuclide concentrations in white sturgeon from the Columbia River, (2) determine present-day radionuclide tissue burdens from different locations in the Columbia River, and (3) compare historical data with current data. We first reviewed and summarized the historical literature on radionuclide concentrations in white sturgeon from the Hanford Reach. Field studies were then conducted to evaluate the relationship among sample locations, age/length of white sturgeon, and present radionuclide tissue burdens. Results and comparisons are discussed in the remainder of this report

  18. Incorporation of Savannah River Plant radioactive waste into concrete

    International Nuclear Information System (INIS)

    Stone, J.A.

    1975-01-01

    Results are reported of a laboratory-scale experimental program at the Savannah River Laboratory to gain information on the fixation of high-level radioactive wastes in concrete. Two concrete formulations, a High-Alumina Cement and a Portland Pozzalanic cement, were selected on the bases of leachability and compressive strength for the fixation of non-radioactive simulated wastes. Therefore, these two cements were selected for current studies for the fixation of actual Savannah River Plant high-level wastes. (U.S.)

  19. Savannah River Laboratory's operating experience with glass melters

    International Nuclear Information System (INIS)

    Brown, F.H.; Randall, C.T.; Cosper, M.B.; Moseley, J.P.

    1982-01-01

    The Department of Energy, with recommendations from the Du Pont Company, is proposing that a Defense Waste Processing Facility be constructed at the Savannah River Plant to immobilize radioactive The immobilization process is designed around the solidification of waste sludge in borosilicate glass. The Savannah River Laboratory, who is responsible for the solidification process development program, has completed an experimental program with one large-scale glass melter and just started up another melter. Experimental data indicate that process requirements can easily be met with the current design. 7 figures

  20. River history and tectonics.

    Science.gov (United States)

    Vita-Finzi, C

    2012-05-13

    The analysis of crustal deformation by tectonic processes has gained much from the clues offered by drainage geometry and river behaviour, while the interpretation of channel patterns and sequences benefits from information on Earth movements before or during their development. The interplay between the two strands operates at many scales: themes which have already benefited from it include the possible role of mantle plumes in the breakup of Gondwana, the Cenozoic development of drainage systems in Africa and Australia, Himalayan uplift in response to erosion, alternating episodes of uplift and subsidence in the Mississippi delta, buckling of the Indian lithospheric plate, and changes in stream pattern and sinuosity along individual alluvial channels subject to localized deformation. Developments in remote sensing, isotopic dating and numerical modelling are starting to yield quantitative analyses of such effects, to the benefit of geodymamics as well as fluvial hydrology. This journal is © 2012 The Royal Society

  1. Robotics at Savannah River

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1983-01-01

    A Robotics Technology Group was organized at the Savannah River Laboratory in August 1982. Many potential applications have been identified that will improve personnel safety, reduce operating costs, and increase productivity using modern robotics and automation. Several active projects are under way to procure robots, to develop unique techniques and systems for the site's processes, and to install the systems in the actual work environments. The projects and development programs are involved in the following general application areas: (1) glove boxes and shielded cell facilities, (2) laboratory chemical processes, (3) fabrication processes for reactor fuel assemblies, (4) sampling processes for separation areas, (5) emergency response in reactor areas, (6) fuel handling in reactor areas, and (7) remote radiation monitoring systems. A Robotics Development Laboratory has been set up for experimental and development work and for demonstration of robotic systems

  2. Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois

    Science.gov (United States)

    Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.

    2012-01-01

    Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  3. VULNERABILITY OF MOUNTAIN RIVERS TO WASTE DUMPING FROM NEAMT COUNTY, ROMANIA

    Directory of Open Access Journals (Sweden)

    FLORIN-CONSTANTIN MIHAI

    2012-11-01

    Full Text Available Lack of waste management facilities from mountain region often lead to uncontrolled disposal of waste on river banks polluting the local environment and damaging the tourism potential. Geographical conditions influences the distribution of human settlements which are located along the rivers and its tributaries. This paper aims to estimate the amounts of household waste generated and uncollected disposed into mountain rivers, taking into account several factors such as:proximity of rivers to the human settlements, the morphology of villages, length of river that crosses the locality(built up areas, local population, the access to waste collection services and waste management infrastructure. Vulnerability of rivers to illegal dumping is performed using GIS techniques, highlighting the localities pressure on rivers in close proximity. For this purpose, it developed a calculation model for estimation the amounts of waste (kg that are dumped on a river section (m that crosses a locality (village or it is in close proximity. This estimation is based on the “principle of proximity and minimum effort” it can be applied in any mountainous region that are lacking or partially access to waste collection services. It is an assessment tool of mountain rivers vulnerability to waste dumping,taking into account the geographical and demographic conditions of the study area. Also the current dysfunctions are analyzed based on field observations.

  4. EVALUATION OF THE QUALITY AND SELF PURIFICATION POTENTIAL OF TAJAN RIVER USING QUAL2E MODEL

    Directory of Open Access Journals (Sweden)

    N. Mehrdadi, M. Ghobadi, T. Nasrabadi, H. Hoveidi

    2006-07-01

    Full Text Available Tajan River is among significant rivers of Caspian Sea water basin. Pollution sources that threaten the quality of water in Tajan River may be classified in to two categories namely point and non-point sources. Major pollutants of latter category are Mazandaran wood and pulp, Paksar dairy products and Sari Antibiotic production factories, as well as 600-dastgah residential area. On the other hand, non-point sources whose waste is considered as a distributed load consist of Sari municipal wastewater and agriculture-related pollutants that are drained towards the river. In order to model the quality of river flow, Qual2E model is taken in to consideration. Considering TDS, the river quality is completely acceptable in cold seasons. However, in spring and summer the value of this parameter is increased and this causes some restrictions in the use of this water for irrigation of specific sensitive crops. Agricultural activities and consequent irrigated waters are the major causes of higher reported TDS values in warm seasons. Current status of DO is completely acceptable and this is highly related to the relative high value of width on depth ratio along the river. BOD and COD locate in a fairly poor condition. Quality deterioration is more noticeable in cold seasons. Higher rate of precipitation and consequent greater runoff generation towards the river basin justify the relative increase of mentioned parameters in fall and winter. Generally, non-point pollution sources are more contributed in deterioration of Tajan River water quality.

  5. Distribution of Linear Alkylbenzenes (LABs in Sediments of Sarawak and Sembulan Rivers, Malaysia

    Directory of Open Access Journals (Sweden)

    Sami Muhsen Magam

    2012-01-01

    Full Text Available The current study is one of the first studies evaluating the levels of linear alkylbenzenes (LABs in surface sediments of Sarawak and Sembulan rivers which are located in the east coast of Malaysia. The LABs, which are molecular tracers of sewage contamination, were measured in 15 surface sediment samples collected from these rivers. The samples were extracted, fractioned and analyzed by gas chromatography mass spectrometry (GC-MS. The findings revealed that the concentrations of ∑LABs ranged from 156.47 to 7386.19 ng/g dry weight (dw in the sediments of Sarawak River and from 643.18 to 5567.12 ng/g dw in the sediments of Sembulan River. The highest LABs levels were detected in the sediments collected from the sampling location SS9 in Sembulan River whereas the lowest levels were observed in the SS1 sampling location in Sarawak River. The I/E ratios (ratio of internal to external isomers of LABs for Sarawak River sediments ranged from 0.52 to 0.98 while for Sembulan River they fell within the range 0.87-1.79. The I/E ratio at the sampling station SS4 was much lower than the I/E ratios at the other stations, thus indicating that the wastewater discharged into Sarawak River from the areas surrounding station SS4 was poorly treated.

  6. Human scenarios for the screening assessment. Columbia River Comprehensive Impact Assessment

    International Nuclear Information System (INIS)

    Napier, B.A.; Harper, B.L.; Lane, N.K.; Strenge, D.L.; Spivey, R.B.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Impact Assessment (CRCIA) was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to humans. Because humans affected by the Columbia river are involved in a wide range of activities, various scenarios have been developed on which to base the risk assessments. The scenarios illustrate the range of activities possible by members of the public coming in contact with the Columbia River so that the impact of contaminants in the river on human health can be assessed. Each scenario illustrates particular activity patterns by a specific group. Risk will be assessed at the screening level for each scenario. This report defines the scenarios and the exposure factors that will be the basis for estimating the potential range of risk to human health from Hanford-derived radioactive as well as non-radioactive contaminants associated with the Columbia River

  7. Human scenarios for the screening assessment. Columbia River Comprehensive Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Harper, B.L.; Lane, N.K.; Strenge, D.L.; Spivey, R.B.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Impact Assessment (CRCIA) was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to humans. Because humans affected by the Columbia river are involved in a wide range of activities, various scenarios have been developed on which to base the risk assessments. The scenarios illustrate the range of activities possible by members of the public coming in contact with the Columbia River so that the impact of contaminants in the river on human health can be assessed. Each scenario illustrates particular activity patterns by a specific group. Risk will be assessed at the screening level for each scenario. This report defines the scenarios and the exposure factors that will be the basis for estimating the potential range of risk to human health from Hanford-derived radioactive as well as non-radioactive contaminants associated with the Columbia River.

  8. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation

  9. HYDROLOGICAL ASSESSMENTS OF SOME RIVERS IN EDO ...

    African Journals Online (AJOL)

    Highest monthly hydropower yields were recorded in September for Ovia, Ikpoba and Edion Rivers and in August for Orlie River. On annual basis, Ovia River, recorded the highest power yield of 61.619MW (suggesting that Ovia river may be suitable for a Medium hydropower scheme, 10MW-100MW) with the highest ...

  10. Assessment of river plan changes in Terengganu River using RS ...

    African Journals Online (AJOL)

    Journal of Fundamental and Applied Sciences ... The database can help in the appropriate understanding of river plan change and know ... The data collected from Geographic Information System (GIS) and Remote Sensing (RS) database.

  11. Preface: Bridging the gap between theory and practice on the upper Mississippi River

    Science.gov (United States)

    Lubinski, Kenneth S.

    1995-01-01

    In July 1994, the Upper Mississippi River (UMR) served as a nexus for coalescing scientific information and management issues related to worldwide floodplain river ecosystems. The objective of the conference ‘Sustaining the Ecological Integrity of Large Floodplain Rivers: Application of Ecological Knowledge to River Management’, was to provide presentations of current ideas from the scientific community. To translate the many lessons learned on other river systems to operational decisions on the UMR, a companion workshop for managers and the general public was held immediately after the conference.An immediate local need for such sharing has existed for several years, as the U.S. Corps of Engineers is currently planning commercial navigation activities that will influence the ecological integrity of the river over the next half century. Recently, other equally important management issues have surfaced, including managing the river as an element of the watershed, and assessing its ecological value as a system instead of a collection of parts (Upper Mississippi River Conservation Committee, 1993). Regional and state natural resource agencies are becoming more convinced that they need to address these issues within their own authorities, however spatially limited, rather than relying on the U.S. Corps of Engineers to manage the ecosystem as an adjunct to its purpose of navigation support.

  12. 78 FR 17087 - Special Local Regulation; New River Raft Race, New River; Fort Lauderdale, FL

    Science.gov (United States)

    2013-03-20

    ...-AA08 Special Local Regulation; New River Raft Race, New River; Fort Lauderdale, FL AGENCY: Coast Guard... on the New River in Fort Lauderdale, Florida during the Rotary Club of Fort Lauderdale New River Raft... States during the Rotary Club of Fort Lauderdale New River Raft Race. On March 23, 2013, Fort Lauderdale...

  13. 76 FR 71342 - Proposed CERCLA Administrative Cost Recovery Settlement; River Forest Dry Cleaners Site, River...

    Science.gov (United States)

    2011-11-17

    ... Settlement; River Forest Dry Cleaners Site, River Forest, Cook County, IL AGENCY: Environmental Protection... response costs concerning the River Forest Dry Cleaners site in River Forest, Cook County, Illinois with... code: C-14J, Chicago, Illinois 60604. Comments should reference the River Forest Dry Cleaners Site...

  14. Integration or Disintegration of the Ecological and Urban Functions of the River in the City? A Polish Perspective

    OpenAIRE

    Katarzyna KUBIAK-WÓJCICKA; Justyna CHODKOWSKA-MISZCZUK; Krzysztof ROGATKA

    2018-01-01

    This article aims to find whether the urbanized area experiences integration or disintegration of the ecological and urban functions of the river. The river has always played an important role in urban areas, although over the centuries, it has come through radical changes. At first, it decided on the location of the city, served as a defense and means of transport, and during the period of industrialization it became the technical base for the city. Currently, the river has again come to be ...

  15. A velocimetric survey of the Lower Missouri River from river mile 492.38 to 290.20, July-October 2011 and July 2012

    Science.gov (United States)

    Armstrong, Daniel J.; Wilkison, Donald H.; Norman, Richard D.

    2014-01-01

    Velocimetric surveys were made by the U.S. Geological Survey in 2011 and 2012 to provide data for the U.S. Army Corps of Engineers’ ongoing study of bed degradation in the Lower Missouri River. Using Acoustic Doppler Current Profile technology, velocity data were collected at 87 river miles along the Lower Missouri River from Rulo, Nebraska to Waverly, Missouri, from July to October 2011 and in July 2012, for a total of 118 velocimetric surveys. Multiple-repeat velocimetric surveys were done eight times at three river miles from July to October 2011. Synoptic velocimetric surveys spanning 2–4 days were done twice at ten river miles, once in July 2011 and once in October 2011. Additional synoptic velocimetric surveys were done at proximal river miles in October 2011 and July 2012. Main-channel, near-bed, near-bank, and whole-river velocities were extracted from the Acoustic Doppler Current Profile data using AdMap and compiled as an average of reciprocal pairs for each survey. In addition, the mean velocity computed by the Winriver II software for each survey was integrated with the extracted data.

  16. From Natural to Design River Deltas

    Science.gov (United States)

    Giosan, Liviu

    2016-04-01

    Productive and biologically diverse, deltaic lowlands attracted humans since prehistory and may have spurred the emergence of the first urban civilizations. Deltas continued to be an important nexus for economic development across the world and are currently home for over half a billion people. But recently, under the double whammy of sea level rise and inland sediment capture behind dams, they have become the most threatened coastal landscape. Here I will address several deceptively simple questions to sketch some unexpected answers using example deltas from across the world from the Arctic to the Tropics, from the Danube to the Indus, Mississippi to Godavari and Krishna, Mackenzie to Yukon. What is a river delta? What is natural and what is not in a river delta? Are the geological and human histories of a delta important for its current management? Is maintaining a delta the same to building a new one? Can we design better deltas than Nature? These answers help us see clearly that survival of deltas in the next century depends on human intervention and is neither assured nor simple to address or universally applicable. Empirical observations on the hydrology, geology, biology and biochemistry of deltas are significantly lagging behind modeling capabilities endangering the applicability of numerical-based reconstruction solutions and need to be ramped up significantly and rapidly across the world.

  17. Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada

    Science.gov (United States)

    Bash, E. A.; Marshall, S. J.; White, E. C.

    2009-12-01

    Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of

  18. Stabilization of Aley river water content by forest stands

    Directory of Open Access Journals (Sweden)

    E. G. Paramonov

    2016-06-01

    Full Text Available Aley river basin is one of the most developed territories in West Siberia. Initially, the development here was related to the development of ore mining in the Altai. Currently it is associated mainly with the agricultural orientation of economic development. The intensive involvement of basin lands into the economic turnover for the last 100 years contributed to the formation of a number of environmental problems, such as water and wind erosion, loss of soil fertility and salinization, and desertification of the territory. Besides, the decrease of Aley river water content due to natural and anthropogenic reasons was observed. A specific feature of water management in Aley river basin is a significant amount of water resources used for irrigation purposes and agricultural water supply. To ensure the economic and drinking water supply, two reservoirs and a number of ponds have been constructed and operate in the basin. Forest ecosystems of the basin are considered from the viewpoint of preservation and restoration of small rivers. The ability of forest to accumulate solid precipitation and intercept them during the snowmelt for a longer time reduces the surface drainage and promotes transfer into the subsurface flow, significantly influencing the water content of permanent watercourses, is shown. The state of protective forest plantations in Aley river basin is analyzed. Aley river tributaries are compared by area, the length of water flow, and forest coverage of the basin. It is proposed to regulate the runoff through drastic actions on the increase of forest cover in the plain and especially in the mountainous parts of the basin. Measures to increase the forest cover within water protection zones, afforestation of temporary and permanent river basins, and the protection of agricultural soil fertility are worked out.

  19. River plume patterns and dynamics within the Southern California Bight

    Science.gov (United States)

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  20. Geochemical characterisation of Elbe river high flood sediments

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, F. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung]|[UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Rupp, H.; Meissner, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung; Lohse, M.; Buettner, O.; Friese, K. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Miehlich, G. [Hamburg Univ. (Germany). Inst. fuer Bodenkunde

    2001-07-01

    Quality aims for land usage in flood plains have to be worked out in the Russian-German research project 'Effects of floods on the pollution of agricultural used flood plain soils of the Oka River and the Elbe River'. It is financed by the Germany Ministry of Education and Research (FKZ 02 WT 9617/0). Beside the characterisation of the present pollution of soils for the middle Elbe, it is necessary to prognosticate the current pollutant input. At the examination site nearby Wittenberge, Elbe River kilometers 435 and 440, natural deposited flood sediments were sampled by artificial lawn mats. By the geochemical characterisation it is possible to record the metal input into the flood plain and to win knowledge about the sedimentation process. The results of sediment investigation of the high flood in spring 1997 are presented. (orig.)

  1. Savannah River Interim Waste Management Program Plan - FY 1986

    International Nuclear Information System (INIS)

    1985-09-01

    This document provides the program plan as requested by the Savannah River Operations Office of the Department of Energy. The plan was developed to provide a working knowledge of the nature and extent of the interim waste management programs being undertaken by Savannah River (SR) contractors for the Fiscal Year 1986. In addition, the document projects activities for several years beyond 1986 to adequately plan for safe handling and storage of radioactive wastes generated at Savannah River and for developing technology for improved management of low-level solid wastes. A revised plan will be issued prior to the beginning of the first quarter of each fiscal year. In this document, work descriptions and milestone schedules are current as of the date of publication. Budgets are based on available information as of May 1985

  2. Savannah River Interim Waste Management Program plan, FY-1987

    International Nuclear Information System (INIS)

    1986-09-01

    This document provides the program plan as requested by the Savannah River Operations office of the Department of Energy. The plan was developed to provide a working knowledge of the nature and extent of the interim waste management programs being undertaken by Savannah River (SR) contractors for the Fiscal Year 1987. In addition, the document projects activities for several years beyond 1987 to adequately plan for safe handling and storage of radioactive wastes generated at Savannah River and for developing technology for improved management of low-level solid wastes. A revised plan will be issued prior to the beginning of the first quarter of each fiscal year. In this document, work descriptions and milestone schedules are current as of the date of publication. Budgets are based on available information as of June 1986

  3. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  4. Fish resource data from the Snare River, Northwest Territories

    International Nuclear Information System (INIS)

    Jessop, E.F.; Chang-Kue, K.T.J.; MacDonald, G.

    1994-01-01

    An extensive fish sampling and tagging program was conducted on the Snare River, Northwest Territories, in order to collect baseline data on the fish populations in sections of the river altered by hydroelectric projects. Fish populations were sampled from May to July 1977 in five sections of the river that were influenced by development of hydropower at three dams currently on line; 530 tagged fish were also released. The biweekly catch composition in experimental gill nets for each study area and the catch per gill net mesh size are presented for walleye (Stizostedion vitreum), lake trout (Salvelinus namaycush), lake whitefish (Coregonus clupeaformis), lake cisco (Coregonus artedi), northern pike (Esox lucius), white sucker (Catostomus commersoni), and longnose sucker (Catostomus catostomus). Age-specific data on length, weight, age, sex, and maturity are also included. 7 refs., 12 figs., 42 tabs

  5. Savannah River Waste Management Program Plan - FY 1982

    International Nuclear Information System (INIS)

    1981-12-01

    This document provides the program plan as requested by the Savannah River Operations Office of the Department of Energy. The plan was developed to provide a working knowledge of the nature and extent of the waste management programs being undertaken by Savannah River (SR) contractors for the Fiscal Year 1982. In addition, the document projects activities for several years beyond 1982 to adequately plan for safe handling and storage of radioactive wastes generated at Savannah River, for developing technology to immobilize high-level radioactive wastes generated and stored at SR, and for developing technology for improved management of low-level solid wastes. A revised plan will be issued prior to the beginning of the first quarter of each fiscal year. In this document, work descriptions and milestone schedules are current as of the date of publication. Budgets are based on available information as of October 1, 1981

  6. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    Certa, P.J.; Kirkbride, R.A.; Hohl, T.M.; Empey, P.A.; Wells, M.N.

    2009-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal

  7. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and

  8. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Natural Resource Agency — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  9. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Science.gov (United States)

    2010-07-01

    ... go adrift. Immediately after completion of the emergency mooring, the lockmaster of the first lock... of approach to unattended, normally open automatic, movable span bridges, the factor of river flow...

  10. Anastomosing Rivers are Disequilibrium Patterns

    NARCIS (Netherlands)

    Lavooi, E.; Haas, de T.; Kleinhans, M.G.; Makaske, B.; Smith, D.G.

    2010-01-01

    Anastomosing rivers have multiple interconnected channels that enclose floodbasins. Various theories have been proposed to explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, or, alternatively, a tendency to avulse due to upstream

  11. Zooplankton community of Parnaíba River, Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Ludmilla Cavalcanti Antunes Lucena

    2015-03-01

    Full Text Available Aim:The objective of the present work is to present a list of species of zooplankton (Rotifera, Cladocera and Copepoda from the Parnaíba River. Additionally, we provide comments on their distribution along the river, and between dry and wet seasons.MethodsZooplankton was collected with a plankton net (60 µm mesh and concentrated into a volume of 80 mL for further analysis, during the dry (October 2010 and wet (April 2011 seasons. Sampling was restricted to the marginal areas at depths between 80 and 150 cm.ResultsA total of 132 species was recorded among the three zooplankton groups studied. During the dry season a total of 82 species was registered and 102 species was registered for the wet season. Rotifera contributed with 66.7% of the species, followed by Cladocera (26.5% and Copepoda (6.8%.ConclusionsThe richness of species observed was high compared to other large rivers in Brazil. In the context of current policies for water management and river diversions in northeastern Brazil, the present study highlights the importance of this river system for biodiversity conservation.

  12. Continuum Model for River Networks

    Science.gov (United States)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  13. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

  14. Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp.

    Science.gov (United States)

    Barros, Ivaldete Tijolin; Ceccon, Juliana Parolin; Glinski, Andressa; Liebel, Samuel; Grötzner, Sonia Regina; Randi, Marco Antonio Ferreira; Benedito, Evanilde; Ortolani-Machado, Claudia Feijó; Filipak Neto, Francisco; de Oliveira Ribeiro, Ciro Alberto

    2017-07-01

    In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.

  15. Predictability of surface currents and fronts off the Mississippi Delta

    International Nuclear Information System (INIS)

    Walker, N.D.; Rouse, L.J.; Wiseman, W.J.

    2001-01-01

    The dynamic coastal region of the lower Mississippi River was examined under varying conditions of wind, river discharge and circulation patterns of the Gulf of Mexico. Nearly 7,000 deep-sea merchant vessels enter the port complex each year and the area boasts the highest concentration of offshore drilling rigs, rendering the Mississippi delta and adjacent coastal areas vulnerable to risk from oil spills. Satellite imagery has been useful in tracking movements of the Mississippi river plume as recognizable turbidity and temperature fronts are formed where river waters encounter ambient shelf waters. Oil spill modelers often base their predictions of oil movement on the surface wind field and surface currents, but past studies have indicated that this can be overly simplistic in regions affected by river flow because river fronts have significant control over the movement of oil in opposition to prevailing winds. Frontal zones, such as those found where river waters meet oceanic waters, are characterized by strong convergence of surface flow. These frontal zones can provide large and efficient traps or natural booms for spilled oil. In an effort to facilitate cleanup operations, this study made use of the National Ocean and Atmospheric Administration (NOAA) AVHRR satellite imagery of temperature and reflectance to study front locations and their variability in space and time. The main objectives were to quantify surface temperature structure and locations of fronts throughout the year using satellite image data, to map the structure of the Mississippi sediment plume and to assess the forcing factors responsible for its variability over space and time. The final objective was to use in-situ measurements of surface currents together with satellite image data to better understand surface flow in this region of strong and variable currents. It was concluded that the main factors controlling circulation in the Mississippi River outflow region are river discharge and

  16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: RVRMILES (River Mile Marker Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for river miles along the Hudson River. Vector lines in this data set represent river mile markers. This data set...

  17. Hierarchically nested river landform sequences

    Science.gov (United States)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  18. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  19. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  20. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    CERTA PJ

    2008-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  1. Defining interactions of in-stream hydrokinetic devices in the Tanana River, Alaska

    Science.gov (United States)

    Johnson, J.; Toniolo, H.; Seitz, A. C.; Schmid, J.; Duvoy, P.

    2012-12-01

    The acceptance, performance, and sustainability of operating in-stream hydrokinetic power generating devices in rivers depends on the impact of the river environment on hydrokinetic infrastructure as well as its impact on the river environment. The Alaska Hydrokinetic Energy Research Center (AHERC) conducts hydrokinetic "impact" and technology studies needed to support a sustainable hydrokinetic industry in Alaska. These include completed and ongoing baseline studies of river hydrodynamic conditions (river stage, discharge, current velocity, power, and turbulence; suspended and bed load sediment transport), ice, fish populations and behavior, surface and subsurface debris flows, and riverbed conditions. Technology and methods studies to minimize the effect of debris flows on deployed turbine system are in-progress to determine their effectiveness at reducing the probability of debris impact, diverting debris and their affect on available river power for conversion to electricity. An anchor point has been placed in the main flow just upstream of Main (Figure 1) to support projects and in preparation for future projects that are being planned to examine hydrokinetic turbine performance including power conversion efficiency, turbine drag and anchor chain loads, wake generation and effects on fish. Baseline fish studies indicate that hydrokinetic devices at the test site will have the most potential interactions with Pacific salmon smolts during their down-migration to the ocean in May and June. At the AHERC test site, the maximum turbulent kinetic energy (TKE) occurs just down stream from the major river bends (e.g., 000 and near the railroad bridge [upper center of the figure]) and over a deep hole at 440 (Figure 1), Minimum TKE occurs between main and 800. River current velocity measurements and simulations of river flow from 000 downstream past the railroad bridge indicate that the most stable current in the river reach is between Main and 800. The stable current

  2. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 in order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  3. Proglacial river stage, discharge, and temperature datasets from the Akuliarusiarsuup Kuua River northern tributary, Southwest Greenland, 2008–2011

    Directory of Open Access Journals (Sweden)

    A. K. Rennermalm

    2012-05-01

    Full Text Available Pressing scientific questions concerning the Greenland ice sheet's climatic sensitivity, hydrology, and contributions to current and future sea level rise require hydrological datasets to resolve. While direct observations of ice sheet meltwater losses can be obtained in terrestrial rivers draining the ice sheet and from lake levels, few such datasets exist. We present a new hydrologic dataset from previously unmonitored sites in the vicinity of Kangerlussuaq, Southwest Greenland. This dataset contains measurements of river stage and discharge for three sites along the Akuliarusiarsuup Kuua (Watson River's northern tributary, with 30 min temporal resolution between June 2008 and July 2011. Additional data of water temperature, air pressure, and lake stage are also provided. Flow velocity and depth measurements were collected at sites with incised bedrock or structurally reinforced channels to maximize data quality. However, like most proglacial rivers, high turbulence and bedload transport introduce considerable uncertainty to the derived discharge estimates. Eleven propagating error sources were quantified, and reveal that largest uncertainties are associated with flow depth observations. Mean discharge uncertainties (approximately the 68% confidence interval are two to four times larger (±19% to ±43% than previously published estimates for Greenland rivers. Despite these uncertainties, this dataset offers a rare collection of direct measurements of ice sheet runoff to the global ocean and is freely available for scientific use at http://dx.doi.org/10.1594/PANGAEA.762818.

  4. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    Science.gov (United States)

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  5. A comparative study of the flux and fate of the Mississippi and Yangtze river sediments

    Directory of Open Access Journals (Sweden)

    K. Xu

    2015-03-01

    Full Text Available Large rivers play a key role in delivering water and sediment into the global oceans. Large-river deltas and associated coastlines are important interfaces for material fluxes that have a global impact on marine processes. In this study, we compare water and sediment discharge from Mississippi and Yangtze rivers by assessing: (1 temporal variation under varying climatic and anthropogenic impacts, (2 delta response of the declining sediment discharge, and (3 deltaic lobe switching and Holocene sediment dispersal patterns on the adjacent continental shelves. Dam constructions have decreased both rivers’ sediment discharge significantly, leading to shoreline retreat along the coast. The sediment dispersal of the river-dominated Mississippi Delta is localized but for the tide-dominated Yangtze Delta is more diffuse and influenced by longshore currents. Sediment declines and relative sea level rises have led to coastal erosion, endangering the coasts of both rivers.

  6. Using radar altimetry to update a routing model of the Zambezi River Basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; Bauer-Gottwein, Peter

    2012-01-01

    Satellite radar altimetry allows for the global monitoring of lakes and river levels. However, the widespread use of altimetry for hydrological studies is limited by the coarse temporal and spatial resolution provided by current altimetric missions and the fact that discharge rather than level...... is needed for hydrological applications. To overcome these limitations, altimetry river levels can be combined with hydrological modeling in a dataassimilation framework. This study focuses on the updating of a river routing model of the Zambezi using river levels from radar altimetry. A hydrological model...... of the basin was built to simulate the land phase of the water cycle and produce inflows to a Muskingum routing model. River altimetry from the ENVISAT mission was then used to update the storages in the reaches of the Muskingum model using the Extended Kalman Filter. The method showed improvements in modeled...

  7. An Apparatus for Bed Material Sediment Extraction From Coarse River Beds in Large Alluvial Rivers

    Science.gov (United States)

    Singer, M. B.; Adam, H.; Cooper, J.; Cepello, S.

    2005-12-01

    same scale as the sampler). The Cooper Scooper has been tested in mixed and coarse beds at 60 cross sections of the Middle and Upper Sacramento River (usually 3 samples across each section) spanning 160 river kilometers. The sampler and method have allowed us to characterize the grain size distribution for large portions of the river for which bed material data were previously unavailable. The data will enable assessment of habitat for anadramous and benthic species, computations of sediment transport and routing, and the testing of current theories of downstream fining.

  8. How Physical Processes are Informing River Management Actions at Marble Bluff Dam, Truckee River, Nevada

    Science.gov (United States)

    Bountry, J.; Godaire, J.; Bradley, D. N.

    2017-12-01

    using historical trends, current field data, and hydraulic and sediment transport models. We present options for adaptive management for dam and reservoir sediment operations that incorporates monitoring of river processes to inform annual implementation strategies along with long-term planning.

  9. The International River Interface Cooperative: Public Domain Software for River Flow and Morphodynamics (Invited)

    Science.gov (United States)

    Nelson, J. M.; Shimizu, Y.; McDonald, R.; Takebayashi, H.

    2009-12-01

    The International River Interface Cooperative is an informal organization made up of academic faculty and government scientists with the goal of developing, distributing and providing education for a public-domain software interface for modeling river flow and morphodynamics. Formed in late 2007, the group released the first version of this interface (iRIC) in late 2009. iRIC includes models for two and three-dimensional flow, sediment transport, bed evolution, groundwater-surface water interaction, topographic data processing, and habitat assessment, as well as comprehensive data and model output visualization, mapping, and editing tools. All the tools in iRIC are specifically designed for use in river reaches and utilize common river data sets. The models are couched within a single graphical user interface so that a broad spectrum of models are available to users without learning new pre- and post-processing tools. The first version of iRIC was developed by combining the USGS public-domain Multi-Dimensional Surface Water Modeling System (MD_SWMS), developed at the USGS Geomorphology and Sediment Transport Laboratory in Golden, Colorado, with the public-domain river modeling code NAYS developed by the Universities of Hokkaido and Kyoto, Mizuho Corporation, and the Foundation of the River Disaster Prevention Research Institute in Sapporo, Japan. Since this initial effort, other Universities and Agencies have joined the group, and the interface has been expanded to allow users to integrate their own modeling code using Executable Markup Language (XML), which provides easy access and expandability to the iRIC software interface. In this presentation, the current components of iRIC are described and results from several practical modeling applications are presented to illustrate the capabilities and flexibility of the software. In addition, some future extensions to iRIC are demonstrated, including software for Lagrangian particle tracking and the prediction of

  10. A Rejang River rash

    Directory of Open Access Journals (Sweden)

    Jean-Li Lim

    2014-04-01

    Full Text Available A 30-year-old Iban woman presented to a rural primary healthcare clinic located along the Batang Rejang in Sarawak. She had a 2-day history of rash, which started over her trunk and later spread to her face and limbs. What started out as individual erythematous maculopapular spots later coalesced to form larger raised blotches. The rash was extremely pruritic and affected her sleep, and hence her visit. The rash was preceded by high grade, persistent fever that was temporarily relieved by paracetamol. She also complained of malaise, arthralgia and myalgia. Her appetite had been poor since the onset of the fever. She lived in a long house at the edge of the jungle. Although she did not have a history of going into the jungle to forage, she went regularly to the river to wash clothes. Clinically, she appeared lethargic and had bilateral conjunctival injection. Her left anterior cervical lymph nodes were palpable. There were erythematous macules measuring 5 to 15 mm distributed over her whole body but predominantly over the chest and abdominal region (Figure 1. An unusual skin lesion was discovered at the right hypochondriac region. This lesion resembled a cigarette burn with a necrotic centre (Figure 2. There was no evidence of hepato-splenomegaly. Examination of the other systems was unremarkable. On further questioning, the patient admitted being bitten by a ‘kutu babi’ or mite 3 days before the onset of her fever.

  11. Connectivity in river deltas

    Science.gov (United States)

    Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.

    2016-12-01

    Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.

  12. River rating complexity

    Science.gov (United States)

    Holmes, Robert R.

    2016-01-01

    Accuracy of streamflow data depends on the veracity of the rating model used to derive a continuous time series of discharge from the surrogate variables that can readily be collected autonomously at a streamgage. Ratings are typically represented as a simple monotonic increasing function (simple rating), meaning the discharge is a function of stage alone, however this is never truly the case unless the flow is completely uniform at all stages and in transitions from one stage to the next. For example, at some streamflow-monitoring sites the discharge on the rising limb of the hydrograph is discernably larger than the discharge at the same stage on the falling limb of the hydrograph. This is the so-called “loop rating curve” (loop rating). In many cases, these loops are quite small and variation between rising- and falling-limb discharge measurements made at the same stage are well within the accuracy of the measurements. However, certain hydraulic conditions can produce a loop that is large enough to preclude use of a monotonic rating. A detailed data campaign for the Mississippi River at St. Louis, Missouri during a multi-peaked flood over a 56-day period in 2015 demonstrates the rating complexity at this location. The shifting-control method used to deal with complexity at this site matched all measurements within 8%.

  13. Spatio-temporal distribution of fecal indicators in three rivers of the Haihe River Basin, China.

    Science.gov (United States)

    Wang, Yawei; Chen, Yanan; Zheng, Xiang; Gui, Chengmin; Wei, Yuansong

    2017-04-01

    Because of their significant impact on public health, waterborne pathogens, especially bacteria and viruses, are frequently monitored in surface water to assess microbial quality of water bodies. However, more than one billion people worldwide currently lack access to safe drinking water, and a diversity of waterborne outbreaks caused by pathogens is reported in nations at all levels of economic development. Spatio-temporal distribution of conventional pollutants and five pathogenic microorganisms were discussed for the Haihe River Basin. Land use and socio-economic assessments were coupled with comprehensive water quality monitoring. Physical, chemical, and biological parameters were measured at 20 different sites in the watershed for 1 year, including pH, temperature, conductivity, dissolved oxygen, turbidity, chemical oxygen demand, ammonia-N, total and fecal coliforms, E. coli, and Enterococcus. The results highlighted the high spatio-temporal variability in pathogen distribution at watershed scale: high concentration of somatic coliphages and fecal indicator bacteria in March and December and their very low concentration in June and September. All pathogens were positively correlated to urban/rural residential/industrial land and negatively correlated to other four land use types. Microbial pollution was greatly correlated with population density, urbanization rate, and percentage of the tertiary industry in the gross domestic product. In the future, river microbial risk control strategy should focus more on the effective management of secondary effluent of wastewater treatment plant and land around rivers.

  14. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers

    NARCIS (Netherlands)

    Liu, C.; Kroeze, C.; Hoekstra, Arjen Ysbert; Gerbens-Leenes, Winnie

    2012-01-01

    The grey water footprint (GWF) is an indicator of aquatic pollution. We calculate past and future trends in GWFs related to anthropogenic nitrogen (N) and phosphorus (P) inputs into major rivers around the world. GWFs were calculated from past, current and future nutrient loads in river basins using

  15. Discharge estimation from H-ADCP measurements in a tidal river subject to sidewall effects and a mobile bed

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.; Hidayat, H.

    2011-01-01

    Horizontal acoustic Doppler current profilers (H-ADCPs) can be employed to estimate river discharge based on water level measurements and flow velocity array data across a river transect. A new method is presented that accounts for the dip in velocity near the water surface, which is caused by

  16. Which Triggers Produce the Most Erosive, Frequent, and Longest Runout Turbidity Currents on Deltas?

    Science.gov (United States)

    Hizzett, J. L.; Hughes Clarke, J. E.; Sumner, E. J.; Cartigny, M. J. B.; Talling, P. J.; Clare, M. A.

    2018-01-01

    Subaerial rivers and turbidity currents are the two most voluminous sediment transport processes on our planet, and it is important to understand how they are linked offshore from river mouths. Previously, it was thought that slope failures or direct plunging of river floodwater (hyperpycnal flow) dominated the triggering of turbidity currents on delta fronts. Here we reanalyze the most detailed time-lapse monitoring yet of a submerged delta; comprising 93 surveys of the Squamish Delta in British Columbia, Canada. We show that most turbidity currents are triggered by settling of sediment from dilute surface river plumes, rather than landslides or hyperpycnal flows. Turbidity currents triggered by settling plumes occur frequently, run out as far as landslide-triggered events, and cause the greatest changes to delta and lobe morphology. For the first time, we show that settling from surface plumes can dominate the triggering of hazardous submarine flows and offshore sediment fluxes.

  17. River reach classification for the Greater Mekong Region at high spatial resolution

    Science.gov (United States)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of

  18. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    Science.gov (United States)

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    fields, and protection of channel banks by revetments throughout the basin, have reduced the overall sediment yield of the MRB by more than 60 percent. The primary alterations to channel morphology by dams and other engineering projects have been (1) channel simplification and reduced dynamism; (2) lowering of channel-bed elevation; and (3) disconnection of the river channel from the flood plain, except during extreme flood events. Freshwater discharge from the Mississippi River and its associated sediment and nutrient loads strongly influence the physical and biological components in the northern Gulf of Mexico. Ninety percent of the nitrogen load reaching the Gulf of Mexico is from nonpoint sources with about 60 percent coming from fertilizer and mineralized soil nitrogen. Much of the phosphorus is from animal manure from pasture and rangelands followed by fertilizer applied to corn and soybeans. Increased nutrient enrichment in the northern Gulf of Mexico has resulted in the degradation of water quality as more phytoplankton grow, which increases turbidity and depletes oxygen in the lower depths creating what is known as the "dead zone." In 2002, the dead zone was 22,000 square kilometers (km2), an area similar to the size of the State of Massachusetts. Changes in the flow regime from engineered structures have had direct and indirect effects on the fish communities. The navigation pools in the upper Mississippi River have aged, and these overwintering habitats, which were created when the pools filled, have declined as sedimentation reduces water depth. Reproduction of paddlefish may have been adversely affected by dams, which impede access to suitable spawning habitats. Fishes that inhabit swift-current habitats in the unimpounded lower Mississippi River have not declined as much as in the upper Mississippi River. The decline of the pallid sturgeon may be attributable to channelization of the Missouri River above St. Louis, Missouri. The Missouri River supports a

  19. Simple Words and Fuzzy Zones: Early Directions for Temporary River Research in South Africa

    Science.gov (United States)

    Uys; O'Keeffe

    1997-07-01

    / Although a large proportion of South Africa's rivers are nonperennial, ecological research into these systems has only recently been initiated. Consequently, we have little verified information about the ecological functioning of these rivers or knowledge of how best to manage them. High water demands in a semiarid region results in the flow of most perennial rivers being altered from permanent to temporary in sections, through impoundment, land-use changes, abstraction, etc. Conversely, sections of many temporary rivers are altered to perennial as a result of interbasin transfers or may be exploited for surface water. Effective and appropriate management of these modifications must be based on sound scientific information, which requires intensified, directed research. We anticipate that temporary river research in South Africa will, of necessity, be driven primarily by short-term collaborative efforts and secondarily by long-term ecological studies. At the outset, a simple conceptual framework is required to encourage an appreciation of current views of the spatial and temporal dynamics of nonperennial rivers and of the variability and unpredictability that characterize these systems. We adopt the view that perennial and episodic/ephemeral rivers represent either end of a continuum, separated by a suite of intermediate flow regimes. A conceptual diagram of this continuum is presented. In the absence of a functional classification for temporary rivers, a descriptive terminology has been systematically devised in an attempt to standardize definition of the different types of river regimes encountered in the country. Present terminology lacks structure and commonly accepted working definitions. KEY WORDS: Temporary rivers; Intermittent rivers; Continuum; Terminology; Classification; Ecosystem management; South Africa

  20. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Feng Ling

    2017-11-01

    Full Text Available Dams play a significant role in altering the spatial pattern of temperature in rivers and contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding the temporal and spatial variation of thermal pollution caused by dams is important to prevent or mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice because of the inaccessibility of water temperature records and the scarcity of gauges along rivers. By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal pollution downstream of dams in large rivers, because it can cover a large area and observe the same zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+ thermal infrared imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes acquired in the period from 2000 to 2014. The results show that water temperatures downstream of both dams are much cooler than those upstream of both dams in summer, and the water temperature remains stable along the river in winter, showing evident characteristic of the thermal pollution caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+ imagery, the proposed technique in the current study provides a promising method for globally monitoring the thermal pollution caused by dams in large rivers.

  1. Holographic heat current as Noether current

    Science.gov (United States)

    Liu, Hai-Shan; Lü, H.; Pope, C. N.

    2017-09-01

    We employ the Noether procedure to derive a general formula for the radially conserved heat current in AdS planar black holes with certain transverse and traceless perturbations, for a general class of gravity theories. For Einstein gravity, the general higher-order Lovelock gravities and also a class of Horndeski gravities, we derive the boundary stress tensor and show that the resulting boundary heat current matches precisely the bulk Noether current.

  2. Turbulent forces within river plumes affect spread

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  3. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    Science.gov (United States)

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  4. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  5. The Influence of Tidal Activities on Hydrologic Variables of Paka River, Terengganu, Malaysia

    International Nuclear Information System (INIS)

    Mohd EkhwanToriman; Mohd Ekhwan Toriman; Muhammad Barzani Gasim; Haniff Muhamad

    2015-01-01

    A hydrological study was conducted to determine their characteristics at Paka River, Terengganu. Seven sampling stations were identified in this study. Sampling was started from the estuary of Paka River, and ended about 14 km away from the estuary as each station was 2 km apart from each other. Sampling was carried out at two different water tides (low and high water tides) and two durational variations which represented by the wet and dry periods. Hydrological variables such as river velocity, river width and river depth were measured by using specific equipment. River width was measured by using a range finder (model Bushnell 20-0001), river depth was measured by using a depth meter (model Speedtech SM-5) and river velocity was measured by using a flow meter/current flow meter (model FP101). Station 1 that located at the downstream identified by highest readings for hydrological variables both water tides during the first and second samplings compared to stations 7 which located at the upstream. Higher readings of hydrological variables were also shown during dry season since low freshwater flow due to less rainfall intensity in the upstream area. (author)

  6. San Pedro River Aquifer Binational Report

    Science.gov (United States)

    Callegary, James B.; Minjárez Sosa, Ismael; Tapia Villaseñor, Elia María; dos Santos, Placido; Monreal Saavedra, Rogelio; Grijalva Noriega, Franciso Javier; Huth, A. K.; Gray, Floyd; Scott, C. A.; Megdal, Sharon; Oroz Ramos, L. A.; Rangel Medina, Miguel; Leenhouts, James M.

    2016-01-01

    use new and existing research to define the general hydrologic framework of the Binational San Pedro Aquifer (BSPA), to gather hydrogeological and other relevant data in preparation for future work such as an updated groundwater conceptual model and budget and to establish the basis for a binational numerical model. The specific objectives are as follows:Understand the current state of knowledge with respect to climate, geology, soils, land cover, land use, and hydrology of the aquifer in its binational context;Compile and create a database of scientific information from both countries;Identify data gaps and identify what data would be necessary to update, in a subsequent phase, the hydrologic model of the aquifer system, including surface- and groundwater interactions on a binational level.The BSPB is one of the most studied basins in the region, and a database of publications has been compiled as part of this project. Previous studies include topics that range from geophysics and hydrogeology to biology and ecosystem services. The economic drivers on each side of the border are quite different. In the Arizona 4 portion of the basin military and tourism dominate while in the Sonoran portion, mining is the most important industry. Water management is also different in the two countries. In Mexico, primary authority for management of water resources devolves from the federal government. In the United States, primary authority rests with the states except in cases of interstate surface waters. Binational waters are not currently jointly managed by the two countries except in cases where treaties have been negotiated such as for the Rio Grande and Colorado Rivers. Thus, there is currently no binational coordination or treaty governing the management of groundwater.

  7. Intermittent ephemeral river-breaching

    Science.gov (United States)

    Reniers, A. J.; MacMahan, J. H.; Gallagher, E. L.; Shanks, A.; Morgan, S.; Jarvis, M.; Thornton, E. B.; Brown, J.; Fujimura, A.

    2012-12-01

    In the summer of 2011 we performed a field experiment in Carmel River State Beach, CA, at a time when the intermittent natural breaching of the ephemeral Carmel River occurred due to an unusually rainy period prior to the experiment associated with El Nino. At this time the river would fill the lagoon over the period of a number of days after which a breach would occur. This allowed us to document a number of breaches with unique pre- and post-breach topographic surveys, accompanying ocean and lagoon water elevations as well as extremely high flow (4m/s) velocities in the river mouth during the breaching event. The topographic surveys were obtained with a GPS-equipped backpack mounted on a walking human and show the evolution of the river breaching with a gradually widening and deepening river channel that cuts through the pre-existing beach and berm. The beach face is qualified as a steep with an average beach slope of 1:10 with significant reflection of the incident waves (MacMahan et al., 2012). The wave directions are generally shore normal as the waves refract over the deep canyon that is located offshore of the beach. The tide is mixed semi-diurnal with a range on the order of one meter. Breaching typically occurred during the low-low tide. Grain size is highly variable along the beach with layers of alternating fine and coarse material that could clearly be observed as the river exit channel was cutting through the beach. Large rocky outcroppings buried under the beach sand are also present along certain stretches of the beach controlling the depth of the breaching channel. The changes in the water level measured within the lagoon and the ocean side allows for an estimate of the volume flux associated with the breach as function of morphology, tidal elevation and wave conditions as well as an assessment of the conditions and mechanisms of breach closure, which occurred on the time scale of O(0.5 days). Exploratory model simulations will be presented at the

  8. Birds of the St. Croix River valley: Minnesota and Wisconsin

    Science.gov (United States)

    Faanes, Craig A.

    1981-01-01

    continuing expansion of the nearby Minneapolis-St. Paul metropolitan region has degraded or destroyed many woodlots, upland fields, and wetlands. In numerous instances, degradation of natural habitats has influenced the abundance and distribution of bird species. Because of these changes, both the Federal government and State Departments of Natural Resources have listed several species in various categories based on their current status. In the St. Croix River Valley, seven species are endangered, eight are threatened, and 29 are watch or priority status in either or both states. Data presented in this report are of value to land managers, land use specialists, and ornithologists, in assessing current and projected habitat alterations on the avifauna of this valley. The St. Croix River bisects a large region of western Wisconsin and east central Minnesota that exhibits a wide range of habitat types. This region supports not only birds, but many mammals, fishes, reptiles and amphibians, and several thousand species of vascular and nonvascular plants. The river itself is relatively clean through most of its course, and its natural flow is interrupted by only two small dams. Because the river lies within a 1-day drive of nearly 10 million people (Waters 1977), use of the area for recreational purposes is extremely heavy. Recreational pursuits include sunbathing, boating, and wild river kayaking in the summer, and ice fishing and cross-country skiing in the winter. The large number of unique and highly fragile habitats that exist there may never be compatible with the uses and abuses of the land that go with expanding human populations. Through the efforts of a number of citizens concerned with the quality of their environment and the foresightedness of several local, State, and Federal legislators, a portion of the upper St. Croix River Valley (hereafter termed 'the Valley') was established as a National Wild and Scenic River. Through establishment of t

  9. Application of HEC-RAS for flood forecasting in perched river-A case study of hilly region, China

    Science.gov (United States)

    Sun, Pingping; Wang, Shuqian; Gan, Hong; Liu, Bin; Jia, Ling

    2017-04-01

    Flooding in small and medium rivers are seriously threatening the safety of human beings’ life and property. The simulation forecasting of the river flood and bank risk in hilly region has gradually become a hotspot. At present, there are few studies on the simulation of hilly perched river, especially in the case of lacking section flow data. And the method of how to determine the position of the levee breach along the river bank is not much enough. Based on the characteristics of the sections in hilly perched river, an attempt is applied in this paper which establishes the correlation between the flow profile computed by HEC-RAS model and the river bank. A hilly perched river in Lingshi County, Shanxi Province of China, is taken as the study object, the levee breach positions along the bank are simulated under four different design storm. The results show that the flood control standard of upper reach is high, which can withstand the design storm of 100 years. The current standard of lower reach is low, which is the flooding channel with high frequency. As the standard of current channel between the 2rd and the 11th section is low, levee along that channel of the river bank is considered to be heighten and reinforced. The study results can provide some technical support for flood proofing in hilly region and some reference for the reinforcement of river bank.

  10. Non–invasive sampling of endangered neotropical river otters reveals high levels of dispersion in the Lacantun River System of Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Ortega, J.

    2012-01-01

    Full Text Available Patterns of genetic dispersion, levels of population genetic structure, and movement of the neotropical river otter (Lontra longicaudis were investigated by screening eight polymorphic microsatellites from DNA extracted from fecal samples, collected in a hydrologic system of the Lacandon rainforest in Chiapas, Mexico. A total of 34 unique genotypes were detected from our surveys along six different rivers, and the effect of landscape genetic structure was studied. We recovered 16 of the 34 individuals in multiple rivers at multiple times. We found high levels of dispersion and low levels of genetic differentiation among otters from the six surveyed rivers (P > 0.05, except for the pairwise comparison among the Lacantún and José rivers (P < 0.05. We recommend that conservation management plans for the species consider the entire Lacantún River System and its tributaries as a single management unit to ensure the maintenance of current levels of population genetic diversity, because the population analyzed seems to follow a source–sink dynamic mainly determined by the existence of the major river.

  11. Spatial Misfit in Participatory River Basin Management: Effects on Social Learning, a Comparative Analysis of German and French Case Studies

    Directory of Open Access Journals (Sweden)

    Ilke Borowski

    2008-06-01

    Full Text Available With the introduction of river basin management, as prescribed by the European Water Framework Directive (WFD, participatory structures are frequently introduced at the hydrological scale without fully adapting them to the decision-making structure. This results in parallel structures and spatial misfits within the institutional settings of river basin governance systems. By analyzing French and German case studies, we show how social learning (SL is impeded by such misfits. We also demonstrate that river basin-scale institutions or actors that link parallel structures are essential for promoting river basins as management entities, and for encouraging SL between actors at the river basin scale. In the multi-scale, multi-level settings of river basin governance, it is difficult to fully exclude spatial misfits. Thus, it is important to take our insights into account in the current transition of water management from the administrative to the hydrological scale to get the greatest benefit from SL processes.

  12. Mammals of the Savannah River Site

    International Nuclear Information System (INIS)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-01-01

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ''The Forbearer Census'' and ''White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references

  13. Hydroclimatology of the Missouri River basin

    Science.gov (United States)

    Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie

    2018-01-01

    Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

  14. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  15. Mammals of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-01-01

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, The Forbearer Census'' and White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  16. Mammals of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-12-31

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ``The Forbearer Census`` and ``White-tailed Deer Studies``. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master`s theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  17. The River Danube: An Examination of Navigation on the River

    Science.gov (United States)

    Cooper, R. W.

    One of the definitions of Navigation that gets little attention in this Institute is (Oxford English Dictionary), and which our French friends call La Navigation. I have always found this subject fascinating, and have previously navigated the Rivers Mekong, Irrawaddy, Hooghly, Indus, Shatt-al-Arab, Savannah and RhMainKanal (RMDK) and the River Danube, a distance of approximately 4000 km. This voyage has only recently become possible with the opening of the connecting RMDK at the end of 1992, but has been made little use of because of the civil war in the former Yugoslavia.

  18. Current lead thermal analysis code 'CURRENT'

    International Nuclear Information System (INIS)

    Yamaguchi, Masahito; Tada, Eisuke; Shimamoto, Susumu; Hata, Kenichiro.

    1985-08-01

    Large gas-cooled current lead with the capacity more than 30 kA and 22 kV is required for superconducting toroidal and poloidal coils for fusion application. The current lead is used to carry electrical current from the power supply system at room temperature to the superconducting coil at 4 K. Accordingly, the thermal performance of the current lead is significantly important to determine the heat load requirements of the coil system at 4 K. Japan Atomic Energy Research Institute (JAERI) has being developed the large gas-cooled current leads with the optimum condition in which the heat load is around 1 W per 1 kA at 4 K. In order to design the current lead with the optimum thermal performances, JAERI developed thermal analysis code named as ''CURRENT'' which can theoretically calculate the optimum geometric shape and cooling conditions of the current lead. The basic equations and the instruction manual of the analysis code are described in this report. (author)

  19. Current Research Activities.

    Science.gov (United States)

    1975-02-01

    and PoZonium- 210 Investigations of lead- 210 and polonium - 210 in sediments offshore of the 4 Columbia River are under way, with the dual aims of...Geochemical bepb’~for of mercury in Bellingham Bay .. .. ....... 45IiD Lead-ZlO. and polonium -ZlO. .. ............... ..... 46 E. Hydrocarbons in Lake...Biological oceanography, marine food chain dynamics, carbon cycling in the ocean. Martin, Seelye,Ph.D., Johns Hopkins. Geophysical fluid dynamics

  20. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  1. Scaling issues in sustainable river basin management

    Science.gov (United States)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  2. Congenital Malformations in River Buffalo (Bubalus bubalis)

    Science.gov (United States)

    Albarella, Sara; Ciotola, Francesca; D’Anza, Emanuele; Coletta, Angelo; Zicarelli, Luigi; Peretti, Vincenzo

    2017-01-01

    Simple Summary Congenital malformations (due to genetic causes) represent a hidden danger for animal production, above all when genetic selection is undertaken for production improvements. These malformations are responsible for economic losses either because they reduce the productivity of the farm, or because their spread in the population would decrease the total productivity of that species/breed. River buffalo is a species of increasing interest all over the world for its production abilities, as proved by the buffalo genome project and the genetic selection plans that are currently performed in different countries. The aim of this review is to provide a general view of different models of congenital malformations in buffalo and their world distribution. This would be useful either for those who performed buffalo genetic selection or for researchers in genetic diseases, which would be an advantage to their studies with respect to the knowledge of gene mutations and interactions in this species. Abstract The world buffalo population is about 168 million, and it is still growing, in India, China, Brazil, and Italy. In these countries, buffalo genetic breeding programs have been performed for many decades. The occurrence of congenital malformations has caused a slowing of the genetic progress and economic loss for the breeders, due to the death of animals, or damage to their reproductive ability or failing of milk production. Moreover, they cause animal welfare reduction because they can imply foetal dystocia and because the affected animals have a reduced fitness with little chances of survival. This review depicts, in the river buffalo (Bubalus bubalis) world population, the present status of the congenital malformations, due to genetic causes, to identify their frequency and distribution in order to develop genetic breeding plans able to improve the productive and reproductive performance, and avoid the spreading of detrimental gene variants. Congenital

  3. Flow controls on lowland river macrophytes: a review.

    Science.gov (United States)

    Franklin, Paul; Dunbar, Michael; Whitehead, Paul

    2008-08-01

    We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised.

  4. Savannah River Site Environmental Report for 1990: Summary pamphlet

    International Nuclear Information System (INIS)

    Cummings, C.L.; Martin, D.K.; Todd, J.L.

    1991-01-01

    The SRS publishes the Environmental Report each year to communicate the endings of the environmental monitoring and research programs to the public and government agencies. This pamphlet is intended to summarize important environmental activities at the Savannah River Site in 1990. Highlights include: In 1990, over 40,000 samples of environmental material were collected for radiological and nonradiological analyses. The largest radiation doses to the surrounding population were from the radionuclide ''tritium,'' which was released to air and water from SRS operations.; tritium concentrations measured near the site in air, rainwater, Savannah River water, milk from local dairies and downriver drinking water were higher than background levels; the maximum radiation dose to individuals offsite was estimated to be 0.16 millirem from atmospheric releases of radioactivity, and 0.17 millirem from liquid releases of radioactivity. There was one accidental release of tritium to air on February 7, when 100 curies were released from a K-Area stack. The maximum radiation dose offsite was calculated to be 0.003 millirem (mrem); SRS issued a detailed report on the impact of routine and accidental releases of tritium from 1964 to 1988 on the environment. Currently, SRS investigating possible causes for higher concentrations of mercury found in fish caught onsite, compared to those taken from the Savannah River. Mercury concentrations have been higher in onsite fish since 1989; and, n response to concerns expressed by the Georgia Department of Natural Resources (GDNR) over concentrations of radionuclides in fish collected from the Savannah River, the Savannah River Site is working with the GDNR to resolve technical issues regarding sampling and analyses of fish from the river and the resultant dose calculations

  5. River, delta and coastal morphological response accounting for biological dynamics

    Directory of Open Access Journals (Sweden)

    W. Goldsmith

    2015-03-01

    Full Text Available Management and construction can increase resilience in the face of climate change, and benefits can be enhanced through integration of biogenic materials including shells and vegetation. Rivers and coastal landforms are dynamic systems that respond to intentional and unintended manipulation of critical factors, often with unforeseen and/or undesirable resulting effects. River management strategies have impacts that include deltas and coastal areas which are increasingly vulnerable to climate change with reference to sea level rise and storm intensity. Whereas conventional assessment and analysis of rivers and coasts has relied on modelling of hydrology, hydraulics and sediment transport, incorporating additional biological factors can offer more comprehensive, beneficial and realistic alternatives. Suitable modelling tools can provide improved decision support. The question has been whether current models can effectively address biological responses with suitable reliability and efficiency. Since morphodynamic evolution exhibits its effects on a large timescale, the choice of mathematical model is not trivial and depends upon the availability of data, as well as the spatial extent, timelines and computation effort desired. The ultimate goal of the work is to set up a conveniently simplified river morphodynamic model, coupled with a biological dynamics plant population model able to predict the long-term evolution of large alluvial river systems managed through bioengineering. This paper presents the first step of the work related to the application of the model accounting for stationary vegetation condition. Sensitivity analysis has been performed on the main hydraulic, sedimentology, and biological parameters. The model has been applied to significant river training in Europe, Asia and North America, and comparative analysis has been used to validate analytical solutions. Data gaps and further areas for investigation are identified.

  6. River, delta and coastal morphological response accounting for biological dynamics

    Science.gov (United States)

    Goldsmith, W.; Bernardi, D.; Schippa, L.

    2015-03-01

    Management and construction can increase resilience in the face of climate change, and benefits can be enhanced through integration of biogenic materials including shells and vegetation. Rivers and coastal landforms are dynamic systems that respond to intentional and unintended manipulation of critical factors, often with unforeseen and/or undesirable resulting effects. River management strategies have impacts that include deltas and coastal areas which are increasingly vulnerable to climate change with reference to sea level rise and storm intensity. Whereas conventional assessment and analysis of rivers and coasts has relied on modelling of hydrology, hydraulics and sediment transport, incorporating additional biological factors can offer more comprehensive, beneficial and realistic alternatives. Suitable modelling tools can provide improved decision support. The question has been whether current models can effectively address biological responses with suitable reliability and efficiency. Since morphodynamic evolution exhibits its effects on a large timescale, the choice of mathematical model is not trivial and depends upon the availability of data, as well as the spatial extent, timelines and computation effort desired. The ultimate goal of the work is to set up a conveniently simplified river morphodynamic model, coupled with a biological dynamics plant population model able to predict the long-term evolution of large alluvial river systems managed through bioengineering. This paper presents the first step of the work related to the application of the model accounting for stationary vegetation condition. Sensitivity analysis has been performed on the main hydraulic, sedimentology, and biological parameters. The model has been applied to significant river training in Europe, Asia and North America, and comparative analysis has been used to validate analytical solutions. Data gaps and further areas for investigation are identified.

  7. Nelson River and Hudson Bay

    Science.gov (United States)

    2002-01-01

    Rivers that empty into large bodies of water can have a significant impact on the thawing of nearshore winter ice. This true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from May 18, 2001, shows the Nelson River emptying spring runoff from the Manitoba province to the south into the southwestern corner of Canada's Hudson Bay. The warmer waters from more southern latitudes hasten melting of ice near the shore, though some still remained, perhaps because in shallow coastal waters, the ice could have been anchored to the bottom. High volumes of sediment in the runoff turned the inflow brown, and the rim of the retreating ice has taken on a dirty appearance even far to the east of the river's entrance into the Bay. The sediment would have further hastened the melting of the ice because its darker color would have absorbed more solar radiation than cleaner, whiter ice. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  8. Laboratory analysis of diet of Pacific harbor seals at Umpqua River, Oregon and Columbia River, Oregon/Washington conducted from 1994-06-23 to 2005-09-03 (NCEI Accession 0139413)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1994 to 2005, The National Marine Mammal Laboratories' California Current Ecosystem Program (AFSC/NOAA) collected fecal samples at the Umpqua River, Oregon and...

  9. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    International Nuclear Information System (INIS)

    Specht, W.L.

    2000-01-01

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams

  10. Environmental Settings and Harmful Algal Blooms in the Sea Area Adjacent to the Changjiang River Estuary

    OpenAIRE

    Zhou, Mingjiang

    2010-01-01

    The characteristics of the environmental settings of the sea area adjacent to the Changjiang River estuary include complex currents and water masses, the diluted water plume and its redirection, upwelling, front, and nutrients and their sources. The Changjiang River estuary characteristics also include the phytoplankton community, which can affect the growth, migration, assembling, resting and competition of algae to form red tides in this area.. The features of red tide events recorded in th...

  11. System methodology application to make water resources management plan for unstudied rivers

    Science.gov (United States)

    Dvinskikh, S. A.; Larchenko, O. V.

    2018-01-01

    Current public monitoring network is not able to involve in and to control water chemical composition of a rivers basin, and there is no coasts monitoring of water objects. As a result, the complete comprehension of rivers use and pollution is impossible. Due to this fact, a new conception of water resources management has been worked out. The conception is based on new approaches to define parameters that characterise usage potentialities and range.

  12. Waterborne Release Monitoring and Surveillance Programs at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-03-26

    This report documents the liquid release environmental compliance programs currently in place at the Savannah river Site (SRS). Included are descriptions of stream monitoring programs, which measure chemical parameters and radionuclides in site streams and the Savannah river and test representative biological communities within the streams for chemical and radiological uptake. This report also explains the field sampling and analytical capabilities that are available at SRS during both normal and emergency conditions.

  13. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    2000-02-28

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  14. Waterborne Release Monitoring and Surveillance Programs at the Savannah River Site

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    This report documents the liquid release environmental compliance programs currently in place at the Savannah river Site (SRS). Included are descriptions of stream monitoring programs, which measure chemical parameters and radionuclides in site streams and the Savannah river and test representative biological communities within the streams for chemical and radiological uptake. This report also explains the field sampling and analytical capabilities that are available at SRS during both normal and emergency conditions

  15. 2010 Hudson River Shallow Water Sediment Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  16. Habitat Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  17. Physical - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  18. Russian River Ice Thickness and Duration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of river ice thickness measurements, and beginning and ending dates for river freeze-up events from fifty stations in northern Russia. The...

  19. Geomorphic Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  20. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  1. Charles River Fish Contaminant Survey, April 2001

    Science.gov (United States)

    Report summarizing a biological monitoring component of the Clean Charles River 2005 initiative through the monitoring & analysis of fish within the lower Charles River basin, implemented by the EPA New England Regional Laboratory in the late fall of 1999.

  2. Biological - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  3. River restoration - Malaysian/DID perspective

    International Nuclear Information System (INIS)

    Ahmad Darus

    2006-01-01

    Initially the river improvement works in Malaysia was weighted on flood control to convey a certain design flood with the lined and channelized rivers. But in late 2003 did has makes the approaches that conservation and improvement of natural function of river, i.e. river environment and eco-system should be incorporated inside the planning and design process. Generally, river restoration will focus on four approaches that will improve water quality, which is improving the quality of stormwater entering the river, maximizing the quantity of the urban river riparian corridor, stabilizing the riverbank, and improving the habitat within the river. This paper outlined the appropriate method of enhancing impairment of water quality from human activities effluent and others effluent. (Author)

  4. Savannah River Site Environmental Implentation Plan

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes the organizational responsibilities for the Savannah River Site Environmental program. Operations, Engineering and projects, Environment, safety, and health, Quality assurance, and the Savannah River Laboratory are described

  5. CMOS current controlled fully balanced current conveyor

    International Nuclear Information System (INIS)

    Wang Chunhua; Zhang Qiujing; Liu Haiguang

    2009-01-01

    This paper presents a current controlled fully balanced second-generation current conveyor circuit (CF-BCCII). The proposed circuit has the traits of fully balanced architecture, and its X-Y terminals are current controllable. Based on the CFBCCII, two biquadratic universal filters are also proposed as its applications. The CFBCCII circuits and the two filters were fabricated with chartered 0.35-μm CMOS technology; with ±1.65 V power supply voltage, the total power consumption of the CFBCCII circuit is 3.6 mW. Comparisons between measured and HSpice simulation results are also given.

  6. 76 FR 25545 - Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC

    Science.gov (United States)

    2011-05-05

    ...-AA00 Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC AGENCY: Coast... zone on the waters of Little River in Little River, South Carolina during the Blue Crab Festival... this rule because the Coast Guard did not receive notice of the Blue Crab Festival Fireworks Display...

  7. 78 FR 41689 - Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA

    Science.gov (United States)

    2013-07-11

    ... submerged automobiles and floating bridge debris in the Skagit River. Following the initial response and...-AA00 Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone around the Skagit River Bridge...

  8. Many rivers to cross. Cross border co-operation in river management

    NARCIS (Netherlands)

    Verwijmeren, J.A.; Wiering, M.A.

    2007-01-01

    River basin management is a key concept in contemporary water policy. Since the management of rivers is best designed and implemented at the scale of the river basin, it seems obvious that we should not confine ourselves to administrative or geographical borders. In other words, river basin

  9. 75 FR 51945 - Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD

    Science.gov (United States)

    2010-08-24

    ...-AA00 Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD AGENCY: Coast Guard, DHS. ACTION... of the St. Mary's River, a tributary of the Potomac River. This action is necessary to provide for.... Navy helicopter located near St. Inigoes, Maryland. This safety zone is intended to protect the...

  10. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China

    Science.gov (United States)

    Lu, Cai; Jia, Yifei; Jing, Lei; Zeng, Qing; Lei, Jialin; Zhang, Shuanghu; Lei, Guangchun; Wen, Li

    2018-04-01

    Better understanding of the dynamics of hydrological connectivity between river and floodplain is essential for the ecological integrity of river systems. In this study, we proposed a regime-switch modelling (RSM) framework, which integrates change point analysis with dynamic linear regression, to detect and date change points in linear regression, and to quantify the relative importance of natural variations and anthropogenic disturbances. The approach was applied to the long-term hydrological time series to investigate the evolution of river-floodplain relation in Dongting Lake in the last five decades, during which the Yangtze River system experienced unprecedented anthropogenic manipulations. Our results suggested that 1) there were five distinct regimes during which the influence of inflows and local climate on lake water level changed significantly. The detected change points were well corresponding to the major events occurred upon the Yangtze; 2) although the importance of inflows from the Yangtze was greater than that of the tributaries flows over the five regimes, the relative contribution gradually decreased from regime 1 to regime 5. The weakening of hydrological forcing from the Yangtze was mainly attributed to the reduction in channel capacity resulting from sedimentation in the outfalls and water level dropping caused by river bed scour in the mainstream; 3) the effects of local climate was much smaller than these of inflows; and 4) since the operation of The Three Gorges Dam in 2006, the river-floodplain relationship entered a new equilibrium in that all investigated variables changed synchronously in terms of direction and magnitude. The results from this study reveal the mechanisms underlying the alternated inundation regime in Dongting Lake. The identified change points, some of which have not been previously reported, will allow a reappraisal of the current dam and reservoir operation strategies not only for flood/drought risk management but

  11. Geochemistry of some Brazilian rivers

    International Nuclear Information System (INIS)

    Moreira-Nordemann, L.M.

    1981-01-01

    Concentrations of the totality of the dissolved salts and sodium, calcium, potassium, magnesium, and uranium were measured in ten rivers belonging to three hydrografic basins located in Northeastern Brazil. Activity ratios U 234 /U 238 were also measured. A correlation was done between the results obtained and the geological and climatic context of these regions. Sodium is the most abundant element in the waters, except for rivers flowing in callcareous regions for which calcium is predominant. The concentrations of the major cations are function of the regional lithology whereas water salinity depends on climatic factors. (Author) [pt

  12. DNA capture reveals transoceanic gene flow in endangered river sharks

    OpenAIRE

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T.; Naylor, Gavin J. P.

    2015-01-01

    The river sharks of the genus Glyphis, widely feared as man-eaters throughout India, remain very poorly known to science. The group constitutes five described species, all of which are considered highly endangered and restricted to freshwater systems in Australasia and Southeast Asia. DNA sequence data derived from 19th-century dried museum material augmented with contemporary samples indicates that only three of the five currently described species are valid; that there is a genetically dist...

  13. Sharing water and benefits in transboundary river basins

    OpenAIRE

    D. Arjoon; A. Tilmant; M. Herrmann

    2016-01-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the cont...

  14. Savannah River Site Surplus Facilities Available for Reuse

    International Nuclear Information System (INIS)

    Clarke, R.M.; Owens, M.B.; Lentz, D.W.

    1995-01-01

    The purpose of this document is to provide a current, centralized list of Savannah River Site facilities, which are surplus and available for reuse. These surplus facilities may be made available for other DOE site missions, commercial economic development reuse, or other governmental reuse. SRS procedures also require that before new construction can be approved, available surplus facilities are screened for possible reuse in lieu of the proposed new construction

  15. Tidal power harnessing energy from water currents

    CERN Document Server

    Lyatkher, Victor

    2014-01-01

    As the global supply of conventional energy sources, such as fossil fuels, dwindles and becomes more and more expensive, unconventional and renewable sources of energy, such as power generation from water sources, is becoming more and more important.  Hydropower has been around for decades, but this book suggests new methods that are more cost-effective and less intrusive to the environment for creating power sources from rivers, the tides, and other sources of water.   The energy available from water currents is potentially much greater than society's needs.  Presenting a detailed discussi

  16. Columbia River Component Data Evaluation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  17. Savannah River Site's Site Specific Plan

    International Nuclear Information System (INIS)

    1991-01-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering

  18. Advanced separations at Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.C. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (Cs, Sr, tritium, actinides) and hazardous components (poly-chlorinated biphenyls [PCBs], cyanide, metal ions). This task provides testbeds for ESP-developed materials and technology using actual SRS waste streams. The work includes different SRS waste streams: high-level waste (HLW) solutions currently stored in underground tanks onsite, water recycled from the waste vitrification plant, groundwater and other aqueous streams contaminated with metal ions and radionuclides, and reactor basin water in excess facilities. Another part of this task is to provide a report on materials for Cs removal from aqueous solutions for use as a reference.

  19. Wildflowers of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Seger, Tona [Savannah River Site (SRS), Aiken, SC (United States). USDA Forest Service

    2015-08-01

    This guidebook is a resource to help field personnel (nonbotanists) identify plants on the Savannah River Site (SRS) premises. Although not a complete flora guide, this publication contains information about 123 plant species found on the SRS. Plants are listed by their common names and arranged by the color of the flower. The SRS supports a diverse array of plant communities. Land use history, the establishment of the SRS, and current land management practices have shaped the flora presently found on the SRS. Located south of Aiken, SC, SRS spans 198,344 acres with land covering Aiken, Allendale, and Barnwell Counties. Situated on the Upper Coastal Plain and Sandhills physiographic provinces, the SRS has more than 50 distinct soil types. The topography is rolling to flat with elevation ranges from 50 to 400 feet above sea level.

  20. Waste reduction at the Savannah River Site

    International Nuclear Information System (INIS)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities

  1. Modern NDA needs at Savannah River Site

    International Nuclear Information System (INIS)

    Holt, S.H.

    1995-01-01

    As the missions within the nuclear weapons complex change, so do the accountability measurement needs. Non-Destructive Assay (NDA) measurements have played a key role in accounting for special nuclear materials (SNM), and as time goes on, more and more reliance is made on this type of measurement. Key questions NDA instrument designers ask are: Which isotopes are of interest? What matrix are they in? What other isotopes are present? What container configuration will it be measured through? What precision and accuracy is required? What level of resolution is required? At the Savannah River Site (SRS) the desire to make direct measurements of SNM isotopes has prompted the evaluation to these and other questions. This paper will outline the current NDA needs at SRS. The discussion includes the types of materials that require measurement ,including the very difficult waste measurements. The special challenges associated with these measurement efforts will also be discussed

  2. Simulation of river plume behaviors in a tropical region: Case study of the Upper Gulf of Thailand

    Science.gov (United States)

    Yu, Xiaojie; Guo, Xinyu; Morimoto, Akihiko; Buranapratheprat, Anukul

    2018-02-01

    River plumes are a general phenomenon in coastal regions. Most previous studies focus on river plumes in middle and high latitudes with few studies examining those in low latitude regions. Here, we apply a numerical model to the Upper Gulf of Thailand (UGoT) to examine a river plume in low latitudes. Consistent with observational data, the modeled plume has seasonal variation dependent on monsoon conditions. During southwesterly monsoons, the plume extends northeastward to the head of the gulf; during northeasterly monsoons, it extends southwestward to the mouth of the gulf. To examine the effects of latitude, wind and river discharge on the river plume, we designed several numerical experiments. Using a middle latitude for the UGoT, the bulge close to the river mouth becomes smaller, the downstream current flows closer to the coast, and the salinity in the northern UGoT becomes lower. The reduction in the size of the bulge is consistent with the relationship between the offshore distance of a bulge and the Coriolis parameter. Momentum balance of the coastal current is maintained by advection, the Coriolis force, pressure gradient and internal stresses in both low and middle latitudes, with the Coriolis force and pressure gradient enlarged in the middle latitude. The larger pressure gradient in the middle latitude is induced by more offshore freshwater flowing with the coastal current, which induces lower salinity. The influence of wind on the river plume not only has the advection effects of changing the surface current direction and increasing the surface current speed, but also decreases the current speed due to enhanced vertical mixing. Changes in river discharge influence stratification in the UGoT but have little effect on the behavior of the river plume.

  3. The radionuclide migration model in river system

    International Nuclear Information System (INIS)

    Zhukova, O.M.; Shiryaeva, N.M.; Myshkina, M.K.; Shagalova, Eh.D.; Denisova, V.V.; Skurat, V.V.

    2001-01-01

    It was propose the model of radionuclide migration in river system based on principle of the compartmental model at hydraulically stationary and chemically equilibrium conditions of interaction of radionuclides in system water-dredge, water-sediments. Different conditions of radioactive contamination entry in river system were considered. The model was verified on the data of radiation monitoring of Iput' river

  4. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  5. 33 CFR 117.1058 - Snake River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake River. 117.1058 Section 117... OPERATION REGULATIONS Specific Requirements Washington § 117.1058 Snake River. (a) The draw of the Burlington Northern Santa Fe railroad bridge across the Snake River at mile 1.5 between Pasco and Burbank is...

  6. River as a part of ground battlefield

    Science.gov (United States)

    Vračar, Miodrag S.; Pokrajac, Ivan; Okiljević, Predrag

    2013-05-01

    The rivers are in some circumstances part of the ground battlefield. Microseisms induced at the riverbed or ground at the river surrounding might be consequence of military activities (military ground transports, explosions, troop's activities, etc). Vibrations of those fluid-solid structures are modeled in terms of solid displacement and change of fluid pressure. This time varying fluid pressure in river, which originates from ground microseisms, is possible to detect with hydrophones. Therefore, hydroacoustic measurements in rivers enables detecting, identification and localization various types of military noisy activities at the ground as and those, which origin is in the river water (hydrodynamics of water flow, wind, waves, river vessels, etc). In this paper are presented river ambient noise measurements of the three great rivers: the Danube, the Sava and the Tisa, which flows in north part of Serbia in purpose to establish limits in detection of the ground vibrations in relatively wide frequency range from zero to 20 kHz. To confirm statement that the river is a part of ground battlefield, and that hydroacoustic noise is possible to use in detecting and analyzing ground microseisms induced by civil or military activities, some previous collected data of hydroacoustic noise measurement in the rivers are used. The data of the river ambient noise include noise induced by civil engineering activities, that ordinary take place in large cities, noise that produced ships and ambient noise of the river when human activities are significantly reduced. The poly spectral method was used in analysis such events.

  7. Role of vegetation on river bank accretion

    NARCIS (Netherlands)

    Vargas Luna, A.

    2016-01-01

    There is rising awareness of the need to include the effects of vegetation in studies dealing with the morphological response of rivers. Vegetation growth on river banks and floodplains alters the river bed topography, reduces the bank erosion rates and enhances the development of new floodplains

  8. Hydraulic characteristics of the New River in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.; Appel, David H.

    1989-01-01

    Traveltime, dispersion, water-surface and streambed profiles, and cross-section data were collected for use in application of flow and solute-transport models to the New River in the New River Gorge National River, West Virginia. Dye clouds subjected to increasing and decreasing flow rates (unsteady flow) showed that increasing flows shorten the cloud and decreasing flows lengthen the cloud. After the flow rate was changed and the flow was again steady, traveltime and dispersion characteristics were determined by the new rate of flow. Seven stage/streamflow relations identified the general changes of stream geometry throughout the study reach. Channel cross sections were estimated for model input. Low water and streambed profiles were developed from surveyed water surface elevations and water depths. (USGS)

  9. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  10. Designing and Assessing Restored Meandering River Planform Using RVR Meander

    Science.gov (United States)

    Langendoen, E. J.; Abad, J. D.; Motta, D.; Frias, C. E.; Wong, M.; Barnes, B. J.; Anderson, C. D.; Garcia, M. H.; MacDonald, T. E.

    2013-12-01

    The ongoing modification and resulting reduction in water quality of U.S. rivers have led to a significant increase in river restoration projects over the last two decades. The increased interest in restoring degraded streams, however, has not necessarily led to improved stream function. Palmer and Allan (2005) found that many restoration projects fail to achieve their objectives due to the lack of policies to support restoration standards, to promote proven methods and to provide basic data needed for planning and implementation. Proven models of in-stream and riparian processes could be used not only to guide the design of restoration projects but also to assess both pre- and post-project indicators of ecological integrity. One of the most difficult types of river restoration projects concern reconstructing a new channel, often with an alignment and channel form different from those of the degraded pre-project channel. Recreating a meandering planform to provide longitudinal and lateral variability of flow and bed morphology to improve in-stream aquatic habitat is often desired. Channel meander planform is controlled by a multitude of variables, for example channel width to depth ratio, radius of curvature to channel width ratio, bankfull discharge, roughness, bed-material physical characteristics, bed material transport, resistance to erosion of the floodplain soils, riparian vegetation, etc. Therefore, current practices that use simple, empirically based relationships or reference reaches have led to failure in several instances, for example a washing out of meander bends or a highly unstable planform, because they fail to address the site-specific conditions. Recently, progress has been made to enhance a physically- and process-based model, RVR Meander, for rapid analysis of meandering river morphodynamics with reduced empiricism. For example, lateral migration is based on measurable physical properties of the floodplain soils and riparian vegetation versus

  11. Discharge estimation in a backwater affected meandering river

    Directory of Open Access Journals (Sweden)

    H. Hidayat

    2011-08-01

    Full Text Available Variable effects of backwaters complicate the development of rating curves at hydrometric measurement stations. In areas influenced by backwater, single-parameter rating curve techniques are often inapplicable. To overcome this, several authors have advocated the use of an additional downstream level gauge to estimate the longitudinal surface level gradient, but this is cumbersome in a lowland meandering river with considerable transverse surface level gradients. Recent developments allow river flow to be continuously monitored through velocity measurements with an acoustic Doppler current profiler (H-ADCP, deployed horizontally at a river bank. This approach was adopted to obtain continuous discharge estimates at a cross-section in the River Mahakam at a station located about 300 km upstream of the river mouth in the Mahakam delta. The discharge station represents an area influenced by variable backwater effects from lakes, tributaries and floodplain ponds, and by tides. We applied both the standard index velocity method and a recently developed methodology to obtain a continuous time-series of discharge from the H-ADCP data. Measurements with a boat-mounted ADCP were used for calibration and validation of the model to translate H-ADCP velocity to discharge. As a comparison with conventional discharge estimation techniques, a stage-discharge relation using Jones formula was developed. The discharge rate at the station exceeded 3250 m3 s−1. Discharge series from a traditional stage-discharge relation did not capture the overall discharge dynamics, as inferred from H-ADCP data. For a specific river stage, the discharge range could be as high as 2000 m3 s−1, which is far beyond what could be explained from kinematic wave dynamics. Backwater effects from lakes were shown to be significant, whereas interaction of the river flow with tides may impact discharge variation in the fortnightly frequency band

  12. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    Directory of Open Access Journals (Sweden)

    W. P. Miller

    2011-07-01

    Full Text Available The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month forecasts determined by the Colorado Basin River Forecast Center (CBRFC using the National Weather Service (NWS River Forecasting System (RFS hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6 % to 13 % average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10 % to 15 % average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5 % to 8

  13. 33 CFR 165.150 - New Haven Harbor, Quinnipiac River, Mill River.

    Science.gov (United States)

    2010-07-01

    ... River, Mill River. 165.150 Section 165.150 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... New Haven Harbor, Quinnipiac River, Mill River. (a) The following is a regulated navigation area: The... 303°T to point D at the west bank of the mouth of the Mill River 41°18′05″ N, 72°54′23″ W thence south...

  14. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Science.gov (United States)

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... establishing special local regulations on the waters of the Wando River and Cooper River in Mount Pleasant... River and Cooper River along the shoreline of Mount Pleasant, South Carolina. The Lowcountry Splash...

  15. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  16. Handling preference heterogeneity for river services' adaptation to climate change.

    Science.gov (United States)

    Andreopoulos, Dimitrios; Damigos, Dimitrios; Comiti, Francesco; Fischer, Christian

    2015-09-01

    Climate projection models for the Southern Mediterranean basin indicate a strong drought trend. This pattern is anticipated to affect a range of services derived from river ecosystems and consecutively deteriorate the sectoral outputs and household welfare. This paper aims to evaluate local residents' adaptation preferences for the Piave River basin in Italy. A Discrete Choice Experiment accounting for adaptation scenarios of the Piave River services was conducted and the collected data were econometrically analyzed using Random Parameters Logit, Latent Class and Covariance Heterogeneity models. In terms of policy-relevant outcomes, the analysis indicates that respondents are willing to pay for adaptation plans. This attitude is reflected on the compensating surplus to sustain the current state of the Piave, which corresponds to a monthly contribution of 80€ per household. From an econometric point of view, the results show that it is not sufficient to take solely into account general heterogeneity, provided that distinct treatment of the heterogeneity produces rather different welfare estimates. This implies that analysts should examine a set of criteria when deciding on how to better approach heterogeneity for each empirical data set. Overall, non-market values of environmental services should be considered when formulating cost-effective adaptation measures for river systems undergoing climate change effects and appropriate heterogeneity approximation could render these values unbiased and accurate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Seasonality of primary and secondary production in an Arctic river

    Science.gov (United States)

    Kendrick, M.; Huryn, A.; Deegan, L.

    2011-12-01

    Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.

  18. Evaluation of Genotoxic Pressure along the Sava River.

    Directory of Open Access Journals (Sweden)

    Stoimir Kolarević

    Full Text Available In this study we have performed a comprehensive genotoxicological survey along the 900 rkm of the Sava River. In total, 12 sites were chosen in compliance with the goals of GLOBAQUA project dealing with the effects of multiple stressors on biodiversity and functioning of aquatic ecosystems. The genotoxic potential was assessed using a complex battery of bioassays performed in prokaryotes and aquatic eukaryotes (freshwater fish. Battery comprised evaluation of mutagenicity by SOS/umuC test in Salmonella typhimurium TA1535/pSK1002. The level of DNA damage as a biomarker of exposure (comet assay and biomarker of effect (micronucleus assay and the level of oxidative stress as well (Fpg-modified comet assay was studied in blood cells of bleak and spirlin (Alburnus alburnus/Alburnoides bipunctatus respectively. Result indicated differential sensitivity of applied bioassays in detection of genotoxic pressure. The standard and Fpg-modified comet assay showed higher potential in differentiation of the sites based on genotoxic potential in comparison with micronucleus assay and SOS/umuC test. Our data represent snapshot of the current status of the river which indicates the presence of genotoxic potential along the river which can be traced to the deterioration of quality of the Sava River by communal and industrial wastewaters. The major highlight of the study is that we have provided complex set of data obtained from a single source (homogeneity of analyses for all samples.

  19. Flood Risk Index Assessment in Johor River Basin

    International Nuclear Information System (INIS)

    Ahmad Shakir Mohd Saudi; Hafizan Juahir; Azman Azid; Fazureen Azaman; Ahmad Shakir Mohd Saudi

    2015-01-01

    This study is focusing on constructing the flood risk index in the Johor river basin. The application of statistical methods such as factor analysis (FA), statistical process control (SPC) and artificial neural network (ANN) had revealed the most efficient flood risk index. The result in FA was water level has correlation coefficient of 0.738 and the most practicable variable to be used for the warning alert system. The upper control limits (UCL) for the water level in the river basin Johor is 4.423 m and the risk index for the water level has been set by this method consisting of 0-100.The accuracy of prediction has been evaluated by using ANN and the accuracy of the test result was R"2 = 0.96408 with RMSE= 2.5736. The future prediction for UCL in Johor river basin has been predicted and the value was 3.75 m. This model can shows the current and future prediction for flood risk index in the Johor river basin and can help local authorities for flood control and prevention of the state of Johor. (author)

  20. Conservation of South African Rivers

    CSIR Research Space (South Africa)

    O'Keeffe, JH

    1986-01-01

    Full Text Available The report presents the proceedings of a three-day workshop at Midmar Dam designed to establish a consensus view of river conservation and to provide professional conservationists, managers and planners with a set of guidelines. These indicate what...

  1. Stochastic modelling of river morphodynamics

    NARCIS (Netherlands)

    Van Vuren, B.G.

    2005-01-01

    Modern river management has to reconcile a number of functions, such as protection against floods and provision of safe and efficient navigation, floodplain agriculture, ecology and recreation. Knowledge on uncertainty in fluvial processes is important to make this possible, to design effective

  2. Rebirth of the Cheat River

    Science.gov (United States)

    The Cheat River in West Virginia is again a haven for whitewater rafting and smallmouth bass fishing after years of Clean Water Act funding and the efforts of a local non-profit group and others to control pollution from old abandoned mines.

  3. Sorting out river channel patterns

    NARCIS (Netherlands)

    Kleinhans, M.G.

    2010-01-01

    Rivers self-organize their pattern/planform through feedbacks between bars, channels, floodplain and vegetation, which emerge as a result of the basic spatial sorting process of wash load sediment and bed sediment. The balance between floodplain formation and destruction determines the width and

  4. Hydrological balance of Cauca River

    International Nuclear Information System (INIS)

    Corzo G, J.; Garcia, M.

    1992-11-01

    This thesis understand the superficial and underground hydrology of the C.c. River Basin; the purpose of this study is to obtain information related to the quantity and behavior of the water resource, in order to make the necessary recommendations for the adequate managing, the aquifer protection and thus be able to have valuable liquid

  5. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  6. Interlinking of Rivers in India: Issues & Challenges

    OpenAIRE

    MEHTA, Dharmendra; MEHTA, Naveen K.

    2013-01-01

    Abstract. The rivers in India are truly speaking not only life-line of masses but also for wild-life. The rivers play a vital role in the lives of the Indian people. The river systems help us in irrigation, potable water, cheap transportation, electricity as well as a source of livelihood for our ever increasing population. Some of the major cities of India are situated at the banks of holy rivers. Proper management of river water is the need of the hour. Indian agriculture largely d...

  7. The Amazon, measuring a mighty river

    Science.gov (United States)

    ,

    1967-01-01

    The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.

  8. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  9. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Wang, Chenglong; Li, Yali; Yao, Yulong; Zhao, Wancang; Xu, Min

    2018-02-01

    We examined the source-to-sink sediment transport processes from the Changjiang River to the estuarine coastal shelf area by analyzing the clay mineral assemblages in suspended sediment samples from the Changjiang River catchment and surface samples from the estuarine coastal shelf area following the impoundment of the Three Gorges Dam (TGD) in 2003. The results indicate that the clay mineral compositions throughout the study area are dominated by illite, with less abundant kaolinite and chlorite and scarce smectite. The clay minerals display distinct differences in the tributaries and exhibit obvious changes in the trunk stream compared with the periods before 2003, and the source of sediment has largely shifted to the mid- to lower reaches of the river after 2003. Spatially, the clay mineral assemblages in the estuarine area define two compositionally distinct provinces. Province I covers the mud area of the Changjiang River estuary and the Zhe-Min coastal region, where sediment is primarily supplied by the Changjiang River. Province II includes part of the Changjiang River estuary and the southeastern portion of the study area, where the sediment is composed of terrestrial material from the Changjiang River and re-suspended material from the Huanghe River carried by the Jiangsu coastal current. Moreover, the other smaller rivers in China (including the Oujiang and Minjiang rivers of mainland China and the rivers of West Taiwan) also contribut sediments to the estuarine and inner shelf areas. In general, the clay mineral assemblages in the Changjiang River estuarine area are have mainly been controlled by sediment supplied from upstream of the Changjiang River tributaries. However, since the completion of the TGD in 2003, the mid- to downstream tributaries have become the main source of sediments from the Changjiang catchment into the East China Sea. These analyses further demonstrate that the coastal currents and the decrease in the sediment load of the river

  10. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  11. The impact of industries on surface water quality of River Ona and ...

    African Journals Online (AJOL)

    Samples of water from two rivers (River Ona and River Alaro) in Oluyole ... were higher in the industrial zones than those found in the upstream of both rivers. ... Key words: River Ona, River Alaro, industrial discharges, surface water quality.

  12. Broadening the regulated-river management paradigm: A case study of the forgotten dead zone hindering Pallid Sturgeon recovery

    Science.gov (United States)

    Guy, Christopher S.; Treanor, Hilary B.; Kappenman, Kevin M.; Scholl, Eric A.; Ilgen, Jason E.; Webb, Molly A. H.

    2015-01-01

    The global proliferation of dams within the last half century has prompted ecologists to understand the effects of regulated rivers on large-river fishes. Currently, much of the effort to mitigate the influence of dams on large-river fishes has been focused on downriver effects, and little attention has been given to upriver effects. Through a combination of field observations and laboratory experiments, we tested the hypothesis that abiotic conditions upriver of the dam are the mechanism for the lack of recruitment in Pallid Sturgeon (Scaphirhynchus albus), an iconic large-river endangered species. Here we show for the first time that anoxic upriver habitat in reservoirs (i.e., the transition zone between the river and reservoir) is responsible for the lack of recruitment in Pallid Sturgeon. The anoxic condition in the transition zone is a function of reduced river velocities and the concentration of fine particulate organic material with high microbial respiration. As predicted, the river upstream of the transition zone was oxic at all sampling locations. Our results indicate that transition zones are an ecological sink for Pallid Sturgeon. We argue that ecologists, engineers, and policy makers need to broaden the regulated-river paradigm to consider upriver and downriver effects of dams equally to comprehensively mitigate altered ecosystems for the benefit of large-river fishes, especially for the Pallid Sturgeon.

  13. Radioecological studies of agricultural floodplain of the Mulde River on the consequences of the former uranium mining

    International Nuclear Information System (INIS)

    Bister, Stefan

    2012-01-01

    At the time of Warsaw Pact, the former German Democratic Republic (GDR) was one of the largest producer of uranium in the world and the most important supplier of uranium for the USSR. The former Saxon uranium mining areas are drained by the Zwickauer Mulde River. The Mulde River is a left side tributary or the Elbe River and mainly situated in Saxony. The frontal flows, Freiberger Mulde River and Zwickauer Mulde River, merge close to the small village of Sermuth to form the Vereinigte Mulde River, which flows into the Elbe River near Dessau. This research project was established to quantify the long-term effect of the former uranium mining activities on the floodplain ecosystem of the Mulde River. The radiological impact from the agricultural use of the alluvial soils was investigated. More than 280 samples from different environmental compartments (river water, surface sediment from the river, alluvial soils and agricultural crops) were sampled and analysed by radiometric methods. All of the compartments still show an impact from the former uranium mining. However, comparisons with earlier measurements reveal a considerable decrease of the radionuclide contamination. Thus, it is not possible to relate the activities in the soil samples to the activities of the water and sediment samples measured in parallel. Radionuclides originating from the alluvial soils enter the human food chain as a result of the agricultural use of the floodplains. Yet, the radiological effect is small. The uranium contamination of the river water results in activity values lying beyond the threshold of the current German Drinking Water Ordinance. Dose calculations based on the ''Berechnungsgrundlage Bergbau'' [BGB10] do not exceed the guidance level of 1 mSv additional potential radiation exposure per year for the current agricultural use, even assuming most disadvantageous conditions.

  14. The Colorado River and its deposits downstream from Grand Canyon in Arizona, California, and Nevada

    Science.gov (United States)

    Crow, Ryan S.; Block, Debra L.; Felger, Tracey J.; House, P. Kyle; Pearthree, Philip A.; Gootee, Brian F.; Youberg, Ann M.; Howard, Keith A.; Beard, L. Sue

    2018-02-05

    Understanding the evolution of the Colorado River system has direct implications for (1) the processes and timing of continental-scale river system integration, (2) the formation of iconic landscapes like those in and around Grand Canyon, and (3) the availability of groundwater resources. Spatial patterns in the position and type of Colorado River deposits, only discernible through geologic mapping, can be used to test models related to Colorado River evolution. This is particularly true downstream from Grand Canyon where ancestral Colorado River deposits are well-exposed. We are principally interested in (1) regional patterns in the minimum and maximum elevation of each depositional unit, which are affected by depositional mechanism and postdepositional deformation; and (2) the volume of each unit, which reflects regional changes in erosion, transport efficiency, and accommodation space. The volume of Colorado River deposits below Grand Canyon has implications for groundwater resources, as the primary regional aquifer there is composed of those deposits. To this end, we are presently mapping Colorado River deposits and compiling and updating older mapping. This preliminary data release shows the current status of our mapping and compilation efforts. We plan to update it at regular intervals in conjunction with ongoing mapping.

  15. Hydrological simulation of flood transformations in the upper Danube River: Case study of large flood events

    Directory of Open Access Journals (Sweden)

    Mitková Veronika Bačová

    2016-12-01

    Full Text Available The problem of understand natural processes as factors that restrict, limit or even jeopardize the interests of human society is currently of great concern. The natural transformation of flood waves is increasingly affected and disturbed by artificial interventions in river basins. The Danube River basin is an area of high economic and water management importance. Channel training can result in changes in the transformation of flood waves and different hydrographic shapes of flood waves compared with the past. The estimation and evolution of the transformation of historical flood waves under recent river conditions is only possible by model simulations. For this purpose a nonlinear reservoir cascade model was constructed. The NLN-Danube nonlinear reservoir river model was used to simulate the transformation of flood waves in four sections of the Danube River from Kienstock (Austria to Štúrovo (Slovakia under relatively recent river reach conditions. The model was individually calibrated for two extreme events in August 2002 and June 2013. Some floods that occurred on the Danube during the period of 1991–2002 were used for the validation of the model. The model was used to identify changes in the transformational properties of the Danube channel in the selected river reach for some historical summer floods (1899, 1954 1965 and 1975. Finally, a simulation of flood wave propagation of the most destructive Danube flood of the last millennium (August 1501 is discussed.

  16. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  17. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  18. Magnetic Characterization of Sand and Boulder Samples from Citarum River and Their Origin

    Directory of Open Access Journals (Sweden)

    Sudarningsih

    2017-09-01

    Full Text Available The Citarum River is a nationally strategic river located near Bandung, the capital city of West Java Province. The feasibility of using magnetic methods for monitoring pollution level is currently being tested in the river. Due to its location in a volcanic area, the sediments from the river are expected to be highly magnetic. In this study, sand and boulder samples from Balekambang, a relatively pristine upstream area of the river, were subjected to magnetic and geochemical characterizations to establish the baseline for unpolluted sediments. Such baseline is important for future magnetic monitoring of sediments in the river. The mass-specific magnetic susceptibility of boulder samples was found to be varied from 819.2 to 2340.5 × 10-8m3 kg-1 while that of sand samples varied from 2293.9 to 3845.3 × 10-8m3 kg-1. These high magnetic susceptibility values infer that river sediments are highly magnetic even before being contaminated by industrial and household wastes. The predominant magnetic mineral in sand samples was multi-domain magnetite while that in boulder samples was single to pseudo-single domain magnetite. These differences were supported by the results from petrographic and XRF analyses, implying that the sand and boulder samples originated from different geological formations.

  19. Climatic and anthropogenic controls on Mississippi River floods: a multi-proxy palaeoflood approach

    Science.gov (United States)

    Munoz, S. E.; Therrell, M. D.; Remo, J. W.; Giosan, L.; Donnelly, J. P.

    2017-12-01

    Over the last century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation, and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment budget and channel morphology, but the influence of these modifications on flood risk is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability prior to the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood risk on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO), but that artificial channelization has greatly amplified flood magnitudes over the last century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the last five hundred years that combines sedimentary, tree-ring, and instrumental records, reveal that the magnitude of the 100-year flood has increased by 20% over the period of record, with 75% of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood risk to levels that are unprecedented within the last five centuries.

  20. Many rivers to cross

    DEFF Research Database (Denmark)

    Olsen, Lene Irene; Palmgren, Michael Broberg

    2014-01-01

    An important goal of micronutrient biofortification is to enhance the amount of bioavailable zinc in the edible seed of cereals and more specifically in the endosperm. The picture is starting to emerge for how zinc is translocated from the soil through the mother plant to the developing seed...... especially interesting as potential transport bottlenecks. Inside the cell, zinc can be imported into or exported out of organelles by other transporters. The function of several membrane proteins involved in the transport of zinc across the tonoplast, chloroplast or plasma membranes are currently known....... These include members of the ZIP (ZRT-IRT-like Protein), and MTP (Metal Tolerance Protein) and heavy metal ATPase (HMA) families. An important player in the transport process is the ligand nicotianamine that binds zinc to increase its solubility in living cells and in this way buffers the intracellular zinc...

  1. Simulation of turbid underflows generated by the plunging of a river

    Science.gov (United States)

    Kassem, Ahmed; Imran, Jasim

    2001-07-01

    When the density of sediment-laden river water exceeds that of the lake or ocean into which it discharges, the river plunges to the bottom of the receiving water body and continues to flow as a hyperpycnal flow. These particle-laden underflows, also known as turbidity currents, can travel remarkable distances and profoundly influence the seabed morphology from shoreline to abyss by depositing, eroding, and dispersing large quantities of sediment particles. Here we present a new approach to investigating the transformation of a plunging river flow into a turbidity current. Unlike previous workers using experimental and numerical treatments, we consider the evolution of a turbidity current from a river as different stages of a single flow process. From initial commotion to final stabilization, the transformation of a river (open channel flow) into a density-driven current (hyperpycnal flow) is captured in its entirety by a numerical model. Successful implementation of the model in laboratory and field cases has revealed the dynamics of a complex geophysical flow that is extremely difficult to observe in the field or model in the laboratory.

  2. Superconformal current multiplet

    International Nuclear Information System (INIS)

    Smailagic, A.

    1982-12-01

    We consider a derivation of a superconformal current multiplet based directly on superconformal algebra. This gives usual multiplet of currents without anomalies, directly in terms of ''improved'' quantities and without reference to a particular Lagrangian model. (author)

  3. Current Research Studies

    Science.gov (United States)

    ... Success Home > Explore Research > Current Research Studies Current Research Studies Email Print + Share The Crohn’s & Colitis Foundation ... conducted online. Learn more about IBD Partners. Clinical Research Alliance The Clinical Research Alliance is a network ...

  4. Appropriate Model for Zoning Local Fish Conservation in front of Buddhist Temple on the Bank of the Chi River by Sustainable Community Participation

    OpenAIRE

    Somchob Poo-Inna; Song-Koon Jantakajon; Terdthai Pantachai

    2009-01-01

    Problem statement: The fresh water fish in The Chi River was a major source of food of people living in this area. The objectives of this research were: (1) to study the historical background, current situation and problems of local fish conservation in front of The Chi River by community participation and (2) to find the opriate model for zoning the local fish conservation on the bank of The Chi River by sustainable community participation. Approach: The research area in Esan Reg...

  5. Status of the dirty darter, Etheostoma olivaceum, and bluemask darter, Etheostoma (Doration)sp., with notes on fishes of the Caney Fork River system, Tennessee

    International Nuclear Information System (INIS)

    Layman, S.R.; Simons, A.M.; Wood, R.M.

    1993-01-01

    Seventy-six localities were sampled in the Caney Fork River system and adjacent Cumberland River tributaries. Etheostoma olivaceum was found in small creeks from nine tributaries of lower Caney Fork River and three tributaries of the Cumberland River in the Nashville Basin physiographic province. The species was most abundant around slab rocks and rubble over bedrock in slow to moderate current. Etheostoma olivaceum was common throughout its small range; however, given widespread habitat degradation from agriculture, the species should retain its open-quotes deemed in need of managementclose quotes status in Tennessee. The bluemask darter, Etheostoma (Doration) sp., was collected in slow to moderate current over sand and gravel in Collins River, Rocky River, Cane Creek, and Caney Fork River. All four populations were isolated upstream of Great Falls Reservoir in the Highland Rim physiographic province. The species was found in a 37-km reach of Collins River but was restricted to reaches of 0.2 to 4.3 km in the other three streams. Threats to the species include pesticides from plant nurseries, siltation, gravel dredging, and acid mine drainage. The authors recommend that the bluemask darter be listed as state and federally protected. Two new records were established for the rare Barrens darter, Etheostoma forbesi, in lower Collins River and Barren Fork River, and eight previously unknown records of the species were identified from older museum collections. 21 refs., 1 fig., 1 tab

  6. Currents on Grassmann algebras

    International Nuclear Information System (INIS)

    Coquereaux, R.; Ragoucy, E.

    1993-09-01

    Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs

  7. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  8. Eddy current seminar

    International Nuclear Information System (INIS)

    Emson, C.R.I.

    1988-11-01

    The paper presents the fifth symposium in the series of Eddy Current Seminars, held in Abingdon, 1988. The meeting included a discussion on three-dimensional eddy current formulations, as well as thirteen contributed papers on computational electromagnetics. Of the thirteen papers, two papers on eddy currents in tokamaks were selected for INIS and indexed separately. (U.K.)

  9. Savannah River Plant/Savannah River Laboratory radiation exposure report

    International Nuclear Information System (INIS)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L.; Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R.

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs

  10. Oil spill response planning on the Columbia river estuary

    International Nuclear Information System (INIS)

    Christopherson, S.K.; Slyman, P.M.

    1993-01-01

    The Columbia River Estuary lies along the Washington-Oregon state boundary on the west coast of the United States. The entire area is environmentally very sensitive with numerous large, shallow bays, exposed mud flats, wetland areas, and central channels having maximum currents of three to four knots. These features make the area very difficult to protect from an oil spill. Spill response is further complicated because of the many different state, federal, and local jurisdictions with mandated responsibilities in oil spill response and environmental protection. Under the leadership of the US Coast Guard Marine Safety Office in Portland, Oregon, a steering group was established to guide the development of a response plan for the Columbia River Estuary. A concerted effort was made to include representatives from response organizations, natural resource agencies, and resource users from federal, state, and local governments, and commercial sectors in the planning process. The first draft of an operational response plan was completed the summer of 1992 through a combination of technical workshops, field trips, and small working groups meeting with local communities. The Columbia River Estuary Response Plan prioritizes areas to protect; identifies specific response strategies for protecting these areas; and outlines the Iogistics needed to implement these strategies, including equipment needs, the location of staging areas, and the identification of pre-designed command posts. The local spill response cooperative and oil transportation industry are using the plan to coordinate the purchase of response equipment and the staging of this equipment at numerous locations along the river. The key to success is ensuring that all the groups responding to an event participate in the planning process together. This process has worked well and will serve as a model for response planning for other areas along the Columbia River and coastal areas of Washington and Oregon

  11. Geometry of river networks. I. Scaling, fluctuations, and deviations

    International Nuclear Information System (INIS)

    Dodds, Peter Sheridan; Rothman, Daniel H.

    2001-01-01

    This paper is the first in a series of three papers investigating the detailed geometry of river networks. Branching networks are a universal structure employed in the distribution and collection of material. Large-scale river networks mark an important class of two-dimensional branching networks, being not only of intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling laws are uniformly observed. Reported values of scaling exponents vary, suggesting that no unique set of scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a fuller description of branching network structure, here we report a theoretical and empirical study of fluctuations about and deviations from scaling. We examine data for continent-scale river networks such as the Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We center our investigations on the scaling of the length of a subbasin's dominant stream with its area, a characterization of basin shape known as Hack's law. We generalize this relationship to a joint probability density, and provide observations and explanations of deviations from scaling. We show that fluctuations about scaling are substantial, and grow with system size. We find strong deviations from scaling at small scales which can be explained by the existence of a linear network structure. At intermediate scales, we find slow drifts in exponent values, indicating that scaling is only approximately obeyed and that universality remains indeterminate. At large scales, we observe a breakdown in scaling due to decreasing sample space and correlations with overall basin shape. The extent of approximate scaling is significantly restricted by these deviations, and will not be improved by increases in network resolution

  12. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

  13. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  14. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  15. Influence factors analysis of water environmental quality of main rivers in Tianjin

    Science.gov (United States)

    Li, Ran; Bao, Jingling; Zou, Di; Shi, Fang

    2018-01-01

    According to the evaluation results of the water environment quality of main rivers in Tianjin in 1986-2015, this paper analyzed the current situation of water environmental quality of main rivers in Tianjin retrospectively, established the index system and multiple factors analysis through selecting factors influencing the water environmental quality of main rivers from the economy, industry and nature aspects with the combination method of principal component analysis and linear regression. The results showed that water consumption, sewage discharge and water resources were the main factors influencing the pollution of main rivers. Therefore, optimizing the utilization of water resources, improving utilization efficiency and reducing effluent discharge are important measures to reduce the pollution of surface water environment.

  16. Fast wave current drive

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities

  17. Climate Projections and Drought: Verification for the Colorado River Basin

    Science.gov (United States)

    Santos, N. I.; Piechota, T. C.; Miller, W. P.; Ahmad, S.

    2017-12-01

    The Colorado River Basin has experienced the driest 17 year period (2000-2016) in over 100 years of historical record keeping. While the Colorado River reservoir system began the current drought at near 100% capacity, reservoir storage has fallen to just above 50% during the drought. Even though federal and state water agencies have worked together to mitigate the impact of the drought and have collaboratively sponsored conservation programs and drought contingency plans, the 17-years of observed data beg the question as to whether the most recent climate projections would have been able to project the current drought's severity. The objective of this study is to analyze observations and ensemble projections (e.g. temperature, precipitation, streamflow) from the CMIP3 and CMIP5 archive in the Colorado River Basin and compare metrics related to skill scores, the Palmer Drought Severity Index, and water supply sustainability index. Furthermore, a sub-ensemble of CMIP3/CMIP5 projections, developed using a teleconnection replication verification technique developed by the author, will also be compared to the observed record to assist in further validating the technique as a usable process to increase skill in climatological projections. In the end, this study will assist to better inform water resource managers about the ability of climate ensembles to project hydroclimatic variability and the appearance of decadal drought periods.

  18. Potential relationships between the river discharge and the precipitation in the Jinsha River basin, China

    Science.gov (United States)

    Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu

    2018-02-01

    The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.

  19. Dendrochronological dating of large woody debris on the example of Morávka River and Černá Opava River

    Directory of Open Access Journals (Sweden)

    Michal Rybníček

    2010-01-01

    Full Text Available Woody debris is an inseparable part of natural river channels. In a river ecosystem it affects the hydraulic, hydrological and morphological properties of the channel, and it is also of a biological significance. However, besides the positive effects, the woody debris can also have a negative impact, e.g. the reduction of the flow profile capacity or the destruction of waterside buildings. With the de­ve­lop­ment of log floating and timber trade, the woody debris started to be removed from the channels. Currently, within the process of stream revitalization, woody debris is being artificially placed into ri­vers. This paper deals with the possible dendrochronological dating of large woody debris (LWD and wood jams in the river channel and the riparian zone. Two sites have been chosen for the research, the Morávka River and the Černá Opava River. These sites have been chosen because of two dif­fe­rent types of riparian stands. The banks of the Morávka River are a soft wood floodplain forest (350 m ASL; the Černá Opava River has stands with nearly a hundred percent proportion of spruce (600 m ASL. The results of the research show that the species with diffuse-porous wood structure are very hard to date on the basis of Pressler borer cores. On the other hand, the sites with softwood species are easi­ly datable, especially if the trunks contain more than 40 tree-rings. At these sites it is possible to use the dendrochronological dating for the establishment of the temporal dynamics of the woody debris input in the river ecosystem.

  20. Current and Current Fluctuations in Quantum Shuttles

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Flindt, Christian; Novotny, Tomas

    2005-01-01

    theoretical tools needed for the analysis, e.g., generalized master equations and Wigner functions, and we outline the methods how the resulting large numerical problems can be handled. Illustrative results are given for current, noise, and full counting statistics for a number of model systems. Throughout...... the review we focus on the physics behind the various approximations, and some simple examples are given to illustrate the theoretical concepts. We also comment on the experimental situation. ©2005 American Institute of Physics...

  1. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River (NSW).

    Science.gov (United States)

    Mooney, C; Farrier, D

    2002-01-01

    Kangaroo Valley is a drinking water supply catchment for Kangaroo Valley village, parts of the Southern Highlands and Sydney. It is also a popular recreation area both for swimming and canoeing. Land use has traditionally been dominated by dairy farming but there has been significant and continuing development of land for hobby farms and rural residential subdivision. Dairy industry restructuring has affected the viability of some farms in the Valley and created additional pressure for subdivision. River health is a function of flows, water quality, riparian vegetation, geomorphology and aquatic habitat and riverine biota. River flows in the Kangaroo River are affected by water extraction and storage for urban water supply and extraction by commercial irrigators and riparian land holders which have a significant impact at low flows. Current water quality often does not meet ANZECC Guidelines for primary contact and recreation and the river is a poor source of raw drinking water. Key sources of contaminants are wastewater runoff from agriculture, and poorly performing on-site sewage management systems. Riparian vegetation, which is critical to the maintenance of in-stream ecosystems suffers from uncontrolled stock access and weed infestation. The management of land use and resulting diffuse pollution sources is critical to the long term health of the river. The Healthy Rivers Commission of New South Wales Independent Inquiry into the Shoalhaven River System Final Report July, 1999 found that the longer term protection of the health of the Kangaroo River is contingent upon achievement of patterns of land use that have regard to land capability and also to the capability of the river to withstand the impacts of inappropriate or poorly managed land uses. This micro case study of Kangaroo Valley examines the complex legal and administrative arrangements with particular reference to the management of diffuse pollution for river health. In the past, diffuse pollution has

  2. The initiation and evolution of the River Nile

    Science.gov (United States)

    Fielding, Laura; Najman, Yani; Millar, Ian; Butterworth, Peter; Garzanti, Eduardo; Vezzoli, Giovanni; Barfod, Dan; Kneller, Ben

    2018-05-01

    The Nile is generally regarded as the longest river in the world. Knowledge of the timing of the Nile's initiation as a major river is important to a number of research questions. For example, the timing of the river's establishment as a catchment of continental proportions can be used to document surface uplift of its Ethiopian upland drainage, with implications for constraining rift tectonics. Furthermore, the time of major freshwater input to the Mediterranean is considered to be an important factor in the development of sapropels. Yet the river's initiation as a major drainage is currently constrained no more precisely than Eocene to Pleistocene. Within the modern Nile catchment, voluminous Cenozoic Continental Flood Basalts (CFBs) are unique to the Ethiopian Highlands; thus first detection of their presence in the Nile delta record indicates establishment of the river's drainage at continental proportions at that time. We present the first detailed multiproxy provenance study of Oligocene-Recent Nile delta cone sediments. We demonstrate the presence of Ethiopian CFB detritus in the Nile delta from the start of our studied record (c. 31 Ma) by (1) documenting the presence of zircons with U-Pb ages unique, within the Nile catchment, to the Ethiopian CFBs and (2) using Sr-Nd data to construct a mixing model which indicates a contribution from the CFBs. We thereby show that the Nile river was established as a river of continental proportions by Oligocene times. We use petrography and heavy mineral data to show that previous petrographic provenance studies which proposed a Pleistocene age for first arrival of Ethiopian CFBs in the Nile delta did not take into account the strong diagenetic influence on the samples. We use a range of techniques to show that sediments were derived from Phanerozoic sedimentary rocks that blanket North Africa, Arabian-Nubian Shield basement terranes, and Ethiopian CFB's. We see no significant input from Archaean cratons supplied

  3. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area

  4. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area

  5. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  6. Large-scale river regulation

    International Nuclear Information System (INIS)

    Petts, G.

    1994-01-01

    Recent concern over human impacts on the environment has tended to focus on climatic change, desertification, destruction of tropical rain forests, and pollution. Yet large-scale water projects such as dams, reservoirs, and inter-basin transfers are among the most dramatic and extensive ways in which our environment has been, and continues to be, transformed by human action. Water running to the sea is perceived as a lost resource, floods are viewed as major hazards, and wetlands are seen as wastelands. River regulation, involving the redistribution of water in time and space, is a key concept in socio-economic development. To achieve water and food security, to develop drylands, and to prevent desertification and drought are primary aims for many countries. A second key concept is ecological sustainability. Yet the ecology of rivers and their floodplains is dependent on the natural hydrological regime, and its related biochemical and geomorphological dynamics. (Author)

  7. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  8. Naturalness and Place in River Rehabilitation

    Directory of Open Access Journals (Sweden)

    Kirstie Fryirs

    2009-06-01

    Full Text Available An authentic approach to river rehabilitation emphasizes concerns for the natural values of a given place. As landscape considerations fashion the physical template upon which biotic associations take place, various geomorphic issues must be addressed in framing rehabilitation activities that strive to improve river health. An open-ended approach to river classification promotes applications that appreciate the values of a given river, rather than pigeonholing reality. As the geomorphic structure of some rivers is naturally simple, promoting heterogeneity as a basis for management may not always be appropriate. Efforts to protect unique attributes of river systems must be balanced with procedures that look after common features. Concerns for ecosystem functionality must relate to the behavioral regime of a given river, remembering that some rivers are inherently sensitive to disturbance. Responses to human disturbance must be viewed in relation to natural variability, recognizing how spatial relationships in a catchment, and responses to past disturbances, fashion the operation of contemporary fluxes. These fluxes, in turn, influence what is achievable in the rehabilitation of a given reach. Given the inherently adjusting and evolutionary nature of river systems, notional endpoints do not provide an appropriate basis upon which to promote concepts of naturalness and place in the rehabilitation process. These themes are drawn together to promote rehabilitation practices that relate to the natural values of each river system, in preference to applications of "cookbook" measures that build upon textbook geomorphology.

  9. Radiocesium dynamics in the Hirose River basin

    Science.gov (United States)

    Kuramoto, T.; Taniguchi, K.; Arai, H.; Onuma, S.; Onishi, Y.

    2017-12-01

    A significant amount of radiocesium was deposited in Fukushima Prefecture during the accident of Fukushima Daiichi Nuclear Power Plant. In river systems, radiocesium is transported to downstream in rivers. For the safe use of river and its water, it is needed to clarify the dynamics of radiocesium in river systems. We started the monitoring of the Hirose River from December 2015. The Hirose River is a tributary of the Abukuma River flowing into the Pacific Ocean, and its catchment is close to areas where a large amount of radiocesium was deposited. We set up nine monitoring points in the Hirose River watershed. The Water level and turbidity data are continuously observed at each monitoring point. We regularly collected about 100 liters of water at each monitoring point. Radiocesium in water samples was separated into two forms; the one is the dissolved form, and the other is the suspended particulate form. Radionuclide concentrations of radiocesium in both forms were measured by a germanium semiconductor detector. Furthermore, we applied the TODAM (Time-dependent One-dimensional Degradation And Migration) code to the Hirose River basin using the monitoring data. The objectives of the modeling are to understand a redistribution pattern of radiocesium adsorbed by sediments during flooding events and to determine the amount of radiocesium flux into the Abukuma River.

  10. Water level management of lakes connected to regulated rivers: An integrated modeling and analytical methodology

    Science.gov (United States)

    Hu, Tengfei; Mao, Jingqiao; Pan, Shunqi; Dai, Lingquan; Zhang, Peipei; Xu, Diandian; Dai, Huichao

    2018-07-01

    Reservoir operations significantly alter the hydrological regime of the downstream river and river-connected lake, which has far-reaching impacts on the lake ecosystem. To facilitate the management of lakes connected to regulated rivers, the following information must be provided: (1) the response of lake water levels to reservoir operation schedules in the near future and (2) the importance of different rivers in terms of affecting the water levels in different lake regions of interest. We develop an integrated modeling and analytical methodology for the water level management of such lakes. The data-driven method is used to model the lake level as it has the potential of producing quick and accurate predictions. A new genetic algorithm-based synchronized search is proposed to optimize input variable time lags and data-driven model parameters simultaneously. The methodology also involves the orthogonal design and range analysis for extracting the influence of an individual river from that of all the rivers. The integrated methodology is applied to the second largest freshwater lake in China, the Dongting Lake. The results show that: (1) the antecedent lake levels are of crucial importance for the current lake level prediction; (2) the selected river discharge time lags reflect the spatial heterogeneity of the rivers' impacts on lake level changes; (3) the predicted lake levels are in very good agreement with the observed data (RMSE ≤ 0.091 m; R2 ≥ 0.9986). This study demonstrates the practical potential of the integrated methodology, which can provide both the lake level responses to future dam releases and the relative contributions of different rivers to lake level changes.

  11. Trend analysis of a tropical urban river water quality in Malaysia.

    Science.gov (United States)

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as

  12. River Intrusion in Karst Springs in Eogenetic Aquifers: Implications for Speleogenesis

    Science.gov (United States)

    Martin, J. B.; Gulley, J.; Screaton, E. J.

    2008-12-01

    Conceptual models of speleogenesis generally assume uni-directional transport in integrated conduit systems from discrete recharge points to discharge at karst springs. Estavelles, however, are karst springs that function intermittently as discrete recharge points when river stage rises more rapidly than local aquifer heads. As river water chemistry changes between baseflow and floods, estavelles should influence mass transport through (e.g. organic carbon, nutrients, and oxygen) and speleogenesis within karst systems. Estavelles are common in our study area in north-central Florida, particularly along the lower reaches of the Santa Fe River, where it flows across the unconfined karstic Floridan aquifer. River stage in this unconfined region can rise much faster than aquifer heads when large amounts of rain fall on the confined regions in its upper reaches. Backflooding into the estavelles during elevated river stage drives river water into the ground, causing some springs to reverse and other springs to recirculate large volumes of river water. Floodwaters originating in the confined region are highly undersaturated with respect to calcite, and thus river water transitions from slightly supersaturated to highly undersaturated with respect to calcite during flood events. As a result, conduits connected to estavelles are continuously enlarged as springs reverse or recirculate calcite-undersaturated river water. It has been suggested that currently flooded caves (i.e. karst conduits) associated with springs in Florida formed entirely underwater because speleothems, which are prevalent in flooded caves in the Yucatan and Bahamas, have not been observed by cave divers. Results of this study indicate that the absence of speleothems does not necessarily provide evidence of a continuous phreatic history for underwater caves. Instead speleothems that formed in caves while dry could have been dissolved by backflooding of estavelles with undersaturated water

  13. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    Science.gov (United States)

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  14. Urban rivers and multifunctional landscapes: case study – Dona Eugênia River

    Directory of Open Access Journals (Sweden)

    Ianic Bigate Lourenço

    2015-12-01

    Full Text Available It is often observed in the current cities the development of an urbanization model and proposals of intervention on rivers that ignore their environmental, cultural and social values, enhancing one of the main problems of the present days in Brazilian cities: the urban flooding. This work intends to contribute to the sustainable management of cities, presenting landscape solutions, aimed at urban and environmental improvement of water bodies, from the systemic recognition of physical, historical, social and environmental relations, leading to the design of multifunctional solutions, which is an essential practice to face the lack of free spaces that a city of consolidated urbanization usually offers. Considering this complexity, this study was structured in an interdisciplinary basis, mainly between landscaping and engineering. This approach allowed the evaluation of the impacts caused by urbanization and, subsequently, the assessment of the proposed landscape solutions, with indications that are able to represent the hydraulic and hydrological systemic behavior of the study watershed. The work is centered on the Dona Eugênia river in Mesquita, RJ, in theregion of Baixada Fluminense, where the problem of flooding is common.

  15. Clinical cytogenetics in river buffalo

    Directory of Open Access Journals (Sweden)

    L. Zicarelli

    2011-03-01

    Full Text Available While autosomal numeric chromosome abnormalities are phenotipically visible (abnormal body conformation and easily eliminated during the normal breeding selection, sex numeric abnormalities (including the cases of free-martinism, as well as the structural chromosome aberrations, especially the balanced ones, are more tolerate by the animals (normal body conformation but are often responsible of low fertility (structural abnormalities or sterility (sex chromosome aberrations, especially in the females. Although river buffalo (Bubalus bubalis, 2n=50 chromosomes have been characterized......

  16. Chester River Study. Volume I,

    Science.gov (United States)

    1972-11-01

    of the effects of agri- i6 IA -46 cultural activities on the aquatic system. This initial feet (24 meters). The soils of the basin area are suit...to the stocks themselves. The shell crystal struc- ture modification in oysters recalls to mind the eggshell thinning in birds mentioned earlier...with figures provided by Chestertown to the mouth of the River at Love the U.S. Soil Conservation Service as of 1967 (last Point (Table VII). year of

  17. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    Science.gov (United States)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  18. Radionuclide concentrations in white sturgeon from the Columbia River

    International Nuclear Information System (INIS)

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1992-09-01

    Although radioactive releases from the US Department of Energy's Hanford Site have been monitored in the environment since the reactors began operating in 1945, recent information regarding historical releases of radionuclides has led to renewed interest in estimating human exposure to radionuclides at Hanford. Knowledge of the fate of radionuclides in some fish species may be important because of the potential for food-chain transfer to humans. White sturgeon (Acipenser transmontanus) were selected for study because they are long-lived, reside year-round in the Hanford Reach, are benthic, and are an important commercial and sport species in the Columbia River. They also have a greater potential for accumulating persistent radionuclides than shorter-lived species with pelagic and/or anadromous life histories. The purpose of our study was to summarize data on historical concentrations of industrial radionuclides in white sturgeon and to collect additional data on current body burdens in the Columbia River

  19. Radionuclide concentrations in white sturgeon from the Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1992-09-01

    Although radioactive releases from the US Department of Energy`s Hanford Site have been monitored in the environment since the reactors began operating in 1945, recent information regarding historical releases of radionuclides has led to renewed interest in estimating human exposure to radionuclides at Hanford. Knowledge of the fate of radionuclides in some fish species may be important because of the potential for food-chain transfer to humans. White sturgeon (Acipenser transmontanus) were selected for study because they are long-lived, reside year-round in the Hanford Reach, are benthic, and are an important commercial and sport species in the Columbia River. They also have a greater potential for accumulating persistent radionuclides than shorter-lived species with pelagic and/or anadromous life histories. The purpose of our study was to summarize data on historical concentrations of industrial radionuclides in white sturgeon and to collect additional data on current body burdens in the Columbia River.

  20. Radionuclide concentrations in white sturgeon from the Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1992-09-01

    Although radioactive releases from the US Department of Energy's Hanford Site have been monitored in the environment since the reactors began operating in 1945, recent information regarding historical releases of radionuclides has led to renewed interest in estimating human exposure to radionuclides at Hanford. Knowledge of the fate of radionuclides in some fish species may be important because of the potential for food-chain transfer to humans. White sturgeon (Acipenser transmontanus) were selected for study because they are long-lived, reside year-round in the Hanford Reach, are benthic, and are an important commercial and sport species in the Columbia River. They also have a greater potential for accumulating persistent radionuclides than shorter-lived species with pelagic and/or anadromous life histories. The purpose of our study was to summarize data on historical concentrations of industrial radionuclides in white sturgeon and to collect additional data on current body burdens in the Columbia River.

  1. Costs of climate change: Economic value of Yakima River salmon

    International Nuclear Information System (INIS)

    Anderson, D.M.; Shankle, S.A.; Scott, M.J.; Neitzel, D.A.; Chatters, J.C.

    1992-07-01

    This work resulted from a continuing multidisciplinary analysis of species preservation and global change. The paper explores the economic cost of a potential regional warming as it affects one Pacific Northwest natural resource, the spring chinook salmon (Oncorhynchus tshcawytscha). Climate change and planned habitat improvements impact the production and economic value of soling chinook salmon of the Yakima River tributary of the Columbia River in eastern Washington. The paper presents a derivation of the total economic value of a chinook salmon, which includes the summation of the existence, commercial, recreational, and capital values of the fish. When currently available commercial, recreational, existence, and capital values for chinook salmon were applied to estimated population changes, the estimated change in the economic value per fish associated with reduction of one fish run proved significant

  2. Flambeau River Biofuels Demonstration Plant

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert J. [Flambeau River Biofuels, Inc., Park Falls, WI (United States)

    2012-07-30

    Flambeau River BioFuels, Inc. (FRB) proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Park Falls, Wisconsin. The biorefinery was to be co-located at the existing pulp and paper mill, Flambeau River Papers, and when in full operation would both generate renewable energy – making Flambeau River Papers the first pulp and paper mill in North America to be nearly fossil fuel free – and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. FRB planned to replicate this facility at other paper mills after this first demonstration scale plant was operational and had proven technical and economic feasibility.

  3. Misrepresenting the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Clemens Messerschmid

    2015-06-01

    Full Text Available This article advances a critique of the UN Economic and Social Commission for West Asia’s (ESCWA’s representation of the Jordan River Basin, as contained in its recently published Inventory of Shared Water Resources in Western Asia. We argue that ESCWA’s representation of the Jordan Basin is marked by serious technical errors and a systematic bias in favour of one riparian, Israel, and against the Jordan River’s four Arab riparians. We demonstrate this in relation to ESCWA’s account of the political geography of the Jordan River Basin, which foregrounds Israel and its perspectives and narratives; in relation to hydrology, where Israel’s contribution to the basin is overstated, whilst that of Arab riparians is understated; and in relation to development and abstraction, where Israel’s transformation and use of the basin are underplayed, while Arab impacts are exaggerated. Taken together, this bundle of misrepresentations conveys the impression that it is Israel which is the main contributor to the Jordan River Basin, Arab riparians its chief exploiters. This impression is, we argue, not just false but also surprising, given that the Inventory is in the name of an organisation of Arab states. The evidence discussed here provides a striking illustration of how hegemonic hydro-political narratives are reproduced, including by actors other than basin hegemons themselves.

  4. Effects of streamflows on stream-channel morphology in the eastern Niobrara National Scenic River, Nebraska, 1988–2010

    Science.gov (United States)

    Schaepe, Nathaniel J.; Alexander, Jason S.; Folz-Donahue, Kiernan

    2016-03-09

    The Niobrara River is an important and valuable economic and ecological resource in northern Nebraska that supports ecotourism, recreational boating, wildlife, fisheries, agriculture, and hydroelectric power. Because of its uniquely rich resources, a 122-kilometer reach of the Niobrara River was designated as a National Scenic River in 1991, which has been jointly managed by the U.S. Fish and Wildlife Service and National Park Service. To assess how the remarkable qualities of the National Scenic River may change if consumptive uses of water are increased above current levels, the U.S. Geological Survey, in cooperation with the National Park Service, initiated an investigation of how stream-channel morphology might be affected by potential decreases in summer streamflows. The study included a 65-kilometer segment in the wide, braided eastern stretch of the Niobrara National Scenic River that provides important nesting habitat for migratory bird species of concern to the Nation.

  5. Identifying hydrological regime and eco-flow threshold of small and medium flood of the Xiaoqing River in Jinan city

    Science.gov (United States)

    Liu, Yang; Cao, Sheng-Le

    2017-06-01

    It was known that hydrological regime was the main influencing factor of river ecosystem, but the regime of different flow rates of urban rivers was poorly understood. We collected daily inflows at the Huangtai station of the Xiaoqing River from 1960 to 2014 and divided the data into three periods. Then we calculated hydrological parameters by the method of EFCs (Environmental Flow Components) and analyzed the tendency and change rates of each component respectively in the three periods. Combined with the ecological significance of environmental flow components, we identified the small and medium flood had the greatest impact on the river regime and ecosystem. And then we used the hydraulic parameters in the good ecosystem period as control conditions, to calculate the ecological threshold of the flow component under the current situation. This study could provide technical support for restoring and improving hydrological regime and ecological environment of the Xiaoqing River in Jinan city.

  6. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  7. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  8. Purely leptonic currents

    International Nuclear Information System (INIS)

    Gourdin, M.

    1976-01-01

    In most gauge theories weak neutral currents appear as a natural consequence of the models, but the specific properties are not predicted in a general way. In purely leptonic interactions the structure of these currents can be tested without making assumptions about the weak couplings of the hadrons. The influence of neutral currents appearing in the process e + e - → μ + μ - can be measured using the polarization of the outgoing myons. (BJ) [de

  9. Modulated Current Drive Measurements

    International Nuclear Information System (INIS)

    Petty, C.C.; Lohr, J.; Luce, T.C.; Prater, R.; Cox, W.A.; Forest, C.B.; Jayakumar, R.J.; Makowski, M.A.

    2005-01-01

    A new measurement approach is presented which directly determines the noninductive current profile from the periodic response of the motional Stark effect (MSE) signals to the slow modulation of the external current drive source. A Fourier transform of the poloidal magnetic flux diffusion equation is used to analyze the MSE data. An example of this measurement technique is shown using modulated electron cyclotron current drive (ECCD) discharges from the DIII-D tokamak

  10. Synchronisation and stability in river metapopulation networks.

    Science.gov (United States)

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  11. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  12. Quantization of interface currents

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  13. Classification of exchange currents

    International Nuclear Information System (INIS)

    Friar, J.L.

    1983-01-01

    After expansion of the vector and axial vector currents in powers of (v/c), a heretofore unremarked regularity results. Meson exchange currents can be classified into types I and II, according to the way they satisfy the constraints of special relativity. The archetypes of these two categories are the impulse approximation to the vector and axial vector currents. After a brief discussion of these constraints, the (rhoπγ) and (ωsigmaγ) exchange currents are constructed and classified, and used to illustrate a number of important points which are often overlooked

  14. Current Energy Patents

    International Nuclear Information System (INIS)

    Kelly, R.C.

    1982-01-01

    Current Energy Patents (CEP) provides abstracting and indexing coverage of the international patent literature, including patent applications, that concerns any aspect of energy production, conservation, and utilization

  15. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  16. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A; Laird, J S; Bardos, R A; Legge, G J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T; Sekiguchi, H [Electrotechnical Laboratory, Tsukuba (Japan).

    1994-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  17. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  18. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  19. Priority River Metrics for Urban Residents of the Santa Cruz River Watershed

    Science.gov (United States)

    Indicator selection is a persistent question in river and stream assessment and management. We employ qualitative research techniques to identify features of rivers and streams important to urban residents recruited from the general public in the Santa Cruz watershed. Interviews ...

  20. New River Dam Foundation Report. Gila River Basin: Phoenix, Arizona and Vicinity (Including New River).

    Science.gov (United States)

    1985-10-01

    further downstream before merging with the Agua Fria River. 6 Site Geology 2.08 The geological formations present within the project area consist...sampling and in- situ density testing using the sand displacement 11 or large-scale water displacement method. Dozer trenches TT82-1 and TT82-6 were excavated...underlying the valley or may, due to its pervasiveness, represent an in situ weathering product of the buried bedrock. 4.18 Because of the magnitude