WorldWideScience

Sample records for river basin northern

  1. Northern part, Ten Mile and Taunton River basins

    Science.gov (United States)

    Williams, John R.; Willey, Richard E.

    1967-01-01

    The northern part of the Ten Mile and Taunton River basins is an area of about 195 square miles within Norfolk, Plymouth, and Bristol Counties in southeastern Massachusetts. The northern boundary of the area (plate 1) is the drainage divide separating these basins from that of the Charles, Neponset, and Weymouth River basins. The western boundary is, for the most part, the divide separating the basins from the Blackstone River basin. The eastern boundary is at the edge of the Brockton-Pembroke area (Petersen, 1962; Petersen and Shaw, 1961). The southern boundary in Seekonk is the northern limit of the East Providence quadrangle, for which a ground-water map was prepared by Allen and Gorman (1959); eastward, the southern boundaries of the city of Attleboro and the towns of Norton, Easton, and West Bridgewater form the southern boundary of the area.

  2. Northern Rivers Basins human health monitoring program : report

    International Nuclear Information System (INIS)

    Gabos, S.

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs

  3. Northern Rivers Basins human health monitoring program : report

    Energy Technology Data Exchange (ETDEWEB)

    Gabos, S. [Alberta Health, Edmonton, AB (Canada). Health Surveillance

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs.

  4. HYDROLOGICAL REGIME OF GLACIERS IN THE RIVER BASINS OF THE NORTHERN CAUCASUS AND ALTAI

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2018-01-01

    Full Text Available Rivers with snow-glacier alimentation in six basins of the Northern Caucasus (Cherek, Chegem, Baksan, Malka, Teberda, and upper course of the Terek River and Altai (the Katun’ River were investigated in 1946–2005 for the purpose to analyze long-term streamflow variations. It was noted that in 1976–2005 volume of annual runoff increased relative to the previous 30-year interval in four of six rivers of the Northern Caucasus. During the vegetation period the volume of runoff changed synchronously with the annual one. As for the river Katun’, its volumes and variability of both, the annual runoff and that for the vegetation season, decreased. In the course of investigation of spatial-temporal dynamics of hydrological and glaciological characteristics in the above river basins of the Northern Caucasus and the same of Katun’ River the following problems were considered and solved: a the information and methodological basis for regional calculations of the runoff for the rivers with snow-glacier alimentation had been improved and corrected; b changes of the components of hydrological cycle (precipitation, evaporation, and glacier runoff over the glaciation area had been estimated for the period of 1946–2005; c data on quality of the initial glaciological and hydrological information were integrated; d definitions of the runoff were verified by means of comparison of measured runoff with similar values calculated by equation of the annual water budget as a whole for the basin. It should be noted that the total areas of glaciers and areas of their ablation were significantly reduced, but areas and thicknesses of ice under the moraine cover increased. Despite widespread, sometimes twofold decrease in the relative part of glacier alimentation in the total river streamflow for period of April–September this did make almost no effect on the water supply of the vegetation period in individual basins as well as in the whole the Northern

  5. Northern Rivers Basins ecological and human health studies : summary, relevance and recommendations

    International Nuclear Information System (INIS)

    1999-04-01

    Residents in northern Alberta expressed concerns that the original Northern River Basins Study (NRBS) only examined the impacts of contaminants on ecological health and did not include impacts on human health. In response to these concerns, Alberta Health established the Northern River Basins Human Health Monitoring Program in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This document links the ecological information collected by the original NRBS program with the information provided by the health program. Issues regarding health impacts from pulp mills and oil sand mining were also discussed. The findings of the health program were summarized and recommendations were made for future studies. The contaminants of potential concern (COPC) arising from the original NRBS were described in terms of their sources and any known connections between exposure and human health. The COPCs included arsenic, dioxins, chlorinated furans, polycyclic aromatic hydrocarbons (PAH) polychlorinated biphenyls (PCB) mercury, chlorinated phenolics, toxaphene, carbon monoxide, nitrogen oxides, ozone, sulphur dioxide, acid sulphates and particulate matter. Examples of Canadian regulatory criteria for these contaminants were also presented. 41 refs., 1 tab

  6. Radionuclide levels in fish from Lake Athabasca February 1993. Northern River Basins Study project report no.26

    International Nuclear Information System (INIS)

    Smithson, G.

    1993-12-01

    The Northern River Basins Study was initiated through the 'Canada-Alberta-Northwest Territories Agreement Respecting the Peace-Athabasca-Slave River Basin Study, Phase II - Technical Studies' which was signed September 27, 1991. The purpose of the study is to understand and characterize the cumulative effects of development on the water and aquatic environment of the Study Area by coordinating with existing programs and undertaking appropriate new technical studies. This publication reports the method and findings of particular work conducted as part of the Northern River Basins Study. As such, the work was governed by a specific terms of reference and is expected to contribute information about the Study Area within the context of the overall study as described by the Study Final Report. This report has been reviewed by the Study Science Advisory Committee in regards to scientific content and has been approved by the Study Board of Directors for public release. It is explicit in the objectives of the Study to report the results of technical work regularly to the public. This objective is served by distributing project reports to an extensive network of libraries, agencies, organizations and interested individuals and by granting universal permission to reproduce the material. This report contains referenced data obtained from external to the Northern River Basins Study. Individuals interested in using external data must obtain permission to do so from the donor agency. (author). 47 refs., 9 tabs., 2 figs

  7. Radionuclide levels in fish from Lake Athabasca February 1993. Northern River Basins Study project report no.26

    Energy Technology Data Exchange (ETDEWEB)

    Smithson, G [Saskatchewan Research Council, Saskatoon, SK (Canada)

    1993-12-01

    The Northern River Basins Study was initiated through the `Canada-Alberta-Northwest Territories Agreement Respecting the Peace-Athabasca-Slave River Basin Study, Phase II - Technical Studies` which was signed September 27, 1991. The purpose of the study is to understand and characterize the cumulative effects of development on the water and aquatic environment of the Study Area by coordinating with existing programs and undertaking appropriate new technical studies. This publication reports the method and findings of particular work conducted as part of the Northern River Basins Study. As such, the work was governed by a specific terms of reference and is expected to contribute information about the Study Area within the context of the overall study as described by the Study Final Report. This report has been reviewed by the Study Science Advisory Committee in regards to scientific content and has been approved by the Study Board of Directors for public release. It is explicit in the objectives of the Study to report the results of technical work regularly to the public. This objective is served by distributing project reports to an extensive network of libraries, agencies, organizations and interested individuals and by granting universal permission to reproduce the material. This report contains referenced data obtained from external to the Northern River Basins Study. Individuals interested in using external data must obtain permission to do so from the donor agency. (author). 47 refs., 9 tabs., 2 figs.

  8. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  9. Policy and Practice – River Basins

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ms Suruchi Bhadwal

    nature of rivers in the northern belt- inextricably linked. Exacerbated water stress in some areas. Increasing demands – food and drinking water needs. Socioeconomics. CC Impacts. Glacier-fed basins in the. North. Glacier melt and river flooding,. GLOFs, landslides. Unique socio-cultural settings and political differences.

  10. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  11. Flood-tracking chart for the Withlacoochee and Little River Basins in south-central Georgia and northern Florida

    Science.gov (United States)

    Gotvald, Anthony J.; McCallum, Brian E.; Painter, Jaime A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates a flood-monitoring system in the Withlacoochee and Little River Basins. This system is a network of automated river stage stations (ten are shown on page 2 of this publication) that transmit stage data through satellite telemetry to the USGS in Atlanta, Georgia and the National Weather Service (NWS) in Peachtree City, Georgia. During floods, the public and emergency response agencies use this information to make decisions about road closures, evacuations, and other public safety issues. This Withlacoochee and Little River Basins flood-tracking chart can be used by local citizens and emergency response personnel to record the latest river stage and predicted flood-crest information along the Withlacoochee River, Little River, and Okapilco Creek in south-central Georgia and northern Florida. By comparing the current stage (water-surface level above a datum) and predicted flood crest to the recorded peak stages of previous floods, emergency response personnel and residents can make informed decisions concerning the threat to life and property.

  12. Hydrological application of the INCA model with varying spatial resolution and nitrogen dynamics in a northern river basin

    Directory of Open Access Journals (Sweden)

    K. Rankinen

    2002-01-01

    Full Text Available As a first step in applying the Integrated Nitrogen model for CAtchments (INCA to the Simojoki river basin (3160 km2, this paper focuses on calibration of the hydrological part of the model and nitrogen (N dynamics in the river during the 1980s and 1990s. The model application utilised the GIS land-use and forest classification of Finland together with a recent forest inventory based on remote sensing. In the INCA model, the Hydrologically Effective Rainfall (HER is used to drive the water flow and N fluxes through the catchment system. HER was derived from the Watershed Simulation and Forecast System (WSFS. The basic component of the WSFS is a conceptual hydrological model which simulates runoff using precipitation, potential evapotranspiration and temperature data as inputs. Spatially uniform, lumped input data were calculated for the whole river basin and spatially semi-distributed input data were calculated for each of the nine sub-basins. When comparing discharges simulated by the INCA model with observed values, a better fit was obtained with the semi-distributed data than with the spatially uniform data (R2 0.78 v. 0.70 at Hosionkoski and 0.88 v. 0.78 at the river outlet. The timing of flow peaks was simulated rather well with both approaches, although the semi-distributed input data gave a more realistic simulation of low flow periods and the magnitude of spring flow peaks. The river basin has a relatively closed N cycle with low input and output fluxes of inorganic N. During 1982-2000, the average total N flux to the sea was 715 tonnes yr–1, of which 6% was NH4-N, 14% NO3-N, and 80% organic N. Annual variation in river flow and the concentrations of major N fractions in river water, and factors affecting this variation are discussed. Keywords: northern river basin, nitrogen, forest management, hydrology, dynamic modelling, semi-distributed modelling

  13. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Theuring, Philipp [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany); Collins, Adrian L. [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Rode, Michael [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany)

    2015-09-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (< 10 μm) sediment in the 15 000 km{sup 2} Kharaa River basin in northern Mongolia. Variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb) was used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal–Wallis H-test and Principal Component Analysis. All composite fingerprints yielded a satisfactory GOF (> 0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments. - Highlights: • Applied statistical approach for selecting composite fingerprints in Mongolia. • Geochemical fingerprinting for the definition of source areas in semiarid catchment. • Test of applicability of sediment sourcing in large scale semi-arid catchments

  14. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  15. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    Science.gov (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  16. Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin

    Science.gov (United States)

    Nagler, Pamela L.; Nguyen, Uyen; Bateman, Heather L.; Jarchow, Christopher; Glenn, Edward P.; Waugh, William J.; van Riper, Charles

    2018-01-01

    Northern tamarisk beetles (Diorhabda carinulata) were released in the Upper Colorado River Basin in the United States in 2004–2007 to defoliate introduced tamarisk shrubs (Tamarix spp.) in the region’s riparian zones. The primary purpose was to control the invasive shrub and reduce evapotranspiration (ET) by tamarisk in an attempt to increase stream flows. We evaluated beetle–tamarisk interactions with MODIS and Landsat imagery on 13 river systems, with vegetation indices used as indicators of the extent of defoliation and ET. Beetles are widespread and exhibit a pattern of colonize–defoliate–emigrate, so that riparian zones contain a mosaic of completely defoliated, partially defoliated, and refoliated tamarisk stands. Based on satellite data and ET algorithms, mean ET before beetle release (2000–2006) was 416 mm/year compared to postrelease (2007–2015) ET of 355 mm/year (pprojections that ET would be reduced by 300–460 mm/year. Reasons for the lower-than-expected ET reductions are because baseline ET rates are lower than initially projected, and percentage ET reduction is low because tamarisk stands tend to regrow new leaves after defoliation and other plants help maintain canopy cover. Overall reductions in tamarisk green foliage during the study are 21%. However, ET in the Upper Basin has shown a steady decline since 2007 and equilibrium has not yet been reached. Defoliation is now proceeding from the Upper Basin into the Lower Basin at a rate of 40 km/year, much faster than initially projected.

  17. The water footprint of agricultural products in European river basins

    International Nuclear Information System (INIS)

    Vanham, D; Bidoglio, G

    2014-01-01

    This work quantifies the agricultural water footprint (WF) of production (WF prod, agr ) and consumption (WF cons, agr ) and the resulting net virtual water import (netVW i, agr ) of 365 European river basins for a reference period (REF, 1996–2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WF cons, agr, tot exceeds the WF prod, agr, tot (resulting in positive netVW i, agr, tot values), are found along the London–Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WF prod, agr, tot exceeds the WF cons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WF cons, agr, tot of most river basins decreases (max −32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max −46%) in WF cons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed. (letters)

  18. Geologic implications of large-scale trends in well-log response, northern Green River Basin, Wyoming

    International Nuclear Information System (INIS)

    Prensky, S.E.

    1986-01-01

    Well-log response in lower Tertiary and Upper Cretaceous rocks in the northern Green River basin, Wyoming, is examined. Digitally recorded well-log data for selected wells located throughout the basin were processed by computer and displayed as highly compressed depth-scale plots for examining large-scale geologic trends. Stratigraphic units, formed under similar depositional conditions, are distinguishable by differing patterns on these plots. In particular, a strong lithologic contrast between Tertiary and underlying Upper Cretaceous non-marine clastic rocks is revealed and correlated through the study area. Laboratory analysis combined with gamma-ray spectrometry log data show that potassium feldspars in the arkosic Tertiary sandstones cause the contrast. The nature and extent of overpressuring has been examined. Data shift on shale conductivity and shale acoustic transit-time plots, previously ascribed to changes in pore pressure, correspond to stratigraphic changes and not necessarily with changes in pore pressure as indicated by drilling-mud weights. Gulf Coast well-log techniques for detecting overpressuring are unreliable and ineffectual in this basin, which has experienced significantly different geologic depositional and tectonic conditions

  19. Anastomosing river deposits: palaeoenvironmental control on coal quality and distribution, Northern Karoo Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cairncross, B

    1980-01-01

    Borehole data from an area close to the northern margin of the Karoo Basin 110 m thick coal reveal a bearing succession of the Vryheid Formation overlying Dwyka tillite. The lowermost sediments reflect processes of deglaciation with a complex array of glaciolacustrine, glaciofluvial and alluvial-outwash fan deposits. Above this paraglacial milieu, tundra-type peat bogs developed in inactive areas and account for the two thick basal coal seams (No. 1 and 2 seams). During accumulation of peat which was later to form the extensive No. 2 coal seam, active clastic sedimentation was confined to laterally restricted river channels which incised into the underlying peat. Lateral migration was inhibited by vegetation stabilized river banks and channel deposits are characterized by vertically accreted upward-fining cycles. Channel fill consists of coarse-grinder bedload sediment deposited in anastomosing streams. Flood episodes are marked by widespread, but thin (< 1 m), shale zones that intercalate with the channel sandstones. Both sandstone and shale units are completely enveloped by No. 2 coal seams. This clastic parting influences No. 2 coal seam distribution and ash content. 23 references

  20. Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin

    Science.gov (United States)

    Nagler, Pamela L.; Nguyen, Uyen; Bateman, Heather L.; Jarchow, Christopher; Glenn, Edward P.; Waugh, William J.; van Riper, Charles

    2018-01-01

    Northern tamarisk beetles (Diorhabda carinulata) were released in the Upper Colorado River Basin in the United States in 2004–2007 to defoliate introduced tamarisk shrubs (Tamarix spp.) in the region’s riparian zones. The primary purpose was to control the invasive shrub and reduce evapotranspiration (ET) by tamarisk in an attempt to increase stream flows. We evaluated beetle–tamarisk interactions with MODIS and Landsat imagery on 13 river systems, with vegetation indices used as indicators of the extent of defoliation and ET. Beetles are widespread and exhibit a pattern of colonize–defoliate–emigrate, so that riparian zones contain a mosaic of completely defoliated, partially defoliated, and refoliated tamarisk stands. Based on satellite data and ET algorithms, mean ET before beetle release (2000–2006) was 416 mm/year compared to postrelease (2007–2015) ET of 355 mm/year (p<0.05) for a net reduction of 61 mm/year. This is lower than initial literature projections that ET would be reduced by 300–460 mm/year. Reasons for the lower-than-expected ET reductions are because baseline ET rates are lower than initially projected, and percentage ET reduction is low because tamarisk stands tend to regrow new leaves after defoliation and other plants help maintain canopy cover. Overall reductions in tamarisk green foliage during the study are 21%. However, ET in the Upper Basin has shown a steady decline since 2007 and equilibrium has not yet been reached. Defoliation is now proceeding from the Upper Basin into the Lower Basin at a rate of 40 km/year, much faster than initially projected.

  1. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  2. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  3. Numerical modelling of ice floods in the Ning-Meng reach of the Yellow River basin

    NARCIS (Netherlands)

    Wang, C.

    2017-01-01

    The Ning-Meng reach of the Yellow River basin is located in the Inner Mongolia region at the Northern part of the Yellow River. Due to the special geographical conditions, the river flow direction is towards the North causing the Ning-Meng reach to freeze up every year in wintertime. Both during the

  4. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  5. Transboundary water issues: The Ganga-Brahmaputra-Meghna River Basin

    International Nuclear Information System (INIS)

    Roy, Debasri; Goswami, A.B.; Bose, Balaram

    2004-01-01

    Sharing of water of transboundary rivers among riparian nations has become a cause of major concern in different parts of the globe for quite sometime. The issue in the recent decades has been transformed into a source of international tensions and disputes resulting in strained relationships between riparian nations. Conflicts over sharing of water of the international rivers, like the Tigris, Euphrates and Jordan in the Middle East, the Nile in Northern Africa, the Mekong in South-East Asia, the Ganga-Brahmaputra-Meghna in the Indian subcontinent are widely known. The present paper discusses the water sharing -issue in the Ganga- Brahmaputra-Meghna basin located in the Indian sub continent covering five sovereign countries (namely India, Nepal, China, Bhutan and Bangladesh). Rapidly growing population, expanding agricultural and industrial activities besides the impacts of climate change have resulted in stressed condition in the arena of fresh water availability in the basin. Again occurrence of arsenic in sub-surface water in the lower reaches of the basin in India and Bangladesh has also added a new dimension to the problem. All the rivers of the GBM system exhibit wide variations between peak and lean flows as major part of the basin belongs to the monsoon region, where 80%-90 % of annual rainfall is concentrated in 4-5 months of South -West monsoon in the subcontinent. Over and above, the rivers in GBM system carry huge loads of sediments along with the floodwater and receive huge quantum of different kinds of wastes contaminating the water of the rivers. Again high rate of sedimentation of the major rivers and their tributaries have been affecting not only the carrying capacity of the rivers but also drastically reduced their retention capacity. Almost every year during monsoon about 27% and nearly 60% of the GBM basin lying in India and Bangladesh respectively experience flood. The year round navigation in many rivers has also been affected. All these have

  6. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2003-03-01

    This report presents results for year eleven in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible.

  7. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island

    Science.gov (United States)

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.

    2007-01-01

    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  8. Developing a predation index and evaluating ways to reduce salmonid losses to predation in the Columbia River basin

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1990-12-01

    We report our results of studies to develop a predation index and evaluate ways to reduce juvenile salmonid losses to predation in the Columbia River Basin. Study objectives of each were: develop an index to estimate predation losses of juvenile salmonids (Oncorhynchus spp) in reservoirs throughout the Columbia River Basin, describe the relationships among predator-caused mortality of juvenile salmonids and physical and biological variables, examine the feasibility of developing bounty, commercial or recreational fisheries on northern squawfish (Ptychocheilus oregonensis) and develop a plan to evaluate the efficacy of predator control fisheries; determine the economic feasibility of developing bounty and commercial fisheries for northern squawfish, assist ODFW with evaluating the economic feasibility of recreational fisheries for northern squawfish and assess the economic feasibility of utilizing northern squawfish, carp (Cyprinus carpio) and suckers (Castostomus spp) in multispecies fisheries; evaluate commercial technology of various fishing methods for harvesting northern squawfish in Columbia River reservoirs and field test the effectiveness of selected harvesting systems, holding facilities and transportation systems; and modify the existing Columbia River Ecosystem Model (CREM) to include processes necessary to evaluate effects of removing northern squawfish on their population size structure and abundance, document the ecological processes, mathematical equations and computer (FORTRAN) programming of the revised version of CREM and conduct systematic analyses of various predator removal scenarios, using revised CREM to generate the simulations. Individual reports are indexed separately

  9. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  10. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell [Pacific States Marine Fisheries Commission].

    2009-09-10

    This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional

  11. Lacustrine basin evolution and coal accumulation of the Middle Jurassic in the Saishiteng coalfield, northern Qaidam Basin, China

    Directory of Open Access Journals (Sweden)

    Meng Li

    2016-07-01

    Full Text Available Based on an extensive borehole survey of the Middle Jurassic coal-bearing sequences in the Saishiteng coalfield, northern Qaidam Basin (NQB, a total of 20 rock types and 5 sedimentary facies were identified, including braided river, meandering river, braided delta, meandering river delta, and lacustrine facies. The distribution of rock types and sedimentary facies contributed to the reconstruction of three periods' sedimentary facies maps of the Middle Jurassic in the Saishiteng coalfield, namely, the Dameigou age, the early Shimengou age and the late Shimengou age. That also provided the basis for the development of a three-stage depositional model of the Middle Jurassic in the NQB, indicating the lacustrine basin of the NQB in the Dameigou age and early Shimengou age were corresponding to an overfill basin, and that in the late Shimengou age was related to a balanced-fill basin. The analysis of the stability and structure of coal seams based on sedimentary facies maps showed that the preferred coal-forming facies in the Saishiteng coalfield were inter-delta bay and interdistributary bay of lower delta plain in the Dameigou age. In particular, the swamps that developed on the subaqueous palaeohigh favored the development of thick coal seams. Thus, minable coal seams may also be found along the Pingtai palaeohigh in the western part of the Saishiteng coalfield.

  12. Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-10-01

    The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground

  13. Occurrence of the Rayed Creekshell, Anodontoides Radzatus, in the Mississippi River Basin: Implications For Conservation and Biogeography

    Science.gov (United States)

    Wendell R. Haag; Melvin L. Warren; Keith Wright; Larry Shaffer

    2002-01-01

    We document the occurrence of the rayed creekshell (Anodontoides radiatus Conrad), a freshwater mussel (Unionidae), at eight sites in the upper Yazoo River drainage (lower Mississippi River Basin) in northern Mississippi. Previously, A. radiatus was thought to be restricted to Gulf Coast drainages as far west only as the...

  14. Hydrologic variability in the Red River of the North basin at the eastern margin of the northern Great Plains

    International Nuclear Information System (INIS)

    Wiche, G.J.

    1991-01-01

    The temporal and spatial variations in streamflow in the Red River of the North basin on the eastern margin of the Great Plains are described and related to the various climatic conditions associated with the flows. The Red River drains about 290,000 square kilometers in parts of Minnesota, South Dakota, North Dakota, Saskatchewan and Manitoba, and a 200 year flood history is available from documents of fur traders, explorers and missionaries, as well as from gauging-station records. The coefficient of variation of mean annual streamflow ranges from ca 110% for streams in the southern and western parts of the Assiniboine River basin to ca 50% for streams along the eastern margin of the Red River of the North basin. Decadal streamflow variability is great in the Red River of the North basin, with mean annual streamflow for the 10 years ending 1940 of 489 cubic hectometers and for the 10 years ending 1975 of 3,670 cubic hectometers. Construction of the Rafferty Reservoir on the Souris River and the Almeda Reservoir on Moose Mountain Creek will cause changes in water quality in the Souris River, with most problems occurring during protracted low flow conditions

  15. Development of a systemwide predator control program: Stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River basin (Northern Squawfish Management Program). Section 1: Implementation; Annual report 1995

    International Nuclear Information System (INIS)

    Young, F.R.

    1997-04-01

    The authors report their results from the fifth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that if predator-sized northern squawfish were exploited at a 10--20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%

  16. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2004-01-01

    This report presents results for year twelve in a basin-wide program to harvest northern pikeminnow1 (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  17. Water withdrawals, wastewater discharge, and water consumption in the Apalachicola-Chattahoochee-Flint River Basin, 2005, and water-use trends, 1970-2005

    Science.gov (United States)

    Marella, Richard L.; Fanning, Julia L.

    2011-01-01

    The Apalachicola-Chattahoochee-Flint (ACF) River Basin covers about 20,500 square miles that drains parts of Alabama, Florida, and Georgia. The basin extends from its headwaters northern Georgia to the Gulf of Mexico. Population in the basin was estimated to be 3.7 million in 2005, an increase of about 41 percent from the 1990 population of 2.6 million. In 2005, slightly more than 721,000 acres of crops were irrigated within the basin. In 2005, the total amount of water withdrawn in the ACF River Basin was about 1,990 million gallons per day (Mgal/d). Of this, surface water accounted for 1,591 Mgal/d (80 percent) and groundwater accounted for 399 Mgal/d (20 percent). Surface water was the primary water source of withdrawals in the northern and central parts of the basin, and groundwater was the primary source in the southern part. The largest surface-water withdrawals was from Cobb County, Georgia (410 Mgal/d, mostly from the Chattahoochee River and Lake Alatoona), and the largest groundwater withdrawals was from Dougherty County, Georgia (38 Mgal/d, mostly from the Upper Floridan aquifer system).

  18. Hydrogeochemical studies of historical mining areas in the Humboldt River basin and adjacent areas, northern Nevada

    Science.gov (United States)

    Nash, J. Thomas

    2005-01-01

    The study area comprises the Humboldt River Basin and adjacent areas, with emphasis on mining areas relatively close to the Humboldt River. The basin comprises about 16,840 mi2 or 10,800,000 acres. The mineral resources of the Humboldt Basin have been investigated by many scientists over the past 100 years, but only recently has our knowledge of regional geology and mine geology been applied to the understanding and evaluation of mining effects on water and environmental quality. The investigations reported here apply some of the techniques and perspectives developed in the Abandoned Mine Lands Initiative (AMLI) of the U.S. Geological Survey (USGS), a program of integrated geological-hydrological-biological-chemical studies underway in the Upper Animas River watershed in Colorado and the Boulder River watershed in, Montana. The goal of my studies of sites and districts is to determine the character of mining-related contamination that is actively or potentially a threat to water quality and to estimate the potential for natural attenuation of that contamination. These geology-based studies and recommendations differ in matters of emphasis and data collection from the biology-based assessments that are the cornerstone of environmental regulations.

  19. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China

    Science.gov (United States)

    Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui

    2018-01-01

    The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.

  20. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljević Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje, podprojekat br. 9: Učestalost bujičnih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  1. Are calanco landforms similar to river basins?

    Science.gov (United States)

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A proposal for an administrative set up of river basin management in the Sittaung River Basin

    OpenAIRE

    Tun, Zaw Lwin; Ni, Bo; Tun, Sein; Nesheim, Ingrid

    2016-01-01

    The purpose of this report is to present a proposal for how an administrative approach based on River Basin Management can be implemented in Myanmar. The Sittaung River Basin has been used as an example area to investigate how the basin can be administered according to the IWRM principles of cooperation between the different sectors and the administrative units, including stakeholder involvement. Ministry of Natural Resource and Environmental Conservation, Myanmar Norwegian Ministry of For...

  3. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    Science.gov (United States)

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  4. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    Directory of Open Access Journals (Sweden)

    Xiaofan Zeng

    Full Text Available The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  5. Misrepresenting the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Clemens Messerschmid

    2015-06-01

    Full Text Available This article advances a critique of the UN Economic and Social Commission for West Asia’s (ESCWA’s representation of the Jordan River Basin, as contained in its recently published Inventory of Shared Water Resources in Western Asia. We argue that ESCWA’s representation of the Jordan Basin is marked by serious technical errors and a systematic bias in favour of one riparian, Israel, and against the Jordan River’s four Arab riparians. We demonstrate this in relation to ESCWA’s account of the political geography of the Jordan River Basin, which foregrounds Israel and its perspectives and narratives; in relation to hydrology, where Israel’s contribution to the basin is overstated, whilst that of Arab riparians is understated; and in relation to development and abstraction, where Israel’s transformation and use of the basin are underplayed, while Arab impacts are exaggerated. Taken together, this bundle of misrepresentations conveys the impression that it is Israel which is the main contributor to the Jordan River Basin, Arab riparians its chief exploiters. This impression is, we argue, not just false but also surprising, given that the Inventory is in the name of an organisation of Arab states. The evidence discussed here provides a striking illustration of how hegemonic hydro-political narratives are reproduced, including by actors other than basin hegemons themselves.

  6. Implementing Integrated River Basin Management in China

    NARCIS (Netherlands)

    Boekhorst, D.G.J. te; Smits, A.J.M.; Yu, X.; Lifeng, L.; Lei, G.; Zhang, C.

    2010-01-01

    This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are

  7. Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam – A case study of the Nhue-Day River Basin

    Directory of Open Access Journals (Sweden)

    Phan Cao Duong

    2016-09-01

    Full Text Available Global warming has caused dramatic changes in regional climate variability, particularly regarding fluctuations in temperature and rainfall. Thus, it is predicted that river flow regimes will be altered accordingly. The purpose of this paper is to present the results of modeling such changes by simulating discharge using the HEC-HMS model. The precipitation was projected using super-high resolution multiple climate models (20 km resolution with newly updated emission scenarios as the input for the HEC-HMS model for flow analysis at the Red River Basin in the northern area of Vietnam. The findings showed that climate change impact on the river flow regimes tend towards a decrease in the dry season and a longer duration of flood flow. A slight runoff reduction is simulated for November while a considerable runoff increase is modeled for July and August amounting to 30% and 25%, respectively. The discharge scenarios serve as a basis for water managers to develop suitable adaptation methods and responses on the river basin scale.

  8. Range extension of Moenkhausia oligolepis (Günther,1864 to the Pindaré river drainage, of Mearim river basin, and Itapecuru river basin of northeastern Brazil (Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Erick Cristofore Guimarães

    2016-08-01

    Full Text Available The present study reports range extansion of Moenkhausia oligolepis to the Pindaré river drainage, of the Mearim river basin, and Itapecuru river basin, Maranhão state, northeastern Brazil. This species was previously known only from Venezuela, Guianas, and the Amazon River basins. In addition, we present some meristic and morphometric data of the specimens herein examined and discuss on its diagnostic characters.

  9. Increasing organic C and N fluxes from a northern Boreal river basin - monitoring and modelling suggest climate related controls

    Science.gov (United States)

    Lepistö, A.; Futter, M.; Kortelainen, P.

    2012-04-01

    Increasing trends in total organic carbon (TOC) concentrations in lakes and streams across northern Europe and North America have been reported. Various hypotheses including enhanced decomposition of organic soils, changes in hydrology and flow paths, decreased acid deposition and land use changes have been put forward to explain the widespread occurrence of this phenomenon. Both observational and modelling studies are needed to identify the most important drivers and relevant processes controlling observed trends in TOC concentrations. Typically, TOC concentrations in Finnish rivers and lakes are high. The Simojoki river basin (3160 km2) is located in the northern Boreal zone of Finland and experiences low, declining sulphate deposition and limited other human impacts. Forest harvest, land drainage and ditch maintenance are the main land management activities in the catchment. Long-term changes (30-40 years) and seasonal trends of total organic nitrogen (TON) and carbon (TOC) concentrations and fluxes in the Simojoki river system were studied. Concentrations of TOC and TON increased particularly during high flows. TOC concentrations are slowly but continuously increasing, fluctuating between droughts and wet periods. The highest concentrations were detected in 1998-2000 during a period of very high flows, after the drought period 1994-1997. Trends in concentrations of TOC and TON in Simojoki were not linked to declines in sulphate deposition but were more related to trends in climate and hydrology. The autumn season is particularly sensitive to climate change impacts. The INCA-C model was applied to simulate TOC dynamics in the catchment. Model results showed that climate change driven patterns in runoff and soil moisture and soil temperature were more important than temporal patterns of sulphate deposition and land management in controlling surface water TOC concentrations. The possible factors behind changes of TOC and TON concentrations and increasing fluxes to

  10. Implementing Integrated River Basin Management in China

    Directory of Open Access Journals (Sweden)

    Dorri G. J. te Boekhorst

    2010-06-01

    Full Text Available This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are matched with the advice of the China Council for International Cooperation on Environment and Development task force on integrated river basin management to the national government of China. This article demonstrates that the World Wildlife Fund for Nature uses various strategies of different types to support a transition process towards integrated river basin management. Successful deployment of these strategies for change in environmental policy requires special skills, actions, and attitudes on the part of the policy entrepreneur, especially in China, where the government has a dominant role regarding water management and the position of policy entrepeneurs is delicate.

  11. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  12. Flood of July 2016 in northern Wisconsin and the Bad River Reservation

    Science.gov (United States)

    Fitzpatrick, Faith A.; Dantoin, Eric D.; Tillison, Naomi; Watson, Kara M.; Waschbusch, Robert J.; Blount, James D.

    2017-06-06

    Heavy rain fell across northern Wisconsin and the Bad River Reservation on July 11, 2016, as a result of several rounds of thunderstorms. The storms caused major flooding in the Bad River Basin and nearby tributaries along the south shore of Lake Superior. Rainfall totals were 8–10 inches or more and most of the rain fell in an 8-hour period. A streamgage on the Bad River near Odanah, Wisconsin, rose from 300 cubic feet per second to a record peak streamflow of 40,000 cubic feet per second in only 15 hours. Following the storms and through September 2016, personnel from the U.S. Geological Survey and Bad River Tribe Natural Resources Department recovered and documented 108 high-water marks near the Bad River Reservation. Many of these high-water marks were used to create three flood-inundation maps for the Bad River, Beartrap Creek, and Denomie Creek for the Bad River Reservation in the vicinity of the community of Odanah.

  13. 75 FR 38833 - Walker River Basin Acquisition Program

    Science.gov (United States)

    2010-07-06

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Walker River Basin Acquisition Program AGENCY... (Reclamation) is canceling work on the Environmental Impact Statement (EIS) for the Walker River Basin... Walker River, primarily for irrigated agriculture, have resulted in a steadily declining surface...

  14. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars.

    Science.gov (United States)

    Macaya-Sanz, D; Heuertz, M; López-de-Heredia, U; De-Lucas, A I; Hidalgo, E; Maestro, C; Prada, A; Alía, R; González-Martínez, S C

    2012-07-01

    Recent phylogeographic studies have elucidated the effects of Pleistocene glaciations and of Pre-Pleistocene events on populations from glacial refuge areas. This study investigates those effects in riparian trees (Populus spp.), whose particular features may convey enhanced resistance to climate fluctuations. We analysed the phylogeographic structure of 44 white (Populus alba), 13 black (Populus nigra) and two grey (Populus x canescens) poplar populations in the Iberian Peninsula using plastid DNA microsatellites and sequences. We also assessed fine-scale spatial genetic structure and the extent of clonality in four white and one grey poplar populations using nuclear microsatellites and we determined quantitative genetic differentiation (Q(ST) ) for growth traits in white poplar. Black poplar displayed higher regional diversity and lower differentiation than white poplar, reflecting its higher cold-tolerance. The dependence of white poplar on phreatic water was evidenced by strong differentiation between the Atlantic and Mediterranean drainage basins and among river basins, and by weaker isolation by distance within than among river basins. Our results suggest confinement to the lower river courses during glacial periods and moderate interglacial gene exchange along coastlines. In northern Iberian river basins, white poplar had lower diversity, fewer private haplotypes and larger clonal assemblies than in southern basins, indicating a stronger effect of glaciations in the north. Despite strong genetic structure and frequent asexual propagation in white poplar, some growth traits displayed adaptive divergence between drainage and river basins (Q(ST) >F(ST)), highlighting the remarkable capacity of riparian tree populations to adapt to regional environmental conditions. © 2012 Blackwell Publishing Ltd.

  15. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    Science.gov (United States)

    Planert, Michael

    2007-01-01

    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over

  16. Geomorphological characterization of endorheic basins in northern Chile

    Science.gov (United States)

    Dorsaz, J.; Gironas, J. A.; Escauriaza, C. R.; Rinaldo, A.

    2011-12-01

    Quantitative geomorphology regroups a large number of interesting tools to characterize natural basins across scales. The application of these tools to several river basins allows the description and comparison of geomorphological properties at different spatial scales as oppose to more traditional descriptors that are typically applied at a single scale, meaning the catchment scale. Most of the recent research using these quantitative geomorphological tools has focused on open catchments and no specific attention has been given to endorheic basins, and the possibility of having particular features that distinguish them from exorheic catchments. The main objective of our study is to characterize endorheic basins and investigate whether these special geomorphological features can be identified. Because scaling invariance is a widely observed and relatively well quantified property of open basins, it provides a suitable tool to characterize differences between the geomorphology of closed and open basins. Our investigation focuses on three closed basins located in northern Chile which describe well the diversity in the geomorphology and geology of this arid region. Results show that endhoreic basins exhibit different slope-area and flow paths sinuosity regimes compared to those observed in open basins. These differences are in agreement with the particular self-similar behavior across spatial scales of the Euclidean length of subcatchments, as well as the Hack's law and Horton's ratios. These regimes imply different physical processes inside the channel network regardless of the basin area, and they seem to be related to the endorheic character of these basins. The analysis of the probability density functions of contributing areas and lengths to the lower region shows that the hypothesis of self-similarity can also be applied to closed basins. Theoretical expressions for these distributions were derived and validated by the data. Future research will focus on (1

  17. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  18. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  19. Water resources of the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Izbicki, John A.

    2000-01-01

    By 2020, demand for water in the Blackstone River Basin is expected to be 52 million gallons per day, one-third greater than the demand of 39 million gallons per day in 1980. Most of this increase is expected to be supplied by increased withdrawals of ground water from stratified-drift aquifers in the eastern and northern parts of the basin. Increased withdrawals from stratified-drift aquifers along the Blackstone River and in the western part of the basin also are expected.The eastern and northern parts of the Blackstone River Basin contain numerous small, discontinuous aquifers which, as a group, comprise the largest ground-water resource of the study area. Fifteen aquifers, ranging in areal extent from 0.57 to 4.3 square miles, were identified. These aquifers have maximum saturated thicknesses ranging from less than 10 feet to 105 feet and maximum transmissivities ranging from less than 1,000 to more than 20,000 feet squared per day. Yields of nine study aquifers were estimated by use of digital ground-water-flow models. Yields depend on the hydraulic properties of the aquifer and the amount of streamflow available for depletion by wells. If streamflow is maintained at 98-percent duration, long-term yields from the aquifers that would be expected to be equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, and long-term yields equaled or exceeded 95 percent of the time range from 0.06 to 1.0 million gallons per day. If streamflow is maintained at 99.5-percent duration, long-term yields equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, long-term yields equaled or exceeded 95 percent of the time range from 0.04 to 1.4 million gallons per day, and longterm yields equaled or exceeded 98 percent of the time range from 0.02 to 0.39 million gallons per day. Maintaining streamflow at 98-percent duration is a more restrictive criterion than maintaining streamflow at 99.5-percent duration. The

  20. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  1. A systematic approach for watershed ecological restoration strategy making: An application in the Taizi River Basin in northern China.

    Science.gov (United States)

    Li, Mengdi; Fan, Juntao; Zhang, Yuan; Guo, Fen; Liu, Lusan; Xia, Rui; Xu, Zongxue; Wu, Fengchang

    2018-05-15

    Aiming to protect freshwater ecosystems, river ecological restoration has been brought into the research spotlight. However, it is challenging for decision makers to set appropriate objectives and select a combination of rehabilitation acts from numerous possible solutions to meet ecological, economic, and social demands. In this study, we developed a systematic approach to help make an optimal strategy for watershed restoration, which incorporated ecological security assessment and multi-objectives optimization (MOO) into the planning process to enhance restoration efficiency and effectiveness. The river ecological security status was evaluated by using a pressure-state-function-response (PSFR) assessment framework, and MOO was achieved by searching for the Pareto optimal solutions via Non-dominated Sorting Genetic Algorithm II (NSGA-II) to balance tradeoffs between different objectives. Further, we clustered the searched solutions into three types in terms of different optimized objective function values in order to provide insightful information for decision makers. The proposed method was applied in an example rehabilitation project in the Taizi River Basin in northern China. The MOO result in the Taizi River presented a set of Pareto optimal solutions that were classified into three types: I - high ecological improvement, high cost and high benefits solution; II - medial ecological improvement, medial cost and medial economic benefits solution; III - low ecological improvement, low cost and low economic benefits solution. The proposed systematic approach in our study can enhance the effectiveness of riverine ecological restoration project and could provide valuable reference for other ecological restoration planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Public perception of an ecological rehabilitation project in inland river basins in northern China: Success or failure.

    Science.gov (United States)

    Feng, Qi; Miao, Zheng; Li, Zongxing; Li, Jianguo; Si, Jianhua; S, Yonghong; Chang, Zongqiang

    2015-05-01

    The need for environmental protection challenges societies to deal with difficult problems because strategies designed by scientists to protect the environment often create negative effects on impoverished local residents. We investigated the effects of China's national and regional policies related to environmental protection and rehabilitation projects in inland river basins, by studying the effect of projects in the Heihe and Shiyang river basins, in northwest China. Interviews and surveys were conducted at 30 sites in the lower reaches of these two arid basins, an area that has experienced severe ecological degradation. The survey results show the ecological rehabilitation projects adversely affected the livelihoods of 70.35% of foresters, 64.89% of farmers and 62.24% of herders in the Minqing region in the lower Shiyang River Basin; also, the projects negatively affected 51.9% of residents in the Ejin Qi in the lower Heihe River Basin. This caused 16.33% of foresters, 39.90% of farmers and 45.32% of herders in the Minqing region to not support the project and 37.5% of residents in the Ejin Qi region said they will deforest and graze again after the project ends. The negative impacts of the policies connected to the projects cause these attitudes. The projects prohibit felling and grazing and require residents to give up groundwater mining; this results in a great amount of uncompensated economic loss to them. Extensive survey data document the concerns of local residents, concerns that are supported by the calculation of actual incomes. In addition, the surveys results show poorer interviewees believe the projects greatly affected their livelihoods. While citizens in this region support environment protection work, the poor require considerable assistance if one expects them to support this type of work. Governmental assistance can greatly improve their living conditions, and hence encourage them to participate in and support the implementation of the projects

  3. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  4. Drainage divides, Massachusetts; Blackstone and Thames River basins

    Science.gov (United States)

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  5. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Glaser, Bryce G.; Amren, Jennifer

    2003-03-01

    This report presents results for year ten in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  6. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  7. Trends and variability in the hydrological regime of the Mackenzie River Basin

    Science.gov (United States)

    Abdul Aziz, Omar I.; Burn, Donald H.

    2006-03-01

    Trends and variability in the hydrological regime were analyzed for the Mackenzie River Basin in northern Canada. The procedure utilized the Mann-Kendall non-parametric test to detect trends, the Trend Free Pre-Whitening (TFPW) approach for correcting time-series data for autocorrelation and a bootstrap resampling method to account for the cross-correlation structure of the data. A total of 19 hydrological and six meteorological variables were selected for the study. Analysis was conducted on hydrological data from a network of 54 hydrometric stations and meteorological data from a network of 10 stations. The results indicated that several hydrological variables exhibit a greater number of significant trends than are expected to occur by chance. Noteworthy were strong increasing trends over the winter month flows of December to April as well as in the annual minimum flow and weak decreasing trends in the early summer and late fall flows as well as in the annual mean flow. An earlier onset of the spring freshet is noted over the basin. The results are expected to assist water resources managers and policy makers in making better planning decisions in the Mackenzie River Basin.

  8. Landslides distribution analysis and role of triggering factors in the Foglia river basin (Central Itay)

    Science.gov (United States)

    Baioni, Davide; Gallerini, Giuliano; Sgavetti, Maria

    2013-04-01

    The present work is focused on the distribution of landslides in Foglia river basin area (northern Marche-Romagna), using a heuristic approach supported by GIS tools for the construction of statistical analysis and spatial data. The study area is located in the Adriatic side of the northern Apennine in the boundary that marks the transition between the Marche and Emilia-Romagna regions. The Foglia river basin extends from the Apennines to the Adriatic sea with NE-SE trend occupying an area of about 708 km2. The purpose of this study is to investigate any relationships between factors related to the territory, which were taken into account and divided into classes, and landslides, trying to identify any possible existence of relationships between them. For this aim the study of landslides distribution was performed by using a GIS approach superimposing each thematic map, previously created, with landslides surveyed. Furthermore, we tried to isolate the most recurrent classes, to detect if at the same conditions there is a parameter that affects more than others, so as to recognize every direct relationship of cause and effect. Finally, an analysis was conducted by applying the model of uncertainty CF (Certainity Factor). In the Foglia river basin were surveyed a total of 2821 landslides occupy a total area of 155 km2, corresponding to 22% areal extent of the entire basin. The results of analysis carried out highlighted the importance and role of individual factors that led to the development of landslides analyzed. Moreover, this methodology may be applied to all orders of magnitude and scale without any problem by not requiring a commitment important, both from the economic point of view, and of human resources.

  9. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  10. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21, 2012, from 1 p.m. to... the implementation of the Water Conservation Program, including the applicable water conservation...

  11. A comparison of integrated river basin management strategies: A global perspective

    Science.gov (United States)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  12. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  13. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  14. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2) in Colbert County, Alabama, USA.

    Science.gov (United States)

    Jacquemin, Stephen J; Ebersole, Jun A; Dickinson, William C; Ciampaglio, Charles N

    2016-01-01

    The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (∼10,000 to 30,000 years B.P.) leading to modern Holocene fish diversity patterns. The objective of this study was to describe the fish assemblages of the Tennessee River Basin from the late Pleistocene using a series of faunas from locales throughout the basin documented from published literature, unpublished reports, and an undocumented fauna from Bell Cave (site ACb-2, Colbert County, AL). Herein we discuss 41 unequivocal taxa from 10 late Pleistocene localities within the basin and include a systematic discussion of 11 families, 19 genera, and 24 identifiable species (28 unequivocal taxa) specific to the Bell Cave locality. Among the described fauna are several extirpated (e.g., Northern Pike Esox lucius, Northern Madtom Noturus stigmosus) and a single extinct (Harelip Sucker Moxostoma lacerum) taxa that suggest a combination of late Pleistocene displacement events coupled with more recent changes in habitat that have resulted in modern basin diversity patterns. The Bell Cave locality represents one of the most intact Pleistocene freshwater fish deposits anywhere in North America. Significant preservational, taphonomic, sampling, and identification biases preclude the identification of additional taxa. Overall, this study provides a detailed look into paleo-river ecology, as well as freshwater fish diversity and distribution leading up to the contemporary biodiversity patterns of the Tennessee River Basin and Mississippi River Basin as a whole.

  15. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2 in Colbert County, Alabama, USA

    Directory of Open Access Journals (Sweden)

    Stephen J. Jacquemin

    2016-02-01

    Full Text Available The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (∼10,000 to 30,000 years B.P. leading to modern Holocene fish diversity patterns. The objective of this study was to describe the fish assemblages of the Tennessee River Basin from the late Pleistocene using a series of faunas from locales throughout the basin documented from published literature, unpublished reports, and an undocumented fauna from Bell Cave (site ACb-2, Colbert County, AL. Herein we discuss 41 unequivocal taxa from 10 late Pleistocene localities within the basin and include a systematic discussion of 11 families, 19 genera, and 24 identifiable species (28 unequivocal taxa specific to the Bell Cave locality. Among the described fauna are several extirpated (e.g., Northern Pike Esox lucius, Northern Madtom Noturus stigmosus and a single extinct (Harelip Sucker Moxostoma lacerum taxa that suggest a combination of late Pleistocene displacement events coupled with more recent changes in habitat that have resulted in modern basin diversity patterns. The Bell Cave locality represents one of the most intact Pleistocene freshwater fish deposits anywhere in North America. Significant preservational, taphonomic, sampling, and identification biases preclude the identification of additional taxa. Overall, this study provides a detailed look into paleo-river ecology, as well as freshwater fish diversity and distribution leading up to the contemporary biodiversity patterns of the Tennessee River Basin and Mississippi River Basin as a whole.

  16. Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia

    Science.gov (United States)

    Rode, Michael; Theuring, Philipp; Collins, Adrian L.

    2015-04-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are credible and in combination such approaches provide a basis for making sediment source apportionment more compelling to catchment stakeholders and managers.

  17. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  18. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  19. Modeling and analysis of Soil Erosion processes by the River Basins model: The Case Study of the Krivacki Potok Watershed, Montenegro

    Science.gov (United States)

    Vujacic, Dusko; Barovic, Goran; Mijanovic, Dragica; Spalevic, Velibor; Curovic, Milic; Tanaskovic, Vjekoslav; Djurovic, Nevenka

    2016-04-01

    The objective of this research was to study soil erosion processes in one of Northern Montenegrin watersheds, the Krivacki Potok Watershed of the Polimlje River Basin, using modeling techniques: the River Basins computer-graphic model, based on the analytical Erosion Potential Method (EPM) of Gavrilovic for calculation of runoff and soil loss. Our findings indicate a low potential of soil erosion risk, with 554 m³ yr-1 of annual sediment yield; an area-specific sediment yield of 180 m³km-2 yr-1. The calculation outcomes were validated for the entire 57 River Basins of Polimlje, through measurements of lake sediment deposition at the Potpec hydropower plant dam. According to our analysis, the Krivacki Potok drainage basin is with the relatively low sediment discharge; according to the erosion type, it is mixed erosion. The value of the Z coefficient was calculated on 0.297, what indicates that the river basin belongs to 4th destruction category (of five). The calculated peak discharge from the river basin was 73 m3s-1 for the incidence of 100 years and there is a possibility for large flood waves to appear in the studied river basin. Using the adequate computer-graphic and analytical modeling tools, we improved the knowledge on the soil erosion processes of the river basins of this part of Montenegro. The computer-graphic River Basins model of Spalevic, which is based on the EPM analytical method of Gavrilovic, is highly recommended for soil erosion modelling in other river basins of the Southeastern Europe. This is because of its reliable detection and appropriate classification of the areas affected by the soil loss caused by soil erosion, at the same time taking into consideration interactions between the various environmental elements such as Physical-Geographical Features, Climate, Geological, Pedological characteristics, including the analysis of Land Use, all calculated at the catchment scale.

  20. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  1. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    Science.gov (United States)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  2. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is

  3. Flathead River Basin Hydrologic Observatory, Northern Rocky Mountains

    Science.gov (United States)

    Woessner, W. W.; Running, S. W.; Potts, D. F.; Kimball, J. S.; Deluca, T. H.; Fagre, D. B.; Makepeace, S.; Hendrix, M. S.; Lorang, M. S.; Ellis, B. K.; Lafave, J.; Harper, J.

    2004-12-01

    We are proposing the 22, 515 km2 glacially-sculpted Flathead River Basin located in Montana and British Columbia as a Hydrologic Observatory. This hydrologic landscape is diverse and includes large pristine watersheds, rapidly developing intermountain valleys, and a 95 km2 regulated reservoir and 510 km2 lake. The basin has a topographic gradient of over 2,339 m, and spans high alpine to arid climatic zones and a range of biomes. Stream flows are snow-melt dominated and underpinned by groundwater baseflow. The site headwaters contain 37 glaciers and thousands of square kilometers of watersheds in which fire and disease are the only disturbances. In contrast, the HO also contains watersheds at multiple scales that were dominated by glaciers within the last 100 years but are now glacier free, impacted by timber harvests and fires of varying ages to varying degrees, modified by water management practices including irrigation diversion and dams, and altered by development for homes, cities and agriculture. This Observatory provides a sensitive monitor of historic and future climatic shifts, air shed influences and impacts, and the consequences of land and water management practices on the hydrologic system. The HO watersheds are some of the only pristine watersheds left in the contiguous U.S.. They provide critical habitat for key species including the native threaten bull trout and lynx, and the listed western cutthroat trout, bald eagle, gray wolf and the grizzly bear. For the last several thousand years this system has been dominated by snow-melt runoff and moderated by large quantities of water stored in glacial ice. However, the timing and magnitude of droughts and summer flows have changed dramatically. With the information that can be gleaned from sediment cores and landscape records at different scales, this HO provides scientists with opportunities to establish baseline watershed conditions and data on natural hydrologic variability within the system. Such a

  4. Fishes of the White River basin, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  5. The tritium balance of the Ems river basin

    International Nuclear Information System (INIS)

    Krause, W.J.

    1989-01-01

    For the Ems river basin, as a fine example of a Central European lowland basin, an inventory of the tritium distribution is presented for the hydrologic years 1951 to 1983. On the basis of a balance model, the tritium contents in surface waters and groundwater of the Ems river basin are calculated, using known and extrapolated tritium input data and comparing them with the corresponding values measured since 1974. A survey of tritium flows occurring in this basin is presented, taking meteorologic and hydrologic facts into account. (orig.)

  6. Zinc and Its Isotopes in the Loire River Basin, France

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  7. Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography

    Science.gov (United States)

    Haefner, Ralph J.; Simonson, Laura A.

    2010-01-01

    The Tuscarawas River Basin drains approximately 2,600 square miles in eastern Ohio and is home to 600,000 residents that rely on the water resources of the basin. This report summarizes the hydrologic conditions in the basin, describes over 400 publications related to the many factors that affect the groundwater and surface-water resources, and presents new water-quality information and a new water-level map designed to provide decisionmakers with information to assist in future data-collection efforts and land-use decisions. The Tuscarawas River is 130 miles long, and the drainage basin includes four major tributary basins and seven man-made reservoirs designed primarily for flood control. The basin lies within two physiographic provinces-the Glaciated Appalachian Plateaus to the north and the unglaciated Allegheny Plateaus to the south. Topography, soil types, surficial geology, and the overall hydrology of the basin were strongly affected by glaciation, which covered the northern one-third of the basin over 10,000 years ago. Within the glaciated region, unconsolidated glacial deposits, which are predominantly clay-rich till, overlie gently sloping Pennsylvanian-age sandstone, limestone, coal, and shale bedrock. Stream valleys throughout the basin are filled with sands and gravels derived from glacial outwash and alluvial processes. The southern two-thirds of the basin is characterized by similar bedrock units; however, till is absent and topographic relief is greater. The primary aquifers are sand- and gravel-filled valleys and sandstone bedrock. These sands and gravels are part of a complex system of aquifers that may exceed 400 feet in thickness and fill glacially incised valleys. Sand and gravel aquifers in this basin are capable of supporting sustained well yields exceeding 1,000 gallons per minute. Underlying sandstones within 300 feet of the surface also provide substantial quantities of water, with typical well yields of up to 100 gallons per minute

  8. Streamflow distribution maps for the Cannon River drainage basin, southeast Minnesota, and the St. Louis River drainage basin, northeast Minnesota

    Science.gov (United States)

    Smith, Erik A.; Sanocki, Chris A.; Lorenz, David L.; Jacobsen, Katrin E.

    2017-12-27

    Streamflow distribution maps for the Cannon River and St. Louis River drainage basins were developed by the U.S. Geological Survey, in cooperation with the Legislative-Citizen Commission on Minnesota Resources, to illustrate relative and cumulative streamflow distributions. The Cannon River was selected to provide baseline data to assess the effects of potential surficial sand mining, and the St. Louis River was selected to determine the effects of ongoing Mesabi Iron Range mining. Each drainage basin (Cannon, St. Louis) was subdivided into nested drainage basins: the Cannon River was subdivided into 152 nested drainage basins, and the St. Louis River was subdivided into 353 nested drainage basins. For each smaller drainage basin, the estimated volumes of groundwater discharge (as base flow) and surface runoff flowing into all surface-water features were displayed under the following conditions: (1) extreme low-flow conditions, comparable to an exceedance-probability quantile of 0.95; (2) low-flow conditions, comparable to an exceedance-probability quantile of 0.90; (3) a median condition, comparable to an exceedance-probability quantile of 0.50; and (4) a high-flow condition, comparable to an exceedance-probability quantile of 0.02.Streamflow distribution maps were developed using flow-duration curve exceedance-probability quantiles in conjunction with Soil-Water-Balance model outputs; both the flow-duration curve and Soil-Water-Balance models were built upon previously published U.S. Geological Survey reports. The selected streamflow distribution maps provide a proactive water management tool for State cooperators by illustrating flow rates during a range of hydraulic conditions. Furthermore, after the nested drainage basins are highlighted in terms of surface-water flows, the streamflows can be evaluated in the context of meeting specific ecological flows under different flow regimes and potentially assist with decisions regarding groundwater and surface

  9. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    International Nuclear Information System (INIS)

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  10. Application of hydrometeorological coupled European flood forecasting operational real time system in Yellow River Basin

    Directory of Open Access Journals (Sweden)

    Yi-qi Yan

    2009-12-01

    Full Text Available This study evaluated the application of the European flood forecasting operational real time system (EFFORTS to the Yellow River. An automatic data pre-processing program was developed to provide real-time hydrometeorological data. Various GIS layers were collected and developed to meet the demands of the distributed hydrological model in the EFFORTS. The model parameters were calibrated and validated based on more than ten years of historical hydrometeorological data from the study area. The San-Hua Basin (from the Sanmenxia Reservoir to the Huayuankou Hydrological Station, the most geographically important area of the Yellow River, was chosen as the study area. The analysis indicates that the EFFORTS enhances the work efficiency, extends the flood forecasting lead time, and attains an acceptable level of forecasting accuracy in the San-Hua Basin, with a mean deterministic coefficient at Huayuankou Station, the basin outlet, of 0.90 in calibration and 0.96 in validation. The analysis also shows that the simulation accuracy is better for the southern part than for the northern part of the San-Hua Basin. This implies that, along with the characteristics of the basin and the mechanisms of runoff generation of the hydrological model, the hydrometeorological data play an important role in simulation of hydrological behavior.

  11. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  12. Time still to restore the polluted Piracicaba river basin

    International Nuclear Information System (INIS)

    Favaro, P.C.; De Nadai Fernandes, E.A.; Ferraz, E.S.B.; Falotico, M.H.B.

    2004-01-01

    Over the last decades the acceleration of the industrialization and urbanization processes together with the intensive agricultural practices have resulted in an impact on the Piracicaba river basin, state of Sao Paulo, Brazil. The source rivers drain from an area of low population density, absence of heavy industries, non-significant agriculture, native forest and reforestation, the opposite is found in the middle part of the basin. Samples of riverbed sediments were collected along the basin for chemical analysis. Results showed that the source rivers still preserve their natural characteristics, while the Atibaia river in the middle part shows signs of pollution from the agricultural activity, industrial effluents and urban sewage. (author)

  13. Adaptation of Arabidopsis thaliana to the Yangtze River basin.

    Science.gov (United States)

    Zou, Yu-Pan; Hou, Xing-Hui; Wu, Qiong; Chen, Jia-Fu; Li, Zi-Wen; Han, Ting-Shen; Niu, Xiao-Min; Yang, Li; Xu, Yong-Chao; Zhang, Jie; Zhang, Fu-Min; Tan, Dunyan; Tian, Zhixi; Gu, Hongya; Guo, Ya-Long

    2017-12-28

    Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different. We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping. A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.

  14. Facies analysis, depositional environments and paleoclimate of the Cretaceous Bima Formation in the Gongola Sub - Basin, Northern Benue Trough, NE Nigeria

    Science.gov (United States)

    Shettima, B.; Abubakar, M. B.; Kuku, A.; Haruna, A. I.

    2018-01-01

    Facies analysis of the Cretaceous Bima Formation in the Gongola Sub -basin of the Northern Benue Trough northeastern Nigeria indicated that the Lower Bima Member is composed of alluvial fan and braided river facies associations. The alluvial fan depositional environment dominantly consists of debris flow facies that commonly occur as matrix supported conglomerate. This facies is locally associated with grain supported conglomerate and mudstone facies, representing sieve channel and mud flow deposits respectively, and these deposits may account for the proximal alluvial fan region of the Lower Bima Member. The distal fan facies were represented by gravel-bed braided river system of probably Scot - type model. This grade into sandy braided river systems with well developed floodplains facies, forming probably at the lowermost portion of the alluvial fan depositional gradient, where it inter-fingers with basinal facies. In the Middle Bima Member, the facies architecture is dominantly suggestive of deep perennial sand-bed braided river system with thickly developed amalgamated trough crossbedded sandstone facies fining to mudstone. Couplets of shallow channels are also locally common, attesting to the varying topography of the basin. The Upper Bima Member is characterized by shallow perennial sand-bed braided river system composed of successive succession of planar and trough crossbedded sandstone facies associations, and shallower channels of the flashy ephemeral sheetflood sand - bed river systems defined by interbedded succession of small scale trough crossbedded sandstone facies and parallel laminated sandstone facies. The overall stacking pattern of the facies succession of the Bima Formation in the Gongola Sub - basin is generally thinning and fining upwards cycles, indicating scarp retreat and deposition in a relatively passive margin setting. Dominance of kaolinite in the clay mineral fraction of the Bima Formation points to predominance of humid sub - tropical

  15. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  16. Water-quality assessment of the lower Illinois River Basin; environmental setting

    Science.gov (United States)

    Warner, Kelly L.

    1998-01-01

    The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground

  17. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    Science.gov (United States)

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  18. Flood Risk Index Assessment in Johor River Basin

    International Nuclear Information System (INIS)

    Ahmad Shakir Mohd Saudi; Hafizan Juahir; Azman Azid; Fazureen Azaman; Ahmad Shakir Mohd Saudi

    2015-01-01

    This study is focusing on constructing the flood risk index in the Johor river basin. The application of statistical methods such as factor analysis (FA), statistical process control (SPC) and artificial neural network (ANN) had revealed the most efficient flood risk index. The result in FA was water level has correlation coefficient of 0.738 and the most practicable variable to be used for the warning alert system. The upper control limits (UCL) for the water level in the river basin Johor is 4.423 m and the risk index for the water level has been set by this method consisting of 0-100.The accuracy of prediction has been evaluated by using ANN and the accuracy of the test result was R"2 = 0.96408 with RMSE= 2.5736. The future prediction for UCL in Johor river basin has been predicted and the value was 3.75 m. This model can shows the current and future prediction for flood risk index in the Johor river basin and can help local authorities for flood control and prevention of the state of Johor. (author)

  19. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    Science.gov (United States)

    Tang, Y.

    2009-12-01

    Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study

  20. Sharing water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  1. Colorado River basin sensitivity to disturbance impacts

    Science.gov (United States)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  2. Environmental setting and its relations to water quality in the Kanawha River basin

    Science.gov (United States)

    Messinger, Terence; Hughes, C.A.

    2000-01-01

    The Kanawha River and its major tributary, the New River, drain 12,233 mi2 in West Virginia, Virginia, and North Carolina. Altitude ranges from about 550 ft to more than 4,700 ft. The Kanawha River Basin is mountainous, and includes parts of three physiographic provinces, the Blue Ridge (17 percent), Valley and Ridge (23 percent), and Appalachian Plateaus (60 percent). In the Appalachian Plateaus Province, little of the land is flat, and most of the flat land is in the flood plains and terraces of streams; this has caused most development in this part of the basin to be near streams. The Blue Ridge Province is composed of crystalline rocks, and the Valley and Ridge and Appalachian Plateaus Provinces contain both carbonate and clastic rocks. Annual precipitation ranges from about 36 in. to more than 60 in., and is orographically affected, both locally and regionally. Average annual air temperature ranges from about 43?F to about 55?F, and varies with altitude but not physiographic province. Precipitation is greatest in the summer and least in the winter, and has the least seasonal variation in the Blue Ridge Province. In 1990, the population of the basin was about 870,000, of whom about 25 percent lived in the Charleston, W. Va. metropolitan area. About 75 million tons of coal were mined in the Kanawha River Basin in 1998. This figure represents about 45 percent of the coal mined in West Virginia, and about seven percent of the coal mined in the United States. Dominant forest types in the basin are Northern Hardwood, Oak-Pine, and Mixed Mesophytic. Agricultural land use is more common in the Valley and Ridge and Blue Ridge Provinces than in the Appalachian Plateaus Province. Cattle are the principal agricultural products of the basin. Streams in the Blue Ridge Province and Allegheny Highlands have the most runoff in the basin, and streams in the Valley and Ridge Province and the southwestern Appalachian Plateaus have the least runoff. Streamflow is greatest in the

  3. Susquehanna River Basin Flood Control Review Study

    Science.gov (United States)

    1980-08-01

    and made recommendations for an intergrated water plan for the Basin and included a specific Early Action Plan. Concerning flood damage reduction, the...transportation and by agriculture as a source of income and occupation. The river served as a source of transportation for trade and commerce and also as a... trade patterns, and labor market areas. The Susquehanna River Basin is largely comprised of BEA economic areas 011, 012, 013, and 016. Figure II shows the

  4. A Basin Approach to a Hydrological Service Delivery System in the Amur River Basin

    Directory of Open Access Journals (Sweden)

    Sergei Borsch

    2018-03-01

    Full Text Available This paper presents the basin approach to the design, development, and operation of a hydrological forecasting and early warning system in a large transboundary river basin of high flood potential, where accurate, reliable, and timely available daily water-level and reservoir-inflow forecasts are essential for water-related economic and social activities (the Amur River basin case study. Key aspects of basin-scale system planning and implementation are considered, from choosing efficient forecast models and techniques, to developing and operating data-management procedures, to disseminating operational forecasts using web-GIS. The latter, making the relevant forecast data available in real time (via Internet, visual, and well interpretable, serves as a good tool for raising awareness of possible floods in a large region with transport and industrial hubs located alongside the Amur River (Khabarovsk, Komsomolsk-on-Amur.

  5. Raptors of the Izdrevaya River Basin, Russia

    Directory of Open Access Journals (Sweden)

    Elvira G. Nikolenko

    2017-05-01

    Full Text Available This article compiles the results of episodic visits of the aurhoes to the basin of the Izdrevaya river during 2012–2016. The main goals of those visits were: to figure out the species composition of nesting fauna of birds of prey, estabishing the manner of nesting pairs’ distribution and designing a system of nestboxes for different species of birds of prey and owls. 8 species of Falconiformes are present in the Izdrevaya river basin, 4 of which are nesting, and 3 species of Strigiformes, 2 of which are nesting. The Black Kite (Milvus migrans has maximum density in the Izdrevaya river basin – 51.83 ind./100km2 (n=93. The Common Buzzard (Buteo buteo is the second in number after the Black Kite, its density being 8.88 ind/100km2 of the total area. The Ural Owl (Strix uralensis, encountered only on two territories in 2012, inhabited 4 nestboxes in 2013 as the result of biotechnical measures taken, and its number increased to 8 pairs successfully breeding in the nextboxes in 2016. Main negative factors for birds of prey in the Izdrevaya river basin were established: electrocution on power lines, illegal logging, illegal construction of dams and the construction of waste-sorting plant with a range of solid municipal waste.

  6. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    Directory of Open Access Journals (Sweden)

    W. P. Miller

    2011-07-01

    Full Text Available The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month forecasts determined by the Colorado Basin River Forecast Center (CBRFC using the National Weather Service (NWS River Forecasting System (RFS hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6 % to 13 % average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10 % to 15 % average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5 % to 8

  7. Hydroclimatology of the Missouri River basin

    Science.gov (United States)

    Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie

    2018-01-01

    Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

  8. Transport and Retention of Nitrogen, Phosphorus and Carbon in North America’s Largest River Swamp Basin, the Atchafalaya River Basin

    Directory of Open Access Journals (Sweden)

    Y. Jun Xu

    2013-04-01

    Full Text Available Floodplains and river corridor wetlands may be effectively managed for reducing nutrients and carbon. However, our understanding is limited to the reduction potential of these natural riverine systems. This study utilized the long-term (1978–2004 river discharge and water quality records from an upriver and a downriver location of the Atchafalaya River to quantify the inflow, outflow, and inflow–outflow mass balance of total Kjeldahl nitrogen (TKN = organic nitrogen + ammonia nitrogen, nitrate + nitrite nitrogen (NO3 + NO2, total phosphorous (TP, and total organic carbon (TOC through the largest river swamp basin in North America. The study found that, over the past 27 years, the Atchafalaya River Basin (ARB acted as a significant sink for TKN (annual retention: 24%, TP (41%, and TOC (12%, but a source for NO3 + NO2 nitrogen (6%. On an annual basis, ARB retained 48,500 t TKN, 16,900 t TP, and 167,100 t TOC from the river water. The retention rates were closely and positively related to the river discharge with highs during the winter and spring and lows in the late summer. The higher NO3 + NO2 mass outflow occurred throughout spring and summer, indicating an active role of biological processes on nitrogen as water and air temperatures in the basin rise.

  9. A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island

    Science.gov (United States)

    Barbaro, Jeffrey R.; Zarriello, Phillip J.

    2007-01-01

    A Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model of the Blackstone River Basin was developed and calibrated to study the effects of changing land- and water-use patterns on water resources. The 474.5 mi2 Blackstone River Basin in southeastern Massachusetts and northern Rhode Island is experiencing rapid population and commercial growth throughout much of its area. This growth and the corresponding changes in land-use patterns are increasing stress on water resources and raising concerns about the future availability of water to meet residential and commercial needs. Increased withdrawals and wastewater-return flows also could adversely affect aquatic habitat, water quality, and the recreational value of the streams in the basin. The Blackstone River Basin was represented by 19 hydrologic response units (HRUs): 17 types of pervious areas (PERLNDs) established from combinations of surficial geology, land-use categories, and the distribution of public water and public sewer systems, and two types of impervious areas (IMPLNDs). Wetlands were combined with open water and simulated as stream reaches that receive runoff from surrounding pervious and impervious areas. This approach was taken to achieve greater flexibility in calibrating evapotranspiration losses from wetlands during the growing season. The basin was segmented into 50 reaches (RCHRES) to represent junctions at tributaries, major lakes and reservoirs, and drainage areas to streamflow-gaging stations. Climatological, streamflow, water-withdrawal, and wastewater-return data were collected during the study to develop the HSPF model. Climatological data collected at Worcester Regional Airport in Worcester, Massachusetts and T.F. Green Airport in Warwick, Rhode Island, were used for model calibration. A total of 15 streamflow-gaging stations were used in the calibration. Streamflow was measured at eight continuous-record streamflow-gaging stations that are part of the U.S. Geological

  10. Water security evaluation in Yellow River basin

    Science.gov (United States)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  11. Contamination assessment of heavy metal in surface sediments of the Wuding River, northern China

    International Nuclear Information System (INIS)

    Longjiang, M.; Qiang, F.; Duowen, M.; Ke, H.; Jinghong, Y.

    2011-01-01

    The heavy metal contents and the contamination levels of the surface sediments of the Wuding River, northern China, were investigated. Heavy metal concentration ranged in μg g -1 : 50.15 - 71.91 for Cr, 408.1 - 442.9 for Mn, 20.11 - 43.59 for Ni, 17.51 - 20.1 for Cu, 68.32 - 89.57 for Zn, 0.2 - 0.38 for Cd and 15.08 - 16.14 for Pb in the Wuding River sediments. The enrichment factor (EF) and the geo-accumulation index (Igeo) demonstrated that the sediments of the Wuding River had been polluted by Cd, Cr and Ni, which mainly originated from anthropogenic sources, whereas the sediments had not been polluted by Zn, Pb, Cu and Mn, which were derived from the crust. In addition, the assessment results of EF and Igeo suggested that the sediments of the Wuding River was 'moderately' polluted by Cd and 'unpolluted to moderately' polluted by Cr and Ni. The elevated urban sewage discharges and agriculture fertilizers usage in river basin are the anthropogenic sources of these heavy metals in river. (author)

  12. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  13. Recent Trends in the Ebro River Basin: Is It All "Just" Climate Change?

    Science.gov (United States)

    Lutz, Stefanie; Merz, Ralf

    2016-04-01

    Water resources are under pressure from a variety of stressors such as industry, agriculture, water abstraction or pollution. Changing climate can potentially enhance the impact of these stressors, especially under water scarcity conditions. The aim of the GLOBAQUA project ("Managing the effects of multiple stressors on aquatic ecosystems under water scarcity") is, therefore, to analyze the combined effect of multiple stressors in the context of increasing water scarcity. As part of the GLOBAQUA project, this study examines recent trends in climate, water quantity and quality parameters in the Ebro River Basin in Northern Spain to identify stressors and determine their joint impact on water resources. Mann-Kendall trend analyses of temperature, precipitation, streamflow, groundwater level, streamwater and groundwater quality data (spanning between 15 and 40 years) were performed. Moreover, anthropogenic pressures such as land use and alteration of natural flow by reservoirs were considered. Climate data indicate increasing temperatures in the Ebro River Basin especially in summer and autumn, and decreasing precipitation particularly in summer. In contrast, precipitation mostly shows upwards trends in autumn, but these are counterbalanced by greater evapotranspiration due to higher temperatures. Overall, this results in annual and seasonal streamflow decreases at the majority of gauging stations. Declining trends in streamflow are most pronounced during summer and are also observed in subbasins without reservoirs. Diminishing water resources become also apparent in generally decreasing groundwater levels in the Ebro River Basin. This decrease is most pronounced in areas where groundwater serves as main origin for irrigation water, which demonstrates how land use acts as a local rather than regional driver of change. Increasing air temperatures correlate with increasing water temperatures over the past 30 years, which indicates the effect of changing climate on water

  14. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  15. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    Science.gov (United States)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  16. Effects of landscape features on population genetic variation of a tropical stream fish, Stone lapping minnow, Garra cambodgiensis, in the upper Nan River drainage basin, northern Thailand

    Directory of Open Access Journals (Sweden)

    Chaowalee Jaisuk

    2018-03-01

    Full Text Available Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid, in eight tributary streams in the upper Nan River drainage basin (n = 30–100 individuals/location, Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44. Allelic richness within samples and stream order of the sampling location were negatively correlated (P < 0.05. We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global FST = 0.022, P < 0.01. The Bayesian clustering algorithms (TESS and STRUCTURE suggested that four to five genetic clusters roughly coincide with sub-basins: (1 headwater streams/main stem of the Nan River, (2 a middle tributary, (3 a southeastern tributary and (4 a southwestern tributary. We observed positive correlation between geographic distance and linearized FST (P < 0.05, and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R2 = 0.75. The MEMGENE analysis

  17. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  18. Potential relationships between the river discharge and the precipitation in the Jinsha River basin, China

    Science.gov (United States)

    Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu

    2018-02-01

    The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.

  19. Environmental education for river-basin planning

    Energy Technology Data Exchange (ETDEWEB)

    Saha, S K

    1980-08-01

    Harmonious intervention in land use, a result of environmental education and good planning, can increase the social and economic benefits without precluding development. Modern river basin planning began as a US innovation in 1874 over the subject of water regulation in the west. The Tennessee Valley Authority (TVA) was devised as a state tool for comprehensive river basin planning and development. The TVA example was not repeated in the other 10 US basins by the Corps of Engineers and the Bureau of Reclamation, although the concept of unified development has survived as a three-part relationship of physical,biological, and human forces in which any malfunctioning of one subsystem affects the others. This is evident in problems of water transfer from agricultural to industrial functions and changes to drainage patterns. The potential damage from ignoring these relationships can be avoided with true interdisciplinary communications. 24 references, 2 tables. (DCK)

  20. Adaptation to changing water resources in the Ganges basin, northern India

    International Nuclear Information System (INIS)

    Moors, Eddy J.; Groot, Annemarie; Biemans, Hester; Terwisscha van Scheltinga, Catharien; Siderius, Christian; Stoffel, Markus; Huggel, Christian; Wiltshire, Andy; Mathison, Camilla; Ridley, Jeff; Jacob, Daniela; Kumar, Pankaj

    2011-01-01

    An ensemble of regional climate model (RCM) runs from the EU HighNoon project are used to project future air temperatures and precipitation on a 25 km grid for the Ganges basin in northern India, with a view to assessing impact of climate change on water resources and determining what multi-sector adaptation measures and policies might be adopted at different spatial scales. The RCM results suggest an increase in mean annual temperature, averaged over the Ganges basin, in the range 1-4 o C over the period from 2000 to 2050, using the SRES A1B forcing scenario. Projections of precipitation indicate that natural variability dominates the climate change signal and there is considerable uncertainty concerning change in regional annual mean precipitation by 2050. The RCMs do suggest an increase in annual mean precipitation in this region to 2050, but lack significant trend. Glaciers in headwater tributary basins of the Ganges appear to be continuing to decline but it is not clear whether meltwater runoff continues to increase. The predicted changes in precipitation and temperature will probably not lead to significant increase in water availability to 2050, but the timing of runoff from snowmelt will likely occur earlier in spring and summer. Water availability is subject to decadal variability, with much uncertainty in the contribution from climate change. Although global social-economic scenarios show trends to urbanization, locally these trends are less evident and in some districts rural population is increasing. Falling groundwater levels in the Ganges plain may prevent expansion of irrigated areas for food supply. Changes in socio-economic development in combination with projected changes in timing of runoff outside the monsoon period will make difficult choices for water managers. Because of the uncertainty in future water availability trends, decreasing vulnerability by augmenting resilience is the preferred way to adapt to climate change. Adaptive policies are

  1. Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management?

    Directory of Open Access Journals (Sweden)

    G.T. (Tom Raadgever

    2008-06-01

    Full Text Available River basin management is faced with complex problems that are characterized by uncertainty and change. In transboundary river basins, historical, legal, and cultural differences add to the complexity. The literature on adaptive management gives several suggestions for handling this complexity. It recognizes the importance of management regimes as enabling or limiting adaptive management, but there is no comprehensive overview of regime features that support adaptive management. This paper presents such an overview, focused on transboundary river basin management. It inventories the features that have been claimed to be central to effective transboundary river basin management and refines them using adaptive management literature. It then collates these features into a framework describing actor networks, policy processes, information management, and legal and financial aspects. Subsequently, this framework is applied to the Orange and Rhine basins. The paper concludes that the framework provides a consistent and comprehensive perspective on transboundary river basin management regimes, and can be used for assessing their capacity to support adaptive management.

  2. Multi-linear model of transformation of runoff in river-basins

    International Nuclear Information System (INIS)

    Szolgay, J.; Kubes, R.

    2005-01-01

    The component part of atmospheric precipitations-runoff model of Hron River is a individual model of transformation of flows in river network, too, which transforms runoff from separate partial catchment basin into terminal profile. This component of precipitations-runoff model can also be used as individual hydrologic transformation model of runoff waves in river-basin. Identification and calibration of this model is realised independently on precipitations-runoff model of Hron River, which is described in this chapter in detail.

  3. Use of the RHS method in Golijska Moravica river basin

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available River Habitat Survey (RHS is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC has been developed for reporting purposes. These are based on simple scoring systems which have been agreed by technical experts.

  4. Geothermal resources of the northern gulf of Mexico basin

    Science.gov (United States)

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  5. Streamflow in the upper Santa Cruz River basin, Santa Cruz and Pima Counties, Arizona

    Science.gov (United States)

    Condes de la Torre, Alberto

    1970-01-01

    Streamflow records obtained in the upper Santa Cruz River basin of southern Arizona, United States, and northern Sonora, Mexico, have been analyzed to aid in the appraisal of the surface-water resources of the area. Records are available for 15 sites, and the length of record ranges from 60 years for the gaging station on the Santa .Cruz River at Tucson to 6 years for Pantano Wash near Vail. The analysis provides information on flow duration, low-flow frequency magnitude, flood-volume frequency and magnitude, and storage requirements to maintain selected draft rates. Flood-peak information collected from the gaging stations has been projected on a regional basis from which estimates of flood magnitude and frequency may be made for any site in the basin. Most streams in the 3,503-square-mile basin are ephemeral. Ground water sustains low flows only at Santa Cruz River near Nogales, Sonoita Creek near Patagonia, and Pantano Wash near Vail. Elsewhere, flow occurs only in direct response to precipitation. The median number of days per year in which there is no flow ranges from 4 at Sonoita Creek near Patagonia to 335 at Rillito Creek near Tomson. The streamflow is extremely variable from year to year, and annual flows have a coefficient of variation close to or exceeding unity at most stations. Although the amount of flow in the basin is small most of the time, the area is subject to floods. Most floods result from high-intensity precipitation caused by thunderstorms during the period ,July to September. Occasionally, when snowfall at the lower altitudes is followed by rain, winter floods produce large volumes of flow.

  6. Foundations of the participatory approach in the Mekong River basin management.

    Science.gov (United States)

    Budryte, Paulina; Heldt, Sonja; Denecke, Martin

    2018-05-01

    Integrated Water Resource Management (IWRM) was acknowledged as a leading concept in the water management for the last two decades by academia, political decision-makers and experts. It strongly promotes holistic management and participatory approaches. The flexibility and adaptability of IWRM concept are especially important for large, transboundary river basins - e.g. the Mekong river basin - where natural processes and hazards, as well as, human-made "disasters" are demanding for a comprehensive approach. In the Mekong river basin, the development and especially the enforcement of one common strategy has always been a struggle. The past holds some unsuccessful experiences. In 2016 Mekong River Commission published IWRM-based Basin Development Strategy 2016-2020 and The Mekong River Commission Strategic Plan 2016-2020. They should be the main guiding document for the Mekong river development in the near future. This study analyzes how the concept of public participation resembles the original IWRM participatory approach in these documents. Therefore, IWRM criteria for public participation in international literature and official documents from the Mekong river basin are compared. As there is often a difference between "de jure" and "de facto" implementation of public participation in management concepts, the perception of local stakeholders was assessed in addition. The results of social survey give an insight if local people are aware of Mekong river basin development and present their dominant attitudes about the issue. The findings enable recommendations how to mitigate obstacles in the implementation of common development strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Rural Settlement Development and Environment Carrying Capacity Changes in Progo River Basin

    Directory of Open Access Journals (Sweden)

    Su Ritohardoyo

    2016-12-01

    Full Text Available Generally the broader rural settlement the heavier population pressure on agricultural land. It indicates that carrying capacity of the rural environment threatened lower. The spatial distribution of the threat in a river basin is quite important as one of the river basin management inputs. Therefore, this article aims at exposing result of research about influence rural population growth and rural settlement land changes to environment carrying capacity. This research was carried out in the rural area in Progo river basin consists 56 sub districts (34 sub districts part of Jawa Tengah Province, and 22 sub districts part of Yogyakarta Special Region. The whole sub districts are such as unit analysis, and research method is based on secondary data analysis. Several data consist Districts Region in Figure 1997 and 2003 (Temanggung, Magelang, Kulon Progo, Sleman and Bantul such as secondary data analysis. Data analysis employs of frequency and cross tabulation, statistics of regression and test. Result of the research shows that population growth of the rural areas in Progo river basin are about 0.72% annum; or the household growth about 3.15% annum as long as five years (1996-2003. Spatial distribution of the population growth in the upper part of the Progo river basin is higher than in the middle and lower part of the basin. The number proportion of farmer in every sub district area in this river basin have increased from 69.95% in 1997 to 70.81% in the year of 2003. It means that work opportunities broadening are still sluggish. However, the number proportion of farmers in the upper part of the Progo river basin is lower than in the middle and lower part of the basin. The rates of settlement land areas changes (0.32 ha/annum as long as five years (1997-2003 is not as fast as the rates of agricultural land areas changes (0.47 ha/annum. Spatial land settlement areas changes in the lower (6.1 ha/annum and middle parts (2.4 ha/annum faster than

  8. Changing climatic conditions in the Upper Thames River Basin

    International Nuclear Information System (INIS)

    Simonovic, S.P.

    2009-01-01

    'Full text:' Many climate change impact studies have been conducted using a top-down approach. First, outputs from Global Circulation Models (GCMs) are considered which are downscaled in a second step to the river basin scale using either a statistical/empirical or a dynamic approach. The local climatic signal that is obtained is then used as input into a hydrological model to assess the direct consequences in the basin. Problems related to this approach include: a high degree of uncertainty associated with GCM outputs; and an increase in uncertainty due to the downscaling approach. An original inverse approach is developed in this work in order to improve the understanding of the processes leading to hydrological hazards, including both flood and drought events. The developed approach starts with the analysis of existing guidelines and management practices in a river basin with respect to critical hydrological exposures that may lead to failure of the water resources system or parts thereof. This implies that vulnerable components of the river basin have to be identified together with the risk exposure. In the next step the critical hydrologic exposures (flood levels for example) are transformed into corresponding critical meteorological conditions (extreme precipitation events for example). These local weather scenarios are then be statistically linked to possible large-scale climate conditions that are available from the GCMs. The developed procedure allows for the assessment of the vulnerability of river basins with respect to climate forcing. It also provides a tool for identifying the spatial distribution of the vulnerability and risk. Vulnerability is here characterized by the incremental losses, expressed either quantitatively or qualitatively, due to a change in the probability and magnitude of hazard events driven by climatic forcing. Vulnerability is seen as the basis for risk mitigation measures for hydrologic extremes at the basin level. The

  9. Drainage areas of the Potomac River basin, West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.

    1996-01-01

    This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.

  10. Social-ecological resilience and law in the Platte River Basin

    Science.gov (United States)

    Birge, Hannah E.; Allen, Craig R.; Craig, Robin; Garmestani, Ahjond S.; Hamm, Joseph A.; Babbitt, Christina; Nemec, Kristine T.; Schlager, Edella

    2014-01-01

    Efficiency and resistance to rapid change are hallmarks of both the judicial and legislative branches of the United States government. These defining characteristics, while bringing stability and predictability, pose challenges when it comes to managing dynamic natural systems. As our understanding of ecosystems improves, we must devise ways to account for the non-linearities and uncertainties rife in complex social-ecological systems. This paper takes an in-depth look at the Platte River basin over time to explore how the system's resilience—the capacity to absorb disturbance without losing defining structures and functions—responds to human driven change. Beginning with pre-European settlement, the paper explores how water laws, policies, and infrastructure influenced the region's ecology and society. While much of the post-European development in the Platte River basin came at a high ecological cost to the system, the recent tri-state and federal collaborative Platte River Recovery and Implementation Program is a first step towards flexible and adaptive management of the social-ecological system. Using the Platte River basin as an example, we make the case that inherent flexibility and adaptability are vital for the next iteration of natural resources management policies affecting stressed basins. We argue that this can be accomplished by nesting policy in a resilience framework, which we describe and attempt to operationalize for use across systems and at different levels of jurisdiction. As our current natural resources policies fail under the weight of looming global change, unprecedented demand for natural resources, and shifting land use, the need for a new generation of adaptive, flexible natural resources govern-ance emerges. Here we offer a prescription for just that, rooted in the social , ecological and political realities of the Platte River basin. Social-Ecological Resilience and Law in the Platte River Basin (PDF Download Available). Available

  11. The Cathedral and the Bazaar: Monocentric and Polycentric River Basin Management

    Directory of Open Access Journals (Sweden)

    Bruce Lankford

    2010-02-01

    Full Text Available Two contemporary theories of river basin management are compared. One is centralised 'regulatory river basin management' with an apex authority that seeks hydrometric data and nationally agreed standards and procedures in decisions over water quality and allocation. This model is commonplace and can be identified in many water training curricula and derivatives of basin management policy. The other, 'polycentric river basin management', is institutionally, organisationally and geographically more decentralised, emphasising local, collective ownership and reference to locally agreed standards. The polycentric model is constructed from the creation of appropriate managerial subunits within river basins. This model emphasises the deployment of hydrologists, scientists and other service providers as mediating agents of environmental and institutional transformation, tackling issues arising within and between the basin subunits such as water allocation and distribution, productivity improvement and conflict resolution. Significantly, it considers water allocation between subunits rather than between sectors and to do this promulgates an experimental, step-wise pragmatic approach, building on local ideas to make tangible progress in basins where data monitoring is limited, basin office resources are constrained and regulatory planning has stalled. To explore these issues, the paper employs the 'Cathedral and Bazaar' metaphor of Eric Raymond. The discussion is informed by observations from Tanzania, Nigeria and the UK.

  12. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    of 3.8 ft/yr. The average corrected total evapotranspiration rate for alfalfa is 3.2 ft/yr so about 0.6 ft/yr (15 percent) flushes salts from the soil. The diversion rate in Bridgeport Valley was estimated to be 1.1 ft/yr and precipitation is 1.3 ft/yr. The total applied-water rate of 2.4 ft/yr is used to irrigate pasture grass. The total applied water rate in the East Fork of the Walker River and Mason Valley was estimated to be 4.8 ft/yr in each valley. The higher rate likely is due to appreciable infiltration, riparian evapotranspiration, or both. Assuming a diversion rate of 3.0 ft/yr, stream loss due to infiltration and riparian evapotranspiration is about 3,000 acre-ft/yr along the East Fork of the Walker River and 14,000 acre-ft/yr in Mason Valley. In the lower Walker River basin, overall and groundwater budgets were calculated for Wabuska to Schurz, Nev., and Schurz to Walker Lake. An overall water budget was calculated for the combined reaches. Imbalances in the water budgets range from 1 to 7 percent, which are insignificant statistically, so the water budgets balance. Total inflow to the Wabuska-Walker Lake reach from the river and others sources is 140,000 acre-ft/yr. Stream and subsurface discharge into the northern end of Walker Lake totals 110,000 acre-ft/yr. About 30,000 acre-ft/yr is lost on the Walker River Indian Reservation from agricultural evapotranspiration, evapotranspiration by native and invasive vegetation, domestic pumpage, and subsurface outflow from the basin through Double Spring and the Wabuska lineament. Alfalfa fields in the upper Walker River basin are lush and have an average corrected total evapotranspiration rate of 3.2 ft/yr. Alfalfa fields on the Walker River Indian Reservation are not as lush and have a total corrected evapotranspiration rate of 1.6-2.1 ft/yr, which partly could be due to alkaline soils that were submerged by Pleistocene Lake Lahontan. The total applied-water rate is 7.0 ft/yr, almost twice the

  13. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    Science.gov (United States)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns

  14. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of...

  15. Potential impact of climate change to the future streamflow of Yellow River Basin based on CMIP5 data

    Science.gov (United States)

    Yang, Xiaoli; Zheng, Weifei; Ren, Liliang; Zhang, Mengru; Wang, Yuqian; Liu, Yi; Yuan, Fei; Jiang, Shanhu

    2018-02-01

    The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change on the future streamflow in this basin is very important for local policy and planning on food security. In this study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm) statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity (VIC) model with 0.25° × 0.25° spatial resolution was developed based on downscaled fields for simulating streamflow in the future period over YRB. The results show that with the global warming trend, the annual streamflow will reduced about 10 % during the period of 2021-2050, compared to the base period of 1961-1990 in YRB. There should be suitable water resources planning to meet the demands of growing populations and future climate changing in this region.

  16. Soil erosion assessment of a Himalayan river basin using TRMM data

    Science.gov (United States)

    Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.

    2015-04-01

    In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.

  17. A framework model for water-sharing among co-basin states of a river basin

    Science.gov (United States)

    Garg, N. K.; Azad, Shambhu

    2018-05-01

    A new framework model is presented in this study for sharing of water in a river basin using certain governing variables, in an effort to enhance the objectivity for a reasonable and equitable allocation of water among co-basin states. The governing variables were normalised to reduce the governing variables of different co-basin states of a river basin on same scale. In the absence of objective methods for evaluating the weights to be assigned to co-basin states for water allocation, a framework was conceptualised and formulated to determine the normalised weighting factors of different co-basin states as a function of the governing variables. The water allocation to any co-basin state had been assumed to be proportional to its struggle for equity, which in turn was assumed to be a function of the normalised discontent, satisfaction, and weighting factors of each co-basin state. System dynamics was used effectively to represent and solve the proposed model formulation. The proposed model was successfully applied to the Vamsadhara river basin located in the South-Eastern part of India, and a sensitivity analysis of the proposed model parameters was carried out to prove its robustness in terms of the proposed model convergence and validity over the broad spectrum values of the proposed model parameters. The solution converged quickly to a final allocation of 1444 million cubic metre (MCM) in the case of the Odisha co-basin state, and to 1067 MCM for the Andhra Pradesh co-basin state. The sensitivity analysis showed that the proposed model's allocation varied from 1584 MCM to 1336 MCM for Odisha state and from 927 to 1175 MCM for Andhra, depending upon the importance weights given to the governing variables for the calculation of the weighting factors. Thus, the proposed model was found to be very flexible to explore various policy options to arrive at a decision in a water sharing problem. It can therefore be effectively applied to any trans-boundary problem where

  18. Morphometric analyses of the river basins in Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Wagle, B.G.

    Morphometric analyses of seven river basins in Goa, India have been carried out. The linear and areal aspects of these basins are reported here. The plots of stream order versus stream numbers and stream orders versus mean stream lengths are found...

  19. The politics of river basin organizations: institutional design choices, coalitions, and consequences

    Directory of Open Access Journals (Sweden)

    Dave Huitema

    2017-06-01

    Full Text Available The idea that ecosystem management should be approached at the bioregional scale is central to the thinking on adaptive governance. Taken to the domain of water management, a bioregional approach implies the foundation of river basin organizations (RBOs, a notion that has been warmly welcomed by scholars and practitioners alike. However, it appears that river basin organizations come in various shapes and sizes, their intended foundation often leads to resistance, and their actual performance is understudied. Through this special feature we seek to advance the state of our knowledge in this respect. Through this introduction we lay the foundation for the case studies that follow in the special feature and for the conclusions. We do so by presenting a worked typology of river basin organizations. This typology helps us differentiate between various kinds of proposals that are all referred to as river basin organizations, but that are actually quite different in nature. In addition, in this introduction we present an approach to dissecting the inevitable political debates that ensue once a proposal to found a river basin organization is made, something that is often ill understood by the proponents of river basin organizations. After this, we explain the criteria that one could use to assess the performance of river basin organizations that actually come into being. Although the thinking in adaptive governance is strongly concerned with ecological effectiveness, we do show that other criteria can be applied too. Finally, we briefly introduce the various contributions to the special feature.

  20. Aquatic life protection index of an urban river Bacanga basin in northern Brazil, São Luís - MA

    Directory of Open Access Journals (Sweden)

    A. K. Duarte-dos-Santos

    Full Text Available Abstract Bacanga River Basin faces environmental problems related to urbanization and discharge of untreated domestic sewage, which compromise its ecosystem health. Due to the small number of studies that assessed its water quality, the present study aimed to assess the current status of this ecosystem based on the aquatic life protection index. Samples were carried out every two months, in a total of six events, in six sites along the basin, where the water samples were collected to assess physicochemical parameters and calculate the trophic state index and the index of minimum parameters for the protection of aquatic communities. The data were also compared with values determined by the resolution National Environment Council - CONAMA 357/05. Our results reveal significant changes in the water quality of Bacanga River Basin. An increase in nutrients and chlorophyll-a concentration led it to eutrophication. The surfactant values were high and put in danger the aquatic biota. Dissolved oxygen rates were below the values allowed by the resolution in most sites sampled. The current water quality is terrible for the protection of aquatic life in 61.92% of the sites sampled.

  1. Uranium deposits: northern Denver Julesburg basin, Colorado

    International Nuclear Information System (INIS)

    Reade, H.L.

    1978-01-01

    The Fox Hills Sandstone and the Laramie Formation (Upper Cretaceous) are the host rocks for uranium deposits in Weld County, northern Denver Julesburg basin, Colorado. The uranium deposits discovered in the Grover and Sand Creek areas occur in well-defined north--south trending channel sandstones of the Laramie Formation whereas the sandstone channel in the upper part of the Fox Hills Sandstone trends east--west. Mineralization was localized where the lithology was favorable for uranium accumulation. Exploration was guided by log interpretation methods similar to those proposed by Bruce Rubin for the Powder River basin, Wyoming, because alteration could not be readily identified in drilling samples. The uranium host rocks consist of medium- to fine-grained carbonaceous, feldspathic fluvial channel sandstones. The uranium deposits consist of simple to stacked roll fronts. Reserve estimates for the deposits are: (1) Grover 1,007,000 lbs with an average grade of 0.14 percent eU 3 O 8 ,2) Sand Creek 154,000 lbs with an average grade of 0.08 percent eU 3 O 8 , and 3) The Pawnee deposit 1,060,000 lbs with an average grade of 0.07 percent eU 3 O 8 . The configuration of the geochemical cells in the Grover and Sand Creek sandstones indicate that uraniferous fluids moved northward whereas in the Pawnee sandstone of the Fox Hills uraniferous fluids moved southward. Precipitation of uranium in the frontal zone probably was caused by downdip migration of oxygcnated groundwater high in uranium content moving through a favorable highly carbonaceous and pyritic host sandstone

  2. Water-quality assessment of the Lower Grand River Basin, Missouri and Iowa, USA, in support of integrated conservation practices

    Science.gov (United States)

    Wilkison, Donald H.; Armstrong, Daniel J.

    2016-01-01

    The effectiveness of agricultural conservation programmes to adequately reduce nutrient exports to receiving streams and to help limit downstream hypoxia issues remains a concern. Quantifying programme success can be difficult given that short-term basin changes may be masked by long-term water-quality shifts. We evaluated nutrient export at stream sites in the 44 months that followed a period of increased, integrated conservation implementation within the Lower Grand River Basin. These short-term responses were then compared with export that occurred in the main stem and adjacent rivers in northern Missouri over a 22-year period to better contextualize any recent changes. Results indicate that short-term (October 2010 through May 2014) total nitrogen (TN) concentrations in the Grand River were 20% less than the long-term average, and total phosphorus (TP) concentrations were 23% less. Nutrient reductions in the short term were primarily the result of the less-than-average precipitation and, consequently, streamflow that was 36% below normal. Therefore, nutrient concentrations measured in tributary streams were likely less than normal during the implementation period. Northern Missouri streamflow-normalized TN concentrations remained relatively flat or declined over the period 1991 through 2013 likely because available sources of nitrogen, determined as the sum of commercial fertilizers, available animal manures and atmospheric inputs, were typically less than crop requirement for much of that time frame. Conversely, flow-normalized stream TP concentrations increased over the past 22 years in northern Missouri streams, likely in response to many years of phosphorus inputs in excess of crop requirements. Stream nutrient changes were most pronounced during periods that coincided with the major tillage, planting and growth phases of row crops and increased streamflow. Nutrient reduction strategies targeted at the period February through June would likely have the

  3. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    Science.gov (United States)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  4. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea

    Science.gov (United States)

    Tang, Xiaoyin; Yang, Shuchun; Hu, Shengbiao

    2017-11-01

    The Baiyun Sag, located in the deep-water area of the northern South China Sea, is the largest and deepest subbasin in the Pearl River Mouth Basin and one of the most important hydrocarbon-accumulation depression areas in China. Thermal history is widely thought to be of great importance in oil and gas potential assessment of a basin as it controls the timing of hydrocarbon generation and expulsion from the source rock. In order to unravel the paleo-heat flow of the Baiyun Sag, we first analyzed tectonic subsidence of 55 pseudo-wells constructed based on newly interpreted seismic profiles, along with three drilled wells. We then carried out thermal modeling using the multi-stage finite stretching method and calibrated the results using collected present-day vitrinite reflectance data and temperature data. Results indicate that the first and second heating of the Baiyun Sag after 49 Ma ceased at 33.9 Ma and 23 Ma. Reconstructed average basal paleoheat flow values at the end of the rifting periods are 57.7-86.2 mW/m2 and 66.7-97.3 mW/m2, respectively. Following the last heating period at 23 Ma, the study area has undergone a persistent thermal attenuation phase, and basal heat flow has cooled down to 64.0-79.2 mW/m2 at present.

  5. Distribution of trace elements in sediment and soil from river Vardar Basin, Macedonia/Greece.

    Science.gov (United States)

    Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu

    2016-01-01

    A systematic study was carried out to investigate the distribution of 59 elements in the sediment and soil samples collected from the river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 28 sampling sites. Analyses were performed by inductively coupled plasma-mass spectrometry. R-mode factor analysis (FA) was used to identify and characterise element associations. Seven associations of elements were determined by the method of multivariate statistics. Every factor (Factors 1-3 and 6 and 7 as geogenic and Factors 4 and 5 as anthropogenic associations of elements) are examined and explained separately. The distribution of various elements showed that there is a presence of anthropogenic elements (Ag, Cd, Cu, Ge, Pb, Sn and Zn) introduced in the river sediments and soils from the mining, metallurgical, industrial and agricultural activities in Vardar River Basin, which covers most of the Republic of Macedonia and Central-northern part of Greece.

  6. GRACE-based estimates of water discharge over the Yellow River basin

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2016-05-01

    Full Text Available As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.

  7. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  8. Arsenic occurrence in water bodies in Kharaa river basin

    Directory of Open Access Journals (Sweden)

    Azzaya T

    2018-02-01

    Full Text Available Distribution of arsenic (As and its compound and related toxicology are serious concerns nowadays. Gold mining activity is one of the anthropogenic sources of environmental contamination regarding As and other heavy metals. In Mongolia, the most productive gold mining sites are placed in the Kharaa river basin. A hundred water samples were collected from river, spring and deep wells in this river basin. Along with total As and its species-As(III and As(V, examination of concentration levels of other key parameters, 21 heavy metals with pH, total hardness, electric conductivity, anion and cations, was also carried out. In respect to the permissible limit formulated by the Mongolian National Drinking water quality standard (MNS 0900:2005, As10 µg/l, the present study showed that most of samples were found no contamination. In Kharaa river basin, an average concentration of total As in surface water was 4.04 µg/l with wide range in 0.07−30.30 µg/l whereas it was 2.24 µg/l in groundwater. As analysis in surface water in licensed area of Gatsuurt gold mining showed a mean concentration with 24.90 µg/l presenting higher value than that of value in river basin by 6 orders of magnitude and it was 2 times higher than permissible level as well. In Boroo river nearby Boroo gold mining area, As concentration in water was ranged in 6.05−6.25 µg/l. Ammonia pollution may have present at estuary of Zuunmod river in Mandal sum with above the permissible level described in national water quality standard. Geological formation of the rocks and minerals affected to change of heavy metal concentration, especially As and uranium (U at spring water nearby Gatsuurt-Boroo improved road.

  9. Evaluating extreme flood characteristics of small mountainous basins of the Black Sea coastal area, Northern Caucasus

    Directory of Open Access Journals (Sweden)

    L. S. Lebedeva

    2015-06-01

    Full Text Available The probability of heavy rains and river floods is expected to increase with time in the Northern Caucasus region. Densely populated areas in the valleys of small mountainous watersheds already frequently suffer from catastrophic peak floods caused by intense rains at higher elevations. This study aimed at assessing the flood characteristics of several small basins in the piedmont area of the Caucasus Mountains adjacent to the Black Sea coast including ungauged Cemes River in the Novorossiysk city. The Deterministic-Stochastic Modelling System which consists of hydrological model Hydrograph and stochastic weather generator was applied to evaluate extreme rainfall and runoff characteristics of 1% exceedance probability. Rainfall intensity is shown to play more significant role than its depth in formation of extreme flows within the studied region.

  10. Planning the development of the Mekong river basin

    Energy Technology Data Exchange (ETDEWEB)

    Chomchai, P [Mekong Secretariat, Bangkok (Thailand)

    1992-10-01

    In planning to develop the vast potential of the Mekong river in Southeast Asia, a number of institutional aspects need to be addressed, and the sometimes diverging interests of the riparian countries need to be carefully balanced. The Mekong river is an extremely valuable natural resource: its potential for irrigation, hydropower, navigation, fisheries and related development is more than adequate to raise significantly the standards of living of the people of the lower Mekong basin and in the riparian countries outside the river's catchment area. The Mekong's catchment area of 795 000 km[sup 2] encompasses parts of China and Myanmar, the whole of Laos and Cambodia, one third of Thailand and one fifth of Viet Nam. The population of the Mekong basin is around 100 million, about half of whom live in the lower basin. It could be said that these impoverished inhabitants of the basin depend significantly on the Mekong for an improvement in their livelihood, and this places a heavy responsibility on those involved in developing its water resources. The Mekong Committee, since its establishment in 1957 and in its present interim status since 1977, is dedicated to the co-ordinated development of the basin's resources, on the basis of reasonable and equitable sharing between the riparian states as stated in the Committee's declaration of principles. With the establishment of the Mekon Committee, serious efforts have been made aimed at rational management of water resources use. (author).

  11. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  12. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    Science.gov (United States)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  13. Identification of basin characteristics influencing spatial variation of river flows

    NARCIS (Netherlands)

    Mazvimavi, D.; Burgers, S.L.G.E.; Stein, A.

    2006-01-01

    The selection of basin characteristics that explain spatial variation of river flows is important for hydrological regionalization as this enables estimation of flow statistics of ungauged basins. A direct gradient analysis method, redundancy analysis, is used to identify basin characteristics,

  14. Analysis of benthic macroinvertebrates and biotic indices to evaluate water quality in rivers impacted by mining activities in northern Chile

    Directory of Open Access Journals (Sweden)

    Alvial I.E.

    2013-02-01

    Full Text Available Catchments in the semiarid regions are especially susceptible to environmental perturbation associated with water scarcity, hydrological variations and overuse by anthropogenic activities. Using multivariate analysis to relate environmental and biological data, and diversity and biotic indices (ChBMWP, ChIBF, we analyzed the macroinvertebrate composition of 12 rivers of the semiarid region of northern Chile. A non-metric multidimensional scaling for macroinvertebrate taxa and a principal component analysis for environmental variables strongly separated upstream sites (e.g. Vacas Heladas and Malo Rivers, which presented low pH and high dissolved metal concentrations, from other sites. Effectively, CCA showed that metals and low pH, associated with the altitudinal gradient, determined the distributional patterns of macroinvertebrates in the Elqui catchment. The causes of these particular conditions could be related to geological processes and human impact. The biotic indices applied to the sampling sites corroborated and reflected these characteristics, with La Laguna and Turbio Rivers showing a diverse macroinvertebrate community and moderate to good water quality, and the Claro River showing favorable conditions for the development of aquatic biota, indicating its better quality relative to other stations. To the middle and low part of the basin, a change in the composition of the community was observed, with species that suggest an impact by an increase in organic matter, due to agricultural activities and urban settlements concentrated in this area. Our results suggest that macroinvertebrate taxa in northern Chile may be exceptional species, adapted to unfavorable geochemical conditions, and emphasize the need for protection of the semiarid basins of the region.

  15. Studies on the biology of schistosomiasis with emphasis on the Senegal river basin

    Directory of Open Access Journals (Sweden)

    Southgate VR

    2001-01-01

    Full Text Available The construction of the Diama dam on the Senegal river, the Manantali dam on the Bafing river, Mali and the ensuing ecological changes have led to a massive outbreak of Schistosoma mansoni in Northern Senegal, associated with high intensity of infections, due to intense transmission, and the creation of new foci of S. haematobium. Data on the vectorial capacity of Biomphalaria pfeifferi from Ndombo, near Richard Toll, Senegal are presented with sympatric and allopatric (Cameroon S. mansoni. Comparisons are made on infectivity, cercarial production, chronobiology of cercarial emergence and longevity of infected snails. Recent data on the intermediate host specificity of different isolates of S. haematobium from the Lower and Middle Valley of the Senegal river basin (SRB demonstrate the existence of at least two strains of S. haematobium. The role of Bulinus truncatus in the transmission of S. haematobium in the Lower and Middle Valleys of the SRB is reviewed. Both S. haematobium and S. mansoni are transmitted in the same foci in some areas of the SRB.

  16. Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2018-06-15

    In the current study a method for the probabilistic accounting of the water footprint (WF) at the river basin level has been proposed and developed. It is based upon the simulation of the anthropised water cycle and combines a hydrological model and a decision support system. The methodology was carried out in the Segura River Basin (SRB) in South-eastern Spain, and four historical scenarios were evaluated (1998-2010-2015-2027). The results indicate that the WF of the river basin reached 5581 Mm 3 /year on average in the base scenario, with a high variability. The green component (3231 Mm 3 /year), mainly generated by rainfed crops (62%), was responsible for the great variability of the WF. The blue WF (1201 Mm 3 /year) was broken down into surface water (56%), renewable groundwater (20%) and non-renewable groundwater (24%), and it showed the generalized overexploitation of aquifers. Regarding the grey component (1150 Mm 3 /year), the study reveals that wastewater, especially phosphates (90%), was the main culprit producing water pollution in surface water bodies. The temporal evolution of the four scenarios highlighted the successfulness of the water treatment plans developed in the river basin, with a sharp decrease in the grey WF, as well as the stability of the WF and its three components in the future. So, the accounting of the three components of the WF in a basin was integrated into the management of water resources, it being possible to predict their evolution, their spatial characterisation and even their assessment in probabilistic terms. Then, the WF was incorporated into the set of indicators that usually is used in water resources management and hydrological planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Integrated resource assessment of the Drina River Basin

    Science.gov (United States)

    Almulla, Youssef; Ramos, Eunice; Gardumi, Francesco; Howells, Mark

    2017-04-01

    The integrated assessment and management of resources: water, energy, food and environment is of fundamental importance, yet it is a very challenging task especially when it is carried out on the transboundary level. This study focuses on the Drina River Basin (DRB) which is a transboundary basin in South East Europe spreading across Bosnia and Herzegovina, Serbia and Montenegro with a total surface area of 19,982 km2. Water resources from the Drina River Basin are shared among many activities in the basin: domestic water supply, electricity generation, fishery, tourism and, to a lesser extent, irrigation, industry and mining. The region has recently experienced repeated events of floods and droughts causing significant damage to the economy, showing a high vulnerability of the area to the effects of climate change. The assessment of the Drina River Basin is carried out in the framework of the project "Water food energy ecosystems nexus in transboundary river basins" under the UNECE Water Convention. This study aims to: 1) Improve the cooperation in the operation of dams and hydropower plants in the DRB for optimized production; 2) Explore the opportunities generated by electricity trade between the DRB countries as a mechanism to enhance cooperation and as an enabler for the synchronised operation of hydropower plants; 3) Motivate the implementation of energy efficiency measures to reduce the electricity production requirement from hydro and thermal power. In order to achieve that, a multi-country electricity system model was developed for the three countries of Drina river basin using the Open Source energy MOdelling SYStem (OSeMOSYS). The model represents the whole electricity system of each country, with special cascade representation of hydropower plants along Drina river and its tributaries. The results show that, in a scenario of synchronised operation of all power plants along Drina and its tributaries, those downstream can significantly increase their

  18. Land cover and climate change in Koshi River Basin, the Third Pole

    Science.gov (United States)

    Zhang, Y.; Gao, J. G.; Liu, L.; Nie, Y.; Wang, Z.; Yang, X.

    2011-12-01

    Koshi River Basin (KRB) is an important part of trans-boundary river basins in the Himalaya region, shared between China and Nepal. The Koshi River, originating from the snowy mountains, glaciers and permafrost melt in the Tibetan Plateau and the northern areas of Nepal, with heavily glaciated and snow covered catchments, has three sub-tributaries. Total area is 53955.57 km2. It is being under the risk of glacier lakes outburst and extreme climate events in many place in the KRB. The basin contains many important ecosystems and protected areas which provide a wide range of biodiversity and related ecosystem services, so it sustains different kinds of livelihood styles. Air temperature data from 1901 to 2009 with spatial resolution of 0.5° were obtained by the Climatic Research Unit of the University of East Anglia, named as CRU-TS 3.1. The change significant was inspected by Mann-Kendall method. Vegetation coverage is calculated by Spot vegetation dataset provided by ten day global syntheses data, which produced by VITO.The land cover data was provided by ICIMOD and IGSNRR. Results show that:1. The main land-cover types are alpine meadow in northern slope of Mt. Himalaya, while main types in southern slope of the mountain are forest and cultivated land. Snow and ice are broadly distributed on the boundary between two countries. 2. From the data, we found that there happened a little change for vegetation coverage in most part of the KRB. But the regions with change is striped in a north-south orientation, more interesting phenomenon is that, the areas vegetation increasing is distributed along the river, that decreasing is mountain ridge. 3. The mean temperature in the KRB is increasing in recent more than 100 years at a rate of 0.87 Celsius Degree per hundred of years, while annual precipitation is decreasing at a rate of 120.9 mm pre hundred years at the same period and fluctuation range is gradually widened. The change rate of temperature ranges from 0.4 to 0

  19. The major floods in the Amazonas river and tributaries (Western Amazon Basin) during the 1970-2012 period : a focus on the 2012 flood

    OpenAIRE

    Espinoza, J. C.; Ronchail, J.; Frappart, F.; Lavado, W.; Santini, William; Guyot, Jean-Loup

    2013-01-01

    In this work, the authors analyze the origin of the extreme floods in the Peruvian Amazonas River during the 1970-2012 period, focusing on the recent April 2012 flooding (55 400 m(3) s(-1)). Several hydrological variables, such as rainfall, terrestrial water storage, and discharge, point out that the unprecedented 2012 flood is mainly related to an early and abundant wet season over the north of the basin. Thus, the peak of the Maranon River, the northern contributor of the Amazonas, occurred...

  20. Turbidity and suspended-sediment transport in the Russian River Basin, California

    Science.gov (United States)

    Ritter, John R.; Brown, William M.

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  1. Snowmelt runoff in the Green River basin derived from MODIS snow extent

    Science.gov (United States)

    Barton, J. S.; Hall, D. K.

    2011-12-01

    The Green River represents a vital water supply for southwestern Wyoming, northern Colorado, eastern Utah, and the Lower Colorado River Compact states (Arizona, Nevada, and California). Rapid development in the southwestern United States combined with the recent drought has greatly stressed the water supply of the Colorado River system, and concurrently increased the interest in long-term variations in stream flow. Modeling of snowmelt runoff represents a means to predict flows and reservoir storage, which is useful for water resource planning. An investigation is made into the accuracy of the Snowmelt Runoff Model of Martinec and Rango, driven by Moderate Resolution Imaging Spectroradiometer (MODIS) snow maps for predicting stream flow within the Green River basin. While the moderate resolution of the MODIS snow maps limits the spatial detail that can be captured, the daily coverage is an important advantage of the MODIS imagery. The daily MODIS snow extent is measured using the most recent clear observation for each 500-meter pixel. Auxiliary data used include temperature and precipitation time series from the Snow Telemetry (SNOTEL) and Remote Automated Weather Station (RAWS) networks as well as from National Weather Service records. Also from the SNOTEL network, snow-water equivalence data are obtained to calibrate the conversion between snow extent and runoff potential.

  2. Oligocene paleogeography of the northern Great Plains and adjacent mountains

    International Nuclear Information System (INIS)

    Seeland, D.

    1985-01-01

    Early Oligocene paleogeography of the northern Great Plains and adjacent mountains is inferred in part from published surface and subsurface studies of the pre-Oligocene surface. These studies are combined with published and unpublished information on clast provenance, crossbedding orientation, and Eocene paleogeography. The Oligocene Arctic Ocean-Gulf of Mexico continental divide extended from the southern Absaroka Mountains east along the Owl Creek Mountains, across the southern Powder River Basin, through the northern Black Hills, and eastward across South Dakota. Streams north of the divide flowed northeastward. The Olligocene White River Group contains 50 to 90 percent airfall pyroclastic debris from a northern Great Basin source. Most of the uranium deposits of the region in pre-Oligocene rocks can be related to a uranium source in the volcanic ash of the White River; in many places the pre-Oligocene deposits can be related to specific Oligocene channels. Uranium deposits in sandstones of major Oligocene rivers are an important new type of deposit. The Oligocene channel sandstones also contain small quantities of gold, molybdenum, gas, and oil

  3. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs. 

  4. Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change - A reevaluation of the paleogeographical setting of Dali Man site

    NARCIS (Netherlands)

    Rits, Daniël S.; van Balen, Ronald T.; Prins, Maarten A.; Zheng, Hongbo

    2017-01-01

    The Luo River is located in the southern part of the Chinese Loess Plateau and the northern part of the Weihe Basin, in Central China. In the basin it flows proximal to the site of the Luyang Wetland core, which is an important archive of climate change over the past 1 Myr in this region. In this

  5. M-area basin closure-Savannah River Site

    International Nuclear Information System (INIS)

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway

  6. The Hei River Basin in northwestern China - tectonics, sedimentary processes and pathways

    Science.gov (United States)

    Rudersdorf, Andreas; Nottebaum, Veit; Schimpf, Stefan; Yu, Kaifeng; Hartmann, Kai; Stauch, Georg; Wünnemann, Bernd; Reicherter, Klaus; Diekmann, Bernhard; Lehmkuhl, Frank

    2014-05-01

    The Hei River Basin (catchment area of c. 130,000 km²) is situated at the transition between the northern margin of the Tibetan Plateau and the southern slopes of Gobi-Tien-Shan. As part of the northwestern Chinese deserts, the Ejina Basin (Gaxun Nur Basin) constitutes the endorheic erosion base of the drainage system. The basin - hosting the second largest continental alluvial fans in the world, is tectonically strongly shaped by the Gobi belt of left-lateral transpression. The tectonic setting in combination with competing climatic driving forces (Westerlies and summer/winter monsoon currents) has supported the formation of a valuable long-time sediment archive comprises at least the last 250,000 yrs. of deposition. It is composed by the interplay of eolian, fluvial and lacustrine sedimentation cycles and today is dominated by widespread (gravel) gobi surfaces, insular dune fields and shallow evaporitic playa areas. Thus, it provides excellent conditions to investigate tectonic evolution and Quaternary environmental changes. Recently, geomorphological, geophysical, neotectonic and mineralogical studies have enhanced the understanding of the environmental history and the modern depositional environment. Moreover, the role of the Hei River Basin as an important source area of silt particles which were later deposited on the Chinese Loess Plateau is evaluated. Therefore, a 230 m long drill core, sediment sections and ca. 700 surface samples throughout the whole catchment and basin were analyzed. Instrumental and historical seismicity are very low, but the proximity to active fault zones and dating irregularities in earlier publications indicate evidence for deformation in the study area. Despite flat topography, indications of active tectonics such as fault-related large-scale lineations can be observed. Seismically deformed unconsolidated lacustrine deposits (seismites), presumably of Holocene age, are evident and must be related to the nearby faults. The upper

  7. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  8. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  9. Water-energy-food nexus in Large Asian River Basins

    OpenAIRE

    Keskinen, Marko; Varis, Olli

    2016-01-01

    The water-energy-food nexus ("nexus") is promoted as an approach to look at the linkages between water, energy and food. The articles of Water's Special Issue "Water-Energy-Food Nexus in Large Asian River Basins" look at the applicability of the nexus approach in different regions and rivers basins in Asia. The articles provide practical examples of the various roles and importance of water-energy-food linkages, but also discuss the theoretical aspects related to the nexus. While it is eviden...

  10. Fish, Corumbataí and Jacaré-Pepira river basins, São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Braga, F. M. S.

    2006-01-01

    Full Text Available Fish were studied in two river basins (Corumbataí and Jacaré-Pepira subjected to strong human pressure, in the interior of the State of São Paulo, southeastern Brazil. In the Corumbataí basin, four sites were sampled: Cabeça river, Lapa stream, Passa-Cinco river, and Corumbataí river; in the Jacaré-Pepira basin, three sites were sampled: Tamanduá stream, Jacaré-Pepira river, and Água Branca stream. A total of 4,050 specimens belonging to 48 species and 13 families were caught and analyzed.

  11. Environmental Setting of the Lower Merced River Basin, California

    Science.gov (United States)

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.

  12. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    Science.gov (United States)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater

  13. River Basin Scale Management and Governance: Competing Interests for Western Water

    Science.gov (United States)

    Lindquist, Eric

    2015-04-01

    One of the most significant issues in regard to how social scientists understand environmental and resource management is the question of scale: what is the appropriate scale at which to consider environmental problems, and associated stakeholders (including hydrologists) and their interests, in order to "govern" them? Issues of scale touch on the reality of political boundaries, from the international to the local, and their overlap and conflict across jurisdictions. This presentation will consider the questions of environmental management and governance at the river basin scale through the case of the Boise River Basin (BRB), in southwest Idaho. The river basin scale provides a viable, and generalizable, unit of analysis with which to consider theoretical and empirical questions associated with governance and the role of hydrological science in decision making. As a unit of analysis, the "river basin" is common among engineers and hydrologists. Indeed, hydrological data is often collected and assessed at the basin level, not at an institutional or jurisdictional level. In the case of the BRB much is known from the technical perspective, such as infrastructure and engineering factors, who manages the river and how, and economic perspectives, in regard to benefits in support of major agricultural interests in the region. The same level of knowledge cannot be said about the political and societal factors, and related concepts of institutions and power. Compounding the situation is the increasing probability of climate change impacts in the American West. The geographic focus on the Boise River Basin provides a compelling example of what the future might hold in the American West, and how resource managers and other vested interests make or influence river basin policy in the region. The BRB represents a complex and dynamic environment covering approximately 4,100 square miles of land. The BRB is a highly managed basin, with multiple dams and diversions, and is

  14. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    Science.gov (United States)

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  15. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Indian Academy of Sciences (India)

    The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of ..... with equilibrium profile, where driving force is equivalent to the .... need attention for revival and sustenance by taking suitable artificial ...

  16. Understanding Socio-Hydrology System in the Kissimmee River Basin

    Science.gov (United States)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  17. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    Science.gov (United States)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is

  18. Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers.

    Science.gov (United States)

    Yusta-García, Raúl; Orta-Martínez, Martí; Mayor, Pedro; González-Crespo, Carlos; Rosell-Melé, Antoni

    2017-06-01

    Oil extraction activities in the Northern Peruvian Amazon have generated a long-standing socio-environmental conflict between oil companies, governmental authorities and indigenous communities, partly derived from the discharge of produced waters containing high amounts of heavy metals and hydrocarbons. To assess the impact of produced waters discharges we conducted a meta-analysis of 2951 river water and 652 produced water chemical analyses from governmental institutions and oil companies reports, collected in four Amazonian river basins (Marañon, Tigre, Corrientes and Pastaza) and their tributaries. Produced water discharges had much higher concentrations of chloride, barium, cadmium and lead than are typically found in fresh waters, resulting in the widespread contamination of the natural water courses. A significant number of water samples had levels of cadmium, barium, hexavalent chromium and lead that did not meet Peruvian and international water standards. Our study shows that spillage of produced water in Peruvian Amazon rivers placed at risk indigenous population and wildlife during several decades. Furthermore, the impact of such activities in the headwaters of the Amazon extended well beyond the boundaries of oil concessions and national borders, which should be taken into consideration when evaluating large scale anthropogenic impacts in the Amazon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. opulation growth and deforestation in the Volta River basin of Ghana ...

    African Journals Online (AJOL)

    The Volta River basin in Ghana, about 160,000 km2, is experiencing rapid deforestation. Paper uses satellite, household survey and population census data to relate trends and patterns of population in the Volta River sub-basins to forest cover. It assesses amount of forest available in 1990 and 2000, and the relationship ...

  20. Pb-Zn-Cd-Hg multi isotopic characterization of the Loire River Basin, France

    Science.gov (United States)

    Millot, R.; Widory, D.; Innocent, C.; Guerrot, C.; Bourrain, X.; Johnson, T. M.

    2012-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition (major ions and pollutants such as metals) of the dissolved load of rivers. Furthermore, this influence can also be evidenced in the suspended solid matter known to play an important role in the transport of heavy metals through river systems. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. Initially, the Loire upstream flows in a south to north direction originating in the Massif Central, and continues up to the city of Orléans, 650 km from the source. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The Loire River then follows a general east to west direction to the Atlantic Ocean. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for heavy metals Zn-Cd-Pb-Hg in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for these metals for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of

  1. Hydrological impacts of precipitation extremes in the Huaihe River Basin, China.

    Science.gov (United States)

    Yang, Mangen; Chen, Xing; Cheng, Chad Shouquan

    2016-01-01

    Precipitation extremes play a key role in flooding risks over the Huaihe River Basin, which is important to understand their hydrological impacts. Based on observed daily precipitation and streamflow data from 1958 to 2009, eight precipitation indices and three streamflow indices were calculated for the study of hydrological impacts of precipitation extremes. The results indicate that the wet condition intensified in the summer wet season and the drought condition was getting worse in the autumn dry season in the later years of the past 50 years. The river basin had experienced higher heavy rainfall-related flooding risks in summer and more severe drought in autumn in the later of the period. The extreme precipitation events or consecutive heavy rain day events led to the substantial increases in streamflow extremes, which are the main causes of frequent floods in the Huaihe River Basin. The large inter-annual variation of precipitation anomalies in the upper and central Huaihe River Basin are the major contributor for the regional frequent floods and droughts.

  2. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  3. Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa

    Science.gov (United States)

    Eash, David A.

    2006-01-01

    Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.

  4. Integrated Nitrogen and Flow Modelling (INCA) in a Boreal River Basin Dominated by Forestry: Scenarios of Environmental Change

    International Nuclear Information System (INIS)

    Rankinen, Katri; Lepistoe, Ahti; Granlund, Kirsti

    2004-01-01

    A new version (v1.7) of the Integrated Nitrogen in CAtchments model(INCA) was applied to the northern boreal Simojoki river basin (3160 km 2 ) in Finland. The INCA model is a semi-distributed, dynamic nitrogen (N) process model which simulates N transport and processes in catchments. The INCA model was applied to model flow and seasonal inorganic N dynamics of the river Simojoki basin over the period 1994-1996, and validated for two more years. Both calibration and validation of the model were successful. The model was able to simulate annual dynamics of inorganic N concentrations in the river. The effects of forest management and atmospheric deposition on inorganic N fluxes to the sea in 2010 were studied. Three scenarios were applied for forestry practices and two for deposition. The effects of forest cutting scenarios and atmospheric deposition scenarios on inorganic N flux to the sea were small. The combination of the maximum technically possible reduction of N deposition and a decrease of 100% in forest cutting and peat mining areas decreased NO 3 - -N flux by 6.0% and NH 4 + -N flux by 3.1%

  5. Socio-Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan

    Science.gov (United States)

    Wescoat, James L.; Siddiqi, Afreen; Muhammad, Abubakr

    2018-01-01

    This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irrigation in the mid-nineteenth century to partition and development of the international river basin in the mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge measurement and data analytics in the early twenty-first century. We address these processes through a socio-hydrologic framework that couples historical geographic and analytical methods at three levels of flow in the Punjab. The first level assesses Indus River inflows analysis from its origins in 1922 to the present. The second level shows how river inflows translate into 10-daily canal command deliveries that vary widely in their conformity with canal entitlements. The third level of analysis shows how new flow measurement technologies raise questions about the performance of established methods of water scheduling (warabandi) on local distributaries. We show how near real-time measurement sheds light on the efficiency and transparency of surface water management. These local socio-hydrologic changes have implications in turn for the larger scales of canal and river inflow management in complex river basins.

  6. The characteristics of ginger-like rock and its geological significance in Northern Zhungeer basin

    International Nuclear Information System (INIS)

    Wu Rengui

    1998-01-01

    The author studies the characteristics of ginger-like stratum and its genesis in northern Zhungeer basin. There are many ginger-like strata of Tertiary-Quaternary exist in northern Zhungeer basin. It shows a good prospect for the formation of Tertiary sandstone type Uranium deposit which can be leached in-situ

  7. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    Science.gov (United States)

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per

  8. Geographic Information System and Geoportal «River basins of the European Russia»

    Science.gov (United States)

    Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.

    2018-01-01

    Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.

  9. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    Science.gov (United States)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  10. Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River

    Science.gov (United States)

    Chen, Yi; Yan, Maodu; Fang, Xiaomin; Song, Chunhui; Zhang, Weilin; Zan, Jinbo; Zhang, Zhiguo; Li, Bingshuai; Yang, Yongpeng; Zhang, Dawen

    2017-10-01

    The paleo-Red River is suggested to have been a continental-scale drainage system connecting the Tibetan Plateau to the South China Sea. However, the evolution of the paleo-Red River is still under debate. This study presents new results from sedimentological analyses and detrital zircon U-Pb geochronologic data from fluvial sedimentary rocks of Paleocene to Oligocene age of the Simao Basin to constrain the nature of the paleo-drainage system of the Red River. The detrital zircon U-Pb results reveal multiple age groups at 190-240 Ma, 260-280 Ma, 450-540 Ma, 1700-1900 Ma and 2400-2600 Ma for the Paleocene to late Eocene Denghei Formation (Fm.), but only one conspicuous peak at 220-240 Ma for the late Eocene-Oligocene Mengla Fm. Provenance analyses illustrate that the former likely had source areas that included the Hoh-Xil, Songpan-Ganzi, northern Qiangtang, Yidun and western Yangtze Terranes, which are consistent with the catchments of the Upper and Lower Jinshajiang Segments, whereas the latter mainly transported material from a limited number of sources, such as the Lincang granitic intrusions west of the Simao Basin. Integrated with available detrital zircon U-Pb geochronologic and paleogeographic data, our study suggests the existence of a paleo-Red River during the Paleocene to late Eocene that was truncated and lost its northern sources after approximately 35 Ma, due to left-lateral strike-slip faulting of the Ailao Shan-Red River and clockwise rotation of the Lanping-Simao Terrane.

  11. Future Climate Change Impacts on Streamflows of Two Main West Africa River Basins: Senegal and Gambia

    Directory of Open Access Journals (Sweden)

    Ansoumana Bodian

    2018-03-01

    Full Text Available This research investigated the effect of climate change on the two main river basins of Senegal in West Africa: the Senegal and Gambia River Basins. We used downscaled projected future rainfall and potential evapotranspiration based on projected temperature from six General Circulation Models (CanESM2, CNRM, CSIRO, HadGEM2-CC, HadGEM2-ES, and MIROC5 and two scenarios (RCP4.5 and RCP8.5 to force the GR4J model. The GR4J model was calibrated and validated using observed daily rainfall, potential evapotranspiration from observed daily temperature, and streamflow data. For the cross-validation, two periods for each river basin were considered: 1961–1982 and 1983–2004 for the Senegal River Basin at Bafing Makana, and 1969–1985 and 1986–2000 for the Gambia River Basin at Mako. Model efficiency is evaluated using a multi-criteria function (Fagg which aggregates Nash and Sutcliffe criteria, cumulative volume error, and mean volume error. Alternating periods of simulation for calibration and validation were used. This process allows us to choose the parameters that best reflect the rainfall-runoff relationship. Once the model was calibrated and validated, we simulated streamflow at Bafing Makana and Mako stations in the near future at a daily scale. The characteristic flow rates were calculated to evaluate their possible evolution under the projected climate scenarios at the 2050 horizon. For the near future (2050 horizon, compared to the 1971–2000 reference period, results showed that for both river basins, multi-model ensemble predicted a decrease of annual streamflow from 8% (Senegal River Basin to 22% (Gambia River Basin under the RCP4.5 scenario. Under the RCP8.5 scenario, the decrease is more pronounced: 16% (Senegal River Basin and 26% (Gambia River Basin. The Gambia River Basin will be more affected by the climate change.

  12. Investigating the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China

    Science.gov (United States)

    Wu, S.; Wei, Y.; Zhao, Y.; Zheng, H.

    2017-12-01

    Human's innovative abilities do not only enable rapid expansion of civilization, but also lead to enormous modifications on the natural environment. Technology, while a key factor embedded in socioeconomic developments, its impacts have been rarely appropriately considered in river basin management. This research aims to examine the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China, and how its characteristics interacted with the river basin environment. It adopts a content analysis approach to collect and summarize quantitative technological information in the Heihe River Basin across a time span of more than 2000 years from the Han Dynasty (206 BC) to 2015. Two Chinese academic research databases: Wan Fang Data and China National Knowledge Infrastructure (CNKI) were chosen as data sources. The results show that irrigated agricultural technologies in Heihe River Basin have shifted from focusing on developing new farming tools and cultivation methods to adapting modernized, water-saving irrigation methods and water diversion infrastructures. In additions, the center of irrigated agricultural technology in the Heihe river basin has moved from downstream to middle stream since the Ming Dynasty (1368AD) as a result of degraded natural environment. The developing trend of technology in the Heihe River Basin thus coincides with the change of societal focus from agricultural production efficiency to the human-water balance and environmental remediation. This research demonstrates that irrigated agricultural technologies had a twisted evolutionary history in the Heihe River Basin, influenced by a diverse range of environmental and socioeconomic factors. It provides insights into the fact that technology exhibits a co-evolutionary characteristic with the social development history in the region, pointing towards the urgent need to maintain the balance between human and environment.

  13. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    Science.gov (United States)

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  14. Quantification of micropollutants in some water sources in northern ...

    African Journals Online (AJOL)

    ADOWIE PERE

    their waste assimilative capacity is a threat to both ecology of the ecosystems and health of the ... pesticide residues in river water and sediments from northern Tanzania. .... Pangani River Basin Water Board (PBWB). ..... release of Ni in the environment are forest fires and .... Atlantic Ocean: natural and human influences.

  15. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    Science.gov (United States)

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  16. Hydrological assessment of freshwater resource areas in the Zambezi River Basin

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2012-10-01

    Full Text Available characterisation of the degree of regulation of the river system, followed by an assessment of high water yielding areas (water towers), groundwater recharge and base flow index. To understand the environmental patterns and processes that occur in the river... to hydrogeology, IAH Publ. 8, Verlag Heinz Heisse. Xu, Y. and Beekman, H.E. (Eds). 2003. Groundwater recharge estimation in southern Africa. UNESCO IHP Series No. 64. UNESCO Paris. Figure 1: The Zambezi River Basin and its 13 sub basins Figure 3: High water...

  17. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  18. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China.

    Science.gov (United States)

    Xue, Jie; Gui, Dongwei

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  19. Nutrient mitigation in a temporary river basin.

    Science.gov (United States)

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Cooper, David; Kassotaki, Elissavet

    2014-04-01

    We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The 'total daily maximum load' approach is used to estimate the nutrient flux status by flow class, indicating that almost 60% of the river network fails to meet nitrogen criteria and 50% phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs.

  20. Declining sediment loads from Redwood Creek and the Klamath River, north coastal California

    Science.gov (United States)

    Randy D. Klein; Jeffrey K. Anderson

    2012-01-01

    River basin sediment loads are affected by several factors, with flood magnitude and watershed erosional stability playing dominant and dynamic roles. Long-term average sediment loads for northern California river basins have been computed by several researchers by several methods. However, characterizing the dynamic nature of climate and watershed stability requires...

  1. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  2. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  3. Predictability of Western Himalayan river flow: melt seasonal inflow into Bhakra Reservoir in northern India

    Directory of Open Access Journals (Sweden)

    I. Pal

    2013-06-01

    Full Text Available Snowmelt-dominated streamflow of the Western Himalayan rivers is an important water resource during the dry pre-monsoon spring months to meet the irrigation and hydropower needs in northern India. Here we study the seasonal prediction of melt-dominated total inflow into the Bhakra Dam in northern India based on statistical relationships with meteorological variables during the preceding winter. Total inflow into the Bhakra Dam includes the Satluj River flow together with a flow diversion from its tributary, the Beas River. Both are tributaries of the Indus River that originate from the Western Himalayas, which is an under-studied region. Average measured winter snow volume at the upper-elevation stations and corresponding lower-elevation rainfall and temperature of the Satluj River basin were considered as empirical predictors. Akaike information criteria (AIC and Bayesian information criteria (BIC were used to select the best subset of inputs from all the possible combinations of predictors for a multiple linear regression framework. To test for potential issues arising due to multicollinearity of the predictor variables, cross-validated prediction skills of the best subset were also compared with the prediction skills of principal component regression (PCR and partial least squares regression (PLSR techniques, which yielded broadly similar results. As a whole, the forecasts of the melt season at the end of winter and as the melt season commences were shown to have potential skill for guiding the development of stochastic optimization models to manage the trade-off between irrigation and hydropower releases versus flood control during the annual fill cycle of the Bhakra Reservoir, a major energy and irrigation source in the region.

  4. Basin of the river Oskil as a tourist-recreational area

    Directory of Open Access Journals (Sweden)

    Валентина Клименко

    2017-09-01

    Full Text Available At the current stage of Ukraine’s economic development tourism is a priority sector of our country’s economy. Due to the fact that Ukraine has set a high priority goal - to join the European Union, we should pay attention to the conditions of various areas and sectors of our economy, in particular, the quality of tourism services, whether the recreational sector meets European standards. Many economically developed countries make tourism the most important among other sectors to fill the budget and closely monitor the quality of tourist services. Due to the rapid development of the tourism industry in our country the question has arisen as to conformity of recreational facilities conditions with international standards and finding new places of recreation, including water tourism. The aim of the study is to highlight the Oskil River Basin (within Kharkiv region as a tourist and recreational area and the use of the study materials in the learning process. The article deals with problems of insufficiently studied use of the river Oskil basin both as a tourist, and a recreational area. The hydrographic characteristics of the reservoir have been studied to illustrate the conformity of water objects with the standards and requirements of tourist and recreational activities; methods and techniques of water resources assessment have been analyzed for recreation; the river Oskil (within Ukraine and Chervono-Oskil reservoir have been assessed on the possibility of tourist-recreational use. The ways to use the study materials in education have been determined. Recreational potential of the river and the reservoir should not be underestimated. Thus, analyzing resources of the Oskil river basin and Chervono-Oskil reservoir in terms of recreation, we can conclude that the water of the river is not equally suitable for recreational purposes. The river basin can be used as an object of beach-bathing leisure, tourist boating and rafting, sport rafting

  5. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    Science.gov (United States)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; McDowell, Nathan G.; Xu, Chonggang; Vivoni, Enrique; Middleton, Richard S.

    2018-01-01

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash-Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate-disturbance scenarios is at least 6-11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15-21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.

  6. Quality of surface waters in the lower Columbia River Basin

    Science.gov (United States)

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  7. An environmental streamflow assessment for the Santiam River basin, Oregon

    Science.gov (United States)

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  8. Fish, Corumbataí and Jacaré-Pepira river basins, São Paulo State, Brazil

    OpenAIRE

    Gomiero, Leandro; Braga, Francisco

    2006-01-01

    Fish were studied in two river basins (Corumbataí and Jacaré-Pepira) subjected to strong human pressure, in the interior of the State of São Paulo, southeastern Brazil. In the Corumbataí basin, four sites were sampled: Cabeça river, Lapa stream, Passa-Cinco river, and Corumbataí river; in the Jacaré-Pepira basin, three sites were sampled: Tamanduá stream, Jacaré-Pepira river, and Água Branca stream. A total of 4,050 specimens belonging to 48 species and 13 families were caught and analyzed....

  9. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    Science.gov (United States)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  10. Interlinking feasibility of five river basins of Rajasthan in India

    OpenAIRE

    Vyas, Sunil Kumar; Sharma, Gunwant; Mathur, Y.P.; Chandwani, Vinay

    2016-01-01

    The increasing population and large scale growth with the development of modern science and technology has indicated very high stress on water sector in Rajasthan in India. Availability of water and uniformity of rainfall distribution is changing day by day due to shifting of monsoon in Rajasthan. The spatial and temporal variations in the rainfall in different river basins in Rajasthan are drastic due to which flood situation arises in the tributaries of Chambal river basin every year. Simul...

  11. Comparison of the abiotic preferences of macroinvertebrates in tropical river basins.

    Directory of Open Access Journals (Sweden)

    Gert Everaert

    Full Text Available We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae and physical-chemical water quality conditions. Within the investigated physical-chemical ranges, nine out of twenty-five interaction effects were significant. Our analyses suggested river basin dependent associations between the macroinvertebrate families and the corresponding physical-chemical conditions. It was found that pollution tolerant families showed no clear abiotic preference and occurred at most sampling locations, i.e. Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam. Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g. Leptophlebiidae were only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam. Despite some limitations in the study design, we concluded that associations between macroinvertebrates and abiotic conditions can be river basin-specific and hence are not automatically transferable across river basins in the tropics.

  12. Contamination of Piracicaba river basin source by Zn, Cr and Co

    International Nuclear Information System (INIS)

    Favaro, P.C.; Ferraz, E.S.B.

    1999-01-01

    The growth of the industrialization, urbanization and modernization of the agricultural practices in the last decades, has been causing a great impact in the basin of the Piracicaba river, the second economic pole of the country, area that shelters important urban centers like Campinas and Piracicaba. there are 45 headquarters of municipal districts in area of 12.400 km 2 with more than 3,5 million inhabitants. The present work studies one of the source of the basin, the sub-basin of the high Atibaia river, one of the former of the river Piracicaba, in low impacted area due to low demographic density, absence of load industries and non significant agriculture. The objective is to establish parameters for comparison with other areas of the basin, intensely modified. Samples of bottom sediments on the former rivers and of soils of the area they were analyzed by neutronic activation for the identification of about 20 elements line. The results showed that the area already presents signs of preoccupying anthropic pollution because the contaminations with Zn, Cr and Co are already significant, probably due to the agricultural activity and to the urban sewer. (author)

  13. Integrated Groundwater Resources Management Using the DPSIR Approach in a GIS Environment Context: A Case Study from the Gallikos River Basin, North Greece

    Directory of Open Access Journals (Sweden)

    Christos Mattas

    2014-04-01

    Full Text Available The Gallikos River basin is located in the northern part of Greece, and the coastal section is part of a deltaic system. The basin has been influenced by anthropogenic activities during the last decades, leading to continuous water resource degradation. The holistic approach of the Driver-Pressure-State-Impact-Response (DPSIR framework was applied in order to investigate the main causes and origins of pressures and to optimize the measures for sustainable management of water resources. The major driving forces that affect the Gallikos River basin are urbanization, intensive agriculture, industry and the regional development strategy. The main pressures on water resources are the overexploitation of aquifers, water quality degradation, and decrease of river discharge. Recommended responses were based on the Water Framework Directive (WFD 2000/60/EC, and sum up to rationalization of water resources, land use management and appropriate utilization of waste, especially so effluent. The application of the DPSIR analysis in this paper links the socioeconomic drivers to the water resource pressures, the responses based on the WFD and the national legislation and is as a useful tool for land-use planning and decision making in the area of water protection.

  14. Export of Nitrogen From the Yukon River Basin to the Bering Sea

    Science.gov (United States)

    Dornblaser, M. M.; Striegl, R. G.

    2005-12-01

    The US Geological Survey measured nitrogen export from the 831,400 km2 Yukon River basin during 2001-04 as part of a five year water quality study of the Yukon River and its major tributaries. Concentrations of NO2+NO3, NH4+DON, and particulate N were measured ~6 times annually during open water and once under ice cover at three locations on the Yukon River, and on the Porcupine and Tanana Rivers. Concentration and continuous flow data were used to generate daily and annual loads of N species. NH4 concentration was generally negligible when compared to DON concentration, allowing for comparison of the relative importance of DIN vs. DON export at various watershed scales. NO2 concentration was also small compared to NO3. At Pilot Station, the last site on the Yukon before it flows into the Yukon Delta and the Bering Sea, DIN, DON, and particulate N loads averaged 19.3 × 106 kg/yr, 52.6 × 106 kg/yr, and 39.1 × 106 kg/yr, respectively. Normalized for the watershed area at Pilot Station, corresponding N yields were 1.65, 4.52, and 3.35 mmol/m2/yr. DIN yield for the Yukon at Pilot Station is substantially less than the NO3 flux reported for tropical/temperate rivers such as the Amazon, the Yangtze, and the Mississippi. DIN yield in the upper Yukon River basin is similar to that of the Mackenzie and other arctic rivers, but increases substantially downstream. This is likely due to development around Fairbanks in the Tanana River basin. When compared to other headwater basins in the upper Yukon, the Tanana basin yields about four times more DIN and two times more particulate N, while DON yields are only slightly elevated.

  15. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  16. UV filters bioaccumulation in fish from Iberian river basins

    International Nuclear Information System (INIS)

    Gago-Ferrero, Pablo; Díaz-Cruz, M. Silvia; Barceló, Damià

    2015-01-01

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification

  17. Variation of Probable Maximum Precipitation in Brazos River Basin, TX

    Science.gov (United States)

    Bhatia, N.; Singh, V. P.

    2017-12-01

    The Brazos River basin, the second-largest river basin by area in Texas, generates the highest amount of flow volume of any river in a given year in Texas. With its headwaters located at the confluence of Double Mountain and Salt forks in Stonewall County, the third-longest flowline of the Brazos River traverses within narrow valleys in the area of rolling topography of west Texas, and flows through rugged terrains in mainly featureless plains of central Texas, before its confluence with Gulf of Mexico. Along its major flow network, the river basin covers six different climate regions characterized on the basis of similar attributes of vegetation, temperature, humidity, rainfall, and seasonal weather changes, by National Oceanic and Atmospheric Administration (NOAA). Our previous research on Texas climatology illustrated intensified precipitation regimes, which tend to result in extreme flood events. Such events have caused huge losses of lives and infrastructure in the Brazos River basin. Therefore, a region-specific investigation is required for analyzing precipitation regimes along the geographically-diverse river network. Owing to the topographical and hydroclimatological variations along the flow network, 24-hour Probable Maximum Precipitation (PMP) was estimated for different hydrologic units along the river network, using the revised Hershfield's method devised by Lan et al. (2017). The method incorporates the use of a standardized variable describing the maximum deviation from the average of a sample scaled by the standard deviation of the sample. The hydrometeorological literature identifies this method as more reasonable and consistent with the frequency equation. With respect to the calculation of stable data size required for statistically reliable results, this study also quantified the respective uncertainty associated with PMP values in different hydrologic units. The corresponding range of return periods of PMPs in different hydrologic units was

  18. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    OpenAIRE

    Lili Wang; Zhonggen Wang; Jingjie Yu; Yichi Zhang; Suzhen Dang

    2018-01-01

    Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrolo...

  19. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  20. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa

    Science.gov (United States)

    Eash, David A.

    2012-01-01

    Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between

  1. Scaling issues in sustainable river basin management

    Science.gov (United States)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  2. Drought Characteristic Analysis Based on an Improved PDSI in the Wei River Basin of China

    Directory of Open Access Journals (Sweden)

    Lei Zou

    2017-03-01

    Full Text Available In this study, to improve the efficiency of the original Palmer Drought Severity Index (PDSI_original, we coupled the Soil and Water Assessment tool (SWAT and PDSI_original to construct a drought index called PDSI_SWAT. The constructed PDSI_SWAT is applied in the Wei River Basin (WRB of China during 1960–2012. The comparison of the PDSI_SWAT with four other commonly used drought indices reveals the effectiveness of the PDSI_SWAT in describing the drought propagation processes in WRB. The whole WRB exhibits a dry trend, with more significant trends in the northern, southeastern and western WRB than the remaining regions. Furthermore, the drought frequencies show that drought seems to occur more likely in the northern part than the southern part of WRB. The principle component analysis method based on the PDSI_SWAT reveals that the whole basin can be further divided into three distinct sub-regions with different drought variability, i.e., the northern, southeastern and western part. Additionally, these three sub-regions are also consistent with the spatial pattern of drought shown by the drought frequency. The wavelet transform analysis method indicates that the El Niño-Southern Oscillation (ENSO events have strong impacts on inducing droughts in the WRB. The results of this study could be beneficial for a scientific water resources management and drought assessment in the current study area and also provide a valuable reference for other areas with similar climatic characteristics.

  3. Sediment budget in the Ucayali River basin, an Andean tributary of the Amazon River

    Directory of Open Access Journals (Sweden)

    W. Santini

    2015-03-01

    Full Text Available Formation of mountain ranges results from complex coupling between lithospheric deformation, mechanisms linked to subduction and surface processes: weathering, erosion, and climate. Today, erosion of the eastern Andean cordillera and sub-Andean foothills supplies over 99% of the sediment load passing through the Amazon Basin. Denudation rates in the upper Ucayali basin are rapid, favoured by a marked seasonality in this region and extreme precipitation cells above sedimentary strata, uplifted during Neogene times by a still active sub-Andean tectonic thrust. Around 40% of those sediments are trapped in the Ucayali retro-foreland basin system. Recent advances in remote sensing for Amazonian large rivers now allow us to complete the ground hydrological data. In this work, we propose a first estimation of the erosion and sedimentation budget of the Ucayali River catchment, based on spatial and conventional HYBAM Observatory network.

  4. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.

    2015-01-01

    in Africa. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic-hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations......Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically based and distributed modeling schemes employing data...... assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. The objective of this study is to develop open-source software tools to support hydrologic forecasting and integrated water resources management...

  5. Emergence, concept, and understanding of Pan-River-Basin (PRB

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-12-01

    Full Text Available In this study, the concept of Pan-River-Basin (PRB for water resource management is proposed with a discussion on the emergence, concept, and application of PRB. The formation and application of PRB is also discussed, including perspectives on the river contribution rates, harmonious levels of watershed systems, and water resource availability in PRB system. Understanding PRB is helpful for reconsidering river development and categorizing river studies by the influences from human projects. The sustainable development of water resources and the harmonization between humans and rivers also requires PRB.

  6. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    Science.gov (United States)

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.

    2012-01-01

    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  7. Holocene provenance shift of suspended particulate matter in the Amazon River basin

    Science.gov (United States)

    Höppner, Natalie; Lucassen, Friedrich; Chiessi, Cristiano M.; Sawakuchi, André O.; Kasemann, Simone A.

    2018-06-01

    The strontium (Sr), neodymium (Nd) and lead (Pb) isotope signatures of suspended particulate matter (SPM) in rivers reflect the radiogenic isotope signatures of the rivers' drainage basin. These signatures are not significantly affected by weathering, transport or depositional cycles, but document the sedimentary contributions of the respective sources. We report new Sr, Nd and Pb isotope ratios and element concentrations of modern SPM from the Brazilian Amazon River basin and document the past evolution of the basin by analyzing radiogenic isotopes of a marine sediment core from the slope off French Guiana archiving the last 40 kyr of Amazon River SPM, and the Holocene section of sediment cores raised between the Amazon River mouth and the slope off French Guiana. The composition of modern SPM confirms two main source areas, the Andes and the cratonic Shield. In the marine sediment core notable changes occurred during the second phase of Heinrich Stadial 1 (i.e. increased proportion of Shield rivers SPM) and during the last deglaciation (i.e. increased proportion of Madeira River SPM) together with elsewhere constant source contributions. Furthermore, we report a prominent offset in Sr and Nd isotopic composition between the average core value (εNd: -11.7 ± 0.9 (2SD), 87Sr/86Sr: 0.7229 ± 0.0016 (2SD)) and the average modern Amazon River SPM signal (εNd: -10.5 ± 0.5 (2SD), 87Sr/86Sr: 0.7213 ± 0.0036 (2SD)). We suggest that a permanent change in the Amazon River basin sediment supply during the late Holocene to a more Andean dominated SPM was responsible for the offset.

  8. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  9. Hazardous materials in aquatic environments of the Mississippi River Basin

    International Nuclear Information System (INIS)

    1993-01-01

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy's programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993

  10. Validation of a simple distributed sediment delivery approach in selected sub-basins of the River Inn catchment area

    Science.gov (United States)

    Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike

    2015-04-01

    For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.

  11. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    Science.gov (United States)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  12. A Heuristic Dynamically Dimensioned Search with Sensitivity Information (HDDS-S and Application to River Basin Management

    Directory of Open Access Journals (Sweden)

    Jinggang Chu

    2015-05-01

    Full Text Available River basin simulation and multi-reservoir optimal operation have been critical for river basin management. Due to the intense interaction between human activities and river basin systems, the river basin model and multi-reservoir operation model are complicated with a large number of parameters. Therefore, fast and stable optimization algorithms are required for river basin management under the changing conditions of climate and current human activities. This study presents a new global optimization algorithm, named as heuristic dynamically dimensioned search with sensitivity information (HDDS-S, to effectively perform river basin simulation and multi-reservoir optimal operation during river basin management. The HDDS-S algorithm is built on the dynamically dimensioned search (DDS algorithm; and has an improved computational efficiency while maintaining its search capacity compared to the original DDS algorithm. This is mainly due to the non-uniform probability assigned to each decision variable on the basis of its changing sensitivity to the optimization objectives during the adaptive change from global to local search with dimensionality reduced. This study evaluates the new algorithm by comparing its performance with the DDS algorithm on a river basin model calibration problem and a multi-reservoir optimal operation problem. The results obtained indicate that the HDDS-S algorithm outperforms the DDS algorithm in terms of search ability and computational efficiency in the two specific problems. In addition; similar to the DDS algorithm; the HDDS-S algorithm is easy to use as it does not require any parameter tuning and automatically adjusts its search to find good solutions given an available computational budget.

  13. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    Science.gov (United States)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  14. The main factors of water pollution in Danube River basin

    Directory of Open Access Journals (Sweden)

    Carmen Gasparotti

    2014-05-01

    Full Text Available The paper proposed herewith aims to give an overview on the pollution along the Danube River. Water quality in Danube River basin (DRB is under a great pressure due to the diverse range of the human activities including large urban center, industrial, agriculture, transport and mining activities. The most important aspects of the water pollution are: organic, nutrient and microbial pollution, , hazardous substances, and hydro-morphological alteration. Analysis of the pressures on the Danube River showed that a large part of the Danube River is subject to multiple pressures and there are important risks for not reaching good ecological status and good chemical status of the water in the foreseeable future. In 2009, the evaluation based on the results of the Trans National Monitoring Network showed for the length of water bodies from the Danube River basin that 22% achieved good ecological status or ecological potential and 45% river water bodies achieved good chemical status. Another important issue is related to the policy of water pollution.

  15. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    Science.gov (United States)

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  16. Source apportionment of heavy metals and their ecological risk in a tropical river basin system.

    Science.gov (United States)

    Kumar, Balwant; Singh, Umesh Kumar

    2018-06-27

    Surface water and sediment samples were collected from Ajay River basin to appraise the behavior of heavy metals with surrounding environments and their inter-elemental relationships. Parameters like pH and organic carbon are having a minimal role in heavy metal distribution while some elements like Fe and Cu showed great affinity for organic matter based on linear regression analysis (LRA). Ficklin diagram justified that river basin is not contaminated through acidic pollutants. The river basin is highly enriched with Cu, Cd, Pb, and Ni which were much higher than world average values, average shale standard, effect range low (ERL), and threshold effect level (TEL). PCA and LRA verified that Cu, Cd, Pb, and Ni were mainly derived from anthropogenic inputs, and others like Fe, Mn, Zn, and Co came from geogenic sources. Pollution indices revealed that river basin is moderately to highly contaminated by Cu, Cd, and Ni. Furthermore, Ajay River basin is under strong potential ecological risk based on the obtained value of risk index and probable effect level/effect range median quotient index. However, river basin is strongly influenced by lithological properties, diversified hydrogeological settings, mineralization and mobilization of subsurface materials, and urban and industrial effluents which are controlling the heavy metals.

  17. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China

    Directory of Open Access Journals (Sweden)

    Jie Xue

    2015-07-01

    Full Text Available The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  18. UV filters bioaccumulation in fish from Iberian river basins.

    Science.gov (United States)

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. Copyright © 2015. Published by Elsevier B.V.

  19. Hydrological long-term dry and wet periods in the Xijiang River basin, South China

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2013-01-01

    Full Text Available In this study, hydrological long-term dry and wet periods are analyzed for the Xijiang River basin in South China. Daily precipitation data of 118 stations and data on daily discharge at Gaoyao hydrological station at the mouth of the Xijiang River for the period 1961–2007 are used. At a 24-month timescale, the standardized precipitation index (SPI-24 for the six sub-basins of the Xijiang River and the standardized discharge index (SDI-24 for Gaoyao station are applied. The monthly values of the SPI-24 averaged for the Xijiang River basin correlate highly with the monthly values of the SDI-24. Distinct long-term dry and wet sequences can be detected.

    The principal component analysis is applied and shows spatial disparities in dry and wet periods for the six sub-basins. The correlation between the SPI-24 of the six sub-basins and the first principal component score shows that 67% of the variability within the sub-basins can be explained by dry and wet periods in the east of the Xijiang River basin. The spatial dipole conditions (second and third principal component explain spatiotemporal disparities in the variability of dry and wet periods. All sub-basins contribute to hydrological dry periods, while mainly the northeastern sub-basins cause wet periods in the Xijiang River. We can also conclude that long-term dry events are larger in spatial extent and cover all sub-basins while long-term wet events are regional phenomena.

    A spectral analysis is applied for the SPI-24 and the SDI-24. The results show significant peaks in periodicities of 11–14.7 yr, 2.8 yr, 3.4–3.7 yr, and 6.3–7.3 yr. The same periodic cycles can be found in the SPI-24 of the six sub-basins but with some variability in the mean magnitude. A wavelet analysis shows that significant periodicities have been stable over time since the 1980s. Extrapolations of the reconstructed SPI-24 and SDI-24 represent the continuation of observed significant periodicities

  20. Tracing nutrient sources in the Mississippi River Basin, U.S.A

    International Nuclear Information System (INIS)

    Kendall, C.; Silva, S.R.; Chang, C.C.Y.; Wankel, S.D.; Hooper, R.P.; Frey, J.W.; Crain, A.S.; Delong, M.D.

    2003-01-01

    Full text: Periodic hypoxia in the Gulf of Mexico near the mouth of the Mississippi River is of increasing concern. The condition is thought to be primarily the result of nitrate delivered to the Gulf by the Mississippi River. However, as much as half of the nitrogen transported by large rivers to coastal areas is in dissolved or particulate organic form, with the remainder primarily as nitrate. Nitrate is thought to be conservatively transported in the Mississippi and other large rivers, but reduction can occur in marshy pools and backwater channels. Thus, it is important to examine all forms of nitrogen and their potential transformations, in both in groundwater and in riverine environments. To provide critically needed information for the development of management strategies to reduce N loads and enhance N attenuation mechanisms, we have been using isotopic techniques to investigate the sources and cycling of nutrients at a number of sites in the Mississippi Basin (which includes the Ohio and Missouri River Basins) since 1996, in collaboration with several national monitoring programs. One of our most noteworthy finding was that about half of the POM in the Mississippi (and other big rivers in the USA) is composed of plankton and/or heterotrophic bacteria. This suggests that in-situ productivity may be a significant source of bioavailable organic matter contributing to the hypoxia in the Gulf of Mexico. Monthly samples from 19 river sites in the Basin sampled over 5 years showed that δ 15 N and δ 13 C were quite useful in discriminating among four major categories of POM: terrestrial soil, fresh terrestrial vegetation, aquatic macrophytes, and plankton/bacteria. The δ 13 C values for the sites ranged from about -35 to -20 per mille, and the δ 15 N values ranged from about -15 to +15 per mille. The isotopic data, along with ancillary chemical and hydrologic measurements, were also useful for documenting seasonal changes in in-situ processes. A pilot study in

  1. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  2. Trends in suspended-sediment loads and concentrations in the Mississippi River Basin, 1950–2009

    Science.gov (United States)

    Heimann, David C.; Sprague, Lori A.; Blevins, Dale W.

    2011-01-01

    Trends in loads and concentrations of suspended sediment and suspended sand generally were downward for stations within the Mississippi River Basin during the 60-, 34-, and 12-year periods analyzed. Sediment transport in the lower Mississippi River has historically been, and continues to be, most closely correlative to sediment contributions from the Missouri River, which generally carried the largest annual suspended-sediment load of the major Mississippi River subbasins. The closure of Fort Randall Dam in the upper Missouri River in 1952 was the single largest event in the recorded historical decline of suspended-sediment loads in the Mississippi River Basin. Impoundments on tributaries and sediment reductions as a result of implementation of agricultural conservation practices throughout the basin likely account for much of the remaining Mississippi River sediment transport decline. Scour of the main-stem channel downstream from the upper Missouri River impoundments is likely the largest source of suspended sand in the lower Missouri River. The Ohio River was second to the Missouri River in terms of sediment contributions, followed by the upper Mississippi and Arkansas Rivers. Declines in sediment loads and concentrations continued through the most recent analysis period (1998–2009) at available Mississippi River Basin stations. Analyses of flow-adjusted concentrations of suspended sediment indicate the recent downward temporal changes generally can be explained by corresponding decreases in streamflows.

  3. Groundwater Discharge to Upper Barataria Basin Driven by Mississippi River Stage

    Science.gov (United States)

    Cable, J. E.; Kim, J.; Johannesson, K. H.; Kolker, A.; Telfeyan, K.; Breaux, A.

    2017-12-01

    Groundwater flow into deltaic wetlands occurs despite the heterogeneous and anisotropic depositional environment of deltas. Along the Mississippi River this groundwater flow is augmented by the vast alluvial aquifer and the levees which confine the river to a zone much more narrow than the historical floodplain. The effect of the levees has been to force the river stage to as much as 10 m above the adjacent back-levee wetlands. Consequently, the head difference created by higher river stages can drive groundwater flow into these wetlands, especially during flood seasons. We measured Rn-222 in the surface waters of a bayou draining a bottomland hardwood swamp in the lower Mississippi River valley over a 14-month period. With a half-life of 3.83 days and its conservative geochemical behavior, Rn-222 is a well-known tracer for groundwater inputs in both fresh and marine environments. Transects from the mouth to the headwaters of the bayou were monitored for Rn-222 in real-time using Rad-7s on a semi-monthly basis. We found that Rn-222 decreased exponentially from the swamp at the headwaters to the mouth of the bayou. Using a mass balance approach, we calculated groundwater inputs to the bayou headwaters and compared these discharge estimates to variations in Mississippi River stage. Groundwater inputs to the Barataria Basin, Louisiana, represent a significant fraction of the freshwater budget of the basin. The flow appears to occur through the sandy Point Bar Aquifer that lies adjacent to the river and underlies many of the freshwater swamps of the Basin. Tracer measurements throughout the Basin in these swamp areas appear to confirm our hypothesis about the outlet for groundwater in this deltaic environment.

  4. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  5. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  6. Water resources inventory of Connecticut Part 2: Shetucket River Basin

    Science.gov (United States)

    Thomas, Mendall P.; Bednar, Gene A.; Thomas, Chester E.; Wilson, William E.

    1967-01-01

    The Shetucket River basin has a relatively abundant supply of water of generally good quality which is derived from precipitation that has fallen on the basin. Annual precipitation has ranged from about 30 inches to 75 inches and has averaged about 45 inches over a 35-year period. Approximately 20 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the basin in the Shetucket River or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the basins whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced streamflow and lowered groundwater levels. The mean monthly storage of water in the basin on an average is 3.5 inches higher in November than it is in June.

  7. The evolution and performance of river basin management in the Murray-Darling Basin

    Directory of Open Access Journals (Sweden)

    Andrew Ross

    2016-09-01

    Full Text Available We explore bioregional management in the Murray-Darling Basin (MDB in Australia through the institutional design characteristics of the MDB River Basin Organization (RBO, the actors and organizations who supported and resisted the establishment of the RBO, and the effectiveness of the RBO. During the last 25 years, there has been a major structural reform in the MDB RBO, which has changed from an interstate coordinating body to an Australian government agency. Responsibility for basin management has been centralized under the leadership of the Australian government, and a comprehensive integrated Basin plan has been adopted. The driving forces for this centralization include national policy to restore river basins to sustainable levels of extraction, state government difficulties in reversing overallocation of water entitlements, the millennium drought and its effects, political expediency on the part of the Australian government and state governments, and a major injection of Australian government funding. The increasing hierarchy and centralization of the MDB RBO does not follow a general trend toward multilevel participative governance of RBOs, but decentralization should not be overstated because of the special circumstances at the time of the centralization and the continuing existence of some decentralized elements, such as catchment water plans, land use planning, and water quality. Further swings in the centralization-decentralization pendulum could occur. The MDB reform has succeeded in rebalancing Basin water allocations, including an allocation for the environment and reduced diversion limits. There are some longer term risks to the implementation of reform, including lack of cooperation by state governments, vertical coordination difficulties, and perceived reductions in the accountability and legitimacy of reform at the local level. If implementation of the Basin plan is diverted or delayed, a new institution, the Commonwealth

  8. Organizing cross-sectoral collaboration in river basin management : Case studies from the Rhine and the Zhujiang (Pearl River) basins

    NARCIS (Netherlands)

    Silveira, André; Junier, S.J.; Hüesker, Frank; Qunfang, Fan; Rondorf, Andreas

    2016-01-01

    ABSTRACT: This paper analyses the drivers and constraints for effective cross-sectoral collaboration in river basin management and the extent to which factors identified in related literature determine success or failure of collaboration in selected case studies. Cases selected were from

  9. Hydrological River Drought Analysis (Case Study: Lake Urmia Basin Rivers

    Directory of Open Access Journals (Sweden)

    Mohammad Nazeri Tahrudi

    2017-02-01

    Full Text Available Introduction: Drought from the hydrological viewpoint is a continuation of the meteorological drought that cause of the lack of surface water such as rivers, lakes, reservoirs and groundwater resources. This analysis, which is generally on the surface streams, reservoirs, lakes and groundwater, takes place as hydrological drought considered and studied. So the data on the quantity of flow of the rivers in this study is of fundamental importance. This data are included, level, flow, river flow is no term (5. Overall the hydrological drought studies are focused on annual discharges, maximum annual discharge or minimum discharge period. The most importance of this analysis is periodically during the course of the analysis remains a certain threshold and subthresholdrunoff volume fraction has created. In situations where water for irrigation or water of a river without any reservoir, is not adequate, the minimum flow analysis, the most important factor to be considered (4. The aim of this study is evaluatingthe statistical distributions of drought volume rivers data from the Urmia Lake’s rivers and its return period. Materials and Methods: Urmia Lake is a biggest and saltiest continued lake in Iran. The Lake Urmia basin is one of the most important basins in Iran region which is located in the North West of Iran. With an extent of 52700 square kilometers and an area equivalent to 3.21% of the total area of the country, This basin is located between the circuit of 35 degrees 40 minutes to 38 degrees 29 minutes north latitude and the meridian of 44 degrees 13 minutes to 47 degrees 53 minutes east longitude. In this study used the daily discharge data (m3s-1 of Urmia Lake Rivers. Extraction of river drought volume The drought durations were extracted from the daily discharge of 13 studied stations. The first mean year was calculated for each 365 days using the Eq 1 (14. (1 (For i=1,2,3,…,365 That Ki is aith mean year, Yijis ith day discharge in jth

  10. A market-based approach to share water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-04-01

    The equitable sharing of benefits in transboundary river basins is necessary to reach a consensus on basin-wide development and management activities. Benefit sharing arrangements must be collaboratively developed to be perceived as efficient, as well as equitable, in order to be considered acceptable to all riparian countries. The current literature falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. In this methodology (i) a hydro-economic model is used to efficiently allocate scarce water resources to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges are equitably redistributed as monetary compensation to users. The amount of monetary compensation, for each water user, is determined through the application of a sharing method developed by stakeholder input, based on a stakeholder vision of fairness, using an axiomatic approach. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The technique ensures economic efficiency and may lead to more equitable solutions in the sharing of benefits in transboundary river basins because the definition of the sharing rule is not in question, as would be the case if existing methods, such as game theory, were applied, with their inherent definitions of fairness.

  11. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    Science.gov (United States)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  12. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    International Nuclear Information System (INIS)

    Zhao, T h; Yin, Z; Song, Y Z

    2012-01-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  13. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    Science.gov (United States)

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore

  14. Ecosystem based river basin management planning in critical water catchment in Mongolia

    Science.gov (United States)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  15. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  16. Climate change adaptation in European river basins

    NARCIS (Netherlands)

    Huntjens, P.; Pahl-Wostl, C.; Grin, J.

    2010-01-01

    This paper contains an assessment and standardized comparative analysis of the current water management regimes in four case-studies in three European river basins: the Hungarian part of the Upper Tisza, the Ukrainian part of the Upper Tisza (also called Zacarpathian Tisza), Alentejo Region

  17. Estimation of potential runoff-contributing areas in the Kansas-Lower Republican River Basin, Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    1999-01-01

    Digital soils and topographic data were used to estimate and compare potential runoff-contributing areas for 19 selected subbasins representing soil, slope, and runoff variability within the Kansas-Lower Republican (KLR) River Basin. Potential runoff-contributing areas were estimated separately and collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented high, moderate, and low potential runoff. For infiltration-excess overland flow, various rainfall intensities and soil permeabilities were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that the subbasins with relatively high potential runoff are located in the central part of the KLR River Basin. These subbasins are Black Vermillion River, Clarks Creek, Delaware River upstream from Muscotah, Grasshopper Creek, Mill Creek (Wabaunsee County), Soldier Creek, Vermillion Creek (Pottawatomie County), and Wildcat Creek. The subbasins with relatively low potential runoff are located in the western one-third of the KLR River Basin, with one exception, and are Buffalo Creek, Little Blue River upstream from Barnes, Mill Creek (Washington County), Republican River between Concordia and Clay Center, Republican River upstream from Concordia, Wakarusa River downstream from Clinton Lake (exception), and White Rock Creek. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the KLR River Basin.

  18. Sharing water and benefits in transboundary river basins

    OpenAIRE

    D. Arjoon; A. Tilmant; M. Herrmann

    2016-01-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the cont...

  19. Water pollution control in river basin by interactive fuzzy interval multiobjective programming

    Energy Technology Data Exchange (ETDEWEB)

    Chang, N.B.; Chen, H.W. [National Cheng-Kung Univ., Tainan (Taiwan, Province of China). Dept. of Environmental Engineering; Shaw, D.G.; Yang, C.H. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Economics

    1997-12-01

    The potential conflict between protection of water quality and economic development by different uses of land within river basins is a common problem in regional planning. Many studies have applied multiobjective decision analysis under uncertainty to problems of this kind. This paper presents the interactive fuzzy interval multiobjective mixed integer programming (IFIMOMIP) model to evaluate optimal strategies of wastewater treatment levels within a river system by considering the uncertainties in decision analysis. The interactive fuzzy interval multiobjective mixed integer programming approach is illustrated in a case study for the evaluation of optimal wastewater treatment strategies for water pollution control in a river basin. In particular, it demonstrates how different types of uncertainty in a water pollution control system can be quantified and combined through the use of interval numbers and membership functions. The results indicate that such an approach is useful for handling system complexity and generating more flexible policies for water quality management in river basins.

  20. Geographical Information Systems for International River Basin Management in the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Kammerud, Terje Andre

    1998-12-31

    This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

  1. Geographical Information Systems for International River Basin Management in the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Kammerud, Terje Andre

    1997-12-31

    This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

  2. The politics of water payments and stakeholder participation in the Limpopo River Basin, Mozambique

    NARCIS (Netherlands)

    Alba, Rossella; Bolding, Alex; Ducrot, Raphaëlle

    2017-01-01

    Drawing from the experience of the Limpopo River Basin in Mozambique, the chapter analyses the articulation of a water rights framework in the context of decentralised river basin governance and IWRM-inspired reforms. The nexus between financial autonomy, service provision, stakeholder participation

  3. The politics of water payments and stakeholder participation in the Limpopo River Basin, Mozambique

    NARCIS (Netherlands)

    Alba, R.; Bolding, J.A.; Ducrot, R.

    2016-01-01

    Drawing from the experience of the Limpopo River Basin in Mozambique, the paper analyses the articulation of a water rights framework in the context of decentralised river basin governance and IWRM-inspired reforms. The nexus between financial autonomy, service provision, stakeholder participation

  4. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  5. Sediment load trends in the Magdalena River basin (1980-2010): Anthropogenic and climate-induced causes

    Science.gov (United States)

    Restrepo, Juan D.; Escobar, Heber A.

    2018-02-01

    The Colombian Andes and its main river basin, the Magdalena, have witnessed dramatic changes in land cover and further forest loss during the last three decades. For the Magdalena River, human activities appear to have played a more prominent role compared to rainfall (climate change) to mobilize sediment. However, environmental authorities in Colombia argue that climate change is the main trigger of erosion and floods experienced during the last decade. Here we present the first regional exercise addressing the following: (1) what are the observed trends of sediment load in the northern Andes during the last three decades? and (2) are sediment load trends in agreement with tendencies in land use change and climate (e.g., precipitation)? We perform Mann-Kendall tests on sediment load series for 21 main tributary systems during the 1980-2010 period. These gauging stations represent 77% of the whole Magdalena basin area. The last decade has been a period of increased pulses in sediment transport as seen by the statistical significant trends in load. Overall, six subcatchments, representing 55% of the analyzed Magdalena basin area, have witnessed increasing trends in sediment load. Also, some major tributaries have experienced changes in their interannual mean sediment flux during the mid- 1990s and 2005. Further analysis of land cover change (e.g., deforestation) indicates that the basin has undergone considerable change. Forest cover decreased by 40% over the period of study, while the area under agriculture and pasture cover (agricultural lands 1 and 2) increased by 65%. The highest peak of forest loss on record in the Magdalena basin, 5106 km2 or 24% of the combined deforestation in Colombia, occurred during the 2005-2010 period. In contrast, Mann-Kendall tests on rainfall series for 61 stations reveal that precipitation shows no regional signs of increasing trends. Also, increasing trends in sediment load match quite well with the marked increase in forest

  6. Modeling discharge and water quality in a temporary river basin using SWAT model: A case-study on the Ardila river

    OpenAIRE

    Durão, Anabela; Serafim, António; Brito, David; Morais, Manuela

    2012-01-01

    Temporary rivers have a hydrologic variability, which are characterized by long drought periods and short floods events, that influences water quality. Analysis of river flow generated in the Ardila river basin (temporary regime) using precipitation data (from 1931 to 2003) from a weather station, located within the basin, at the Portuguese side (which represents only 22% of the study area) showed a discrepancy between the modeled and observed runoff since 1981. It was also revealed a satisfa...

  7. Struggling with scales: revisiting the boundaries of river basin management

    NARCIS (Netherlands)

    Warner, J.F.; Wester, P.; Hoogesteger van Dijk, J.D.

    2014-01-01

    This article reviews, illustrated by two case studies, how struggles around scales play out in three globally hegemonic trends in river governance: (1) stakeholder participation for (2) integrated water resources management (IWRM), conceived at (3) the watershed or river basin level. This ‘holy

  8. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  9. Assessment of environmental flow requirements for river basin planning in Zimbabwe

    Science.gov (United States)

    Mazvimavi, D.; Madamombe, E.; Makurira, H.

    There is a growing awareness and understanding of the need to allocate water along a river to maintain ecological processes that provide goods and services. Legislation in Zimbabwe requires water resources management plans to include the amount of water to be reserved for environmental purposes in each river basin. This paper aims to estimate the amount of water that should be reserved for environmental purposes in each of the 151 sub-basins or water management units of Zimbabwe. A desktop hydrological method is used to estimate the environmental flow requirement (EFR). The estimated EFRs decrease with increasing flow variability, and increase with the increasing contribution of base flows to total flows. The study has established that in order to maintain slightly modified to natural habitats along rivers, the EFR should be 30-60% of mean annual runoff (MAR) in regions with perennial rivers, while this is 20-30% in the dry parts of the country with rivers, which only flow during the wet season. The inclusion of EFRs in water resources management plans will not drastically change the proportion of the available water allocated to water permits, since the amount of water allocated to water permit holders is less than 50% of the MAR on 77% of the sub-basins in the country.

  10. Temporal and Spatial Variation of Water Yield Modulus in the Yangtze River Basin in Recent 60 Years

    Science.gov (United States)

    Shi, Xiaoqing; Weng, Baisha; Qin, Tianling

    2018-01-01

    The Yangtze River Basin is the largest river basin of Asia and the third largest river basin of the world, the gross water resources amount ranks first in the river basins of the country, and it occupies an important position in the national water resources strategic layout. Under the influence of climate change and human activities, the water cycle has changed. The temporal and spatial distribution of precipitation in the basin is more uneven and the floods are frequent. In order to explore the water yield condition in the Yangtze River Basin, we selected the Water Yield Modulus (WYM) as the evaluation index, then analyzed the temporal and spatial evolution characteristics of the WYM in the Yangtze River Basin by using the climate tendency method and the M-K trend test method. The results showed that the average WYM of the Yangtze River Basin in 1956-2015 are between 103,600 and 1,262,900 m3/km2, with an average value of 562,300 m3/km2, which is greater than the national average value of 295,000 m3/km2. The minimum value appeared in the northwestern part of the Tongtian River district, the maximum value appeared in the northeastern of Dongting Lake district. The rate of change in 1956-2015 is between -0.68/a and 0.79/a, it showed a downward trend in the western part but not significantly, an upward trend in the eastern part reached a significance level of α=0.01. The minimum value appeared in the Tongtian River district, the largest value appeared in the Hangjia Lake district, and the average tendency rate is 0.04/a in the whole basin.

  11. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  12. Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)

    OpenAIRE

    Rosmina Bustami; Charles Bong; Darrien Mah; Afnie Hamzah; Marina Patrick

    2009-01-01

    The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information S...

  13. MULTI-TEMPORAL LAND USE GENERATION FOR THE OHIO RIVER BASIN

    Science.gov (United States)

    A set of backcast and forecast land use maps of the Ohio River Basin (ORB) was developed that could be used to assess the spatial-temporal patterns of land use/land cover (LULC) change in this important basin. This approach was taken to facilitate assessment of integrated sustain...

  14. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    Science.gov (United States)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  15. THE CONFLUENCE RATIO OF THE TRANSYLVANIAN BASIN RIVERS

    Directory of Open Access Journals (Sweden)

    ROŞIAN GH.

    2014-03-01

    Full Text Available There are many possibilities to assess the hydrological and geomorphological evolution of a territory. Among them, one remarks the confluence ratio of the rivers belonging to different catchment areas. The values of this indicator may provide information regarding the stage of evolution of the fluvial landforms in the Transylvanian Basin. Also, the values may serve for the calculation of other parameters of catchment areas like: the degree of finishing of the drainage basin for its corresponding order, the density of river segments within a catchment area etc. To calculate the confluence ratio, 35 catchment areas of different orders have been selected. The confluence ratio varies between 3.04 and 6.07. The large range of values demonstrates the existence of a heterogeneous lithology and of morphological and hydrographical contrasts from one catchment area to the other. The existence of values above 5, correlated also with observations in the field, reveals an accelerated dynamics of the geomorphological processes in those catchment areas. This dynamic is mainly supported by the high landform fragmentation due to the first order rivers. In contrast, the catchment areas that have a confluence ratio below 5 are in a more advanced stage of evolution with stable slopes, unable to initiate new first order river segments.

  16. seasonal variation in water quality of orle river basin, sw nigeria.

    African Journals Online (AJOL)

    LUCY

    The seasonal variation of water quality of Orle River and its tributatries in S.W. Nigeria was investigated forthnightly or two ... KEYWORD: water quality, river basin, wet and dry seasons; pollution. ..... Environmental Modeling and Software,.

  17. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin.

    Science.gov (United States)

    Mirauda, Domenica; Ostoich, Marco

    2018-02-23

    The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC-WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  18. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin

    Directory of Open Access Journals (Sweden)

    Domenica Mirauda

    2018-02-01

    Full Text Available The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC—WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  19. Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2012-01-01

    Water samples were collected from 10 production and domestic wells in the Delaware River Basin in New York and from 20 production and domestic wells in the St. Lawrence River Basin in New York from August through November 2010 to characterize groundwater quality in the basins. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria.

  20. SOME ASPECTS OF HYDROLOGICAL RISK MANIFESTATION IN JIJIA BASIN

    Directory of Open Access Journals (Sweden)

    D. BURUIANĂ

    2012-03-01

    Full Text Available Jijia river basin surface geographically fits in Moldavian Plateau, Plain of Moldavia subunit. Being lowered by 200 to 300 m compared to adjacent subunits, it appears as a depression with altitudes between 270-300 m.Through its position in the extra-Carpathian region, away from the influence of oceanic air masses, but wide open to the action of air masses of eastern, north-eastern and northern continental origin, Jijia basin receives precipitations which vary according to the average altitude differing from the northern to the southern part of the basin (564 mm in north, 529.4 mm in Iasi. A characteristic phenomenon to the climate is represented by the torrential rains in the hot season, under the form of rain showers with great intensity, fact that influences the drainage of basin rivers. Jijia hydrographic basin is characterized by frequent and sharp variations of flow volumes and levels which lead to floods and flooding throughout the basin. The high waters generally occur between March and June, when approximately 70% of the annual stock is transported. The paper analyzes the main causes and consequences of flooding in the studied area, also identifying some structural and non-structural measures of flood protection applied by authorities in Jijia hydrographic basin. As a case study, the flood recorded in Dorohoi in June 28-29, 2010 is presented.

  1. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China

    International Nuclear Information System (INIS)

    Wei Xiuguo; Yi Weixi; Shen Chengde; Yechieli, Yoseph; Li Ningli; Ding Ping; Wang Ning; Liu Kexin

    2010-01-01

    Radiocarbon can serve as a powerful tool for identifying sources of organic carbon and evaluating the erosion intensity in river drainage basins. In this paper we present 14 C-AMS measurements of particulate organic carbon (POC) collected from the three major tributaries of the Zhujiang (Pearl River) system: the Xijiang (Western River), Beijiang (Northern River) and Dongjiang (Eastern River) rivers. Furthermore, we discuss the distribution of POC 14 C apparent ages and the related watersheds erosion of these rivers. Results yield Δ 14 C values of -425 per mille to -65 per mille which indicate that the 14 C apparent ages of suspended POC in the entire area are in the range of 540-4445 years. The POC apparent ages from Xijiang are mostly between 2000 and 4000 years, while in Dongjiang they mostly range from 540 to 1010 years. These 14 C apparent ages indicate that the watershed erosion of the Xijiang is more severe than that of the Dongjiang. This is in agreement with other data showing deeper erosion in Xijiang due to human activities.

  2. Interlinking feasibility of five river basins of Rajasthan in India

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Vyas

    2016-09-01

    Annual surplus water of about 1437 MCM in the river Chambal is going waste and ultimately reaches to sea after creating flood situations in various places in India including Rajasthan, while on the other hand 1077 MCM water is a requirement in the four other basins in Rajasthan i.e. Banas, Banganga, Gambhir and Parbati at 75% dependability. Interlinking and water transfer from Chambal to these four river basins is the prime solution for which 372 km link channel including 9 km tunnel of design capacity of 300 cumec with 64 m lift is required.

  3. Hydroclimate variability in the Nile River Basin during the past 28,000 years

    Science.gov (United States)

    Castañeda, Isla S.; Schouten, Stefan; Pätzold, Jürgen; Lucassen, Friedrich; Kasemann, Simone; Kuhlmann, Holger; Schefuß, Enno

    2016-03-01

    It has long been known that extreme changes in North African hydroclimate occurred during the late Pleistocene yet many discrepancies exist between sites regarding the timing, duration and abruptness of events such as Heinrich Stadial (HS) 1 and the African Humid Period (AHP). The hydroclimate history of the Nile River is of particular interest due to its lengthy human occupation history yet there are presently few continuous archives from the Nile River corridor, and pre-Holocene studies are rare. Here we present new organic and inorganic geochemical records of Nile Basin hydroclimate from an eastern Mediterranean (EM) Sea sediment core spanning the past 28 ka BP. Our multi-proxy records reflect the fluctuating inputs of Blue Nile versus White Nile material to the EM Sea in response to gradual changes in local insolation and also capture abrupt hydroclimate events driven by remote climate forcings, such as HS1. We find strong evidence for extreme aridity within the Nile Basin evolving in two distinct phases during HS1, from 17.5 to 16 ka BP and from 16 to 14.5 ka BP, whereas peak wet conditions during the AHP are observed from 9 to 7 ka BP. We find that zonal movements of the Congo Air Boundary (CAB), and associated shifts in the dominant moisture source (Atlantic versus Indian Ocean moisture) to the Nile Basin, likely contributed to abrupt hydroclimate variability in northern East Africa during HS1 and the AHP as well as to non-linear behavior of hydroclimate proxies. We note that different proxies show variable gradual and abrupt responses to individual hydroclimate events, and thus might have different inherent sensitivities, which may be a factor contributing to the controversy surrounding the abruptness of past events such as the AHP. During the Late Pleistocene the Nile Basin experienced extreme hydroclimate fluctuations, which presumably impacted Paleolithic cultures residing along the Nile corridor.

  4. Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains

    International Nuclear Information System (INIS)

    Dunagan, J.F. Jr.; Kadish, K.A.

    1977-11-01

    Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains

  5. Boundaries of Consent: Stakeholder Representation in River Basin Management in Mexico and South Africa

    NARCIS (Netherlands)

    Wester, P.; Merrey, D.J.; Lange, M.

    2003-01-01

    Increasing the capacity of water users to influence decision-making is crucial in river basin management reforms. This article assesses emerging forums for river basin management in Mexico and South Africa and concludes that the pace of democratization of water management in both is slow. Mexico is

  6. War and early state formation in the northern Titicaca Basin, Peru.

    Science.gov (United States)

    Stanish, Charles; Levine, Abigail

    2011-08-23

    Excavations at the site of Taraco in the northern Titicaca Basin of southern Peru indicate a 2,600-y sequence of human occupation beginning ca. 1100 B.C.E. Previous research has identified several political centers in the region in the latter part of the first millennium B.C.E. The two largest centers were Taraco, located near the northern lake edge, and Pukara, located 50 km to the northwest in the grassland pampas. Our data reveal that a high-status residential section of Taraco was burned in the first century A.D., after which economic activity in the area dramatically declined. Coincident with this massive fire at Taraco, Pukara adopted many of the characteristics of state societies and emerged as an expanding regional polity. We conclude that organized conflict, beginning approximately 500 B.C.E., is a significant factor in the evolution of the archaic state in the northern Titicaca Basin.

  7. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future

  8. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  9. Landsat investigations of the northern Paradox basin, Utah and Colorado: implications for radioactive waste emplacement

    Science.gov (United States)

    Friedman, Jules D.; Simpson, Shirley L.

    1978-01-01

    The first stages of a remote-sensing project on the Paradox basin, part of the USGS (U.S. Geological Survey) radioactive waste-emplacement program, consisted of a review and selection of the best available satellite scanner images to use in geomorphologic and tectonic investigations of the region. High-quality Landsat images in several spectral bands (E-2260-17124 and E-5165-17030), taken under low sun angle October 9 and 10, 1975, were processed via computer for planimetric rectification, histogram analysis, linear transformation of radiance values, and edge enhancement. A lineament map of the northern Paradox basin was subsequently compiled at 1:400,000 using the enhanced Landsat base. Numerous previously unmapped northeast-trending lineaments between the Green River and Yellowcat dome; confirmatory detail on the structural control of major segments of the Colorado, Gunnison, and Dolores Rivers; and new evidence for late Phanerozoic reactivation of Precambrian basement structures are among the new contributions to the tectonics of the region. Lineament trends appear to be compatible with the postulated Colorado lineament zone, with geophysical potential-field anomalies, and with a northeast-trending basement fault pattern. Combined Landsat, geologic, and geophysical field evidence for this interpretation includes the sinuousity of the composite Salt Valley anticline, the transection of the Moab-Spanish Valley anticline on its southeastern end by northeast-striking faults, and possible transection (?) of the Moab diapir. Similarly, northeast-trending lineaments in Cottonwood Canyon and elsewhere are interpreted as manifestations of structures associated with northeasterly trends in the magnetic and gravity fields of the La Sal Mountains region. Other long northwesterly lineaments near the western termination of the Ryan Creek fault zone. may be associated with the fault zone separating the Uncompahgre horst uplift from the Paradox basin. Implications of the

  10. Water resources in the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Walker, Eugene H.; Krejmas, Bruce E.

    1983-01-01

    The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.

  11. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    1970-01-01

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  12. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  13. A new species of Amaralia Fowler (Siluriformes: Aspredinidae) from the Paraná-Paraguay River Basin.

    Science.gov (United States)

    Friel, John P; Carvalho, Tiago P

    2016-03-11

    A new species of the banjo catfish genus Amaralia is described from the Paraná-Paraguay River Basin in central-western Brazil, Paraguay and northern Argentina. Amaralia oviraptor is distinguished from its single and allopatric congener, Amaralia hypsiura, by the greater number of dorsal-fin rays (3 vs. 2); by the absence of lateral contact between middle and posterior nuchal plates (vs. middle and posterior nuchal plates contacting each other laterally); and by a longer cleithral process (17.4-19.5 % of SL, mean 18.2 % vs. 14.0-17.2 % of SL, mean=15.5 %). Comments on the peculiar oophagic diet of Amaralia and an extended diagnosis of the genus are provided.

  14. Predicted channel types - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  15. Predicted riparian vegetation - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  16. River capture and sediment redistribution in northern Tunisia: The doom of Utica

    Science.gov (United States)

    Booth-Rea, Guillermo; Camafort, Miquel; Pérez-Peña, J. Vicente; Melki, Fetheddine; Ranero, César; Azañón, José Miguel; Gracia, Eulalia; Ouadday, Mohamed

    2016-04-01

    Utica was a flourishing port city in northern Tunisia since the Phoenician times, 12-9th century B.C., until the 4th century A.D.. However, at present it is located 10 km from the coastline after very fast late Holocene progradation of the Mejerda River delta into the bay of Utica. This fast delta progradation occurred after Mejerda River captured Tine River increasing 140 % the river catchment area. Charcoal fragments present in the youngest Tine river terrace at the wind gap give a conventional radiocarbon age of 3240 +/- 30yr BP, indicating that the capture occurred after this date. Quaternary fluvial terraces located in the Tine River paleovalley have been folded and uplifted above a fold related to the active El Alia Tebousouk reverse fault (ETF). Continued uplift of the Tine River valley above the ETF favoured headward erosion of the Medjerda river tributaries creating a transverse drainage that captured Tine River. This capture produced an important change in sediment discharge along the northern Tunisia coast driving sediments to the Gulf of Tunis instead of feeding the Tyrrhenian Sea through the Ichkeul and Bizerte lakes. Although anthropogenic derived degradation of northern Tunisia land for agricultural purposes probably influenced the increase in sediment into the Utica bay, the main cause of rapid progradation of the Medjerda River delta during the late Holocene is related to its increase in drainage area after capturing the Tine River. This process was mostly driven by local contractive tectonics linked to the seismogenic Alia Tebousouk reverse fault.

  17. Differential Rate of Deforestation in Two Adjoining Indian River Basins: Does Resource Availability Matters?

    Science.gov (United States)

    Das, P.; Behera, M. D.

    2017-12-01

    Deforestation is one of the key factors of global climate change by altering the surface albedo reduces the evapotranspiration and surface roughness leads to warming in tropical regions. River basins are always subjected to LULC changes, especially decline in forest cover to give way for agricultural expansion, urbanisation, industrialisation etc. We generated LULC maps at three decadal intervals i.e., 1985, 1995 and 2005 in two major river basins of India using Landsat data employing on-screen visual image interpretation technique. In Rain-fed, Mahanadi river basin (MRB), 30.64% forest cover in 1985 was reduced to 30.13% in 2005, wherein glacier-fed, Brahmaputra river basin (BRB) this change was 63.44% to 62.32% during 1985 to 2005. Though conversion of forest land for agricultural activities was the major LULC changes in both the basins, the rate was more than two times higher in BRB than MRB. Scrub land in few zones acted as an intermediate class for mixed forest conversion to cropland land in both the basins. Analysing the drivers, in deforestation we observed the proximity zones around habitat and socio-economic drivers contributed higher compared to topographic, edaphic and climate. Using Dyna-CLUE modelling approach, we have predicted the LULC for 2025. For validation, comparing the predicted result with actual LULC of 2005, we obtained > 97% modeling accuracy; therefore it is expected that the Dyna-CLUE model has very well predicted the LULC for the year 2025. The predicted LULC of 2025 captured the similar trend of deforestation around 0.52% in MRB and 1.18% in BRB during 2005 to 2025. Acting as early warning, and with the past 2-decadal change analysis this study is believed to help the land use planners for improved regional planning to create balanced ecosystem, especially in a changing climate. On the basis of driver analysis, we believe that availability of more forest resources in Brahmaputra River basin provided extra liberty for higher

  18. Sustainable Land Management in the Lim River Basin

    Science.gov (United States)

    Grujic, Gordana; Petkovic, Sava; Tatomir, Uros

    2017-04-01

    In the cross-border belt between Serbia and Montenegro are located more than one hundred torrential water flows that belong to the Lim River Basin. Under extreme climate events they turned into floods of destructive power and great energy causing enormous damage on the environment and socio-economic development in the wider region of the Western Balkans. In addition, anthropogenic factors influence the land instability, erosion of river beds and loss of topsoil. Consequently, this whole area is affected by pluvial and fluvial erosion of various types and intensity. Terrain on the slopes over 5% is affected by intensive degree of erosion, while strong to medium degree covers 70% of the area. Moreover, in the Lim River Basin were built several hydro-energetic systems and accumulations which may to a certain extent successfully regulate the water regime downstream and to reduce the negative impact on the processes of water erosion. However, siltation of accumulation reduces their useful volume and threatens the basic functions (water reservoirs), especially those ones for water supply, irrigation and energy production that have lost a significant part of the usable volume due to accumulated sediments. Facing the negative impacts of climate change and human activities on the process of land degradation in the Lim River basin imposes urgent need of adequate preventive and protective measures at the local and regional level, which can be effectively applied only through enhanced cross-border cooperation among affected communities in the region. The following set of activities were analyzed to improve the actual management of river catchment: Identifying priorities in the spatial planning, land use and water resources management while respecting the needs of local people and the communities in the cross border region; development of cooperation and partnership between the local population, owners and users of real estate (pastures, agricultural land, forests, fisheries

  19. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  20. Appropriate modelling in DSSs for river basin management

    NARCIS (Netherlands)

    Xu, YuePing; Booij, Martijn J.; Pahl-Wostl, Claudia; Schmidt, Sonja; Rizzoli, Andrea E.; Jakeman, Anthony J.

    2004-01-01

    There is increasing interest in the development of decision support systems (DSSs) for river basin management. Moreover, new ideas and techniques such as sustainability, adaptive management, Geographic Information System, Remote Sensing and participations of new stakeholders have stimulated their

  1. Impact of Water Scarcity on the Fenhe River Basin and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Weiwei Shao

    2017-01-01

    Full Text Available This study produced a drought map for the Fenhe River basin covering the period from 150 BC to 2012 using regional historical drought records. Based on meteorological and hydrological features, the characteristics and causes of water scarcity in the Fenhe River basin were examined, along with their impact on the national economy and ecological environment. The effects of water scarcity in the basin on the national economy were determined from agricultural, industrial, and domestic perspectives. The impact on aquatic ecosystems was ascertained through an evolution trend analysis of surface water systems, including rivers, wetlands, and slope ecosystems, and subterranean water systems, including groundwater and karst springs. As a result of these analyses, strategies are presented for coping with water scarcity in this basin, including engineering countermeasures, such as the construction of a water network in Shanxi, and the non-engineering approach of groundwater resource preservation. These comprehensive coping strategies are proposed with the aim of assisting the prevention and control of water scarcity in the arid and semi-arid areas of China.

  2. Rural Settlement Development and Environment Carrying Capacity Changes in Progo River Basin

    OpenAIRE

    Su Ritohardoyo; P Priyono

    2016-01-01

    Generally the broader rural settlement the heavier population pressure on agricultural land. It indicates that carrying capacity of the rural environment threatened lower. The spatial distribution of the threat in a river basin is quite important as one of the river basin management inputs. Therefore, this article aims at exposing result of research about influence rural population growth and rural settlement land changes to environment carrying capacity. This research was carried out in the ...

  3. Hydrochemistry of the Densu River Basin of Ghana

    International Nuclear Information System (INIS)

    Adomako, D.; Osae, S.; Fianko, J. R.

    2007-01-01

    Planned hydrochemical assessment of groundwater quality have been carried out to understand the sources of dissolved ions in the aquifers supporting groundwater systems in the Densu River basin. The basin is underlain mainly by the proterozoic basin type granitoids with associated gnesis, with dominant mineral such as plagioclase feldspars. The groundwater is Ca-HCO 3 and Na-HCO 3 facies, due to weathering and ion-exchange of minerals underlying the aquifers. The enrichment of the cation and anions are Na>Ca>Mg>K and HCO 3 >Cl>SO 4 >NO 3 respectively. Some of the elevated values of both cations and anions may be due to seawater intrusions, ion-exchange, oxidation and anthropogenic activities. Based on these studies, proper management would be recommended to address groundwater quality in the basin. (au)

  4. Mercury Enrichment in Sediments of the Coastal Area of Northern Latium, Italy.

    Science.gov (United States)

    Scanu, Sergio; Piazzolla, Daniele; Frattarelli, Francesco Manfredi; Mancini, Emanuele; Tiralongo, Francesco; Brundo, Maria Violetta; Tibullo, Daniele; Pecoraro, Roberta; Copat, Chiara; Ferrante, Margherita; Marcelli, Marco

    2016-05-01

    The purpose of this study was to evaluate the extent of the Hg geochemical anomaly arising in the Amiata and Tolfa complex to the coastal area of northern Latium and to examine the possible influence on this area by the Mignone River, and by the small coastal basins, which are characterized by both previous mining activities and decades of past industrial impact. The results confirm the extension of the anomaly of concentrations of Hg in the coastal area of northern Latium, with the northern sector influenced by the contributions of the Fiora and Mignone Rivers and the southern sector influenced by the contributions of minor basins. The results show high values of the Adverse Effect Index throughout the considered area and highlight the need for further investigation in order to assess the impact of human activities on the present and past values of Hg in marine sediments.

  5. Spatio-temporal trends of rainfall across Indian river basins

    Science.gov (United States)

    Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana

    2018-04-01

    Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.

  6. Parameterization and Uncertainty Analysis of SWAT model in Hydrological Simulation of Chaohe River Basin

    Science.gov (United States)

    Jie, M.; Zhang, J.; Guo, B. B.

    2017-12-01

    As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.

  7. Hydrochemistry of the Parauari-Maues Acu river basin (Amazon region, Brazil)

    International Nuclear Information System (INIS)

    Bringel, S.R.B.

    1980-08-01

    The chemical composition of the Parauari-Maues Acu basin is studied through the determination of pH, calcium, magnesium, iron, chloride, sodium, potassium, zinc, copper and manganese. Four expeditions were made and samples were collected in 16 different points of the main course. Chemical analysis of the rivers waters shows seasonal flutuations of the concentrations of the elements in the main river as well as in the main afluents like Nambi river, Amana river and Urupadi river. (Author) [pt

  8. Aquifer depletion in the Lower Mississippi River Basin: challenges and solutions

    Science.gov (United States)

    The Lower Mississippi River Basin (LMRB) is a nationally- and internationally-important region of intensive agricultural production that relies heavily on the underlying Mississippi River Valley Alluvial Aquifer (MRVAA) for row crop irrigation. Extensive irrigation coupled with the region’s geology ...

  9. Earthworms (Annelida: Oligochaeta) of the Columbia River basin assessment area.

    Science.gov (United States)

    Sam. James

    2000-01-01

    Earthworms are key components of many terrestrial ecosystems; however, little is known of their ecology, distribution, and taxonomy in the eastern interior Columbia River basin assessment area (hereafter referred to as the basin assessment area). This report summarizes the main issues about the ecology of earthworms and their impact on the physical and chemical status...

  10. Documented changes in annual runoff and attribution since the 1950s within selected rivers in China

    Directory of Open Access Journals (Sweden)

    Lü-Liu Liu

    2017-03-01

    Full Text Available To enable local water resource management and maintenance of ecosystem integrity and to protect and mitigate against flood and drought, it is necessary to determine changes in long-term series of streamflow and to distinguish the roles that climate change and human disturbance play in these changes. A review of previous research on the detection and attribution of observed changes in annual runoff in China shows a decrease in annual runoff since the 1950s in northern China in areas such as the Songhuajiang River water resources zone, the Liaohe River water resources zone, the Haihe River water resources zone, the Yellow River water resources zone, and the Huaihe River water resources Zone. Furthermore, abrupt changes in annual runoff occurred mostly in the 1970s and 1980s in all the above zones, except for some of the sub-basins in the middle Yellow River where abrupt change occurred in the 1990s. Changes in annual runoff are found to be mainly caused by climate change in the western Songhuajiang River basin, the upper mainstream of the Yangtze River, and the western Pearl River basin, which shows that studies on the impact of climate change on future water resources under different climate change scenarios are required to enable planning and management by agencies in these river basins. However, changes in annual runoff were found to be mainly caused by human activities in most of the catchments in northern China (such as the southern Songhuajiang River, Liaohe River, Haihe River, the lower reach and some of the catchments within the middle Yellow River basin and in middle-eastern China, such as the Huaihe River and lower mainstream of the Yangtze River. This suggests that current hydro-climatic data can continue to be used in water-use planning and that policymakers need to focus on water resource management and protection.

  11. Tree-ring reconstruction of streamflow in the Snare River Basin, Northwest Territories, Canada

    Science.gov (United States)

    Martin, J. P.; Pisaric, M. F.

    2017-12-01

    Drought is a component of many ecosystems in North America causing environmental and socioeconomical impacts. In the ongoing context of climatic and environmental changes, drought-related issues are becoming problematic in northern Canada, which have not been associated with drought-like conditions in the past. Dryer than average conditions threatens the energy security of northern canadian communities, since this region relies on the production of hydroelectricity as an energy source. In the North Slave Region of Northwest Territory (NWT), water levels and streamflows were significantly lower in 2014/2015. The Government of the NWT had to spend nearly $50 million to purchase diesel fuel to generate enough electricity to supplement the reduced power generation of the Snare River hydroelectric system, hence the need to better understand the multi-decadal variability in streamflow. The aims of this presentation are i) to present jack pine and white spruce tree-ring chronologies of Southern NWT; ii) to reconstruct past streamflow of the Snare River Basin; iii) to evaluate the frequency and magnitude of extreme drought conditions, and iv) to identify which large-scale atmospheric or oceanic patterns are teleconnected to regional hydraulic conditions. Preliminary results show that the growth of jack pine and white spruce populations is better correlated with precipitation and temperature, respectively, than hydraulic conditions. Nonetheless, we present a robust streamflow reconstruction of the Snare River that is well correlated with the summer North Atlantic Oscillation (NAO) index, albeit the strength of the correlation is non-stationary. Spectral analysis corroborate the synchronicity between negative NAO conditions and drought conditions. From an operational standpoint, considering that the general occurrence of positive/negative NAO can be predicted, it the hope of the authors that these results can facilitate energetic planning in the Northwest Territories through

  12. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    Science.gov (United States)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  13. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  14. Radiocesium dynamics in the Hirose River basin

    Science.gov (United States)

    Kuramoto, T.; Taniguchi, K.; Arai, H.; Onuma, S.; Onishi, Y.

    2017-12-01

    A significant amount of radiocesium was deposited in Fukushima Prefecture during the accident of Fukushima Daiichi Nuclear Power Plant. In river systems, radiocesium is transported to downstream in rivers. For the safe use of river and its water, it is needed to clarify the dynamics of radiocesium in river systems. We started the monitoring of the Hirose River from December 2015. The Hirose River is a tributary of the Abukuma River flowing into the Pacific Ocean, and its catchment is close to areas where a large amount of radiocesium was deposited. We set up nine monitoring points in the Hirose River watershed. The Water level and turbidity data are continuously observed at each monitoring point. We regularly collected about 100 liters of water at each monitoring point. Radiocesium in water samples was separated into two forms; the one is the dissolved form, and the other is the suspended particulate form. Radionuclide concentrations of radiocesium in both forms were measured by a germanium semiconductor detector. Furthermore, we applied the TODAM (Time-dependent One-dimensional Degradation And Migration) code to the Hirose River basin using the monitoring data. The objectives of the modeling are to understand a redistribution pattern of radiocesium adsorbed by sediments during flooding events and to determine the amount of radiocesium flux into the Abukuma River.

  15. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    Science.gov (United States)

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  16. Applicability of GLDAS in the Yarlung Zangbo River Basin under Climate Change

    Science.gov (United States)

    Jia, L.; Hong, Z.; Linglei, Z.; Yun, D.

    2017-12-01

    The change of runoff has a great influence on global water cycle, and migration or transformation of biogenic matters. As the Tibet's most important economic region, the Yarlung Zangbo River basin is extremely sensitive and fragile to the global climate change. But the river is a typical lack-data basin, where the quantity of available runoff data is extremely limited and the spatial and temporal resolutions are very low. This study Chooses middle reaches of Yarlung Zangbo River basin as the study area, 4 models of Global Land Data Assimilation System (GLDAS) and the water balance equation are used to calculate surface runoff of Nuxia hydrological station from year of 2009 to 2013. Through the analysis of hydrological elements change, the impact of climate factors to surface runoff is discussed. At last, Statistical method is used to compare correlation and error between the 4 models results and in situ runoff observation. The Broke ranking method is applied to evaluate data quality and applicability of the 4 models in the Yarlung Zangbo River basin. The results reveal that the total runoff calculated from 4 models all have similar change cycle around 12 months, and the values all tend to have slight increase as in situ runoff data during research period. Moreover, it can conclude that the runoff time series show obvious period and mutation characters. During study period, monthly mean precipitation and temperature both have obvious seasonal variability, and the variation trend is relatively consistent. Through the analysis of the runoff affecting factors, it shows that the changes of precipitation and temperature are the most direct factors affecting runoff of the Yarlung Zangbo River. Correlation between precipitations, temperature with runoff of Nuxia hydrological station is good, and the correlation coefficients are in the range of 0.727 to 0.924.It shows that climate change controls basin runoff change to some extent. At last, runoff estimated from GLDAS

  17. Malheur River Basin cooperative bull trout/redband trout research project, annual report FY 1999; ANNUAL

    International Nuclear Information System (INIS)

    Schwabe, Lawrence; Tiley, Mark

    2000-01-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99

  18. The Human Threat to River Ecosystems at the Watershed Scale: An Ecological Security Assessment of the Songhua River Basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2017-03-01

    Full Text Available Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study, China’s Songhua River Basin was divided into 204 assessment units by combining watershed and administrative boundaries. Ten human threat factors were identified based on their significant influence on the river ecosystem. A modified ecological threat index was used to synthetically evaluate the ecological security, where frequency was weighted by flow length from the grids to the main rivers, while severity was weighted by the potential hazard of the factors on variables of river ecosystem integrity. The results showed that individual factors related to urbanization, agricultural development and facility construction presented different spatial distribution characteristics. At the center of the plain area, the provincial capital cities posed the highest level of threat, as did the municipal districts of prefecture-level cities. The spatial relationships between hot spot locations of the ecological threat index and water quality, as well as the distribution areas of critically endangered species, were analyzed. The sensitivity analysis illustrated that alteration of agricultural development largely changed the ecological security level of the basin. By offering a reference for assessing ecological security, this study can enhance water environmental planning and management.

  19. Lithogenic sources, composition and intra-annual variability of suspended particulate matter supplied from rivers to the Northern Galician Rias (Bay of Biscay)

    Science.gov (United States)

    Bernárdez, Patricia; Prego, Ricardo; Filgueiras, Ana Virginia; Ospina-Álvarez, Natalia; Santos-Echeandía, Juan; Álvarez-Vázquez, Miguel Angel; Caetano, Miguel

    2017-12-01

    Scarce research about small European rivers from non-human impacted areas to determine their natural background state has been undertaken. During the annual hydrological cycle of 2008-9 the patterns of particulate supply (SPM, POC, PON, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, V, Zn) from the rivers Sor, Mera Landro, Lourido and Landoi to the Northern Galician Rias (SW Bay of Biscay) were tackled. No differences in the composition of the SPM were detected for the studied rivers regarding Al, Fe and POC but the relative percentage of particulate trace elements (PTE) discriminate the rivers. So, Cr, Co and Ni in the Lourido, and Landoi rivers, and Cu in the Mera River, are controlled by watershed minerals of Ortegal Geological Complex while for the rest rivers PTE are by granitic and Ollo de Sapo bedrock watershed. Therefore, the imprint of PTE in the parental rocks of the river basins is reflected on the coastal sediments of the Rias. The main process controlling the dynamics and variations of chemical elements in the particulate form is the river discharge. This fact exemplifies that these rivers presents a natural behavior not being highly influenced by anthropogenic activities.

  20. Mapping the Soil Texture in the Heihe River Basin Based on Fuzzy Logic and Data Fusion

    Directory of Open Access Journals (Sweden)

    Ling Lu

    2017-07-01

    Full Text Available Mapping soil texture in a river basin is critically important for eco-hydrological studies and water resource management at the watershed scale. However, due to the scarcity of in situ observation of soil texture, it is very difficult to map the soil texture in high resolution using traditional methods. Here, we used an integrated method based on fuzzy logic theory and data fusion to map the soil texture in the Heihe River basin in an arid region of Northwest China, by combining in situ soil texture measurement data, environmental factors, a previous soil texture map, and other thematic maps. Considering the different landscape characteristics over the whole Heihe River basin, different mapping schemes have been used to extract the soil texture in the upstream, middle, and downstream areas of the Heihe River basin, respectively. The validation results indicate that the soil texture map achieved an accuracy of 69% for test data from the midstream area of the Heihe River basin, which represents a much higher accuracy than that of another existing soil map in the Heihe River basin. In addition, compared with the time-consuming and expensive traditional soil mapping method, this new method could ensure greater efficiency and a better representation of the explicitly spatial distribution of soil texture and can, therefore, satisfy the requirements of regional modeling.

  1. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  2. Relation between environmental variables and the fish community structure in streams of das Mortes and Xingu river basins – MT, Brazil

    Directory of Open Access Journals (Sweden)

    Priscylla Rodrigues Matos

    2013-09-01

    Full Text Available Environmental variables may determine and structure the composition of fish fauna. Studies comparing differences between physical and chemical variables of water between close river basins are few. This paper aimed to check which limnological variables are related to the distribution of fish species in two river basins. For this, 20 streams were sampled, divided between das Mortes and Xingu river basins. At each point one measured a total of 8 environmental variables. Fishes were collected through trawl. Total richness was 57 species, 29 of them from Xingu river basin, 35 from das Mortes river basin, and 7 species common to both river basins. The analyses showed that the streams in these two basins have distinct limnological and faunal features. The streams in Xingu river basin had lower pH values which may have been influenced by the high rates of organic decomposition. The streams of das Mortes river showed higher values of suspended matter and chlorophyll, probably due to higher degradation of streams and lower vegetation cover levels.

  3. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela)

    Science.gov (United States)

    Bout-Roumazeilles, V.; Riboulleau, A.; du Châtelet, E. Armynot; Lorenzoni, L.; Tribovillard, N.; Murray, R. W.; Müller-Karger, F.; Astor, Y. M.

    2013-02-01

    The mineralogical composition of 95 surface sediment samples from the Cariaco Basin continental shelf and Orinoco delta was investigated in order to constrain the clay-mineral main provenance and distribution within the Cariaco Basin. The spatial variability of the data set was studied using a geo-statistical approach that allows drawing representative clay-mineral distribution maps. These maps are used to identify present-day dominant sources for each clay-mineral species in agreement with the geological characteristics of the main river watersheds emptying into the basin. This approach allows (1) identifying the most distinctive clay-mineral species/ratios that determine particle provenance, (2) evaluating the respective contribution of local rivers, and (3) confirming the minimal present-day influence of the Orinoco plume on the Cariaco Basin sedimentation. The Tuy, Unare, and Neveri Rivers are the main sources of clay particles to the Cariaco Basin sedimentation. At present, the Tuy River is the main contributor of illite to the western part of the southern Cariaco Basin continental shelf. The Unare River plume, carrying smectite and kaolinite, has a wide westward propagation, whereas the Neveri River contribution is less extended, providing kaolinite and illite toward the eastern Cariaco Basin. The Manzanares, Araya, Tortuga, and Margarita areas are secondary sources of local influence. These insights shed light on the origin of present-day terrigenous sediments of the Cariaco Basin and help to propose alternative explanations for the temporal variability of clay mineralogy observed in previously published studies.

  4. Concentration Assessment of Chromium and Arsenic Heavy Metals in Rivers Basins of Baft and Rabor Dams

    Directory of Open Access Journals (Sweden)

    M Malakootian

    2016-05-01

    Full Text Available Introduction: Heavy metals are regarded as toxic stable elements in the environment that with the entry into water sources, finally it enters into the biological cycle of life and develops some adverse effects. Therefore, the present study aimed to determine the concentration of chromium and arsenic heavy metals in the river basins of Baft and Ravar dams. Methods: This descriptive cross-sectional study was conducted from August 2013 to June 2014. During the field surveys of the river basins, 4 sampling stations of river basins of Baft and Rabor dams were selected. One combined sample was taken on 15th of each month from the mentioned river basins as well as Baft and Rabor dams. The chromium and arsenic concentrations were measured for 12 months in river basins of Baft and Rabar dams by Furnace Atomic Absorption device, and the study data were analyzed applying SPSS software. Results:. The mean concentration of chromium was reported 5.01 and 5.19 in the river basins of Baft dam and 5.44, 5.5, 5.42 and 5.45 ppb in river basins of Rabor dam. The mean concentration of arsenic in the river basins was demonstrated to be 16.52 and 11.71 ppb in Baft dam, and 12.28, 13.6, 7.13 and 8.78 ppb in Rabor dam. In addition, the mean concentration of chromium was reported 5.02 and 5.38, and arsenic concentration was obtained 23.53 and 9.12 ppb, respectively in Baft and Rabar dams. Conclusion: Based on the study results, the chromium concentration in the studied stations was demonstrated to be significantly less than guidelines of WHO, EPA and Institute of Standards and Industrial Research of Iran, whereas arsenic concentration was demonstrated to be significantly higher compared to these guidelines(p<0.0001. As a result, this difference needs to be diminished via implementing the required plans.

  5. Mycobacterial infection in Northern snakehead (Channa argus) from the Potomac River catchment

    Science.gov (United States)

    Densmore, Christine L.; Iwanowicz, L.R.; Henderson, A.P.; Iwanowicz, D.D.; Odenkirk, J.S.

    2016-01-01

    The Northern snakehead, Channa argus (Cantor), is a non-native predatory fish that has become established regionally in some temperate freshwater habitats within the United States. Over the past decade, Northern snakehead populations have developed within aquatic ecosystems throughout the eastern USA, including the Potomac River system within Virginia, Maryland and Washington, D.C. Since this species was initially observed in this region in 2002, the population has expanded considerably (Odenkirk & Owens 2007). In the Chesapeake Bay watershed, populations of Northern snakehead exist in the lower Potomac River and Rappahannock Rivers on the Western shore of the Bay, and these fish have also been found in middle or upper reaches of river systems on the Eastern shore of the Bay, including the Nanticoke and Wicomico Rivers among others. Over the past several years, many aspects of Northern snakehead life history in the Potomac River have been described, including range and dispersal patterns, microhabitat selection and diet (Lapointe, Thorson & Angermeier 2010; Saylor, Lapointe & Angermeier 2012; Lapointe, Odenkirk & Angermeier 2013). However, comparatively little is known about their health status including susceptibility to parasitism and disease and their capacity to serve as reservoirs of disease for native wildlife. Although considered hardy by fisheries biologists, snakehead fish have demonstrated susceptibility to a number of described piscine diseases within their native range and habitat in Asia. Reported pathogens of significance in snakehead species in Asia include snakehead rhabdovirus (Lio-Po et al. 2000), aeromonad bacteria (Zheng, Cao & Yang 2012), Nocardia (Wang et al. 2007) andMycobacterium spp. (Chinabut, Limsuwan & Chantatchakool 1990; ). Mycobacterial isolates recovered from another snakehead species (Channa striata) in the previous studies have included M. marinum and M. fortuitum, as identified through molecular

  6. Molecular detection of northern leatherside chub (Lepidomeda copei) DNA in environmental samples

    Science.gov (United States)

    Joseph C. Dysthe; Kellie J. Carim; Thomas W. Franklin; Dave Kikkert; Michael K. Young; Kevin S. McKelvey; Michael K. Schwartz

    2018-01-01

    The northern leatherside chub (Lepidomeda copei) is a cyprinid fish native to the Snake River, Green River, and Bonneville basins of the western United States. Population declines prompted the development of a multistate conservation agreement and strategy, which emphasized the need to reliably delineate its current distribution and monitor its status. To facilitate...

  7. The costs of uncoordinated infrastructure management in multi-reservoir river basins

    International Nuclear Information System (INIS)

    Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume

    2014-01-01

    Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3–12% (or US$12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources. (paper)

  8. Climatology of the interior Columbia River basin.

    Science.gov (United States)

    Sue A. Ferguson

    1999-01-01

    This work describes climate means and trends in each of three major ecological zones and 13 ecological reporting units in the interior Columbia River basin. Widely differing climates help define each major zone and reporting unit, the pattern of which is controlled by three competing air masses: marine, continental, and arctic. Paleoclimatic evidence and historical...

  9. Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico

    Science.gov (United States)

    Ruleman, Chester A.; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.

    2016-01-01

    The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio

  10. Use of remote sensing data in distributed hydrological models: applications in the Senegal River basin

    DEFF Research Database (Denmark)

    Sandholt, Inge; Andersen, Jens Asger; Gybkjær, Gorm

    1999-01-01

    Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she......Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she...

  11. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has

  12. Managing Basin Interdependencies in a Heterogeneous, Highly Utilized and Data Scarce River Basin in Semi-Arid Africa : The case of the Pangani River Basin, Eastern Africa

    NARCIS (Netherlands)

    Kiptala, J.K.

    2016-01-01

    For integrated water resources management both blue and green water resources in a river basin and their spatial and temporal distribution have to be considered. This is because green and blue water uses are interdependent. In sub-Saharan Africa, the upper landscapes are often dominated by rainfed

  13. Managing Basin Interdependencies in a Heterogeneous, Highly Utilized and Data Scarce River Basin in Semi-Arid Africa: The Case of the Pangani River Basin, Eastern Africa

    NARCIS (Netherlands)

    Kiptala, J.K.

    2016-01-01

    For integrated water resources management both blue and green water resources in a river basin and their spatial and temporal distribution have to be considered. This is because green and blue water uses are interdependent. In sub-Saharan Africa, the upper landscapes are often dominated by rainfed

  14. Dynamics of meteorological and hydrological droughts in the Neman river basin

    International Nuclear Information System (INIS)

    Rimkus, Egidijus; Stonevičius, Edvinas; Kažys, Justas; Valiuškevičius, Gintaras; Korneev, Vladimir; Pakhomau, Aliaksandr

    2013-01-01

    The analysis of drought dynamics in the Neman river basin allows an assessment of extreme regional climate changes. Meteorological and hydrological warm period droughts were analyzed in this study. Meteorological droughts were identified using the standardized precipitation index, and hydrological droughts using the streamflow drought index. The whole river basin was analyzed over the period from 1961 to 2010. Precipitation data from Vilnius meteorological station (from 1887) and discharge data from Smalininkai (Neman) hydrological station (from 1811) were used for an evaluation of meteorological and hydrological drought recurrence over a long-term period. It was found that the total area dryness has decreased over the last 50 years. A statistically significant increase in standardized precipitation index values was observed in some river sub-basins. An analysis of drought recurrence dynamics showed that there was no indication that the number of dangerous drought was increased. It was determined that the standardized precipitation index cannot successfully identify the hydrological summer droughts in an area where the spring snowmelt forms a large part of the annual flow. In particular, the weak relationship between the indices was recorded in the first half of the summer, when a large part of the river runoff depends on accumulated water during the spring thaw. (letter)

  15. A Simplified Nitrogen Assessment in Tagus River Basin: A Management Focused Review

    Directory of Open Access Journals (Sweden)

    Cláudia M. d. S. Cordovil

    2018-03-01

    Full Text Available Interactions among nitrogen (N management and water resources quality are complex and enhanced in transboundary river basins. This is the case of Tagus River, which is an important river flowing from Spain to Portugal in the Iberian Peninsula. The aim was to provide a N assessment review along the Tagus River Basin regarding mostly agriculture, livestock, and urban activities. To estimate reactive nitrogen (Nr load into surface waters, emission factor approaches were applied. Nr pressures are much higher in Spain than in Portugal (~13 times, which is mostly because of livestock intensification. Some policy and technical measures have been defined aiming at solving this problem. Main policy responses were the designation of Nitrate Vulnerable and Sensitive Zones, according to European Union (EU directives. Nitrate Vulnerable Zone comprise approximately one third of both territories. On the contrary, Sensitive Zones are more extended in Spain, attaining 60% of the watershed, against only 30% in Portugal. Technical measures comprised advanced urban and industrial wastewater treatment that was designed to remove N compounds before discharge in the water bodies. Given this assessment, Tagus River Basin sustainability can only be guaranteed through load inputs reductions and effective transnational management processes of water flows.

  16. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    Directory of Open Access Journals (Sweden)

    A. P. Medeu

    2013-01-01

    Full Text Available The river Khorgos (in Kazakhstan – Korgas is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance of political-economical value. Nowadays development of glacial lakes in the overhead part of Khorgos river basin has reached apogee. As a roof we can mention the maximum of total glacial lakes area (1,7 million m² in 41 lakes and emptied kettles of former glacial lakes. Six lakes reached highly dangerous outburst stage: the volume of lakes reached some million m³, maximum depth up to 30–40 m. Focal ground filtration of the water from lakes takes place. Development of glacial lakes in Khorgos river basin will continue, and these lakes give and will give real danger for the Center of Frontier Cooperation in case of outburst of naturally dammed lake Kazankol with the similar mechanism of Issyk lake outburst, occurred in 1963 in ZailijskiyAlatau (Ile Alatau.

  17. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    Science.gov (United States)

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  18. Placentation in dolphins from the Amazon River Basin

    DEFF Research Database (Denmark)

    da Silva, Vera M F; Carter, Anthony M; Ambrosio, Carlos E

    2007-01-01

    A recent reassessment of the phylogenetic affinities of cetaceans makes it timely to compare their placentation with that of the artiodactyls. We studied the placentae of two sympatric species of dolphin from the Amazon River Basin, representing two distinct families. The umbilical cord branched ...

  19. Fishes and aquatic habitats of the Orinoco River Basin: diversity and conservation.

    Science.gov (United States)

    Lasso, C A; Machado-Allison, A; Taphorn, D C

    2016-07-01

    About 1000 freshwater fishes have been found so far in the Orinoco River Basin of Venezuela and Colombia. This high ichthyological diversity reflects the wide range of landscapes and aquatic ecosystems included in the basin. Mountain streams descend from the high Andes to become rapid-flowing foothill rivers that burst out upon vast savannah flatlands where they slowly make their way to the sea. These white-water rivers are heavily laden with sediments from the geologically young Andes. Because their sediment deposits have formed the richest soils of the basin, they have attracted the highest density of human populations, along with the greatest levels of deforestation, wildfires, agricultural biocides and fertilizers, sewage and all the other impacts associated with urban centres, agriculture and cattle ranching. In the southern portion of the basin, human populations are much smaller, where often the only inhabitants are indigenous peoples. The ancient rocks and sands of the Guiana Shield yield clear and black water streams of very different quality. Here, sediment loads are miniscule, pH is very acid and fish biomass is only a fraction of that observed in the rich Andean tributaries to the north. For each region of the basin, the current state of knowledge about fish diversity is assessed, fish sampling density evaluated, the presence of endemic species and economically important species (for human consumption or ornamental purposes) described and gaps in knowledge are pointed out. Current trends in the fishery for human consumption are analysed, noting that stocks of many species are in steep decline, and that current fishing practices are not sustainable. Finally, the major impacts and threats faced by the fishes and aquatic ecosystems of the Orinoco River Basin are summarized, and the creation of bi-national commissions to promote standardized fishing laws in both countries is recommended. © 2016 The Fisheries Society of the British Isles.

  20. Evolution of tertiary intermontane fluvial system of Powder River Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Flores, R.M.; Ethridge, F.G.

    1985-01-01

    Exploration and development of economic coal and uranium deposits of the Tertiary Fort Union and Wasatch Formations provided data related to the evolution of depositional systems in the Powder River Basin. In ascending order, the Paleocene Fort Union Formation consists of the Tullock, Lebo, and Tongue River Members. The overlying Eocene Wasatch Formation consists of the conglomeratic Kingsbury and Moncrief Members and laterally equivalent finer grained deposits. Evolution of fluvial deposition in the basin was determined from sandstone percent maps. A high proportion of sandstones in the Tullock Member and combined Tongue River Member and Wasatch Formation formed in interconnected east-west and north-south belts. The east-west belts represent alluvial fans, as well as braided and meandering tributary streams. The north-south belts reflect meandering and anastomosing trunk streams fed by basin margin tributaries. The sandstones of the Lebo Shale show east-west trends and represent deposits of fluvio-deltaic systems that filled a western, closed-lacustrine basin. The lake in this basin may have formed during localized subsidence along the Buffalo deep fault. These contrasting styles of fluvial deposition were largely controlled by extrabasinal and intrabasinal tectonics associated with Laramide orogeny

  1. Radioecological study of the interest zones in Somes river hydrographic basin

    International Nuclear Information System (INIS)

    Daraban, L.; Fiat, T.; Znamirovschi, V.; Cosma, C.; Bayer, Marta; Daraban, Laura

    2000-01-01

    Our research refers to the transfer of radioelements from water and mud to talophitae and unicellular algae organisms. The measurement of these elements was done for delimiting the radioactive zones of interest in the hydrographic basin of Somes. We demonstrated that the algae are biological indicators of the radioactivity in a river basin. A series of samples were examined by high-resolution gamma spectroscopy in our laboratory and at VUB Cyclotron Brussels with a Ge-Re detector for intercomparing. Uranium and its descendants were analyzed, as well as 137 Cs resulting from the Chernobyl fallout, which we found again accumulated in the mud of mountain lakes. A migration of the radionuclides from old barren gangue deposits of old polymetallic mines in the Somes river basin was noticed. (authors)

  2. Assessing regional climate simulations of the last 30 years (1982-2012) over Ganges-Brahmaputra-Meghna River Basin

    Science.gov (United States)

    Khandu; Awange, Joseph L.; Anyah, Richard; Kuhn, Michael; Fukuda, Yoichi

    2017-10-01

    The Ganges-Brahmaputra-Meghna (GBM) River Basin presents a spatially diverse hydrological regime due to it's complex topography and escalating demand for freshwater resources. This presents a big challenge in applying the current state-of-the-art regional climate models (RCMs) for climate change impact studies in the GBM River Basin. In this study, several RCM simulations generated by RegCM4.4 and PRECIS are assessed for their seasonal and interannual variations, onset/withdrawal of the Indian monsoon, and long-term trends in precipitation and temperature from 1982 to 2012. The results indicate that in general, RegCM4.4 and PRECIS simulations appear to reasonably reproduce the mean seasonal distribution of precipitation and temperature across the GBM River Basin, although the two RCMs are integrated over a different domain size. On average, the RegCM4.4 simulations overestimate monsoon precipitation by {˜ }26 and {˜ }5% in the Ganges and Brahmaputra-Meghna River Basin, respectively, while PRECIS simulations underestimate (overestimate) the same by {˜ }7% ({˜ }16%). Both RegCM4.4 and PRECIS simulations indicate an intense cold bias (up to 10° C) in the Himalayas, and are generally stronger in the RegCM4.4 simulations. Additionally, they tend to produce high precipitation between April and May in the Ganges (RegCM4.4 simulations) and Brahmaputra-Meghna (PRECIS simulations) River Basins, resulting in early onset of the Indian monsoon in the Ganges River Basin. PRECIS simulations exhibit a delayed monsoon withdrawal in the Brahmaputra-Meghna River Basin. Despite large spatial variations in onset and withdrawal periods across the GBM River Basin, the basin-averaged results agree reasonably well with the observed periods. Although global climate model (GCM) driven simulations are generally poor in representing the interannual variability of precipitation and winter temperature variations, they tend to agree well with observed precipitation anomalies when driven by

  3. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    Science.gov (United States)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  4. Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin

    Directory of Open Access Journals (Sweden)

    Rafael Splendore de Borba

    Full Text Available In this study, phylogenetic and phylogeographic analyses of populations identified as Hypostomus strigaticeps from the upper Paraná River basin were conducted in order to test whether these different populations comprises cryptic species or structured populations and to assess their genetic variability. The sequences of the mitochondrial DNA ATP sintetase (subunits 6/8 of 27 specimens from 10 populations (one from Mogi-Guaçu River, five from Paranapanema River, three from Tietê River and one from Peixe River were analyzed. The phylogeographic analysis showed the existence of eight haplotypes (A-H, and despite the ancestral haplotype includes only individuals from the Tietê River basin, the distribution of H. strigaticeps was not restricted to this basin. Haplotypes A, B and F were the most frequent. Haplotypes D, E, F, G, and H were present in the sub-basin of Paranapanema, two (A and B were present in the sub-basin of the Tietê River, one (C was exclusively distributed in the sub-basin of the Peixe River, and one (B was also present in the sub-basin of the Grande River. The phylogenetic analysis showed that the populations of H. strigaticeps indeed form a monophyletic unit comprising two lineages: TG, with representatives from the Tietê, Mogi-Guaçu and Peixe Rivers; and PP, with specimens from the Paranapanema River. The observed degree of genetic divergence within the TG and PP lineages was 0.1% and 0.2%, respectively, whereas the genetic divergence between the two lineages themselves was approximately 1%. The results of the phylogenetic analysis do not support the hypothesis of existence of crypt species and the phylogeographic analysis confirm the presence of H. strigaticeps in other sub-basins of the upper Paraná River: Grande, Peixe, and Paranapanema sub-basins.

  5. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    Science.gov (United States)

    Swarnkar, Somil; Malini, Anshu; Tripathi, Shivam; Sinha, Rajiv

    2018-04-01

    High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha-1 yr-1) with higher values in the upper mountainous region (92 ± 15.2 t ha-1 yr-1) compared to the lower alluvial plains (19.3 ± 4 t ha-1 yr-1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin - Nanak Sagar Dam (NSD) for the period 1962-2008 and Husepur gauging station (HGS) for 1987-2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr-1 and 6.7 ± 1.4 × 106 t yr-1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr-1 and 7.2 × 106 t yr-1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.

  6. How different institutional arrangements promote integrated river basin management

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Frederiksen, Pia; Saarikoski, Heli

    2013-01-01

    Management Planning processes in six countries around the Baltic Sea. We use theories on multi-level governance, regime interplay and institutional effectiveness. We find that, in most cases, central governments have played a dominant role in the formulation of river basin management plans, while local......, member states must therefore address both the roles of different institutional actors and the interplay among institutions. In this paper, we will explore strengths and weaknesses of different institutional arrangements for integrated water management through a comparative analysis of River Basin...... influence has been somewhat limited. The tight procedural deadlines of the di-rective appear to have pushed for more centralisation than originally intended by the countries. But the analysis also shows that interplay mechanisms such as norms, ideas and incentives do promote effective institutional...

  7. Geochemical behavior of radionuclides and heavy metals in soils from Corumbatai River basin (SP), Brazil

    International Nuclear Information System (INIS)

    Conceicao, Fabiano Tomazini da

    2004-01-01

    The purpose of this research was to study the geochemical behavior of radionuclides and heavy metals in soils of agricultural use at Corumbatai River basin (SP). The natural concentration and variability in sedimentary rocks at Corumbatai river basin follow the trend Ca > Mg > K > Na, with the concentration of heavy metals and radionuclides. The distribution of exposure rate in soils shows the occurrence of higher values towards south of the Corumbatai river basin, region where are applied phosphate fertilizers, amendments and 'vinhaca' in sugar cane crops. Heavy metals and radionuclides incorporated in phosphate fertilizers and amendments are annually added during the fertilization process in the sugar cane crops, but if they are utilized in accordance with the recommended rate, they do not rise the concentration levels in soils up to hazards levels. Thus, they are lower transferred from soils to sugar cane at Corumbatai river basin, not offering hazard to the ecosystem and animal or human health. (author)

  8. Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Important characteristics of an appropriate river basin model, intended to study the effect of climate change on basin response, are the spatial and temporal resolution of the model and the rainfall input. The effects of input and model resolution on extreme discharge of a large river basin are

  9. 137Cs distribution and geochemistry of Lena River (Siberia) drainage basin lake sediments

    International Nuclear Information System (INIS)

    Johnson-Pyrtle, A.; Scott, M.R.; Laing, T.E.; Smol, J.P.

    2000-01-01

    The Lena River is the second largest river that discharges into the Arctic Ocean. It is therefore important to determine not only the direct impact its discharge has on the 137Cs concentration of the Arctic, but also the potential its drainage basin has as a 137Cs source. 137Cs surface sediment concentrations and inventory values, which range from 4.97 to 338 Bq kg -1 and 357 to 1732 Bq m -2 , respectively, were determined for the Lena River drainage basin lake samples, via gamma analysis. The average geochemical and mineralogical composition of a subset of samples was also determined using neutron activation analysis, X-ray diffraction and X-ray fluorescence spectrometry techniques. Results of these geochemical analyses allowed for the identification of key geochemical factors that influence the distribution of 137Cs in the Lena River drainage basin. 137Cs profiles indicate that Lena River drainage basin lacustrine sediments serve as a record of 137Cs fallout. Based on the downcore 137Cs, %illite, %smectite, %Al and %Mn distribution patterns, it was concluded that a small fraction of non-selectively bound 137Cs was remobilized at depth in some cores. Inconsistencies between the actual 137Cs fallout record and the 137Cs profiles determined for the lake sediments were attributed to 137Cs remobilization in subsurface sediments. In addition to establishing the agreement between the global atmospheric fallout record and the downcore 137Cs distribution patterns determined for these sediments, results indicate that 137Cs deposited during periods of maximum atmospheric release was buried and is not susceptible to surface erosion processes. However, mean 137Cs concentrations of the lacustrine surface sediments (125 Bq kg -1 ) are still significantly higher than those of the nearby Lena River estuary (11.22 Bq kg -1 ) and Laptev Sea (6.00 Bq kg -1 ). Our study suggests that the Lena River drainage basin has the potential to serve as a source of 137Cs to the adjacent Arctic

  10. Cooperative and adaptive transboundary water governance in Canada's Mackenzie River Basin: status and prospects

    Directory of Open Access Journals (Sweden)

    Michelle Morris

    2016-03-01

    Full Text Available Canada's Mackenzie River Basin (MRB is one of the largest relatively pristine ecosystems in North America. Home to indigenous peoples for millennia, the basin is also the site of increasing resource development, notably fossil fuels, hydroelectric power resources, minerals, and forests. Three provinces, three territories, the Canadian federal government, and Aboriginal governments (under Canada's constitution, indigenous peoples are referred to as "Aboriginal" have responsibilities for water in the basin, making the MRB a significant setting for cooperative, transboundary water governance. A framework agreement that provides broad principles and establishes a river basin organization, the MRB Board, has been in place since 1997. However, significant progress on completing bilateral agreements under the 1997 Mackenzie River Basin Transboundary Waters Master Agreement has only occurred since 2010. We considered the performance of the MRB Board relative to its coordination function, accountability, legitimacy, and overall environmental effectiveness. This allowed us to address the extent to which governance based on river basin boundaries, a bioregional approach, could contribute to adaptive governance in the MRB. Insights were based on analysis of key documents and published studies, 19 key informant interviews, and additional interactions with parties involved in basin governance. We found that the MRB Board's composition, its lack of funding and staffing, and the unwillingness of the governments to empower it to play the role envisioned in the Master Agreement mean that as constituted, the board faces challenges in implementing a basin-wide vision. This appears to be by design. The MRB governments have instead used the bilateral agreements under the Master Agreement as the primary mechanism through which transboundary governance will occur. A commitment to coordinating across the bilateral agreements is needed to enhance the prospects for

  11. Regional Cooperation Efforts in the Mekong River Basin: Mitigating river-related security threats and promoting regional development

    Directory of Open Access Journals (Sweden)

    Susanne Schmeier

    2009-01-01

    Full Text Available The development of international rivers is often perceived as leading to conflicts or even water wars. However, as the development of the Mekong River shows, cooperation has not only prevailed in the last decades, but River Basin Organizations (RBOs, established to mitigate river-related conflicts and/or develop the river basin, have also contributed to the emergence of more general cooperation structures, mainly by creating spill-over effects in other issue-areas, bringing cooperation to policy fields beyond the river itself. This article assesses the contribution of the Mekong River Commission (MRC and the Greater Mekong Sub-Region (GMS to the sustainable development of the Mekong Region as well as to the promotion of regional cooperation in mainland South-East Asia in general. --- Die Entwicklung grenzüberschreitender Flüsse wird oft mit Konflikten oder gar Kriegen um Wasser assoziiert. Wie jedoch die Entwicklung im Mekong-Becken zeigt, waren die vergangenen Jahrzehnte nicht nur von Kooperation gezeichnet, sondern Flussbeckenorganisationen konnten außerdem dazu beitragen, weitreichendere Kooperationsstrukturen zu entwickeln, die sich auf andere Politikfelder ausdehnen. Dieser Artikel beschäftigt sich mit dem Beitrag der Mekong River Commission (MRC und der Greater Mekong Sub-Region (GMS zur nachhaltigen Entwicklung in der Mekong Region sowie zur Förderung allgemeiner regionaler Kooperation im Festländischen Südostasien.

  12. Geohydrology of the Aucilla-Suwannee-Ochlockonee River Basin, south-central Georgia and adjacent parts of Florida

    Science.gov (United States)

    Torak, Lynn J.; Painter, Jaime A.; Peck, Michael F.

    2010-01-01

    Major streams and tributaries located in the Aucilla-Suwannee-Ochlockonee (ASO) River Basin of south-central Georgia and adjacent parts of Florida drain about 8,000 square miles of a layered sequence of clastic and carbonate sediments and carbonate Coastal Plain sediments consisting of the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Streams either flow directly on late-middle Eocene to Oligocene karst limestone or carve a dendritic drainage pattern into overlying Miocene to Holocene sand, silt, and clay, facilitating water exchange and hydraulic connection with geohydrologic units. Geologic structures operating in the ASO River Basin through time control sedimentation and influence geohydrology and water exchange between geohydrologic units and surface water. More than 300 feet (ft) of clastic sediments overlie the Upper Floridan aquifer in the Gulf Trough-Apalachicola Embayment, a broad area extending from the southwest to the northeast through the center of the basin. These clastic sediments limit hydraulic connection and water exchange between the Upper Floridan aquifer, the surficial aquifer system, and surface water. Accumulation of more than 350 ft of low-permeability sediments in the Southeast Georgia Embayment and Suwannee Strait hydraulically isolates the Upper Floridan aquifer from land-surface hydrologic processes in the Okefenokee Basin physiographic district. Burial of limestone beneath thick clastic overburden in these areas virtually eliminates karst processes, resulting in low aquifer hydraulic conductivity and storage coefficient despite an aquifer thickness of more than 900 ft. Conversely, uplift and faulting associated with regional tectonics and the northern extension of the Peninsular Arch caused thinning and erosion of clastic sediments overlying the Upper Floridan aquifer southeast of the Gulf Trough-Apalachicola Embayment near the Florida-Georgia State line. Limestone dissolution in

  13. Validation studies on indexed sequential modeling for the Colorado River Basin

    International Nuclear Information System (INIS)

    Labadie, J.W.; Fontane, D.G.; Salas, J.D.; Ouarda, T.

    1991-01-01

    This paper reports on a method called indexed sequential modeling (ISM) that has been developed by the Western Area Power Administration to estimate reliable levels of project dependable power capacity (PDC) and applied to several federal hydro systems in the Western U.S. The validity of ISM in relation to more commonly accepted stochastic modeling approaches is analyzed by applying it to the Colorado River Basin using the Colorado River Simulation System (CRSS) developed by the U.S. Bureau of Reclamation. Performance of ISM is compared with results from input of stochastically generated data using the LAST Applied Stochastic Techniques Package. Results indicate that output generated from ISM synthetically generated sequences display an acceptable correspondence with results obtained from final convergent stochastically generated hydrology for the Colorado River Basin

  14. Contaminants of emerging concern in the lower Stillaguamish River Basin, Washington, 2008-11

    Science.gov (United States)

    Wagner, Richard J.; Moran, Patrick W.; Zaugg, Steven D.; Sevigny, Jennifer M.; Pope, Judy M.

    2014-01-01

    A series of discrete water-quality samples were collected in the lower Stillaguamish River Basin near the city of Arlington, Washington, through a partnership with the Stillaguamish Tribe of Indians. These samples included surface waters of the Stillaguamish River, adjacent tributary streams, and paired inflow and outflow sampling at three wastewater treatment plants in the lower river basin. Chemical analysis of these samples focused on chemicals of emerging concern, including wastewater compounds, human-health pharmaceuticals, steroidal hormones, and halogenated organic compounds on solids and sediment. This report presents the methods used and data results from the chemical analysis of these samples

  15. The Portland Basin: A (big) river runs through it

    Science.gov (United States)

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  16. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  17. Invertebrates of the Columbia River basin assessment area.

    Science.gov (United States)

    Christine G. Niwa; Roger E. Sandquist; Rod Crawford; et al.

    2001-01-01

    A general background on functional groups of invertebrates in the Columbia River basin and how they affect sustainability and productivity of their ecological communities is presented. The functional groups include detritivores, predators, pollinators, and grassland and forest herbivores. Invertebrate biodiversity and species of conservation interest are discussed....

  18. A method for developing a large-scale sediment yield index for European river basins

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, Magalie; Cerdan, Olivier; Garcin, Manuel [BRGM ARN/ESL, Orleans (France); Mouchel, Jean-Marie [UMR Sisyphe, Univ. P and M Curie, Paris (France)

    2009-12-15

    Background, aim, and scope: Sediment fluxes within continental areas play a major role in biogeochemical cycles and are often the cause of soil surface degradation as well as water and ecosystem pollution. In a situation where a high proportion of the land surface is experiencing significant global land use and climate changes, it appears important to establish sediment budgets considering the major processes forcing sediment redistribution within drainage areas. In this context, the aim of this study is to test a methodology to estimate a sediment yield index at a large spatial resolution for European river basins. Data and methods: Four indicators representing processes respectively considered as sources (mass movement and hillslope erosion), sinks (deposits), and transfers of sediments (drainage density) are defined using distributed data. Using these indicators we propose a basic conceptual approach to test the possibility of explaining sediment yield observed at the outlet of 29 selected European river basins. We propose an index which adds the two sources and transfers, and subsequently subtracts the sink term. This index is then compared to observed sediment yield data. Results: With this approach, variability between river basins is observed and the evolution of each indicator analyzed. A linear regression shows a correlation coefficient of 0.83 linking observed specific sediment yield (SSY) with the SSY index. Discussion: To improve this approach at this large river basin scale, basin classification is further refined using the relation between the observed SSY and the index obtained from the four indicators. It allows a refinement of the results. Conclusions: This study presents a conceptual approach offering the advantages of using spatially distributed data combined with major sediment redistribution processes to estimate the sediment yield observed at the outlet of river basins. Recommendations and perspectives: Inclusion of better information on

  19. Degradation and damages from utilizing ecosystem services in a river basin

    Science.gov (United States)

    Travis W. Warziniack

    2012-01-01

    We examine the tradeoffs between utilizing multiple ecosystem services in an economic model of the Lower Mississippi-Atchafalaya River Basin. We show how economic development in the basin degraded the ecosystem, but diversified the economy. A degraded ecosystem and more employment opportunities elsewhere reduced the region's reliance on agriculture and other...

  20. Climate Change Impacts on Water Availability and Use in the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    Tingju Zhu

    2012-01-01

    Full Text Available This paper analyzes the effects of climate change on water availability and use in the Limpopo River Basin of Southern Africa, using a linked modeling system consisting of a semi-distributed global hydrological model and the Water Simulation Module (WSM of the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT. Although the WSM simulates all major water use sectors, the focus of this study is to evaluate the implications of climate change on irrigation water supply in the catchments of the Limpopo River Basin within the four riparian countries: Botswana, Mozambique, South Africa, and Zimbabwe. The analysis found that water resources of the Limpopo River Basin are already stressed under today’s climate conditions. Projected water infrastructure and management interventions are expected to improve the situation by 2050 if current climate conditions continue into the future. However, under the climate change scenarios studied here, water supply availability is expected to worsen considerably by 2050. Assessing hydrological impacts of climate change is crucial given that expansion of irrigated areas has been postulated as a key adaptation strategy for Sub-Saharan Africa. Such expansion will need to take into account future changes in water availability in African river basins.

  1. Priority targets for environmental research in the Sinos River basin

    Directory of Open Access Journals (Sweden)

    FR. Spilki

    Full Text Available The Sinos River Basin is often mentioned as a highly degraded watershed. A series of impacts on water quality, soil and air has been reported in this environment on a recurring basis over the years. This situation of environmental degradation has its origins in a process of huge economic development uncoupled from environmental conservation concerns. The intense consequent urbanization observed for the municipalities within the watershed was not preceded by urban planning proper zoning. The time has arrived for initiatives in scientific research in the Sinos River basin that are applicable to a more efficient and integrated management and recovery of the basin. In this article, a set of targets for research is suggested which the authors consider as the main priorities for the next few years, aiming for better knowledge and better management of the watershed. Some are still in course, while others have to be initiated as soon as possible.

  2. The susceptibility of large river basins to orogenic and climatic drivers

    Science.gov (United States)

    Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm

    2017-04-01

    Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect

  3. Development of a systemwide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Section 1: Implementation. Annual report 1994

    International Nuclear Information System (INIS)

    Willis, C.F.; Young, F.R.

    1995-09-01

    The authors report the results from the forth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated it is not necessary to eradicate northern squawfish to substantially reduce predation-caused mortality of juvenile salmonids. Instead, if northern squawfish were exploited at a 10--20% rate, reductions in numbers of larger, older fish resulting in restructuring of their population could reduce their predation on juvenile salmonids by 50% or more. Consequently, the authors designed and tested a sport-reward angling fishery and a commercial longline fishery in the John Day pool in 1990. They also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, they implemented three test fisheries on a multi-pool, or systemwide, scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery

  4. Towards an equitable allocation of the cost of a global change adaptation plan at the river basin scale: going beyond the perfect cooperation assumption

    Science.gov (United States)

    Girard, Corentin; Rinaudo, Jean-Daniel; Pulido-Velázquez, Manuel

    2015-04-01

    Adaptation to global change is a key issue in the planning of water resource systems in a changing world. Adaptation has to be efficient, but also equitable in the share of the costs of joint adaptation at the river basin scale. Least-cost hydro-economic optimization models have been helpful at defining efficient adaptation strategies. However, they often rely on the assumption of a "perfect cooperation" among the stakeholders, required for reaching the optimal solution. Nowadays, most adaptation decisions have to be agreed among the different actors in charge of their implementation, thus challenging the validity of a perfect command-and-control solution. As a first attempt to over-pass this limitation, our work presents a method to allocate the cost of an efficient adaptation programme of measures among the different stakeholders at the river basin scale. Principles of equity are used to define cost allocation scenarios from different perspectives, combining elements from cooperative game theory and axioms from social justice to bring some "food for thought" in the decision making process of adaptation. To illustrate the type of interactions between stakeholders in a river basin, the method has been applied in a French case study, the Orb river basin. Located on the northern rim of the Mediterranean Sea, this river basin is experiencing changes in demand patterns, and its water resources will be impacted by climate change, calling for the design of an adaptation plan. A least-cost river basin optimization model (LCRBOM) has been developed under GAMS to select the combination of demand- and supply-side adaptation measures that allows meeting quantitative water management targets at the river basin scale in a global change context. The optimal adaptation plan encompasses measures in both agricultural and urban sectors, up-stream and down-stream of the basin, disregarding the individual interests of the stakeholders. In order to ensure equity in the cost allocation

  5. Forecasting domestic water demand in the Haihe river basin under changing environment

    Science.gov (United States)

    Wang, Xiao-Jun; Zhang, Jian-Yun; Shahid, Shamsuddin; Xie, Yu-Xuan; Zhang, Xu

    2018-02-01

    A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs) namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs) 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22 × 108 m3 by GCM BNU-ESM and the minimum 107.25 × 108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.

  6. Sensitivity of the hydrologic cycle in Tana river basin to climate change

    International Nuclear Information System (INIS)

    Mutua, F.M.

    1998-01-01

    The Tana River basin in Kenya has four distinct climates along it's gradient from cool humid in mount Kenya region through arid and semi arid in the lower plains to semi humid coastal climate. From the highlands of mount Kenya to the plateau on the lowlands, the river traverses some sections which have high potential for hydro-electric power generation. The government has constructed water reovirus to collect water for electricity generation. The influence of the reovirus have also caused climate modification. The aim of the study was to investigate the sensitivity of the river flows in the Tana river to climate change. The study indicates that, as long as temperature increment of up to 2 degrees centigrade are accompanied by positive changes (greater than 10%) in rainfall over the basin, then the hydrologic cycle adjust itself accordingly to give a positive response (increased runoff) in terms of the river at the outlet

  7. Analysis of trends in selected streamflow statistics for the Concho River Basin, Texas, 1916-2009

    Science.gov (United States)

    Barbie, Dana L.; Wehmeyer, Loren L.; May, Jayne E.

    2012-01-01

    The Concho River Basin is part of the upper Colorado River Basin in west-central Texas. Monotonic trends in streamflow statistics during various time intervals from 1916-2009 were analyzed to determine whether substantial changes in selected streamflow statistics have occurred within the Concho River Basin. Two types of U.S. Geological Survey streamflow data comprise the foundational data for this report: (1) daily mean discharge (daily discharge) and (2) annual instantaneous peak discharge. Trend directions are reported for the following streamflow statistics: (1) annual mean daily discharge, (2) annual 1-day minimum discharge, (3) annual 7-day minimum discharge, (4) annual maximum daily discharge, and (5) annual instantaneous peak discharge.

  8. Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu Lake in Taihu Basin

    Directory of Open Access Journals (Sweden)

    Wu Haoyun

    2008-09-01

    Full Text Available On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtze River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching decision-making support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.

  9. A millennium-length reconstruction of Bear River stream flow, Utah

    Science.gov (United States)

    R. J. DeRose; M. F. Bekker; S.-Y. Wang; B. M. Buckley; R. K. Kjelgren; T. Bardsley; T. M. Rittenour; E. B. Allen

    2015-01-01

    The Bear River contributes more water to the eastern Great Basin than any other river system. It is also the most significant source of water for the burgeoning Wasatch Front metropolitan area in northern Utah. Despite its importance for water resources for the region’s agricultural, urban, and wildlife needs, our understanding of the variability of Bear River’s stream...

  10. Hydrogeologic reconnaissance of the San Miguel River basin, southwestern Colorado

    Science.gov (United States)

    Ackerman, D.J.; Rush, F.E.

    1984-01-01

    The San Miguel River Basin encompasses 4,130 square kilometers of which about two-thirds is in the southeastern part of the Paradox Basin. The Paradox Basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Evaporite beds of mostly salt are both overlain and underlain by confining beds. Aquifers are present above and below the confining-bed sequence. The principal element of ground-water outflow from the upper aquifer is flow to the San Miguel River and its tributaries; this averages about 90 million cubic meters per year. A water budget for the lower aquifer has only two equal, unestimated elements, subsurface outflow and recharge from precipitation. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. No brines have been sampled and no brine discharges have been identified in the basin. Salt water has been reported for petroleum-exploration wells, but no active salt solution has been identified. (USGS)

  11. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    Science.gov (United States)

    Johnson, Ronald C.

    2007-01-01

    Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the

  12. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    Science.gov (United States)

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  13. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  14. Latest Miocene-earliest Pliocene evolution of the ancestral Rio Grande at the Española-San Luis Basin boundary, northern New Mexico

    Science.gov (United States)

    Daniel J. Koning,; Aby, Scott B.; Grauch, V. J.; Matthew J. Zimmerer,

    2016-01-01

    We use stratigraphic relations, paleoflow data, and 40Ar/39Ar dating to interpret net aggradation, punctuated by at least two minor incisional events, along part of the upper ancestral Rio Grande fluvial system between 5.5 and 4.5 Ma (in northern New Mexico). The studied fluvial deposits, which we informally call the Sandlin unit of the Santa Fe Group, overlie a structural high between the San Luis and Española Basins. The Sandlin unit was deposited by two merging, west- to southwest-flowing, ancestral Rio Grande tributaries respectively sourced in the central Taos Mountains and southern Taos Mountains-northeastern Picuris Mountains. The river confluence progressively shifted southwestward (downstream) with time, and the integrated river (ancestral Rio Grande) flowed southwards into the Española Basin to merge with the ancestral Rio Chama. Just prior to the end of the Miocene, this fluvial system was incised in the southern part of the study area (resulting in an approximately 4–7 km wide paleovalley), and had sufficient competency to transport cobbles and boulders. Sometime between emplacement of two basalt flows dated at 5.54± 0.38 Ma and 4.82±0.20 Ma (groundmass 40Ar/39Ar ages), this fluvial system deposited 10–12 m of sandier sediment (lower Sandlin subunit) preserved in the northern part of this paleovalley. The fluvial system widened between 4.82±0.20 and 4.50±0.07 Ma, depositing coarse sand and fine gravel up to 14 km north of the present-day Rio Grande. This 10–25 m-thick sediment package (upper Sandlin unit) buried earlier south- to southeast-trending paleovalleys (500–800 m wide) inferred from aeromagnetic data. Two brief incisional events are recognized. The first was caused by the 4.82±0.20 Ma basalt flow impounding south-flowing paleodrainages, and the second occurred shortly after emplacement of a 4.69±0.09 Ma basalt flow in the northern study area. Drivers responsible for Sandlin unit aggradation may include climate

  15. Monitoring of perfluoroalkyl substances in the Ebro and Guadalquivir River basins (Spain)

    Science.gov (United States)

    Lorenzo, Maria; Campo, Julian; Andreu, Vicente; Pico, Yolanda; Farre, Marinella; Barcelo, Damia

    2015-04-01

    Relevant concentrations of a broad range of pollutants have been found in Spanish Mediterranean River basins, as consequence of anthropogenic pressures and overexploitation (Campo et al., 2014). In this study, the occurrence and sources of 21 perfluoroalkyl substances (PFASs) were determined in water and sediment of the Ebro and Guadalquivir River basins (Spain). PFASs are persistent, bio-accumulative and toxic, which make them a hazard to human health and wildlife. The Ebro and Guadalquivir Rivers are the two most important rivers of Spain. They are representative examples of Mediterranean rivers heavily managed, and previous researches have reported their high pesticide contamination (Masiá et al., 2013). Analytes were extracted by solid phase extraction (SPE) and determined by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS). In water samples, from 21 analytes screened, 11 were found in Ebro samples and 9 in Guadalquivir ones. In both basins, the most frequents were PFBA, PFPeA, PFHxS and PFOS. Maximum concentration was detected for PFBA, with 251.3 ng L-1 in Ebro and 742.9 ng L-1 in Guadalquivir. Regarding the sediment samples, 8 PFASs were detected in those coming from Ebro basin and 9 in those from Guadalquivir. The PFASs most frequently detected were PFBA, PFPeA, PFOS and PFBS. Maximum concentration in Ebro samples was detected for PFOA, with 32.4 ng g-1 dw, and in Guadalquivir samples for PFBA with 63.8 ng g-1 dw. Ubiquity of these compounds in the environment was proved with high PFAS concentration values detected in upper parts of the rivers. Results confirm that most of the PFASs are only partially eliminated during the secondary treatment suggesting that they can be a focal point of contamination to the rivers where they can bio-accumulate and produce adverse effects on wildlife and humans. Acknowledgment The Spanish Ministry of Economy and Competitiveness has supported this work through the projects SCARCE-CSD2009-00065, CGL2011

  16. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian; Smith, R.

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches...... of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements...... improved model performance considerably. The Nash-Sutcliffe model efficiency increased from 0.77 to 0.83. Real-time river basin modelling using radar altimetry has the potential to improve the predictive capability of large-scale hydrological models elsewhere on the planet....

  17. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  18. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  19. Sources of nitrate in water from springs and the Upper Floridan aquifer, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, B.G.; Hornsby, H.D.; Böhlke, John Karl

    1999-01-01

    In the Suwannee River basin of northern Florida, nitrate-N concentrations are 1.5 to 20 mg 1-1 in waters of the karstic Upper Floridan aquifer and in springs that discharge into the middle reach of the Suwannee River. During 1996-1997, fertilizers and animal wastes from farming operations in Suwannee County contributed approximately 49% and 45% of the total N input, respectively. Values of ??15N-NO3 in spring waters range from 3.9??? to 5.8???, indicating that nitrate most likely originates from a mixture of inorganic (fertilizers) and organic (animal waste) sources. In Lafayette County, animal wastes from farming operations and fertilizers contributed approximately 53% and 39% of the total N input, respectively, but groundwater near dairy and poultry farms has ??15N-NO3 values of 11.0-12.1???, indicative of an organic source of nitrate. Spring waters that discharge to the Suwannee River from Lafayette County have ??15N-NO3 values of 5.4-8.39???, which are indicative of both organic and inorganic sources. Based on analyses of CFCs, the mean residence time of shallow groundwater and spring water ranges between 8-12 years and 12-25 years, respectively.

  20. Monitoring mass changes in the Volta River basin using GRACE satellite gravity and TRMM precipitation

    Directory of Open Access Journals (Sweden)

    Vagner G. Ferreira

    Full Text Available GRACE satellite gravity data was used to estimate mass changes within the Volta River basin in West African for the period of January, 2005 to December, 2010. We also used the precipitation data from the Tropical Rainfall Measurement Mission (TRMM to determine relative contributions source to the seasonal hydrological balance within the Volta River basin. We found out that the seasonal mass change tends to be detected by GRACE for periods from 1 month in the south to 4 months in the north of the basin after the rainfall events. The results suggested a significant gain in water storage in the basin at reference epoch 2007.5 and a dominant annual cycle for the period under consideration for both in the mass changes and rainfall time series. However, there was a low correlation between mass changes and rainfall implying that there must be other processes which cause mass changes without rainfall in the upstream of the Volta River basin.

  1. Water utilization in the Snake River Basin

    Science.gov (United States)

    Hoyt, William Glenn; Stabler, Herman

    1935-01-01

    The purpose of this report is to describe the present utilization of the water in the Snake River Basin with special reference to irrigation and power and to present essential facts concerning possible future utilization. No detailed plan of development is suggested. An attempt has been made, however, to discuss features that should be taken into account in the formulation of a definite plan of development. On account of the size of the area involved, which is practically as large as the New England States and New York combined, and the magnitude of present development and future possibilities, considerable details have of necessity been omitted. The records of stream flow in the basin are contained in the reports on surface water supply published annually by the Geological Survey. These records are of the greatest value in connection with the present and future regulation and utilization of the basin's largest asset water.

  2. Spatial Misfit in Participatory River Basin Management: Effects on Social Learning, a Comparative Analysis of German and French Case Studies

    Directory of Open Access Journals (Sweden)

    Ilke Borowski

    2008-06-01

    Full Text Available With the introduction of river basin management, as prescribed by the European Water Framework Directive (WFD, participatory structures are frequently introduced at the hydrological scale without fully adapting them to the decision-making structure. This results in parallel structures and spatial misfits within the institutional settings of river basin governance systems. By analyzing French and German case studies, we show how social learning (SL is impeded by such misfits. We also demonstrate that river basin-scale institutions or actors that link parallel structures are essential for promoting river basins as management entities, and for encouraging SL between actors at the river basin scale. In the multi-scale, multi-level settings of river basin governance, it is difficult to fully exclude spatial misfits. Thus, it is important to take our insights into account in the current transition of water management from the administrative to the hydrological scale to get the greatest benefit from SL processes.

  3. Isotopic fingerprint of the middle Olt River basin, Romania.

    Science.gov (United States)

    Popescu, Raluca; Costinel, Diana; Ionete, Roxana Elena; Axente, Damian

    2014-01-01

    One of the most important tributaries of the Danube River in Romania, the Olt River, was characterized in its middle catchment in terms of the isotopic composition using continuous flow-isotope ratio mass spectrometry (CF-IRMS). Throughout a period of 10 months, from November 2010 to August 2011, water samples from the Olt River and its more important tributaries were collected in order to investigate the seasonal and spatial isotope patterns of the basin waters. The results revealed a significant difference between the Olt River and its tributaries, by the fact that the Olt River waters show smaller seasonal variations in the stable isotopic composition and are more depleted in (18)O and (2)H. The waters present an overall enrichment in heavy isotopes during the warm seasons.

  4. Upper Illinois River basin

    Science.gov (United States)

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  5. Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique

    Science.gov (United States)

    Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.

    2017-11-01

    Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the

  6. The cost of noncooperation in international river basins

    Science.gov (United States)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  7. Potential for Water Savings by Defoliation of Saltcedar (Tamarix spp.) by Saltcedar Beetles (Diorhabda carinulata) in the Upper Colorado River Basin

    Science.gov (United States)

    Nagler, P. L.; Nguyen, U.; Bateman, H. L.; Jarchow, C.; van Riper, C., III; Waugh, W.; Glenn, E.

    2016-12-01

    Northern saltcedar beetles (Diorhabda carinata) have spread widely in riparian zones on the Colorado Plateau since their initial release in 2002. One goal of the releases was to reduce water consumption by saltcedar in order to conserve water through reduction of evapotranspiration (ET). The beetle moved south on the Virgin River and reached Big Bend State Park in Nevada in 2014, an expansion rate of 60 km/year. This is important because the beetle's photoperiod requirement for diapause was expected to prevent them from moving south of 37°N latitude, where endangered southwest willow flycatcher habitat occurs. In addition to focusing on the rate of dispersal of the beetles, we used remote sensing estimates of ET at 13 sites on the Colorado, San Juan, Virgin and Dolores rivers and their tributaries to estimate riparian zone ET before and after beetle releases. We estimate that water savings from 2007-2015 was 31.5 million m3/yr (25,547 acre-ft/yr), amounting to 0.258 % of annual river flow from the Upper Colorado River Basin to the Lower Basin. Reasons for the relatively low potential water savings are: 1) baseline ET before beetle release was modest (0.472 m/yr); 2) reduction in ET was low (0.061 m/yr) because saltcedar stands tended to recover after defoliation; 3) riparian ET even in the absence of beetles was only 1.8 % of river flows, calculated as the before beetle average annual ET (472 mm/yr) times the total area of saltcedar (51,588 ha) divided by the combined total average annual flows (1964-2015) from the upper to lower catchment areas of the Colorado River Basin at the USGS gages (12,215 million m3/yr or 9.90 million acre-ft). Further research is suggested to concentrate on the ecological impacts (both positive and negative) of beetles on riparian zones and on identifying management options to maximize riparian health.

  8. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  9. Elements for an integrated resource planning in the framework of river basins: a study for the Cuiaba River Basin; Elementos para um planejamento integrado de recursos no ambito de bacias hidrograficas: um estudo para a bacia do rio Cuiaba

    Energy Technology Data Exchange (ETDEWEB)

    Dorileo, Ivo Leandro; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Dept. de Energia], e-mail: ildorileo@sigmanet.com.br, e-mail: bajay@fem.unicamp.br

    2008-07-01

    A new approach in energy planning in Brazil, IRP - Integrated Resources Planning for River Basins, gathers three main determinants of development: water, electricity and piped gas. This paper argues, briefly, the need of this planning, of indicative character, integrated with the River Basin Plans, and it presents a retrospective analysis concerning water, electricity and LPG demands of the economy sectors from Cuiaba River Basin region, priority elements to aid the prospective studies and to carry out process related to the IRP. (author)

  10. Distributed hydrological modelling of the Senegal river basin - model construction and validation

    DEFF Research Database (Denmark)

    Andersen, J.; Refsgaard, J.C.; Jensen, Karsten Høgh

    2001-01-01

    A modified version of the physically-based distributed MIKE SHE model code was applied to the 375,000 km(2) Senegal River Basin. On the basis of conventional data from meteorological stations and readily accessible databases on topography, soil types, vegetation type, etc. three models with diffe......A modified version of the physically-based distributed MIKE SHE model code was applied to the 375,000 km(2) Senegal River Basin. On the basis of conventional data from meteorological stations and readily accessible databases on topography, soil types, vegetation type, etc. three models...

  11. Stationarity of annual flood peaks during 1951-2010 in the Pearl River basin, China

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Xiao, Mingzhong; Xu, Chong-Yu

    2014-11-01

    The assumption of stationarity of annual peak flood (APF) records at 28 hydrological stations across the Pearl River basin, China, is tested. Abrupt changes in mean and variance are tested using the Pettitt technique and the Loess method. Trends of APFs are analyzed using the Mann-Kendall method and the Spearman technique. And then the stationarity of the APF series is further investigated by GAMLSS models and long-term persistence. Results indicate that: (1) abrupt changes in mean and variance have similar influences on the changing properties of APFs, such as stationarity. Abrupt changes in mean and variance are only field significant in the East River basin; (2) the change points have a considerable impact on the detection of trends, and these may be attributed to the fact that a abrupt increase or decrease in mean values will affect the trend variations. Besides, for the APF series being free of change points and trend, the GAMLSS models also corroborate stationarity of the APF series; (3) the nonstationarity in the Pearl River basin is mainly due to the existence of the change point. However, the APF series with change points in mean and/or variance are also characterized by long-term persistence, and thus it is infeasible to assert that the abrupt behaviors and/or trends of the APF series are the result of human activities or long-term persistence, especially in the East River basin. Results of this study will provide information for management of water resources and design of hydraulic facilities in the Pearl River basin in a changing environment.

  12. Gazetteer of hydrologic characteristics of streams in Massachusetts; Blackstone River basin

    Science.gov (United States)

    Wandle, S.W.; Phipps, A.F.

    1984-01-01

    The Blackstone River basin encompasses 335 square miles in south-central Massachusetts, including parts of Bristol, Middlesex, Norfolk, and Worcester Counties. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics, were calculated using a new data base with records through 1980. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. The 7-day, 10-year low-flow values are presented for 31 partial-record sites and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are presented for the six gaged streams in the Blackstone River basin. This gazetteer will aid in the planning and siting of water-resources-related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)

  13. Exploring Evidence of Land Surface Dynamics of River Basin Development in East Africa

    Science.gov (United States)

    Eluwa, C.; Brown, C.

    2017-12-01

    Improving the productivity of agricultural lands in Africa in the face of climate variability and change is vital to achieving food security. A variety of possible approaches exist, many of which focus on the development and expansion of irrigation - at times associated with dam construction to provide co-benefits of hydropower and water supply. Optimal development of river basin infrastructure such as this has long been a topic of interest in water resources systems analysis. Recent advances have focused on addressing the uncertainty associated with climate change in the development of river basin plans. However, such studies rarely consider either the uncertainty from changing local surface-atmosphere interactions via basin development or the attendant effects on local ecosystems, precipitation, evapotranspiration and consequently the availability of water for the proposed projects. Some numerical experiments have described and reproduced the mechanisms via which river basin infrastructure influences local climatology in Sahelian Africa. However, no studies have explored available data for evidence of land-atmosphere interactions associated with actual development projects. This study explores the correlation of seasonal soil moisture and latent heat flux over currently dammed/irrigated areas on downwind precipitation in the East Africa region (bounded by 0N, -15N, 25E, 40E) at the mesoscale (30km - 100km) to unearth evidence of local climatological effects of river basin development (irrigation schemes). The adopted process is (1) use reanalysis data to derive mean wind directions at 800hPa for selected regions (2) use mean wind directions (and orthogonal directions) to locate high (and low) impact areas 30 -100km downwind (3) extract precipitation time series for downwind locations from three different gridded products (CRU, GCPC, PRINCETON) (4) compare precipitation time series across datasets in high/low impact areas and correlate with upwind latent heat flux

  14. Towards a digital watershed, with a case study in the Heihe River Basin of northwest China

    Science.gov (United States)

    Li, X.; Cheng, G.-D.; Ma, M.-G.; Lu, L.; Ge, Y.-C.

    2003-04-01

    Integrated watershed study and river basin management needs integrated database and integrated hydrological and water resource models. We define digital watershed as a web-based information system that integrates data from different sources and in different scales through both information technology and hydrological modeling. In the last two years, a “digital basin” of the Heihe River Basin, which is a well-studied in-land catchment in China’s arid region was established. More than 6 Gb of in situ observation data, GIS maps, and remotely sensed data have been uploaded to the Heihe web site. Various database and dynamic web techniques such as PHP, ASP, XML, VRML are being used for data service. In addition, the DIAL (Data and Information Access Link), IMS (Internet Map Server) and other Web-GISs are used to make GIS and remote sensing datasets of the Heihe River Basin available and accessible on the Internet. We also have developed models for estimating the evapotranspiration, bio-physical parameters, and snow runoff. These methods can be considered as the elements to build up the integrated watershed model that can be used for integrated management of the Heihe River Basin. The official domain name of the digital Heihe River Basin is heihe.westgis.ac.cn

  15. Simulation of blue and green water resources in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2014-09-01

    Full Text Available The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool, calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program based on river discharge in the Wei River basin (WRB. Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain, one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  16. Concentrations and loads of cadmium, lead, and zinc measured near the peak of the 1999 snowmelt-runoff hydrographs for 42 water-quality stations, Coeur d'Alene River basin, Idaho

    Science.gov (United States)

    Woods, Paul F.

    2000-01-01

    The Remedial Investigation/Feasibility Study conducted by the U.S. Environmental Protection Agency within the Spokane River Basin of northern Idaho and eastern Washington included extensive data-collection activities to determine the nature and extent of trace-element contamination within the basin. The U.S. Geological Survey designed and implemented synoptic sampling of the 1999 snowmelt-runoff event at 42 water- quality stations during the 1999 water year. The distribution of the 42 stations was as follows: North Fork Coeur d’Alene River and tributaries, 4 stations; South Fork Coeur d’Alene River, 13 stations; Canyon, Ninemile, and Pine Creeks, 4 stations each; other tributaries to South Fork Coeur d’Alene River, 10 stations; and main stem Coeur d’Alene River, 3 stations. The objective was to synoptically collect discharge and water-quality data in order to significantly improve the estimation of trace-element loads from multiple contributing source areas during the snowmelt-runoff event. Discharge and water-quality data were collected near the peak discharge during late May 1999. Each station was sampled for whole-water recoverable and dissolved concentrations and loads of cadmium, lead, and zinc.

  17. Hydrological balance of Chicu River basin, using nuclear techniques

    International Nuclear Information System (INIS)

    Ramos P, R.T.; Valderrama B, J.O.

    1992-01-01

    This thesis made part of the ARCAL X III Project, referring to the groundwater study en the Bogota Plain (Sabana de Bogota, Colombia). In the Bogota plain, is found located the Chicu River basin, in such basin are located two towns Tabio and Tenjo, in this zone have been taken advantage the groundwater in the last years. The objective of this work was determined by means of isotopic techniques, the determination of the groundwater origin and its quality using physical and chemical parameters

  18. Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska

    Science.gov (United States)

    Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.

    2015-01-01

    Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.

  19. Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of north-western South America.

    Science.gov (United States)

    Jiménez-Segura, L F; Galvis-Vergara, G; Cala-Cala, P; García-Alzate, C A; López-Casas, S; Ríos-Pulgarín, M I; Arango, G A; Mancera-Rodríguez, N J; Gutiérrez-Bonilla, F; Álvarez-León, R

    2016-07-01

    The remarkable fish diversity in the Caribbean rivers of north-western South America evolved under the influences of the dramatic environmental changes of neogene northern South America, including the Quechua Orogeny and Pleistocene climate oscillations. Although this region is not the richest in South America, endemism is very high. Fish assemblage structure is unique to each of the four aquatic systems identified (rivers, streams, floodplain lakes and reservoirs) and community dynamics are highly synchronized with the mono-modal or bi-modal flooding pulse of the rainy seasons. The highly seasonal multispecies fishery is based on migratory species. Freshwater fish conservation is a challenge for Colombian environmental institutions because the Caribbean trans-Andean basins are the focus of the economic development of Colombian society, so management measures must be directed to protect aquatic habitat and their connectivity. These two management strategies are the only way for helping fish species conservation and sustainable fisheries. © 2016 The Fisheries Society of the British Isles.

  20. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  1. Application of Statistical Downscaling Techniques to Predict Rainfall and Its Spatial Analysis Over Subansiri River Basin of Assam, India

    Science.gov (United States)

    Barman, S.; Bhattacharjya, R. K.

    2017-12-01

    The River Subansiri is the major north bank tributary of river Brahmaputra. It originates from the range of Himalayas beyond the Great Himalayan range at an altitude of approximately 5340m. Subansiri basin extends from tropical to temperate zones and hence exhibits a great diversity in rainfall characteristics. In the Northern and Central Himalayan tracts, precipitation is scarce on account of high altitudes. On the other hand, Southeast part of the Subansiri basin comprising the sub-Himalayan and the plain tract in Arunachal Pradesh and Assam, lies in the tropics. Due to Northeast as well as Southwest monsoon, precipitation occurs in this region in abundant quantities. Particularly, Southwest monsoon causes very heavy precipitation in the entire Subansiri basin during May to October. In this study, the rainfall over Subansiri basin has been studied at 24 different locations by multiple linear and non-linear regression based statistical downscaling techniques and by Artificial Neural Network based model. APHRODITE's gridded rainfall data of 0.25˚ x 0.25˚ resolutions and climatic parameters of HadCM3 GCM of resolution 2.5˚ x 3.75˚ (latitude by longitude) have been used in this study. It has been found that multiple non-linear regression based statistical downscaling technique outperformed the other techniques. Using this method, the future rainfall pattern over the Subansiri basin has been analyzed up to the year 2099 for four different time periods, viz., 2020-39, 2040-59, 2060-79, and 2080-99 at all the 24 locations. On the basis of historical rainfall, the months have been categorized as wet months, months with moderate rainfall and dry months. The spatial changes in rainfall patterns for all these three types of months have also been analyzed over the basin. Potential decrease of rainfall in the wet months and months with moderate rainfall and increase of rainfall in the dry months are observed for the future rainfall pattern of the Subansiri basin.

  2. Study of interaction of shallow groundwater and river along the Cisadane and Ciliwung river of Jakarta basin and its management using environmental isotopes

    International Nuclear Information System (INIS)

    Sidauruk, P.; Syafalni; Satrio

    2012-01-01

    The environmental isotopes were employed to study the interaction of shallow groundwater and river along the Cisadane River and Ciliwung River in Jakarta basin. The rapid growth and development of Jakarta and its surrounding cities, coupled with increasing industrial and other business sectors have impacted on the demand of the water supply for the area. These investigations have been conducted to determine the interaction between shallow groundwater and the river. The 14 C results showed that the groundwater samples (above 40 m) which were close to the river influenced the iso-age contour of 14 C, which indicated the contributions of river water. The analysis of stable isotopes 18 O and Deuterium from the river implied that the river water from upstream to downstream was influenced by the mixing of the river water with the human activities in the upstream (the isotopic compositions becoming enriched). Further, the 18 O and Deuterium data revealed that rivers of Cisadane and Ciliwung are contributing to recharge the shallow groundwater in Jakarta, especially in the nearby river bank. In general, the quality of the shallow groundwater along the rivers is good and is suitable as fresh water resource. Due to pollution and declining water table problems in the Jakarta basin, the artificial recharge wells is shown to be a good way out to delineate the problems as indicated by pilot project conducted at Kelurahan Kramat Jati, using infiltration basin method. (author)

  3. Impact of farm dams on river flows; A case study in the Limpopo River basin, Southern Africa

    NARCIS (Netherlands)

    Meijer, E.; Querner, E.P.; Boesveld, H.

    2013-01-01

    The study analysed the impact of a farm dam on the river flow in the Limpopo River basin. Two methods are used to calculate the water inflow: one uses the runoff component from the catchment water balance; the other uses the drainage output of the SIMFLOW model. The impact on the flow in a

  4. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin.

    Science.gov (United States)

    Zhao, Jing; Huang, Qiang; Chang, Jianxia; Liu, Dengfeng; Huang, Shengzhi; Shi, Xiaoyu

    2015-05-01

    The Wei River is the largest tributary of the Yellow River in China. The relationship between runoff and precipitation in the Wei River Basin has been changed due to the changing climate and increasingly intensified human activities. In this paper, we determine abrupt changes in hydro-climatic variables and identify the main driving factors for the changes in the Wei River Basin. The nature of the changes is analysed based on data collected at twenty-one weather stations and five hydrological stations in the period of 1960-2010. The sequential Mann-Kendall test analysis is used to capture temporal trends and abrupt changes in the five sub-catchments of the Wei River Basin. A non-parametric trend test at the basin scale for annual data shows a decreasing trend of precipitation and runoff over the past fifty-one years. The temperature exhibits an increase trend in the entire period. The potential evaporation was calculated based on the Penman-Monteith equation, presenting an increasing trend of evaporation since 1990. The stations with a significant decreasing trend in annual runoff mainly are located in the west of the Wei River primarily interfered by human activities. Regression analysis indicates that human activity was possibly the main cause of the decline of runoff after 1970. Copyright © 2015. Published by Elsevier Inc.

  5. Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945-2011

    Science.gov (United States)

    Czuba, Jonathan A.; Olsen, Theresa D.; Czuba, Christiana R.; Magirl, Christopher S.; Gish, Casey C.

    2012-01-01

    The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

  6. Assessing Climate Change Impacts on Water Allocation in Karkheh River Basin

    Science.gov (United States)

    Davtalabsabet, R.; Madani, K.; Massah, A.; Farajzadeh, M.

    2013-12-01

    Rahman Davtalab1, 2, Kaveh Madani2, Alireza Massah3, Manouchehr Farajzadeh1 1Department of Geography, Tarbiat Modares University, Tehran, Iran 2Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA 3Department of Irrigation and Drainage Engineering, College of Abureyhan , University of Tehran, Iran Abstract Karkheh river basin, with an area of 50,000 km2 is located, in southwest Iran. This basin supplies water for major agricultural activities and large hydropower production in five Iranian provinces with the total population of four million people. Due to development and population growth, this large trans-boundary basin is incapable of meeting the water demands of the five riparian provinces, causing water allocation conflicts in the region. The situation has been exacerbated by the frequent droughts and is expected to worsen further by climate change. This study evaluates the impacts of climate change on water supply reliability and allocation in this basin. First, outputs of several General Circulation Models (GCMs) under different emission scenarios for different future time horizons are statistically downscaled. Then multiple river flow time series (RFTS) are generated by feeding GCM outputs into a HEC-HMS model, using the Soil Moisture Accounting (SMA). Given a wide range of variations in GCM outputs and the resulting RFTS, the Ward's method is used to identity different RFTS clusters. Clustering helps with increasing the ability of the modeler to test a range of possible future conditions while reducing the redundancies in input data. Karkheh river basin's ability to meet the growing demand under decreasing flows is evaluated for each RFTS cluster representative. Results indicate that Karkheh river flow might decrease by 50% toward the end of the century. This would decrease the reliability of agricultural water deliveries from 78-95% to less than 50%. While currently hydropower dams can only

  7. Hydrologic modeling of Guinale River Basin using HEC-HMS and synthetic aperture radar

    Science.gov (United States)

    Bien, Ferdinand E.; Plopenio, Joanaviva C.

    2017-09-01

    This paper presents the methods and results of hydrologic modeling of Guinale river basin through the use of HEC-HMS software and Synthetic Aperture Radar Digital Elevation Model (SAR DEM). Guinale River Basin is located in the province of Albay, Philippines which is one of the river basins covered by the Ateneo de Naga University (ADNU) Phil-LiDAR 1. This research project was funded by the Department of Science and Technology (DOST) through the Philippine Council for Industry, Energy and Emerging Technology Research and Development (PCIEERD). Its objectives are to simulate the hydrologic model of Guinale River basin using HEC-HMS software and SAR DEM. Its basin covers an area of 165.395 sq.km. and the hydrologic model was calibrated using the storm event typhoon Nona (international name Melor). Its parameter had undergone a series of optimization processes of HEC-HMS software in order to produce an acceptable level of model efficiency. The Nash-Sutcliffe (E), Percent Bias and Standard Deviation Ratio were used to measure the model efficiency, giving values of 0.880, 0.260 and 0.346 respectively which resulted to a "very good" performance rating of the model. The flood inundation model was simulated using Legazpi Rainfall Intensity Duration Frequency Curves (RIDF) and HEC-RAS software developed by the US Army corps of Engineers (USACE). This hydrologic model will provide the Municipal Disaster Risk Reduction Management Office (MDRRMO), Local Government units (LGUs) and the community a tool for the prediction of runoff in the area.

  8. Comprehensive flood mitigation and management in the Chi River Basin, Thailand

    OpenAIRE

    Kunitiyawichai, K.; Schultz, B.; Uhlenbrook, S.; Suryadi, F.X.; Corzo, G.A.

    2011-01-01

    Severe flooding of the flat downstream area of the Chi River Basin occurs frequently. This flooding is causing catastrophic loss of human lives, damage and economic loss. Effective flood management requires a broad and practical approach. Although flood disasters cannot completely be prevented, major part of potential loss of lives and damages can be reduced by comprehensive mitigation measures. In this paper, the effects of river normalisation, reservoir operation, green river (bypass), and ...

  9. Water quality trends in the Delaware River Basin (USA) from 1980 to 2005.

    Science.gov (United States)

    Kauffman, Gerald J; Homsey, Andrew R; Belden, Andrew C; Sanchez, Jessica Rittler

    2011-06-01

    In 1940, the tidal Delaware River was "one of the most grossly polluted areas in the United States." During the 1950s, water quality was so poor along the river at Philadelphia that zero oxygen levels prevented migration of American shad leading to near extirpation of the species. Since then, water quality in the Delaware Basin has improved with implementation of the 1961 Delaware River Basin Compact and 1970s Federal Clean Water Act Amendments. At 15 gages along the Delaware River and major tributaries between 1980 and 2005, water quality for dissolved oxygen, phosphorus, nitrogen, and sediment improved at 39%, remained constant at 51%, and degraded at 10% of the stations. Since 1980, improved water-quality stations outnumbered degraded stations by a 4 to 1 margin. Water quality remains good in the nontidal river above Trenton and, while improved, remains fair to poor for phosphorus and nitrogen in the tidal estuary near Philadelphia and in the Lehigh and Schuylkill tributaries. Water quality is good in heavily forested watersheds (>50%) and poor in highly cultivated watersheds. Water quality recovery in the Delaware Basin is coincident with implementation of environmental laws enacted in the 1960s and 1970s and is congruent with return of striped bass, shad, blue crab, and bald eagle populations.

  10. [Spatio-temporal variations of origin, distribution and diffusion of Oncomelania hupensis in Yangtze River Basin].

    Science.gov (United States)

    Deng, Chen; Li-Yong, Wen

    2017-10-24

    As the only intermediate host of Schistosoma japonicum, Oncomelania hupensis in China is mainly distributed in the Yangtze River Basin. The origin of the O. hupensis and the spatio-temporal variations of its distribution and diffusion in the Yangtze River Basin and the influencing factors, as well as significances in schistosomiasis elimination in China are reviewed in this paper.

  11. Multisource Data-Based Integrated Agricultural Drought Monitoring in the Huai River Basin, China

    Science.gov (United States)

    Sun, Peng; Zhang, Qiang; Wen, Qingzhi; Singh, Vijay P.; Shi, Peijun

    2017-10-01

    Drought monitoring is critical for early warning of drought hazard. This study attempted to develop an integrated remote sensing drought monitoring index (IRSDI), based on meteorological data for 2003-2013 from 40 meteorological stations and soil moisture data from 16 observatory stations, as well as Moderate Resolution Imaging Spectroradiometer data using a linear trend detection method, and standardized precipitation evapotranspiration index. The objective was to investigate drought conditions across the Huai River basin in both space and time. Results indicate that (1) the proposed IRSDI monitors and describes drought conditions across the Huai River basin reasonably well in both space and time; (2) frequency of drought and severe drought are observed during April-May and July-September. The northeastern and eastern parts of Huai River basin are dominated by frequent droughts and intensified drought events. These regions are dominated by dry croplands, grasslands, and highly dense population and are hence more sensitive to drought hazards; (3) intensified droughts are detected during almost all months except January, August, October, and December. Besides, significant intensification of droughts is discerned mainly in eastern and western Huai River basin. The duration and regions dominated by intensified drought events would be a challenge for water resources management in view of agricultural and other activities in these regions in a changing climate.

  12. More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2018-05-01

    Flood risks across the Pearl River basin, China, were evaluated using a peak flood flow dataset covering a period of 1951-2014 from 78 stations and historical flood records of the past 1000 years. The generalized extreme value (GEV) model and the kernel estimation method were used to evaluate frequencies and risks of hazardous flood events. Results indicated that (1) no abrupt changes or significant trends could be detected in peak flood flow series at most of the stations, and only 16 out of 78 stations exhibited significant peak flood flow changes with change points around 1990. Peak flood flow in the West River basin increased and significant increasing trends were identified during 1981-2010; decreasing peak flood flow was found in coastal regions and significant trends were observed during 1951-2014 and 1966-2014. (2) The largest three flood events were found to cluster in both space and time. Generally, basin-scale flood hazards can be expected in the West and North River basins. (3) The occurrence rate of floods increased in the middle Pearl River basin but decreased in the lower Pearl River basin. However, hazardous flood events were observed in the middle and lower Pearl River basin, and this is particularly true for the past 100 years. However, precipitation extremes were subject to moderate variations and human activities, such as building of levees, channelization of river systems, and rapid urbanization; these were the factors behind the amplification of floods in the middle and lower Pearl River basin, posing serious challenges for developing measures of mitigation of flood hazards in the lower Pearl River basin, particularly the Pearl River Delta (PRD) region.

  13. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    Directory of Open Access Journals (Sweden)

    S. Swarnkar

    2018-04-01

    Full Text Available High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE and the sediment delivery ratio (SDR equations are used to estimate the spatial pattern of soil erosion (SE and sediment yield (SY in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha−1 yr−1 with higher values in the upper mountainous region (92 ± 15.2 t ha−1 yr−1 compared to the lower alluvial plains (19.3 ± 4 t ha−1 yr−1. Furthermore, the topographic steepness (LS and crop practice (CP factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin – Nanak Sagar Dam (NSD for the period 1962–2008 and Husepur gauging station (HGS for 1987–2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2  ×  105 t yr−1 and 6.7 ± 1.4  ×  106 t yr−1, respectively, and the estimated 90 % interval contains the observed values of 6.4  ×  105 t yr−1 and 7.2  ×  106 t yr−1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and

  14. Monitoring and evaluation of smolt migration in the Columbia River Basin; Volume 1; Evaluation of the 1995 predictions of the run-timing of wild migrant subyearling chinook in the Snake River Basin using Program RealTime

    International Nuclear Information System (INIS)

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1997-01-01

    This project was initiated in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of the project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and to help identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to assist in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; and (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community

  15. Forecasting domestic water demand in the Haihe river basin under changing environment

    Directory of Open Access Journals (Sweden)

    X.-J. Wang

    2018-02-01

    Full Text Available A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22  ×  108 m3 by GCM BNU-ESM and the minimum 107.25  ×  108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.

  16. Water-Energy Nexus in Shared River Basins: How Hydropower Shapes Cooperation and Coordination

    Directory of Open Access Journals (Sweden)

    Kouangpalath Phimthong

    2015-01-01

    Full Text Available The construction of hydropower plants on transboundary rivers is seldom done with equal benefits to all riparians, and therefore presents coordination and cooperation challenges. Without a supra-national authority in charge of transboundary river basins, coordination between sectors (water, energy and environment and cooperation between countries largely depends on willingness of the individual nation states and the power relations between these countries. This paper discusses how the interests and relative power positions of actors in transboundary water management shape the outcomes, and what roles are played by River Basin Organisations and foreign investors (especially in hydropower development. These issues are illustrated with examples from the Mekong river in Southeast Asia (Laos, Thailand, Cambodia and Vietnam, the Euphrates-Tigris (Turkey, Syria, Iraq, Iran and Kuwait and the Çoruh in Turkey and Georgia.

  17. A molecular approach to the genus Alburnoides using COI sequences data set and the description of a new species, A. damghani, from the Damghan River system (the Dasht-e Kavir Basin, Iran) (Actinopterygii, Cyprinidae)

    OpenAIRE

    Jouladeh Roudbar,Arash; Eagderi,Soheil; Esmaeili,Hamid Reza; Coad,Brian; Bogutskaya,Nina

    2016-01-01

    Abstract The molecular status of nine species of the genus Alburnoides from different river drainages in Iran and additionally by seven species from Europe was assessed. mtDNA COI gene sequences from freshly collected specimens and available NCBI data revealed four major phylogenetic lineages. Based on the results, a distinct taxon from the Cheshmeh Ali (Ali Spring), a Damghan River tributary in the endorheic Dasht-e Kavir basin, northern Iran, which is the closest sister to Alburnoides namak...

  18. A coupled modeling framework for sustainable watershed management in transboundary river basins

    Directory of Open Access Journals (Sweden)

    H. F. Khan

    2017-12-01

    Full Text Available There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural–human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM framework consisting of a process-based semi-distributed hydrologic model (SWAT and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food–water–energy–environment (FWEE nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of

  19. A coupled modeling framework for sustainable watershed management in transboundary river basins

    Science.gov (United States)

    Furqan Khan, Hassaan; Yang, Y. C. Ethan; Xie, Hua; Ringler, Claudia

    2017-12-01

    There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural-human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco

  20. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    Science.gov (United States)

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-10

    Science.gov (United States)

    Morace, Jennifer L.

    2012-01-01

    Toxic contamination is a significant concern in the Columbia River Basin in Washington and Oregon. To help water managers and policy makers in decision making about future sampling efforts and toxic-reduction activities, a reconnaissance was done to assess contaminant concentrations directly contributed to the Columbia River through wastewater-treatment-plant (WWTP) effluent and stormwater runoff from adjacent urban environments and to evaluate instantaneous loadings to the Columbia River Basin from these inputs.

  2. Stable isotope characteristics of precipitation of Pamba River basin ...

    Indian Academy of Sciences (India)

    highly essential input function for isotope hydro- ... Wind speed in the Pamba River basin varies from 8.5 to. 13.6 km/hr (NWDA 2008). ... ets of low values in the hill stations of the Ghats ... reservoir for the hydroelectric power production in.

  3. 2009-2012 Indiana Statewide Imagery and LiDAR Program: Maumee River Basin Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The counties comprised in this dataset have been chosen based on the relation to the Maumee River basin, a portion of the Lake Erie basin and correlated with the...

  4. Coupling a basin erosion and river sediment transport model into a large scale hydrological model: an application in the Amazon basin

    Science.gov (United States)

    Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.

    2012-04-01

    This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no

  5. Sedimentology and chemostratigraphy of a Valanginian carbonate succession from the Baja Guajira Basin, northern Colombia

    Directory of Open Access Journals (Sweden)

    Juan Carlos Silva-Tamayo

    Full Text Available ABSTRACT: The Kesima Member of the Palanz Formation constitutes the first record of Cretaceous marine sedimentation along the Baja Guajira Basin, northern Colombia. Sedimentologic and petrographic analyses suggest a deposition along a coral reef dominated rimmed carbonate platform. 87Sr/86Sr values between 0.707350 and 0.707400 suggest a Valanginian (136 - 132 Ma depositional age for the Kesima Member. A positive anomaly on the δ13C values of ~2.2‰ suggests that this rimmed carbonate platform registered the Valanginian Weissert oceanic anoxic event. Although the Weissert oceanic anoxic event resulted on a major drowning of the Circum Tethyan carbonate platforms, it seems to have not affected those from the Circum Caribbean, where several shallow marine carbonate platform successions crop out. The Kesima Member displays a change from an organically produced carbonate factory into an inorganically produced, ooids dominated, carbonate factory during the peak of the Weissert event δ13C anomaly. This change in the carbonate factory, which may represent a major perturbation of the marine carbonate budget along tropical settings during the Weissert event, coincides with a major decrease in global sea level. Finally, the age of the Kesima Member is considerably older than that of other Cretaceous carbonate successions cropping out in other northern South America sedimentary basins (i.e. Perija-Merida, Cesar-Rancheria. Differences in the timing of the Cretaceous marine incursion along northern South America, together with the differences in the Triassic-Jurassic stratigraphy of several sedimentary basins in northern South America, suggest that the Baja Guajira and Maracaibo basins remained as an isolated tectonic block separated from northern South America after the breakup of Pangea.

  6. Ca isotopes in the Ebro River Basin: mixing and lithological tracer

    Science.gov (United States)

    Guerrot, C.; Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Brenot, A.

    2012-12-01

    A large investigation of the Ebro River catchment was done in the past years regarding hydrogen, oxygen, lithium, boron, sulphur and oxygen from SO4 and strontium isotope measurements together with major and trace elements in the dissolved load of 25 river samples collected within the Ebro River Basin in Spain (Millot et al., Geophysical Research Abstracts, Vol. 14, EGU2012-2062, 2012). The Ebro River (928 km long, 85,530 km2 drainage basin) located in North-Eastern Spain rises near the Atlantic coast in the Cantabrian Mountains and flows into the western Mediterranean Sea through several large cities and agricultural, mining and industrial areas. The river is one of the largest contributors of freshwater in the Mediterranean Sea and ends in the Ebro delta, one of the most important wetlands in Europe. Bedrocks of the Ebro River Basin are mainly dominated by carbonates and evaporites from the Paleozoic and Mesozoic terrains. The Ebro river mainstream was sampled at Amposta one time per month between June 2005 and May 2006 and secondly, the Ebro River along its main course and its main tributaries were sampled during one field campaign in April 2006. The behaviour of Ca and its isotopes during water/rock interactions at the scale of a large river basin having various lithologies will be investigated in addition with Sr, S (SO4) and O (SO4) isotopes. One objective is to characterize the processes controlling the isotope signatures of a large river draining predominantly sedimentary bedrocks. The δ44Ca ratio (δ44/40 normalised to Seawater) ranged between -0.87 and -1.09‰ along the Ebro main stream, increasing towards the delta as the Ca content increase. In Amposta, the δ44Ca ratio ranged between -0.66 and -1.04‰ and tends to decrease with the increasing discharge. These variations are very similar to those given by the 87Sr/86Sr ratios and Sr contents. For the tributaries, the δ44Ca ratio ranged between -0.43 and -1.04‰ whereas the anhydrite-gypsum bedrock

  7. Fish, lower Ivinhema River basin streams, state of Mato Grosso do Sul, Brazil.

    Directory of Open Access Journals (Sweden)

    Súarez, Y. R.

    2008-01-01

    Full Text Available The Ivinhema River basin is one of the main tributaries of the western portion of Paraná River. However,few data are available on the fish communities of its streams. Monthly samples were made in seven streams of the lowerportion of the basin, in the state of Mato Grosso do Sul, using a rectangular sieve 1.2 x 0.8 m, with 2 mm mesh size.Forty-six fish species were found in these streams. The richness estimated according to the bootstrap procedure was 50species. At least two of the captured species were not previously recorded for the upper Paraná basin, indicating theneed of new sampling effort in this region.

  8. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  9. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-05-01

    Full Text Available Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  10. Fractions and Distribution of Phosphorus in Sediments of the Yarlung Zangbo River Basin

    Science.gov (United States)

    Huang, W.; An, R.; Huang, Y.; Pu, X.; Li, R.; Li, J.

    2017-12-01

    The Yarlung Zangbo River is one of the highest rivers in the world. The ecological environment of the river basin has its specificity. It locates in the remote area of China, and the ecological environment is very fragile. The fundamental data of phosphorus content in sediments of the Yarlung Zangbo River Basin are very scarce. In order to clarify the distribution law of phosphorus in the sediments of this area and provide the fundamental data for the study of phosphorus transport in the Yarlung Zangbo River, the authors collected the sediment samples from the mainstream and its tributaries in the research area. Their particle size distributions, specific surface areas, contents of total phosphorus, organic phosphorus and different forms of inorganic phosphorus were analyzed. Then, the fractions and spatial distribution of these forms phosphorus were studied. The results showed that the fractions and distribution characteristics of phosphorus in each form are significant different in the sediments of the Yarlung Zangbo River. The phosphorus contents in the soil erosion deposits and river bed sediment samples are also different. The phosphorus content in sediment is significantly correlated with the sediment characteristics. Keywords: the Yarlung Zangbo River; sediments; fractions of phosphorus; distribution characteristics

  11. Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)

    Science.gov (United States)

    Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto

    2017-04-01

    The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the

  12. Groundwater quality in the Upper Hudson River Basin, New York, 2012

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.

    2014-01-01

    Water samples were collected from 20 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, New York) in New York in August 2012 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Eleven of the wells sampled in the Upper Hudson River Basin are completed in sand and gravel deposits, and nine are completed in bedrock. Groundwater in the Upper Hudson River Basin was typically neutral or slightly basic; the water typically was moderately hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 7 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Two pesticides, an herbicide degradate and an insecticide degredate, were detected in two samples at trace levels; seven VOCs, including chloroform, four solvents, and the gasoline additive methyl tert-butyl ether (MTBE) were detected in four samples. The greatest radon-222 activity, 2,900 picocuries per liter, was measured in a sample from a bedrock well; the median radon activity was higher in samples from bedrock wells than in samples from sand and gravel wells. Coliform bacteria were

  13. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  14. Analysing the influence of human activity on runoff in the Weihe River basin

    Directory of Open Access Journals (Sweden)

    C. Shen

    2015-05-01

    Full Text Available Changing runoff patterns can have profound effects on the economic development of river basins. To assess the impact of human activity on runoff in the Weihe River basin, principal component analysis (PCA was applied to a set of 17 widely used indicators of economic development to construct general combined indicators reflecting different types of human activity. Grey relational analysis suggested that the combined indicator associated with agricultural activity was most likely to have influenced the changes in runoff observed within the river basin during 1994–2011. Curve fitting was then performed to characterize the relationship between the general agricultural indicator and the measured runoff, revealing a reasonably high correlation (R2 = 0.393 and an exponential relationship. Finally, a sensitivity analysis was performed to assess the influence of the 17 individual indicators on the measured runoff, confirming that indicators associated with agricultural activity had profound effects whereas those associated with urbanization had relatively little impact.

  15. Calibration of hydrodynamic model MIKE 11 for the sub-basin of the Piauitinga river, Sergipe, Brazil

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Folegatti

    2010-12-01

    Full Text Available In Piauitinga river sub-basin the environment has been suffering from negative actions by humans such as deforestation around springs, inadequate use of the uptaken water, inappropriate use in domestic activities, siltation and sand exploitation, and contamination by domestic, industrial and agricultural residuals. The present study presents the one-dimensional hydrodynamic MIKE 11 model calibration that simulates the water flow in estuary, rivers, irrigation systems, channels and other water bodies. The aim of this work was to fit the MIKE 11 model to available discharge data for this sub-basin. Data from the period of 1994 to 1995 were used for calibration and data from 1996 to 2006 for validation, except the 1997 year, from which data were not available. Manning’s roughness coefficient was the main parameter used for the Piauitinga river sub-basin discharge calibration and other parameters were heat balance, water stratification and groundwater leakage. Results showed that the model had an excellent performance for the Piauitinga basin and had an efficiency coefficient of 0.9 for both periods. This demonstrates that this model can be used to estimate the water quantity in Piauitinga river sub-basin.

  16. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    Science.gov (United States)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  17. Hydrology of the Upper Malad River basin, southeastern Idaho

    Science.gov (United States)

    Pluhowski, Edward J.

    1970-01-01

    The report area comprises 485 square miles in the Basin and Range physiographic province. It includes most of eastern' Oneida County and parts of Franklin, Bannock, and Power Counties of southeastern Idaho. Relief is about 5,000 feet; the floor of the Malad Valley is at an average altitude of about 4,400 feet. Agriculture is, by far, ,the principal economic .activity. In 1960 the population of the upper Malad River basin was about 3,600, of which about 60 percent resided in Malad City, the county seat of Oneida County. The climate is semiarid throughout the Malad Valley and its principal tributary valleys; ,above 6,500 feet the climate is subhumid. Annual precipitation ranges from about 13 inches in the lower Malad Valley to more than 30 inches on the highest peaks of the Bannock and Malad ranges. Owing to ,the normally clear atmospheric conditions, large daily and seasonal temperature fluctuations are common. Topography, distance from the Pacific Ocean, .and the general atmospheric circulation are the principal factors governing the climate of the Malad River basin. The westerlies transport moisture from the P.acific Ocean toward southeastern Idaho. The north-south tren4ing mountains flanking the basin are oriented orthogonally to the moisture flux so that they are very effective in removing precipitable water from the air. A minimum uplift of 6,000 feet is required to transport moisture from the Pacific source region; accordingly, most air masses are desiccated long before they reach the Malad basin. Heaviest precipitation is generally associated with steep pressure gradients in the midtroposphere that are so oriented as to cause a deep landward penetration of moisture from the Pacific Ocean. Annual water yields in the project area range from about 0.8 inch in the, lower Malad Valley to more than 19 inches on the high peaks north and east of Malad City. The mean annual water yield for the entire basin is 4 inches, or about 115,000 acre-feet. Evaporation is

  18. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  19. Hydrological modeling of the semi-arid Andarax river basin in Southern Spain

    DEFF Research Database (Denmark)

    Andersen, Flemming Hauge; Jensen, Karsten Høgh; Sandholt, Inge

    as this it will lead to better estimate of the groundwater recharge and hereby of the groundwater availability in the delta region.   The hydrological behaviour of the Andarax river basin is simulated by the MIKE SHE code, which is a physically based, distributed and integrated hydrological model. In the first...... scenario we only use traditional meteorological data and standard values for the vegetation characteristics. The traditional meteorological data are rather sparse for the Andarax river basin and to improve the estimation of evapotranspiration we use an energy-based two-layer SVAT model and apply remote...

  20. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    A. D. Wickert

    2016-11-01

    Full Text Available Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  1. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  2. The effect of land use change to maximum and minimum discharge in Cikapundung River Basin

    Science.gov (United States)

    Kuntoro, Arno Adi; Putro, Anton Winarto; Kusuma, M. Syahril B.; Natasaputra, Suardi

    2017-11-01

    Land use change are become issues for many river basin in the world, including Cikapundung River Basin in West Java. Cikapundung River is one of the main water sources of Bandung City water supply system. In the other hand, as one of the tributaries of Citarum River, Cikapundung also contributes to flooding in the Southern part of Bandung. Therefore, it is important to analyze the effect of land use change on Cikapundung river discharge, to maintain the reliability of water supply system and to minimize flooding in Bandung Basin. Land use map of Cikapundung River in 2009 shows that residential area (49.7%) and mixed farming (42.6%), are the most dominant land use type, while dry agriculture (19.4%) and forest (21.8%) cover the rest. The effect of land use change in Cikapundung River Basin is simulated by using Hydrological Simulation Program FORTRAN (HSPF) through 3 land use change scenarios: extreme, optimum, and existing. By using the calibrated parameters, simulation of the extreme land use change scenario with the decrease of forest area by 77.7% and increase of developed area by 57.0% from the existing condition resulted in increase of Qmax/Qmin ratio from 5.24 to 6.10. Meanwhile, simulation of the optimum land use change scenario with the expansion of forest area by 75.26% from the existing condition resulted in decrease of Qmax/Qmin ratio from 5.24 to 4.14. Although Qmax/Qmin ratio of Cikapundung is still relatively small, but the simulation shows the important of water resources analysis in providing river health indicator, as input for land use planning.

  3. CEPF Western Ghats Special Series: Fish fauna of Indrayani River, northern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Neelesh Dahanukar

    2012-01-01

    Full Text Available The freshwater fish fauna of the Indrayani River, a northern tributary of the Krishna River system in the Western Ghats of India was studied. A total of 57 species of freshwater fish belonging to 18 families and 39 genera were recorded. However, based on the previous literature it is possible that the Indrayani River harbours around 67 species. Out of the 57 species in the present collection, 12 are endemic to the Western Ghats while six are endemic to the Krishna River system. Neotropius khavalchor, an endemic fish of the Krishna River system, was recorded for the first time from the northern tributaries. The fish fauna of the Indrayani River is threatened due to seven introduced species and anthropogenic activities such as deforestation leading to siltation, tourism, sand mining, over fishing and organic and inorganic pollution. Since the Indrayani River hosts endemic and threatened species, including Glyptothorax poonaensis, conservation measures to ensure habitat protection in the river are essential.

  4. Assessment of groundwater potential in Ankobra River Basin

    International Nuclear Information System (INIS)

    Nyarkoh, Charles Prince

    2011-08-01

    Ankobra river basin is endowed with many rich natural resources. The mining activities in the basin and the proposed hydropower generation on the Ankobra river as well as oil discovery in the Western Region would lead to the establishing of new industries in the basin. These would certainly lead to potential population growth. As a result of these developments, there would be stress on surface water resources and therefore there would be demand for ground water. A research was carried out to assess groundwater supply. Hydrogeological data was used to evaluate the ground water storage in the basement complex, regolith. The relevant aquifer characteristics/parameters (extent of the study area, thickness of the ground water zone in the regolith, the porosity and specific capacity of the aquifer zones) were used to compute total groundwater storage and recoverable storage. The groundwater contribution to stream flow was computed using mean monthly discharge data from the filled data and hydrograph drawn. The base flow was then determined from the hydrograph separation using the straight line method. The groundwater potential in the Ankobra basin is 45.82*10 9 m 3 while the recoverable groundwater storage is 29.39*10 9 m 3 . The base flow computed was 13.75m 3/ s. Investigations into groundwater chemistry with particular references to physico-chemical parameters (quality) was analysed. The constituents fall within the acceptable limits of the Ghana Standard Board (GSB) for drinking water standard and are satisfactory for human consumption. However, Tamso, Wantenem, Gyaman, Beyim communities exceeded the GSB'S recommended values of PH (6.5-8.5) and chloride ( 250 mg/I) respectively for drinking water standard.(author)

  5. Climate Change Impacts on Runoff Regimes at a River Basin Scale in Central Vietnam

    Directory of Open Access Journals (Sweden)

    Do Hoai Nam

    2012-01-01

    Full Text Available Global warming has resulted in significant variability of global climate especially with regard to variation in temperature and precipitation. As a result, it is expected that river flow regimes will be accordingly varied. This study presents a preliminary projection of medium-term and long-term runoff variation caused by climate change at a river basin scale. The large scale precipitation projection at the middle and the end of the 21st century under the A1B scenario simulated by the CGCM model (MRI & JMA, 300 km resolution is statistically downscaled to a basin scale and then used as input for the super-tank model for runoff analysis at the upper Thu Bon River basin in Central Vietnam. Results show that by the middle and the end of this century annual rainfall will increase slightly; together with a rising temperature, potential evapotranspiration is also projected to increase as well. The total annual runoff, as a result, is found to be not distinctly varied relative to the baseline period 1981 - 2000; however, the runoff will decrease in the dry season and increase in the rainy season. The results also indicate the delay tendency of the high river flow period, shifting from Sep-Dec at present to Oct-Jan in the future. The present study demonstrates potential impacts of climate change on streamflow regimes in attempts to propose appropriate adaptation measures and responses at the river basin scales.

  6. Particle tracking for selected groundwater wells in the lower Yakima River Basin, Washington

    Science.gov (United States)

    Bachmann, Matthew P.

    2015-10-21

    The Yakima River Basin in south-central Washington has a long history of irrigated agriculture and a more recent history of large-scale livestock operations, both of which may contribute nutrients to the groundwater system. Nitrate concentrations in water samples from shallow groundwater wells in the lower Yakima River Basin exceeded the U.S. Environmental Protection Agency drinking-water standard, generating concerns that current applications of fertilizer and animal waste may be exceeding the rate at which plants can uptake nutrients, and thus contributing to groundwater contamination.

  7. Resilience in Transboundary Water Governance: the Okavango River Basin

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available When the availability of a vital resource varies between times of overabundance and extreme scarcity, management regimes must manifest flexibility and authority to adapt while maintaining legitimacy. Unfortunately, the need for adaptability often conflicts with the desire for certainty in legal and regulatory regimes, and laws that fail to account for variability often result in conflict when the inevitable disturbance occurs. Additional keys to resilience are collaboration among physical scientists, political actors, local leaders, and other stakeholders, and, when the commons is shared among sovereign states, collaboration between and among institutions with authority to act at different scales or with respect to different aspects of an ecological system. At the scale of transboundary river basins, where treaties govern water utilization, particular treaty mechanisms can reduce conflict potential by fostering collaboration and accounting for change. One necessary element is a mechanism for coordination and collaboration at the scale of the basin. This could be satisfied by mechanisms ranging from informal networks to the establishment of an international commission to jointly manage water, but a mechanism for collaboration at the basin scale alone does not ensure sound water management. To better guide resource management, study of applied resilience theory has revealed a number of management practices that are integral for adaptive governance. Here, we describe key resilience principles for treaty design and adaptive governance and then apply the principles to a case study of one transboundary basin where the need and willingness to manage collaboratively and iteratively is high - the Okavango River Basin of southwest Africa. This descriptive and applied approach should be particularly instructive for treaty negotiators, transboundary resource managers, and should aid program developers.

  8. Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin

    Science.gov (United States)

    Tang, C.; Cooter, E. J.

    2017-12-01

    Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.

  9. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    Science.gov (United States)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  10. Hydrogeological evolution of the Luni river basin, Rajasthan ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    a vertical litho-column warrant further studies on fine resolution stratigraphy and high resolution ... the Luni river in Barmer region from Karna to .... are without flood plain development. Lesser ... basemen t ro ck a t differen t tub e w ell and dug w ell sites in the. Luni basin. ... together with drainage network flowing across the.

  11. THE HORTON-STRAHLER RIVER ORDER IMPLEMENTATION RELEVANCE WITHIN THE ANALYSIS OF THE ALMAŞ BASIN RELIEF

    Directory of Open Access Journals (Sweden)

    MĂDĂLINA-IOANA RUS

    2014-11-01

    Full Text Available The Horton-Strahler River Order Implementation Relevance within the Analysis of the Almaș Basin. The purpose of the present study/research aims at underlining the importance of the enforcement of the river order within the analysis of the Almaș basin relief. The topic was chosen based on the fact that the hydrographic networks hierarchy offers at the same time quality and quantity information, on the relief evolution tendency and also the chance to compare the Almaș tributary sub-basins ones with the others and also with other basins of the same order belonging to other morphological units. The results thus achieved offer information on the rivers order, the confluence report, the river segments density, the form/shape report. The values corresponding to the previously mentioned index, have led us to formulating the following conclusion: the evolution of the Almaș hydrographic network appears therefore strongly influenced by the lithologic sub-layer, by the presence of brittle rocks, by accentuated fragmentation and by the wide energy of the relief, nevertheless by the presence of the local subsidence area/region of Someș, from Jibou.

  12. A stream temperature model for the Peace-Athabasca River basin

    Science.gov (United States)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  13. A review of sediment quantity issues: examples from the River Ebro and adjacent basins (Northeastern Spain).

    Science.gov (United States)

    Batalla, Ramon J; Vericat, Damià

    2011-04-01

    Sediment flows naturally through the drainage network, from source areas to deposition zones. Sedimentary disequilibrium in rivers and coastlines is related to the imbalance within the fluvial system caused mostly by dams, instream mining, and changes in land use. This phenomenon is also responsible for ecological perturbations in rivers and streams. A broad need exists to establish comprehensive management strategies (soft measures) that would go beyond site-specific engineering practices (technical measures) typically taken to solve particular problems. Long-term programs are also required to monitor sediment transport in river basins, in order to assess the magnitude and variability of sediment transfer and potential deficits. This paper shows examples of rivers with important sediment disequilibrium in the Ebro and adjacent basins. These basins, like most in the Iberian Peninsula, experience sediment discontinuity in the catchment-river-coast system. Reservoir siltation is the main quantitative issue. Land use change and especially gravel mining downstream from dams accentuate the process. We also present and discuss recent developments on water and sediment management undertaken to improve the morphosedimentary dynamics of rivers. Copyright © 2010 SETAC.

  14. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Ge, Yingchun; Li, Hongyi; Han, Feng; Hu, Xiaoli; Tian, Wei; Tian, Yong; Pan, Xiaoduo; Nian, Yanyun; Zhang, Yanlin; Ran, Youhua; Zheng, Yi; Gao, Bing; Yang, Dawen; Zheng, Chunmiao; Wang, Xusheng; Liu, Shaomin; Cai, Ximing

    2018-01-01

    Endorheic basins around the world are suffering from water and ecosystem crisis. To pursue sustainable development, quantifying the hydrological cycle is fundamentally important. However, knowledge gaps exist in how climate change and human activities influence the hydrological cycle in endorheic basins. We used an integrated ecohydrological model, in combination with systematic observations, to analyze the hydrological cycle in the Heihe River Basin, a typical endorheic basin in arid region of China. The water budget was closed for different landscapes, river channel sections, and irrigation districts of the basin from 2001 to 2012. The results showed that climate warming, which has led to greater precipitation, snowmelt, glacier melt, and runoff, is a favorable factor in alleviating water scarcity. Human activities, including ecological water diversion, cropland expansion, and groundwater overexploitation, have both positive and negative effects. The natural oasis ecosystem has been restored considerably, but the overuse of water in midstream and the use of environmental flow for agriculture in downstream have exacerbated the water stress, resulting in unfavorable changes in surface-ground water interactions and raising concerns regarding how to fairly allocate water resources. Our results suggest that the water resource management in the region should be adjusted to adapt to a changing hydrological cycle, cropland area must be reduced, and the abstraction of groundwater must be controlled. To foster long-term benefits, water conflicts should be handled from a broad socioeconomic perspective. The findings can provide useful information on endorheic basins to policy makers and stakeholders around the world.

  15. Three decadal inputs of total organic carbon from four major coastal river basins to the summer hypoxic zone of the Northern Gulf of Mexico.

    Science.gov (United States)

    He, Songjie; Xu, Y Jun

    2015-01-15

    This study investigated long-term (1980-2009) yields and variability of total organic carbon (TOC) from four major coastal rivers in Louisiana entering the Northern Gulf of Mexico where a large-area summer hypoxic zone has been occurring since the middle 1980s. Two of these rivers drain agriculture-intensive (>40%) watersheds, while the other two rivers drain forest-pasture dominated (>50%) watersheds. The study found that these rivers discharged a total of 13.0×10(4)t TOC annually, fluctuating from 5.9×10(4) to 22.8×10(4)t. Seasonally, the rivers showed high TOC yield during the winter and early spring months, corresponding to the seasonal trend of river discharge. While river hydrology controlled TOC yields, land use has played an important role in fluxes, seasonal variations, and characteristics of TOC. The findings fill in a critical information gap of quantity and quality of organic carbon transport from coastal watersheds to one of the world's largest summer hypoxic zones. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2015-01-01

    The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.

  17. Genomic evidence for the population genetic differentiation of Misgurnus anguillicaudatus in the Yangtze River basin of China.

    Science.gov (United States)

    Yi, Shaokui; Wang, Weimin; Zhou, Xiaoyun

    2018-02-21

    Misgurnus anguillicaudatus, an important aquatic species, is mainly distributed in the Yangtze River basin. To reveal the population genetic structure of M. anguillicaudatus distributed in the Yangtze River basin, genotyping by sequencing (GBS) technique was employed to detect the genome wide genetic variations of M. anguillicaudatus. A total of 30.03 Gb raw data were yielded from 70 samples collected from 15 geographic sites located in the Yangtze River basin. Subsequently, 2092 high quality SNPs were genotyped across these samples and used for a series of genetic analysis. The results of genetic analysis showed that high levels of genetic diversity were observed and the populations from upper reaches (UR) were significantly differentiated from the middle and lower reaches (MLR) of Yangtze River basin. Meanwhile, no significant isolation by distance was detected among the populations. Ecological factors (e.g. complicated topography and climatic environment) and anthropogenic factors (e.g. aquaculture and agriculture cultivation) might account for the genetic disconnectivity between UR and MLR populations. This study provided valuable genetic data for the future breeding program and also for the conversation and scientific utilization of those abundant genetic resources stored in the Yangtze River basin. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Environmental Tritium (3H) and hydrochemical investigations to evaluate groundwater in Varahi and Markandeya river basins, Karnataka, India

    International Nuclear Information System (INIS)

    Ravikumar, P.; Somashekar, R.K.

    2011-01-01

    The present study aimed at assessing the activity of natural radionuclides ( 3 H) and hydrochemical parameters (viz., pH, EC, F - , NO 3 - , Cl - , Ca 2+ , Mg 2+ ) in the groundwater used for domestic and irrigation purposes in the Varahi and Markandeya river basins to understand the levels of hydrochemical parameters in terms of the relative age(s) of the groundwater contained within the study area. The recorded environmental 3 H content in Varahi and Markandeya river basins varied from 1.95 ± 0.25 T.U. to 11.35 ± 0.44 T.U. and 1.49 ± 0.75 T.U. to 9.17 ± 1.13 T.U. respectively. Majority of the samples in Varahi (93.34%) and Markandeya (93.75%) river basins being pre-modern water with modern recharge, significantly influenced by precipitation and river inflowing/sea water intrusion. The EC-Tritium and Tritium-Fluoride plots confirmed the existence of higher total dissolved solids (SEC > 500 μS/cm) and high fluoride (MAC > 1.5 mg/L) in groundwater of Markandeya river basin, attributed to relatively longer residence time of groundwater interacting with rock formations and vice versa in case of Varahi river basin. The tritium-EC and tritium-chloride plots indicated shallow and deep circulating groundwater types in Markandeya river basin and only shallow circulating groundwater type in Varahi river basin. Increasing Mg relative to Ca with decreasing tritium indicated the influence of incongruent dissolution of a dolomite phase. The samples with high nitrate (MAC > 45 mg/L) are waters that are actually mixtures of fresh water (containing very high nitrate, possibly from agricultural fertilizers) and older 'unpolluted' waters (containing low nitrate levels), strongly influenced by surface source. - Research highlights: → It is evident that majority of the samples in Varahi (93.34%) and Markandeya (93.75%) river basins exhibited radioactive decay (1-8 T.U.) having a mixture of pre-modern (viz., old water) water with modern (viz., new water) recharge, significantly

  19. Effects of urbanization on agricultural lands and river basins: case study of Mersin (South of Turkey).

    Science.gov (United States)

    Duran, Celalettin; Gunek, Halil; Sandal, Ersin Kaya

    2012-04-01

    Largely, Turkey is a hilly and mountainous country. Many rivers rise from the mountains and flow into the seas surrounding the country. Mean while along fertile plains around the rivers and coastal floodplains of Turkey were densely populated than the other parts of the country. These characteristics show that there is a significant relationship between river basins and population or settlements. It is understood from this point of view, Mersin city and its vicinity (coastal floodplain and nearby river basins) show similar relationship. The city of Mersin was built on the southwest comer of Cukurova where Delicay and Efrenk creeks create narrow coastal floodplain. The plain has rich potential for agricultural practices with fertile alluvial soils and suitable climate. However, establishment of the port at the shore have increased commercial activity. Agricultural and commercial potential have attracted people to the area, and eventually has caused rapid spatial expansion of the city, and the urban sprawls over fertile agricultural lands along coastal floodplain and nearby river basins of the city. But unplanned, uncontrolled and illegal urbanization process has been causing degradation of agricultural areas and river basins, and also causing flooding in the city of Mersin and its vicinity. Especially in the basins, urbanization increases impervious surfaces throughout watersheds that increase erosion and runoff of surface water. In this study, the city of Mersin and its vicinity are examined in different ways, such as land use, urbanization, morphology and flows of the streams and given some directions for suitable urbanization.

  20. Summary Report for Bureau of Fisheries Stream Habitat Surveys: Cowlitz River Basin, 1934-1942 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was, as described by Rich, [open quotes]to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes[close quotes]. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946. Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin.

  1. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    Science.gov (United States)

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  2. Overview of geology, hydrology, geomorphology, and sediment budget of the Deschutes River Basin, Oregon.

    Science.gov (United States)

    Jim E. O' Connor; Gordon E. Grant; Tana L. Haluska

    2003-01-01

    Within the Deschutes River basin of central Oregon, the geology, hydrology, and physiography influence geomorphic and ecologic processes at a variety of temporal and spatial scales. Hydrologic and physiographic characteristics of the basin are related to underlying geologic materials. In the southwestern part of the basin, Quaternary volcanism and tectonism has created...

  3. Quantitative analysis of the effect of climate change and human activities on runoff in the Liujiang River Basin

    Science.gov (United States)

    LI, X.

    2017-12-01

    Abstract: As human basic and strategic natural resources, Water resources have received an unprecedented challenge under the impacts of global climate change. Analyzing the variation characteristics of runoff and the effect of climate change and human activities on runoff could provide the basis for the reasonable utilization and management of water resources. Taking the Liujiang River Basin as the research object, the discharge data of hydrological station and meteorological data at 24 meteorological stations in the Guangxi Province as the basis, the variation characteristics of runoff and precipitation in the Liujiang River Basin was analyzed, and the quantitatively effect of climate change and human activities on runoff was proposed. The results showed that runoff and precipitation in the Liujiang River Basin had an increasing trend from 1964 to 2006. Using the method of accumulative anomaly and the orderly cluster method, the runoff series was divided into base period and change period. BP - ANN model and sensitivity coefficient method were used for quantifying the influences of climate change and human activities on runoff. We found that the most important factor which caused an increase trend of discharges in the Liujiang River Basin was precipitation. Human activities were also important factors which influenced the intra-annual distribution of runoff. Precipitation had a more sensitive influence to runoff variation than potential evaporation in the Liujiang River Basin. Key words: Liujiang River Basin, climate change, human activities, BP-ANN, sensitivity coefficient method

  4. River Basin Standards Interoperability Pilot

    Science.gov (United States)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  5. Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq Using the Surface Energy Balance Algorithm for Land (SEBAL and Water Balance

    Directory of Open Access Journals (Sweden)

    Hussein Jassas

    2015-04-01

    Full Text Available Increasing dependence on groundwater requires a detailed determination of the different outputs and inputs of a basin for better water management. Determination of spatial and temporal actual evapotranspiration (ETa, in this regard, is of vital importance as there is significant water loss from drainage basins. This research paper uses the Surface Energy Balance Algorithm for Land (SEBAL, as well as the water balance, to estimate the spatial and temporal ETa in the Al-Khazir Gomal Basin, Northern Iraq. To compensate for the shortage in rainfall, and to irrigate summer crops, farmers in this basin have been depending, to a large extent, on groundwater extracted from the underlying unconfined aquifer, which is considered the major source for both domestic and agricultural uses in this basin. Rainfed farming of wheat and barley is one of the most important activities in the basin in the winter season, while in the summer season, agricultural activity is limited to small rice fields and narrow strips of vegetable cultivation along the Al-Khazir River. The Landsat Thematic Mapper images (TM5 acquired on 21 November 2006, 9 March 2007, 5 May 2007, 21 July 2007, and 23 September 2007 were used, along with a digital elevation model (DEM and ground-based meteorological data, measured within the area of interest. Estimation of seasonal ETa from periods between satellite overpasses was computed using the evaporative fraction (Ʌ. The water balance approach was utilized, using meteorological data and river hydrograph analysis, to estimate the ETa as the only missing input in the predefined water balance equation. The results of the two applied methods were comparable. SEBAL results were compared with the land use land cover (LULC map. The river showed the highest ETa, as evaporation from the free-water surface. Rice fields, irrigated in the summer season, have a high ETa in the images, as these fields are immersed in water during June, July and August

  6. Are recent severe floods in Xiang River basin of China linked with the increase extreme precipitation?

    Science.gov (United States)

    Cheng, L.; Du, J.

    2015-12-01

    The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in

  7. Simulating Hydrologic Changes with Climate Change Scenarios in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; XIE Zheng-Hui; LIU Qian; XIA Jun

    2005-01-01

    Climate change scenarios, predicted using the regional climate modeling system of PRECIS (providing regional climates for impacts studies), were used to derive three-layer variable infiltration capacity (VIC-3L) land surface model for the simulation of hydrologic processes at a spatial resolution of 0.25°× 0.25° in the Haihe River Basin. Three climate scenaxios were considered in this study: recent climate (1961-1990), future climate A2 (1991-2100) and future climate B2 (1991-2100) with A2 and B2 being two storylines of future emissions developed with the Intergovernmental Panel on Climate Change (IPCC) special report on emissions scenarios. Overall, under future climate scenarios A2 and B2, the Haihe River Basin would experience warmer climate with increased precipitation, evaporation and runoff production as compared with recent climate, but would be still likely prone to water shortages in the period of 2031-2070. In addition,under future climate A2 and B2, an increase in runoff during the wet season was noticed, indicating a future rise in the flood occurrence possibility in the Haihe River Basin.

  8. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin.

    Science.gov (United States)

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A

    2012-04-10

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin.

  9. Drought analysis in the Tons River Basin, India during 1969-2008

    Science.gov (United States)

    Meshram, Sarita Gajbhiye; Gautam, Randhir; Kahya, Ercan

    2018-05-01

    The primary focus of this study is the analysis of droughts in the Tons River Basin during the period 1969-2008. Precipitation data observed at four gauging stations are used to identify drought over the study area. The event of drought is derived from the standardized precipitation index (SPI) on a 3-month scale. Our results indicated that severe drought occurred in the Allahabad, Rewa, and Satna stations in the years 1973 and 1979. The droughts in this region had occurred mainly due to erratic behavior in monsoons, especially due to long breaks between monsoons. During the drought years, the deficiency of the annual rainfall in the analysis of annual rainfall departure had varied from -26% in 1976 to -60% in 1973 at Allahabad station in the basin. The maximum deficiency of annual and seasonal rainfall recorded in the basin is 60%. The maximum seasonal rainfall departure observed in the basin is in the order of -60% at Allahabad station in 1973, while maximum annual rainfall departure had been recorded as -60% during 1979 at the Satna station. Extreme dry events ( z score <-2) were detected during July, August, and September. Moreover, severe dry events were observed in August, September, and October. The drought conditions in the Tons River Basin are dominantly driven by total rainfall throughout the period between June and November.

  10. Creation of of the National GIS system «The geography and geo-ecology of rivers and river basins of European Part of Russia: Spatial Analysis, Assessment and Modeling»

    Science.gov (United States)

    Yermolaev, Oleg; Gilyazov, Albert; Ivanov, Maksim; Kharchenko, Sergei; Maltsev, Kirill; Mozzherin, Vadim; Muharamova, Svetlana; Shynbergenov, Erlan

    2016-04-01

    Problem-oriented geographic information system and geoportal «The geography and geo-ecology of rivers and river basins of European Part of Russia» is proposed to form the base for investigations concerned to assessment and prognosis of geo-ecological state of river basins belonging to the European Russia (approx. 4 million of sq. km. in total). This large part of Russia concentrates the predominant part of country's population, industrial and agricultural potential. Actuality of assessment and prognosis of the environmental state for the chosen territory is caused by the increasing anthropogenic influence onto the basin geosystems of Russia and triggering negative riverbed-erosion processes, shifts of river runoff regimes, and lack of drinking water resources. These problems are demanding for examination of the response of the basin geosystems from various landscape zones to the anthropogenic impact, and the climate change, for understanding, predicting and managing streamflow. Assessment of river basins and changes occurring in them is based on a complex spatial-temporal analysis of long-term monitoring data, the use of remote sensing and maps of state surveys. All available geo-information will be integrated into the multi-function, problem-oriented GIS. Proposed approaches of investigation: cartographic and geoinformational methods, automated procedures of territory zoning, automated procedures of interpretation of remote sensing images, modern statistical methods of analysis (geostatistics, statistical and mathematical models). Study area: the European Part of Russia (except for mountainous areas). Scale studies (level of spatial detail): Regional (corresponding to a scale 1: 1 000 000). The object of study: Geosystems river basins. Subject of study: - The development of GIS; - Analysis of the spatial and temporal relationships of river runoff; - Quantitative assessment of the current geo-ecological state of European Russia river basins. Scientific novelty of

  11. Ecosystem effects in the Lower Mississippi River Basin: Chapter L in 2011 Floods of the Central United States

    Science.gov (United States)

    Turnipseed, D. Phil; Allen, Yvonne C.; Couvillion, Brady R.; McKee, Karen L.; Vervaeke, William C.

    2014-01-01

    The 2011 Mississippi River flood in the Lower Mississippi River Basin was one of the largest flood events in recorded history, producing the largest or next to largest peak streamflow for the period of record at a number of streamgages on the lower Mississippi River. Ecosystem effects include changes to wetlands, nutrient transport, and land accretion and sediment deposition changes. Direct effects to the wetland ecosystems in the Lower Mississippi River Basin were minimized because of the expansive levee system built to pass floodwaters. Nutrients carried by the Mississippi River affect water quality in the Lower Mississippi River Basin. During 2011, nutrient fluxes in the lower Mississippi River were about average. Generally, nutrient delivery of the Mississippi and Atchafalaya Rivers contributes to the size of the hypoxic zone in the Gulf of Mexico. Based on available limited post-flood satellite imagery, some land expansion in both the Wax Lake and Atchafalaya River Deltas was observed. A wetland sediment survey completed in June 2011 indicated that recent sediment deposits were relatively thicker in the Atchafalaya and Mississippi River (Birdsfoot) Delta marshes compared to marshes farther from these rivers.

  12. SEA of river basin management plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental...... assessment (SEA). An important environmental factor for the water sector is climate change, especially the changes it causes to the water environment. However, based on an argument of an inadequate knowledge base regarding climate change impacts, the prospect of Danish authorities including climate change...

  13. Chemical composition of hot spring waters in the Oita river basins, Oita prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Tamio

    1988-01-30

    The source of the water from Oita River comes from the Kuju and Yubu-Tsurumi Volcanos, pouring into Beppu Bay. Its drainage area is 646 km/sup 2/ with a total length of 55 km. Hot springs are exist throughout most of the basin of the main and branches of Oita River. The chemical components of the hot springs in the Ota River basin -Yufuin, Yunotaira, Nagayu, Shonai/Hazama, and Oita City - have been analyzed. The equivalent of magnesium exceeds that of calcium in the carbonate springs of the above. Ca+Mg has positive correlations with HCO/sub 3/ in these carbonate springs. The water from these springs flows into the rivers and pours into Beppu Bay. The flow rate and chemical component concentration were measured at Fudai bridge. The concentration of chemical components having an average flow rate (30 ton/sec) were calculated. (4 figs, 7 tabs, 10 refs)

  14. Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System

  15. LAND USE CHANGES IN THE TRANS-BOUNDARY AMUR RIVER BASIN IN THE 20TH CENTURY

    Directory of Open Access Journals (Sweden)

    Victor Ermoshin

    2013-01-01

    Full Text Available All distinctions in the economic and nature protection policy of the neighboring states are well reflected and shown within trans-boundary river basins. The parts of trans-boundary geosystem of one country can experience an essential negative influence from rash decisions in the field of nature use and nature protection policy of the neighboring state. The Amur River Basin covers the territories of Russia, the Peoples Republic of China, Mongolia and Democratic People’s Republic of Korea and occupies more than 2 million km2. The most intensive development of the basin territory has started since the middle of the 19th century. We compiled two maps of land use in the Amur River basin in the 1930–1940s and in the early 21st century. Results showed that, negative dynamics is marked for forest lands, meadows, wetlands and mountain tundra. The basic features in the change of land use within national parts of the basin in Russia, China and Mongolia are analyzed. The comparative analysis of land use peculiarities of the countries for the last 70 years has been done.

  16. Detecting runoff variation in Weihe River basin, China

    Science.gov (United States)

    Jingjing, F.; Qiang, H.; Shen, C.; Aijun, G.

    2015-05-01

    Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  17. Detecting runoff variation in Weihe River basin, China

    Directory of Open Access Journals (Sweden)

    F. Jingjing

    2015-05-01

    Full Text Available Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  18. Conservation challenges and research needs for Pacific lamprey in the Columbia River Basin

    Science.gov (United States)

    Clemens, Benjamin J.; Beamish, Richard J.; Coates, Kelly C.; Docker, Margaret F.; Dunham, Jason B.; Gray, Ann E.; Hess, Jon E.; Jolley, Jeffrey C.; Lampman, Ralph T.; McIlraith, Brian J.; Moser, Mary L.; Murauskas, Joshua G.; Noakes, David L. G.; Schaller, Howard A.; Schreck, Carl B.; Starcevich, Steven J.; Streif, Bianca; van de Wetering, Stan J.; Wade, Joy; Weitkamp, Laurie A.; Wyss, Lance A.

    2017-01-01

    The Pacific Lamprey Entosphenus tridentatus, an anadromous fish native to the northern Pacific Ocean and bordering freshwater habitats, has recently experienced steep declines in abundance and range contractions along the West Coast of North America. During the early 1990s, Native American tribes recognized the declining numbers of lamprey and championed their importance. In 2012, 26 entities signed a conservation agreement to coordinate and implement restoration and research for Pacific Lamprey. Regional plans have identified numerous threats, monitoring needs, and strategies to conserve and restore Pacific Lamprey during their freshwater life stages. Prime among these are needs to improve lamprey passage, restore freshwater habitats, educate stakeholders, and implement lamprey-specific research and management protocols. Key unknowns include range-wide trends in status, population dynamics, population delineation, limiting factors, and marine influences. We synthesize these key unknowns, with a focus on the freshwater life stages of lamprey in the Columbia River basin.

  19. Models and data to predict radionuclide concentrations in river basin systems

    International Nuclear Information System (INIS)

    Fleming, G.; Rufai, G.G.

    1990-01-01

    Radioactive contamination of land may result from the detonation of nuclear weapons or nuclear accidents, such as Chernobyl. The deposition of fallout on soil and/or plants, and subsequent erosion by rainsplash and overland flow, could introduce radioactive isotopes into the water and soil resources of the environment. A model to simulate the transport and deposition of concentrated pollutants and radionuclides within the river basin is proposed. The proposed model is built on an existing Strathclyde River Basin Model, (SRBM), which has the potential to simulate runoff and erosion and the distribution of eroded soil particle sizes. An algorithm of the processes of concentration of pollutants and radionuclides can be developed based on the current understanding of the process of radionuclide attachment to soil particles. (author)

  20. Using the SPEI to Assess Recent Climate Change in the Yarlung Zangbo River Basin, South Tibet

    Directory of Open Access Journals (Sweden)

    Binquan Li

    2015-10-01

    Full Text Available The Yarlung Zangbo River (YZR is the largest river system in the Tibetan Plateau, and its basin is one of the centers of human economic activity in Tibet. Large uncertainties exist in several previous climate change studies in this basin because of limited climate observations. In this paper, we used a meteorological drought index (Standardized Precipitation Evapotranspiration Index, SPEI and a newly-released gridded climate forcing dataset based on high-quality climate station data to re-evaluate climate change in the YZR Basin during the period of 1961–2014. Results showed that precipitation experienced a statistically insignificant increasing trend at a rate of 6.32 mm/10 years, and its annual mean was 512.40 mm. The basin was sensitive to climate change in terms of the air temperature that significantly increased at the rate of 0.32 °C/10 years. This warming rate was obviously larger than that in many other regions. Analysis of SPEI showed that the basin had no obvious statistical trends in the number of dry/wet episodes, but the severity of dry episode aggravated in terms of duration and magnitude. This study provides a reliable analysis of climate change in the YZR Basin, and suggests this large Tibetan river basin is sensitive to climate change.

  1. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran)

    OpenAIRE

    Melahat Hoghoghi; Soheil Eagderi; Bahmen Shams-Esfandabad

    2016-01-01

    A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river s...

  2. Parcelling out the Watershed: The Recurring Consequences of Organising Columbia River Management within a Basin-Based Territory

    Directory of Open Access Journals (Sweden)

    Eve Vogel

    2012-02-01

    Full Text Available This article examines a 75-year history of North America’s Columbia river to answer the question: what difference does a river basin territory actually make? Advocates reason that river basins and watersheds are natural and holistic water management spaces, and can avoid the fragmentations and conflicts endemic to water management within traditional political territories. However, on the Columbia, this reasoning has not played out in practice. Instead, basin management has been shaped by challenges from and negotiations with more traditional jurisdictional spaces and political districts. The recurring result has been 'parcelling out the watershed': coordinating river management to produce a few spreadable benefits, and distributing these benefits, as well as other responsibilities and policy-making influence, to jurisdictional parts and political districts. To provide generous spreadable benefits, river management has unevenly emphasised hydropower, resulting in considerable environmental losses. However, benefits have been widely spread and shared – and over time challengers have forced management to diversify. Thus a river basin territory over time produced patterns of both positive and negative environmental, social, economic, and democratic outcomes. To improve the outcomes of watershed-based water management, we need more interactive and longer-term models attentive to dynamic politics and geographies.

  3. The impact of global warming on river runoff

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.

    1992-01-01

    A global atmospheric model is used to calculate the annual river runoff for 33 of the world's major rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4 x 5 deg, but the runoff from each model grid box is quartered and added to the appropriate river drainage basin on a 2 x 2.5 deg resolution. The computed runoff depends on the model's precipitation, evapotranspiration, and soil moisture storage. For the doubled CO2 climate, the runoff increased for 25 of the 33 rivers, and in most cases the increases coincide with increased rainfall within the drainage basins. There were runoff increases in all rivers in high northern latitudes, with a maximum increase of 47 percent. At low latitudes there were both increases and decreases ranging from a 96 increase to a 43 percent decrease. The effect of the simplified model assumptions of land-atmosphere interactions on the results is discussed.

  4. Reconciling drainage and receiving basin signatures of the Godavari River system

    Science.gov (United States)

    Ojoshogu Usman, Muhammed; Kirkels, Frédérique Marie Sophie Anne; Zwart, Huub Michel; Basu, Sayak; Ponton, Camilo; Blattmann, Thomas Michael; Ploetze, Michael; Haghipour, Negar; McIntyre, Cameron; Peterse, Francien; Lupker, Maarten; Giosan, Liviu; Eglinton, Timothy Ian

    2018-06-01

    The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of old or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of

  5. Agricultural Water Use Sustainability Assessment in the Tarim River Basin under Climatic Risks

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2018-02-01

    Full Text Available Proper agricultural water management in arid regions is the key to tackling climatic risks. However, an effective assessment of the current response to climate change in agricultural water use is the precondition for a group adaptation strategy. The paper, taking the Tarim River basin (TRB as an example, aims to examine the agricultural water use sustainability of water resource increase caused by climatic variability. In order to describe the response result, groundwater change has been estimated based on the Gravity Recovery and Climate Experiment (GRACE and the Global Land Data Assimilation System (GLDAS–Noah land surface model (NOAH data. In order to better understand the relationship between water resource increase and agricultural water consumption, an agricultural water stress index has been established. Agricultural water stress has been in a severe state during the whole period, although it alleviated somewhat in the mid–late period. This paper illustrates that an increase in water supply could not satisfy agricultural production expansion. Thus, seasonal groundwater loss and a regional water shortage occurred. Particularly in 2008 and 2009, the sharp shortage of water supply in the Tarim River basin directly led to a serious groundwater drop by nearly 20 mm from the end of 2009 to early 2010. At the same time, a regional water shortage led to water scarcity for the whole basin, because the water consumption, which was mainly distributed around Source Rivers, resulted in break-off discharge in the mainstream. Therefore, current agricultural development in the Tarim River basin is unsustainable in the context of water supply under climatic risks. Under the control of irrigation, spatial and temporal water allocation optimization is the key to the sustainable management of the basin.

  6. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING; FINAL

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general-and the Riverton Dome area specially-is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi(sup 2) and 30 mi(sup 2)) and a variety of other necessary geological and

  7. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China

    International Nuclear Information System (INIS)

    Li, Chengcheng; Gao, Xubo; Wang, Yanxin

    2015-01-01

    Hydrogeochemical and environmental isotope methods were integrated to delineate the spatial distribution and enrichment of fluoride in groundwater at Yuncheng Basin in northern China. One hundred groundwater samples and 10 Quaternary sediment samples were collected from the Basin. Over 69% of the shallow groundwater (with a F − concentration of up to 14.1 mg/L), 44% of groundwater samples from the intermediate and 31% from the deep aquifers had F − concentrations above the WHO provisional drinking water guideline of 1.5 mg/L. Groundwater with high F − concentrations displayed a distinctive major ion chemistry: Na-rich and Ca-poor with a high pH value and high HCO 3 − content. Hydrochemical diagrams and profiles and hydrogen and oxygen isotope compositions indicate that variations in the major ion chemistry and pH are controlled by mineral dissolution, cation exchange and evaporation in the aquifer systems, which are important for F − mobilization as well. Leakage of shallow groundwater and/or evaporite (gypsum and mirabilite) dissolution may be the major sources for F − in groundwater of the intermediate and deep aquifers. - Highlights: • High-F − groundwater widely occurs in Yuncheng Basin of northern China. • High-F − groundwater is Na and HCO 3 -rich and Ca-poor, with high pH. • Major hydrogeochemical processes are mineral dissolution, ion exchange and evaporation. • Shallow groundwater leakage/evaporite dissolution may cause F enrichment in lower aquifers

  8. Impact of Climate Change on Water Resources in the Guadalquivir River Basin

    Science.gov (United States)

    Yeste Donaire, P.; García-Valdecasas-Ojeda, M.; Góngora García, T. M.; Gámiz-Fortis, S. R.; Castro-Diez, Y.; Esteban-Parra, M. J.

    2017-12-01

    Climate change has lead to a decrease of precipitation and an increase of temperature in the Mediterranean Basin during the last fifty years. These changes will be more intense over the course of the 21thcentury according to global climate projections. As a consequence, water resources are expected to decrease, particularly in the Guadalquivir River Basin. This study focuses on the hydrological response of the Guadalquivir River Basin to the climate change. For this end, firstly, the implementation of the Variable Infiltration Capacity (VIC) model in the Basin was carried out. The VIC model was calibrated with a dataset of daily precipitation, temperature and streamflow for the period 1990-2000. Precipitation and temperature data were extracted from SPAIN02, a dataset that covers the Peninsular Spain at 0.11º of spatial resolution. Streamflow data were gathered for a representative subset of gauging stations in the basin. These data were provided by the Spanish Center for Public Work Experimentation and Study (CEDEX). Subsequently, the VIC model was validated for the period 2000-2005 in order to verify that the model outputs fit well with the observational data. After the validation of the VIC model for present climate, secondly, the effect of climate change on the Guadalquivir River Basin will be analyzed by developing several simulations of the streamflow for future climate. Precipitation and temperature data will be obtained in this case from future projections coming from high resolution (at 0.088º) simulations carried out with the Weather Research and Forecasting (WRF) model for the Iberian Peninsula. These last simulations will be driven under two different Representative Concentration Pathway (RCP) scenarios, RCP 4.5 and RCP 8.5 for the periods 2021-50 and 2071-2100. The first results of this work show that the VIC model outputs are in good agreement with the observed streamflow for both the calibration and validation periods. In the context of climate

  9. River Basin Management Plans - Institutional framework and planning process

    DEFF Research Database (Denmark)

    Frederiksen, Pia; Nielsen, Helle Ørsted; Pedersen, Anders Branth

    2011-01-01

    The report it a deliverable to the Waterpraxis project, based on research carried out in WP3. It is based on country reports from analyses of water planning in one river basin district in each of the countries Sweden, Finland, Latvia, Lithuania, Poland, Germany and Denmark, and it compares the in...

  10. Preliminary study of the uranium potential of the northern part of the Durham Triassic Basin, North Carolina

    International Nuclear Information System (INIS)

    Harris, W.B.; Thayer, P.A.

    1981-09-01

    This report presents results of a four-channel spectrometric survey of the northern part of the Durham Triassic basin and adjacent Piedmont, North Carolina. Gamma-ray spectrometric measurements were obtained at 112 localities from 136 different lithologies. The nominal sampling density in the Durham Basin is one site per 2 mi 2 . Surface radiometric surveys reveal no anomalous radioactivity in the northern part of the Durham Basin. Uranium concentrations in Triassic rocks are from 0.6 to 9.7 ppM and average 2.9 ppM. Mudrocks contain from 1.3 to 9.7 ppM, and the average is 4.5 ppM. Sandstones contain from 0.6 to 8.8 ppM, and the average is 2.5 ppM. Fanglomerates contain the lowest concentrations of uranium, from 1.4 to 2.0 ppM, for an average of 1.8 ppM. Uranium/thorium ratios average 0.27 for Triassic rocks and are from 0.04 to 1.85. The mean log uranium/log thorium for Triassic rocks is 0.37. Mudrock has the highest average uranium/thorium ratio (0.32), and the range is 0.09 to 0.66. Sandstones have an average uranium/thorium ratio of 0.26, and the range is 0.04 to 1.85. Fanglomerates have the lowest range uranium/thorium ratio (0.19), and the range is 0.12 to 0.19. On the basis of surface radiometric surveys and geologic studies, it is believed that sedimentary strata in the northern part of the Durham Basin are poor targets for further uranium exploration. This conclusion is based on the lack of favorable characteristics commonly present in fluvial uranium deposits. Among these are: (1) carbonaceous material is absent in Triassic rocks of the northern basin, (2) indicators of a reduzate facies in sandstones are not present, and (3) no tuffaceous beds are associated with sediments in the northern Durham Basin

  11. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    CSIR Research Space (South Africa)

    Oosthuizen, Nadia

    2017-07-01

    Full Text Available frica Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin Nadia Oosthuizen1,2, Denis A. Hughes2, Evison Kapangaziwiri1, Jean-Marc Mwenge Kahinda1, and Vuyelwa Mvandaba1,2 1...

  12. Dreamy Draw Dam - Master Plan and Feature Design, New River and Phoenix City Streams, Arizona.

    Science.gov (United States)

    1981-09-01

    and New and Apr. 1983 Agua Fria River below the Arizona Canal Diversion Channel Part 5 - Arizona Canal Diversion Dec. 1983 Channel (including Cave...basin and can be tapped for potable water for recreation use. Electric lines are located approximately 2 miles from the basin at 19th Street and Northern

  13. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China

    Directory of Open Access Journals (Sweden)

    C. F. Zang

    2012-08-01

    Full Text Available In arid and semi-arid regions freshwater resources have become scarcer with increasing demands from socio-economic development and population growth. Until recently, water research and management has mainly focused on blue water but ignored green water. Furthermore, in data poor regions hydrological flows under natural conditions are poorly characterised but are a prerequisite to inform future water resources management. Here we report on spatial and temporal patterns of both blue and green water flows that can be expected under natural conditions as simulated by the Soil and Water Assessment Tool (SWAT for the Heihe river basin, the second largest inland river basin in Northwest China. Calibration and validation at two hydrological stations show good performance of the SWAT model in modelling hydrological processes. The total green and blue water flows were 22.05–25.51 billion m3 in the 2000s for the Heihe river basin. Blue water flows are larger in upstream sub-basins than in downstream sub-basins mainly due to high precipitation and a large amount of snow and melting water in upstream. Green water flows are distributed more homogeneously among different sub-basins. The green water coefficient was 87%–89% in the 2000s for the entire river basin, varying from around 80%–90% in up- and mid-stream sub-basins to above 90% in downstream sub-basins. This is much higher than reported green water coefficients in many other river basins. The spatial patterns of green water coefficients were closely linked to dominant land covers (e.g. snow cover upstream and desert downstream and climate conditions (e.g. high precipitation upstream and low precipitation downstream. There are no clear consistent historical trends of change in green and blue water flows and the green water coefficient at both the river basin and sub-basin levels. This study provides insights into green and blue water endowments under natural conditions for the entire

  14. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution

    International Nuclear Information System (INIS)

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J.; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha −1 yr −1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. - Highlights: • Total DIN deposition fluxes showed a significant spatial variation in the

  15. Summary report for Bureau of Fisheries stream habitat surveys: Cowlitz River basin. Final report 1934--1942

    International Nuclear Information System (INIS)

    McIntosh, B.A.; Clark, S.E.; Sedell, J.R.

    1995-07-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938--1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949--1952 by the US Fish and Wildlife Service

  16. Assessing Climate Change Impacts on Water Resources in the Songhua River Basin

    Directory of Open Access Journals (Sweden)

    Fengping Li

    2016-09-01

    Full Text Available The Songhua River Basin (SRB in Northeast China is one of the areas most sensitive to global climate change because of its high-latitude location. In this study, we conducted a modeling assessment on the potential change of water resources in this region for the coming three decades using the Soil and Water Assessment Tool (SWAT. First, we calibrated and validated the model with historical streamflow records in this basin. Then, we applied the calibrated model for the period from 2020 to 2049 with the projected and downscaled climatic data under two emission scenarios (RCP 4.5 and RCP 8.5. The study results show: (1 The SWAT model performed very well for both the calibration and validation periods in the SRB; (2 The projected temperatures showed a steady, significant increase across the SRB under both scenarios, especially in two sub-basins, the Nenjiang River Basin (NRB and the Lower SRB (LSRB. With regard to precipitation, both scenarios showed a decreasing trend in the NRB and LSRB but an increasing trend in the Upper Songhua River Basin (USRB; and (3, generally, the hydrologic modeling suggested a decreasing trend of streamflow for 2020–2049. Compared to baseline conditions (1980–2009, the streamflow in the NRB and LSRB would decrease by 20.3%–37.8%, while streamflow in the USRB would experience an increase of 9.68%–17.7%. These findings provide relevant insights into future surface water resources, and such information can be helpful for resource managers and policymakers to develop effective eco-environment management plans and strategies in the face of climate change.

  17. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  18. Inorganic arsenic speciation at river basin scales: The Tinto and Odiel Rivers in the Iberian Pyrite Belt, SW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, A.M. [Department of Geology, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva (Spain)], E-mail: aguasanta.miguel@dgeo.uhu.es; Nieto, J.M. [Department of Geology, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva (Spain); Casiot, C.; Elbaz-Poulichet, F.; Egal, M. [Laboratoire Hydrosciences, UMR 5569, Universite Montpellier 2, Place E. Bataillon, 34095 Montpellier cedex 05 (France)

    2009-04-15

    The Tinto and Odiel rivers are heavily affected by acid mine drainage from mining areas in the Iberian Pyrite Belt. In this work we have conducted a study along these rivers where surface water samples have been collected. Field measurements, total dissolved metals and Fe and inorganic As speciation analysis were performed. The average total concentration of As in the Tinto river (1975 {mu}g L{sup -1}) is larger than in the Odiel river (441 {mu}g L{sup -1}); however, the mean concentration of As(III) is almost four times higher in the Odiel. In wet seasons the mean pH levels of both rivers (2.4 and 3.2 for the Tinto and Odiel, respectively) increase slightly and the amount of dissolved total arsenic tend to decrease, while the As(III)/(V) ratio strongly increase. Besides, the concentration of the reduced As species increase along the water course. As a result, As(III)/(V) ratio can be up to 100 times higher in the lower part of the basins. An estimation of the As(III) load transported by both rivers into the Atlantic Ocean has been performed, resulting in about 60 kg yr{sup -1} and 2.7 t yr{sup -1} by the Tinto and Odiel rivers, respectively. - Total arsenic concentration decreases along the water basins, however the As(III)/(V) ratio increases.

  19. Water resources in the Big Lost River Basin, south-central Idaho

    Science.gov (United States)

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  20. On the water hazards in the trans-boundary Kosi River basin

    Science.gov (United States)

    Chen, N. Sh.; Hu, G. Sh.; Deng, W.; Khanal, N.; Zhu, Y. H.; Han, D.

    2013-03-01

    The Kosi River is an important tributary of the Ganges River, which passes through China, Nepal and India. With a basin area of 71 500 km2, the Kosi River has the largest elevation drop in the world (from 8848 m of Mt Everest to 60 m of the Ganges Plain) and covers a broad spectrum of climate, soil, vegetation and socioeconomic zones. The basin suffers from multiple water related hazards including glacial lake outburst, debris flow, landslides, flooding, drought, soil erosion and sedimentation. This paper describes the characteristics of water hazards in the basin, based on the literature review and site investigation covering hydrology, meteorology, geology, geomorphology and socio-economics. Glacial lake outbursts are a huge threat to the local population in the region and they usually further trigger landslides and debris flows. Floods are usually a result of interaction between man-made hydraulic structures and the natural environment. Debris flows are widespread and occur in clusters. Droughts tend to last over long periods and affect vast areas. Rapid population increase, the decline of ecosystems and climate change could further exacerbate various hazards in the region. The paper has proposed a set of mitigating strategies and measures. It is an arduous challenge to implement them in practice. More investigations are needed to fill in the knowledge gaps.