WorldWideScience

Sample records for river basin implications

  1. River basin closure: Processes, implications and responses

    NARCIS (Netherlands)

    Molle, F.; Wester, P.; Hirsch, P.

    2010-01-01

    Increasing water withdrawals for urban, industrial, and agricultural use have profoundly altered the hydrology of many major rivers worldwide. Coupled with degradation of water quality, low flows have induced severe environmental degradation and water has been rendered unusable by downstream users.

  2. Implication of drainage basin parameters of a tropical river basin of South India

    Science.gov (United States)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  3. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  4. Rainfall characteristics and their implications for rain-fed agriculture : a case study in the Upper Zambezi River Basin

    NARCIS (Netherlands)

    Beyer, M.; Wallner, M.; Bahlmann, L.; Thiemig, V.; Dietrich, J.; Billib, M.

    2016-01-01

    This study investigates rainfall characteristics in the Upper Zambezi River Basin and implications for rain-fed agriculture. Seventeen indices describing the character of each rainy season were calculated using a bias-corrected version of TRMM-B42 v6 rainfall estimate for 1998–2010. These were

  5. Climate, Biofuels and Water: Projections and Sustainability Implications for the Upper Mississippi River Basin

    Science.gov (United States)

    Deb, D.; Tuppad, P.; Daggupati, P.; Srinivasan, R.; Varma, D.

    2014-12-01

    Impact of climate change on the water resources of the United States exposes the vulnerability of feedstock-specific mandated fuel targets to extreme weather conditions that could become more frequent and intensify in the future. Consequently, a sustainable biofuel policy should consider a) how climate change would alter both water supply and demand and, b) in turn, how related changes in water availability will impact the production of biofuel crops and c) the environmental implications of large scale biofuel productions. Since, understanding the role of biofuels in the water cycle is key to understanding many of the environmental impacts of biofuels, the focus of this study is on modeling the rarely explored interactions between land use, climate change, water resources and the environment in future biofuel production systems to explore the impacts of the US biofuel policy and climate change on water and agricultural resources. More specifically, this research will address changes in the water demand and availability, soil erosion and water quality driven by both climate change and biomass feedstock production in the Upper Mississippi River Basin. We used the SWAT (Soil and Water Assessment Tool) hydrologic model to analyze the water quantity and quality consequences of land use and land management related changes in cropping conditions (e.g. more use of marginal lands, greater residue harvest, increased yields), plus management practices due to biofuel crops to meet the RFS target on water quality and quantity. Results show that even if the Upper Mississippi River Basin is a region of low water stress, it contributes to high nutrient load in Gulf of Mexico through seasonal shifts in streamflow, changes in extreme high and low flow events, changes in loadings and transport of sediments and nutrients due to changes in precipitation patterns and intensity, changes in frequency of occurrence of floods and drought, early melting of snow and ice, increasing

  6. Continental impacts of water development on waterbirds, contrasting two Australian river basins: Global implications for sustainable water use.

    Science.gov (United States)

    Kingsford, Richard T; Bino, Gilad; Porter, John L

    2017-06-04

    The world's freshwater biotas are declining in diversity, range and abundance, more than in other realms, with human appropriation of water. Despite considerable data on the distribution of dams and their hydrological effects on river systems, there are few expansive and long analyses of impacts on freshwater biota. We investigated trends in waterbird communities over 32 years, (1983-2014), at three spatial scales in two similarly sized large river basins, with contrasting levels of water resource development, representing almost a third (29%) of Australia: the Murray-Darling Basin and the Lake Eyre Basin. The Murray-Darling Basin is Australia's most developed river basin (240 dams storing 29,893 GL) while the Lake Eyre Basin is one of the less developed basins (1 dam storing 14 GL). We compared the long-term responses of waterbird communities in the two river basins at river basin, catchment and major wetland scales. Waterbird abundances were strongly related to river flows and rainfall. For the developed Murray-Darling Basin, we identified significant long-term declines in total abundances, functional response groups (e.g., piscivores) and individual species of waterbird (n = 50), associated with reductions in cumulative annual flow. These trends indicated ecosystem level changes. Contrastingly, we found no evidence of waterbird declines in the undeveloped Lake Eyre Basin. We also modelled the effects of the Australian Government buying up water rights and returning these to the riverine environment, at a substantial cost (>3.1 AUD billion) which were projected to partly (18% improvement) restore waterbird abundances, but projected climate change effects could reduce these benefits considerably to only a 1% or 4% improvement, with respective annual recovery of environmental flows of 2,800 GL or 3,200 GL. Our unique large temporal and spatial scale analyses demonstrated severe long-term ecological impact of water resource development on prominent

  7. Irrigation-based livelihood trends in river basins: theory and policy implications for irrigation development

    Science.gov (United States)

    Lankford, Bruce

    This paper examines irrigation development and policy in Tanzania utilising a livelihoods and river basin perspective. On the basis of observations, the author argues that river basins theoretically exhibit a sigmoid curve of irrigation development in three stages; proto-irrigation, irrigation-momentum and river basin management. This model arises from two governing factors. Firstly, irrigation is a complex livelihood activity that, although has benefits, also has costs, risks and alternatives that integrate across many systems; farmers implicitly understand this and enter into or keep out of irrigation accordingly. In the proto-irrigation stage, irrigators are less common, and irrigation is felt to be a relatively unattractive livelihood. In the irrigation-momentum stage, irrigators are drawn very much to irrigation in providing livelihood needs. Hence, given both of these circumstances, governments should be cautious about policies that call for the need to ‘provide irrigation’ (when farmers may not wish to irrigate) or to further increase it (when farmers already have the means and will to do so). Second, irrigation consumes water, generating externalities. Thus if irrigation momentum proceeds to the point when water consumption directly impacts on other sectors and livelihoods, (e.g. pastoralists, downstream irrigation, the environment) decision-makers should focus not necessarily on irrigation expansion, but on water management, allocation and conflict mediation. This three-stage theoretical model reminds us to take a balanced ‘livelihoods river-basin’ approach that addresses real problems in each given stage of river basin development and to develop policy accordingly. The paper contains a discussion on livelihood factors that affect entry into irrigation. It ends with a series of recommendations on policy; covering for example new large-scale systems; problems solving; and the use of an irrigation-river basin livelihoods approach. The recommendations

  8. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  9. Bajocian ammonoids from Pumani River area (Ayacucho, Peru): Palaeobiogeographical and palaeoenvironmental implications for the Arequipa Basin

    Science.gov (United States)

    Fernandez-Lopez, Sixto; Carlotto, Victor; Giraldo, Edwin; Chacaltana, Cesar

    2014-01-01

    Deposits of the Socosani Formation in the Pucayacu and Pumani sections (Ayacucho Department, Peru), along several kilometres, have yielded Upper Bajocian ammonoid fossil-assemblages characterized by the occurrence of juvenile individuals belonging to endemic or pandemic genera, such as Megasphaeroceras and Spiroceras respectively. In addition, certain Bajocian genera relatively common in the Mediterranean-Caucasian Subrealm, but very scarce in the Eastern Pacific Subrealm, such as the strigoceratid Cadomoceras and the phylloceratid Adabofoloceras, occur in this area. According to the taphonomic, palaeoecological and palaeobiogeographical evidence from the Pumani River area, the maximum deepening, relative sea-level rise and oceanic accessibility of a Bajocian-Bathonian, second-order, transgressive/regressive facies cycle in the marine Arequipa Basin were reached during the Late Bajocian Niortense Biochron. However, synsedimentary regional tectonics in the Pumani River area disturbed this general deepening/shallowing cycle of the Arequipa Basin, particularly during the Late Bajocian post-Niortense time-interval of the Garantiana and Parkinsoni biochrons.

  10. Expansion of agricultural oasis in the Heihe River Basin of China: Patterns, reasons and policy implications

    Science.gov (United States)

    Song, Wei; Zhang, Ying

    The Heihe River Basin (HRB) is the second largest inland river basin in the arid region of northwestern China. An agricultural oasis is a typical landscape in arid regions providing precious fertile soil, living space and ecological services. The agricultural oasis change has been one of the key issues in sustainable development in recent decades. In this paper, we examined the changes in the agricultural oasis in HRB and analyzed the socio-economic and climatic driving forces behind them. It was found that the agricultural oasis in HRB expanded by 25.11% and 14.82% during the periods of 1986-2000 and 2000-2011, respectively. Most of the newly added agricultural oases in HRB were converted from grassland (40.94%) and unused land (40.22%). The expansion in the agricultural oasis mainly occurred in the middle reaches of HRB, particularly in the counties of Shandan, Minle, Jinta and Jiuquan city. Changes in the rural labor force, annual temperature and precipitation have significant positive effects on agricultural oasis changes, while the ratio of irrigated agricultural oases has significant negative effects on agricultural oasis changes. The agricultural oasis expansion in HRB is the combined effect of human activity and climate change.

  11. Riparian plant composition along hydrologic gradients in a dryland river basin and implications for a warming climate

    Science.gov (United States)

    Reynolds, Lindsay; Shafroth, Patrick B.

    2017-01-01

    Droughts in dryland regions on all continents are expected to increase in severity and duration under future climate projections. In dryland regions, it is likely that minimum streamflow will decrease with some perennial streams shifting to intermittent flow under climate-driven changes in precipitation and runoff and increases in temperature. Decreasing base flow and shifting flow regimes from perennial to intermittent could have significant implications for stream-dependent biota, including riparian vegetation. In this study, we asked, how do riparian plant communities vary along wet-to-dry hydrologic gradients on small (first–third order) streams? We collected data on geomorphic, hydrologic, and plant community characteristics on 54 stream sites ranging in hydrology from intermittent to perennial flow across the Upper Colorado River Basin (284,898 km2). We found that plant communities varied along hydrologic gradients from high to low elevation between streams, and perennial to intermittent flow. We identified indicator species associated with different hydrologic conditions and suggest how plant communities may shift under warmer, drier conditions. Our results indicate that species richness and cover of total, perennial, wetland, and native plant groups will decrease while annual plants will increase under drying conditions. Understanding how plant communities respond to regional drivers such as hydroclimate requires broad-scale approaches such as sampling across whole river basins. With increasingly arid conditions in many regions of the globe, understanding plant community shifts is key to understanding the future of riparian ecosystems.

  12. Ecohydrological implications of runoff harvesting in the headwaters of the Thukela River basin, South Africa

    Science.gov (United States)

    De Winnaar, Gary; Jewitt, Graham

    Hydrological regimes have an important influence on biodiversity, structure, and functioning of aquatic ecosystems. Unforeseen circumstances, both hydrologically and ecologically, caused by potential adoption and expansion of runoff harvesting innovations is of particular concern to water resource planners, as downstream river systems are likely to be adversely affected. This paper provides methods for determining the influence that large-scale adoption of runoff harvesting could have on downstream flow regimes by using a scenario-based approach, with the ACRU Agrohydrological model, to simulate the potential alteration of streamflow regimes due to runoff harvesting. Scenarios were based entirely on the spatial extent of impervious surfaces associated with rural homesteads, estimates of which were taken from current population data and used to establish the density of hypothetical runoff harvesting systems within a catchment setup. Daily streamflow simulation from nine Quaternary Catchments in the Thukela River basin provided suitable data series’ for analysis using the Indicators of Hydrological Alteration method to compute ecologically relevant hydrological parameters. The outcome of this ecohydrological study demonstrated that a relatively simple modelling exercise offers the potential to assess impacts that may arise from large-scale runoff harvesting. Results established that magnitudes of high and low flows of river flow regimes were most affected by runoff harvesting. Flow reduction was found to be most significant with low flows (up to 29%) in the case where the maximum runoff harvesting scenario was used. However, the majority of the IHA hydrological flow parameters revealed only slight impacts, even under circumstances where modelling scenarios were based on unrealistically high proportions of runoff harvesting. Increasing the spatial extent of runoff harvesting is thus expected to have a much greater impact at smaller spatial scales; water resources of

  13. Evaluating Land Subsidence Rates and Their Implications for Land Loss in the Lower Mississippi River Basin

    Directory of Open Access Journals (Sweden)

    Lei Zou

    2015-12-01

    Full Text Available High subsidence rates, along with eustatic sea-level change, sediment accumulation and shoreline erosion have led to widespread land loss and the deterioration of ecosystem health around the Lower Mississippi River Basin (LMRB. A proper evaluation of the spatial pattern of subsidence rates in the LMRB is the key to understanding the mechanisms of the submergence, estimating its potential impacts on land loss and the long-term sustainability of the region. Based on the subsidence rate data derived from benchmark surveys from 1922 to 1995, this paper constructed a subsidence rate surface for the region through the empirical Bayesian kriging (EBK interpolation method. The results show that the subsidence rates in the region ranged from 1.7 to 29 mm/year, with an average rate of 9.4 mm/year. Subsidence rates increased from north to south as the outcome of both regional geophysical conditions and anthropogenic activities. Four areas of high subsidence rates were found, and they are located in Orleans, Jefferson, Terrebonne and Plaquemines parishes. A projection of future landscape loss using the interpolated subsidence rates reveals that areas below zero elevation in the LMRB will increase from 3.86% in 2004 to 19.79% in 2030 and 30.88% in 2050. This translates to a growing increase of areas that are vulnerable to land loss from 44.3 km2/year to 240.7 km2/year from 2011 to 2050. Under the same scenario, Lafourche, Plaquemines and Terrebonne parishes will experience serious loss of wetlands, whereas Orleans and Jefferson parishes will lose significant developed land, and Lafourche parish will endure severe loss of agriculture land.

  14. Current status of arsenic exposure and social implication in the Mekong River basin of Cambodia.

    Science.gov (United States)

    Phan, Kongkea; Kim, Kyoung-Woong; Huoy, Laingshun; Phan, Samrach; Se, Soknim; Capon, Anthony Guy; Hashim, Jamal Hisham

    2016-06-01

    To evaluate the current status of arsenic exposure in the Mekong River basin of Cambodia, field interview along with urine sample collection was conducted in the arsenic-affected area of Kandal Province, Cambodia. Urine samples were analyzed for total arsenic concentrations by inductively coupled plasma mass spectrometry. As a result, arsenicosis patients (n = 127) had As in urine (UAs) ranging from 3.76 to 373 µg L(-1) (mean = 78.7 ± 69.8 µg L(-1); median = 60.2 µg L(-1)). Asymptomatic villagers (n = 108) had UAs ranging from 5.93 to 312 µg L(-1) (mean = 73.0 ± 52.2 µg L(-1); median = 60.5 µg L(-1)). About 24.7 % of all participants had UAs greater than 100 µg L(-1) which indicated a recent arsenic exposure. A survey found that females and adults were more likely to be diagnosed with skin sign of arsenicosis than males and children, respectively. Education level, age, gender, groundwater drinking period, residence time in the village and amount of water drunk per day may influence the incidence of skin signs of arsenicosis. This study suggests that residents in Kandal study area are currently at risk of arsenic although some mitigation has been implemented. More commitment should be made to address this public health concern in rural Cambodia.

  15. Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin.

    Science.gov (United States)

    Li, Ping; Omani, Nina; Chaubey, Indrajeet; Wei, Xiaomei

    2017-05-08

    Drought is one of the most widespread extreme climate events with a potential to alter freshwater availability and related ecosystem services. Given the interconnectedness between freshwater availability and many ecosystem services, including food provisioning, it is important to evaluate the drought implications on freshwater provisioning and food provisioning services. Studies about drought implications on streamflow, nutrient loads, and crop yields have been increased and these variables are all process-based model outputs that could represent ecosystem functions that contribute to the ecosystem services. However, few studies evaluate drought effects on ecosystem services such as freshwater and food provisioning and quantify these services using an index-based ecosystem service approach. In this study, the drought implications on freshwater and food provisioning services were evaluated for 14 four-digit HUC (Hydrological Unit Codes) subbasins in the Upper Mississippi River Basin (UMRB), using three drought indices: standardized precipitation index (SPI), standardized soil water content index (SSWI), and standardized streamflow index (SSI). The results showed that the seasonal freshwater provisioning was highly affected by the precipitation deficits and/or surpluses in summer and autumn. A greater importance of hydrological drought than meteorological drought implications on freshwater provisioning was evident for the majority of the subbasins, as evidenced by higher correlations between freshwater provisioning and SSI12 than SPI12. Food provisioning was substantially affected by the precipitation and soil water deficits during summer and early autumn, with relatively less effect observed in winter. A greater importance of agricultural drought effects on food provisioning was evident for most of the subbasins during crop reproductive stages. Results from this study may provide insights to help make effective land management decisions in responding to extreme

  16. Fluvial and glacial implications of tephra localities in the western Wind River basin, Wyoming, U. S. A

    Energy Technology Data Exchange (ETDEWEB)

    Jaworowski, C. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology)

    1993-04-01

    Examination of Quaternary fluvial and glacial deposits in the western Wind River Basin allows a new understanding of the Quaternary Wind River fluvial system. Interbedded fluvial sediments and volcanic ashes provide important temporal information for correlation of Quaternary deposits. In the western Wind River Basin, six mid-Pleistocene localities of tephra, the Muddy Creek, Red Creek, Lander, Kinnear, Morton and Yellow Calf ashes are known. Geochronologic studies confirm the Muddy Creek, Red Creek, Kinnear and Lander ashes as the 620--650ka Lava Creek tephra from the Yellowstone region in northwestern Wyoming. The stratigraphic position and index of refraction of volcanic glass from the Morton and Yellow Calf ashes are consistent with identification as Lava Creek tephra. Approximately 350 feet (106 meters) above the Wind River and 13 miles downstream from Bull Lake, interbedded Wind River fluvial gravels, volcanic glass and pumice at the Morton locality correlate to late (upper) Sacajawea Ridge gravels mapped by Richmond and Murphy. Associated with the oxygen isotope 16--15 boundary, the ash-bearing terrace deposits reveal the nature of the Wind River fluvial system during late glacial-early interglacial times. The Lander and Yellow Calf ashes, are found in terrace deposits along tributaries of the Wind River. Differences in timing and rates of incision between the Wind River and its tributary, the Little Wind River, results in complex terrace development near their junction.

  17. Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios

    NARCIS (Netherlands)

    Beyene, T.; Lettenmaier, D.P.; Kabat, P.

    2010-01-01

    We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scen

  18. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  19. Holocene fluvial terraces in the Gangkou River Basin of Hengchun Peninsula, Taiwan: implications for sea-level and tectonic controls

    Science.gov (United States)

    Chen, Jia-Hong; Chyi, Shyh-Jeng; Ho, Lih-Der; Jen, Chia-Hung; Yen, Jiun-Yee; Lüthgens, Christopher

    2016-04-01

    The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula, which is the most latest emerged region of the Taiwan orogen. The width of the active channel of Gangkou River is narrow but the valleys from middle to downstream are remarkably wide, which indicates the features of underfit stream. Based on the 14C dates of buried tree trunk and terrace sediments, the preliminary model for the geomorphic evolution of Gangkou River is proposed as: Stage I: The wide spread fine-grained sediments of more than 30-meter-thick was found in the downstream area of drainage basin. The large-scale aggradation event was formed between 12000 to 7000 yr BP in response to the rapid sea-level rise during the late Pleistocene and early Holocene. Stage II: The 15 to 20-meter-high terraces of Gangkou River were formed by the incision and lateral erosion between 7000 to 400 yr BP. The 14C dates of marine terraces, beach rocks and sand dune near the estuary also indicate this erosional stage which could be related to the mid-Holocene climatic shift, tectonic uplift and the stabilized sea-level. Stage III: The 3 to 5-meter-high terraces were formed around 400 yr BP which indicated the low incision rate and the modern fluvial processes. The uplift rates are estimated by the height of river and marine terraces as 1.0 to 1.5 and 1.5 to 2.5 mm/yr respectively. The results indicate the low uplift rate maybe contributed to the underfit stream feature, and the fluvial terraces are responding to sea-level, tectonic and climate controls with different timescale in the Gangkou River. The low uplift rate found in the Gangkou River contradicted to the idea of high tectonic uplift rate in Taiwan.

  20. Structure and sediment budget of Yinggehai-Song Hong basin, South China Sea: Implications for Cenozoic tectonics and river basin reorganization in Southeast Asia

    Science.gov (United States)

    Lei, Chao; Ren, Jianye; Sternai, Pietro; Fox, Matthew; Willett, Sean; Xie, Xinong; Clift, Peter D.; Liao, Jihua; Wang, Zhengfeng

    2015-08-01

    The temporal link between offshore stratigraphy and onshore topography is of key importance for understanding the long-term surface evolution of continental margins. Here we present a grid of regional, high-quality reflection seismic and well data to characterize the basin structure. We identify fast subsidence of the basin basement and a lack of brittle faulting of the offshore Red River fault in the Yinggehai-Song Hong basin since 5.5 Ma, despite dextral strike-slip movement on the onshore Red River fault. We calculate the upper-crustal, whole-crustal, and whole-lithospheric stretching factors for the Yinggehai-Song Hong basin, which show that the overall extension observed in the upper crust is substantially less than that observed for the whole crust or whole lithosphere. We suggest that fast basement subsidence after 5.5 Ma may arise from crustal to lithospheric stretching by the regional dynamic lower crustal/mantle flow originated by collision between India-Eurasia and Indian oceanic subduction below the Eurasian margin. In addition, we present a basin wide sediment budget in the Yinggehai-Song Hong basin to reconstruct the sedimentary flux from the Red River drainage constrained by high-resolution age and seismic stratigraphic data. The sediment accumulation rates show a sharp increase at 5.5 Ma, which suggests enhanced onshore erosion rates despite a slowing of tectonic processes. This high sediment supply filled the accommodation space produced by the fast subsidence since 5.5 Ma. Our data further highlight two prominent sharp decreases of the sediment accumulation at 23.3 Ma and 12.5 Ma, which could reflect a loss of drainage area following headwater capture from the Paleo-Red River. However, the low accumulation rate at 12.5 Ma also correlates with drier and therefore less erosive climatic conditions.

  1. Assessing the implications of baseline climate uncertainty on simulated water yield within the Himalayan Beas river basin in NW India

    Science.gov (United States)

    Holman, I.; Remesan, R.; Adeloye, A.; Ojha, C. S.

    2013-12-01

    Understanding the impacts of the changing water cycle on future water resources and society is one of the most important issues surrounding anthropogenic climate change, especially in regions with limited adaptive capacity or highly water-dependent economies. One such region is the north western Himalayan region of India, where supplementary irrigation is used in the non-monsoon seasons and where over 90% of the population are reliant on agriculture for their livelihoods. This paper focuses on the transboundary 12,560km2 Beas catchment in Himachal Pradesh, which is one of the case study catchments of the Mitigating the Impacts of Climate Change in Indian agriculture (MICCI) project of the UK NERC Changing Water Cycle Programme. However, understanding of the impacts of changes in the water cycle in such regions is dependent on the quality of available observational climate datasets- a challenge given the relative paucity of ground-based observations in mountainous terrains. River flows in the Beas, which support both irrigation and hydropower, are highly seasonal, being dependent on the Indian Monsoon augmented by seasonal snow and ice melt from the Himalayas. This paper describes the uncertainty in simulating water yield in the Beas catchment, using the HySim hydrological model, associated with the use of a diverse range of public domain and governmental observed and derived precipitation and evapo-transpiration datasets (including gridded ground-based data from the Indian Meteorological Department; TRMM, NCEP Climate Forecast System Reanalysis (CFSR) and the APHRODITE project). For example, basin annual average precipitation (2000-07) ranges from 1476 mm/yr (CFSR), 2093mm/yr (APHRODITE) to 2357 mm/yr (TRMM), whilst basin annual average reference evapotranspiration ranges from 1320 mm/yr (with a minimum to maximum sub-basin range of 136-4680 mm/yr) using the Priestley Taylor to 2296 mm/yr (190-6954 mm/yr) with Penman-Monteith. The selection of datasets affects

  2. The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin

    OpenAIRE

    B. L. Harding; A. W. Wood; Prairie, J. R.

    2012-01-01

    The impact of projected 21st century climate conditions on streamflow in the Upper Colorado River Basin was estimated using a multi-model ensemble approach wherein the downscaled outputs of 112 future climate projections from 16 global climate models (GCMs) were used to drive a macroscale hydrology model. By the middle of the century, the impacts on streamflow range, over the entire ensemble, from a decrease of approximately 30% to an increase of approximately the same magnitude. Although pri...

  3. Changes in streamflow extremes in the Colorado River Basin and implications for the water-energy nexus

    Science.gov (United States)

    Solander, K.; Bennett, K. E.; Middleton, R. S.

    2016-12-01

    The global phenomenon of climate change-induced shifts in precipitation leading to "wet regions getting wetter" and "dry regions getting drier" has been widely studied. However, the propagation of the changes in atmospheric moisture conditions to the ground within stream channels is not a direct relationship due to a combination of temporal differences in these moisture shifts and how water interacts with various land surfaces. Precipitation and streamflow changes in the Colorado River Basin (CRB) are of particular interest due to its rapidly growing population, projected temperature increases that are expected to be higher than elsewhere in the contiguous United States, and subsequent climate-driven disturbances including drought, vegetation mortality, and wildfire, thereby making the region more vulnerable to shifts in hydrologic extremes. Here, we attempt to determine how streamflow extremes have changed in the CRB by using the Generalized Extreme Value (GEV) and Mann-Kendall trend analysis on historical observations and future simulations. We specifically evaluate these changes in the context of key high- and low-flow metrics including the maximum, 95th percentile, 5th percentile, minimum, center timing, and 7Q10 maximum and minimum flows using daily data at the monthly, seasonal, and annual timescales. By evaluating how the center timing and other streamflow statistics are changing at different elevations, this study also assesses the relative influence of changes in snowmelt versus overall precipitation on the associated shifts in extremes. Historical streamflow records were obtained from the United States Geological Survey (USGS) GAGES II dataset, while future records were derived using downscaled simulations from IPCC's CMIP5 Global Climate Model (GCM) database. Although preliminary results of the future simulations suggest that climate change will cause 7Q10 low flows to increase by 7% over the long-term, the combined impacts of climate and vegetation

  4. Developing Multi-model Ensemble for Precipitation and Temperature Seasonal Forecasts: Implications for Karkheh River Basin in Iran

    Science.gov (United States)

    Najafi, Husain; Massah Bavani, Ali Reza; Wanders, Niko; Wood, Eric; Irannejad, Parviz; Robertson, Andrew

    2017-04-01

    Water resource managers can utilize reliable seasonal forecasts for allocating water between different users within a water year. In the west of Iran where a decline of renewable water resources has been observed, basin-wide water management has been the subject of many inter-provincial conflicts in recent years. The problem is exacerbated when the environmental water requirements is not provided leaving the Hoor-al-Azim marshland in the downstream dry. It has been argued that information on total seasonal rainfall can support the Iranian Ministry of Energy within the water year. This study explores the skill of the North America Multi Model Ensemble for Karkheh River Basin in the of west Iran. NMME seasonal precipitation and temperature forecasts from eight models are evaluated against PERSIANN-CDR and Climate Research Unit (CRU) datasets. Analysis suggests that anomaly correlation for both precipitation and temperature is greater than 0.4 for all individual models. Lead time-dependent seasonal forecasts are improved when a multi-model ensemble is developed for the river basin using stepwise linear regression model. MME R-squared exceeds 0.6 for temperature for almost all initializations suggesting high skill of NMME in Karkheh river basin. The skill of MME for rainfall forecasts is high for 1-month lead time for October, February, March and October initializations. However, for months when the amount of rainfall accounts for a significant proportion of total annual rainfall, the skill of NMME is limited a month in advance. It is proposed that operational regional water companies incorporate NMME seasonal forecasts into water resource planning and management, especially during growing seasons that are essential for agricultural risk management.

  5. Modern plant-derived terpenoids in an upper Michigan river basin and implications for interpreting the geologic record

    Science.gov (United States)

    Giri, S.; Diefendorf, A. F.; Lowell, T. V.

    2013-12-01

    Di- and triterpenoids are taxonomically specific plant biomarkers, which are produced by conifers and angiosperms, respectively. Because of this source specificity, terpenoids are often used for paleovegetation reconstruction. However, few studies have evaluated weather terpenoid ratios in modern river systems reflect the surrounding plant community. It is likely that various processes that bias terpenoid ratios as they are transported from plants to sediments. To learn more about these important geologic biomarkers, we used a modern fluvial system as an ancient river analog to provide information on the utility of terpenoids as quantitative paleovegetation proxies. Di- and triterpenoid concentrations were quantified in plants, sediments, and particulate and dissolved organic matter in a small river in the Upper Peninsula of Michigan to (1) determine if the contribution of terpenoids from source vegetation is reflected in forested soil and river sediments, and (2) constrain the dispersal of these compounds in fluvial systems. In Miners River drainage basin, evergreen needleleaf conifers are six times less abundant than deciduous broadleaf angiosperms, yet contribute five times more terpenoids to the sediments, when scaled for leaf litter production and present vegetation cover. Thus, using sediment terpenoid ratios alone (ie. no corrections for production differences between major taxonomic groups) to reconstruct vegetation will drastically over represent evergreen conifer populations. Sediment di-/triterpenoid ratios are considerably lower than the expected terpenoid flux from vegetation, suggesting these compounds are preferentially lost between source and sink. In Miners River, terpenoids are transported in the particulate and dissolved organic matter (POM and DOM) fractions of river water. Fluvial transport of terpenoids does not appear to influence river sediment terpenoid concentrations in fresh water systems, like Miners River, however, transport by POM and

  6. Assessing Potential Implications of Climate Change for Long-Term Water Resources Planning in the Colorado River Basin, Texas

    Science.gov (United States)

    Munevar, A.; Butler, S.; Anderson, R.; Rippole, J.

    2008-12-01

    While much of the focus on climate change impacts to water resources in the western United States has been related to snow-dominated watersheds, lower elevation basins such as the Colorado River Basin in Texas are dependent on rainfall as the predominant form of precipitation and source of supply. Water management in these basins has evolved to adapt to extreme climatic and hydrologic variability, but the impact of climate change is potentially more acute due to rapid runoff response and subsequent greater soil moisture depletion during the dry seasons. The Lower Colorado River Authority (LCRA) - San Antonio Water System (SAWS) Water Project is being studied to conserve water, develop conjunctive groundwater supplies, and capture excess and unused river flows to meet future water needs for two neighboring regions in Texas. Agricultural and other rural water needs would be met on a more reliable basis in the lower Colorado River Basin through water conservation, surface water development and limited groundwater production. Surface water would be transferred to the San Antonio area to meet municipal needs in quantities still being evaluated. Detailed studies are addressing environmental, agricultural, socioeconomic, and engineering aspects of the project. Key planning activities include evaluating instream flow criteria, water quality, bay freshwater inflow criteria, surface water availability and operating approaches, agricultural conservation measures, groundwater availability, and economics. Models used to estimate future water availability and environmental flow requirements have been developed largely based on historical observed hydrologic data. This is a common approach used by water planners as well as by many regulatory agencies for permit review. In view of the project's 80-yr planning horizon, contractual obligations, comments from the Science Review Panel, and increased public and regulatory awareness of climate change issues, the project team is

  7. Ecological River Basin Management.

    Science.gov (United States)

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  8. Potential Implications of PCM Climate Change Scenarios for Sacramento-San Joaquin River Basin Hydrology and Water Resources

    Energy Technology Data Exchange (ETDEWEB)

    Van Rheenen, N.T.; Wood, A.W.; Palmer, R.N.; Lettenmaier, D.P. [Department of Civil and Environmental Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Sacramento-San Joaquin River Basin were evaluated using ensemble climate simulations generated by the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). Five PCM scenarios were employed. The first three were ensemble runs from 1995-2099 with a 'business as usual' global emissions scenario, each with different atmospheric initializations. The fourth was a 'control climate' scenario with greenhouse gas emissions set at 1995 levels and run through 2099. The fifth was a historical climate simulation forced with evolving greenhouse gas concentrations from 1870-2000, from which a 50-year portion is taken for use in bias-correction of the other runs. From these global simulations, transient monthly temperature and precipitation sequences were statistically downscaled to produce continuous daily hydrologic model forcings, which drove a macro-scale hydrology model of the Sacramento-San Joaquin River Basins at a ?-degree spatial resolution, and produced daily streamflow sequences for each climate scenario. Each streamflow scenario was used in a water resources system model that simulated current and predicted future performance of the system. The progressive warming of the PCM scenarios (approximately 1.2C at midcentury, and 2.2C by the 2090s), coupled with reductions in winter and spring precipitation (from 10 to 25%), markedly reduced late spring snowpack (by as much as half on average by the end of the century). Progressive reductions in winter, spring, and summer streamflow were less severe in the northern part of the study domain than in the south, where a seasonality shift was apparent. Results from the water resources system model indicate that achieving and maintaining status quo (control scenario climate) system performance in the future would be nearly impossible, given the altered climate scenario

  9. The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin

    Directory of Open Access Journals (Sweden)

    B. L. Harding

    2012-11-01

    Full Text Available The impact of projected 21st century climate conditions on streamflow in the Upper Colorado River Basin was estimated using a multi-model ensemble approach wherein the downscaled outputs of 112 future climate projections from 16 global climate models (GCMs were used to drive a macroscale hydrology model. By the middle of the century, the impacts on streamflow range, over the entire ensemble, from a decrease of approximately 30% to an increase of approximately the same magnitude. Although prior studies and associated media coverage have focused heavily on the likelihood of a drier future for the Colorado River Basin, approximately 25 to 35% of the ensemble of runs, by 2099 and 2039, respectively, result in no change or increases in streamflow. The broad range of projected impacts is primarily the result of uncertainty in projections of future precipitation, and a relatively small part of the variability of precipitation across the projections can be attributed to the effect of emissions pathways. The simulated evolution of future temperature is strongly influenced by emissions, but temperature has a smaller influence than precipitation on flow. Period change statistics (i.e., the change in flow from one 30-yr period to another vary as much within a model ensemble as between models and emissions pathways. Even by the end of the current century, the variability across the projections is much greater than changes in the ensemble mean. The relatively large ensemble analysis described herein provides perspective on earlier studies that have used fewer scenarios, and suggests that impact analyses relying on one or a few climate scenarios are unacceptably influenced by the choice of projections.

  10. The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin

    Directory of Open Access Journals (Sweden)

    B. L. Harding

    2012-01-01

    Full Text Available The impact of projected 21st century climate conditions on streamflow in the Upper Colorado River Basin was estimated using a multi-model ensemble approach wherein the downscaled outputs of 112 future climate scenarios from 16 global climate models (GCMs were used to drive a macroscale hydrology model. By the middle of the century, the impacts on streamflow range, over the entire ensemble, from a decrease of approximately 30% to an increase of approximately the same magnitude. Although prior studies and associated media coverage have focused heavily on the likelihood of a drier future for the Colorado River Basin, approximately one-third of the ensemble of runs result in little change or increases in streamflow. The broad range of projected impacts is primarily the result of uncertainty in projections of future precipitation, and a relatively small part of the variability of precipitation across the projections can be attributed to the effect of emissions scenarios. The simulated evolution of future temperature is strongly influenced by emissions, but temperature has a smaller influence than precipitation on flow. Period change statistics (i.e., the change in flow from one 30-yr period to another vary as much within a model ensemble as between models and emissions scenarios. Even over the course of the current century, the variability across the projections is much greater than the trend in the ensemble mean. The relatively large ensemble analysis described herein provides perspective on earlier studies that have used fewer scenarios, and suggests that impact analyses relying on one or a few scenarios, as is still common in dynamical downscaling assessments, are unacceptably influenced by choice of projections.

  11. Soils and late-Quaternary landscape evolution in the Cottonwood River basin, east-central Kansas: Implications for archaeological research

    Science.gov (United States)

    Beeton, J.M.; Mandel, R.D.

    2011-01-01

    Temporal and spatial patterns of landscape evolution strongly influence the temporal and spatial patterns of the archaeological record in drainage systems. In this geoarchaeological investigation we took a basin-wide approach in assessing the soil stratigraphy, lithostratigraphy, and geochronology of alluvial deposits and associated buried soils in the Cottonwood River basin of east-central Kansas. Patterns of landscape evolution emerge when stratigraphic sequences and radiocarbon chronologies are compared by stream size and landform type. In the valleys of high-order streams (???4th order) the Younger Dryas Chronozone (ca. 11,000-10,000 14C yr B.P.) was characterized by slow aggradation accompanied by pedogenesis, resulting in the development of organic-rich cumulic soils. Between ca. 10,000 and 4900 14C yr B.P., aggradation punctuated by soil formation was the dominant process in those valleys. Alluvial fans formed on the margins of high-order stream valleys during the early and middle Holocene (ca. 9000-5000 14C yr B.P.) and continued to develop slowly until ca. 3000-2000 14C yr B.P. The late-Holocene record of high-order streams is characterized by episodes of entrenchment, rapid aggradation, and slow aggradation punctuated by soil development. By contrast, the early and middle Holocene (ca. 10,000-5000 14C yr B.P.) was a period of net erosion in the valleys of low-order streams. However, during the late Holocene small valleys became zones of net sediment storage. Consideration of the effects of these patterns of landscape evolution on the archaeological record is crucial for accurately interpreting that record and searching for buried archaeological deposits dating to specific cultural periods. ?? 2011 Wiley Periodicals, Inc. ?? 2011 Wiley Periodicals, Inc..

  12. Chemical data for 7 streams in Salmon River Basin - Importance of biotic and abiotic features of salmon habitat implications for juvenile Chinook and steelhead growth and survival

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a large-scale, long-term comparative study that includes many streams (20+ streams in the Salmon River Basin, Idaho, including a few non-salmon streams for...

  13. Climate change and stream temperature projections in the Columbia River Basin: biological implications of spatial variation in hydrologic drivers

    Directory of Open Access Journals (Sweden)

    D. L. Ficklin

    2014-06-01

    Full Text Available Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled General Circulation Model outputs to explore the spatially and temporally varying changes in stream temperature at the subbasin and ecological province scale for the Columbia River Basin. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil flow, and groundwater, are negatively correlated to increases in stream temperature depending on the season and ecological province. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by non-migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically-explicit modeling approach to accurately characterize the

  14. How integrated is river basin management?

    Science.gov (United States)

    Downs, Peter W.; Gregory, Kenneth J.; Brookes, Andrew

    1991-05-01

    Land and water management is increasingly focused upon the drainage basin. Thirty-six terms recently used for schemes of “integrated basin management” include reference to the subject or area and to the aims of integrated river basin management, often without allusion to the multiobjective nature. Diversity in usage of terms has occurred because of the involvement of different disciplines, of the increasing coherence of the drainage basin approach, and the problems posed in particular parts of the world. The components included in 21 different approaches are analyzed, and, in addition to showing that components related broadly to water supply, river channel, land, and leisure aspects, it is concluded that there are essentially five interrelated facets of integrated basin management that involved water, channel, land, ecology, and human activity. Two aspects not fully included in many previous schemes concern river channel changes and the dynamic integrity of the fluvial system. To clarify the terminology used, it is suggested that the term comprehensive river basin management should be used where a wide range of components is involved, whereas integrated basin management can signify the interactions of components and the dominance of certain components in the particular area. Holistic river basin management is advocated as a term representing an approach that is both fully comprehensive and integrated but also embraces the energetics of the river system and consideration of changes of river channels and of human impacts throughout the river system. The paradigm of working with the river can be extended to one of working with the river in the holistic basin context.

  15. River Basin Standards Interoperability Pilot

    Science.gov (United States)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  16. Genetic comparison of Glossina tachinoides populations in three river basins of the Upper West Region of Ghana and implications for tsetse control.

    Science.gov (United States)

    Adam, Y; Bouyer, J; Dayo, G-K; Mahama, C I; Vreysen, M J B; Cecchi, G; Abd-Alla, A M M; Solano, P; Ravel, S; de Meeûs, T

    2014-12-01

    Tsetse flies are the cyclical vectors of African animal trypanosomosis (AAT) and human African trypanosomosis (HAT). In March 2010, the Government of Ghana initiated a large scale integrated tsetse eradication campaign in the Upper West Region (UWR) (≈18,000 km(2)) under the umbrella of the Pan-African Tsetse and Trypanosomosis Eradication Campaign (PATTEC). We investigated the structuring of Glossina tachinoides populations within and between the three main river basins of the target area in the UWR. Out of a total sample of 884 flies, a sub-sample of 266 was genotyped at nine microsatellite loci. The significance of the different hierarchical levels was tested using Yang's parameters estimated with Weir and Cockerham's method. A significant effect of traps within groups (pooling traps no more than 3 km distant from each other), of groups within river basins and of river basins within the whole target area was observed. Isolation by distance between traps was highly significant. A local density of 0.48-0.61 flies/m(2) was estimated and a dispersal distance that approximated 11 m per generation [CI 9, 17]. No significant sex-biased dispersal was detected. Dispersal distances of G. tachinoides in the UWR were relatively low, possibly as a result of the fragmentation of the habitat and the seasonality of the Kulpawn and Sissili rivers. Moreover, very high fly population densities were observed in the sample sites, which potentially reduces dispersal at constant habitat saturation, because the probability that migrants can established is reduced (density dependent dispersal). However, the observed spatial dispersal was deemed sufficient for a G. tachinoides-cleared area to be reinvaded from neighboring populations in adjacent river basins. These data corroborate results from other population genetics studies in West Africa, which indicate that G. tachinoides populations from different river basins cannot be considered isolated. Copyright © 2014 The Authors

  17. Water scarcity in the Jordan River basin.

    Science.gov (United States)

    Civic, M A

    1999-03-01

    This article reports the problem on water scarcity in the Jordan River basin. In the Jordan River basin, freshwater scarcity results from multiple factors and most severely affects Israel, Jordan, the West Bank, and the Gaza Strip. One of these multiple factors is the duration of rainfall in the region that only occurs in a small area of highlands in the northwest section. The varying method of water use parallels that of Israel that utilizes an estimated 2000 million cu. m. The national patterns of water usage and politically charged territorial assertions compound the competition over freshwater resources in the region. The combination of political strife, resource overuse, and contaminated sources means that freshwater scarcity in the Jordan River basin will reach a critical level in the near future. History revealed that the misallocation/mismanagement of freshwater from the Jordan River basin was the result of centuries of distinct local cultural and religious practices combined with historical influences. Each state occupying near the river basin form their respective national water development schemes. It was not until the mid-1990s that a shared-use approach was considered. Therefore, the critical nature of water resource, the ever-dwindling supply of freshwater in the Jordan River basin, and the irrevocability of inappropriate policy measures requires unified, definitive, and ecologically sound changes to the existing policies and practices to insure an adequate water supply for all people in the region.

  18. Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River

    Science.gov (United States)

    Li, Baofeng; Sun, Donghuai; Xu, Weihong; Wang, Fei; Liang, Baiqing; Ma, Zhiwei; Wang, Xin; Li, Zaijun; Chen, Fahu

    2017-01-01

    Reconstructing the Cenozoic environmental history of Hetao Basin, in the northern part of the Ordos Plateau in North China, is important not only for revealing the evolution of the Yellow River, but also for understanding the formation of the Hobq Desert. Here we present the stratigraphic framework of drill core DR01 with length of 2503.18 m, and the results of magnetostratigraphic and ESR dating and multi-proxy analyses of drill core WEDP05 with length of 274.60 m, from the Hetao Basin. The magnetostratigraphic and ESR results indicate that core WEDP05 spans the last ∼1.68 Ma. Stratigraphic sequence of core DR01 indicates that the Hetao area was uplifted and eroded during the early Cenozoic, before subsiding to form a sedimentary basin. Subsequently, the basin was a fluvio-lacustrine environment during the Pliocene and then experienced alternating desert and fluvio-lacustrine conditions during the Quaternary. Sedimentary facies and multi environmental-proxy analyses of core WEDP05 indicate that the basin was occupied by a fluvio-lacustrine system during the following intervals: ∼1.47 - ∼1.30 Ma, ∼1.17 - ∼1.07 Ma, ∼0.68 - ∼0.60 Ma and from ∼0.47 Ma to the last interglacial; and that a desert environment developed during the lake regression phases of ∼1.30 - ∼1.17 Ma, ∼1.07 - ∼0.68 Ma and ∼0.60 - ∼0.47 Ma. The presence of aeolian sand at the base of core WEDP05 suggests that the origin of the Hobq Desert can be traced back to the early Pleistocene, and resulted from the erosion and transportation of exposed fluvio-lacustrine sediments by near-surface winds associated with the Asian winter monsoon. A large river channel in the Hetao Basin may have existed as early as the Pliocene, which was occupied by the Yellow River when its upper reaches formed by at least ∼1.6 Ma. Subsequently, at least since ∼1.2 Ma, the Yellow River formed its drainage system around the Hetao Basin and controlled the paleoenvironment evolution of the basin.

  19. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    Science.gov (United States)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and

  20. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  1. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  2. Water Storage Changes in the Tigris-Euphrates River Basin and the Middle East from GRACE with Implications for Transboundary Water Management

    Science.gov (United States)

    Voss, K.; Famiglietti, J. S.; Lo, M.; De Linage, C.

    2011-12-01

    In this work, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the Tigris-Euphrates River Basin from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2 ± 0.6 mm/year equivalent water height, equal to a volume of 143.6 km3 during the course of the study period. We use additional remote-sensing information and output from land-surface models to identify that groundwater losses are the major source of this trend. The approach followed here provides an example of 'best current capabilities' in regions like the Middle East, where data access can be severely limited. Results indicate that the Tigris-Euphrates River Basin region lost 15.6 ± 2.9 mm/year of groundwater during the study period, or 82.3 ± 15.4 km3 in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget.

  3. Morphometric Characters of a Himalayan River Basin-Pindari river of Pindari Glacier

    Science.gov (United States)

    Patel, L. K.; Pillai, J.

    2011-12-01

    Himalayan region consist many glaciers and glacier-fed rivers. About 17% of the Indian Himalayan Region (IHR) is under permanent cover of Ice and snow and have more than 9000 glaciers and high altitude fresh water lakes. Stream runoff originating from the glaciers has direct implication in geomorphology of the region. Present study is an attempt to find out the stages in the geomorphic development of a higher altitudinal river basin, Pindari river basin. Development of a landscape is equal to the some total of the development of each individual drainage basin of which it is composed. Morphometric parameters of the river basin had been identified viz. linear, areal and relief aspect and examined. Pindari river basin is a 5th order high altitudinal, sub-dendratic, parallel and perennial tributary of Alaknanda River, formed by three main tributaries (Sunderdhunga, Pindari and Kafini). It has the catchment area above 557.63 Km2. This river originates from combined action of rain and snow fall from Pindari glacier which is part of Nanda Devi Biosphere Reserve (a world heritage site). Pindari river basin is located between 1600 m to 6880 m elevation ,and 300 03' 23" -300 19' 04" N Latitude and 790 45' 59" - 80 0 04' 13"E Longitude. Due to microclimatic conditions Pindari river basin generally dry with low annual precipitation. There is heavy rainfall during monsoon season. The approximate variation in the precipitation is from 750 mm to 2000 mm. For estimating the Morphometric parameter SOI toposheet on 1:50000 scale and Landsat data (ETM+) having 15m resolution were georectified in RS and GIS environment. SRTM data was used in analysis of elevation and slope range of the study area. Extensive field study was held on during the year 2010. Morphometric parameters (linear, aerial and relief) of the study area had been estimated. It is observed that Pindari river basin is a sub-dendratic, higher relief, youth, fine texture; elongated basin has peak flow, high discharge, and

  4. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    Directory of Open Access Journals (Sweden)

    M. S. Pervez

    2014-02-01

    Full Text Available We evaluated the spatial and temporal responses of precipitation in the basins as modulated by the El Niño Southern Oscillation (ENSO and Indian Ocean (IO dipole modes using observed precipitation records at 43 stations across the Ganges and Brahmaputra basins from 1982 to 2010. Daily observed precipitation records were extracted from Global Surface Summary of the Day dataset and spatial and monthly anomalies were computed. The anomalies were averaged for the years influenced by climate modes combinations. Occurrences of El Niño alone significantly reduced (60% and 88% of baseline in the Ganges and Brahmaputra basins, respectively precipitation during the monsoon months in the northwestern and central Ganges basin and across the Brahmaputra basin. In contrast, co-occurrence of La Niña and a positive IO dipole mode significantly enhanced (135% and 160% of baseline, respectively precipitation across both basins. During the co-occurrence of neutral phases in both climate modes (occurring 13 out of 28 yr, precipitation remained below average to average in the agriculturally extensive areas of Haryana, Uttar Pradesh, Bihar, eastern Nepal, and the Rajshahi district in Bangladesh in the Ganges basin and northern Bangladesh, Meghalaya, Assam, and Arunachal Pradesh in the Brahmaputra basin. This pattern implies that a regular water deficit is likely in these areas with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Major flooding and drought occurred as a consequence of the interactive effects of the ENSO and IO dipole modes, with the sole exception of extreme precipitation and flooding during El Niño events. This observational analysis will facilitate well informed decision making in minimizing natural hazard risks and climate impacts on agriculture, and supports development of strategies ensuring optimized use of water resources in best management practice under changing climate.

  5. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  6. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-05-10

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control ] Act of 1974...

  7. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2013-11-26

    ....20350010.REG0000, RR04084000] Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  8. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2012-04-19

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  9. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-05-14

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  10. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  11. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-05-02

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of... Committee Act, the Bureau of Reclamation announces that the Colorado River Basin Salinity Control Advisory...) 524-3826; e-mail at: kjacobson@usbr.gov . SUPPLEMENTARY INFORMATION: The Colorado River Basin...

  12. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2012-10-11

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  13. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2013-04-22

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974...

  14. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam.

    Science.gov (United States)

    McArthur, J M; Sikdar, P K; Hoque, M A; Ghosal, U

    2012-10-15

    Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO(3)-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO(4) (SO(4) corrected for marine salt). The data show that shallow groundwater tapped by tube-wells in the Bengal Basin has been widely contaminated by waste-water derived from pit latrines, septic tanks, and other methods of sanitary disposal, although reducing conditions in the aquifers have removed most evidence of NO(3) additions from these sources, and much evidence of their additions of SO(4). In groundwaters from wells in palaeo-channel settings, end-member modelling shows that >25% of wells yield water that comprises ≥10% of waste-water. In palaeo-interfluvial settings, only wells at the margins of the palaeo-interfluvial sequence contain detectable waste water. Settings are identifiable by well-colour survey, owner information, water composition, and drilling. Values of Cl/Br and faecal coliform counts are both inversely related to concentrations of pollutant As in groundwater, suggesting that waste-water contributions to groundwater in the near-field of septic-tanks and pit-latrines (within 30 m) suppress the mechanism of As-pollution and lessen the prevalence and severity of As pollution. In the far-field of such sources, organic matter in waste-water may increase groundwater pollution by As. Copyright © 2012. Published by Elsevier B.V.

  15. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  16. Analytical framework for River Basin Management Planning

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Pedersen, Anders Branth; Frederiksen, Pia

    This paper proposes a framework for the analysis of the planning approach, and the processes and procedures, which have been followed in the preparation of the River Basin District Management Plans (RBMPs). Different countries have different policy and planning traditions and -styles. Developed o...

  17. SEA of river basin management plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental...

  18. XXI Century Climatology of Snow Cover for the Western River Basins of the Indus River System

    CERN Document Server

    Hasson, Shabeh ul; Lucarini, Valerio

    2012-01-01

    Under changing climate, freshwater resources of Hindu Kush-Karakoram-Himalaya (HKH) region can be affected by changes in temperature and in amount, type and distribution of precipitation. This can have serious implications for the water supply and in turn threaten the food security and economic wellbeing of Indus basin. Using MODIS daily snow products (Terra & Aqua), this study focuses on the assessment of the 2000-2010 snow cover dynamics on seasonal/annual basis against geophysical parameters (aspect, elevation and slope) for the so called western river basins of Indus River System (IRS), namely Indus, Kabul, Jhelum, Astore, Gilgit, Hunza, Swat, Shigar and Shyok basins. Results show that inputs from MODIS instrument provide unprecedented better opportunity to study by using GIS techniques the snow cover dynamics in the remote areas like HKH region at such hyper-temporal and finer planar resolution. Adapted non-spectral cloud filtering techniques have significantly reduced cloud coverage and improved sno...

  19. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    Science.gov (United States)

    Pervez, Md Shahriar; Henebry, Geoffry M.

    2015-01-01

    We evaluated the spatial and seasonal responses of precipitation in the Ganges and Brahmaputra basins as modulated by the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) modes using Global Precipitation Climatology Centre (GPCC) full data reanalysis of monthly global land-surface precipitation data from 1901 to 2010 with a spatial resolution of 0.5° × 0.5°. The GPCC monthly total precipitation climatology targeting the period 1951–2000 was used to compute gridded monthly anomalies for the entire time period. The gridded monthly anomalies were averaged for the years influenced by combinations of climate modes. Occurrences of El Niño alone significantly reduce (88% of the long-term average (LTA)) precipitation during the monsoon months in the western and southeastern Ganges Basin. In contrast, occurrences of La Niña and co-occurrences of La Niña and negative IOD events significantly enhance (110 and 109% of LTA in the Ganges and Brahmaputra Basin, respectively) precipitation across both basins. When El Niño co-occurs with positive IOD events, the impacts of El Niño on the basins' precipitation diminishes. When there is no active ENSO or IOD events (occurring in 41 out of 110 years), precipitation remains below average (95% of LTA) in the agriculturally intensive areas of Haryana, Uttar Pradesh, Rajasthan, Madhya Pradesh, and Western Nepal in the Ganges Basin, whereas precipitation remains average to above average (104% of LTA) across the Brahmaputra Basin. This pattern implies that a regular water deficit is likely, especially in the Ganges Basin, with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Historically, major droughts occurred during El Niño and co-occurrences of El Niño and positive IOD events, while major flooding occurred during La Niña and co-occurrences of La Niña and negative IOD events in the basins. This observational analysis will facilitate well

  20. Groundwater Dynamics under Water Saving Irrigation and Implications for Sustainable Water Management in an Oasis: Tarim River Basin of Western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-02-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of socio-economy and sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between unsaturated vadose zone and groundwater reservoir is a critical link to understand regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In Tarim River Basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux is influenced strongly by irrigation. Recently, mulched drip irrigation, a very advanced water-saving irrigation method, has been widely applied in the Tarim River Basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gain a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2011 and 2012 in a typical oasis within Tarim River Basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux is mostly downward (310.5 mm yr-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (-16.1 mm yr-1) due to the moderate groundwater table depth (annual average depth 2.9 m). Traditional secondary salinization caused by intense phreatic

  1. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-10-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of the socio-economy and the sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between the unsaturated vadose zone and groundwater reservoir is a critical link to understanding regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In the Tarim River basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux between the unsaturated vadose zone and groundwater reservoir is influenced strongly by irrigation. Recently, mulched drip irrigation, a sophisticated water-saving irrigation method, was widely applied in the Tarim River basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gaining a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2012 and 2013 in a typical oasis within the Tarim River basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux at the groundwater table is mostly downward (310.5 mm year-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (16.1 mm year-1) due to the moderate

  2. Strengthening river basin institutions: The Global Environment Facility and the Danube River Basin

    Science.gov (United States)

    Gerlak, Andrea K.

    2004-08-01

    Increased international attention to water resource management has resulted in the creation of new institutional arrangements and funding mechanisms as well as international initiatives designed to strengthen river basin institutions. The Global Environment Facility's (GEF) International Waters Program is at the heart of such novel collaborative regional approaches to the management of transboundary water resources. This paper assesses GEF-led efforts in the Danube River Basin, GEF's most mature and ambitious projects to date. It finds that GEF has been quite successful in building scientific knowledge and strengthening regional governance bodies. However, challenges of coordinating across expanding participants and demonstrating clear ecological improvements remain. GEF-led collaborative activities in the Danube River Basin reveal three critical lessons that can inform future river basin institution building and decision making, including the importance of appropriately creating and disseminating scientific data pertaining to the river system, the need for regional governance bodies for integrated river basin management, and the necessity to address coordination issues throughout project planning and implementation.

  3. Digital spatial data as support for river basin management: The case of Sotla river basin

    Directory of Open Access Journals (Sweden)

    Prah Klemen

    2013-01-01

    Full Text Available Many real-world spatially related problems, including river-basin planning and management, give rise to geographical information system based decision making, since the performance of spatial policy alternatives were traditionally and are still often represented by thematic maps. Advanced technologies and approaches, such as geographical information systems (GIS, offer a unique opportunity to tackle spatial problems traditionally associated with more efficient and effective data collection, analysis, and alternative evaluation. This paper discusses the advantages and challenges of the use of digital spatial data and geographical information systems in river basis management. Spatial data on social, environmental and other spatial conditions for the study area of 451.77 km2, the Slovenian part of the Sotla river basin, are used to study the GIS capabilities of supporting spatial decisions in the framework of river basin management.

  4. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  5. Damming the rivers of the Amazon basin

    Science.gov (United States)

    Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.

    2017-06-01

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  6. Effective Monitoring of Small River Basins

    Directory of Open Access Journals (Sweden)

    W. Symader

    2002-01-01

    Full Text Available As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.

  7. Effective Monitoring of Small River Basins

    OpenAIRE

    2002-01-01

    As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.

  8. An extended linear scaling method for downscaling temperature and its implication in the Jhelum River basin, Pakistan, and India, using CMIP5 GCMs

    Science.gov (United States)

    Mahmood, Rashid; JIA, Shaofeng

    2016-08-01

    In this study, the linear scaling method used for the downscaling of temperature was extended from monthly scaling factors to daily scaling factors (SFs) to improve the daily variations in the corrected temperature. In the original linear scaling (OLS), mean monthly SFs are used to correct the future data, but mean daily SFs are used to correct the future data in the extended linear scaling (ELS) method. The proposed method was evaluated in the Jhelum River basin for the period 1986-2000, using the observed maximum temperature (Tmax) and minimum temperature (Tmin) of 18 climate stations and the simulated Tmax and Tmin of five global climate models (GCMs) (GFDL-ESM2G, NorESM1-ME, HadGEM2-ES, MIROC5, and CanESM2), and the method was also compared with OLS to observe the improvement. Before the evaluation of ELS, these GCMs were also evaluated using their raw data against the observed data for the same period (1986-2000). Four statistical indicators, i.e., error in mean, error in standard deviation, root mean square error, and correlation coefficient, were used for the evaluation process. The evaluation results with GCMs' raw data showed that GFDL-ESM2G and MIROC5 performed better than other GCMs according to all the indicators but with unsatisfactory results that confine their direct application in the basin. Nevertheless, after the correction with ELS, a noticeable improvement was observed in all the indicators except correlation coefficient because this method only adjusts (corrects) the magnitude. It was also noticed that the daily variations of the observed data were better captured by the corrected data with ELS than OLS. Finally, the ELS method was applied for the downscaling of five GCMs' Tmax and Tmin for the period of 2041-2070 under RCP8.5 in the Jhelum basin. The results showed that the basin would face hotter climate in the future relative to the present climate, which may result in increasing water requirements in public, industrial, and agriculture

  9. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.;

    2015-01-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically based and distributed modeling schemes employing data...... assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. The objective of this study is to develop open-source software tools to support hydrologic forecasting and integrated water resources management...

  10. Scaling issues in sustainable river basin management

    Science.gov (United States)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  11. Complementing data-driven and physically-based approaches for predictive morphologic modeling: Results and implication from the Red River Basin, Vietnam

    Science.gov (United States)

    Schmitt, R. J.; Bernardi, D.; Bizzi, S.; Castelletti, A.; Soncini-Sessa, R.

    2013-12-01

    During the last 30 years, the delta of the Red River (Song Hong) in northern Vietnam experienced grave morphologic degradation processes which severely impact economic activities and endanger region-wide livelihoods. Rapidly progressing river bed incision, for example, threatens the irrigation of the delta's paddy rice crops which constitute 20% of Vietnam's annual rice production. Morphologic alteration is related to a drastically changed sediment balance due to major upstream impoundments, sediment mining and land use changes, further aggravated by changing hydro-meteorological conditions. Despite the severe impacts, river morphology was so far not included into the current efforts to optimize basin wide water resource planning for a lack of suitable, not overly resource demanding modeling strategies. This paper assesses the suitability of data-driven models to provide insights into complex hydromorphologic processes and to complement and enrich physically-based modeling strategies. Hence, to identify key drivers of morphological change while evaluating impacts of future socio-economic, management and climate scenarios on river morphology and the resulting effects on key social needs (e.g. water supply, energy production and flood mitigation). Most relevant drivers and time-scales for the considered processes (e.g. incision) - from days to decades - were identified from hydrologic and sedimentologic time-series using a feature ranking algorithm based on random trees. The feature ranking pointed out bimodal response characteristics, with important contributions of long-to-medium (5 - 15 yrs.) and rather short (10d - 6 months) timescales. An artificial neural network (ANN), built from identified variables, subsequently quantified in detail how these temporal components control long term trends, inter-seasonal fluctuations and day to day variations in morphologic processes. Whereas the general trajectory of incision relates, for example, to the overall regional

  12. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  13. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  14. Response of River Discharge to Changing Climate Over the Past Millennium in the Upper Mackenzie Basin: Implications for Water Resource Management

    Science.gov (United States)

    Wolfe, B. B.; Hall, R. I.; Edwards, T. W.; Jarvis, S. R.; Sinnatamby, R. N.; Yi, Y.; Johnston, J. W.

    2009-05-01

    Runoff generated from high elevations is the primary source of freshwater for western North America, yet this critical resource is managed on the basis of short instrumental records that encompass an insufficient range of climatic conditions. Like other streams that drain this part of the continent and flow across the northern Great Plains, where seasonal and extended intervals of water deficit are a natural element of the landscape, the Peace and Athabasca rivers provide water that is crucial for societal needs. Climate variability and rapidly increasing industrial development are, however, raising concerns over the future availability of water resources for continued economic growth in these watersheds and to maintain the integrity of aquatic ecosystems, including the Peace-Athabasca Delta (PAD). This is particularly acute for the Athabasca River because the Alberta oil sands industry remains dependent on its water for bitumen extraction. Here we report the effects of climate change over the past 1000 years on river discharge in the upper Mackenzie River system based on paleoenvironmental information from the PAD and Lake Athabasca. The delta landscape responds to hydroclimatic changes with marked variability, capturing systematic changes in ice-jam flood frequency and perched basin water balance. Lake Athabasca level appears to directly monitor overall water availability with the highest levels occurring in concert with maximum glacier extent during the Little Ice Age, and the lowest during the 11th century prior to medieval glacier expansion. Recent climate-driven hydrological change appears to be on a trajectory to even lower levels as high-elevation snow and glacier meltwater contributions both continue to decline. The temporal perspective offered by these paleohydrological reconstructions indicates that climatic changes over the past millennium have led to characteristic responses in the quantity and seasonality of streamflow generated from the hydrographic

  15. Quality of water, Quillayute River basin, Washington

    Science.gov (United States)

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  16. Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production

    Energy Technology Data Exchange (ETDEWEB)

    Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

    2007-01-15

    Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

  17. Karyotype structure of Hypostomus cf. plecostomus (Linnaeus, 1758) from Tapajós River basin, Southern Amazon: occurrence of sex chromosomes (ZZ/ZW) and their evolutionary implications.

    Science.gov (United States)

    Oliveira, L C; Ribeiro, M O; Dutra, E S; Zawadzki, C H; Portela-Castro, A L B; Martins-Santos, I C

    2015-06-18

    Hypostomus is a group of fish with numerical and struc-tural karyotypic variability. Among them, only six species, three of which belong to the Amazon basin, show a sex chromosome. In this study, we present the karyotype structure of Hypostomus cf. plecos-tomus from the Teles Pires river basin in the municipality of Alta Flo-resta, MT. The species has 2n = 68 and the karyotype formula 14m+ 24sm+ 14st+ 16a [fundamental number (FN) = 120] in males and 15m+ 24sm+14st+15a (FN = 121) in females and sex chromosomes ZZ/ZW. Argyrophilic nucleolar organizer regions (AgNORs) were identified in two pairs of chromosomes at different positions: short arm of the pair 21and long arm of the pair 27, matching the signals displayed by 18S FISH and indicating multiple NORs. Analysis of band C detected few blocks of constitutive heterochromatin in the pericentromeric regions of most chromosomes and the telomeric regions of some pairs, includ-ing the nucleolar pair 21. However, large blocks on the long arm of the nucleolar pair 27 still stood out. GC-rich heterochromatin (CMA3) was visualized only coincidently with nucleolar sites. Mapping of 5S rDNA sites with FISH revealed markings in eight chromosomes, demonstrat-ing synteny between the 18S and 5S sites. The data obtained for H. cf. plecostomus are important for taxonomic studies of this Amazon com-plex "H. plecostomus group". The occurrence of sex chromosomes in Amazon species of Hypostomus suggests an evolutionary event that is independent of other species in the group.

  18. Social Learning in European River-Basin Management: Barriers and Fostering Mechanisms from 10 River Basins

    NARCIS (Netherlands)

    Mostert, E.; Pahl-Wostl, C.; Rees, Y.; Searle, B.; Tabara, D.; Tippett, J.

    2007-01-01

    We present and analyze 10 case studies of participatory river-basin management that were conducted as part of the European HarmoniCOP project. The main theme was social learning, which emphasizes the importance of collaboration, organization, and learning. The case studies show that social learning

  19. Research on runoff forecast approaches to the Aksu River basin

    Institute of Scientific and Technical Information of China (English)

    OUYANG RuLin; CHENG WeiMing; WANG WeiSheng; JIANG Yan; ZHANG YiChi; WANG YongQin

    2007-01-01

    The Aksu River (the international river between China and Kirghiz) has become the main water source for the Tarim River. It significantly influences the Tarim River's formation, development and evolution.Along with the western region development strategy and the Tarim River basin comprehensive development and implementation, the research is now focused on the Aksu River basin hydrologic characteristic and hydrologic forecast. Moreover, the Aksu River is representative of rivers supplied with glacier and snow melt in middle-high altitude arid district. As a result, the research on predicting the river flow of the Aksu River basin has theoretical and practical significance. In this paper, considering the limited hydrometeorological data for the Aksu River basin, we have constructed four hydrologic forecast approaches using the daily scale to simulate and forecast daily runoff of two big branches of the Aksu River basin. The four approaches are the upper air temperature and the daily runoff correlation method, AR(p) runoff forecast model, temperature and precipitation revised AR(p) model and the NAM rainfall-runoff model. After comparatively analyzing the simulation results of the four approaches, we discovered that the temperature and precipitation revised AR(p) model, which needs less hydrological and meteorological data and is more predictive, is suitable for the short-term runoff forecast of the Aksu River basin. This research not only offers a foundation for the Aksu River and Tarim Rivers' hydrologic forecast, flood prevention, control and the entire basin water collocation, but also provides the hydrologic forecast reference approach for other arid ungauged basins.

  20. Quantifying water requirements of riparian river red gum (Eucalyptus camaldulensis) in the Murray-Darling Basin, Australia: Implications for the management of environmental flows

    Science.gov (United States)

    Doody, Tanya M.; Colloff, Matthew J.; Davies, Micah; Koul, Vijay; Benyon, Richard G.; Nagler, Pamela L.

    2015-01-01

    Water resource development and drought have altered river flow regimes, increasing average flood return intervals across floodplains in the Murray-Darling Basin, Australia, causing health declines in riparian river red gum (Eucalyptus camaldulensis) forests and woodlands. Environmental flow allocations helped to alleviate water stress during the recent Millennium Drought (1997–2010), however, quantification of the flood frequency required to support healthy E. camaldulensis communities is still needed. We quantified water requirements of E. camaldulensis for two years across a flood gradient (trees inundated at frequencies of 1:2, 1:5 and 1:10 years) at Yanga National Park, New South Wales to help inform management decision-making and design of environmental flows. Sap flow, evaporative losses and soil moisture measurements were used to determine transpiration, evapotranspiration and plant-available soil water before and after flooding. A formula was developed using plant-available soil water post-flooding and average annual rainfall, to estimate maintenance time of soil water reserves in each flood frequency zone. Results indicated that soil water reserves could sustain 1:2 and 1:5 trees for 15 months and six years, respectively. Trees regulated their transpiration rates, allowing them to persist within their flood frequency zone, and showed reduction in active sapwood area and transpiration rates when flood frequencies exceeded 1:2 years. A leaf area index of 0.5 was identified as a potential threshold indicator of severe drought stress. Our results suggest environmental water managers may have greater flexibility to adaptively manage floodplains in order to sustain E. camaldulensis forests and woodlands than has been appreciated hitherto.

  1. Water balance of the Lepenci river basin, Kosova

    Science.gov (United States)

    Osmanaj, L.; Avdullahi, S.

    2009-04-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. Kosova has four water basins, such as the Basin of river Drini i Bardhe, Ibri, Morava e Binqes and Lepenci. The Basin of river Lepenci is located in South-eastern part of Kosova with surface of 650 km2, belongs to Axios river basin discharging into Aegean Sea. The annual rainfall is 670-1.000 mm and specific runoff 8 - 20 l/s/km2. There are also steep mountains in this area. In this case study we have calculate the water balance of the river Lepenc Basin. The Basin of river Lepenc we have divided in to 3 catchments: of Nerodima river, and upper and lower part of river Lepenci. This basin is covered by three municipalities such as municipality of Ferizaj, Kaçanik and Shterpc. The data on precipitation are obtained from three metering stations, such as the metering station of Ferizaj, Kaçanik and Jazhnice. The obtained records are elaborated. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. In a basin of river Lepenci we have four stations for measuring the discharges and levels: in Ferizaj, and Kaçanik - Nerodime river and in Hani i Elezit - Lepenc river. The river basin Lepenc has two inflowing points, where are Lepenci river in the border with the FYR of Macedonia and Sazli village near Ferizaj. Key works: precipitation, evaporation, flow, river, discharges,

  2. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Umesh S Balpande

    2014-10-01

    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order subbasins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the subsurface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the

  3. Middle Miocene reworked turbidites in the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea margin: Processes, genesis, and implications

    Science.gov (United States)

    Gong, Chenglin; Wang, Yingmin; Zheng, Rongcai; Hernández-Molina, F. Javier; Li, Yun; Stow, Dorrik; Xu, Qiang; Brackenridge, Rachel E.

    2016-10-01

    Our understanding of reworked turbidites is still in its infancy, and their flow processes and genesis still remain understudied. Core data from the middle Miocene Zhujiang Formation in the Pearl River Mouth Basin allow us to differentiate reworked turbidites, yielding two main contributions. Firstly, reworked turbidites are distinguished from turbidites by the association of traction structures and tidal signatures, which occur in discrete units rather than forming a classic "Bouma Sequence" for turbidites. Sedimentological characteristics of reworked turbidites proposed here will help to obtain a robust set of diagnostic criteria for the recognition of deep-water non-turbidite deepwater units as reservoirs. Secondly, our results suggest that, in the down-slope direction, classic detritus carried in turbidity flows would synchronously be bidirectionally reworked by internal tides and waves, resulting in tidal signatures seen in the interpreted reworked turbidites. In the along-slope direction, upper parts of dilute turbidity currents would mix vertically with seawater, and muddy fines would be winnowed away by contour currents, whereas lower parts of dilute turbidity currents would probably drop their coarse particles, resulting in traction structures recognized in the documented reworked turbidites. Our work highlights the influence of bottom currents on the development and modification of turbidites and suggests that reworked turbidites were created by the combined action of down-slope transport and reworking and along-slope winnowing and sorting, helping to better understand flow processes and genesis of non-turbidite reservoirs with a great economic interest.

  4. River basin management plans for the European Water Framework Directive

    NARCIS (Netherlands)

    Kronvang, B.; Bechmann, M.; Behrendt, H.; Ruboek, G.H.; Schoumans, O.F.

    2004-01-01

    The newly adopted EU water framework directive aims at protecting different water bodies by performing impact analysis and developing river basin management plans before 2009. The adoption of management measures in river basins demands that catchment managers are able to quantify the importance of d

  5. SEA of river basin management plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental asses...... in their SEAs of RBMPs is weak. In this paper the connections between climate change and water are reviewed. As a result, it is suggested that climate change needs to be considered in three ways: mitigation, adaptation and baseline adaptation. Udgivelsesdato: December......In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental...... assessment (SEA). An important environmental factor for the water sector is climate change, especially the changes it causes to the water environment. However, based on an argument of an inadequate knowledge base regarding climate change impacts, the prospect of Danish authorities including climate change...

  6. Long lasting dynamic disequilibrium in river basins

    Science.gov (United States)

    Goren, Liran; Willett, Sean D.; McCoy, Scott W.; Perron, J. Taylor; Chen, Chia-Yu

    2014-05-01

    The river basins of ancient landscapes such as the southeastern United States exhibit disequilibrium in the form of migrating divides and stream capture. This observation is surprising in light of the relatively short theoretical fluvial response time, which is controlled by the celerity of the erosional wave that propagates upstream the fluvial channels. The response time is believed to determine the time required for fluvial landscapes to adjust to tectonic, climatic, and base-level perturbations, and its global estimations range between 0.1 Myr and 10s Myr. To address this discrepancy, we develop a framework for mapping continuous dynamic reorganization of natural river basins, and demonstrate the longevity of disequilibrium along the river basins in the southeastern United States that are reorganizing in response to escarpment retreat and coastal advance. The mapping of disequilibrium is based on a proxy for steady-state elevation, Ξ, that can be easily calculated from digital elevation models. Disequilibrium is inferred from differences in the value of Ξ across water divides. These differences indicate that with the present day drainage area distribution and river topology the steady-state channels elevation across the divides differs, and therefore divides are expected to migrate in the direction of the higher Ξ value. We further use the landscape evolution model DAC to explore the source of the longevity of disequilibrium in fluvial landscapes. DAC solves accurately for the location of water divides, using a combination of an analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC simulations demonstrate topological, geometrical, and topographical adjustments that persist much longer than the theoretical response time, and consequently, extend the time needed to diminish disequilibrium in the landscape and to reach topological and topographical steady-state. This behavior is interpreted

  7. Morphometric analyses of the river basins in Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Wagle, B.G.

    to satisfy Horton's Laws. The bifurcation ratios show the maturity of the dissected basins. Except for the basins of Mandovi and Zuvari rivers which are more elongated and less circular, the other five basins are more circular and less elongated. The high...

  8. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  9. Monitoring micropollutants in the Swist river basin.

    Science.gov (United States)

    Christoffels, Ekkehard; Brunsch, Andrea; Wunderlich-Pfeiffer, Jens; Mertens, Franz Michael

    2016-11-01

    Micropollutant pathways were studied for the Swist river basin (Western Germany). The aim was to verify the effectiveness of a monitoring approach to detect micropollutants entering the river. In a separate sewer system, water was frequently found to be contaminated with micropollutants. Improper connections of sewage canals to the stormwater network seemed to be the cause of pollution. Wastewater treatment plants (WWTPs) exerted the largest influence on micropollutants for the receiving river. During a flu outbreak, antibiotics in the Swist stemming from WWTPs increased remarkably. Elevated levels of pharmaceuticals were measured in discharges from a combined sewer overflow (CSO). The study showed that the pharmaceutical load of a CSO was significantly reduced by advanced treatment with a retention soil filter. Painkillers, an anticonvulsant and beta blockers were the most often detected pharmaceuticals in the sewage of urban areas. Herbicides, flame retardants and industrial compounds were also observed frequently. On cropland, Chloridazon and Terbuthylazine compounds were often found in landscape runoff. Fungicides and insecticides were the most frequent positive findings in runoff from orchards. The paper shows that a coherent approach to collecting valid information regarding micropollutants and to addressing relevant pathways as a basis for appropriate management strategies could be established.

  10. Use of the RHS method in Golijska Moravica river basin

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available River Habitat Survey (RHS is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC has been developed for reporting purposes. These are based on simple scoring systems which have been agreed by technical experts.

  11. Uranium isotopes (U-234/U-238) in rivers of the Yukon Basin (Alaska and Canada) as an aid in identifying water sources, with implications for monitoring hydrologic change in arctic regions

    Science.gov (United States)

    Kraemer, Thomas F.; Brabets, Timothy P.

    2012-01-01

    The ability to detect hydrologic variation in large arctic river systems is of major importance in understanding and predicting effects of climate change in high-latitude environments. Monitoring uranium isotopes (234U and 238U) in river water of the Yukon River Basin of Alaska and northwestern Canada (2001–2005) has enhanced the ability to identify water sources to rivers, as well as detect flow changes that have occurred over the 5-year study. Uranium isotopic data for the Yukon River and major tributaries (the Porcupine and Tanana rivers) identify several sources that contribute to river flow, including: deep groundwater, seasonally frozen river-valley alluvium groundwater, and high-elevation glacial melt water. The main-stem Yukon River exhibits patterns of uranium isotopic variation at several locations that reflect input from ice melt and shallow groundwater in the spring, as well as a multi-year pattern of increased variability in timing and relative amount of water supplied from higher elevations within the basin. Results of this study demonstrate both the utility of uranium isotopes in revealing sources of water in large river systems and of incorporating uranium isotope analysis in long-term monitoring of arctic river systems that attempt to assess the effects of climate change.

  12. Social Learning in European River-Basin Management: Barriers and Fostering Mechanisms from 10 River Basins

    Directory of Open Access Journals (Sweden)

    Erik Mostert

    2007-06-01

    Full Text Available We present and analyze 10 case studies of participatory river-basin management that were conducted as part of the European HarmoniCOP project. The main theme was social learning, which emphasizes the importance of collaboration, organization, and learning. The case studies show that social learning in river-basin management is not an unrealistic ideal. Resistance to social learning was encountered, but many instances of social learning were found, and several positive results were identified. Moreover, 71 factors fostering or hindering social learning were identified; these could be grouped into eight themes: the role of stakeholder involvement, politics and institutions, opportunities for interaction, motivation and skills of leaders and facilitators, openness and transparency, representativeness, framing and reframing, and adequate resources. Promising topics for further research include the facilitation of the social learning processes, the role of power, and interactions in political and institutional contexts.

  13. Hydrologic sensitivity of Indian sub-continental river basins to climate change

    Science.gov (United States)

    Mishra, Vimal; Lilhare, Rajtantra

    2016-04-01

    Climate change may pose profound implications for hydrologic processes in Indian sub-continental river basins. Using downscaled and bias corrected future climate projections and the Soil Water Assessment Tool (SWAT), we show that a majority of the Indian sub-continental river basins are projected to shift towards warmer and wetter climate in the future. During the monsoon (June to September) season, under the representative concentration pathways (RCP) 4.5 (8.5), the ensemble mean air temperature is projected to increase by more than 0.5 (0.8), 1.0 (2.0), and 1.5 (3.5) °C in the Near (2010-2039), Mid (2040-2069), and End (2070-2099) term climate, respectively. Moreover, the sub-continental river basins may face an increase of 3-5 °C in the post-monsoon season under the projected future climate. While there is a large intermodel uncertainty, robust increases in precipitation are projected in many sub-continental river basins under the projected future climate especially in the Mid and End term climate. A sensitivity analysis for the Ganges and Godavari river basins shows that surface runoff is more sensitive to change in precipitation and temperature than that of evapotranspiration (ET). An intensification of the hydrologic cycle in the Indian sub-continental basins is evident in the projected future climate. For instance, for Mid and End term climate, ET is projected to increase up to 10% for the majority of the river basins under both RCP 4.5 and 8.5 scenarios. During the monsoon season, ensemble mean surface runoff is projected to increase more than 40% in 11 (15) basins under the RCP 4.5 (8.5) scenarios by the end of the 21st century. Moreover, streamflow is projected to increase more than 40% in 8 (9) basins during the monsoon season under the RCP 4.5 (8.5) scenarios. Results show that water availability in the sub-continental river basins is more sensitive towards changes in the monsoon season precipitation rather than air temperature. While in the majority

  14. Floods in the Skagit River basin, Washington

    Science.gov (United States)

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  15. Analytical framework for River Basin Management Planning

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Pedersen, Anders Branth; Frederiksen, Pia

    This paper proposes a framework for the analysis of the planning approach, and the processes and procedures, which have been followed in the preparation of the River Basin District Management Plans (RBMPs). Different countries have different policy and planning traditions and -styles. Developed...... over a range of years, institutional set-up and procedures have been adapted to these. The Water Framework Directive imposes a specific ecosystem oriented management approach, which directs planning to the fulfilment of objectives linked to specific water bodies, and an emphasis on the involvement...... of stakeholders and citizens. Institutional scholars point out that such an eco-system based approach superimposed on an existing institutional set-up for spatial planning and environmental management may create implementation problems due to institutional misfit (Moss 2004). A need for adaptation of procedures...

  16. Birds of the Shatan River Basin, Mongolia

    Directory of Open Access Journals (Sweden)

    Onolragchaa Ganbold

    2015-06-01

    Full Text Available In our study we recorded 149 species of birds belonging to 97 genera and 36 families in 15 orders. These bird species compose 32% of Mongolian registered bird fauna. Of these 149 species, 54% are passeriformes. Our observation was held in three different habitats: mountains ranging with rocks and forest (88 species, river basins (45 species, and an area around human habitation, specifically train stations outside towns (16 species. Of our studied bird species, 11 are enlisted in the International Union for Conservation of Nature red list as endangered, vulnerable, or near threatened species, and 144 are known as least concerned. Also 20 species are listed in Annexes I and II of the Convention on International Trade in Endangered Species, and 15 species are listed in Annexes I and II of the Convention on the Conservation of Migratory Species.

  17. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... Bureau of Reclamation Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement... Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The Washington State...; and (4) identify a comprehensive approach for efficient management of basin water supplies....

  18. Wind River Basin boundary, 1999 Coal Resource Assessment

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shape file contains a polygon representing the extent of the Wind River coal basin boundary. This theme was created specifically for the National Coal...

  19. Snake River Plain Basin-fill aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Snake River Plain aquifer system, which includes both the basaltic and basin-fill aquifers. This dataset does not...

  20. Landslide Inventory for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified...

  1. 2012 Water Levels - Mojave River and the Morongo Groundwater Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — During 2012, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo groundwater basins....

  2. Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin

    Science.gov (United States)

    Skoog, A.

    2007-12-01

    The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

  3. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  4. [Upper Steele Bayou Projects : Yazoo River Basin, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a collection of documents related to four projects which were proposed by the U.S. Army, Corps of Engineers in the Yazoo River Basin. The Upper Yazoo Basin...

  5. U-Pb geochronology of modern river sands from the flat-slab segment of the southern central Andes, Argentina, 29-31°S: Implications for Neogene foreland and hinterland basin evolution

    Science.gov (United States)

    Capaldi, T.; Horton, B. K.; McKenzie, R.; Stockli, D. F.

    2015-12-01

    This study investigates how Andean river sediments in the flat-slab segment of western Argentina record active mixing of lithologically and geochemically distinct source regions comprising the Principal Cordillera, Frontal Cordillera, Precordillera fold-thrust belt, Sierras Pampeanas basement uplifts, and recycled Neogene basin fill. Detrital zircon U-Pb geochronological results for modern river sands discriminate variations from hinterland source regions, through river tributaries and main trunks of the Bermejo, Jachal, San Juan, and Mendoza rivers, and their respective fluvial megafans within the active foreland basin. Proportions of proximal zircon populations in the hinterland trunk rivers (with extensive Permian-Triassic and Cenozoic igneous exposures) diminish downstream with progressive contributions from the frontal Precordillera fold-thrust belt (dominantly Paleozoic sedimentary rocks) and Pampean basement uplifts. However, this systematic downstream dilution is perturbed in several catchments by significant recycling of older foreland basin fill. The degree of recycling depends on the position and extent of Oligocene-Pliocene exposures within the catchments. To discern the effects of the variable detrital zircon sources, multiple statistical methods are utilized. Quantitative comparisons suggest that variations in detrital zircon age distributions among the modern sands, and with older foreland basin fill and exposed bedrock, are dependent on spatial and temporal variations in exhumation and drainage network evolution within their respective Andean catchments. The present surface area of competing source regions and the configuration of hinterland tributary rivers largely dictate the degree of downstream dilution and/or recycling. This study provides a modern analogue and baseline for reconstructing Neogene shifts in foreland basin provenance, depositional systems, and drainage configurations during a critical transition to flat-slab subduction.

  6. Sedimentation Study on Upstream Reach of Selected Rivers in Pahang River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Khairul Amri Kamarudin

    2017-02-01

    Full Text Available The sedimentation study on the upstream reach of Pahang River is located in the Bentong River Basin. The detail hydrographic survey for each river in the Bentong River Basin was carried out in May 2016. Nine stations were selected to represent the sediment concentration at Bentong River, Pahang, Malaysia. Bentong River Basin is one of the river catchment in Pahang River Basin, Malaysia. Before this, Bentong River deterioration in water quality, resulting from the sedimentation problems and unsustainable development management around the river basin. This study was implemented to prove the sedimentation problem, especially the formation of Total  Suspended Solid (TSS in the Bentong River. There are two important parameters were quantified in this study such as the concentration of suspended solid (mg/L and the river discharge (Q values (m³/s. The method used in this study to analysis the concentration of TSS using Gravimetric Method. The result showed the sedimentation in the Bentong River was unstable and the highest of TSS up to 367.6 mg/L that is categorized under the class V which > 300 mg/L based on the National Water Quality Standard (NWQS result showed the coefficient correlation between the observed Q and the TSS concentration in the Bentong River is significant R² = 0.919, there are strong positive relationship between TSS concentration production and the river discharge value in the Bentong River. The study found that the contributors to the high sedimentation problems resulting from the sediments generated from the unsustainable land use, which effectively trapping the bed sediments, rainfall intensity, backflow that carries out high sediments as well as sedimentation produced due to the river bank erosion.

  7. Colorado River Basin Hover Dam - Review of Flood Control Regulation.

    Science.gov (United States)

    1982-07-01

    Percichthyidae Striped bass 1ile sxiiis Pocilldae Mosquito fish Cainbusia affnus Sailfin mollie Poecilia latipin a Mexican mollie Poecila mexicana Salmonidae...Colorado River Basin Progress Report No. 8, 195 pp. Vitt, L.J. and R.D. Ohmart, 1978. Herpetofauna of the Lower Colorado River: Davis Dam to the

  8. river basin, north eastern nigeria, using swat model *ejieji

    African Journals Online (AJOL)

    USER

    2016-03-29

    Mar 29, 2016 ... Hade ia-:ama are-Komadugu-Yobe River basin (H:KYRB) is one of the ma or .... Prediction of the Streamflow of Hadejia-Jama are-Komadugu-Yobe-River. ..... Assessment Tool Input/Output documentation version 2009. Texas.

  9. SLIDE INVENTORY IN DUBRACINA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Aleksandar Toševski

    2013-12-01

    Full Text Available he slide inventory in Dubračina river basin consists of 39 slides. They have been detected by field geomorphological mapping and visual analysis of 1 meter digital elevation model. The slides detected using elevation model are validated by the field checking as well. The outline of all slides is generated using digital elevation model. The total area affected by sliding is 81873 m2 which is 0,44% of researched area. The area, volume, total lenght, width of displaced mass, dip angle of slope on the slide location and dip direction of sliding have been defined for each slide. Slides areas are ranging from 150 to 12956 m2. Minimal total slide lenght from the crown to the tip is 20 m and maximal is 226 m. Angles of slope dip on slide locations are ranging from 10,1° to 28,6° focusing that 76,7% total area affected by sliding has slope dip angle on slide location up to 20°. According to weighting factor calculations lithological unit flysch (E2,3 is marked as the most significant lithological factor of the sliding. All slides are located in the flysch weathering zone where zone crop out. It has been shown that terrain tendency for excessive erosion is very limitative factor in using digital elevation model for the remote slide mapping (the paper is published in Croatian.

  10. Problems of Syrdarya river basin management

    Institute of Scientific and Technical Information of China (English)

    Serdar EYEBERENOV; Baijing CAO; Fengting LI

    2009-01-01

    Prior to independence, Central Asian countries were closely interconnected through the regional management incorporating water, energy, and food sectors. This approach, supported by the central government of Union of Soviet Socialist Republics (USSR), functioned effectively - meeting the needs of both upstream and downstream countries. However, after independence, Central Asian countries started prioritizing their own economic development policies without due account to regional concerns such as joint use of water resources, leading to instability.In this study, the case of Syrdarya basin was investigated to show how,such strategies create tension in the region, since primary focus is given to national interests, without consideration for regional problems. To address this issue, an integrated approach to incorporating water,energy, and agriculture is needed. It is suggested that a single sector approach on water alone does not lead to stability, and a multi-sectoral approach is necessary to ensure sustainable development. Countries sharing benefits from the river have to be responsible for costs of operation and maintenance of the water facilities.

  11. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.; Berry, P. A. M.;

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study...... is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements...

  12. Impact of seasonal hydrological variation on the distributions of tetraether lipids along the Amazon River in the central Amazon basin: implications for the MBT/CBT paleothermometer and the BIT index

    NARCIS (Netherlands)

    Zell, C.; Kim, J.-H.; Abril, G.; Lima Sobrinho, R.; Dorhout, D.; Moreiro-Turcq, P.; Sinninghe Damsté, J.S.

    2013-01-01

    Suspended particulate matter (SPM) was collected along the Amazon River in the central Amazon basin and in three tributaries during the rising water (RW), high water (HW), falling water (FW) and low water (LW) season. Changes in the concentration and the distribution of branched glycerol dialkyl gly

  13. Emergence, concept, and understanding of Pan-River-Basin (PRB

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-12-01

    Full Text Available In this study, the concept of Pan-River-Basin (PRB for water resource management is proposed with a discussion on the emergence, concept, and application of PRB. The formation and application of PRB is also discussed, including perspectives on the river contribution rates, harmonious levels of watershed systems, and water resource availability in PRB system. Understanding PRB is helpful for reconsidering river development and categorizing river studies by the influences from human projects. The sustainable development of water resources and the harmonization between humans and rivers also requires PRB.

  14. Spatial and temporal variability of nutrient retention in river basins: A global inventory

    NARCIS (Netherlands)

    Tysmans, D.J.J.; Löhr, A.J.; Kroeze, C.; Ivens, W.P.M.F.; Wijnen, van T.K.

    2013-01-01

    Nutrient export by rivers may cause coastal eutrophication. Some river basins, however, export more nutrients than others. We model the Basin-Wide Nutrient Export (BWNE) Index, defined as nutrient export by rivers as percentage of external nutrient inputs in the basins. We present results for rivers

  15. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  16. Hydroclimatological changes in the Bagmati River Basin, Nepal

    Institute of Scientific and Technical Information of China (English)

    Yam Prasad DHITAL; TANG Qiuhong; SHI Jiancheng

    2013-01-01

    Study on hydroclimatological changes in the mountainous river basins has attracted great interest in recent years.Changes in temperature,precipitation and river discharge pattern could be considered as indicators of hydroclimatological changes of the river basins.In this study,the temperatures (maximum and minimum),precipitation,and discharge data from 1980 to 2009 were used to detect the hydroclimatological changes in the Bagmati River Basin,Nepal.Simple linear regression and Mann-Kendall test statistic were used to examine the significant trend of temperature,precipitation,and discharge.Increasing trend of temperature was found in all seasons,although the change rate was different in different seasons for both minimum and maximum temperatures.However,stronger warming trend was found in maximum temperature in comparison to the minimum in the whole basin.Both precipitation and discharge trend were increasing in the pre-monsoon season,but decreasing in the post-monsoon season.The significant trend of precipitation could not be observed in winter,although discharge trend was decreasing.Furthermore,the intensity of peak discharge was increasing,though there was not an obvious change in the intensity of maximum precipitation events.It is expected that all these changes have effects on agriculture,hydropower plant,and natural biodiversity in the mountainous river basin of Nepal.

  17. Drought in the Klamath River Basin

    Science.gov (United States)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  18. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    Science.gov (United States)

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  19. Sustainable development indicators: Case study for South Morava river basin

    Directory of Open Access Journals (Sweden)

    Veljković Nebojša D.

    2013-01-01

    Full Text Available The subject of research is elaboration and evaluation of indicators of sustainable development in the field of river basin management. Aggregate indicator entitled Ecoregion Sustainable Development Index is identified by calculation of average value by the procedure of leveling of proportion changes of three key indicators (demographic emission index, water quality index, industrial production index. Developed aggregate indicator of sustainable development is calculated and analyzed for South Morava river basin in Serbia, for the period from 1980 to 2010. The beneficiaries of these indicators are the experts from the field of environmental protection and water management who should use it for elaboration of reports directed towards the creators of economic development policy and river basin management planning. Elaborated according to the given methodology, the indicator Ecoregion Sustainable Development Index is available for the decision makers on the national level, internationally comparative and it provides the conditions for further elaboration and application.

  20. The coordination of regional interest in developing river basin

    Institute of Scientific and Technical Information of China (English)

    Chen Xiangman

    2006-01-01

    River basin is a special region with the characteristics of entirety and relation, regionality and diversity,gradation and network, openness and dissipation etc. It is an important unit that organizes and governs national economy as well as a natural region. In river basin, all natural essential factors relate closely each other, and there is remarkable influence between inter-regions. In the process of developing river basin, the multiplex main interest body,the diverse interest demand and the multi-ways of interest realization constitute a complicated interest network, and result in various contradictions and conflicts. Therefore, effective regional interest coordination mechanism should be established to coordinate various regional interest relations. They are the public interest realization mechanism, the fair interest assignment mechanism, the effective interest integration mechanism, the expedited interest expression mechanism and the reasonable interest compensative mechanism.

  1. Backwater effects in the Amazon River basin of Brazil

    Science.gov (United States)

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  2. Operational river discharge forecasting in poorly gauged basins: the Kavango River Basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.

    2014-01-01

    assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. This study is funded by the European Space Agency under the TIGER-NET project. The objective of TIGER-NET is to develop open-source software tools...... to support integrated water resources management in Africa and to facilitate the use of satellite earth observation data in water management. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic–hydrodynamic model which is entirely based...... on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators...

  3. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    Science.gov (United States)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  4. Impacts of Climate Change on Water and Agricultural Production in Ten Large River Basins in China

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-xia; HUANG Ji-kun; YAN Ting-ting

    2013-01-01

    The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Water Simulation Model (CWSM) is used to analyze three alternative climate scenarios (A1B, A2 and B2). The results show that the impacts of climate change on water supply and demand balance differ largely among alternative scenarios. While significant impacts of climate change on water balance will occur under the A1B scenario, the impacts of climate change under the A2 and B2 scenarios will be marginal. Under the A1B scenario, the water shortage in the river basins located in the northern China will become more serious, particularly in Liaohe and Haihe river basins, but the other river basins in the southern China will improve their water balance situations. Despite larger impacts of climate change on water balance in the northern China, its impacts on total crops’ production will be moderate if farmers would be able to reallocate water among crops and adjust irrigated and rainfed land. The paper concludes with some policy implications.

  5. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  6. Water resources of Wisconsin: lower Wisconsin River basin

    Science.gov (United States)

    Hindall, S.M.; Borman, Ronald G.

    1974-01-01

    This report describes the physical environment, availability, distribution, movement, quality, and use of water in the upper Wisconsin River basin as an aid in planning and water management. The report presents general information on the basin derived from data obtained from Federal, State, and local agencies, New field data were collected in areas where information was lacking. More detailed studies of problem areas may be required in the future, as water needs and related development increase.

  7. Transforming River Basin Management In South Africa: Lessons from the Lower Komati River

    NARCIS (Netherlands)

    Waalewijn, P.; Wester, P.; Straaten, van K.

    2005-01-01

    This paper analyzes the transformation of river basin management in South Africa by focusing on the political processes involved in the creation of new water management bodies and irrigation infrastructure in the Lower Komati sub-basin. Institutional reform is described and analyzed in terms of the

  8. Interlinking feasibility of five river basins of Rajasthan in India

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Vyas

    2016-09-01

    Annual surplus water of about 1437 MCM in the river Chambal is going waste and ultimately reaches to sea after creating flood situations in various places in India including Rajasthan, while on the other hand 1077 MCM water is a requirement in the four other basins in Rajasthan i.e. Banas, Banganga, Gambhir and Parbati at 75% dependability. Interlinking and water transfer from Chambal to these four river basins is the prime solution for which 372 km link channel including 9 km tunnel of design capacity of 300 cumec with 64 m lift is required.

  9. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin ; Volume 1 ; Evaluation of the 1995 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin Using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Richard L.

    1997-06-01

    This project was initiated in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of the project include: (1) to address the need for further synthesis of historical tagging and other biological information to improve understanding and to help identify future research and analysis needs; (2) to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to assist in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; and (3) to design better analysis tools for evaluation programs; and (4) to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community.

  10. 76 FR 13438 - Amended Columbia River Basin Fish and Wildlife Program

    Science.gov (United States)

    2011-03-11

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  11. 76 FR 13676 - Amended Columbia River Basin Fish and Wildlife Program

    Science.gov (United States)

    2011-03-14

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  12. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  13. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  14. THE VOLTA RIVER BASIN OF GHANA

    African Journals Online (AJOL)

    - ... Variables that are considered include the absolute population, population den- ... Concept and theories of the population—natural resource nexus are ... White Volta sub~basin is located in the north of Ghana, extending southwards to.

  15. Palaeoclimatological perspective on river basin hydrometeorology: case of the Mekong Basin

    Science.gov (United States)

    Räsänen, T. A.; Lehr, C.; Mellin, I.; Ward, P. J.; Kummu, M.

    2013-05-01

    Globally, there have been many extreme weather events in recent decades. A challenge has been to determine whether these extreme weather events have increased in number and intensity compared to the past. This challenge is made more difficult due to the lack of long-term instrumental data, particularly in terms of river discharge, in many regions including Southeast Asia. Thus our main aim in this paper is to develop a river basin scale approach for assessing interannual hydrometeorological and discharge variability on long, palaeological, time scales. For the development of the basin-wide approach, we used the Mekong River basin as a case study area, although the approach is also intended to be applicable to other basins. Firstly, we derived a basin-wide Palmer Drought Severity Index (PDSI) from the Monsoon Asia Drought Atlas (MADA). Secondly, we compared the basin-wide PDSI with measured discharge to validate our approach. Thirdly, we used basin-wide PDSI to analyse the hydrometeorology and discharge of the case study area over the study period of 1300-2005. For the discharge-MADA comparison and hydrometeorological analyses, we used methods such as linear correlations, smoothing, moving window variances, Levene type tests for variances, and wavelet analyses. We found that the developed basin-wide approach based on MADA can be used for assessing long-term average conditions and interannual variability for river basin hydrometeorology and discharge. It provides a tool for studying interannual discharge variability on a palaeological time scale, and therefore the approach contributes to a better understanding of discharge variability during the most recent decades. Our case study revealed that the Mekong has experienced exceptional levels of interannual variability during the post-1950 period, which could not be observed in any other part of the study period. The increased variability was found to be at least partly associated with increased El Niño Southern

  16. Long-term tritium monitoring to study river basin dynamics: case of the Danube River basin

    Science.gov (United States)

    Aggarwal, Pradeep; Araguas, Luis; Groening, Manfred; Newman, Brent; Kurttas, Turker; Papesch, Wolfgang; Rank, Dieter; Suckow, Axel; Vitvar, Tomas

    2010-05-01

    During the last five decades, isotope concentrations (O-18, D, tritium) have been extensively measured in precipitation, surface- and ground-waters to derive information on residence times of water in aquifers and rivers, recharge processes, and groundwater dynamics. The unique properties of the isotopes of the water molecule as tracers are especially useful for understanding the retention of water in river basins, which is a key parameter for assessing water resources availability, addressing quality issues, investigating interconnections between surface- and ground-waters, and for predicting possible hydrological shifts related to human activities and climate change. Detailed information of the spatial and temporal changes of isotope contents in precipitation at a global scale was one of the initial aims of the Global Network of Isotopes in Precipitation (GNIP), which has provided a detailed chronicle of tritium and stable isotope contents in precipitation since the 1960s. Accurate information of tritium contents resulting of the thermonuclear atmospheric tests in the 1950s and 1960s is available in GNIP for stations distributed world-wide. Use of this dataset for hydrological dating or as an indicator of recent recharge has been extensive in shallow groundwaters. However, its use has been more limited in surface waters, due to the absence of specific monitoring programmes of tritium and stable isotopes in rivers, lakes and other surface water bodies. The IAEA has recently been compiling new and archival isotope data measured in groundwaters, rivers, lakes and other water bodies as part of its web based Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Recent additions to the Global Network of Isotopes in Rivers (GNIR) contained within WISER now make detailed studies in rivers possible. For this study, we are re-examining residence time estimates for the Danube in central Europe. Tritium data are available in GNIR from 15

  17. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  18. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljević Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje, podprojekat br. 9: Učestalost bujičnih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  19. Integrated geographical research in the Khovd River basin (Mongolia)

    Science.gov (United States)

    Mukhanova, Mariia; Syromyatina, Margarita; Kurochkin, Yuriy; Chistyakov, Kirill

    2017-04-01

    Khovd River located in the endorheic basin of Grate Lakes Depression is a main river of western Mongolia. It has more than 500 km length and runs from the glaciers of the Tavan Bogd Mountains through different vegetation zones to the terminal Khar-Us lake. The main purpose of the study is to estimate the current state and dynamics of the geosystems in this river basin as it plays a critical part in the water supply of submontane desert steppe plains of western Mongolia. One of the objectives is to understand the formation and regime of water discharge in this inland river basin with glaciation. The results are mostly based on the 2013-2016 integrated field research including glaciological, meteorological, hydrological and dendrochronological measurements as well as hydrometeorological stations' data analysis and remote sensing data acquired from satellites. Last year the main attention was given to hydrological and hydrochemical research. In summer we measured TDS concentration in 71 points throughout the stream course of Khovd River and its tributaries. TDS is changing from 0-1 ppm at glaciers to 67 ppm at river mouth and 93 ppm at Khar-Us lake. The hydrochemical analysis shows that the water type is changing from hydrocarbonate-calcium at the beginning of the river to the sulfate-calcium at the mouth. Glaciers play a crucial role in feeding the river only in its upper part. Glaciological study revealed that the areas of the main glaciers were not much changed since 1989, while the glacier tongue regression was fixed. The total glacier area decreased approximately by 4.5 % in the Tsagaan-Gol basin and by 6.9 % in the Tsagaan-Us basin from 1989 to 2013. Large glaciers were retreating at an average rate of 28-34 m/year between 2001 and 2014. The hydrometeorological data analysis shows that most of the catchment area is characterized by aridization tendency for the last 10 years. This fact is well confirmed by the dendrochronological streamflow reconstruction of the

  20. Plant biomass in the Tanana River Basin, Alaska.

    Science.gov (United States)

    Bert R. Mead

    1995-01-01

    Vegetation biomass tables are presented for the Tanana River basin. Average biomass for each species of tree, shrub, grass, forb, lichen, and moss in the 13 forest and 30 nonforest vegetation types is shown. These data combined with area estimates for each vegetation type provide a tool for estimating habitat carrying capacity for many wildlife species. Tree biomass is...

  1. Digital Atlas of the Upper Washita River Basin, Southwestern Oklahoma

    Science.gov (United States)

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  2. An urban flood in the kashio river basin

    OpenAIRE

    Matsuda, Iware

    1987-01-01

    An urban flood is one of knotty problems derived from land development. Taking the Kashio River basin of Kanagawa Prefecture as an example, the relationships between urbanization and flood hazards were historically discussed. It was explained that a flood prevention work in one area affects other areas. The historical change in conditions for flood hazards can be divided into six stages.

  3. Placentation in dolphins from the Amazon River Basin

    DEFF Research Database (Denmark)

    da Silva, Vera M F; Carter, Anthony M; Ambrosio, Carlos E

    2007-01-01

    A recent reassessment of the phylogenetic affinities of cetaceans makes it timely to compare their placentation with that of the artiodactyls. We studied the placentae of two sympatric species of dolphin from the Amazon River Basin, representing two distinct families. The umbilical cord branched...

  4. Appropriate models in decision support systems for river basin management

    NARCIS (Netherlands)

    Xu, YuePing; Booij, Martijn J.; Morell, M.; Todorovik, O.; Dimitrov, D.; Selenica, A.; Spirkovski, Z.

    2004-01-01

    In recent years, new ideas and techniques appear very quickly, like sustainability, adaptive management, Geographic Information System, Remote Sensing and participations of new stakeholders, which contribute a lot to the development of decision support systems in river basin management. However, the

  5. An ecosystem services approach in the Tisza river basin

    NARCIS (Netherlands)

    Minca, E.L.; Petz, K.; Werners, S.E.

    2008-01-01

    The Tisza River Basin in Hungary and Romania is increasingly impacted by floods and droughts. Ecosystems have the capacity to mitigate the effect of these weather extremes. The provision of ecosystem services – the benefits people obtain from ecosystems – is strongly affected by the way in which eco

  6. Pyomyositis in the upper Negro river basin, Brazilian Amazonia

    DEFF Research Database (Denmark)

    Borges, Alvaro Humberto Diniz; Faragher, Brian; Lalloo, David G

    2012-01-01

    Pyomyositis remains poorly documented in tropical Latin America. We therefore performed a retrospective review of cases admitted to a hospital in the upper Negro river basin during 2002-2006. Seasonality was assessed by the cosinor model and independent predictors of outcome were identified...

  7. Work plan for the Sangamon River basin, Illinois

    Science.gov (United States)

    Stamer, J.K.; Mades, Dean M.

    1983-01-01

    The U.S. Geological Survey, in cooperation with the Division of Water Resources of the Illinois Department of Transportation and other State agencies, recognizes the need for basin-type assessments in Illinois. This report describes a plan of study for a water-resource assessment of the Sangamon River basin in central Illinois. The purpose of the study would be to provide information to basin planners and regulators on the quantity, quality, and use of water to guide management decisions regarding basin development. Water quality and quantity problems in the Sangamon River basin are associated primarily with agricultural and urban activities, which have contributed high concentrations of suspended sediment, nitrogen, phosphorus, and organic matter to the streams. The impact has resulted in eutrophic lakes, diminished capacity of lakes to store water, low concentrations of dissolved oxygen, and turbid stream and lake waters. The four elements of the plan of study include: (1) determining suspended sediment and nutrient transport, (2) determining the distribution of selected inorganic and organic residues in streambed sediments, (3) determining the waste-load assimilative capacity of the Sangamon River, and (4) applying a hydraulic model to high streamflows. (USGS)

  8. Sharing water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  9. Case study of the Sarawak River Basin

    African Journals Online (AJOL)

    2012-12-20

    Dec 20, 2012 ... (World Weather and Climate Information, 2010–2011) .... Batu Kitang Water Treatment Plant to form the Sarawak River, before flowing into the South China .... current study, and areas shaded in light blue are the flood-prone.

  10. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  11. Priority targets for environmental research in the Sinos River basin.

    Science.gov (United States)

    Spilki, F R; Tundisi, J G

    2010-12-01

    The Sinos River Basin is often mentioned as a highly degraded watershed. A series of impacts on water quality, soil and air has been reported in this environment on a recurring basis over the years. This situation of environmental degradation has its origins in a process of huge economic development uncoupled from environmental conservation concerns. The intense consequent urbanization observed for the municipalities within the watershed was not preceded by urban planning proper zoning. The time has arrived for initiatives in scientific research in the Sinos River basin that are applicable to a more efficient and integrated management and recovery of the basin. In this article, a set of targets for research is suggested which the authors consider as the main priorities for the next few years, aiming for better knowledge and better management of the watershed. Some are still in course, while others have to be initiated as soon as possible.

  12. Priority targets for environmental research in the Sinos River basin

    Directory of Open Access Journals (Sweden)

    FR. Spilki

    Full Text Available The Sinos River Basin is often mentioned as a highly degraded watershed. A series of impacts on water quality, soil and air has been reported in this environment on a recurring basis over the years. This situation of environmental degradation has its origins in a process of huge economic development uncoupled from environmental conservation concerns. The intense consequent urbanization observed for the municipalities within the watershed was not preceded by urban planning proper zoning. The time has arrived for initiatives in scientific research in the Sinos River basin that are applicable to a more efficient and integrated management and recovery of the basin. In this article, a set of targets for research is suggested which the authors consider as the main priorities for the next few years, aiming for better knowledge and better management of the watershed. Some are still in course, while others have to be initiated as soon as possible.

  13. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  14. Analysis of drought determinants for the Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Balling Jr, R.C. [Department of Geography, Arizona State University, Tempe, AZ 85287 (United States); Goodrich, G.B. [Department of Geography and Geology, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2007-05-15

    Ongoing drought in the Colorado River Basin, unprecedented urban growth in the watershed, and numerical model simulations showing higher temperatures and lower precipitation totals in the future have all combined to heighten interest in drought in this region. In this investigation, we use principal components analysis (PCA) to independently assess the influence of various teleconnections on Basin-wide and sub-regional winter season Palmer Hydrological Drought Index (PHDI) and precipitation variations in the Basin. We find that the Pacific Decadal Oscillation (PDO) explains more variance in PHDI than El Nino-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the planetary temperature combined for the Basin as a whole. When rotated PCA is used to separate the Basin into two regions, the lower portion of the Basin is similar to the Basin as a whole while the upper portion, which contains the high-elevation locations important to hydrologic yield for the watershed, demonstrates poorly defined relationships with the teleconnections. The PHDI for the two portions of the Basin are shown to have been out of synch for much of the twentieth century. In general, teleconnection indices account for 19% of the variance in PHDI leaving large uncertainties in drought forecasting.

  15. Estimation of Continental-Basin-Scale Sublimation in the Lena River Basin, Siberia

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Suzuki

    2015-01-01

    Full Text Available The Lena River basin in Siberia produces one of the largest river inflows into the Arctic Ocean. One of the most important sources of runoff to the river is spring snowmelt and therefore snow ablation processes have great importance for this basin. In this study, we simulated these processes with fine resolution at basin scale using MicroMet/SnowModel and SnowAssim. To assimilate snow water equivalent (SWE data in SnowAssim, we used routine daily snow depth data and Sturm’s method. Following the verification of this method for SWE estimation in the basin, we evaluated the impact of snow data assimilation on basin-scale snow ablation. Through validation against MODIS snow coverage data and in situ snow survey observations, we found that SnowAssim could not improve on the original simulation by MicroMet/SnowModel because of estimation errors within the SWE data. Vegetation and accumulated snowfall control the spatial distribution of sublimation and we established that sublimation has an important effect on snow ablation. We found that the ratio of sublimation to snowfall in forests was around 26% and that interannual variation of sublimation modulated spring river runoff.

  16. Assessing Future Hydrological Changes in the Tana River Basin, Kenya

    Science.gov (United States)

    Jenkins, Rhosanna

    2017-04-01

    increased precipitation in the Tana River Basin. Overall, the multi-model ensemble mean for all RCPs suggests that there will be increases in precipitation by the 2050s, with the annual basin-average rainfall increasing between 112% (RCP2.6) and 149% (RCP8.5). As the precipitation in East Africa is highly seasonal, examining monthly changes is also important. Drying is projected in some months, whereas wetter conditions are projected in others. Average precipitation changes do not vary greatly between the RCPs, but there are large discrepancies between individual GCMs, with some models even disagreeing on the sign of precipitation change (i.e. positive or negative relative to the baseline). Between-model differences in the magnitude of precipitation change are also substantial. This large variation in anomalies of projected precipitation demonstrates the uncertainty in CMIP5 GCM outputs for the area and has important implications for water resources management and policy. Robust management decisions will need to be made in the face of this considerable uncertainty. Policies that allow for adaptability and a wide range of possible future outcomes are paramount.

  17. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  18. Flood forecasting and alert system for Arda River basin

    Science.gov (United States)

    Artinyan, Eram; Vincendon, Beatrice; Kroumova, Kamelia; Nedkov, Nikolai; Tsarev, Petko; Balabanova, Snezhanka; Koshinchanov, Georgy

    2016-10-01

    The paper presents the set-up and functioning of a flood alert system based on SURFEX-TOPODYN platform for the cross-border Arda River basin. The system was built within a Bulgarian-Greek project funded by the European Territorial Cooperation (ETC) Programme and is in operational use since April 2014. The basin is strongly influenced by Mediterranean cyclones during the autumn-winter period and experiences dangerous rapid floods, mainly after intensive rain, often combined with snow melt events. The steep mountainous terrain leads to floods with short concentration time and high river speed causing damage to settlements and infrastructure. The main challenge was to correctly simulate the riverflow in near-real time and to timely forecast peak floods for small drainage basins below 100 km2 but also for larger ones of about 1900 km2 using the same technology. To better account for that variability, a modification of the original hydrological model parameterisation is proposed. Here we present the first results of a new model variant which uses dynamically adjusted TOPODYN river velocity as function of the computed partial streamflow discharge. Based on historical flooding data, river sections along endangered settlements were included in the river flow forecasting. A continuous hydrological forecast for 5 days ahead was developed for 18 settlements in Bulgaria and for the border with Greece, thus giving enough reaction time in case of high floods. The paper discusses the practical implementation of models for the Arda basin, the method used to calibrate the models' parameters, the results of the calibration-validation procedure and the way the information system is organised. A real case of forecasted rapid floods that occurred after the system's finalisation is analysed. One of the important achievements of the project is the on-line presentation of the forecasts that takes into account their temporal variability and uncertainty. The web presentation includes a

  19. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    NARCIS (Netherlands)

    Zeng, Z; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y.

    2012-01-01

    Increasing water scarcity places considerable importance on the quantification of water footprint (WF) at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this stu

  20. Assessing water footprint at river basin level: a case study for the Heihe River Basin in Northwest China

    NARCIS (Netherlands)

    Zheng, Z.; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y.

    2012-01-01

    Increasing water scarcity places considerable importance on the quantification of water footprint (WF) at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this stu

  1. Multiple Time Scale Analysis of River Runoff Using Wavelet Transform for Dagujia River Basin, Yantai, China

    Institute of Scientific and Technical Information of China (English)

    LIU Delin; LIU Xianzhao; LI Bicheng; ZHAO Shiwei; LI Xiguo

    2009-01-01

    Based on monOdy river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoffin the Dagnjia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoff in the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48×106m3/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runoff time series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.

  2. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  3. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    Science.gov (United States)

    Lang, Joseph W.

    1972-01-01

    Fresh water in abundance is contained in large artesian reservoirs in sand and gravel deposits of Tertiary and Quaternary ages in the Pearl River basin, a watershed of 8,760 square miles. Shallow, water-table reservoirs occur in Quarternary deposits (Pleistocene and Holocene) that blanket most of the uplands in .the southern half of the basin and that are present in smaller upland areas and along streams elsewhere. The shallow reservoirs contribute substantially to dry-weather flow of the Strong River and Bogue Chitto and of Holiday, Lower Little, Silver, and Whitesand Creeks, among others. About 3 billion acre-feet of ground water is in storage in the fresh-water section, which extends from the surface to depths ranging from about sea level in the extreme northern part of the basin to more than 3,000 feet below sea level in the southern part of the basin. Variations in low flow for different parts of the river basin are closely related to geologic terrane and occurrence of ground water. The upland terrace belt that crosses the south-central part of the basin is underlain by permeable sand and gravel deposits and yields more than 0.20 cubic feet per second per square mile of drainage area to streamflow, whereas the northern part of the basin, underlain by clay, marl, and fine to medium sand, yields less than 0.05 cubic feet per second per square mile of drainage area (based on 7-day Q2 minimum flow computed from records). Overall, the potential surface-water supplies are large. Because water is available at shallow depths, most of the deeper aquifers have not been developed anywhere in the basin. At many places in the south, seven or more aquifers could be developed either by tapping one sand in each well or by screening two or more sands in a single well. Well fields each capable, of producing several million gallons of water a day are feasible nearly anywhere in the Pearl River basin. Water in nearly all the aquifers is of good to excellent quality and requires

  4. The Portland Basin: A (big) river runs through it

    Science.gov (United States)

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  5. Driver detection of water quality trends across Mediterranean river basins

    Science.gov (United States)

    Diamantini, Elena; Lutz, Stefanie; Mallucci, Stefano; Majone, Bruno; Merz, Ralf; Bellin, Alberto

    2017-04-01

    In this study, thirteen physicochemical surficial water variables and four drivers (i.e. monthly aggregated air temperature and streamflow, population density and percentage of agricultural land use) were analysed in three large Mediterranean river basins (i.e. Adige, Ebro, Sava). In particular, the purpose of the analysis is to identify how indicators of water quality and drivers of change coevolve in three large river basins representing the diversity of climatic, soil and water uses conditions observed in southern Europe. Spearman rank correlation, principal component analysis, Mann-Kendall trend test and Sen's Slope estimator were performed in order to (i) analyse long-term time series of water quality data during the period 1990-2015, (ii) detect links between variables patterns and drivers and (iii) compare the river basins under investigation with respect to their vulnerability and resilience to the identified drivers of change. Results show that air temperature, considered as a proxy of climate change, has a significant impact in all basins but in particular in the Adige and Ebro: positive trends of water temperature and negative for dissolved oxygen are found to be correlated with upward trends of air temperatures. The aquatic ecosystems of these rivers are therefore experiencing a reduction in oxygen, which may further worsen in the future given the projected increase of temperature for this century. At the same time, monthly streamflow has been shown to reduce in the Ebro River, thereby decreasing the beneficial effect of dilution, as appears evident from the observed upward patterns of chloride concentration and electrical conductivity. Upward trends of chloride and biological oxygen demand in the Adige and Sava and positive trends of phosphate in the Adige are related to the increase of population and finally phosphates in the Sava and biological oxygen demand in the Ebro are highly correlated with agricultural land use. The study showed the complex

  6. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...... been between 10 and 35 days for altimetry missions until now. The location of the VS is also not necessarily the point at which measurements are needed. On the other hand, one of the main strengths of the dataset is its availability in near-real time. These characteristics make radar altimetry ideally...... suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data...

  7. Information technology and decision support tools for stakeholder-driven river basin salinity management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  8. Environmental setting and water-quality issues of the Mobile River Basin, Alabama, Georgia, Mississippi, and Tennessee

    Science.gov (United States)

    Johnson, Gregory C.; Kidd, Robert E.; Journey, Celeste; Zappia, Humbert; Atkins, J. Brian

    2002-01-01

    The Mobile River Basin is one of over 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States, and fourth largest in terms of streamflow, encompassing parts of Alabama, Georgia, Mississippi, and Tennessee. Almost two-thirds of the 44,000-square-mile basin is located in Alabama. Extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors. These factors impart unique and variable qualities to the streams, rivers, and aquifers providing abundant habitat to sustain the diverse aquatic life in the basin. Data from Federal, State, and local agencies provide a description of the environmental setting of the Mobile River Basin. Environmental data include natural factors such as physiography, geology, soils, climate, hydrology, ecoregions, and aquatic ecology, and human factors such as reservoirs, land use and population change, water use, and water-quality issues. Characterization of the environmental setting is useful for understanding the physical, chemical, and biological characteristics of surface and ground water in the Mobile River Basin and the possible implications of that environmental setting for water quality. The Mobile River Basin encompasses parts of five physiographic provinces. Fifty-six percent of the basin lies within the East Gulf section of the Coastal Plain Physiographic Province. The remaining northeastern part of the basin lies, from west to east, within the Cumberland Plateau section of the Appalachian Plateaus Physiographic Province, the Valley and Ridge Physiographic Province, the Piedmont Physiographic Province, and the Blue Ridge Physiographic Province. Based on the 1991 land-use data, about 70 percent of the basin is forested, while agriculture, including livestock (poultry, cattle, and swine), row crops (cotton, corn, soybeans, sorghum, and

  9. Impact of seasonal hydrological variation on the distributions of branched and isoprenoid tetraether lipids along the Amazon River in the central Amazon basin: Implications for the MBT/CBT paleothermometer and the BIT index

    Science.gov (United States)

    Zell, Claudia; Kim, Jung-Hyun; Lima Sobrinho, Rodrigo; Moreira-Turcq, Patricia; Abril Abril, Gwenaël; Sinninghe Damsté, Jaap S.

    2013-04-01

    We assessed the effects of hydrodynamical variations on the distributions and sources of branched and isoprenoid glycerol dialkyl glycerol tetraethers (brGDGTs and isoGDGTs, respectively) transported by the Amazon River in the central Amazon basin. Particulate suspended matter was collected in the Amazonian rivers and floodplain lakes at four different seasons (rising water, high water, falling water, and low water) at 6 stations along the main stem of the Amazon River, 3 tributaries (Negro, Madeira, and Tapajós) and 5 floodplain lakes (Manacapuru, Janauacá, Mirituba, Canaçari and Curuai). The concentration and distribution of brGDGTs of both core lipid (CL) and intact polar lipid (IPL)-derived fractions were investigated applying IPL-derived brGDGTs as an indicator of brGDGTs derived from recently-living cells. The organic carbon (OC)-normalized concentrations of CL brGDGTs mimicked the trend of the hydrological variation with highest concentrations during the high water season. The CL brGDGT distributions were most alike those of lowland Amazon (terra firme) soils during the high water season, indicating that input of soil-derived, allochthonous brGDGTs to the Amazon River was highest at that period. Accordingly, the methylation index of branched tetraethers (MBT) and the cyclization ratio of branched tetraethers (CBT) varied corresponding to the hydrological changes, with the increasing influence of in situ produced brGDGTs in rivers and floodplain lakes during the low water season. The concentrations of CL crenarchaeol were highest during the low water season, due to increased autochthonous production. The concentration changes of both brGDGTs and crenarchaeol lead to a variation of the branched and isoprenoid tetraether (BIT) index between 0.4 (low water) and 0.9 (high water). Hence, our study hints at the effect of hydrodynamical variations on the source of brGDGTs and isoGDGTs transported by rivers to the ocean and emphasized the importance of a detailed

  10. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  11. Decapod crustaceans of the Sinu River Basin, Cordoba, Colombia

    Directory of Open Access Journals (Sweden)

    Jorge Alexander Quirós Rodríguez

    2016-09-01

    Full Text Available To review the composition, abundance and distribution of decapod crustaceans in the Sinu river basin, Department of Cordoba (Colombia eight locations were studied: four on the Sinu River and four in the Low Complex Swampy Sinu. For that, six samplings between April 2005 and May 2006 were made. In total 458 decapod crustaceans were recorded distributed into three families, six genus and eight species. The family best represented was Trichodactylidae with four genus and four species, followed by Palaemonidae with one genus and three species, while family Atyidae recorded only one species. Species such as Macrobrachium carcinus and M. acanthurus presented the wider range of distribution for both the Sinu River as the  Low Complex Swampy Sinu.  Among the identified species Atya crassa in the Sinu River and Trichodactylus quinquedentatus in the Low Complex Swampy Sinu are new records for the Department of Cordoba.

  12. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  13. River Sinuosity Classification - Case study in the Pannonian Basin

    Science.gov (United States)

    Petrovszki, J.; Székely, B.; Timár, G.

    2012-04-01

    A new evaluation method is proposed to classify the multiple window-size based sinuosity spectrum, in order to minimize the possible human interpretation error. If the river is long enough for the analysis, the classification could be similarly useful as the sinuosity spectrum is, but sometimes it is more straightforward. Furthermore, for the classification, we did not need the main parameters of the river, e.g. the bankfull discharge. The river sinuosity values were studied in the Pannonian Basin in order to reveal neotectonic influence on their abrupt changes. The map sheets of the Second Military Survey of the Habsburg Empire were used to digitize the natural, pre-regulation meandering river thalwegs. 28 rivers were studied, and the connection between the known fault lines and the river sinuosity changes was detected in 36 points, along 26 structural lines. An unsupervised ISOCLASS classification was carried out on these data, and the sinuosity values were divided into 5 classes. Because of the sinuosity calculation method, 25 kilometer-long river sections are missing at the two endpoints of the channel. So sometimes the displayed section of the river does not cross to the faults represented on the neotectonic map. In the other cases, where the faults are crossing the rivers, the results are corresponding with the results of the sinuosity spectrum: the river-points on the two sides of the faults belong to different classes. The connection between these fault lines and the change of river sinuosity classes was detected in 23 points, along 16 structural lines The research is made in the frame of project OTKA-NK83400 (SourceSink Hungary). The European Union and the European Social Fund also have provided financial support to the project under the grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003.

  14. A Heuristic Dynamically Dimensioned Search with Sensitivity Information (HDDS-S) and Application to River Basin Management

    OpenAIRE

    Jinggang Chu; Yong Peng; Wei Ding; Yu Li

    2015-01-01

    River basin simulation and multi-reservoir optimal operation have been critical for river basin management. Due to the intense interaction between human activities and river basin systems, the river basin model and multi-reservoir operation model are complicated with a large number of parameters. Therefore, fast and stable optimization algorithms are required for river basin management under the changing conditions of climate and current human activities. This study presents a new global opti...

  15. Tidal river dynamics: Implications for deltas

    Science.gov (United States)

    Hoitink, A. J. F.; Jay, D. A.

    2016-03-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.

  16. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  17. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  18. Incentive compatibility and conflict resolution in international river basins: A case study of the Nile Basin

    Science.gov (United States)

    Wu, Xun; Whittington, Dale

    2006-02-01

    Nation-states rarely go to war over water, but it is equally rare that water conflicts in an international river basin are resolved through cooperation among the riparian countries that use the shared resources. Gains from cooperation will mean little to individual riparians unless the required cooperative behaviors are incentive compatible. Cooperative game theory offers useful insights for assessing cooperative solutions for water conflicts in international river basins. Applying cooperative game theory concepts such as core, nucleolus, and Shapley value to Nile water conflicts, we examine the incentive structure of both cooperative and noncooperative strategies for different riparian countries and establish some baseline conditions for incentive-compatible cooperation in the Nile basin.

  19. Rivers, refuges and population divergence of fire-eye antbirds (Pyriglena) in the Amazon Basin.

    Science.gov (United States)

    Maldonado-Coelho, M; Blake, J G; Silveira, L F; Batalha-Filho, H; Ricklefs, R E

    2013-05-01

    The identification of ecological and evolutionary mechanisms that might account for the elevated biotic diversity in tropical forests is a central theme in evolutionary biology. This issue is especially relevant in the Neotropical region, where biological diversity is the highest in the world, but where few studies have been conducted to test factors causing population differentiation and speciation. We used mtDNA sequence data to examine the genetic structure within white-backed fire-eye (Pyriglena leuconota) populations along the Tocantins River valley in the south-eastern Amazon Basin, and we confront the predictions of the river and the Pleistocene refuge hypotheses with patterns of genetic variation observed in these populations. We also investigated whether these patterns reflect the recently detected shift in the course of the Tocantins River. We sampled a total of 32 individuals east of, and 52 individuals west of, the Tocantins River. Coalescent simulations and phylogeographical and population genetics analytical approaches revealed that mtDNA variation observed for fire-eye populations provides little support for the hypothesis that populations were isolated in glacial forest refuges. Instead, our data strongly support a key prediction of the river hypothesis. Our study shows that the Tocantins River has probably been the historical barrier promoting population divergence in fire-eye antbirds. Our results have important implications for a better understanding of the importance of large Amazonian rivers in vertebrate diversification in the Neotropics.

  20. A Review of Integrated River Basin Management for Sarawak River

    Directory of Open Access Journals (Sweden)

    Kuok K. Kuok

    2011-01-01

    Full Text Available Problem statement: Sarawak River was a life-sustaining water source for the residents in Kuching City and surrounding areas. Raw water is treated at Batu Kitang Water Treatment Plant (BKWTP that supplies more than 98% of the total water production in Kuching City. The raw water supply to BKWTP is not adequate to meet the ever increasing water demand. In order to overcome this problem, four projects had been implemented along Sarawak River for managing and securing water supply to BKWTP. Approach: These four projects are construction of 1.5m height storage weir across Sungai Sarawak Kiri river channel, Kuching Barrage and Shiplock, Bengoh Dam and Kuching Centralized Wastewater Management System (KCWMS. In 2005, 1.5 m height submersible weir was constructed across Sungai Sarawak Kiri channel for increasing the safe yield that can last until year 2010. Kuching Barrage and Shiplock were commissioned in 2000 as barrier to avoid the saline intrusion reaching upper catchment. 24 telemetry stations were installed along Sarawak River for monitoring and regulating the water level. This will preserve high quality water storage at upper catchment of Sarawak River. In year 2010, Bengoh Dam was constructed to ensure adequate raw water will be supplied to BKWTP for meeting the increasing water demand from 2010-2030. This reservoir will store 144 million m3 of fresh water covering reservoir area of 8.77km2. Beyond 2030, the water supply shall not depend solely on fresh water. Results: Black and grey water in Sarawak Catchment was treated through Kuching Centralized Wastewater Management System (KCWMS and recycled for daily used. Conclusion: The treated water that comply Standard A water quality, can distribute for domestic, industrial and irrigation used in nearest future. This will reduce the water demand solely on raw water and create a sustainable living in Kuching City. Beyond 2030, a few alternatives are also proposed for conserving and

  1. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  2. Integrated water resources management in the Ruhr River Basin, Germany.

    Science.gov (United States)

    Bode, H; Evers, P; Albrecht, D R

    2003-01-01

    The Ruhr, with an average flow of 80.5 m3/s at its mouth, is a comparatively small tributary to the Rhine River that has to perform an important task: to secure the water supply of more than 5 million people and of the industry in the densely populated region north of the river. The complex water management system and network applied by the Ruhrverband in the natural Ruhr River Basin has been developed step by step, over decades since 1913. And from the beginning, its major goal has been to achieve optimal conditions for the people living in the region. For this purpose, a functional water supply and wastewater disposal infrastructure has been built up. The development of these structures required and still requires multi-dimensional planning and performance. Since the river serves as receiving water and at the same time as a source of drinking water, the above-standard efforts of Ruhrverband for cleaner water also help to conserve nature and wildlife. Ruhrverband has summed up its environmental awareness in the slogan: "For the people and for the environment". This basic water philosophy, successfully applied to the Ruhr for more than 80 years, will be continued in accordance with the new European Water Framework Directive, enacted in 2000, which demands integrated water resources management in natural river basins, by including the good ecological status of surface waterbodies as an additional goal.

  3. CHEMICAL WEATHERING PROCESSES AND ATMOSPHERIC CO2 CONSUMPTION OF HUANGHE RIVER AND CHANGJIANG RIVER BASINS

    Institute of Scientific and Technical Information of China (English)

    LI Jing-ying; ZHANG Jing

    2005-01-01

    Rock weathering plays an important role in studying the long-term carbon cycles and global climaticchange. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled byevaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared withthe Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution.The chemical weathering rates were estimated to be 39.29t/(km2·a)and 61.58t/(km2·a)by deduting the HCO3- derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 con-sumption rates by rock weathering were calculated to be 120.84 × 103mol/km2 and 452.46 × 103mol/km2 annually in thetwo basins, respectively. The total CO2 consumption of the two basins amounted to 918.51 × 109mol/a, accounting for3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicateweathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that thesequential weathering may be go on in the two Chinese drainage basins.

  4. Seepage Investigation for Selected River Reaches in the Chehalis River Basin, Washington

    Science.gov (United States)

    Ely, D. Matthew; Frasl, Kenneth E.; Marshall, Cameron A.; Reed, Fred

    2008-01-01

    A study was completed in September 2007 in the Chehalis River basin to determine gain or loss of streamflow by measuring discharge at selected intervals within various reaches along the Chehalis River and its tributaries. Discharge was measured at 68 new and existing streamflow sites, where gains and losses were determined for 36 stream reaches. Streamflow gains were measured for 22 reaches and losses were measured for 13 reaches. No gain or loss was measured at the Chehalis River between the Newaukum and Skookumchuck Rivers. The Chehalis River exhibited a pattern of alternating gains and losses as it entered the area of wide, gentle relief known as the Grand Mound Prairie. The general pattern of tributary ground- and surface-water interaction was discharge to streams (gaining reaches) in the upper reaches and discharge to the ground-water system (losing reaches) as the tributaries entered the broad, flat Chehalis River valley.

  5. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  6. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Science.gov (United States)

    Zuliziana, S.; Tanuma, K.; Yoshimura, C.; Saavedra, O. C.

    2015-07-01

    Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash-Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  7. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Directory of Open Access Journals (Sweden)

    S. Zuliziana

    2015-07-01

    Full Text Available Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2. In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2 and the Mekong River Basin (795 000 km2. The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE and average correlation coefficient (r between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k in the Chao Phraya River Basin and to soil detachability over land (Kf in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  8. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is d

  9. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is

  10. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is d

  11. Managing Water Resource Challenges in the Congo River Basin

    Science.gov (United States)

    Aloysius, N. R.

    2015-12-01

    Water resources in the tropical regions are under pressure from human appropriation and climate change. Current understanding of interactions between hydrology and climate in the tropical regions is inadequate. This is particularly true for the Congo River Basin (CRB), which also lacks hydroclimate data. Global climate models (GCM) show limited skills in simulating CRB's climate, and their future projections vary widely. Yet, GCMs provide the most credible scenarios of future climate, based upon which changes in water resources can be predicted with coupled hydrological models. The objectives of my work are to i) elucidate the spatial and temporal variability of water resources by developing a spatially explicit hydrological model suitable for describing key processes and fluxes, ii) evaluate the performance of GCMs in simulating precipitation and temperature and iii) develop a set of climate change scenarios for the basin. In addition, I also quantify the risks and reliabilities in smallholder rain-fed agriculture and demonstrates how available water resources can be utilized to increase crop yields. Key processes and fluxes of CRB's hydrological cycle are amply characterized by the hydrology model. Climate change projections are evaluated using a multi-model ensemble approach under different greenhouse gas emission scenarios. The near-term projections of climate and hydrological fluxes are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. These increases present new opportunities and challenges for augmenting human appropriation of water resources. By evaluating agricultural water requirements, and timing and availability of precipitation, I challenge the conventional wisdom that low agriculture productivities in the CRB are primarily attributable to nutrient limitation. Results show that

  12. Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington

    Science.gov (United States)

    Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.

    2015-01-01

    Nutrients such as nitrogen and phosphorus are important for aquatic ecosystem health. Excessive amounts of nutrients, however, can make aquatic ecosystems harmful for biota because enhanced growth and decay cycles of aquatic algae can reduce dissolved oxygen in the water. In Puget Sound marine waters, low dissolved oxygen concentrations are observed in a number of marine nearshore areas, and nutrients have been identified as a major stressor to the local ecosystem. Delivery of nutrients from major rivers in the Puget Sound Basin to the marine environment can be large. Therefore, it is important to identify factors related to how nutrients are retained (attenuated) within streams and rivers in the Puget Sound Basin. Physical, chemical, and biological factors related to nutrient attenuation were identified through a review of related scientific literature.

  13. Impact of seasonal hydrological variation on the distributions of tetraether lipids along the Amazon River in the central Amazon basin: implications for the MBT/CBT paleothermometer and the BIT index.

    Science.gov (United States)

    Zell, Claudia; Kim, Jung-Hyun; Abril, Gwenaël; Sobrinho, Rodrigo Lima; Dorhout, Denise; Moreira-Turcq, Patricia; Sinninghe Damsté, Jaap S

    2013-01-01

    Suspended particulate matter (SPM) was collected along the Amazon River in the central Amazon basin and in three tributaries during the rising water (RW), high water (HW), falling water (FW) and low water (LW) season. Changes in the concentration and the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs), i.e., the methylation index of branched tetraethers (MBT) and the cyclization of brGDGTs (CBT), were seen in the Amazon main stem. The highest concentration of core lipid (CL) brGDGTs normalized to particulate organic carbon (POC) was found during the HW season. During the HW season the MBT and CBT in the Amazon main stem was also most similar to that of lowland Amazon (terra firme) soils, indicating that the highest input of soil-derived brGDGTs occurred due to increased water runoff. During the other seasons the MBT and CBT indicated an increased influence of in situ production of brGDGTs even though soils remained the main source of brGDGTs. Our results reveal that the influence of seasonal variation is relatively small, but can be clearly detected. Crenarchaeol was mostly produced in the river. Its concentration was lower during the HW season compared to that of the other seasons. Hence, our study shows the complexity of processes that influence the GDGT distribution during the transport from land to ocean. It emphasizes the importance of a detailed study of a river basin to interpret the MBT/CBT and BIT records for paleo reconstructions in adjacent marine setting.

  14. River Basin Management Plans - Institutional framework and planning process

    DEFF Research Database (Denmark)

    Frederiksen, Pia; Nielsen, Helle Ørsted; Pedersen, Anders Branth

    2011-01-01

    The report it a deliverable to the Waterpraxis project, based on research carried out in WP3. It is based on country reports from analyses of water planning in one river basin district in each of the countries Sweden, Finland, Latvia, Lithuania, Poland, Germany and Denmark, and it compares...... the institutional set-up, the public participation and the potentials and barriers for implementing the water plans....

  15. Sediment balances in the Blue Nile River Basin

    Institute of Scientific and Technical Information of China (English)

    Yasir SAALI; Alessandra CROSATO; Yasir AMOHAMED; Seifeldin HABDALLA; Nigel GWRIGHT

    2014-01-01

    Rapid population growth in the upper Blue Nile basin has led to fast land-use changes from natural forest to agricultural land. This resulted in speeding up the soil erosion process in the highlands and increasing sedimentation further downstream in reservoirs and irrigation canals. At present, several dams are planned across the Blue Nile River in Ethiopia and the Grand Ethiopian Renaissance Dam is currently under construction near the border with Sudan. This will be the largest hydroelectric power plant in Africa. The objective of this paper is to quantify the river flows and sediment loads along the Blue Nile River network. The Soil and Water Assessment Tool was used to estimate the water flows from un-gauged sub-basins. To assess model performance, the estimated sediment loads were compared to the measured ones at selected locations. For the gauged sub-basins, water flows and sediment loads were derived from the available flow and sediment data. To fill in knowledge gaps, this study included a field survey in which new data on suspended solids and flow discharge were collected along the Blue Nile and on a number of tributaries. The comparison between the results of this study and previous estimates of the sediment load of the Blue Nile River at El Deim, near the Ethiopian Sudanese border, show that the sediment budgets have the right order of magnitude, although some uncertainties remain. This gives confidence in the results of this study providing the first sediment balance of the entire Blue Nile catchment at the sub-basin scale.

  16. River Basin Management Plans - Institutional framework and planning process

    DEFF Research Database (Denmark)

    Frederiksen, Pia; Nielsen, Helle Ørsted; Pedersen, Anders Branth;

    2011-01-01

    The report it a deliverable to the Waterpraxis project, based on research carried out in WP3. It is based on country reports from analyses of water planning in one river basin district in each of the countries Sweden, Finland, Latvia, Lithuania, Poland, Germany and Denmark, and it compares...... the institutional set-up, the public participation and the potentials and barriers for implementing the water plans....

  17. Impact of climate change and agricultural developments in the Taquari River basin, Brazil

    NARCIS (Netherlands)

    Querner, E.P.; Jonker, R.N.J.; Padovani, C.; Soriano, B.; Galdino, S.

    2005-01-01

    The Pantanal wetland is part of the Upper Paraguay River basin. The major driving force of the wetland system is the annual oscillation between dry and wet seasons. This study focussed on the Taquari basin, a tributary of the Paraguay River, where erosion takes place and parts of the river silt up,

  18. Range extension of Moenkhausia oligolepis (Günther,1864 to the Pindaré river drainage, of Mearim river basin, and Itapecuru river basin of northeastern Brazil (Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Erick Cristofore Guimarães

    2016-08-01

    Full Text Available The present study reports range extansion of Moenkhausia oligolepis to the Pindaré river drainage, of the Mearim river basin, and Itapecuru river basin, Maranhão state, northeastern Brazil. This species was previously known only from Venezuela, Guianas, and the Amazon River basins. In addition, we present some meristic and morphometric data of the specimens herein examined and discuss on its diagnostic characters.

  19. Flood tracking chart for the Illinois River basin

    Science.gov (United States)

    Avery, Charles F.; Holmes, Jr., Robert R.; Sharpe, Jennifer B.

    1998-01-01

    This Flood Tracking Chart for the Illinois River Basin in Illinois can be used to record and compare the predicted or current flood-crest stage to past flood-crest information. This information can then be used by residents and emergency-response personnel to make informed decisions concerning the threat of flooding to life and property. The chart shows a map of the Illinois River Basin (see below), the location of real-time streamflow-gaging stations in the basin, graphs of selected historical recorded flood-crest stages at each of the stations, and sea-level conversion (SLC) factors that allow conversion of the current or predicted flood-crest stage to elevation above sea level. Each graph represents a streamflow-gaging station and has a space to record the most current river stage reported for that station by the U.S. Geological Survey (USGS). The National Weather Service (NWS) predicts flood crests for many of the stations shown on this chart.

  20. Quality of ground water in the Payette River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1986-01-01

    As part of a study to obtain groundwater quality data in areas of Idaho were land- and water-resource development is expected to increase, water quality, geologic, and hydrologic data were collected for 74 wells in the Payette River basin, west-central Idaho, from July to October 1982. Historical (pre-1982) data from 13 wells were compiled with more recent (1982) data to define, on a reconnaissance level, water quality conditions in major aquifers and to identify factors that may have affected groundwater quality. Water from the major aquifers generally contains predominantly calcium, magnesium, and bicarbonate plus carbonate ions. Sodium and bicarbonate or sulfate are the predominant ions in groundwater from 25% of the 1982 samples. Areally, groundwater from the upper Payette River basin has proportionately lower ion concentrations than water from the lower Payette River basin. Water samples from wells 100 ft deep. Variations in groundwater quality probably are most affected by differences in aquifer composition and proximity to source(s) of recharge. Groundwater in the study area is generally suitable for most uses. In localized areas, pH and concentrations of hardness, alkalinity, dissolved solids, or dissolved nitrite plus nitrate as nitrogen, sulfate, fluoride, iron, or manganese exceed Federal drinking water limits and may restrict some uses of the water.

  1. Knowledge-based approaches for river basin management

    Directory of Open Access Journals (Sweden)

    P. Mikulecký

    2007-06-01

    Full Text Available Rare attempts to use knowledge technologies and other relevant approaches are found in the river basin management. Some applications of expert systems as well as utilization of soft computing techniques (as neural networks or genetic algorithms are known in an experimental level. Knowledge management approaches still have not been used at all. In this paper we discuss knowledge-based approaches in the river basin management as a difficult yet important direction which could be proven to be helpful. We summarize the research done in the scope of the AQUIN project, one of first Czech knowledge management projects in the river basin management. The project was initiated by the water management company in Pilsen, where dispatchers make decisions about manipulations on the reservoir Nýrsko, the strategic source of drinking water for inhabitants of Pilsen. The project aim was to support dispatchers' decision making under a high degree of uncertainty or data shortage. The research is continued in the scope of a new project AQUINpro, planned for the period of 2006 to 2008.

  2. Sustainable Land Management in the Lim River Basin

    Science.gov (United States)

    Grujic, Gordana; Petkovic, Sava; Tatomir, Uros

    2017-04-01

    In the cross-border belt between Serbia and Montenegro are located more than one hundred torrential water flows that belong to the Lim River Basin. Under extreme climate events they turned into floods of destructive power and great energy causing enormous damage on the environment and socio-economic development in the wider region of the Western Balkans. In addition, anthropogenic factors influence the land instability, erosion of river beds and loss of topsoil. Consequently, this whole area is affected by pluvial and fluvial erosion of various types and intensity. Terrain on the slopes over 5% is affected by intensive degree of erosion, while strong to medium degree covers 70% of the area. Moreover, in the Lim River Basin were built several hydro-energetic systems and accumulations which may to a certain extent successfully regulate the water regime downstream and to reduce the negative impact on the processes of water erosion. However, siltation of accumulation reduces their useful volume and threatens the basic functions (water reservoirs), especially those ones for water supply, irrigation and energy production that have lost a significant part of the usable volume due to accumulated sediments. Facing the negative impacts of climate change and human activities on the process of land degradation in the Lim River basin imposes urgent need of adequate preventive and protective measures at the local and regional level, which can be effectively applied only through enhanced cross-border cooperation among affected communities in the region. The following set of activities were analyzed to improve the actual management of river catchment: Identifying priorities in the spatial planning, land use and water resources management while respecting the needs of local people and the communities in the cross border region; development of cooperation and partnership between the local population, owners and users of real estate (pastures, agricultural land, forests, fisheries

  3. Environmental Impact of Eu Policies On Acheloos River Basin, Greece

    Science.gov (United States)

    Skoulikidis, N.; Nikolaidis, N. P.; Oikonomopoulou, A.; Batzias, F.

    The environmental impact of EU policies aiming at protecting surface and ground wa- ters are being assessed in the Acheloos River Basin, Greece as part of a Joint Research Centre (JRC) / DG Environment (DG Env) funded project. The basin offers the possi- bility of studying the impact of EU policies on a multitude of aquatic ecosystems: four artificial and four natural lakes and a large estuary with important hydrotops (lagoons, coastal salt lacustrine and freshwater marshes, etc.) that belong to the NATURA 2000 sites or are protected by the RAMSAR Convention. A database has been developed that includes all available information on sources, fluxes, and concentration levels of nutrients and selected heavy metals from prior and current research programs at the Acheloos River Basin and coastal environment. This information has been used to identify the environmental pressures and develop nutrient budgets for each sub-basin of the watershed to assess the relative contributions of nutrients from various land uses. The mathematical model HSPF is being used to model the hydrology and nitro- gen fate and transport in the watershed. Management scenarios will be developed and modelling exercises will be carried out to assess the impacts of the scenarios. Eco- nomic analysis of the nutrient management scenarios will be conducted to evaluate the costs associated with management practices for reaching acceptable water quality status.

  4. U-Pbdating on detrital zircon and Nd and Hf isotopes related to the provenance of siliciclastic rocks of the Amazon Basin: Implications for the origin of Proto-Amazonas River

    Science.gov (United States)

    Dantas, Elton Luiz; Silva Souza, Valmir; Nogueira, Afonso C. R.; Ventura Santos, Roberto; Poitrasson, Franck; Vieira Cruz, Lucieth; Mendes Conceição, Anderson

    2014-05-01

    Previous provenance studies along the Amazonas river have demonstrated that the Amazon drainage basin has been reorganized since the Late Cretaceous with the uplift of the Andes and the establishment of the transcontinental Amazon fluvial system from Late Miocene to Late Pleistocene (Hoorn et al., 1995; Potter, 1997, Wesselingh et al., 2002; Figueiredo et al. 2009, Campbell et al., 2006, Nogueira et al. 2013).There is a lack of data from Eastern and Central Amazonia and only limited core data from the Continental Platform near to current Amazonas river mouth. Central Amazonia is strategic to unveil the origin of Amazonas River because it represents the region where the connection of the Solimões and Amazonas basin can be studied through time (Nogueira et al. 2013). Also, there is a shortage of information on the old Precambrian and Paleozoic sediment sources relative to Cretaceous and Miocene siliciclastic deposits of the Solimões and Amazonas basins. We collected stratigraphic data, detrital zircon U-Pb ages and Nd and Hf isotopes from Precambrian, Paleozoic, Cretaceous and Miocene siliciclastic deposits of the Northwestern border of Amazonas Basin. They are exposed in the Presidente Figueiredo region and in the scarps of Amazon River, and occur to the east of the Purus Arch. This Northwest-Southeast trending structural feature that divides the Solimões and Amazonas basin was active at various times since the Paleozoic. Detrital zircon ages for the Neoproterozoic Prosperança Formation yielded a complex signature, with different populations of Neoproterozoic (550, 630 and 800 Ma) and Paleoproterozoic to Archean sources (1.6, 2.1 and 2.6 Ga). Also Nd and Hf isotopes show two groups of TDM model ages between 1.4 to 1.53 Ga and 2.2 and 3.1 Ga. Sediments typical of Paleozoic sedimentary rocks of the Nhamundá and Manacapuru Formations revealed NdTDM model ages of 1.7, 2.2 and 2.7 Ga, but Hf isotopes and U-Pb zircon ages are more varied. They characterize a

  5. Efects of Crop Growth on Hydrological Processes in River Basins and on Regional Climate in China

    Institute of Scientific and Technical Information of China (English)

    QIN; Pei-Hua; CHEN; Feng; XIE; Zheng-Hui

    2013-01-01

    The regional climate model RegCM3 incorporating the crop model CERES,called the RegCM3CERES model,was used to study the efects of crop growth and development on regional climate and hydrological processes over seven river basins in China.A 20-year numerical simulation showed that incorporating the crop growth and development processes improved the simulation of precipitation over the Haihe River Basin,Songhuajiang River Basin and Pearl River Basin.When compared with the RegCM3 control run,RegCM3CERES reduced the negative biases of monthly mean temperature over most of the seven basins in summer,especially the Haihe River Basin and Huaihe River Basin.The simulated maximum monthly evapotranspiration for summer(JJA)was around 100 mm in the basins of the Yangtze,Haihe,Huaihe and Pearl Rivers.The seasonal and annual variations of water balance components(runof,evapotranspiration and total precipitation)over all seven basins indicate that changes of evapotranspiration agree well with total precipitation.Compared to the RegCM3,RegCM3CERES simulations indicate reduced local water recycling rate over most of the seven basins due to lower evapotranspiration and greater water flux into these basins and an increased precipitation in the Heihe River Basin and Yellow River Basin,but reduced precipitation in the other five basins.Furthermore,a lower summer leaf area index(1.20 m2m 2),greater root soil moisture(0.01 m3m 3),lower latent heat flux(1.34 W m 2),and greater sensible heat flux(2.04 W m 2)are simulated for the Yangtze River Basin.

  6. A comparative study of institutional adaptive capacity : South Saskatchewan River Basin, Canada, and Elqui River Basin, Northern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Sauchyn, D.; Diaz, P.; Gauthier, D. [Regina Univ., SK (Canada)

    2005-07-01

    This presentation discussed the strategies and materials developed for a five-year study of the capacity of institutions in two dryland regions (the South Saskatchewan River Basin in western Canada and the Elqui River Basin of north-central Chile) to adapt to the impacts of climate change. The purpose of the project was to obtain a systematic and comprehensive understanding of the capacities of regional institutions to formulate and implement strategies of adaptation to climate change risks and the forecasted impacts of climate change on the supply and management of water resources in dryland environments. Both regions are at different stages of social and environmental vulnerability and yet have a dry climate adjacent to a major mountain system and landscapes at risk of desertification, as well as an agricultural economy dependent on irrigation water derived from mountain snow and glaciers. tabs., figs.

  7. Selected hydrologic data, Yampa River basin and parts of the White River basin, northwestern Colorado and south-central Wyoming

    Science.gov (United States)

    Giles, T.F.; Brogden, Robert E.

    1978-01-01

    Selected hydrologic data are presented from four energy-related projects conducted by the U.S. Geological Survey in the Yampa River basin and parts of the White River basin in northwestern Colorado and south-central Wyoming. Water-quality data during 1974 and 1975 and parts of 1976 for 129 ground-water sites and 119 surface-water sites are tabulated. For most samples, major cations, anions, and trace metals were analyzed. For the same time period, field measurements of specific conductance, temperature, and pH were made on 252 springs and wells. These samplings sites, as well as the locations of 20 climatological stations, 18 snow-course sites, and 43 surface-water gaging stations, are shown on maps. Geologic units that contain coal deposits or supply much of the water used for stock and domestic purposes in the area also are shown on a map. (Woodard-USGS)

  8. Integrated Basin Scale Hydropower and Environmental Opportunity Assessment in the Deschutes River Basin, Oregon

    Science.gov (United States)

    Voisin, N.; Geerlofs, S. H.; Vail, L. W.; Ham, K. D.; Tagestad, J. D.; Hanrahan, T. P.; Seiple, T. E.; Coleman, A. M.; Stewart, K.

    2012-04-01

    The Deschutes River Basin in Oregon, USA, is home to a number of diverse groups of stakeholders that rely upon the complex snowmelt and groundwater-dominated river system to support their needs, livelihoods, and interests. Basin system operations that vary across various temporal and spatial scales often must balance an array of competing demands including maintaining adequate municipal water supply, recreation, hydropower generation, regulations related to environmental flows, mitigation programs for salmon returns, and in-stream and storage rights for irrigation water supplied by surface water diversions and groundwater pumping. The U.S. Department of Energy's Integrated Basin-scale Opportunity Assessment initiative is taking a system-wide approach to identifying opportunities and actions to increase hydropower and enhance environmental conditions while sustaining reliable supply for other uses. Opportunity scenarios are analyzed in collaboration with stakeholders, through nested integrated modeling and visualization software to assess tradeoffs and system-scale effects. Opportunity assessments are not intended to produce decisional documents or substitute for basin planning processes; assessments are instead intended to provide tools, information, and a forum for catalyzing conversation about scenarios where both environmental and hydropower gains can be realized within a given basin. We present the results of the nested integrated modeling approach and the modeling scenarios in order to identify and explore opportunities for the system.

  9. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    Science.gov (United States)

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  10. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  11. Climate controls on the residence time of terrestrial biospheric carbon in river basins

    Science.gov (United States)

    Eglinton, T.; Galy, V.; Feng, X.; Drenzek, N.; Dickens, A.; Ponton, C.; Giosan, L.; Schefuss, E.; Voss, B.; Vonk, J.; Gustafsson, O.; Montlucon, D.; Wu, Y.

    2012-04-01

    Our current understanding of the timescales over which terrestrial biospheric carbon is transferred from source to sedimentary sink, and of the factors that control these timescales, remains limited. Such information is crucial for developing a mechanistic understanding organic matter cycling on the continents and the dynamics of terrestrial carbon delivery to the oceans. Radiocarbon is increasingly being used to examine the "age" of organic constituents in the dissolved and particulate phase. Based on such measurements, there is growing evidence to suggest that land-ocean organic matter transfer via rivers may be rapid (years, decades) or may take place over centuries to millennia. How do these ages relate to drainage basin properties and biospheric carbon dynamics within continental drainage basins? This presentation seeks to explore the factors that influence radiocarbon ages of specific components of terrestrial biospheric carbon carried and exported by rivers to the ocean. Molecular-level radiocarbon measurements on vascular plant biomarkers (plant leaf waxes and lignin-derived phenols) have been made on particulate matter collected from a range of river systems globally, as well as on sediment cores collected near the mouths of rivers. Additional molecular isotopic (stable carbon and hydrogen isotopes) measurements of the plant wax markers provides complementary information on the provenance of the vegetation signals and on regional environmental conditions. The measurements reveal that two primary controls on apparent storage time of terrestrial biospheric carbon are regional temperature and aridity. The former is most apparent in contrasts between low and high latitude rivers, with colder regional climates resulting in longer residence times. Evidence for aridity as a control on storage times is evident from relationships between the stable carbon isotopic and/or hydrogen isotopic composition of vascular plant markers and their radiocarbon age, with dryer

  12. Sediment budget in the Ucayali River basin, an Andean tributary of the Amazon River

    Directory of Open Access Journals (Sweden)

    W. Santini

    2015-03-01

    Full Text Available Formation of mountain ranges results from complex coupling between lithospheric deformation, mechanisms linked to subduction and surface processes: weathering, erosion, and climate. Today, erosion of the eastern Andean cordillera and sub-Andean foothills supplies over 99% of the sediment load passing through the Amazon Basin. Denudation rates in the upper Ucayali basin are rapid, favoured by a marked seasonality in this region and extreme precipitation cells above sedimentary strata, uplifted during Neogene times by a still active sub-Andean tectonic thrust. Around 40% of those sediments are trapped in the Ucayali retro-foreland basin system. Recent advances in remote sensing for Amazonian large rivers now allow us to complete the ground hydrological data. In this work, we propose a first estimation of the erosion and sedimentation budget of the Ucayali River catchment, based on spatial and conventional HYBAM Observatory network.

  13. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  14. Predicted riparian vegetation - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  15. Predicted channel types - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  16. 2009-2012 Indiana Statewide Imagery and LiDAR Program: Maumee River Basin Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The counties comprised in this dataset have been chosen based on the relation to the Maumee River basin, a portion of the Lake Erie basin and correlated with the...

  17. 2009-2012 Indiana Statewide Imagery and LiDAR Program: Maumee River Basin Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The counties comprised in this dataset have been chosen based on the relation to the Maumee River basin, a portion of the Lake Erie basin and correlated with the...

  18. Fluvial bar dynamics in large meandering rivers with different sediment supply in the Amazon River basin

    Science.gov (United States)

    Monegaglia, Federico; Zolezzi, Guido; Tubino, Marco; Henshaw, Alex

    2017-04-01

    Sediments in the large meandering rivers of the Amazon basin are known to be supplied by sources providing highly different magnitudes of sediment input and storage, ranging from the sediment-rich Andean region to the sediment-poor Central Trough. Recent observations have highlighted how such differences in sediment supply have an important, net effect on the rates of planform activity of meandering rivers in the basin, in terms of meander migration and frequency of cutoffs. In this work we quantify and discuss the effect of sediment supply on the organization of macroscale sediment bedforms on several large meandering rivers in the Amazon basin, and we link our findings with those regarding the rates of planform activity. Our analysis is conducted through the newly developed software PyRIS, which enables us to perform extensive multitemporal analysis of river morphodynamics from multispectral remotely sensed Landsat imagery in a fully automated fashion. We show that large rivers with low sediment supply tend to develop alternate bars that consistently migrate through long reaches, characterized at the same time by limited planform development. On the contrary, high sediment supply is associated with the development of point bars that are well-attached to the evolving meander bends and that follow temporal oscillations around the bend apexes, which in turn show rapid evlution towards complex meander shapes. Finally, rivers with intermediate rates of sediment supply develop rather steady point bars associated with slowly migrating, regular meanders. We finally discuss the results of the image analysis in the light of the properties of river planform metrics (like channel curvature and width) for the examined classes of river reaches with different sediment supply rates.

  19. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA)

    OpenAIRE

    Petru OLARIU; Gianina Maria COJOC; Alina TIRNOVAN; Obreja, Florin

    2015-01-01

    The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc.) in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ v...

  20. Surface waters of Illinois River basin in Arkansas and Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1959-01-01

    The estimated runoff from the Illinois River basin of 1,660 square miles has averaged 1,160,000 acre-feet per year during the water years 1938-56, equivalent to an average annual runoff depth of 13.1 inches. About 47 percent of the streamflow is contributed from drainage in Arkansas, where an average of 550,000 acre-ft per year runs off from 755 square miles, 45.5 percent of the total drainage area. The streamflow is highly variable. Twenty-two years of record for Illinois River near Tahlequah, Okla., shows a variation in runoff for the water year 1945 in comparison with 1954 in a ratio of almost 10 to 1. Runoff in 1927 may have exceeded that of 1945, according to records for White River at Beaver, Ark., the drainage basin just east of the Illinois River basin. Variation in daily discharge is suggested by a frequency analysis of low flows at the gaging station near Tahlequah, Okla. The mean flow at that site is 901 cfs (cubic feet per second), the median daily flow is 350 cfs, and the lowest 30-day mean flow in a year probably will be less than 130 cfs half of the time and less than 20 cfs every 10 years on the average. The higher runoff tends to occur in the spring months, March to May, a 3-month period that, on the average, accounts for almost half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is the lowest in the summer. The mean monthly flow of Illinois River near Tahlequah, Okla., for September is about 11 percent of that for May. Records show that there is flow throughout the year in Illinois River and its principal tributaries Osage Creek, Flint Creek and Barren Fork. The high variability in streamflow in this region requires the development of storage by impoundment if maximum utilization of the available water supplies is to be attained. For example, a 120-day average low flow of 22 cfs occurred in 1954 at Illinois River near Tahlequah, Okla. To have maintained the flow at 350 cfs, the median daily

  1. The evolution and performance of river basin management in the Murray-Darling Basin

    Directory of Open Access Journals (Sweden)

    Andrew Ross

    2016-09-01

    Full Text Available We explore bioregional management in the Murray-Darling Basin (MDB in Australia through the institutional design characteristics of the MDB River Basin Organization (RBO, the actors and organizations who supported and resisted the establishment of the RBO, and the effectiveness of the RBO. During the last 25 years, there has been a major structural reform in the MDB RBO, which has changed from an interstate coordinating body to an Australian government agency. Responsibility for basin management has been centralized under the leadership of the Australian government, and a comprehensive integrated Basin plan has been adopted. The driving forces for this centralization include national policy to restore river basins to sustainable levels of extraction, state government difficulties in reversing overallocation of water entitlements, the millennium drought and its effects, political expediency on the part of the Australian government and state governments, and a major injection of Australian government funding. The increasing hierarchy and centralization of the MDB RBO does not follow a general trend toward multilevel participative governance of RBOs, but decentralization should not be overstated because of the special circumstances at the time of the centralization and the continuing existence of some decentralized elements, such as catchment water plans, land use planning, and water quality. Further swings in the centralization-decentralization pendulum could occur. The MDB reform has succeeded in rebalancing Basin water allocations, including an allocation for the environment and reduced diversion limits. There are some longer term risks to the implementation of reform, including lack of cooperation by state governments, vertical coordination difficulties, and perceived reductions in the accountability and legitimacy of reform at the local level. If implementation of the Basin plan is diverted or delayed, a new institution, the Commonwealth

  2. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-08-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  3. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-12-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  4. Emergy-based energy and material metabolism of the Yellow River basin

    Science.gov (United States)

    Chen, B.; Chen, G. Q.

    2009-03-01

    The Yellow River basin is an opening ecosystem exchanging energy and materials with the surrounding environment. Based on emergy as embodied solar energy, the social energy and materials metabolism of the Yellow River basin is aggregated into emergetic equivalent to assess the level of resource depletion, environmental impact and local sustainability. A set of emergy indices are also established to manifest the ecological status of the total river basin ecosystem.

  5. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    OpenAIRE

    Miller, W. P.; T. C. Piechota; Gangopadhyay, S.; T. Pruitt

    2011-01-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting Syste...

  6. Episodic Emplacement of Sediment + Carbon within Large Tropical River Basins

    Science.gov (United States)

    Aalto, R.; Aufdenkampe, A.

    2012-04-01

    Application of advanced methods for imaging (sub-bottom sonar and ERGI), dating (high resolution 210-Pb and 14-C from deep cores), and biogeochemical analysis have facilitated the characterization and inter-comparison of floodplain sedimentation rates, styles, and carbon loading across disparate large river basins. Two examples explored here are the near-pristine 72,000 km2 Beni River basin in northern Bolivia and the similarly natural 36,000 km2 Strickland River basin in Papua New Guinea - that are located on either side of the Equatorial Pacific warm pool that drives the ENSO phenomenon. Our published research suggests that large, rapid-rise, cold-phase ENSO floods account for the preponderance of sediment accumulation within these two tropical systems. New results to be presented at EGU further clarify the extent of modern deposits (~100 yrs) within both systems and add a deeper perspective into how these extensive floodplains developed over the Holocene, both in response to external forcing (climate and base level) and internal system morphodynamics. The vast scale of these temporally discrete deposits (typically 100s of millions of tonnes over relatively short time periods) involved equate to high burial rates, which in turn support the high carbon loadings sequestered within the resulting sedimentary deposits. We have identified the principal source of this carbon and sedimentary material to be extensive landslides throughout the high-relief headwaters - failures that deliver huge charges of pulverized rock and soil directly into canyons (in both the Bolivian Andes and the PNG Highlands), where raging floodwaters provide efficient transport to lowland depocentres. We present recent results from our research in these basins, providing insight into the details of such enormous mass budgets that result in a signicant carbon sink within the floodplains. Processes, timing, and rates are compared between the two systems, providing insight into the nature of

  7. Dissolved Organic Matter in the Yukon River Basin

    Science.gov (United States)

    Aiken, G.; Striegl, R.; Schuster, P.

    2004-12-01

    Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of dissolved organic matter (DOM) in aquatic systems. At present, a critical question in carbon cycling is how climate change could alter the fate and chemical nature of dissolved organic carbon (DOC) released from watersheds, particularly those underlain by permafrost, and transported to rivers, lakes, estuaries and coastal waters. The spatial and temporal variability of DOM in surface waters associated with the Yukon River are being studied to better define processes controlling DOM in this system. Like many northern ecosystems, the Yukon River Basin is experiencing melting permafrost, drying of upland soils and changing wetland environments. Study results indicate that the transport of DOM in the river and its major tributaries is strongly seasonally dependent. Specific ultraviolet absorbance (SUVA) data, an excellent indicator of aromatic carbon content of DOM, also indicate a large variation in the chemical nature of the organic matter transported by the river. Lowest DOC concentrations and SUVA values were observed for samples collected in the winter under low flow conditions and for tributaries dominated by ground water inputs. Greatest DOC concentrations and SUVA values were measured on samples collected during the spring on the leading part of the hydrograph. High SUVA values are indicative of greater amounts of organic material originating from higher plants that are present in upper soil horizons and wetlands of the watershed. Aquatic humic substances collected from the Yukon River during the snowmelt period were found to have low nitrogen contents and greater amounts of aromatic C relative to samples from other aquatic environments. Low N content and high aromaticity are indicative of humic substances evolved from higher plant sources with little alteration resulting from microbial degradation or soil interactions. In addition

  8. Climate and basin drivers of seasonal river water temperature dynamics

    Science.gov (United States)

    Laizé, Cédric L. R.; Bruna Meredith, Cristian; Dunbar, Michael J.; Hannah, David M.

    2017-06-01

    Stream water temperature is a key control of many river processes (e.g. ecology, biogeochemistry, hydraulics) and services (e.g. power plant cooling, recreational use). Consequently, the effect of climate change and variability on stream temperature is a major scientific and practical concern. This paper aims (1) to improve the understanding of large-scale spatial and temporal variability in climate-water temperature associations, and (2) to assess explicitly the influence of basin properties as modifiers of these relationships. A dataset was assembled including six distinct modelled climatic variables (air temperature, downward short-wave and long-wave radiation, wind speed, specific humidity, and precipitation) and observed stream temperatures for the period 1984-2007 at 35 sites located on 21 rivers within 16 basins (Great Britain geographical extent); the study focuses on broad spatio-temporal patterns, and hence was based on 3-month-averaged data (i.e. seasonal). A wide range of basin properties was derived. Five models were fitted (all seasons, winter, spring, summer, and autumn). Both site and national spatial scales were investigated at once by using multi-level modelling with linear multiple regressions. Model selection used multi-model inference, which provides more robust models, based on sets of good models, rather than a single best model. Broad climate-water temperature associations common to all sites were obtained from the analysis of the fixed coefficients, while site-specific responses, i.e. random coefficients, were assessed against basin properties with analysis of variance (ANOVA). All six climate predictors investigated play a role as a control of water temperature. Air temperature and short-wave radiation are important for all models/seasons, while the other predictors are important for some models/seasons only. The form and strength of the climate-stream temperature association vary depending on season and on water temperature. The

  9. Resilience in Transboundary Water Governance: the Okavango River Basin

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available When the availability of a vital resource varies between times of overabundance and extreme scarcity, management regimes must manifest flexibility and authority to adapt while maintaining legitimacy. Unfortunately, the need for adaptability often conflicts with the desire for certainty in legal and regulatory regimes, and laws that fail to account for variability often result in conflict when the inevitable disturbance occurs. Additional keys to resilience are collaboration among physical scientists, political actors, local leaders, and other stakeholders, and, when the commons is shared among sovereign states, collaboration between and among institutions with authority to act at different scales or with respect to different aspects of an ecological system. At the scale of transboundary river basins, where treaties govern water utilization, particular treaty mechanisms can reduce conflict potential by fostering collaboration and accounting for change. One necessary element is a mechanism for coordination and collaboration at the scale of the basin. This could be satisfied by mechanisms ranging from informal networks to the establishment of an international commission to jointly manage water, but a mechanism for collaboration at the basin scale alone does not ensure sound water management. To better guide resource management, study of applied resilience theory has revealed a number of management practices that are integral for adaptive governance. Here, we describe key resilience principles for treaty design and adaptive governance and then apply the principles to a case study of one transboundary basin where the need and willingness to manage collaboratively and iteratively is high - the Okavango River Basin of southwest Africa. This descriptive and applied approach should be particularly instructive for treaty negotiators, transboundary resource managers, and should aid program developers.

  10. Floods of April 1952 in the Missouri River basin

    Science.gov (United States)

    Wells, J.V.B.

    1955-01-01

    The floods of April 1952 in the Milk River basin, along the Missouri River from the mouth of the Little Missouri River to the mouth of the Kansas River, and for scattered tributaries of the Missouri River in North and South Dakota were the greatest ever observed. The damage amounted to an estimated $179 million. The outstanding featur6 of the floods was the extraordinary peak discharge generated in the Missouri River at and downstream from Bismarck, N. Dak., on April 6 when a large ice jam upstream from the city was suddenly released. Inflow from flooding tributaries maintained the peak discharge at approximately the same magnitude in the transit of the flood across South Dakota; downstream from Yankton, S. Dak., attenuation of the peak discharge was continuous because of natural storage in the wide flood plains. The outstanding characteristic of floods in the Milk River basin was their duration--the flood crested at Havre, Mont., on April 3 and at Nashua, Mont.. on April 18. The floods were caused by an abnormally heavy accumulation of snow that was converted into runoff in a few days of very warm weather at the end of March. The heaviest water content of the snow pack at breakup was in a narrow arc extending through Aberdeen, S. Dak., Pierre, S. Dak.. and northwestward toward the southwest corner of North Dakota. The water content in part of this concentrated cover exceeded 6 inches. The winter of 1951-52, which followed a wet cold fall that made the ground impervious, was one of the most severe ever experienced in South Dakota and northern Montana. Depths of snow and low temperatures combined to produce, at the end of March, one of the heaviest snow covers in the history of the Great Plains. The Missouri River ice was intact upstream from Chamberlain, S. Dak., at the end of March, and the breakup of the ice with inflow of local runoff was one of the spectacular features of the flood. Runoff from the Yellowstone River combining with the flood pouring from the

  11. Assessing water deprivation at the sub-river basin scale in LCA integrating downstream cascade effects.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Núñez, Montserrat; Belaud, Gilles; Bellon-Maurel, Véronique

    2013-12-17

    Physical water deprivation at the midpoint level is assessed in water-related LCIA methods using water scarcity indicators (e.g., withdrawal-to-availability and consumption-to-availability) at the river basin scale. Although these indicators represent a great step forward in the assessment of water-use-related impacts in LCA, significant challenges still remain in improving their accuracy and relevance. This paper presents a methodology that can be used to derive midpoint characterization factors for water deprivation taking into account downstream cascade effects within a single river basin. This effect is considered at a finer scale because a river basin must be split into different subunits. The proposed framework is based on a two-step approach. First, water scarcity is defined at the sub-river basin scale with the consumption-to-availability (CTA) ratio, and second, characterization factors for water deprivation (CFWD) are calculated, integrating the effects on downstream sub-river basins. The sub-river basin CTA and CFWD were computed based on runoff data, water consumption data and a water balance for two different river basins. The results show significant differences between the CFWD in a given river basin, depending on the upstream or downstream position. Finally, an illustrative example is presented, in which different land planning scenarios, taking into account additional water consumption in a city, are assessed. Our work demonstrates how crucial it is to localize the withdrawal and release positions within a river basin.

  12. Assessing Hydrologic Impacts of Future Land Cover Change Scenarios in the South Platte River Basin (CO, WY, & NE) and the San Pedro River Basin (U.S./Mexico).

    Science.gov (United States)

    Barlow, J. E.; Burns, I. S.; Guertin, D. P.; Kepner, W. G.; Goodrich, D. C.

    2016-12-01

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology to characterize hydrologic impacts from future urban growth through time that was developed and applied on the San Pedro River Basin was expanded and utilized on the South Platte River Basin as well. Future urban growth is represented by housing density maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land-Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and implement a methodology for adapting the ICLUS data for use in AGWA as an approach to evaluate impacts of development on water-quantity and -quality, 2) present, evaluate, and compare results from scenarios for watersheds in two different geographic and climatic regions, 3) determine watershed specific implications of this type of future land cover change analysis.

  13. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    examples from the Carpathian Basin represent some of the most common human impacts (engineering regulation, hydropower usage, water pollution), disturbing natural river ice regimes of mid-latitude rivers with densely populated or dynamically growing urban areas along their courses. In addition simple tests are also introduced to detect not only the climatic, but also the effect of anthropogenic impacts on river ice regime. As a result of river regulation on River Danube at Budapest a vanishing trend in river ice phenomena could be detected in the Danube records. The average ice-affected season shortened from 40 to 27 days, the average ice-covered season reduced greatly, from 27 to 7 days. In historical times the ice jams on the River Danube caused many times ice floods. The relative frequency of the break-up jam also decreased; moreover no ice flood occurred over the past 50 years. The changes due to hydropower usage are different upstream and downstream to the damming along the river. On Raba River upstream of the Nick dam at Ragyogóhíd, the ice-affected and ice-covered seasons were lengthened by 4 and 9 days, in contrast, downstream of the dam, the length of the ice-covered season was shortened by 7 days, and the number of ice-affected days decreased by 8 days at Árpás. During the observation period at Budapest on Danube River, the temperature requirements for river ice phenomena occurrence changed. Nowadays, much lower temperatures are needed to create the same ice phenomena compared to the start of the observations. For ice appearance, the mean winter air temperature requirements decreased from +2.39 °C to +1.71 °C. This investigation focused on anthropogenic effects on river ice regime, eliminating the impact of climatic conditions. Different forms of anthropogenic effects cause in most cases, a shorter length of ice-affected seasons and decreasing frequency of ice phenomena occurrence. Rising winter temperatures result the same changes in river ice regime

  14. Integrated resource assessment of the Drina River Basin

    Science.gov (United States)

    Almulla, Youssef; Ramos, Eunice; Gardumi, Francesco; Howells, Mark

    2017-04-01

    The integrated assessment and management of resources: water, energy, food and environment is of fundamental importance, yet it is a very challenging task especially when it is carried out on the transboundary level. This study focuses on the Drina River Basin (DRB) which is a transboundary basin in South East Europe spreading across Bosnia and Herzegovina, Serbia and Montenegro with a total surface area of 19,982 km2. Water resources from the Drina River Basin are shared among many activities in the basin: domestic water supply, electricity generation, fishery, tourism and, to a lesser extent, irrigation, industry and mining. The region has recently experienced repeated events of floods and droughts causing significant damage to the economy, showing a high vulnerability of the area to the effects of climate change. The assessment of the Drina River Basin is carried out in the framework of the project "Water food energy ecosystems nexus in transboundary river basins" under the UNECE Water Convention. This study aims to: 1) Improve the cooperation in the operation of dams and hydropower plants in the DRB for optimized production; 2) Explore the opportunities generated by electricity trade between the DRB countries as a mechanism to enhance cooperation and as an enabler for the synchronised operation of hydropower plants; 3) Motivate the implementation of energy efficiency measures to reduce the electricity production requirement from hydro and thermal power. In order to achieve that, a multi-country electricity system model was developed for the three countries of Drina river basin using the Open Source energy MOdelling SYStem (OSeMOSYS). The model represents the whole electricity system of each country, with special cascade representation of hydropower plants along Drina river and its tributaries. The results show that, in a scenario of synchronised operation of all power plants along Drina and its tributaries, those downstream can significantly increase their

  15. THE DEGREE OF SILTING AND THE IMPACT ON ALLUVIAL DEPOSITS IN THE RIVER BEDS OF BISTRIŢA RIVER BASIN

    OpenAIRE

    COJOC MARIA GEANINA; ROMANESCU GH.; TIRNOVAN ALINA

    2014-01-01

    Since 1960 the Bistriţa River basin came under the profound influence of anthropic incidence. This river basin represents a pattern of use for hydropower potential: reservoirs (9); channels (61 km); water dams; transfers of flows; protection structures works for banks and slopes; relocation of human settlements (13 villages); gravel pits; galleries; viaducts; communication paths, etc. Bistriţa River development has led to significant changes in the structure of the hydrological regime, throug...

  16. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  17. Regional scale groundwater modelling study for Ganga River basin

    Science.gov (United States)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.

    2016-10-01

    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  18. A study on drought trend in Han River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hung-Soo [Sun Moon University, Chonan(Korea); Moon, Jang-Won; Kim, Jae-Hyung; Kim, Joong-Hoon [Korea Univ., Seoul(Korea)

    2000-08-31

    The drought analysis is performed by applications of truncation level method and conditional probability concept for hydrologic time series in Han river basin. The distributed trend of conditional probability is determined using kriging method for the time series. This study uses daily flowrate, monthly rainfall, and daily high temperature data sets. The daily flowrate data of 12 years(1986-1997) is used for the analysis. Also, the 14 years' data sets(1986-1999) for monthly rainfall and daily high temperature obtained from the National Weather Service of Korea are used in this study. In the cases of flowrate and rainfall data sets, the estimated value corresponding to the truncation level is decreased as the truncation level is increased but in the high temperature data, the value is increased as the truncation level is increased. The conditional probability varies according to the observations and sites. However, the distributed trend of drought is similar over the basin. As a result, the possibility of the drought is high in the middle and lower parts of Han river basin and thus it is recommended the distributed trend of drought be considered when the plan or measures for drought are established. (author). 10 refs., 9 tabs., 5 figs.

  19. Oxygen-18 in different waters in Urumqi River Basin

    Institute of Scientific and Technical Information of China (English)

    ZHANGXinping; YAOTandong; LIUJingmiao

    2003-01-01

    The variations of the stable oxygen isotope in different water mediums in Urumqi River Basin, China, are analyzed. The stable oxygen isotope in precipitation has marked temperature effect either under synoptic or seasonal scale at the head of Urumqi River. The linear regression equations of δ18O against temperature are δ18O=-0.94T-12.38 and δ18O=1.29T-13.05 under the two time scales, respectively. The relatively large δ18O/temperature slopes show the strong sensitivity of δ18O in precipitation to temperature variation at the head of Urumqi River. According to the analyses on the δ18O in precipitation sampled at three stations with different altitudes along Urumqi River, altitude effect is notable in the drainage basin. The δ18O/altitude gradients have distinct differences: the gradient from Urumqi to Yuejinqiao is merely -0.054‰/hm, but -0.192‰/hm from Yuejinqiao to Daxigou, almost increasing by 2.6 times over the former. No altitude effect is found in surface firn the east branch of Glacier No. 1 at the head of Urumqi River, showing that precipitation in the glacier is from the cloud cluster with the same condensation level. Influenced by strong ablation and evaporation, the δ18O in surface firn increases with increasing altitude sometimes. Survey has found that the δ18O in meltwater at the terminus of Glacier No. 1 and in stream water at Total Control have the similar change trend with the former all smaller than the latter, which displays the different runoff recharges, and all mirror the regime of temperature in the same term basicallv.

  20. Water resources of the Ipswich River basin, Massachusetts

    Science.gov (United States)

    Sammel, Edward A.; Baker, John Augustus; Brackley, Richard A.

    1966-01-01

    Water resources of the Ipswich River basin are at resent {1960) used principally for municipal supply to about 379,000 person's in 16 towns and cities in or near the river basin. By the year 2000 municipal use of water in this region will probably be more than twice the current use, and subsidiary uses of water, especially for recreation, also will have increased greatly. To meet the projected needs, annual pumpage of water from the Ipswich River could be increased from current maximums of about 12 mgd (million galleons a day) to about 45 mgd without reducing average base flows in the river, provided that the increased withdrawals would be restricted to periods of high streamflow. In addition, considerably more pumpage could be derived from streamflow by utilizing base-flow discharge; however, the magnitude of such use could be determined only in relation to factors such as concurrent ground-water use, the disposal of waste water, and the amount of streamflow required to dilute the pollution load to acceptable levels. Under present conditions, little or no increase in diversion of streamflow would be warranted in the upstream rafts of the basin during the summer and early fall of each year, and only a moderate increase could be made in the lower reaches of the stream during the same period. Annual rainfall in the basin averages about 42.5 inches, and represents the water initially available for use. Of this amount, an average of about 20.5 inches is returned to the a.tmosphere by evapotranspiration. The remainder, about 22 inches, runs off as streamflow in the Ipswich River or is diverted from the basin by pumpage. The average annual stream runoff, amounting to about 47 billion gallons, is a measure of the water actually available for man's use. The amounts of water used by municipalities in recent years are less than 10 percent of the available supply. Large supplies of ground water may be obtained under water-table conditions from the stratified glacial drift

  1. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    Directory of Open Access Journals (Sweden)

    Z. Zeng

    2012-05-01

    Full Text Available Increasing water scarcity places considerable importance on the quantification of water footprint (WF at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB, a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr−1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production. The remaining 4% was for the industrial and domestic sectors. The "blue" component of WF was 811 million m3 yr−1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than green WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

  2. Present Situation and Future Trends of River-Basin Cascade Hydropower Dispatch in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Hydropower resources in river basins are typically developed in a cascade manner. The cascade hydropower stations use water from the same river; in a sense, they form a cluster of hydropower stations which are linked together by the river stream. The dispatch and management of the cascade hydropower stations in a river basin differ from those of an ordinary single hydropower station. Without doubt, unified dispatch can facilitate the full harnessing of hydraulic resources and is in a better position to fulf...

  3. Water Cycle Dynamics in the Snake River Basin, Alaska

    Science.gov (United States)

    Busey, R.; Hinzman, L. D.

    2009-12-01

    Alaska’s Seward Peninsula is underlain in the south by areas of near-freezing, continuous and discontinuous permafrost. These conditions make it susceptible to changing climatic conditions such as acceleration of the hydrologic cycle or general atmospheric warming. This study looks at the hydrologic record of the Snake River over the mid-twentieth century through present. The Snake River basin drains an area of about 22 square kilometers into Norton Sound near the Bering Strait, off the western coast of Alaska. Climate for this area is maritime in summer and somewhat continental in winter once the sea ice forms. Hydrometeorological parameters have been measured locally for more than fifty years with temperature being measured regularly over the last 100 years. Discharge has been measured in the Snake River intermittently over that time period as well. This study looks closely at drivers of inter-annual variations in soil moisture in the basin over the observational record using a physically based numerical hydrological model. Unlike many areas of Alaska, the meteorological record at Nome, located at the mouth of the watershed, shows no statistically significant increase in precipitation over either the last 30 years or the last 100 years. However, there has been a small increase in temperature over the 100 year time period.

  4. Watershed modelling in the Iguazú river basin

    Science.gov (United States)

    Venencio, M.; Garcia, N. O.

    2006-12-01

    This paper tries to associate the temporal and spatial climatic variability to the variability of streamflow. Therefore, the objective is to obtain tools in order to forsee the hydrologic variability in the context of the climatic variability from Iguazú river flows. The data at the gauging stations are supposed to be affected only by natural causes (climatic variability), because all flow data series were naturalised. A monthly water balance model used by Arnell [1] was applied to the whole Iguazu river basin, which extends approximately over 65000 km2. The area was not divided in subbasins because a homogeneous monthly mean precipitation was used as input to the model over this region. Monthly average temperature series for evapotranspiration (ET) calculations were generated by averaging recorded temperatures at several climatological gauging stations. Streamflows data at Capanema gauging station, upstream of the Iguazú falls, were used to analyse model results. Calculated and observed streamflows were compared. It can be said that the fitting is good, and the model reproduces the monthly flow pattern adequately. The correlation coefficient between the simulated and the observed monthly mean flows can be considered satisfactory in the Iguazú river basin.

  5. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    Science.gov (United States)

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data

  6. Studies on heavy metal contamination in Godavari river basin

    Science.gov (United States)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-09-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  7. Facies architecture within a regional glaciolacustrine basin: Copper River, Alaska

    Science.gov (United States)

    Bennett, Matthew R.; Huddart, David; Thomas, Geoffrey S. P.

    2002-11-01

    This paper defines the principal architectural elements present within the Pleistocene, glaciolacustrine basin-fill of the Copper River Basin in Alaska. The Copper River drains an intermontane basin via a single deeply incised trench through the Chugach Mountains to the Gulf of Alaska. This trench was blocked by ice during the last glacial cycle and a large ice-dammed lake, referred to as Lake Atna, filled much of the Copper Basin. Facies analysis within the basin floor allows a series of associations to be defined consistent with the basinward transport of sediment deposited along calving ice margins and at the basin edge. Basinward transport involves a continuum of gravity driven processes, including slumping, cohesive debris flow, hyperconcentrated/concentrated density flows, and turbidity currents. This basinward transport results in the deposition of a series of subaqueous fans, of which two main types are recognised. (1) Large, stratified, basin floor fans, which extend over at least 5 km and are exposed in the basin centre. These fans are composed of multiple lobes, incised by large mega-channels, giving fan architectures that are dominated by horizontal strata and large, cross-cutting channel-fills. Individual lobes and channel-fills consist of combinations of: diamict derived from iceberg rainout and the ice-marginal release of subglacial sediment; multiple units of fining upward gravels which grade vertically into parallel laminated and rippled fine sands and silts, deposited by a range of density flows and currents derived from the subaqueous discharge of meltwater; and rhythmites grading vertically into diamicts deposited from a range of sediment-density flows re-mobilising sediment deposited by either iceberg rainout or the ice-marginal release of sediment. (2) Small, complex, proximal fans, which extend over less than 2 km, and are exposed in the southern part of the basin. These fans are composed of coalescing and prograding lobes of diamict and

  8. Surface-water-quality assessment of the Yakima River Basin in Washington: Overview of major findings, 1987-91

    Science.gov (United States)

    Morace, Jennifer L.; Fuhrer, Gregory J.; Rinella, Joseph F.; McKenzie, Stuart W.; Gannett, Marshall W.; Bramblett, Karen L.; Pogue, Ted R.; Skach, Kenneth A.; Embrey, Sandra S.; Cuffney, Thomas F.; Meador, Michael R.; Porter, Stephen D.; Gurtz, Martin E.

    1999-01-01

    Surface-water-quality conditions were assessed in the Yakima River Basin, which drains 6,155 square miles of mostly forested, range, and agricultural land in Washington. The Yakima River Basin is one of the most intensively farmed and irrigated areas in the United States, and is often referred to as the “Nation’s Fruitbowl.” Natural and anthropogenic sources of contaminants and flow regulation control water-quality conditions throughout the basin. This report summarizes the spatial and temporal distribution, sources, and implications of the dissolved oxygen, water temperature, pH, suspended sediment, nutrient, organic compound (pesticide), trace element, fecal indicator bacteria, radionuclide, and aquatic ecology data collected during the 1987–91 water years.

  9. Hydroclimatological Aspects of the Extreme 2011 Assiniboine River Basin Flood

    Science.gov (United States)

    Brimelow, J.; Szeto, K.; Bonsal, B. R.; Hanesiak, J.; Kochtubajda, B.; Stewart, R. E.

    2014-12-01

    In the spring and early summer of 2011, the Assiniboine River Basin in Canada experienced an extreme flood that was unprecedented in terms of duration and volume of water. The flood had significant socioeconomic impacts and caused over one billion dollars in damage. Contrary to what one might expect for such an extreme flood, individual precipitation events before and during the 2011 flood were not extreme; instead, it was the cumulative impact and timing of precipitation events going back to the summer of 2010 that played a key role in the 2011 flood. The summer and fall of 2010 were exceptionally wet, resulting in soil moisture levels being much above normal at the time of freeze up. This was followed by above-average precipitation during the winter of 2010-2011, and record-breaking basin-averaged snow-water equivalent values in March and April 2011. Abnormally cold temperatures in March delayed the spring melt by about two weeks, with the result that the above-average seasonal melt freshet occurred close to the onset of abnormally heavy rains in May and June. The large-scale atmospheric flow during May and June 2011 favoured increased cyclone activity over the central and northern U.S., which produced an anomalously large number of heavy rainfall events over the basin. All of these factors combined to generate extreme surface runoff and flooding. We used JRA-55 reanalysis data to quantify the relative importance of snowmelt, soil moisture and spring precipitation in contributing to the unprecedented flood and to demonstrate how the 2011 flood was unique compared to previous floods in the basin. Data and research from this study can be used to validate and improve flood forecasting techniques over this important basin; our findings also raise important questions regarding the impact of climate change on basins that experience pluvial and nival flooding.

  10. Collaboration in River Basin Management: The Great Rivers Project

    Science.gov (United States)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or

  11. The Politics of Model Maintenance: The Murray Darling and Brantas River Basins Compared

    Directory of Open Access Journals (Sweden)

    Anjali Bhat

    2008-10-01

    Full Text Available This paper explores river basin management in two highly developed basins whose basin governance arrangements are currently undergoing transition: the Murray-Darling basin of Australia and the Brantas basin of Indonesia. Though basin-scale management has been longstanding in both of these cases and the respective models for carrying out integrated river basin management have been considered noteworthy for other countries looking to develop basin institutions, these basin-level arrangements are under flux. This paper indicates some of the difficulties that exist for even widely favoured 'textbook' cases to maintain institutional efficacy within their given shifting contexts. This paper explores drivers behind policy reform and change in scale at which authority is held, concluding with a discussion of the nature of institutional transition given political realities in these basins.

  12. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  13. The cost of noncooperation in international river basins

    Science.gov (United States)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  14. Climate change effects on the hydrological regime of small non-perennial river basins

    Energy Technology Data Exchange (ETDEWEB)

    Pumo, Dario, E-mail: dario.pumo@unipa.it; Caracciolo, Domenico, E-mail: domenico.caracciolo@unipa.it; Viola, Francesco, E-mail: francesco.viola77@unipa.it; Noto, Leonardo V., E-mail: leonardo.noto@unipa.it

    2016-01-15

    Recent years have been witnessing an increasing interest on global climate change and, although we are only at the first stage of the projected trends, some signals of climate alteration are already visible. Climate change encompasses modifications in the characteristics of several interrelated climate variables, and unavoidably produces relevant effects on almost all the natural processes related to the hydrological cycle. This study focuses on potential impacts of climate variations on the streamflow regime of small river basins in Mediterranean, seasonally dry, regions. The paper provides a quantitative evaluation of potential modifications in the flow duration curves (FDCs) and in the partitioning between surface and subsurface contributions to streamflow, induced by climate changes projected over the next century in different basins, also exploring the role exerted by different soil–vegetation compositions. To this aim, it is used a recent hydrological model, which is calibrated at five Sicilian (Italy) basins using a past period with available streamflow observations. The model is then forced by daily precipitation and reference evapotranspiration series representative of the current climatic conditions and two future temporal horizons, referring to the time windows 2045–2065 and 2081–2100. Future climatic series are generated by a weather generator, based on a stochastic downscaling of an ensemble of General Circulation Models. The results show how the projected climatic modifications are differently reflected in the hydrological response of the selected basins, implying, in general, a sensible downshift of the FDCs, with a significant reduction in the mean annual streamflow, and substantial alterations in streamflow seasonality and in the relative importance of the surface and subsurface components. The projected climate change impact on the hydrological regime of ephemeral rivers could have important implications for the water resource management and

  15. Residential building thermal performance energy efficiency in Yangtze River basin

    Institute of Scientific and Technical Information of China (English)

    王厚华; 庄燕燕; 吴伟伟

    2009-01-01

    Using energy consumption software VisualDOE4.0,simulation was carried out on the energy consumption of a typical residential building in Yangtze River basin,with a focus on thermal performance of envelope each component and application of total heating recovery equipment. The effects of thermal performance of building envelope each component on energy efficiency ratio were analyzed. Comprehensive measures schemes of energy saving were designed by the orthogonal experiment. The energy efficiency ratios of different envelopes combination schemes were gained. Finally,the optimize combination scheme was confirmed. With the measurement dates,the correctness of the simulation dates was completely verified.

  16. EXPLORATION AND DEVELOPMENT IN PEARL RIVER MOUTH BASIN UPSURGING

    Institute of Scientific and Technical Information of China (English)

    Cheng Changmin

    1997-01-01

    @@ Exploration and development in the Pearl River Mouth Basin of the northern South China Sea is rising.Petroleum contracts with foreign oil companies have been signed for five block, i.e. block 15/23 (with Shell China Petroleum Development B.V.), block 15/26 and 15/35 (with Cairn Energy PLC), block 15/34 (with Santa Fe Energy Resources, inc.) and block 27/11 (with Kerr-McGee Corp.). The oil output has been increasing by million tons each year with a yield of 11.83 million tons in 1996.

  17. How different institutional arrangements promote integrated river basin management

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Frederiksen, Pia; Saarikoski, Heli;

    2013-01-01

    Management Planning processes in six countries around the Baltic Sea. We use theories on multi-level governance, regime interplay and institutional effectiveness. We find that, in most cases, central governments have played a dominant role in the formulation of river basin management plans, while local...... influence has been somewhat limited. The tight procedural deadlines of the di-rective appear to have pushed for more centralisation than originally intended by the countries. But the analysis also shows that interplay mechanisms such as norms, ideas and incentives do promote effective institutional...

  18. Environmental information document: Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  19. Water resources of the Penobscot River basin, Maine

    Science.gov (United States)

    Barrows, Harold Kilbrith; Babb, Cyrus Cates

    1912-01-01

    This report on the Penobscot River drainage system, the largest and one of the most important in Maine, has been compiled chiefly from the records, reports, and maps of the United States Geological Survey and from the results of surveys made in cooperation with the Maine State Survey Commission. The report includes all data on precipitation, stream flow, water storage, and water power that were available at the end of the calendar year 1909 and is accompanied by plans and profiles of the principal rivers, lakes, and ponds in the basin (Pis. XIII-XIX, at end of volume). Stream-flow data for 1910 and 1911 will be published in Water-Supply Papers 281 and 301, respectively.

  20. FLOODS AND DROUGHT - HYDROCLIMATIC RISKS IN SUHA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    TÎRNOVAN ALINA

    2014-03-01

    Full Text Available Suha is a right tributary of Moldova River, and presents a typical discharge for the geographical unit of Obcinele Bucovinei. Data used in the paper have been taken from Siret Basin Water Administration, Bacău, and represent a time sequence of 40 years. The most significant floods occurred in 1975, 1981, 1984, 1991, 2005, 2006, 2007 and 2008. The most obvious droughts occurred in 1969, 1974, 1978, 1983, 1987 and 2001. It was observed that the evolution of hydrological risk phenomena is closely linked to climatic changes. Increasing population and the need to extend the building design must take into account the extreme values of river flow over time, water resources also being important. Because extreme events occur more often, considering preventive plans against floods is needed. For this reason are analyzed the temperatures, rainfalls and discharge rates.

  1. GIS/RS-based Integrated Eco-hydrologic Modeling in the East River Basin, South China

    Science.gov (United States)

    Wang, Kai

    Land use/cover change (LUCC) has significantly altered the hydrologic system in the East River (Dongjiang) Basin. Quantitative modeling of hydrologic impacts of LUCC is of great importance for water supply, drought monitoring and integrated water resources management. An integrated eco-hydrologic modeling system of Distributed Monthly Water Balance Model (DMWBM), Surface Energy Balance System (SEBS) was developed with aid of GIS/RS to quantify LUCC, to conduct physically-based ET (evapotranspiration) mapping and to predict hydrologic impacts of LUCC. To begin with, in order to evaluate LUCC, understand implications of LUCC and provide boundary condition for the integrated eco-hydrologic modeling, firstly the long-term vegetation dynamics was investigated based on Normalized Difference Vegetation Index (NDVI) data, and then LUCC was analyzed with post-classification methods and finally LUCC prediction was conducted based on Markov chain model. The results demonstrate that the vegetation activities decreased significantly in summer over the years. Moreover, there were significant changes in land use/cover over the past two decades. Particularly there was a sharp increase of urban and built-up area and a significant decrease of grassland and cropland. All these indicate that human activities are intensive in the East River Basin and provide valuable information for constructing scenarios for studying hydrologic impacts of LUCC. The physically-remote-sensing-based Surface Energy Balance System (SEBS) was employed to estimate areal actual ET for a large area rather than traditional point measurements . The SEBS was enhanced for application in complex vegetated area. Then the inter-comparison with complimentary ET model and distributed monthly water balance model was made to validate the enhanced SEBS (ESEBS). The application and test of ESEBS show that it has a good accuracy both monthly and annually and can be effectively applied in the East River Basin. The results of

  2. Artisanal fisheries of the Xingu River basin in Brazilian Amazon.

    Science.gov (United States)

    Isaac, V J; Almeida, M C; Cruz, R E A; Nunes, L G

    2015-08-01

    The present study characterises the commercial fisheries of the basin of the Xingu River, a major tributary of the Amazon River, between the towns of Gurupá (at the mouth of the Amazon) and São Félix do Xingu. Between April, 2012, and March, 2014, a total of 23,939 fishing trips were recorded, yielding a total production of 1,484 tons of fish, harvested by almost three thousand fishers. The analysis of the catches emphasizes the small-scale and artisanal nature of the region's fisheries, with emphasis on the contribution of the motorised canoes powered by "long-tail" outboard motors. Larger motorboats operate only at the mouth of the Xingu and on the Amazon. Peacock bass (Cichla spp.), croakers (Plagioscion spp.), pacu (a group containing numerous serrasalmid species), aracu (various anostomids), and curimatã (Prochilodus nigricans) together contributed more than 60% of the total catch. Mean catch per unit effort was 18 kg/fisher-1.day-1, which varied among fishing methods (type of vessel and fishing equipment used), river sections, and time of the year. In most cases, yields varied little between years (2012 and 2013). The technical database provided by this study constitutes an important resource for the regulation of the region's fisheries, as well as for the evaluation of future changes resulting from the construction of the Belo Monte dam on the Xingu River.

  3. Updated streamflow reconstructions for the Upper Colorado River Basin

    Science.gov (United States)

    Woodhouse, C.A.; Gray, S.T.; Meko, D.M.

    2006-01-01

    Updated proxy reconstructions of water year (October-September) streamflow for four key gauges in the Upper Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in previous efforts. Reconstructed gauges include the Green River at Green River, Utah; Colorado near Cisco, Utah; San Juan near Bluff, Utah; and Colorado at Lees Ferry, Arizona. The reconstructions explain 72-81% of the variance in the gauge records, and results are robust across several reconstruction approaches. Time series plots as well as results of cross-spectral analysis indicate strong spatial coherence in runoff variations across the subbasins. The Lees Ferry reconstruction suggests a higher long-term mean than previous reconstructions but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in the past 5 centuries and that droughts more severe than any 20th to 21st century event occurred in the past. Copyright 2006 by the American Geophysical Union.

  4. Mercury in the Carson and Truckee River basins of Nevada

    Science.gov (United States)

    Van Denburgh, A.S.

    1973-01-01

    Upstream from major pre-1900 ore milling in the Carson and Truckee River basins, "background" concentrations of total mercury in the upper 1 to 3 inches of sand- to clay-sized stream-bottom sediment are less than 0.1 ug/g (microgram per gram). Downstream, measured concentrations were as much as 200 times the background level. Greatest concentrations were encountered in the Carson River basin within and immediately upstream from Lahontan Reservoir. Data from for the Carson River near Fort Churchill suggest that most of the mercury in the sampled bottom sediment may be present as mercuric sulfide or as a component of one of more non-methyl organic compounds or complexes, rather than existing in the metallic state. Regardless of state, this reservoir of mercury is of concern because of its possible availability to the aquatic food chain and, ultimately, to man. Among 48 samples of surface water from 29 sites in the two basins, the maximum measured total-mercury concentration was 6.3 ug/1 (micrograms per liter), for a sample from the Carson River near Fort Churchill. Except downstream from Lahontan Reservoir, most other measured values were less than 1 ug/1. (The U.S> Environmental Protection Agency interim limit for drinking water is 5 ug/1.) The total-mercury content of stream water is related to the mercury content of bottom sediments and the rate of streamflow, because the latter affects the suspended-sediment transporting capability of the stream,. Near Fort Churchill, total-mercury concentrations that might be expected at streamflows greater than those of 1971-72 are: as much as 10-15 ug/1 or more at 2,000 cfs (cubic feet per second), and as much as 10-20 ug/1 or more at 3,000 cfs. Elsewhere, expectable concentrations are much less because the bottom sediment contains much less mercury. The mercury contents of water samples from 36 wells in the Carson and Truckee basins were all less than 1 ug/1, indicating that mercury is not a problem in ground water, even

  5. Potamodromous migrations in the Magdalena River basin: bimodal reproductive patterns in neotropical rivers.

    Science.gov (United States)

    López-Casas, S; Jiménez-Segura, L F; Agostinho, A A; Pérez, C M

    2016-07-01

    Magdalena River basin potamodromous fishes have two annual reproductive seasons: the subienda in the first half of the year and the mitaca in the second. Both upstream migrations are c. 30-45 days long; after that, with the onset of the rainy season, fishes spawn and remain in the river (resident individuals) or start a downstream movement (the bajanza) to return to the Magdalena floodplain lakes (nursery, shelter and feeding grounds). Due to their particular gonad development the bocachico Prochilodus magdalenae and probably the comelón Leporinus muyscorum are physiologically able to undertake two annual basin migrations. In the presence of dams or hydropower structures, fishes are able to find alternative migration routes. Some species should be re-classified in their migratory behaviour. © 2016 The Fisheries Society of the British Isles.

  6. Hack's relation and optimal channel networks: The elongation of river basins as a consequence of energy minimization

    Science.gov (United States)

    Ijjasz-Vasquez, Ede J.; Bras, Rafael L.; Rodriguez-Iturbe, Ignacio

    1993-08-01

    As pointed by Hack (1957), river basins tend to become longer and narrower as their size increases. This work shows that this property may be partially regarded as the consequence of competition and minimization of energy expenditure in river basins.

  7. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume II : Evaluation of the 1996 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1998-07-01

    This project was initiated in 1991 in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of this project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to aid management in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community.

  8. The influence of frozen soil change on water balance in the upper Yellow River Basin, China

    Science.gov (United States)

    Cuo, L.; Zhao, L.; Zhou, B.

    2013-12-01

    Yellow River supports 30% of China's population and 13% of China's total cultivated area. About 35% of the Yellow River discharge comes from the upper Yellow River Basin. Seasonally frozen, continuous and isolated permafrost soils coexist and cover the entire upper Yellow River Basin. The spatial distribution of various frozen soisl is primarily determined by the elevation in the basin. Since the past five decades, air temperature has increased by a rate of 0.03 C/year in the upper Yellow River Basin. Many studies reported the conversions of continuous to isolated permafrost soil, permafrost soil to seasonally frozen soil and the thickening of the active layer due to rising temperature in the basin. However, very few studies reported the impact of the change of frozen soil on the water balance in the basin. In this study, the Variable Infiltration Capacity (VIC) model is applied in the upper Yellow River Basin to study the change of frozen soil and its impact on the water balance. Soil temperature and soil liquid content measured up to 3 m below ground surface at a number of sites in the upper Yellow River Basin and the surroundings are used to evaluate the model simulation. Streamflow is also calibrated and validated using historical streamflow records. The validated VIC model is then used to investigate the frozen soil change and the impact of the change on water balance terms including surface runoff, baseflow, evapotranspiration, soil water content, and streamflow in the basin.

  9. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  10. Boundaries of Consent: Stakeholder Representation in River Basin Management in Mexico and South Africa

    NARCIS (Netherlands)

    Wester, P.; Merrey, D.J.; Lange, M.

    2003-01-01

    Increasing the capacity of water users to influence decision-making is crucial in river basin management reforms. This article assesses emerging forums for river basin management in Mexico and South Africa and concludes that the pace of democratization of water management in both is slow. Mexico is

  11. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has n

  12. Power-law tail probabilities of drainage areas in river basins

    Science.gov (United States)

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  13. Water vapor transport in the Pearl River basin and its influence on NDVI

    Directory of Open Access Journals (Sweden)

    Wang Yin-Xia

    2016-01-01

    Full Text Available Using NECP/NCAR monthly average data and 216 months average monthly precipitation data of the University of Delaware during 1982-1999. Analyzed the precipitation vapour transport process affects precipitation in the Pearl River Basin in different seasons. On this basis, the seasonal differences NDVI changes in climate-driven factors in the Pearl River Basin.

  14. A comparison of integrated river basin management strategies: A global perspective

    Science.gov (United States)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  15. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has

  16. Use of remote sensing data in distributed hydrological models: Applications in the Senegal river basin

    DEFF Research Database (Denmark)

    Sandholt, Inge; Andersen, Jens; Dybkjær, Gorm Ibsen;

    1999-01-01

    Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she......Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she...

  17. Hydrological effects of water management measures in the Dovine River basin, Lithuania

    NARCIS (Netherlands)

    Querner, E.P.; Povilaitis, A.

    2009-01-01

    Lake Žuvintas, located in southern Lithuania in the Dovine River basin, is one of the largest lakes and oldest nature reserves in the country. However, changes in the hydrology of the Dovine River basin, caused by large-scale land reclamation and water management works carried out in the 20th centur

  18. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    Science.gov (United States)

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  19. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    Science.gov (United States)

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  20. Spatial and temporal variations of river nitrogen exports from major basins in China.

    Science.gov (United States)

    Ti, Chaopu; Yan, Xiaoyuan

    2013-09-01

    Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.

  1. Range maps of terrestrial species in the interior Columbia River basin and northern portions of the Klamath and Great Basins.

    Science.gov (United States)

    Bruce G. Marcot; Barbara C. Wales; Rick. Demmer

    2003-01-01

    Current range distribution maps are presented for 14 invertebrate, 26 amphibian, 26 reptile, 339 bird, and 125 mammal species and selected subspecies (530 total taxa) of the interior Columbia River basin and northern portions of the Klamath and Great Basins in the United States. Also presented are maps of historical ranges of 3 bird and 10 mammal species, and 6 maps of...

  2. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    Science.gov (United States)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-11-01

    Total nitrogen (TN), which consists of total particulate nitrogen (TPN) and total dissolved nitrogen (TDN), is transported with not only in river channels but also across the entire river basin, including via ground water and migratory animals. In general, TPN export from an entire river basin to the ocean is larger than TDN in a mountainous region. Since marine derived nutrients (MDN) are hypothesized to be mainly transported as suspended matters from the ground surface, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated TN export from an entire river basin, and also we estimated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen input across a river basin. The maximum potential contribution of TN entering the river basin by salmon was found to be 23.8 % relative to the total amount of TN exported from the river basin. The contribution of particulate nitrogen based on suspended sediment from the ocean to the river basin soils was 22.9 % with SD of 3.6 % by using stable isotope analysis (SIA) of nitrogen (δ15N).

  3. Remote Sensing of Water Quality in the Niger River Basin

    Science.gov (United States)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  4. Reliability and Validity Test of Questionnaire on the Adaptation Strategy of Cryosphere Changes in Arid Inland River Basin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to test the reliability and validity of questionnaire on the adaptation strategy of cryosphere changes in arid inland river basin. [Method] A questionnaire on "the adaptation strategy of cryosphere changes in arid inland river basin" was carried out in Urumchi River basin and Aksu River basin, and its reliability and validity were tested by means of statistical method, so as to investigate the stability and accuracy of questionnaire. [Result] Reliability analysis of questionnaire sho...

  5. Water Temperature Dynamics in High Arctic River Basins

    Science.gov (United States)

    Blaen, P. J.; Hannah, D. M.; Brown, L. E.; Milner, A. M.

    2012-04-01

    Despite the high sensitivity of polar regions to climate change, and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap is addressed by exploring high-resolution water column thermal regimes for glacier-fed and non-glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier-fed rivers (0.3 - 3.2 °C) were the lowest and most thermally-stable near the glacier terminus but increased downstream (0.7 - 2.3 °C km-1). Non-glacial rivers, where discharge was sourced primarily from snowmelt, were warmer (mean 2.9 - 5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones with increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of Alaskan rivers but low at all sites when compared to alpine glacierized environments at lower latitudes. Thermal regimes were strongly correlated (pgeomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high-latitude river systems in the context of projected warming in polar regions. We hypothesise warmer and more variable temperature regimes may prevail in future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow- and groundwater sources. Importantly, such changes could have implications for species diversity and abundance in benthic communities and influence rates of ecosystem functioning in high-latitude aquatic systems.

  6. [Variation characteristics of runoff coefficient of Taizi River basin in 1967-2006].

    Science.gov (United States)

    Deng, Jun-Li; Zhang, Yong-Fang; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Wu, Jia-Bing

    2011-06-01

    Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River. All the embranchments except Xihe River had an obvious abrupt change in the annual runoff coefficient, and the beginning year of the abrupt change differed with embranchment. Annual precipitation had significant effects on the annual runoff coefficient.

  7. Modelling hydrological responses of Nerbioi River Basin to Climate Change

    Science.gov (United States)

    Mendizabal, Maddalen; Moncho, Roberto; Chust, Guillem; Torp, Peter

    2010-05-01

    Future climate change will affect aquatic systems on various pathways. Regarding the hydrological cycle, which is a very important pathway, changes in hydrometeorological variables (air temperature, precipitation, evapotranspiration) in first order impact discharges. The fourth report assessment of the Intergovernmental Panel for Climate Change indicates there is evidence that the recent warming of the climate system would result in more frequent extreme precipitation events, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. Available research and climate model outputs indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99%). For example, it is likely that up to 20% of the world population will live in areas where river flood potential could increase by the 2080s. In Spain, within the Atlantic basin, the hydrological variability will increase in the future due to the intensification of the positive phase of the North Atlantic Oscillation (NAO) index. This might cause flood frequency decreases, but its magnitude does not decrease. The generation of flood, its duration and magnitude are closely linked to changes in winter precipitation. The climatic conditions and relief of the Iberian Peninsula favour the generation of floods. In Spain, floods had historically strong socio-economic impacts, with more than 1525 victims in the past five decades. This upward trend of hydrological variability is expected to remain in the coming decades (medium uncertainty) when the intensification of the positive phase of the NAO index (MMA, 2006) is considered. In order to adapt or minimize climate change impacts in water resources, it is necessary to use climate projections as well as hydrological modelling tools. The main objective of this paper is to evaluate and assess the hydrological response to climate changes in flow conditions in Nerbioi river

  8. [Spatiotemporal variation analysis and identification of water pollution sources in the Zhangweinan River basin].

    Science.gov (United States)

    Xu, Hua-Shan; Xu, Zong-Xue; Tang, Fang-Fang; Yu, Wei-Dong; Cheng, Yan-Ping

    2012-02-01

    In this study, several statistical methods including cluster analysis, seasonal Kendall test, factor analysis/principal component analysis and principal component regression were used to evaluate the spatiotemporal variation of water quality and identify the sources of water pollution in the Zhangweinan River basin. Results of spatial cluster analysis and principal component analysis indicated that the Zhangweinan River basin can be classified into two regions. One is the Zhang River upstream located in the northwest of the Zhangweinan River basin where water quality is good. The other one covers the Wei River and eastern plain of the Zhangweinan River basin, where water is seriously polluted. In this region, pollutants from point sources flow into the river and the water quality changes greatly. Results of temporal cluster analysis and seasonal Kendall test indicated that the study periods may be classified into three periods and two different trends were detected during the period of 2002-2009. The first period was the year of 2002-2003, during which water quality had deteriorated and serious pollution was observed in the Wei river basin and eastern plain of the Zhangweinan River basin. The second period was the year of 2004-2006, during which water quality became better. The year of 2007-2009 is the third period, during which water quality had been improved greatly. Despite that water quality in the Zhangweinan River basin had been improved during the period of 2004-2009, the water quality in the Wei River (southwestern part of the basin), the Wei Canal River and the Zhangweixin River (eastern plain of the basin) is still poor. Principal component analysis and multi-linear regression of the absolute principal component scores showed that the main pollutants of the Zhangweinan River basin came from point source discharge such as heavy industrial wastewater, municipal sewage, chemical industries wasterwater and mine drainage in upstream. Non-point source pollution

  9. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  10. Study on snowmelt runoff simulation in the Kaidu River basin

    Institute of Scientific and Technical Information of China (English)

    ZHANG YiChi; LI BaoLin; BAO AnMing; ZHOU ChengHu; CHEN Xi; ZHANG XueRen

    2007-01-01

    Alpine snowmelt is an important generation mode for runoff in the source region of the Tarim River basin, which covers four subbasins characterized by large area, sparse gauge stations, mixed runoff supplied by snowmelt and rainfall, and remarkably spatially heterogeneous precipitation. Taking the Kaidu River basin as a research area, this study analyzes the influence of these characteristics on the variables and parameters of the Snow Runoff Model and discusses the corresponding determination strategy to improve the accuracy of snowmelt simulation and forecast. The results show that: (i) The temperature controls the overall tendency of simulated runoff and is dominant to simulation accuracy,as the measured daily mean temperature cannot represent the average level of the same elevation in the basin and that directly inputting it to model leads to inaccurate simulations. Based on the analysis of remote sensing snow maps and simulation results, it is reasonable to approximate the mean temperature with 0.5 time daily maximum temperature. (ii) For the conflict between the limited gauge station and remarkably spatial heterogeneity of rainfall, it is not realistic to compute rainfall for each elevation zone. After the measured rainfall is multiplied by a proper coefficient and adjusted with runoff coefficient for rainfall, the measured rainfall data can satisfy the model demands. (iii) Adjusting time lag according to the variation of snowmelt and rainfall position can improve the simulation precision of the flood peak process. (iv) Along with temperature, the rainfall increases but cannot be completely monitored by limited gauge stations, which results in precision deterioration.

  11. Groundwater quality in the Genesee River Basin, New York, 2010

    Science.gov (United States)

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  12. 78 FR 17643 - Greater Mississippi River Basin Water Management Board; Engineer Regulation No. 15-2-13

    Science.gov (United States)

    2013-03-22

    ... Department of the Army, U.S. Army Corps of Engineers Greater Mississippi River Basin Water Management Board... Corps Greater Mississippi River Basin Water Management Board. It is applicable to all Corps offices involved with water management within the Greater Mississippi River Basin. The Board consists of the...

  13. Modeling Water-Quality Loads to the Reservoirs of the Upper Trinity River Basin, Texas, USA

    OpenAIRE

    Taesoo Lee; Xiuying Wang; Michael White; Pushpa Tuppad; Raghavan Srinivasan; Balaji Narasimhan; Darrel Andrews

    2015-01-01

    The Upper Trinity River Basin (TRB) is the most populated river basin and one of the largest water suppliers in Texas. However, sediment and nutrient loads are reducing the capacity of reservoirs and degrading water quality. The objectives of this study are to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for ten study watersheds within the Upper TRB in order to assess nutrient loads into major reservoirs in the basin and to predict the effects of point source elimina...

  14. Beyond Lees Ferry: Assessing the Long-term Hydrologic Variability of the Lower Colorado River Basin

    Science.gov (United States)

    Wade, L. C.; Rajagopalan, B.; Lukas, J. J.; Kanzer, D.

    2011-12-01

    The future reliability of Colorado River Basin water supplies depends on natural hydrologic variability, climate change impacts and other human factors. Natural variability is the dominant component at annual to decadal time scales and thus, capturing and understanding the full range of such variability is critical to assessing risks to near- and mid-term water supplies. Paleohydrologic reconstructions of annual flow using tree rings provide much longer (400+ years) records of annual flow than do historical gage records, and thus a more complete representation of potential flow sequences. While the long-term natural variability of the Upper Colorado River Basin has been well-captured by high-quality multi-century reconstructions of the annual flow of the Colorado River at Lees Ferry, AZ, there has been no equivalent effort for the whole of the Lower Colorado River Basin, including the Gila River. The contribution of the Lower Basin to overall basin flows is estimated to be 15% on average, but this percentage varies significantly from year to year, potentially impacting water supply risk and management for the entire basin. We present preliminary results from an ongoing effort to assess the hydroclimatic variability of the Lower Basin and to develop reconstructions of annual streamflows for the Gila River and Lower Colorado River near Yuma, AZ, commensurate with the existing Lees Ferry reconstructions. We model the flow of the Gila at the confluence with the Colorado River using Generalized Pareto Distribution (GPD) and a generalized linear model (GLM) using Lower Basin tributaries, including the upper Gila River and its tributaries (e.g., Salt, Tonto, and Verde Rivers). We also present preliminary reconstructions of Lower Basin streamflows from tree-ring data using different modeling approaches, including GLM and non-parametric k-nearest-neighbor (KNN). These reconstructions of the Lower Basin flows should facilitate more robust estimation of water supply risk to

  15. Present Situation and Future Trends of River Basin Cascade Hydropower Dispatch China

    Institute of Scientific and Technical Information of China (English)

    Cao Guangjing; Cai Zhiguo

    2010-01-01

    @@ Hydropower resources in river basins are typically developed in a cascade manner.The cascade hydropower stations use water from the same river;in a sense,they form a cluster of hydropower stations which are linked together by the river stream.The dispatch and management of the cascade hydropower stations in a river basin differ from those of an ordinary single hydropower station.Without doubt,unified dispatch can facilitate the full harnessing of hydraulic resources and is in a better position to fulfill the objectives in the development of river basin.As a result,more and more river-basin cascade power stations around the world implement unified dispatching.

  16. Soil-landscape relationships in the Wind River Basin, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Nettleton, W.D. (USDA-SCS, Lincoln, NE (United States)); Chadwick, O.A. (California Inst. of Tech., Pasadena (United States))

    Seven soils were sampled and analyzed as part of the Soil Survey of the Riverton area of the Wind River Basin. The Lava Creek ash was used to divide the surfaces on which the soils were sampled into two sets: (1) surfaces older than the lower Sacagawea Ridge glaciation, and (2) surfaces of Bull Lake glacial age and younger. Surfaces of set two were further divided into either Pinedale and Holocene, those that either flood in today's environment or grade to the floodplains of the Wind River system, or into Bull Lake, those that are intermediate in position between the pre-lower Sacagawea Ridge and the Pinedale and Holocene surfaces. Griffy soils, Haplargids with greater than 18% clay in horizons of clay accumulation are on the pre-lower Sacagawea Ridge surface. Enos soils, Haplargids with less than 18% clay in horizons of clay accumulation, and Ethete soils, Haplargids formed in finer textured alluvium, are on the Bull Lake surface. Apron and Glenton soils, Torriorthents formed in calcareous alluvium with less than 18% clay are on the Pinedale and Holocene surfaces. Smectites have formed in the soils on Pleistocene surfaces whereas moderate amounts of allogenic kaolinite occur in Holocene soils. Carbonate has accumulated at or near the base of the argillic horizon in the soils on the Pleistocene surfaces. The soils on the lower Sacagawea Ridge surface, in contrast to the others, accumulate silt (desert loess) in upper horizons. These observations suggest that effective moisture during the Pleistocene in the lower part of the Wind River Basin was not appreciably different from that at present.

  17. River discharge estimation at daily resolution from satellite altimetry over an entire river basin

    Science.gov (United States)

    Tourian, M. J.; Schwatke, C.; Sneeuw, N.

    2017-03-01

    One of the main challenges of hydrological modeling is the poor spatiotemporal coverage of in situ discharge databases which have steadily been declining over the past few decades. It has been demonstrated that water heights over rivers from satellite altimetry can sensibly be used to deal with the growing lack of in situ discharge data. However, the altimetric discharge is often estimated from a single virtual station suffering from coarse temporal resolution, sometimes with data outages, poor modeling and inconsistent sampling. In this study, we propose a method to estimate daily river discharge using altimetric time series of an entire river basin including its tributaries. Here, we implement a linear dynamic model to (1) provide a scheme for data assimilation of multiple altimetric discharge along a river; (2) estimate daily discharge; (3) deal with data outages, and (4) smooth the estimated discharge. The model consists of a stochastic process model that benefits from the cyclostationary behavior of discharge. Our process model comprises the covariance and cross-covariance information of river discharge at different gauges. Combined with altimetric discharge time series, we solve the linear dynamic system using the Kalman filter and smoother providing unbiased discharge with minimum variance. We evaluate our method over the Niger basin, where we generate altimetric discharge using water level time series derived from missions ENVISAT, SARAL/AltiKa, and Jason-2. Validation against in situ discharge shows that our method provides daily river discharge with an average correlation of 0.95, relative RMS error of 12%, relative bias of 10% and NSE coefficient of 0.7. Using a modified NSE-metric, that assesses the non-cyclostationary behavior, we show that our estimated discharge outperforms available legacy mean daily discharge.

  18. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  19. Strategies to reduce water stress in Euro-Mediterranean river basins.

    Science.gov (United States)

    Garrote, Luis; Granados, Alfredo; Iglesias, Ana

    2016-02-01

    A portfolio of water management strategies now exists to contribute to reach water demand and supply targets. Among them, integrated water resource management has a large potential for reducing water disagreement in water scarcity regions. Many of the strategies are based on well tested choices and technical know-how, with proven benefits for users and environment. This paper considers water management practices that may contribute to reduce disagreement in water scarcity areas, evaluating the management alternatives in the Mediterranean basins of Europe, a region that exemplifies other water scarcity regions in the world. First, we use a model to compute water availability taking into account water management, temporal heterogeneity, spatial heterogeneity and policy options, and then apply this model across 396 river basins. Second, we use a wedge approach to illustrate policy choices for selected river basins: Thrace (Greece), Guadalquivir, Ebro, Tagus and Duero (Spain), Po (Italy) and Rhone (France). At the wide geographical level, the results show the multi-determinant complexities of climate change impacts and adaptation measures and the geographic nature of water resources and vulnerability metrics. At the local level, the results show that optimisation of water management is the dominating strategy for defining adaptation pathways. Results also show great sensitivity to ecological flow provision, suggesting that better attention should be paid to defining methods to estimate minimum ecological flows in water scarcity regions. For all scales, average water resource vulnerability computed by traditional vulnerability indicators may not be the most appropriate measure to inform climate change adaptation policy. This has large implications to applied water resource studies aiming to derive policy choices, and it is especially interesting in basins facing water scarcity. Our research aims to contribute to shape realistic water management options at the regional

  20. Climate change effects on the hydrological regime of small non-perennial river basins.

    Science.gov (United States)

    Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Noto, Leonardo V

    2016-01-15

    Recent years have been witnessing an increasing interest on global climate change and, although we are only at the first stage of the projected trends, some signals of climate alteration are already visible. Climate change encompasses modifications in the characteristics of several interrelated climate variables, and unavoidably produces relevant effects on almost all the natural processes related to the hydrological cycle. This study focuses on potential impacts of climate variations on the streamflow regime of small river basins in Mediterranean, seasonally dry, regions. The paper provides a quantitative evaluation of potential modifications in the flow duration curves (FDCs) and in the partitioning between surface and subsurface contributions to streamflow, induced by climate changes projected over the next century in different basins, also exploring the role exerted by different soil–vegetation compositions. To this aim, it is used a recent hydrological model, which is calibrated at five Sicilian (Italy) basins using a past period with available streamflow observations. The model is then forced by daily precipitation and reference evapotranspiration series representative of the current climatic conditions and two future temporal horizons, referring to the time windows 2045–2065 and 2081–2100. Future climatic series are generated by a weather generator, based on a stochastic downscaling of an ensemble of General Circulation Models. The results show how the projected climatic modifications are differently reflected in the hydrological response of the selected basins, implying, in general, a sensible downshift of the FDCs, with a significant reduction in the mean annual streamflow, and substantial alterations in streamflow seasonality and in the relative importance of the surface and subsurface components. The projected climate change impact on the hydrological regime of ephemeral rivers could have important implications for the water resource management and

  1. Water-quality assessment of the lower Illinois River Basin; environmental setting

    Science.gov (United States)

    Warner, Kelly L.

    1998-01-01

    -water contribution from runoff and storage. More than half of the drinking water, including domestic and public-supply use, in the LIRB is from ground water. Fifty-two percent of the public-supply water is from surface water. Ground-water withdrawals mostly are from glacial sand and gravel aquifers. Structural features, such as monoclines, synclines, and anticlines, in the buried bedrock affect the water quality of the aquifers. There are five natural environmental divisions in the LIRB. The Grand Prairie covers most of the northeastern half of the basin, and the Western Forest-Prairie covers most of the southwestern half. Implications of environmental setting for water quality in the LIRB are related primarily to land use. The balanced fish community indicates that the lower Illinois River is affected less from urban and industrial waste than the upper Illinois River. A decrease in dissolved oxygen concentrations and turbidity in the lower reaches of the basin in 1993 have resulted from the recent influx of European zebra mussels to the LIRB. Many factors affect water quality in the LIRB. Bedrock and surface topography, type of glacial material, and land use most directly affect water quality in the basin.

  2. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Blackstone River Watershed. Appendices.

    Science.gov (United States)

    1981-08-01

    weee ir noww md Id I b Wock number) --The eight appendices to the main report provides descriptive material abbut the Blackstone River Basin. Appendices...PNB area). The team concentrated on water supply, water quality, recreation, marine management, flooding and erosion, minerals extraction and the...basin consists of gently rolling wooded hills. Peters River originates in Bellingham, Massachusetts, just north of Silver Lake. It flows southwesterly

  3. Hydrology of the Upper Malad River basin, southeastern Idaho

    Science.gov (United States)

    Pluhowski, Edward J.

    1970-01-01

    The report area comprises 485 square miles in the Basin and Range physiographic province. It includes most of eastern' Oneida County and parts of Franklin, Bannock, and Power Counties of southeastern Idaho. Relief is about 5,000 feet; the floor of the Malad Valley is at an average altitude of about 4,400 feet. Agriculture is, by far, ,the principal economic .activity. In 1960 the population of the upper Malad River basin was about 3,600, of which about 60 percent resided in Malad City, the county seat of Oneida County. The climate is semiarid throughout the Malad Valley and its principal tributary valleys; ,above 6,500 feet the climate is subhumid. Annual precipitation ranges from about 13 inches in the lower Malad Valley to more than 30 inches on the highest peaks of the Bannock and Malad ranges. Owing to ,the normally clear atmospheric conditions, large daily and seasonal temperature fluctuations are common. Topography, distance from the Pacific Ocean, .and the general atmospheric circulation are the principal factors governing the climate of the Malad River basin. The westerlies transport moisture from the P.acific Ocean toward southeastern Idaho. The north-south tren4ing mountains flanking the basin are oriented orthogonally to the moisture flux so that they are very effective in removing precipitable water from the air. A minimum uplift of 6,000 feet is required to transport moisture from the Pacific source region; accordingly, most air masses are desiccated long before they reach the Malad basin. Heaviest precipitation is generally associated with steep pressure gradients in the midtroposphere that are so oriented as to cause a deep landward penetration of moisture from the Pacific Ocean. Annual water yields in the project area range from about 0.8 inch in the, lower Malad Valley to more than 19 inches on the high peaks north and east of Malad City. The mean annual water yield for the entire basin is 4 inches, or about 115,000 acre-feet. Evaporation is

  4. Environmental settings of the South Fork Iowa River basin, Iowa, and the Bogue Phalia basin, Mississippi, 2006-10

    Science.gov (United States)

    McCarthy, Kathleen A.; Rose, Claire E.; Kalkhoff, Stephen J.

    2012-01-01

    Studies of the transport and fate of agricultural chemicals in different environmental settings were conducted by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's Agricultural Chemicals Team (ACT) at seven sites across the Nation, including the South Fork Iowa River basin in central Iowa and the Bogue Phalia basin in northwestern Mississippi. The South Fork Iowa River basin is representative of midwestern agriculture, where corn and soybeans are the predominant crops and a large percentage of the cultivated land is underlain by artificial drainage. The Bogue Phalia basin is representative of corn, soybean, cotton, and rice cropping in the humid, subtropical southeastern United States. Details of the environmental settings of these basins and the data-collection activities conducted by the USGS ACT over the 2006-10 study period are described in this report.

  5. Exploring Resilience and Transformability of a River Basin in the Face of Socioeconomic and Ecological Crisis: an Example from the Amudarya River Basin, Central Asia

    Directory of Open Access Journals (Sweden)

    Maja Schlüter

    2011-03-01

    Full Text Available Water from the Amudarya River is a vital and strategic resource for semi-arid Uzbekistan because of its heavy reliance on irrigated agriculture. The Uzbek water management regime, however, has proven to be rather reluctant to adapt to changing environmental and socio-political conditions despite recent massive pressures caused by political, environmental, or donor-induced developments in the region. The aim of this paper is to explore reasons for the low adaptability of the Uzbek water sector and assess implications for the resilience of the Uzbek social-ecological system (SES. By analyzing past losses of resilience as well as first attempts at institutional change in land and water management, we identify drivers as well as structural factors and mechanisms that act as barriers for adaptation and transformation towards a more sustainable system. With the collapse of the Aral Sea fisheries and the basin-wide large scale soil salinization, the SES in the Amudarya River Basin has shifted to a new, less desirable regime. However, the high resilience of the social system is keeping it in its current undesirable state and further degrades its long-term resilience. Our analysis identifies reinforcing feedbacks caused by ecological dynamics, vested interests, and a patronage system that contribute to the resistance to change and keep the system locked in its current unsustainable state. These factors are rooted in the history of the SES in the river basin, such as the economic dependence on cotton and the state-centered management approach. The window of opportunity for significant changes of the larger scale institutional setting that might have been open after the breakup of the Soviet Union was or could not be used to achieve a transformation to more sustainable resources use. Measures aimed at an incremental improvement of the current situation are not sufficient to prevent further losses of resilience. Resilience and transformability of the larger

  6. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China

    Science.gov (United States)

    Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-06-01

    The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.

  7. Paleoenvironmental reconstruction of the Early Eocene Wind River Formation in the Wind River Basin, Wyoming

    Science.gov (United States)

    Hyland, E.; Fan, M.; Sheldon, N. D.

    2011-12-01

    Terrestrial basin systems provide important information on paleoclimatic, paleoecological, and paleoenvironmental factors and how they control and respond to global changes and spatio-temporal heterogeneity. Examining these dynamics is crucial for times of major global change like the broad-scale climatic trends (warm/wet/high-CO2 conditions) of the Early Eocene Climatic Optimum (EECO). As most climatic records of such events are derived from global marine datasets, regional terrestrial studies such as these provide a better model for understanding ecological responses and the localized effects of events like the EECO. The formation of the Wind River Basin (northwestern Wyoming) has been studied for decades, but its regional climatic, environmental, and ecological dynamics have been largely overlooked. Recent work in other contemporaneous sites in the Green River Basin has suggested that the dynamics and rapidity of climate change in terrestrial interiors during the EECO may have been significantly different than what is indicated by the marine record, so to address these issues on a more regional scale we examined paleosols preserved in the fluvial, basin-margin Wind River Formation preserved near Dubois, Wyoming. Field identification of the paleosols indicated a suite that includes primarily Inceptisols and Alfisols; most exhibited significant redoximorphic features and Bg horizons that indicate a ponded floodplain paleoenvironment, while others contained deep Bk horizons (>100 cm) consistent with more well-drained, but still sub-humid to humid conditions. Based on the identification of these well-developed soil features, along with distinct horizonation and root development, paleosols were robustly correlated and sampled throughout the Formation, and environmental descriptors were assigned. To further examine the question of regional terrestrial climate/environmental change, whole rock geochemistry (XRF) samples from paleosol depth profiles were analyzed for use

  8. Glof Study in Tawang River Basin, Arunachal Pradesh, India

    Science.gov (United States)

    Panda, R.; Padhee, S. K.; Dutta, S.

    2014-11-01

    Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a

  9. Variations of hydrological characteristics at the rivers of different size in the Lena river basin

    Science.gov (United States)

    Semenova, Olga; Tananaev, Nikita; Lebedeva, Luidmila; Popova, Evdokiya

    2016-04-01

    There are many speculations about possible impact of climate change at hydrological regime of Northern Eurasia, and permafrost basins in particular. Though the changes of flow of large rivers are relatively well described, the trends for small and middle-size watersheds are unknown. After the papers by Shiklomanov et al. (2007) and Smith et al. (2007) examining the variations of maximum and minimum flow in Northern Russia by 2001 there was no much update in this issue. In this study we compiled the database of continuous daily runoff for about 110 gauges within the Lena River basin with the order of basin area from 10 to 100000 sq.km. All currently functioning flow gauges with continuous observations not less than 35 years were selected for the database which contains the data up to 2013. For chosen gauges the parameters of row-correlation, cyclic recurrence and the stationarity of main runoff characteristics (mean, maximum and minimum flow) were estimated. The conclusions are drawn about the evidence of unsteadiness and/or internal correlation in runoff series; the robust indicators of the intensity of detected changes are evaluated; the duration of water cycles and evaluation the spatial correlation between water cycles are explored. The study is supported by Russian Foundation for Basic Research (project 15-35-21146 mol_a).

  10. Systemic analysis of desertification processes taking place in the Limpopo river basin

    Science.gov (United States)

    Messina, Mario; Attorre, Fabio; Vitale, Marcello

    2016-04-01

    Desertification and land degradation are phenomena that ranks among the greatest environmental challenges of our time. Desertification is a global issue, with serious implications worldwide for biodiversity, socio-economic stability and sustainable development. Biophysical indicators of land degradation and desertification, like Net Primary Productivity (NPP) and Total Ecosystem Respiration (Reco) were provided by remote sensing technology (MODIS). The study aims to evaluate the dynamical changes of NPP and Reco in the Limpopo river basin, a Southern African region that includes, Botswana, Mozambique, South Africa and Zimbabwe, during the time period 2001-2010. In particular, the relations between NPP, Reco, environmental, physiological and land use parameters have been widely investigated through the application of a new and powerful statistical classifier, the Random Forest Analysis (RFA), and a general non-linear model, the Response Surface Regression Model (GRM). RFA highlighted that Temperature is one of the most important predictors affecting NPP and Reco in the Limpopo river basin. Conversely, other environmental parameters like, Precipitation, Evapotranspiration and Vegetation cover rarely influence NPP and Reco. Our results provide information on desertification and land degradation phenomena and a first step for identifying practices to mitigate their negative impacts. However, it must be taken into account that NPP and Reco depend by a multitude of factors (e.g. human activities, socio-economic policies) and can vary in relation to spatial and temporal scale. In order to achieve a better understanding of land degradation and desertification processes, land use and socio-economic variables should be considered.

  11. Assessment of Climate Change and Hydrological Responses of the Mara River Basin, Kenya/Tanzania

    Science.gov (United States)

    Dessu, S. B.; Melesse, A. M.

    2012-12-01

    Mara River Basin (MRB) is endowed with diverse cultural heritage and pristine biodiversity. Climate change is predicated to exacerbate land degradation and reduction in the fauna and flora affecting livelihood and the Mara-Serengeti ecosystem. We employed past and projected climate scenarios from sixteen Global Circulation Models (GCMs) outputs and historical records to better understand the climate dynamics and its implication on the hydrological system of the MRB. Nine of the sixteen GCMs showed positive correlation (Mara river flow will experience significant changes in all scenarios with extents depending on the choice of GCM and downscaling technique (Figure 2). Findings of the study point to a higher impact of climate change in the basin, hence incorporating the negative and positive aspects in strategic planning may promote sustainable development in MRB. Figure 1. % change of the 2050s and 2080s rainfall from the control period at Bomet, Keekorok GL and Buhemba TC of the MRB for the A1B, A2 and B1 SRES scenarios using the Delata and Direct downscaling mehtods. Figure 2. Annual average runoff based on downscaled rainfall and temperature data for the MRB. The trend of each model hydrograph was plotted with the corresponding R2 Value. Average of the five GCMs was also included.

  12. Implication of recent climate change for the hydrology of the source region of the Yellow River

    Science.gov (United States)

    Su, Fengge; Meng, Fancong; Tong, Kai

    2014-05-01

    The basin upstream of the Tangnahai station (UYE), with an area of 121972 km2, is known as the source region of the Yellow River (YR) which is the second largest river in China. The UYE accounts for about 16% of the YR basin area, but it produces about 38% of the total annual runoff, and thus is considered to be the "water tower" of the entire basin. The UYE has experienced a warming trend of 0.41°C/10y during 1961-2009. Accompanied by the warming climate, total discharge in the UYE has shown a decreasing trend over the past 49 years. In this work, we analyze the spatial-temporal changes of climate factors and water balance terms in the UYE during 1961-2009, including precipitation, temperature, runoff, evapotranspiration, snow cover extent, and terrestrial water storage change, from gauge observations, model simulations, and satellite retrievals. This work aims to better understand the water budget change characters in the UYE in relation to the climate factors in the past 5 decades. An improved understanding certainly has implications for the sustainable management of water resources not only for the UYE but also for the entire Yellow River basin.

  13. Preliminary study on land surface characteristics over Huaihe River Basin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The analysis of the flux observation dada from the Huaihe River Basin Experiment (HUBEX) shows that, in semi-humid monsoon regions, latent heat flux is as important as sensible heat flux in most situations. Moreover, it can even dominate the sensible heat flux in cropland and paddy field. This is distinct from that for arid and semi-arid regions where the sensible heat flux is dominant. Under clear sky conditions, the soil temperatures in different vertical layers all exhibit certain diurnal variations, and the magnitude decreases with depth to less than 1℃ at a depth of 60 cm. This depth is considered as the transition layer for the soil moisture variation. On the other hand, the vertical profile of soil water content varies with the soil texture and even weather conditions, and the layer with maximum soil water content can also be found in Jiangji station during June 1998.

  14. Incorporating safety into surface haulage in the Powder River basin

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, W.; Jennings, C.

    1996-12-31

    The Powder River Basin (PRB) coal deposit extends from southeast Montana to northeast Wyoming. This paper describes a number of haulage practices and tools in use at several mines of the southern PRB and the way in which safety has been designed into and implemented for surface haulage of coal and overburden. Experiences described herein focus on the northeastern corner of Wyoming. All the mines in this area rely on safe and efficient movement of enormous volumes of material, and the results achieved in safety underscore the planning and attention to detail present in the PRB. There are currently 12 large surface mines (those greater than 10.0MM tons/year) operating in this area. In 1995, these mines produced over 230.0MM tons of coal.

  15. FLORISTIC STUDY IN THE LOWER PAPAGAYO RIVER BASIN, GUERRERO, MEXICO

    Directory of Open Access Journals (Sweden)

    Blanca Estela Carreto-Pérez

    2015-11-01

    Full Text Available We present the floristic composition of the Papagayo river basin, Guerrero, México.Field work was carried out from June 2011 to June 2012. We identified a total of 204 species of vascular plants, including 73 families and 163 genus. Families Fabaceae,Poaceae, Asteraceae, Euphorbiaceae and Rubiaceae represented 41% of all species and 38% of the genus in the study area. The herbaceous plant life form was the best represented with 81 species (40%. Were determined 10 vegetation types, of which the tropical deciduous forest covers the largest area and has the richest flora. Eleven species were recorded under the category of threatened by NOM-059-SEMARNAT-2010, of which one is endemic to Mexico (Rhizophora mangle.

  16. Mercury pollution in the upper Beni River, Amazonian Basin: Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Maurice-Bourgoin, L. [ORSTOM, French Scientific Research Inst. for Development by Cooperation, La Paz (Bolivia); Quiroga, Irma [Univ. Mayor de San Andres, La Paz (Bolivia). Chemical Research Inst.; Guyot, J.L. [ORSTOM, French Scientific Research Inst. for Development by Cooperation, Brasilia, DF (Brazil); Malm, O. [Univ. Federal do Rio de Janeiro, RJ (Brazil). Inst. de Biofisica

    1999-06-01

    Mercury contamination caused by the amalgamation of gold in small-scale gold mining is an environmental problem of increasing concern, particularly in tropical regions like the Amazon, where a new boom of such gold mining started in the 1970s. In Brazil, research into these problems has been carried out for many years, but there is no available data for Bolivia. The present paper surveys mercury contamination of a Bolivian river system in the Amazon drainage basin, measured in water, fish, and human hair. High concentrations in fish and human hair from consumers of carnivorous fish species are reported. The potential health risk from fish consumption was evident in people living downstream of gold-mining activities, but not in the mining population itself 24 refs, 3 figs, 2 tabs

  17. Problems of riverbed evolution in the basin of the Ural River

    Science.gov (United States)

    Padalko, Yu. A.; Chibilyov, A. A.

    2017-08-01

    Aspects of riverbed evolution including bank erosion in the Ural River basin have been considered in this paper. The natural morphodynamic types of riverbeds have been described. The spatial features of their genesis have been characterized within the Ural River basin. To study the riverbed processes, decoding of remote sensing data of the water surface has been used. The risks for the infrastructure facilities and for the residential districts have been analyzed in terms of the bank erosion in the Ural River basin. The issues concerning the border between the Russian Federation and the Republic of Kazakhstan due to riverbed reconfiguration of the Ural River have been outlined. Maps of the development of bank erosion in the Ural River basin have been created. A way to solve the problem of riverbed evolution along the border area has been proposed by organizing an Intergovernmental Specially Protected Natural Zone.

  18. Collaborative Modeling in New Mexico's Upper Gila and San Francisco River Basin

    Science.gov (United States)

    Tidwell, V. C.; Sun, A. C.; Klise, G. T.; Peplinski, W. J.; Brainard, J. R.; Aragon, C. A.

    2007-12-01

    The 2005 Arizona Water Settlements Act (AWSA) has given southwestern New Mexico a unique opportunity to appropriate water from the Upper Gila River basin. This appropriation calls for Arizona irrigators to "trade" their existing use of Gila River water for Central Arizona Project water to realize New Mexico's legal right to develop water originating in its portion of the Upper Gila River watershed. The complexity of the AWSA and various stakeholders interested in the implications of the settlement has led to the development of a collaborative modeling team. As a team member, Sandia National Laboratories is tasked with building an integrated basin scale system-dynamics model that can implement the constraints outlined in the AWSA by projecting water supply and demand scenarios into the future. By building this model, stakeholders will gain insight into the hydrologic complexities inherent in a river basin, and it will allow them to evaluate whether alternate water use scenarios will be allowed under the constraints outlined by the AWSA. The model replicates historic surface and ground water conditions in the basin using available data for supply, including gauges that measure stream flow, ditch flow, and precipitation. Demands are measured through annual hydrographic survey records for agricultural production, industrial water use by mining, municipal and domestic use in both urban and rural communities, and riparian evapotranspiration. Within the system-dynamics framework, volumetric flow of water is the dynamic state variable calculated from one river reach to the next. Stream gauge, climate and consumptive use data are used to calibrate the historic baseline flows. There is a great deal of uncertainty that must be addressed when attempting to model a large basin. Integrating a watershed model to add the contribution of ungauged tributaries is part of this effort. Another challenge is the presence of federally listed endangered avian and aquatic species whose flow

  19. Distribution of chironomidae (Insecta: Diptera) in polluted rivers of the Juru River Basin, Penang, Malaysia.

    Science.gov (United States)

    Al-Shami, Salman A; Rawi, Che Salmah Md; HassanAhmad, Abu; Nor, Siti Azizah Mohd

    2010-01-01

    The influence of physical and chemical parameters on the abundance and diversity of chironomids was studied in six rivers with moderate to highly polluted water in the Juru River Basin. The rivers: Ceruk Tok Kun (CTKR) as reference site, and polluted rivers of Pasir (PR), Juru (JR), Permatang Rawa (PRR), Ara (AR) and Kilang Ubi (KUR) were sampled over a period of five months (November 2007-March 2008). Nine chirnomid species: Chironimus kiiensis, C. javanus, Polypedilum trigonus, Microchironomus sp., Dicrotendipes sp., Tanytarsus formosanus, Clinotanypus sp., Tanypus punctipennis and Fittkauimyia sp. were identified. Assessment of their relationships with several environmental parameters was performed using the canonical correspondence analysis (CCA). Tanytarsus formosanus was the most dominant in the relatively clean CTKR and moderately polluted JR with mean densities of 19.66 and 25.32 m(-2), respectively while C. kiiensis was abundant in more polluted rivers. Tanytarsus formosanus, Dicrotendipes sp. and Microchironomus sp. were grouped under moderate to high water temperature, total organic matter (TOM), total suspended solids (TSS), velocity, pH, phosphates and sulphates. However, Tanypus punctipennis, Fittkauimyia sp., and Clinotanypus sp. were associated with high contents of river sediment such as TOM, Zn and Mn and water ammonium-N and nitrate-N and they were associated with higher dissolved oxygen (DO) content in the water. Chironomus kiiensis, C. javanus and P. trigonus showed positive relationships with TOM, ammonium-N and nitrate-N as well as trace metals of Zn, Cu and Mn. These three species could be considered as tolerant species since they have the ability to survive in extreme environmental conditions with low DO and high concentrations of pollutants. Based on the water parameter scores in all rivers, the highest diversity of chironomid larvae was reported in CTKR. With higher concentrations of organic and/or inorganic pollutants as reported in PPR

  20. Impact of climate change on river discharge in the Teteriv River basin (Ukraine)

    Science.gov (United States)

    Didovets, Iulii; Lobanova, Anastasia; Krysanova, Valentina; Snizhko, Sergiy; Bronstert, Axel

    2016-04-01

    The problem of water resources availability in the climate change context arises now in many countries. Ukraine is characterized by a relatively low availability of water resources compared to other countries. It is the 111th among 152 countries by the amount of domestic water resources available per capita. To ensure socio-economic development of the region and to adapt to climate change, a comprehensive assessment of potential changes in qualitative and quantitative characteristics of water resources in the region is needed. The focus of our study is the Teteriv River basin located in northern Ukraine within three administrative districts covering the area of 15,300 km2. The Teteriv is the right largest tributary of the Dnipro River, which is the fourth longest river in Europe. The water resources in the region are intensively used in industry, communal infrastructure, and agriculture. This is evidenced by a large number of dams and industrial objects which have been constructed from the early 20th century. For success of the study, it was necessary to apply a comprehensive hydrological model, tested in similar natural conditions. Therefore, an eco-hydrological model SWIM with the daily time step was applied, as this model was used previously for climate impact assessment in many similar river basins on the European territory. The model was set up, calibrated and validated for the gauge Ivankiv located close to the outlet of the Teteriv River. The Nash-Sutcliffe efficiency coefficient for the calibration period is 0.79 (0.86), and percent bias is 4,9% (-3.6%) with the daily (monthly) time step. The future climate scenarios were selected from the IMPRESSIONS (Impacts and Risks from High-End Scenarios: Strategies for Innovative Solutions, www.impressions-project.eu) project, which developed 7 climate scenarios under RCP4.5 and RCP8.5 based on GCMs and downscaled using RCMs. The results of climate impact assessment for the Teteriv River basin will be presented.

  1. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    Directory of Open Access Journals (Sweden)

    K. Nakayama

    2015-04-01

    Full Text Available Since marine derived nutrients (MDN are transported not only in river channels but also across the entire river basin, including via ground water and migratory animals, it is necessary to investigate the contribution of MDN to the forest floor (soils in order to quantify the true role of MDN at the river ecosystem scale. This study investigated the contribution of pink (Oncorhynchus gorbuscha and chum salmon (O. keta to total oceanic nitrogen (TN input across a river basin using stable isotope analysis (SIA of nitrogen (δ15N. The contribution of TN entering the river basin by salmon was 23.8 % relative to the total amount of TN exported from the river basin, providing a first estimate of MDN export for a river basin. The contribution of nitrogen from the ocean to the river basin soils was between 22.9 and 23.8 %. Furthermore, SIA showed that the transport of oceanic TN by sea eagles (Haliaeetus spp. was greater than that by bears (Ursus arctos, which had previously been that bears are thought to be the major animal transporter of nutrients in the northern part of Japan.

  2. Modelling ecological flow regime: an example from the Tennessee and Cumberland River basins

    Science.gov (United States)

    Knight, Rodney R.; Gain, W. Scott; Wolfe, William J.

    2012-01-01

    Predictive equations were developed for 19 ecologically relevant streamflow characteristics within five major groups of flow variables (magnitude, ratio, frequency, variability, and date) for use in the Tennessee and Cumberland River basins using stepbackward regression. Basin characteristics explain 50% or more of the variation for 12 of the 19 equations. Independent variables identified through stepbackward regression were statistically significant in 78 of 304 cases (α > 0.0001) and represent four major groups: climate, physical landscape features, regional indicators, and land use. Of these groups, the regional and climate variables were the most influential for determining hydrologic response. Daily temperature range, geologic factor, and rock depth were major factors explaining the variability in 17, 15, and 13 equations, respectively. The equations and independent datasets were used to explore the broad relation between basin properties and streamflow and the implication of streamflow to the study of ecological flow requirements. Key results include a high degree of hydrologic variability among least disturbed Blue Ridge streams, similar hydrologic behaviour for watersheds with widely varying degrees of forest cover, and distinct hydrologic profiles for streams in different geographic regions. Published in 2011. This article is a US Government work and is in the public domain in the USA.

  3. Hydrogeologic data for the lower Housatonic River basin, Connecticut

    Science.gov (United States)

    Grossman, I.G.; Wilson, William E.

    1970-01-01

    This report contains hydrologic and geologic data collected for an investigation of the lower Housatonic River basin by the U.S. Geological Survey in financial cooperation with the Connecticut Water Resources Commission. The report also summarizes data that are available in other publications. The towns within the 557 square mile area of the basin in western Connecticut include all of Beacon Falls, Middlebury, Naugatuck, Oxford, Seymour, Thomaston, Waterbury, Watertown, and Woodbury; and parts of Ansonia, Bethany, Bethlehem, Bristol, Burlington, Cheshire, Derby, Easton, Goshen, Narwinton, Litchfield, Milford, Monroe, Morris, New Hartford, Newtown, Norfolk, Orange, Plymouth, Prospect, Roxbury, Shelton, Southbury, Stratford, Torrington, Trumbull, Washington, Winchester, Wolcott, and Woodbridge. The factual information on the following pages was the basis for a companion interpretive report, Connecticut Water Resources Bulletin No. 19 (Wilson, W. E., and others, in preparation, 1970). The basic-data report can be used alone for detailed information needed in planning water resources development at specific sites or it can be used to supplement the interpretive report.

  4. Hydrologic investigations in the Araguaia-Tocantins River basin (Brazil)

    Science.gov (United States)

    Snell, Leonard J.

    1979-01-01

    The Araguaia-Tocantins River basin system of central and northern Brazil drains an area of about 770,000 square kilometers and has the potential for supporting large-scale developments. During a short visit to the headquarters of the Interstate Commission for the Araguaia-Tocantins Valley and to several stream-gaging stations in June 1964, the author reviewed the status of the streamflow and meteorological data-collection programs in relation to the streamflow and meteorological data-collection programs in relation to the pressing needs of development project studies. To provide data for areal and project-site studies and for main-stream sites, an initial network of 33 stream gaging stations was proposed, including the 7 stations then in operation. Suggestions were made in regard to operations, staffing and equipment. Organizational responsibilities for operations were found to be divided uncertainly. The Brazilian Meteorological Service had 15 synoptic stations in operation in and near the basin, some in need of reconditioning. Plans were at hand for the addition of 15 sites to the synoptic network and for limited data collection at 27 other sites. The author proposed collection of precipitation data at about 50 other locations to achieve a more representative areal distribution. Temperature, evaporation, and upper-air data sites were suggested to enhance the prospective hydrometeorological studies. (USGS)

  5. GRACE-based estimates of water discharge over the Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    Qiong Li; BO Zhong; Zhicai Luo; Chaolong Yao

    2016-01-01

    As critical component of hydrologic cycle,basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles.Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP,discharge of the Yellow River basin are estimated from the water balance equation.While comparing the results with discharge from GLDAS model and in situ measurements,the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.

  6. Alternative Water Allocation in Kyrgyzstan: Lessons from the Lower Colorado River Basin and New South Wales

    Directory of Open Access Journals (Sweden)

    Nazir Mirzaev

    2010-08-01

    Full Text Available Focus group discussions and a modeling approach were applied to determine policy and regulatory refinements for current water allocation practices in Kyrgyzstan. Lessons from the Lower Colorado River basin, Texas and New South Wales, Australia were taken into consideration. The paper analyzes the impact of adopting some of these interventions within the socio-environmental context that currently prevails in Kyrgyzstan. The optimization model for water distribution at the river-basin scale was developed using GAMS 2.25 software. Application of the model to the Akbura River basin indicated efficiencies in the proposed institutional rules especially in low water years.

  7. Providing peak river flow statistics and forecasting in the Niger River basin

    Science.gov (United States)

    Andersson, Jafet C. M.; Ali, Abdou; Arheimer, Berit; Gustafsson, David; Minoungou, Bernard

    2017-08-01

    Flooding is a growing concern in West Africa. Improved quantification of discharge extremes and associated uncertainties is needed to improve infrastructure design, and operational forecasting is needed to provide timely warnings. In this study, we use discharge observations, a hydrological model (Niger-HYPE) and extreme value analysis to estimate peak river flow statistics (e.g. the discharge magnitude with a 100-year return period) across the Niger River basin. To test the model's capacity of predicting peak flows, we compared 30-year maximum discharge and peak flow statistics derived from the model vs. derived from nine observation stations. The results indicate that the model simulates peak discharge reasonably well (on average + 20%). However, the peak flow statistics have a large uncertainty range, which ought to be considered in infrastructure design. We then applied the methodology to derive basin-wide maps of peak flow statistics and their associated uncertainty. The results indicate that the method is applicable across the hydrologically active part of the river basin, and that the uncertainty varies substantially depending on location. Subsequently, we used the most recent bias-corrected climate projections to analyze potential changes in peak flow statistics in a changed climate. The results are generally ambiguous, with consistent changes only in very few areas. To test the forecasting capacity, we ran Niger-HYPE with a combination of meteorological data sets for the 2008 high-flow season and compared with observations. The results indicate reasonable forecasting capacity (on average 17% deviation), but additional years should also be evaluated. We finish by presenting a strategy and pilot project which will develop an operational flood monitoring and forecasting system based in-situ data, earth observations, modelling, and extreme statistics. In this way we aim to build capacity to ultimately improve resilience toward floods, protecting lives and

  8. Environment, poverty and health linkages in the Wami River basin: A search for sustainable water resource management

    Science.gov (United States)

    Madulu, Ndalahwa F.

    The Wami Rivers basin is an important area due to its diversified use which benefits a multi-diversity of stakeholders. While large scale irrigated sugar production is the main issue of concern upstream, there are other equally important socio-economic activities which include biodiversity and environmental conservation, domestic water supply, livestock water needs, and fishing. A large water supply project has just been completed downstream of the Wami River to provide water for the Chalinze township and surrounding villages. Other important undertakings include irrigated rice farming in Dakawa area, livestock keeping activities, and the establishment of the Sadani National Park (SANAPA) and the Wami-Mbiki Wildlife Management Area (WMA). The Wami River basin forms significant parts of both the Wami-Mbiki WMA and the SANAPA wildlife conservation areas. Regardless of its importance, the basin is increasingly being degraded through deforestation for agricultural expansion, timber, and more important charcoal making. The basin is also being polluted through disposal of excess molasses from the sugar industry, and use of poisonous substances and herbs in fishing. The worsening environmental condition in the basin has become a health threat to both people in the surrounding villages and wildlife. To a large extent, such changes are intensifying poverty levels among the local population. These changes are raising concerns about the long-term environmental sustainability and health implications of the current water use competition and conflicts in the basin. The purpose of this paper is to examine the main water resource use conflicts and how they affect environmental sustainability in the long-run. It also intends to establish linkages between wildlife management, pastoralism, agricultural activities and how such linkages influence poverty alleviation efforts in the basin. An attempt has been made to examine the environmental and health implications of human activities

  9. Yakima River Basin Phase II Fish Screen Evaluations, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jessica A.; McMichael, Geoffrey A.; Chamness, Mickie A.

    2003-03-01

    In 2002, the Pacific Northwest National Laboratory evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. Pacific Northwest National Laboratory collected data to determine whether velocities in front of the screens and in the bypasses met National Marine Fisheries Service criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. In addition, Pacific Northwest National Laboratory conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2002, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Marine Fisheries Service. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to increase safe juvenile fish passage. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris should be improved at some sites.

  10. Economic Peculiarities of the Romanian Tisa River Basin

    Directory of Open Access Journals (Sweden)

    ANA-MARIA POP

    2010-01-01

    Full Text Available A possible answer to the current challenges of the Tisa catchment area, correlated with water management, social and economic development, environmental conservation, is the transnational initiative of the five countries drained by the tributaries of the Tisa River. In this context, the spatial development has a major impact on the Romanian Tisa catchment area by providing the economic cohesion. The purpose of the present paper is to define the current status of economy in the Romanian Tisa River Basin, through the filter of achieving the level of competitiveness claimed by the national, European, or global authorities. By setting several quantitative indicators, analyzed for a standard territorial level (NUTS 3, for a definite time interval (2002-2007, those more or less competitive economic branches, activities or aspects of the analyzed territory were identified, and, at the same time, the elements that “hinder” development, the traditional remnants, or the existing entrepreneurial initiatives. On the basis of relevant indicators, the calculation of an index of competitiveness was proposed at territorial level, the results certifying a certain level of competitiveness for the region under consideration.

  11. Floods simulation in the Crişul Alb River Basin using hydrological model CONSUL

    Science.gov (United States)

    Mic, Rodica Paula; Corbus, Ciprian; Matreata, Marius

    2016-04-01

    For the simulation of floods, in the Crişul Alb River Basin, Romanian hydrological model CONSUL with lumped parameters was used. This deterministic mathematical rainfall-runoff model compute discharge hydrographs on configured river sub-basins, their channel routing and composition on the main river and tributaries and finally their routing and mitigation through reservoirs, according to the schematic representation (topological modelling) of how water flows and integrate in a river basin. After topological modelling 42 sub-basins and 19 river reaches resulted for the Crişul Alb River Basin model configuration, established according to the position of tributaries, hydrometric stations and reservoirs that influence flow. The CONSUL model used as input data, for each sub-basin, average values of precipitation and air temperature determined based on the measured values of weather stations in the basin. Calculation of average values was performed using a pre-processing program of meteorological data from rectangular grid nodes corresponding to Crişul Alb River Basin, averaging being achieved as weighted values based on the representativeness of these nodes for each analyzed sub-basin. Calibration of model parameters was performed by the simulation of 25 rainfall-runoff events from the period 1975 - 2010, chosen to cover a wide range of possible situations in the case of floods formation. By simulating floods from the hydrometric stations located in the closing sections of river sub-basins were determined the infiltration and unit hydrograph parameters and by simulating floods from the hydrometric stations located in the downstream sections of the river reaches hydrometrically controlled were determined the routing equation parameters. The parameters thus determined allow building some generalization relationships of these parameters according to the morphometric characteristics of the river sub-basins (surface, slope) or river reaches (length, slope). Based on these

  12. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Basin Characteristics, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and...

  13. The use of remote sensing and geographic information systems for the evaluation of river basins: a case study for Turkey, Marmara River Basin and Istanbul.

    Science.gov (United States)

    Ulugtekin, Necla; Balcik, Filiz Bektas; Dogru, Ahmet O; Goksel, Cigdem; Alaton, Idil Arslan; Orhon, Derin

    2009-03-01

    The aim of this study was to determine sensitive river basins and specific areas that urgently need planning activities for sustainable resource and environmental management. In this context, a combination of remote sensing (RS) and geographic information systems (GIS) were employed. For that purpose, a comprehensive overview of the current situation of Turkish river basins in terms of existing spatial data was provided and all tabular data gathered from the national authorities on regional basis was assessed in combination with the geometric data of Turkish river basins in a GIS environment. Considering the GIS studies that covered all 26 Turkish basins, the Marmara River Basin was selected as the model sensitive region and was studied in more detail by using 2000 dated Landsat 7 ETM mosaic satellite image. Results of this comprehensive study indicated that Istanbul, which is located in the basin under study and the largest metropolitan of Turkey, was determined as the most populated and urbanized area of the region. Istanbul was further examined to determine the expansion of urban areas over a time period of 16 years using Landsat images dated 1984, 1992 and 2000. Finally, interpretations were done by combining the demographic and statistical data on urban wastewater treatment plants to present the prevailing situation of the water treatment facilities in Istanbul. Our study not only delineated the importance of applying environmental policies correctly for the efficient installation and operation of urban wastewater treatment plants in Istanbul but also demonstrated that effective urban wastewater management is a nationwide problem in Turkey.

  14. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington

    Science.gov (United States)

    Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E.

    2009-01-01

    The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet. Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4x10-7 to 4 ft/d. Variations in the concentrations of geochemical solutes and the concentrations and ratios of the isotopes of hydrogen, oxygen, and carbon in groundwater provided information on the hydrogeologic framework and groundwater movement. Stable isotope ratios of water (deuterium and oxygen-18) indicated dispersed sources of groundwater recharge to

  15. Assessment of Wetland Ecosystem Health in the Yangtze and Amazon River Basins

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2017-03-01

    Full Text Available As “kidneys of the earth”, wetlands play an important role in ameliorating weather conditions, flood storage, and the control and reduction of environmental pollution. With the development of local economies, the wetlands in both the Amazon and Yangtze River Basins have been affected and threatened by human activities, such as urban expansion, reclamation of land from lakes, land degradation, and large-scale agricultural development. It is necessary and important to develop a wetland ecosystem health evaluation model and to quantitatively evaluate the wetland ecosystem health in these two basins. In this paper, GlobeLand30 land cover maps and socio-economic and climate data from 2000 and 2010 were adopted to assess the wetland ecosystem health of the Yangtze and Amazon River Basins on the basis of a pressure-state-response (PSR model. A total of 13 indicators were selected to build the wetland health assessment system. Weights of these indicators and PSR model components, as well as normalized wetland health scores, were assigned and calculated based on the analytic hierarchy process method. The results showed that from 2000 to 2010, the value of the mean wetland ecosystem health index in the Yangtze River Basin decreased from 0.482 to 0.481, while it increased from 0.582 to 0.593 in the Amazon River Basin. This indicated that the average status of wetland ecosystem health in the Amazon River Basin is better than that in the Yangtze River Basin, and that wetland health improved over time in the Amazon River Basin but worsened in the Yangtze River Basin.

  16. Institutional Arrangements for River Basin Management: A Case Study of Comparison between the United States and China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Gang-yan

    2007-01-01

    This note compares institutional arrangements for water resources management in two river basins, namely, those of the Susquehanna River in the United States and the Yangtze River in China. The Susquehanna River Basin Commission is composed of the US federal government and the three states of New York, Pennsylvania, and Maryland through which the Susquehanna River passes. Under the authority of the Susquehanna River Basin Compact, the Commission deals with water resources problems throughout its vast drainage area. In contrast, the Changjiang(Yangtze River) Water Resources Commission (CWRC) lacks relative effectiveness in mobilizing provincial governments in transboundary water resources management.

  17. River monitoring from satellite radar altimetry in the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-03-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. In this study, retracked Envisat altimetry data was extracted over the Zambezi River Basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied the accuracies of the different methods were found to be comparable, with RMSE values ranging from 5.5 to 7.4 % terms of high flow estimation relative to in situ gauge measurements. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 8.2 and 25.8 % of the high flow estimates.

  18. Downstream ecosystem responses to middle reach regulation of river discharge in the Heihe River Basin, China

    Science.gov (United States)

    Zhao, Yan; Wei, Yongping; Li, Shoubo; Wu, Bingfang

    2016-11-01

    Understanding the oasis ecosystem responses to upstream regulation is a challenge for catchment management in the context of ecological restoration. This empirical study aimed to understand how oasis ecosystems, including water, natural vegetation and cultivated land, responded to the implementation of the Ecological Water Diversion Project (EWDP) in the Heihe River in China. The annual Landsat images from 1987 to 2015 were firstly used to characterize the spatial extent, frequency index and fractional coverage (for vegetation only) of these three oasis ecosystems and their relationships with hydrological (river discharge) and climatic variables (regional temperature and precipitation) were explored with linear regression models. The results show that river regulation of the middle reaches identified by the discharge allocation to the downstream basin experiences three stages, namely decreasing inflow (1987-1999), increasing inflow (2000-2007) and relative stable inflow (2008-2015). Both the current and previous years' combined inflow determines the surface area of the terminal lake (R2 = 0.841). Temperature has the most significant role in determining broad vegetation distribution, whereas hydrological variables had a significant effect only in near-river-channel regions. Agricultural development since the execution of the EWDP might have curtailed further vegetation recovery. These findings are important for the catchment managers' decisions about future water allocation plans.

  19. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin

    Science.gov (United States)

    Lin, Yen-Heng; Lo, Min-Hui; Chou, Chia

    2016-02-01

    Adding a groundwater component to land surface models affects modeled precipitation. The additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focuses on how groundwater dynamics affect atmospheric convection in the Amazon River basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. Additionally, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation that results from downwelling transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, with implications for precipitation changes during the dry season, observed in most current climate models.

  20. Potential Negative Effects of Groundwater Dynamics on Dry Season Convection in the Amazon River Basin

    Science.gov (United States)

    Lin, Y. H.; Lo, M. H.; Chou, C.

    2014-12-01

    Adding a groundwater component to land surface models affects modeled precipitation because the additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focused on how groundwater dynamics affect atmospheric convection in the Amazon River Basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. In addition, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation resulting from downward transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, which have implications for precipitation changes during the dry season observed in most current climate models.

  1. Studies on water resources carrying capacity in Tuhai river basin based on ecological footprint

    Science.gov (United States)

    Wang, Chengshuai; Xu, Lirong; Fu, Xin

    2017-05-01

    In this paper, the method of the water ecological footprint (WEF) was used to evaluate water resources carrying capacity and water resources sustainability of Tuhai River Basin in Shandong Province. The results show that: (1) The WEF had a downward trend in overall volatility in Tuhai River Basin from 2003 to 2011. Agricultural water occupies high proportion, which was a major contributor to the WEF, and about 86.9% of agricultural WEF was used for farmland irrigation; (2) The water resources carrying capacity had a downward trend in general, which was mostly affected by some natural factors in this basin such as hydrology and meteorology in Tuhai River Basin; (3) Based on analysis of water resources ecological deficit, it can be concluded that the water resources utilization mode was in an unhealthy pattern and it was necessary to improve the utilization efficiency of water resources in Tuhai River Basin; (4) In view of water resources utilization problems in the studied area, well irrigation should be greatly developed at the head of Yellow River Irrigation Area(YRIA), however, water from Yellow River should be utilized for irrigation as much as possible, combined with agricultural water-saving measures and controlled exploiting groundwater at the tail of YRIA. Therefore, the combined usage of surface water and ground water of YRIA is an important way to realize agricultural water saving and sustainable utilization of water resources in Tuhai River Basin.

  2. Impact of climate change on hydrological behaviour and crop production in a glacial river basin

    Science.gov (United States)

    Remesan, Renji; Holman, Ian; Janes, Victoria

    2015-04-01

    Himalayan valleys are confronting severe climate change related issues (flash flood and landslides, water scarcity in higher altitudes) because of fluctuating monsoon precipitation and increasing seasonal temperatures. In this study, the Soil and Water Assessment Tool (SWAT) model has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. The Beas is regionally significant as it holds two giant dams, one which annually diverts 4700 Mm3 of water to a nearby basin. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream flow modelling. The model evaluation statistics for Daily River flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). We then applied the models within a scenario-neutral framework to develop hydrological and crop yield Impact Response Surfaces (IRS) for future changes in annual temperature and precipitation for the region from AR5. Future Q10 and Q90 daily flows indicate amplified 'flash flood' situations and increased low flows, respectively, with increasing temperatures due to increased snowmelt from retreating glaciers. Under existing crop and irrigation management practices, the IRS show decreasing and increasing crop yields for summer (monsoon) and winter (post monsoon) crops, respectively, with rising temperature. The sensitivity of winter (post monsoon) crop yields to precipitation increases with increasing temperature. The paper will consider the implications of the research for future agricultural water management and the potential of agronomic and irrigation adaptation to offset yield losses

  3. Hydrologic properties of coal beds in the Powder River Basin, Montana I. Geophysical log analysis

    Science.gov (United States)

    Morin, R.H.

    2005-01-01

    As part of a multidisciplinary investigation designed to assess the implications of coal-bed methane development on water resources for the Powder River Basin of southeastern Montana, six wells were drilled through Paleocene-age coal beds along a 31-km east-west transect within the Tongue River drainage basin. Analysis of geophysical logs obtained in these wells provides insight into the hydrostratigraphic characteristics of the coal and interbedded siliciclastic rocks and their possible interaction with the local stress field. Natural gamma and electrical resistivity logs were effective in distinguishing individual coal beds. Full-waveform sonic logs were used to determine elastic properties of the coal and an attendant estimate of aquifer storage is in reasonable agreement with that computed from a pumping test. Inspection of magnetically oriented images of the borehole walls generated from both acoustic and optical televiewers and comparison with coal cores infer a face cleat orientation of approximately N33??E, in close agreement with regional lineament patterns and the northeast trend of the nearby Tongue River. The local tectonic stress field in this physiographic province as inferred from a nearby 1984 earthquake denotes an oblique strike-slip faulting regime with dominant east-west compression and north-south extension. These stress directions are coincident with those of the primary fracture sets identified from the televiewer logs and also with the principle axes of the drawdown ellipse produced from a complementary aquifer test, but oblique to apparent cleat orientation. Consequently, examination of these geophysical logs within the context of local hydrologic characteristics indicates that transverse transmissivity anisotropy in these coals is predominantly controlled by bedding configuration and perhaps a mechanical response to the contemporary stress field rather than solely by cleat structure.

  4. Transport and Retention of Nitrogen, Phosphorus and Carbon in North America’s Largest River Swamp Basin, the Atchafalaya River Basin

    Directory of Open Access Journals (Sweden)

    Y. Jun Xu

    2013-04-01

    Full Text Available Floodplains and river corridor wetlands may be effectively managed for reducing nutrients and carbon. However, our understanding is limited to the reduction potential of these natural riverine systems. This study utilized the long-term (1978–2004 river discharge and water quality records from an upriver and a downriver location of the Atchafalaya River to quantify the inflow, outflow, and inflow–outflow mass balance of total Kjeldahl nitrogen (TKN = organic nitrogen + ammonia nitrogen, nitrate + nitrite nitrogen (NO3 + NO2, total phosphorous (TP, and total organic carbon (TOC through the largest river swamp basin in North America. The study found that, over the past 27 years, the Atchafalaya River Basin (ARB acted as a significant sink for TKN (annual retention: 24%, TP (41%, and TOC (12%, but a source for NO3 + NO2 nitrogen (6%. On an annual basis, ARB retained 48,500 t TKN, 16,900 t TP, and 167,100 t TOC from the river water. The retention rates were closely and positively related to the river discharge with highs during the winter and spring and lows in the late summer. The higher NO3 + NO2 mass outflow occurred throughout spring and summer, indicating an active role of biological processes on nitrogen as water and air temperatures in the basin rise.

  5. The politics of water payments and stakeholder participation in the Limpopo river basin, Mozambique

    Directory of Open Access Journals (Sweden)

    Rossella Alba

    2016-10-01

    Full Text Available Drawing from the experience of the Limpopo River Basin in Mozambique, the paper analyses the articulation of a water rights framework in the context of decentralised river basin governance and IWRM-inspired reforms. The nexus between financial autonomy, service provision, stakeholder participation and the resultant allocation of water within the river basin is explored by scrutinising the newly instituted system of water permits and payments. Three cases are examined: (1 parastatal agencies managing large perimeters of irrigated land; (2 large-scale commercial companies irrigating land; and (3 so-called focal points representing groups of smallholder irrigators. The three presented cases show that structural challenges, local geographies and power relations shape the final outcome of water reforms in relation to decentralised river basin management, stakeholdersʼ participation and accountability. Rather than improving accountability to users and securing the financial basis for sustainable infrastructure operation and maintenance, the permit system in place reinforces existing inequalities.

  6. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Slack Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Slack, P. B., 1981, Paleotectonics and hydrocarbon...

  7. Mineral Occurrence data for the Eocene Green River Formation in the Piceance and Uinta Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This legacy database lists occurrences of minerals identified in the Green River Formation in the Uinta and Piceance Basins, Utah and Colorado using X-ray...

  8. Thickness of the lower Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the lower Fort Union aquifer in the Powder River basin. The data are presented as ASCII text files that can be...

  9. Thickness of the Upper Hell Creek hydrogeologic unit in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the Upper Hell Creek hydrogeologic unit in the Powder River basin. The data are presented as ASCII text files that...

  10. Altitude of the top of the lower Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the lower Fort Union aquifer in the Powder River basin. The data...

  11. Thickness of the upper Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the upper Fort Union aquifer in the Powder River basin. The data are presented as ASCII text files that can be...

  12. 1:250,000-scale geology of the Carson River Basin, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital continuous geologic data for the Carson River Basin, Nevada and California. It was compiled from individual county 1:250,000-scale...

  13. Mapping the Soil Texture in the Heihe River Basin Based on Fuzzy Logic and Data Fusion

    National Research Council Canada - National Science Library

    Ling Lu; Chao Liu; Xin Li; Youhua Ran

    2017-01-01

    .... Here, we used an integrated method based on fuzzy logic theory and data fusion to map the soil texture in the Heihe River basin in an arid region of Northwest China, by combining in situ soil texture...

  14. Location of Photographs Showing Landslide Features in the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data points represent locations of photographs taken of landslides in the Little North Santiam River Basin, Oregon. Photos were taken in spring of 2010 during field...

  15. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Anna Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following U.S. Geological Survey Professional Paper: Anna, L.O., 1986, Geologic...

  16. Thickness of the middle Fort Union hydrogeologic unit in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the middle Fort Union hydrogeologic unit in the Powder River basin. The data are presented as ASCII text files that...

  17. Organochlorine pesticides in fishes and sediments from the Tensas River Basin, Lousiana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The aquatic habitats of the Tensas River Basin in northeastern Louisiana have been heavily impacted by sediment and agrichemical runoff due to intensive drainage,...

  18. 2011 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault River Basin survey area for the Puget Sound LiDAR Consortium and...

  19. Timber Harvest Change in the Little North Santiam River Basin, Oregon, 1995 to 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Using available aerial photos from approximately a 15-year period, changes in timber harvest were mapped in the Little North Santiam River Basin, Oregon. Timber...

  20. Landslide Deposit Boundaries for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been...

  1. Head Scarp Boundary for the Landslides in the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Polygons represent head scarps and flank scarps associated with landslide deposits in the Little North Santiam River Basin, Oregon. This work was completed as part...

  2. Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013

    Science.gov (United States)

    Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue

    2016-11-01

    A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.

  3. Biodiversity and conservation status of fish of Ceyhan River basin in Osmaniye, Turkey

    Directory of Open Access Journals (Sweden)

    Mahmut Dağlı

    2015-11-01

    The conservation measures suggested in this river basin must include strict regulation and control over removal of sand, controlling pollution and minimizing the threats caused by the increasing number of exotic species.

  4. Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana (prbclkg.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representation of the Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana. This theme was created...

  5. Point of Rocks, Black Butte faults, Green River Basin, Wyoming (grbfltg.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a line representation of faults in a portion of the the Green River Basin. The fault data are part of the National Coal Resource...

  6. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Structural Features

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Anna, L.O., 1986, Geologic framework of the ground water...

  7. Drainage areas for selected stream-sampling stations, Missouri River Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — As part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA), an investigation of the Missouri River Basin is being conducted to...

  8. Relationship of Rainfall Distribution and Water Level on Major Flood 2014 in Pahang River Basin, Malaysia

    National Research Council Canada - National Science Library

    Nur Hishaam Sulaiman; Mohd Khairul Amri Kamarudin; Mohd Ekhwan Toriman; Hafizan Juahir; Frankie Marcus Ata; Azman Azid; Noor Jima Abd Wahab; Roslan Umar; Saiful iskandar Khalit; Mokhairi Makhtar; Amal Arfan; Uca Sideng

    2017-01-01

    .... This article discusses about the relationship of rainfall distribution and water level on major flood 2014 in Pahang River Basin, Malaysia in helping decision makers to flood management system...

  9. Altitude of the top of the basal confining unit in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the basal confining unit in the Powder River basin. The data are...

  10. Aerial photo mosaic of the Wilson and Kilchis Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  11. River Basin Development and Human Rights in Eastern Africa — A Policy Crossroads

    National Research Council Canada - National Science Library

    Carr, Claudia J

    2017-01-01

    .... It examines major river basin development underway in the semi-arid borderlands of Ethiopia, Kenya and South Sudan and its disastrous human rights consequences for a half-million indigenous people...

  12. Aerial photo mosaic of the Miami River, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  13. Aerial photo mosaic of the Tillamook and Trask Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  14. Spatio-Temporal Variation in Water Quality of Orle River Basin, S.W. ...

    African Journals Online (AJOL)

    User

    2011-04-19

    Apr 19, 2011 ... activity of fertilizer applications and bush clearing and subsequent leaf litter .... River Basin, Management Science Review (MSR), Benin City, ... Reservoir”, Unpublished Ph.D. Thesis, Department of Botany, ... Techniques-A.

  15. Geospatial Dataset of Agricultural Lands in the Upper Colorado River Basin, 2007 - 10

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents the extent and spatial distribution of irrigated agricultural lands in the Upper Colorado River Basin for 2007-10. The boundaries in this...

  16. Altitude of the top of the upper Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the upper Fort Union aquifer in the Powder River basin. The data...

  17. Precipitation Frequency for Ohio River Basin, USA - NOAA Atlas 14 Volume 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GIS grid atlas contains precipitation frequency estimates for the Ohio River Basin and Surrounding states is based on precipitation data collected between...

  18. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Maughan and Perry Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Maughan, E.K., and Perry, W.J., Jr., 1986, Lineaments and...

  19. Water resources inventory of Connecticut Part 8: Quinnipiac River basin

    Science.gov (United States)

    Mazzaferro, David L.; Handman, Elinor H.; Thomas, Mendall P.

    1978-01-01

    The Quinnipiac River basin area in southcentral Connecticut covers 363 square miles, and includes all drainage basins that enter Long Island Sound from the Branford to the Wepawaug Rivers. Its population in 1970 was estimated at 535,000. Precipitation averages 47 inches per year and provides an abundant supply of water. Twenty-one inches returns to the atmosphere as evapotranspiration; the remainder flows directly to streams or percolates to the water table and discharges to Long Island Sound. Small amounts of water are exported from the basin by the New Britain Water Department, and small amounts are imported to the basin by the New Haven Water Company. The amount of water that can be developed at a given place depends upon precipitation, variability of streamflow, hydraulic properties and areal extent of the aquifers, and hydraulic connection between the aquifers and major streams. The quality of the water is determined by the physical environment and the effects of man. Stratified drift is the only aquifer capable of large sustained yields of water to individual wells. Yields of 64 screened wells tapping stratified drift range from 17 to 2,000 gpm (gallons per minute); their median yield is 500 gpm. Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and commonly are inadequate during dry periods. Till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire report area and include sedimentary, igneous, and metamorphic rock types. These aquifers supply small but reliable quantities of water to wells throughout the basin and are the chief source for many nonurban homes and farms. About 90 percent of the wells tapping bedrock yield at least 2 pgm, and much larger yields are occasionally reported. Maximum well yields of 305 gpm for sedimentary, 75 gpm for igneous, and 200 gpm for metamorphic bedrock have been reported. Water

  20. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    Science.gov (United States)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  1. Changes in Monthly Streamflow Conditions in the Missouri River Basin from 1957 to 2007

    Science.gov (United States)

    Anderson, M. T.; Stamm, J. F.; Norton, P. A.

    2008-12-01

    Observations of 50 years of continuous record at about 200 U.S. Geological Survey gages indicate that streamflow conditions are changing in the Missouri River Basin (MRB). Trends are evident in the annual streamflow records at 81 stations using the non-parametric Kendall Tau test. Where trends are significant, they generally are upward in the eastern portions of the basin and downward in the western portions of the basin. The reduced runoff in the western basin has resulted in main-stem reservoirs on the Missouri River that have operated at much less than full capacity for most of the last decade. Lower reservoir capacities result in significant economic effects such as reduced hydropower revenues, reduced recreation opportunities, and lower basin barge traffic. A change in the timing of streamflow or seasonality merits careful examination due to the implications for reservoir management, water supply strategies, and ecological ramifications. In this study, we examine streamflow trends by month within the MRB for the period 1957 to 2007. Two data sets were examined-202 stations with 51 years of record and a subset of 81 stations that presented a significant trend in annual flow. For both data sets, the month of April has the most stations (66) with upward trends, followed by March (59), then February (44) and May (44). The month of June has the fewest stations (18) with downward trends. Similarly, for both data sets, the months of September (57) and December (56) have the most stations with downward trends. The month of August has the fewest stations with downward trends (21). There is a strong geographic clustering of stations with trend directions. For example, most stations with trends in Colorado, North Dakota, South Dakota, Iowa, and Missouri are upward, whereas most stations with trends in Montana and Wyoming are downward. In 81 percent of the cases, more than one month exhibited a trend for a given station. The amount of water that these upward or downward

  2. Assessing the Resilience of a River Management Regime: Informal Learning in a Shadow Network in the Tisza River Basin

    Directory of Open Access Journals (Sweden)

    Jan Sendzimir

    2008-06-01

    Full Text Available Global sources of change offer unprecedented challenges to conventional river management strategies, which no longer appear capable of credibly addressing a trap: the failure of conventional river defense engineering to manage rising trends of disordering extreme events, including frequency and intensity of floods, droughts, and water stagnation in the Hungarian reaches of the Tisza River Basin. Extreme events punctuate trends of stagnation or decline in the ecosystems, economies, and societies of this river basin that extend back decades, and perhaps, centuries. These trends may be the long-term results of defensive strategies of the historical river management regime that reflect a paradigm dating back to the Industrial Revolution: "Protect the Landscape from the River." Since then all policies have defaulted to the imperatives of this paradigm such that it became the convention underlying the current river management regime. As an exponent of this convention the current river management regimes' methods, concepts, infrastructure, and paradigms that reinforce one another in setting the basin's development trajectory, have proven resilient to change from wars, political, and social upheaval for centuries. Failure to address the trap makes the current river management regime's resilience appear detrimental to the region's future development prospects and prompts demand for transformation to a more adaptive river management regime. Starting before transition to democracy, a shadow network has generated multiple dialogues in Hungary, informally exploring the roots of this trap as part of a search for ideas and methods to revitalize the region. We report on how international scientists joined one dialogue, applying system dynamics modeling tools to explore barriers and bridges to transformation of the current river management regime and develop the capacity for participatory science to expand the range of perspectives that inform, monitor, and

  3. Post conflict water management: learning from the past for recovery planning in the Orontes River basin

    OpenAIRE

    Saadé-Sbeih, Myriam; Zwahlen, François; Haj Asaad, Ahmed; Gonzalez, Raoul; Jaubert, Ronald

    2016-01-01

    Water management is a fundamental issue in post-conflict planning in Syria. Based on historical water balance assessment, this study identifies the drivers of the profound changes that took place in the Lebanese and Syrian parts of the Orontes River basin since the 1930s. Both drastic effects of the conflict on the hydro-system and the strong uncontrolled anthropization of the river basin prior to the crisis have to be considered in the design of recovery interventions.

  4. Neural network approach to stream-aquifer modeling for improved river basin management

    Science.gov (United States)

    Triana, Enrique; Labadie, John W.; Gates, Timothy K.; Anderson, Charles W.

    2010-09-01

    SummaryArtificial neural networks (ANNs) are applied to efficient modeling of stream-aquifer responses in an intensively irrigated river basin under a variety of water management alternatives for improving irrigation efficiency, reducing soil water salinity, increasing crop yields, controlling nonbeneficial consumptive use, and decreasing salt loadings to the river. Two ANNs for the main stem river and the tributary regime are trained and tested using solution datasets from a high resolution, finite difference MODFLOW-MT3DMS groundwater flow and contaminant transport model of a representative subregion within the river basin. Stream-aquifer modeling in the subregion is supported by a dense field data collection network with the ultimate goal of extending knowledge gained from the subregion modeling to the sparsely monitored remainder of the river basin where data insufficiency precludes application of MODFLOW-MT3DMS at the desired spatial resolution. The trained and tested ANNs capture the MODFLOW-MT3DMS modeled subregion stream-aquifer responses to system stresses using geographic information system (GIS) processed explanatory variables correlated with irrigation return flow quantity and quality for basin-wide application. The methodology is applied to the Lower Arkansas River basin in Colorado by training and testing ANNs derived from a MODFLOW-MT3DMS modeled subregion of the Lower Arkansas River basin in Colorado, which includes detailed unsaturated and saturated zone modeling and calibration to the extensive field data monitoring network in the subregion. Testing and validation of the trained ANNs shows good performance in predicting return flow quantities and salinity concentrations. The ANNs are linked with the GeoMODSIM river basin network flow model for basin-wide evaluation of water management alternatives.

  5. Implementing integrated catchment management in the Limpopo River Basin Phase 1: Situational assessment

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2012-10-01

    Full Text Available integrated catchment management in the Limpopo River Basin Phase 1: Situational assessment J MWENGE KAHINDA, E KAPANGAZIWIRI, FA ENGELBRECHT, R MEISSNER AND PJ ASHTON CSIR Natural Resources and the Environment, PO Box 395, Pretoria, South Africa, 0001... Email: jmwengekahinda@csir.co.za ? www.csir.co.za BACKGROUND The project aims to promote Integrated Catchment Management approaches in the Limpopo River Basin (Figure 1) in three phases: 1) Situational assessment: develop a sound spatial...

  6. Post conflict water management: learning from the past for recovery planning in the Orontes River basin

    Science.gov (United States)

    Saadé-Sbeih, Myriam; Zwahlen, François; Haj Asaad, Ahmed; Gonzalez, Raoul; Jaubert, Ronald

    2016-10-01

    Water management is a fundamental issue in post-conflict planning in Syria. Based on historical water balance assessment, this study identifies the drivers of the profound changes that took place in the Lebanese and Syrian parts of the Orontes River basin since the 1930s. Both drastic effects of the conflict on the hydro-system and the strong uncontrolled anthropization of the river basin prior to the crisis have to be considered in the design of recovery interventions.

  7. Hypothesis of historical effects from selenium on endangered fish in the Colorado River basin

    Science.gov (United States)

    Hamilton, S.J.

    1999-01-01

    Anthropogenic selenium contamination of aquatic ecosystems was first associated with cooling reservoirs of coal-fired power plants in the late 1970s, and later with drainage water from agricultural irrigation activities in the 1980s. In the 1990s, selenium contamination has been raised as a concern in the recovery of currently endangered fish in the Colorado River system. Widespread contamination from seleniferous drain waters from agriculture has been documented in the upper and lower Colorado River basins. Historically, irrigation started in the upper Colorado River basin in the late 1880s. In the 1930s, selenium concentrations in various drains, tributaries, and major rivers in the upper and lower Colorado River basins were in the 100s and 1000s of ??g/L. Native fish inhabiting large rivers such as the Colorado pikeminnow and razorback sucker were abundant before 1890, but became rare after 1910 to 1920, before the influence of mainstem reservoirs in the upper and lower Colorado River. A hypothesis is presented that selenium contamination of the tributaries and major rivers of the Colorado River basin in the 1890 to 1910 period caused the decline of the endangered fish and continues to inhibit their recovery. ?? 1999 by ASP.

  8. Review and analysis of existing Alberta data on drinking water quality and treatment facilities for the Northern River basins study. Northern River Basins Study project report No. 55

    Energy Technology Data Exchange (ETDEWEB)

    Prince, D.S.; Smith, D.W.; Stanley, S.J.

    1995-12-31

    This report summarizes the results of a project conducted to gather existing information about drinking water quality, drinking water facilities, and water treatment effectiveness in the area covered by the Northern River Basins Study (Peace, Slave, and Athabasca River basins in northern Alberta). The report includes a comparison of water treatment performance to the Canada Drinking Water Quality Guidelines. The appendices contain summaries of parameters in the treated water survey, of the comparisons between raw and treated water, and of samples not meeting the Guidelines, as well as an inventory of treatment facilities giving facility name and location, water source, community population, treatment method used, raw storage capacity, and treated volumes.

  9. Drought forecasting in Luanhe River basin involving climatic indices

    Science.gov (United States)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2016-09-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the

  10. Long-term accumulation and transport of anthropogenic phosphorus in three river basins

    Science.gov (United States)

    Powers, Stephen M.; Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.; Haygarth, Philip M.; Howden, Nicholas J. K.; Jarvie, Helen P.; Lyu, Yang; Peterson, Heidi M.; Sharpley, Andrew N.; Shen, Jianbo; Worrall, Fred; Zhang, Fusuo

    2016-05-01

    Global food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30-70 years in mixed agricultural-urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.

  11. A dynamic analysis of water footprint of Jinghe River basin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water footprint in a region is defined as the volume of water needed for the production of goods and services consumed by the local people. Ecosystem services are a kind of important services, so ecological water use is one necessary component in water footprint. Water footprint is divided into green water footprint and blue water footprint but the former one is often ignored. In this paper water footprint includes blue water needed by agricultural irrigation, industrial and domestic water demand, and green water needed by crops, economic forests, livestock products, forestlands and grasslands. The study calculates the footprint of the Jinghe River basin in 1990,1995, 2000 and 2005 with quarto methods. Results of research show that water footprints reached 164.1 × 108m3, 175.69×108m3 and 178.45×108m3 respectively in 1990, 1995 and 2000 including that of ecological water use, but reached 77.68×108m3, 94.24×108m3, 92.92×108m3 and 111.36×108m3 respectively excluding that of ecological water use. Green water footprint is much more than blue water footprint: thereby, green water plays an important role in economic development and ecological construction. The dynamic change of water footprints stows that blue water use increases rapidly and that the ecological water use is occupied by economic and domestic water use. The change also shows that water use is transferred from primary industry to secondary industry. In primary industry, it is transferred from crops farming to forestry and animal agriculture. The factors impelling the change include development anticipation on economy, government policies, readjustment of the industrial structure, population growth, the raise of urbanization level, and structural change of consumption, low level of water-saving and poor ability of waste water treatment. With blue water use per unit, green water use per unit, blue water use structure and green water use structure, we analyzed the difference of the six ecological

  12. A new species of Hyphessobrycon (Characiformes, Characidae) from the upper Guaviare River, Orinoco River Basin, Colombia

    Science.gov (United States)

    García-Alzate, Carlos A.; Urbano-Bonilla, Alexander; Taphorn, Donald C.

    2017-01-01

    Abstract Hyphessobrycon klausanni sp. n. is described from small drainages of the upper Guaviare River (Orinoco River Basin) in Colombia. It differs from all congeners by having a wide, conspicuous, dark lateral stripe extending from the anterior margin of the eye across the body and continued through the middle caudal-fin rays, and that covers (vertically) three or four horizontal scale rows. It also differs by having an orange-yellow stripe extending from the anterosuperior margin of the eye to the caudal peduncle above the lateral line in life. It differs from all other species of Hyphessobrycon that have a similar dark lateral stripe: H. cyanotaenia, H. loretoensis, H. melanostichos, H. nigricinctus, H. herbertaxelrodi, H. eschwartzae, H. montogoi, H. psittacus, H. metae, H. margitae, H. vanzolinii, and H. peruvianus in having only three or four pored scales in the lateral line, 21 to 24 lateral scales and six teeth in the inner premaxillary row. Hyphessobrycon klausanni differs from H. loretoensis in having seven to eight maxillary teeth (vs. three to four) and in having a longer caudal peduncle (12.4–17.0% SL vs. 4.6–8.0% SL). Additionally Hyphessobrycon klausanni can be distinguished from the other species of Hyphessobrycon with a dark lateral stripe from the Orinoco River Basin (H. metae and H. acaciae) in having two teeth in the outer premaxillary row (vs. three to four) and 10 branched pectoral–fin rays (vs. 11 to 12). It further differs from H. metae by the length of the snout (17.6–22.8% HL vs. 9.9–15.2% HL) and by the length of the caudal peduncle (12.4–17.0% SL vs. 7.3–11.8% SL). PMID:28769647

  13. A new species of Hyphessobrycon (Characiformes, Characidae) from the upper Guaviare River, Orinoco River Basin, Colombia.

    Science.gov (United States)

    García-Alzate, Carlos A; Urbano-Bonilla, Alexander; Taphorn, Donald C

    2017-01-01

    Hyphessobrycon klausannisp. n. is described from small drainages of the upper Guaviare River (Orinoco River Basin) in Colombia. It differs from all congeners by having a wide, conspicuous, dark lateral stripe extending from the anterior margin of the eye across the body and continued through the middle caudal-fin rays, and that covers (vertically) three or four horizontal scale rows. It also differs by having an orange-yellow stripe extending from the anterosuperior margin of the eye to the caudal peduncle above the lateral line in life. It differs from all other species of Hyphessobrycon that have a similar dark lateral stripe: H. cyanotaenia, H. loretoensis, H. melanostichos, H. nigricinctus, H. herbertaxelrodi, H. eschwartzae, H. montogoi, H. psittacus, H. metae, H. margitae, H. vanzolinii, and H. peruvianus in having only three or four pored scales in the lateral line, 21 to 24 lateral scales and six teeth in the inner premaxillary row. Hyphessobrycon klausanni differs from H. loretoensis in having seven to eight maxillary teeth (vs. three to four) and in having a longer caudal peduncle (12.4-17.0% SL vs. 4.6-8.0% SL). Additionally Hyphessobrycon klausanni can be distinguished from the other species of Hyphessobrycon with a dark lateral stripe from the Orinoco River Basin (H. metae and H. acaciae) in having two teeth in the outer premaxillary row (vs. three to four) and 10 branched pectoral-fin rays (vs. 11 to 12). It further differs from H. metae by the length of the snout (17.6-22.8% HL vs. 9.9-15.2% HL) and by the length of the caudal peduncle (12.4-17.0% SL vs. 7.3-11.8% SL).

  14. Water-Energy-Food Nexus in Large Asian River Basins

    Directory of Open Access Journals (Sweden)

    Marko Keskinen

    2016-10-01

    Full Text Available The water-energy-food nexus (“nexus” is promoted as an approach to look at the linkages between water, energy and food. The articles of Water’s Special Issue “Water-Energy-Food Nexus in Large Asian River Basins” look at the applicability of the nexus approach in different regions and rivers basins in Asia. The articles provide practical examples of the various roles and importance of water-energy-food linkages, but also discuss the theoretical aspects related to the nexus. While it is evident that any application of the nexus must be case-specific, some general lessons can be learnt as well. Firstly, there are a variety of interpretations for the nexus. These include three complementary perspectives that see nexus as an analytical approach, governance framework and emerging discourse. Secondly, nexus is—despite its name—a predominantly water-sector driven and water-centered concept. While this brings some benefits by, e.g., setting systemic boundaries, it is also the nexus’ biggest challenge: If the nexus is not able to ensure buy-in from food and energy sector actors, its added value will stay limited. Ultimately, however, what really matters is not the approach itself but the processes it helps to establish and outcomes it helps to create. Through its focus on water-energy-food linkages—rather than on those themes separately—the nexus is well positioned to help us to take a more systemic view on water, energy and food and, hence, to advance sustainable development.

  15. Radon Concentration in the Cataniapo-Autana River Basin, Amazonas State, Venezuela

    Science.gov (United States)

    Sajo-Bohus, L.; Greaves, E. D.; Alvarez, H.; Liendo, J.; Vásquez, G.

    2007-10-01

    Radon activity concentration is measured in rivers of the Autana-Cataniapo hydrologic basin. The region experiments mining and it is forecasted that the basin will be perturbed. Radon activity monitoring is one of the methods to measure environmental changes. Values of radon concentration in water range between 0.4 and 30 Bq L-1.

  16. OVERVIEW OF THE MARK TWAIN LAKE/SALT RIVER BASIN CONSERVATION EFFECTS ASSESSMENT PROJECT

    Science.gov (United States)

    The Mark Twain Lake/Salt River Basin was selected as one of 12 USDA-Agricultural Research Service benchmark watersheds for the Conservation Effects Assessment Project (CEAP) because of documented soil and water quality problems and broad stakeholder interest. The basin is located in northeastern Mis...

  17. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Science.gov (United States)

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  18. Degradation and damages from utilizing ecosystem services in a river basin

    Science.gov (United States)

    Travis W. Warziniack

    2012-01-01

    We examine the tradeoffs between utilizing multiple ecosystem services in an economic model of the Lower Mississippi-Atchafalaya River Basin. We show how economic development in the basin degraded the ecosystem, but diversified the economy. A degraded ecosystem and more employment opportunities elsewhere reduced the region's reliance on agriculture and other...

  19. An Ecologic Characterization and Landscape Assessment of the Humboldt River Basin

    Science.gov (United States)

    The Humboldt River Basin covers a large part of northern Nevada. Very little is known about the water quality of the entire Basin. The people living in this area depend on clean water. Not knowing about water quality is a concern because people will need to manage the negative...

  20. Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River basin, Kenya

    NARCIS (Netherlands)

    Tamooh, F.; Borges, A.V.; Meysman, F.J.R.; Van Den Meersche, K.; Dehairs, F.; Merckx, R.; Bouillon, S.

    2013-01-01

    A basin-wide study was conducted in the Tana River basin (Kenya) in February 2008 (dry season), September–November 2009 (wet season) and June–July 2010 (end of the wet season) to assess the dynamics and sources of dissolved inorganic carbon (DIC) as well as to quantify CO2 fluxes, community respirat

  1. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    Science.gov (United States)

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  2. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    Science.gov (United States)

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    This study provides information on channel and flood-plain processes and historical trends to guide effective restoration and monitoring strategies for the Sprague River Basin, a primary tributary (via the lower Williamson River) of Upper Klamath Lake, Oregon. The study area covered the lower, alluvial segments of the Sprague River system, including the lower parts of the Sycan River, North Fork Sprague River, South Fork Sprague River, and the entire main-stem Sprague River between the confluence of the North Fork Sprague and the South Fork Sprague Rivers and its confluence with the Williamson River at Chiloquin, Oregon. The study included mapping and stratigraphic analysis of flood-plain deposits and flanking features; evaluation of historical records, maps and photographs; mapping and analysis of flood-plain and channel characteristics (including morphologic and vegetation conditions); and a 2006 survey of depositional features left by high flows during the winter and spring of 2005–06.

  3. Hydrogeochemical and isotopic investigations of the Han River basin, South Korea

    Science.gov (United States)

    Ryu, Jong-Sik; Lee, Kwang-Sik; Chang, Ho-Wan

    2007-10-01

    SummaryThe Han River, the largest river in South Korea draining approximately 26,000 km 2, comprises two major tributaries: the North and the South Han Rivers. Seasonal and spatial variations in the major ion chemistry and isotope compositions of the Han River were monitored for one year at 14-23 locations, covering about 80% of the entire drainage basin. Compared to the South Han River (SHR), the North Han River (NHR) was much lower in total dissolved solids (TDS), Sr, and major ion concentrations, but higher in Si concentration, δ 34S SO 4 values, and 87Sr/ 86Sr ratios. These observations suggest strong influence of prevailing rock types in the drainage basins on the chemical and isotopic compositions of the river waters. These are silicate rocks in the NHR basin and carbonate rocks in the SHR basin. The headwaters of the NHR basin, where several flood control dams have been constructed, show enrichment in deuterium and oxygen-18, indicating evaporative loss. The δ 34S SO 4 data suggest dissolved sulfates in the NHR and SHR are mostly derived from atmospheric deposition, and variable mixtures of atmospheric deposition and sulfide oxidation, respectively. The 87Sr/ 86Sr ratios are much higher in the NHR (0.71793-0.72722) than in the SHR (0.71495-0.71785) with one exception, indicating weathering of Precambrian and Mesozoic granitic rocks and marine carbonates, respectively.

  4. Spatio-temporal distribution of fecal indicators in three rivers of the Haihe River Basin, China.

    Science.gov (United States)

    Wang, Yawei; Chen, Yanan; Zheng, Xiang; Gui, Chengmin; Wei, Yuansong

    2017-04-01

    Because of their significant impact on public health, waterborne pathogens, especially bacteria and viruses, are frequently monitored in surface water to assess microbial quality of water bodies. However, more than one billion people worldwide currently lack access to safe drinking water, and a diversity of waterborne outbreaks caused by pathogens is reported in nations at all levels of economic development. Spatio-temporal distribution of conventional pollutants and five pathogenic microorganisms were discussed for the Haihe River Basin. Land use and socio-economic assessments were coupled with comprehensive water quality monitoring. Physical, chemical, and biological parameters were measured at 20 different sites in the watershed for 1 year, including pH, temperature, conductivity, dissolved oxygen, turbidity, chemical oxygen demand, ammonia-N, total and fecal coliforms, E. coli, and Enterococcus. The results highlighted the high spatio-temporal variability in pathogen distribution at watershed scale: high concentration of somatic coliphages and fecal indicator bacteria in March and December and their very low concentration in June and September. All pathogens were positively correlated to urban/rural residential/industrial land and negatively correlated to other four land use types. Microbial pollution was greatly correlated with population density, urbanization rate, and percentage of the tertiary industry in the gross domestic product. In the future, river microbial risk control strategy should focus more on the effective management of secondary effluent of wastewater treatment plant and land around rivers.

  5. The effects of Thailand's Great Flood of 2011 on river sediment discharge in the upper Chao Phraya River basin, Thailand

    Institute of Scientific and Technical Information of China (English)

    Butsawan Bidorn; Seree Chanyotha; Stephen A. Kish; Joseph F. Donoghue; Komkrit Bidorn; Ruetaitip Mama

    2015-01-01

    Severe flooding that occurred during the 2011 monsoon season in Thailand was the heaviest flooding in the past 50 yr. The rainfall over the northern part of Thailand, especially during July–August 2011, was 150% higher than average. During the flooding period, river flows of the four major Chao Phraya River tributaries (Ping, Wang, Yom, and Nan rivers) increased in the range of 1.4–5 times the average discharge. This study examined the river sediment discharge of the four major rivers in the upper Chao Phraya River basin in Thailand. The four rivers are considered the main sources of sediment supply to the Chao Phraya Estuary. River surveys of the Ping, Wang, Yom, and Nan rivers were carried out in October 2011 (during the Great Flood) and October 2012 (one year after the flood). Survey data included river cross sections, flow velocities, suspended sediment concentrations, and bed load transport in each river. Analyses of these data indicated that total sediment transport rates for the four main rivers during the flooding of 2011 were 2.3–5.6 times higher than the average sediment discharge over 60 yr. The flood of 2011 sig-nificantly affected the sediment characteristics including the proportions of suspended and bed sediment loads in each river though in different ways. The rates of sediment transport per unit discharge for the Ping and Wang rivers dramatically increased during the 2011 flood, but the flooding had minimal effects on the sediment characteristics in the Yom and Nan rivers. The amount of total sediment discharge in each river caused by the 2011 flooding varied between 0.3 and 1.6 Mt. Additionally, the bed load transport in these rivers varied between ? 0%and 26%of the suspended sediment discharge.

  6. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-11-10

    In a study conducted by the U.S. Geological Survey (USGS) in cooperation with the New York State Department of Environmental Conservation, water samples were collected from 4 production wells and 4 domestic wells in the Chemung River Basin, 8 production wells and 7 domestic wells in the Eastern Lake Ontario Basin, and 12 production wells and 13 domestic wells in the Lower Hudson River Basin (south of the Federal Lock and Dam at Troy) in New York. All samples were collected in June, July, and August 2013 to characterize groundwater quality in these basins. The samples were collected and processed using standard USGS procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.

  7. Effects of Crop Growth on Hydrological Pro cesses in River Basins and on Regional Climate in China

    Institute of Scientific and Technical Information of China (English)

    QIN Pei-Hua; CHEN Feng; XIE Zheng-Hui

    2013-01-01

    The regional climate model RegCM3 incorporating the crop model CERES, called the RegCM3−CERES model, was used to study the effects of crop growth and development on regional climate and hydrological processes over seven river basins in China. A 20-year numerical simulation showed that incorporating the crop growth and development processes improved the simulation of precipitation over the Haihe River Basin, Songhua jiang River Basin and Pearl River Basin. When compared with the RegCM3 control run, RegCM3−CERES reduced the negative biases of monthly mean temper-ature over most of the seven basins in summer, especially the Haihe River Basin and Huaihe River Basin. The simulated maximum monthly evapotranspiration for summer (JJA) was around 100 mm in the basins of the Yangtze, Haihe, Huaihe and Pearl Rivers. The seasonal and annual variations of water balance components (runoff, evapotranspiration and to-tal precipitation) over all seven basins indicate that changes of evapotranspiration agree well with total precipitation. Compared to the RegCM3, RegCM3−CERES simulations indicate reduced local water recycling rate over most of the seven basins due to lower evapotranspiration and greater water flux into these basins and an increased precipitation in the Heihe River Basin and Yellow River Basin, but reduced precipitation in the other five basins. Furthermore, a lower summer leaf area index (1.20 m2 m−2), greater root soil moisture (0.01 m3 m−3), lower latent heat flux (1.34 W m−2), and greater sensible heat flux (2.04 W m−2 ) are simulated for the Yangtze River Basin.

  8. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  9. Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique

    Science.gov (United States)

    Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.

    2016-12-01

    Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the

  10. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  11. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, S.L.; McMichael, Geoffrey A.; Neitzel, D.A.

    1999-12-01

    Pacific Northwest National Laboratory (PNNL) evaluated 19 Phase II screen sites in the Yakima River Basin as part of a multi-year study for the Bonneville Power Administration (BPA) on the effectiveness of fish screening devices. The sites were examined to determine if they were being effectively operated and maintained to provide fish a safe, efficient return to the Yakima River.

  12. Metagenome Sequencing of Prokaryotic Microbiota Collected from Rivers in the Upper Amazon Basin

    Science.gov (United States)

    Santos-Júnior, Célio Dias; Kishi, Luciano Takeshi; Toyama, Danyelle; Soares-Costa, Andrea; Oliveira, Tereza Cristina Souza; de Miranda, Fernando Pellon

    2017-01-01

    ABSTRACT Tropical freshwater environments, like rivers, are important reservoirs of microbial life. This study employed metagenomic sequencing to survey prokaryotic microbiota in the Solimões, Purus, and Urucu Rivers of the Amazon Basin in Brazil. We report a rich and diverse microbial community. PMID:28082494

  13. Thallium distribution in sediments from the Pearl river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Jin; Chen, Yongheng [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Qi, Jianying [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Lippold, Holger [Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Chunlin [Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

    2010-10-15

    Thallium (Tl) is a rare element of high toxicity. Sediments sampled in three representative locations near industries utilizing Tl-containing raw materials from the Pearl River Basin, China were analyzed for their total Tl contents and the Tl contents in four sequentially extracted fractions (i.e., weak acid exchangeable, reducible, oxidizable, and residual fraction). The results reveal that the total Tl contents (1.25-19.1 {mu}g/g) in the studied sediments were slightly high to quite high compared with those in the Chinese background sediments. This indicates the apparent Tl contamination of the investigated sediments. However, with respect to the chemical fractions, Tl is mainly associated with the residual fraction (>60%) of the sediments, especially of those from the mining area of Tl-bearing pyrite minerals, indicating the relatively low mobility, and low bioavailability of Tl in these sediments. This obviously contrasts with the previous findings that Tl is mainly entrapped in the first three labile fractions of the contaminated samples. Possible reasons were given for the dominating association of Tl with the residual fraction (>95%) of the mining area sediments. The significant role of certain K-containing silicates or minerals of these sediments on retaining Tl in the residual fraction, discovered by this study, provides a special field of research opportunity for the Tl-containing wastewater treatment. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Precipitation variability assessment of northeast China: Songhua River basin

    Indian Academy of Sciences (India)

    Muhammad Imran Khan; Dong Liu; Qiang Fu; Muhammad Azmat; Mingjie Luo; Yuxiang Hu; Yongjia Zhang; Faiz M Abrar

    2016-07-01

    Variability in precipitation is critical for the management of water resources. In this study, the researchentropy base concept was applied to investigate spatial and temporal variability of the precipitationduring 1964–2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy wasapplied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainydays for each selected station. Intensity entropy and apportionment entropy were used to calculate thevariability over individual year and decade, respectively. Subsequently, Spearman’s Rho and Mann–Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sampledisorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80),April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributedsignificantly higher than those of other months. Overall, the contribution of the winter season wasconsiderably high with a standard deviation of 0.10. The precipitation variability on decade basis wasobserved to increase from decade 1964–1973 and 1994–2003 with a mean value of decadal apportionmentdisorder index 0.023 and 0.053, respectively. In addition, the Mann–Kendall test value (1.90) showed asignificant positive trend only at the Shangzhi station.

  15. Pesticides in the Ebro River basin: Occurrence and risk assessment.

    Science.gov (United States)

    Ccanccapa, Alexander; Masiá, Ana; Navarro-Ortega, Alícia; Picó, Yolanda; Barceló, Damià

    2016-04-01

    In this study, 50 pesticides were analyzed in the Ebro River basin in 2010 and 2011 to assess their impact in water, sediment and biota. A special emphasis was placed on the potential effects of both, individual pesticides and their mixtures, in three trophic levels (algae, daphnia and fish) using Risk Quotients (RQs) and Toxic Units (TUs) for water and sediments. Chlorpyrifos, diazinon and carbendazim were the most frequent in water (95, 95 and 70% of the samples, respectively). Imazalil (409.73 ng/L) and diuron (150 ng/L) were at the highest concentrations. Sediment and biota were less contaminated. Chlorpyrifos, diazinon and diclofenthion were the most frequent in sediments (82, 45 and 21% of the samples, respectively). The only pesticide detected in biota was chlorpyrifos (up to 840.2 ng g(-1)). Ecotoxicological risk assessment through RQs showed that organophosphorus and azol presented high risk for algae; organophosphorus, benzimidazoles, carbamates, juvenile hormone mimic and other pesticides for daphnia, and organophosphorus, azol and juvenile hormone mimics for fish. The sum TUsite for water and sediments showed values pesticide residues present.

  16. Biodegradation of carbofuran in soils within Nzoia River Basin, Kenya.

    Science.gov (United States)

    Onunga, Daniel O; Kowino, Isaac O; Ngigi, Anastasiah N; Osogo, Aggrey; Orata, Francis; Getenga, Zachary M; Were, Hassan

    2015-01-01

    Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) has been used within the Nzoia River Basin (NRB), especially in Bunyala Rice Irrigation Schemes, in Kenya for the control of pests. In this study, the capacity of native bacteria to degrade carbofuran in soils from NRB was investigated. A gram positive, rod-shaped bacteria capable of degrading carbofuran was isolated through liquid cultures with carbofuran as the only carbon and nitrogen source. The isolate degraded 98% of 100-μg mL(-1) carbofuran within 10 days with the formation of carbofuran phenol as the only detectable metabolite. The degradation of carbofuran was followed by measuring its residues in liquid cultures using high performance liquid chromatography (HPLC). Physical and morphological characteristics as well as molecular characterization confirmed the bacterial isolate to be a member of Bacillus species. The results indicate that this strain of Bacillus sp. could be considered as Bacillus cereus or Bacillus thuringiensis with a bootstrap value of 100% similar to the 16S rRNA gene sequences. The biodegradation capability of the native strains in this study indicates that they have great potential for application in bioremediation of carbofuran-contaminated soil sites.

  17. RAINFALL ANALYSIS IN KLANG RIVER BASIN USING CONTINUOUS WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Celso A. G. Santos

    2016-01-01

    Full Text Available The rainfall characteristics within Klang River basin is analyzed by the continuous wavelet transform using monthly rainfall data (1997–2009 from a raingauge and also using daily rainfall data (1998–2013 from the Tropical Rainfall Measuring Mission (TRMM. The wavelet power spectrum showed that some frequency components were presented within the rainfall time series, but the observed time series is short to provide accurate information, thus the daily TRMM rainfall data were used. In such analysis, two main frequency components, i.e., 6 and 12 months, showed to be present during the entire period of 16 years. Such semiannual and annual frequencies were confirmed by the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256– 512-day bands were examined by an average of all scales between 8 and 16 months, and 256 and 512 days, respectively, giving a measure of the average monthly/daily variance versus time, where the periods with low or high variance could be identified.

  18. Sinos River Hydrographic Basin: urban occupation, industrialization and environmental memory.

    Science.gov (United States)

    Nunes, M F; Figueiredo, J A S; Rocha, A L C

    2015-12-01

    This article presents an analysis of the process of industrialization and urbanization of the Sinos Valley in Rio Grande do Sul state, Brazil, starting from the establishment of leather goods and footwear manufacturing in the region during the 19th century when tanneries and factories producing footwear and/or components for footwear began to appear, and with special attention to aspects related to the environmental impact on the Sinos river hydrographic basin. The article is based on both bibliographic and documentary research and also draws on biographical narratives of workers with links to the leather goods and footwear industry obtained using ethnographic method. It was found that contemporary environmental conflicts emerge from within a memory of work and an environmental memory in which the factories, the unplanned urbanization, and the utilization of water and other natural resources form a chain of significance. Significance that precludes any form of fragmented analysis that isolates any of these aspects from the others: the economic, socio-historic, cultural, political, or the environmental.

  19. Sinos River Hydrographic Basin: urban occupation, industrialization and environmental memory

    Directory of Open Access Journals (Sweden)

    M. F. Nunes

    Full Text Available This article presents an analysis of the process of industrialization and urbanization of the Sinos Valley in Rio Grande do Sul state, Brazil, starting from the establishment of leather goods and footwear manufacturing in the region during the 19th century when tanneries and factories producing footwear and/or components for footwear began to appear, and with special attention to aspects related to the environmental impact on the Sinos river hydrographic basin. The article is based on both bibliographic and documentary research and also draws on biographical narratives of workers with links to the leather goods and footwear industry obtained using ethnographic method. It was found that contemporary environmental conflicts emerge from within a memory of work and an environmental memory in which the factories, the unplanned urbanization, and the utilization of water and other natural resources form a chain of significance. Significance that precludes any form of fragmented analysis that isolates any of these aspects from the others: the economic, socio-historic, cultural, political, or the environmental.

  20. Digital soil map of the Ussuri River basin

    Science.gov (United States)

    Bugaets, A. N.; Pschenichnikova, N. F.; Tereshkina, A. A.; Krasnopeev, S. M.; Gartsman, B. I.; Golodnaya, O. M.; Oznobikhin, V. I.

    2017-08-01

    On the basis of digital soil, topographic, and geological maps; raster topography model; forestry materials; and literature data, the digital soil map of the Ussuri River basin (24400 km2) was created on a scale of 1: 100000. To digitize the initial paper-based maps and analyze the results, an ESRI ArcGIS Desktop (ArcEditor) v.10.1 (http://www.esri.com) and an open-code SAGA GIS v.2.3 (System for Automated Geoscientific Analyses, http://www.saga-gis.org) were used. The spatial distribution of soil areas on the obtained digital soil map is in agreement with modern cartographic data and the SRTM digital elevation model (SRTM DEM). The regional soil classification developed by G.I. Ivanov was used in the legend to the soil map. The names of soil units were also correlated with the names suggested in the modern Russian soil classification system. The major soil units on the map are at the soil subtypes that reflect the entire vertical spectrum of soils in the south of the Far East of Russia (Primorye region). These are mountainous tundra soils, podzolic soils, brown taiga soils, mountainous brown forest soils, bleached brown soils, meadow-brown soils, meadow gley soils, and floodplain soils). With the help of the spatial analysis function of GIS, the comparison of the particular characteristics of the soil cover with numerical characteristics of the topography, geological composition of catchments, and vegetation cover was performed.

  1. Early Norian flora from Partizansk River Basin of Primorye, Russia

    Institute of Scientific and Technical Information of China (English)

    Elena B Volynets; Svetlana A Schorokhova; Ge Sun

    2006-01-01

    An early Norian flora from the Partizansk River Basin of Primorye, Far-East of Russia, is described in detail for the first time, in which over 25 taxa are reported. The flora is dominated by cycadoalean, bennettitalean and coniferous plants, associated with a lot of ferns and czekanowskialean plants, and with a few ginkgoalean. In floristic characteristics, the flora can be well comparable with Late Triassic Mongugai flora of southwestern Primorye and its neighboring Tianqiaoling flora of eastern Jilin, China, as well with the Yamanoi and Nariwa floras from southwestern Japan. As the plant-bearing strata are sandwiched in the lower Norian marine beds yielding marine fauna, the age of the Partizansk flora is well evidenced as the early Norian. Paleophytogeographically, the flora appears to be in the ecotone of the Medio-Triassic and Arcto-Triassic floristic regions in Eurasia, and indicates probably warm temperate or subtropic vegetation in nature. Four new species are reported in this paper, including Ctenis elegantus sp. nov, Ixostrobus pacificus sp. nov., Elatocladus elegantus sp. nov. and E. prynadae sp. nov.

  2. Precipitation variability assessment of northeast China: Songhua River basin

    Science.gov (United States)

    Khan, Muhammad Imran; Liu, Dong; Fu, Qiang; Azmat, Muhammad; Luo, Mingjie; Hu, Yuxiang; Zhang, Yongjia; Abrar, Faiz M.

    2016-07-01

    Variability in precipitation is critical for the management of water resources. In this study, the research entropy base concept was applied to investigate spatial and temporal variability of the precipitation during 1964-2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy was applied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainy days for each selected station. Intensity entropy and apportionment entropy were used to calculate the variability over individual year and decade, respectively. Subsequently, Spearman's Rho and Mann-Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sample disorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80), April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributed significantly higher than those of other months. Overall, the contribution of the winter season was considerably high with a standard deviation of 0.10. The precipitation variability on decade basis was observed to increase from decade 1964-1973 and 1994-2003 with a mean value of decadal apportionment disorder index 0.023 and 0.053, respectively. In addition, the Mann-Kendall test value (1.90) showed a significant positive trend only at the Shangzhi station.

  3. Elements for an integrated resource planning in the framework of river basins: a study for the Cuiaba River Basin; Elementos para um planejamento integrado de recursos no ambito de bacias hidrograficas: um estudo para a bacia do rio Cuiaba

    Energy Technology Data Exchange (ETDEWEB)

    Dorileo, Ivo Leandro; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Dept. de Energia], e-mail: ildorileo@sigmanet.com.br, e-mail: bajay@fem.unicamp.br

    2008-07-01

    A new approach in energy planning in Brazil, IRP - Integrated Resources Planning for River Basins, gathers three main determinants of development: water, electricity and piped gas. This paper argues, briefly, the need of this planning, of indicative character, integrated with the River Basin Plans, and it presents a retrospective analysis concerning water, electricity and LPG demands of the economy sectors from Cuiaba River Basin region, priority elements to aid the prospective studies and to carry out process related to the IRP. (author)

  4. Sub-basin scale characterization of climate change vulnerability, impacts and adaptation in an Indian River basin

    NARCIS (Netherlands)

    Bhave, A.; Mishra, A.; Groot, A.M.E.

    2013-01-01

    Knowledge of climate change vulnerability and impacts is a prerequisite for formulating locally relevant climate change adaptation policies. A participatory approach has been used in this study to determine climate change vulnerability, impacts and adaptation aspects for the Kangsabati River basin,

  5. Evaluation of the Pollution Status of River Galma Basin in the Vicinity of Dakace Industrial Layout, Zaria, Nigeria

    Directory of Open Access Journals (Sweden)

    Udiba Udiba Ugumanim

    2015-06-01

    Full Text Available Dakace Industrial Layout Zaria habours a number of wet industries, effluents from these industries are discharged through drains and canal that empties into River Galma. The river basin is a booming agricultural area and the river is used for irrigation. A study was conducted at River Galma Basin around Dakace Industrial Layout Zaria to evaluate its heavy metal pollution status. Lead (Pb, chromium (Cr, nickel (Ni and manganese (Mn concentrations were analyzed using Shimadzu atomic absorption spectrophotometer (model AA-6800, Japan after wet digestion. The range of concentrations (mg/kg of these metals was Pb (52.77-120.40, Cr (0.56-8.05, Ni (0.17-4.01 and Mn (6.98-22.. The heavy metals concentrations determined were found to be within US EPA, World Health Organization (WHO and Food and Agricultural Organization (FAO limits for acceptable soil metal concentrations. However, the mean soil lead level was found to be above Dutch Target value (85 mg/kg which is the bench mark for soil quality. Statistical analysis shows that industrial discharges from Dakace industrial layout have significant influence on the heavy metal profile of the study area. The implications of these findings for public health are fully discussed.

  6. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs. 

  7. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    OpenAIRE

    Edilberto Guevara-Pérez; Adriana M. Márquez

    2007-01-01

    Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km2, 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment...

  8. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    OpenAIRE

    Edilberto Guevara-Pérez; Adriana M. Márquez

    2007-01-01

    Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km², 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment...

  9. Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2012-01-01

    Water samples were collected from 10 production and domestic wells in the Delaware River Basin in New York and from 20 production and domestic wells in the St. Lawrence River Basin in New York from August through November 2010 to characterize groundwater quality in the basins. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria.

  10. The Role of Cooperation and Information Exchange in Transnational River Basins: the Zambezi River case

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Soncini-Sessa, R.

    2012-12-01

    The presence of multiple, institutionally independent but physically interconnected decision-makers is a distinctive features of many water resources systems, especially of transnational river basins. The adoption of a centralized approach to study the optimal operation of these systems, as mostly done in the water resources literature, is conceptually interesting to quantify the best achievable performance, but of little practical impact given the real political and institutional setting. Centralized management indeed assumes a cooperative attitude and full information exchange by the involved parties. However, when decision-makers belong to different countries or institutions, it is very likely that they act considering only their local objectives, producing global externalities that negatively impact on other objectives. In this work we adopt a Multi-Agent Systems framework, which naturally allows to represent a set of self-interested agents (decision-makers and/or stakeholders) acting in a distributed decision-making process. According to this agent-based approach, each agent represents a decision-maker, whose decisions are defined by an explicit optimization problem considering only the agent's local interests. In particular, this work assesses the role of information exchange and increasing level of cooperation among originally non-cooperative agents. The Zambezi River basin is used to illustrate the methodology: the four largest reservoirs in the basin (Ithezhithezhi, Kafue-Gorge, Kariba and Cahora Bassa) are mainly operated for maximizing the economic revenue from hydropower energy production with considerably negative effects on the aquatic ecosystem in the Zambezi delta due to the alteration of the natural flow regime. We comparatively analyse the ideal centralized solution and the current situation where all the decision-makers act independently and non-cooperatively. Indeed, although a new basin-level institution called Zambezi Watercourse Commission

  11. Spatial Misfit in Participatory River Basin Management: Effects on Social Learning, a Comparative Analysis of German and French Case Studies

    Directory of Open Access Journals (Sweden)

    Ilke Borowski

    2008-06-01

    Full Text Available With the introduction of river basin management, as prescribed by the European Water Framework Directive (WFD, participatory structures are frequently introduced at the hydrological scale without fully adapting them to the decision-making structure. This results in parallel structures and spatial misfits within the institutional settings of river basin governance systems. By analyzing French and German case studies, we show how social learning (SL is impeded by such misfits. We also demonstrate that river basin-scale institutions or actors that link parallel structures are essential for promoting river basins as management entities, and for encouraging SL between actors at the river basin scale. In the multi-scale, multi-level settings of river basin governance, it is difficult to fully exclude spatial misfits. Thus, it is important to take our insights into account in the current transition of water management from the administrative to the hydrological scale to get the greatest benefit from SL processes.

  12. Influences of North Atlantic climate variability on low-flows in the Connecticut River Basin

    Science.gov (United States)

    Steinschneider, Scott; Brown, Casey

    2011-10-01

    SummaryConnections between summertime, ecologically relevant low-flow indicators and both winter and spring climate phenomena are explored for the Connecticut River Basin, with an emphasis on assessing forecast potential. Low-flow streamflow statistics deemed important for ecological health, including minimum 1-day mean flows, minimum 7-day mean flows, and monthly streamflow averages from June to September, are derived from 61 years of continuous, daily streamflow data at 15 United States Geological Survey streamflow gauging stations across the basin. Relationships between the ecological flow indicators with leading sea-surface temperature and sea-level pressure are investigated using correlation and composite analysis. Results suggest lagged relationships of up to 5 months between summer streamflow and the wintertime North Atlantic Oscillation, springtime east coast pressure trough, and springtime North Atlantic Tripole. These climate states have been linked to shifts between zonal and meridonal airflow as well as sea-surface temperature anomalies off the coast of the eastern US, both of which have implications for the movement of moisture systems over the study region. This study suggests that residual influences on airflow and sea-surface temperature persist into the summer following these earlier climate states, influencing low-flow hydrology in the region. As eco-hydrologic flow targets often conflict with other stakeholder objectives within a watershed, reservoir operators may utilize such lagged teleconnection patterns to predict annual low-flow characteristics in the region and help negotiate tradeoffs between traditional water management objectives and those emphasizing ecological conservation.

  13. Observations relating extreme multi-basin river flows to very severe gales

    Science.gov (United States)

    Hillier, John; De Luca, Paolo; Wilby, Rob; Quinn, Nevil; Harrigan, Shaun

    2017-04-01

    Fluvial foods are typically investigated as 'events' at the single basin scale. However, applying a recently developed methodology to identify the largest multi-basin peak flow events allows a statistically significant relationship between them and episodes of very severe gales (VSG) to be identified; such a systematic link has previously only very tentatively been proposed for extra-tropical cyclone seasons, where damaging wind and rain are commonly non-synchronous. Annual maximum river peak flow (AMAX) data during 1975-2014 for 261 non-nested catchments (i.e. with no other sites upstream) in Great Britain are used, and a 13-day window is selected. A simple correlation between metrics that are proxies for damaging wind and flooding is statistically significant (r = 0.41, p = 0.0088). Also, taking the most severe 50% and 30% of years for wind and flow respectively, co-occurrence is expected 6.6 times in 40 years whilst 10 are observed (p = 0.021; simulation with n = 10,000), making co-occurrence of the extremes 52% more likely than expected by chance. This has implications for emergency response and financial planning (e.g. insurance).

  14. Thermal effects of dams in the Willamette River basin, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2010-01-01

    where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  15. Vodno načrtovanje in načrti upravljanja voda = Water planning and river basin management plans

    Directory of Open Access Journals (Sweden)

    Aleš Bizjak

    2008-01-01

    Full Text Available Directive 2000/60/EC – Water framework directive – is a milestone in history of waterpolicies in Europe. The Directive establishes a common framework for sustainable andintegrated management of all European surface and groundwaters, taking into accountall anthropogenic impact factors as well as economic implications of the preventive andsanitation measures. The ultimate objective of the Directive is to achieve good status of allwaters in the EU member states by the year 2015, with exemptions by 2021 or latest by 2027.The cornerstone of the Directive is the demand for integration and application of integratedwater management approach through the river basin management plans as well as publicparticipation and involvement.

  16. Effects of Flood Control Works Failure in the Missouri River Basin

    Science.gov (United States)

    2014-06-13

    hydrologist with the National Resources Conservation Service; Bill Lawrence, a hydrologist with the National Weather Service; and Darwin Ockerman, a...duration of flooding in the Missouri River basin occurred in Saint Charles , Missouri. The Missouri River at Saint Charles stayed at or above flood...that protect Saint Charles and Saint Louis Counties along the Missouri River as displayed in figure 7. These levees protect over 69,000 acres; most of

  17. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    OpenAIRE

    A. P. Medeu; T. G. Tokmagambetov; A. L. Kokarev; P. A. Plekhanov; N. S. Plekhanova

    2013-01-01

    The river Khorgos (in Kazakhstan – Korgas) is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu) Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance ...

  18. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a...

  19. Spatial and temporal variations in the occurrences of wet periods over major river basins in India

    Indian Academy of Sciences (India)

    N R Deshpande; N Singh

    2010-10-01

    This study highlights the hydro-climatic features of the five wet periods contributing in different percentages to the annual rainfall total over major river basins in India.Spatial and temporal variations in the parameters such as starting date,duration and rainfall intensity of these wet periods throughout India have been discussed using daily gridded rainfall data for the period 1951 –2007.An attempt is also made here,to assess the impact of global SSTs on the start and duration of the wet periods in Indian river basins. It is observed that,for almost all river basins in India,the 10%wet period occurs in the months of July/August with an average duration of 1 –3 days and rainfall intensity varying from 44 to 89 mm/day.The duration of the wet period contributing 90%to the annual rainfall varies from 112 days in the central parts of India to 186 days in the northern parts of the country.Signi ficant increase in the rainfall intensity has been observed in the case of some river basins of central India. The late start of 75%wet period along the West Coast and in peninsular river basins has been observed with increase in Nino 3.4 SSTs (MAM),while increase in the duration of the 75%wet period over the Krishna basin is associated with increase in Nino 3.4 SSTs (concurrent JJAS).

  20. Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management?

    Directory of Open Access Journals (Sweden)

    Eduard Interwies

    2008-06-01

    Full Text Available River basin management is faced with complex problems that are characterized by uncertainty and change. In transboundary river basins, historical, legal, and cultural differences add to the complexity. The literature on adaptive management gives several suggestions for handling this complexity. It recognizes the importance of management regimes as enabling or limiting adaptive management, but there is no comprehensive overview of regime features that support adaptive management. This paper presents such an overview, focused on transboundary river basin management. It inventories the features that have been claimed to be central to effective transboundary river basin management and refines them using adaptive management literature. It then collates these features into a framework describing actor networks, policy processes, information management, and legal and financial aspects. Subsequently, this framework is applied to the Orange and Rhine basins. The paper concludes that the framework provides a consistent and comprehensive perspective on transboundary river basin management regimes, and can be used for assessing their capacity to support adaptive management.

  1. [Forest carbon storage and fuel carbon emission in Tanjiang River basin].

    Science.gov (United States)

    Chen, Zhiliang; Xia, Nianhe; Wu, Zhifeng; Cheng, Jiong; Liu, Ping

    2006-10-01

    The investigation on the forest carbon storage and fuel carbon emission in Tanjiang River basin showed that since 1990, the forests in Tanjiang River basin acted as a carbon sink, and this action was increased with time and with economic development. The net carbon uptake by the forests was 1.0579 x 10 (7) t in 1990 and 1.28061 x 10 (7) t in 2002, with an annual increment of 1.856 x 10(5) t, while the fuel carbon emission was 9. 508 x 10(5) t in 1990 and 1.8562 x 10(6) t in 2002, with an annual increment of 7.0 x 10(4) t. In 2003, the fuel carbon emission was up to 2.1968 x 10(6) t, 3.406 x 105 t more than that in 2002. In 2002, the energy consumption per 10(4) yuan GDP in Tanjiang River basin was 2.21 t standard coal, higher than the average consumption (1.81 t standard coal) in the Pearl River delta. If the fuel consumption decreased to the average level, the carbon emission in Tanjiang River basin would be reduced by 3.360 x 10(5) t, which was higher than the annual increment of forest net carbon uptake in the basin. From the viewpoint of net carbon uptake and emission in a basin, more attention should be paid to the relations between forest carbon sink and human activities.

  2. Hydrological assessment of freshwater resource areas in the Zambezi River Basin

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2012-10-01

    Full Text Available -1 Hydrological assessment of freshwater resource areas in the Zambezi River Basin J MWENGE KAHINDA AND E KAPANGAZIWIRI CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: jmwengekahinda@csir.co.za ? www.csir.co.za INTRODUCTION The Zambezi River Basin (ZRB... of the hydrological assessment of FRAs of the ZRB. It forms part of a scoping study with the objective to ensure that environmental flows are applied in the Zambezi River system. MATERIALS AND METHODS The hydrological identification of key FRAs required a...

  3. Karyotypic variation of Glanidium ribeiroi Haseman, 1911 (Siluriformes, Auchenipteridae) along the Iguazu river basin

    OpenAIRE

    Lui,R. L.; Blanco, D R; Traldi,J. B.; V. P. Margarido; Moreira-Filho,O

    2015-01-01

    Abstract The Iguazu river is a tributary of the left margin of the Paraná river, isolated from this basin about 22 million years ago with the appearance of the Iguazu Falls. The Iguazu river is characterized by high endemism due to two factors: its rugged topography and the old isolation caused by formation of the Iguazu Falls. This study analyzed cytogenetically a population of Glanidium ribeiroi collected in a region at the final stretch of this basin, by Giemsa staining, C-banding, impregn...

  4. Real-time remote sensing driven river basin modeling using radar altimetry

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Riegels, Niels; Bauer-Gottwein, Peter

    2011-01-01

    and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models. In this study, we evaluate the potential of informing a river basin model with real-time radar altimetry measurements over reservoirs. We present a lumped, conceptual, river basin water balance modeling...... evapotranspiration was derived from temperature data. The Ensemble Kalman Filter was used to assimilate radar altimetry (ERS2 and Envisat) measurements of reservoir water levels. The modeling approach was applied to the Syr Darya River Basin, a snowmelt-dominated basin with large topographical variability, several...... large reservoirs and scarce hydrometeorological data that is located in Central Asia and shared between 4 countries with conflicting water management interests. The modeling approach was tested over a historical period for which in-situ reservoir water levels were available. Assimilation of radar...

  5. Regional Flood Frequency Analysis in the Volta River Basin, West Africa

    Directory of Open Access Journals (Sweden)

    Kossi Komi

    2016-02-01

    Full Text Available In the Volta River Basin, flooding has been one of the most damaging natural hazards during the last few decades. Therefore, flood frequency estimates are important for disaster risk management. This study aims at improving knowledge of flood frequencies in the Volta River Basin using regional frequency analysis based on L-moments. Hence, three homogeneous groups have been identified based on cluster analysis and a homogeneity test. By using L-moment diagrams and goodness of fit tests, the generalized extreme value and the generalized Pareto distributions are found suitable to yield accurate flood quantiles in the Volta River Basin. Finally, regression models of the mean annual flood with the size of the drainage area, mean basin slope and mean annual rainfall are proposed to enable flood frequency estimation of ungauged sites within the study area.

  6. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    Science.gov (United States)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  7. Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in South China

    Science.gov (United States)

    Niu, Jun; Chen, Ji; Sun, Liqun

    2015-07-01

    The knowledge of drought evolution characteristics may aid the decision making process in mitigating drought impacts. This study uses a macro-scale hydrological model, Variable Infiltration Capacity (VIC) model, to simulate terrestrial hydrological processes over the Xijiang (West River) basin in South China. Three drought indices, namely standardized precipitation index (SPI), standardized runoff index (SRI), and soil moisture anomaly index (SMAI), are employed to examine the spatio-temporal and evolution features of drought events. SPI, SRI and SMAI represent meteorological drought, hydrological drought and agricultural drought, respectively. The results reveal that the drought severity depicted by SPI and SRI is similar with increasing timescales; SRI is close to that of SPI in the wet season for the Liu River basin as the high-frequency precipitation is conserved more by runoff; the time lags appear between SPI and SRI due to the delay response of runoff to precipitation variability for the You River basin. The case study in 2010 spring drought further shows that the spatio-temporal evolutions are modulated by the basin-scale topography. There is more consistency between meteorological and hydrological droughts for the fan-like basin with a converged river network. For the west area of the Xijiang basin with the high elevation, the hydrological drought severity is less than meteorological drought during the developing stage. The recovery of hydrological and agricultural droughts is slower than that of meteorological drought for basins with a longer mainstream.

  8. Managing water resources for sustainable development: the case of integrated river basin management in China.

    Science.gov (United States)

    Song, X; Ravesteijn, W; Frostell, B; Wennersten, R

    2010-01-01

    The emerging water crisis in China shows that the current institutional frameworks and policies with regard to water resources management are incapable of achieving an effective and satisfactory situation that includes Integrated River Basin Management (IRBM). This paper analyses this framework and related policies, examines their deficiencies in relation to all water stress problems and explores alternatives focusing on river basins. Water resources management reforms in modern China are reviewed and the main problems involved in transforming the current river management system into an IRBM-based system are analysed. The Huai River basin is used as an example of current river basin management, with quantitative data serving to show the scale and scope of the problems in the country as a whole. The institutional reforms required are discussed and a conceptual institutional framework is proposed to facilitate the implementation of IRBM in China. In particular, the roles, power and responsibilities of River Basin Commissions (RBCs) should be legally strengthened; the functions of supervising, decision-making and execution should be separated; and cross-sectoral legislation, institutional coordination and public participation at all levels should be promoted.

  9. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L. (University of Montana, Flathead Lake Biological Station, Poison, MT)

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  10. Regional Cooperation Efforts in the Mekong River Basin: Mitigating river-related security threats and promoting regional development

    Directory of Open Access Journals (Sweden)

    Susanne Schmeier

    2009-01-01

    Full Text Available The development of international rivers is often perceived as leading to conflicts or even water wars. However, as the development of the Mekong River shows, cooperation has not only prevailed in the last decades, but River Basin Organizations (RBOs, established to mitigate river-related conflicts and/or develop the river basin, have also contributed to the emergence of more general cooperation structures, mainly by creating spill-over effects in other issue-areas, bringing cooperation to policy fields beyond the river itself. This article assesses the contribution of the Mekong River Commission (MRC and the Greater Mekong Sub-Region (GMS to the sustainable development of the Mekong Region as well as to the promotion of regional cooperation in mainland South-East Asia in general. --- Die Entwicklung grenzüberschreitender Flüsse wird oft mit Konflikten oder gar Kriegen um Wasser assoziiert. Wie jedoch die Entwicklung im Mekong-Becken zeigt, waren die vergangenen Jahrzehnte nicht nur von Kooperation gezeichnet, sondern Flussbeckenorganisationen konnten außerdem dazu beitragen, weitreichendere Kooperationsstrukturen zu entwickeln, die sich auf andere Politikfelder ausdehnen. Dieser Artikel beschäftigt sich mit dem Beitrag der Mekong River Commission (MRC und der Greater Mekong Sub-Region (GMS zur nachhaltigen Entwicklung in der Mekong Region sowie zur Förderung allgemeiner regionaler Kooperation im Festländischen Südostasien.

  11. River Modeling in Large and Ungauged Basins: Experience of Setting up the HEC RAS Model over the Ganges-Brahmaputra-Meghna Basins

    Science.gov (United States)

    Hossain, F.; Maswood, M.

    2014-12-01

    River modeling is the processing of setting up a physically-based hydrodynamic model that can simulate the water flow dynamics of a stream network against time varying boundary conditions. Such river models are an important component of any flood forecasting system that forecasts river levels in flood prone regions. However, many large river basins in the developing world such as the Ganges, Brahmaputra, Meghna (GBM), Indus, Irrawaddy, Salween, Mekong and Niger are mostly ungauged. Such large basins lack the necessary in-situ measurements of river bed depth/slope, bathymetry (river cross section), floodplain mapping and boundary condition flows for forcing a river model. For such basins, proxy approaches relying mostly on remote sensing data from space platforms are the only alternative. In this study, we share our experience of setting up the widely-used 1-D river model over the entire GBM basin and its stream network. Good quality in-situ measurements of river hydraulics (cross section, slope, flow) was available only for the downstream and flood prone region of the basin, which comprises only 7% of the basin area. For the remaining 93% of the basin area, we resorted to the use of data from the following satellite sensors to build a workable river model: a) Shuttle Radar Topography Mission (SRTM) for deriving bed slope; b) LANDSAT/MODIS for updating river network and flow direction generated by elevation data; c) radar altimetry data to build depth versus width relationship at river locations; d) satellite precipitation based hydrologic modeling of lateral flows into main stem rivers. In addition, we referred to an extensive body of literature to estimate the prevailing baseline hydraulics of rivers in the ungauged region. We measured success of our approach by systematically testing how well the basin-wide river model could simulate river level dynamics at two measured locations inside Bangladesh. Our experience of river modeling was replete with numerous

  12. Geographical Information Systems for International River Basin Management in the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Kammerud, Terje Andre

    1997-12-31

    This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

  13. The responses of hydro-environment system in the Second Songhua River Basin to melt water

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the continuous monitoring data of hydrology and water quality in the period from 1972 to 1997, the responses of hydro-environment system to melt water in the Second Songhua River basin were derived. Because of melt water, the water quality in the Second Songhua River is good and changes very except that the contents of Hg and Mn in the water are higher. The contribution of melt water to the water fluxes in the Second Songhua River basin is distinct: the water flow in April increases remarkably, reaches the peak in the upper reaches. The pollutant contributions and water pollution indices (WPIs) of the Second Songhua River in April are high in the upper reaches while that in the lower reaches are low. The responses of hydro-environment system to melt water of that basin are affected by content of packed snow and the underlining surface systems.

  14. Water-Energy-Food Nexus in a Transboundary River Basin: The Case of Tonle Sap Lake, Mekong River Basin

    Directory of Open Access Journals (Sweden)

    Marko Keskinen

    2015-10-01

    Full Text Available The water-energy-food nexus is promoted as a new approach for research and policy-making. But what does the nexus mean in practice and what kinds of benefits does it bring? In this article we share our experiences with using a nexus approach in Cambodia’s Tonle Sap Lake area. We conclude that water, energy and food security are very closely linked, both in the Tonle Sap and in the transboundary Mekong River Basin generally. The current drive for large-scale hydropower threatens water and food security at both local and national scales. Hence, the nexus provides a relevant starting point for promoting sustainable development in the Mekong. We also identify and discuss two parallel dimensions for the nexus, with one focusing on research and analysis and the other on integrated planning and cross-sectoral collaboration. In our study, the nexus approach was particularly useful in facilitating collaboration and stakeholder engagement. This was because the nexus approach clearly defines the main themes included in the process, and at the same time widens the discussion from mere water resource management into the broader aspects of water, energy and food security.

  15. New River Dam Foundation Report. Gila River Basin: Phoenix, Arizona and Vicinity (Including New River).

    Science.gov (United States)

    1985-10-01

    further downstream before merging with the Agua Fria River. 6 Site Geology 2.08 The geological formations present within the project area consist...and appear to be of plutonic origin. The granite is characterized by its medium- to coarse- grained texture, small percentage of mafic minerals and...mottled appearance due to a high percentage of mafic minerals , and medium to whitish-gray color. Scattered occurrences of a fine- to medium-grained

  16. Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, China

    Science.gov (United States)

    Zhang, Yuqing; You, Qinglong; Chen, Changchun; Li, Xin

    2017-08-01

    As opposed to traditional drought events, flash droughts evolve rapidly and are characterized by soil moisture deficits. The general lack of high resolution soil moisture and evapotranspiration data makes identifying flash droughts at short-term scales (pentads or weeks) nearly impossible, particularly at the basin scale. In this study, we investigated the spatial patterns, temporal characteristics, and related mechanisms of flash droughts in a humid and subtropical basin (Gan River Basin) in China. The variable infiltration capacity (VIC) model can accurately reflect hydrological processes in the Gan River Basin at daily and monthly time scales; here, flash droughts were determined based on VIC outputs (soil moisture and evapotranspiration) and meteorological observations (maximum temperature and precipitation) during the growing season (March-October) from 1961 to 2013. We classified flash droughts into two categories (heat wave and precipitation deficit flash droughts) based on the formation mechanisms. Heat wave flash droughts are high temperature driven events, high temperatures (heat waves) cause evapotranspiration to increase and soil moisture to decrease rapidly. The main driver of precipitation deficit flash droughts is precipitation deficits, which cause soil moisture to drop and in turn cause evapotranspiration anomalies to decrease and temperature to increase. The northern part of the basin is apparently vulnerable to heat wave flash droughts, whereas precipitation deficit flash droughts tend to occur across the central and southern parts of the basin. Precipitation deficit flash droughts are more common than heat wave flash droughts in general. Both types of flash droughts became significantly more frequent from 1997 to 2013. These increases in both types of flash droughts are likely attributable to climate-related variables such as temperature, precipitation, evapotranspiration, and soil moisture during 1997-2013. As evidenced by our investigation of

  17. Distribution and dispersal of two invasive crayfish species in the Drava River basin, Croatia

    Directory of Open Access Journals (Sweden)

    S. Hudina

    2009-01-01

    Full Text Available The aim of this work is to explore the current distribution and dispersal rates of two nonindigenous crayfish species (NICS recorded in Croatia: the signal crayfish (Pacifastacus leniusculus and spiny-cheek crayfish(Orconectes limosus. Both NICS have been recorded in the Drava River basin, with signal crayfish spreading downstream from the north-west along the Drava’s tributary the Mura River, and spiny-cheek crayfish spreading upstream from the east from the Danube River throughout the Drava River. Signal crayfish distribution in the Mura River has been recorded up to 3 km from the confluence with the Drava River. Based on literature data and the current recorded distribution front, the downstream dispersal rate was between 18 and 24.4 km·yr−1. Spiny-cheek crayfish distribution has been recorded 15 km upstream of the Drava River mouth into the Danube River. Its upstream dispersal in the Drava River has been calculated at 2.5 km·yr −1. Both NICS could have an impact on native crayfish populations recorded within the Drava River basin in Croatia: the noble crayfish (Astacus astacus and the narrow-clawed crayfish (Astacus leptodactylus. In the Mura River no noble crayfish have been recorded since 2007, and the watercourse is at the moment dominated by the signal crayfish. Spiny-cheek crayfish populations have been found in coexistence with narrow-clawed crayfish populations, with O. limosus dominating by 16:1.

  18. Valuing the non-market benefits of estuarine ecosystem services in a river basin context: Testing sensitivity to scope and scale

    Science.gov (United States)

    Pinto, R.; Brouwer, R.; Patrício, J.; Abreu, P.; Marta-Pedroso, C.; Baeta, A.; Franco, J. N.; Domingos, T.; Marques, J. C.

    2016-02-01

    A large scale contingent valuation survey is conducted among residents in one of the largest river basins in Portugal to estimate the non-market benefits of the ecosystem services associated with implementation of the European Water Framework Directive (WFD). Statistical tests of public willingness to pay's sensitivity to scope and scale are carried out. Decreasing marginal willingness to pay (WTP) is found when asking respondents to value two water quality improvement scenarios (within sample comparison), from current moderate water quality conditions to good and subsequently excellent ecological status. However, insensitivity to scale is found when asking half of the respondents to value water quality improvements in the estuary only and the other half in the whole basin (between sample comparison). Although respondents living outside the river basin value water quality improvements significantly less than respondents inside the basin, no spatial heterogeneity can be detected within the basin between upstream and downstream residents. This finding has important implications for spatial aggregation procedures across the population of beneficiaries living in the river basin to estimate its total economic value based on public WTP for the implementation of the WFD.

  19. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  20. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  1. Hydrological long-term dry and wet periods in the Xijiang River basin, South China

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2013-01-01

    Full Text Available In this study, hydrological long-term dry and wet periods are analyzed for the Xijiang River basin in South China. Daily precipitation data of 118 stations and data on daily discharge at Gaoyao hydrological station at the mouth of the Xijiang River for the period 1961–2007 are used. At a 24-month timescale, the standardized precipitation index (SPI-24 for the six sub-basins of the Xijiang River and the standardized discharge index (SDI-24 for Gaoyao station are applied. The monthly values of the SPI-24 averaged for the Xijiang River basin correlate highly with the monthly values of the SDI-24. Distinct long-term dry and wet sequences can be detected.

    The principal component analysis is applied and shows spatial disparities in dry and wet periods for the six sub-basins. The correlation between the SPI-24 of the six sub-basins and the first principal component score shows that 67% of the variability within the sub-basins can be explained by dry and wet periods in the east of the Xijiang River basin. The spatial dipole conditions (second and third principal component explain spatiotemporal disparities in the variability of dry and wet periods. All sub-basins contribute to hydrological dry periods, while mainly the northeastern sub-basins cause wet periods in the Xijiang River. We can also conclude that long-term dry events are larger in spatial extent and cover all sub-basins while long-term wet events are regional phenomena.

    A spectral analysis is applied for the SPI-24 and the SDI-24. The results show significant peaks in periodicities of 11–14.7 yr, 2.8 yr, 3.4–3.7 yr, and 6.3–7.3 yr. The same periodic cycles can be found in the SPI-24 of the six sub-basins but with some variability in the mean magnitude. A wavelet analysis shows that significant periodicities have been stable over time since the 1980s. Extrapolations of the reconstructed SPI-24 and SDI-24 represent the continuation of observed significant periodicities

  2. Quantitative predictions of streamflow variability in the Susquehanna River Basin

    Science.gov (United States)

    Alexander, R.; Boyer, E. W.; Leonard, L. N.; Duffy, C.; Schwarz, G. E.; Smith, R. A.

    2012-12-01

    Hydrologic researchers and water managers have increasingly sought an improved understanding of the major processes that control fluxes of water and solutes across diverse environmental settings and large spatial scales. Regional analyses of observed streamflow data have led to advances in our knowledge of relations among land use, climate, and streamflow, with methodologies ranging from statistical assessments of multiple monitoring sites to the regionalization of the parameters of catchment-scale mechanistic simulation models. However, gaps remain in our understanding of the best ways to transfer the knowledge of hydrologic response and governing processes among locations, including methods for regionalizing streamflow measurements and model predictions. We developed an approach to predict variations in streamflow using the SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling infrastructure, with mechanistic functions, mass conservation constraints, and statistical estimation of regional and sub-regional parameters. We used the model to predict discharge in the Susquehanna River Basin (SRB) under varying hydrological regimes that are representative of contemporary flow conditions. The resulting basin-scale water balance describes mean monthly flows in stream reaches throughout the entire SRB (represented at a 1:100,000 scale using the National Hydrologic Data network), with water supply and demand components that are inclusive of a range of hydrologic, climatic, and cultural properties (e.g., precipitation, evapotranspiration, soil and groundwater storage, runoff, baseflow, water use). We compare alternative models of varying complexity that reflect differences in the number and types of explanatory variables and functional expressions as well as spatial and temporal variability in the model parameters. Statistical estimation of the models reveals the levels of complexity that can be uniquely identified, subject to the information content

  3. Analysis of future precipitation in the Koshi river basin, Nepal

    Science.gov (United States)

    Agarwal, Anshul; Babel, Mukand S.; Maskey, Shreedhar

    2014-05-01

    We analyzed precipitation projections for the Koshi river basin in Nepal using outputs from 10 General Circulation Models (GCMs) under three emission scenarios (B1, A1B and A2). The low resolution future precipitation data obtained from the GCMs was downscaled using the statistical downscaling model LARS-WG. The data was downscaled for 48 stations located in the six physiographic regions in the Koshi basin. The precipitation projections for three future periods, i.e. 2020s, 2055s and 2090s, are presented using empirical Probability Density Functions (PDFs) for each physiographic region. The differences between the mean values of individual GCM projections and the mean value of the multi-model for the three scenarios allow for the estimation of uncertainty in the projections. We also analyzed the precipitation of the baseline and future periods using six indices that are recommended by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Results indicate that not all GCMs agree on weather changes in precipitation will be positive or negative. A majority of the GCMs and the average values of all the GCMs for each scenario, indicate a positive change in summer, autumn and annual precipitation but a negative change in spring precipitation. Differences in the GCM projections exist for all the three future periods and the differences increase with time. The estimated uncertainty is higher for scenario A1B compared to B1 and A2. Differences among scenarios are small during the 2020s, which become significant during the 2055s and 2090s. The length of the wet spell is expected to increase, whereas the length of the dry spell is expected to decrease in all three future periods. There is a large scatter in the values of the indices: number of days with precipitation above 20 mm, 1-day maximum precipitation, 5-day maximum precipitation, and amount of precipitation on the days with precipitation above 95th percentile, both in direction and magnitude of

  4. The mean residence time of river water in the Canada Basin

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; XING Na; HUANG YiPu; QIU YuSheng

    2008-01-01

    Seawater was collected from the western Arctic Ocean for measurements of 18O, 226Ra and 228Ra. The fractions of river runoff and sea ice melt-water in water samples were estimated by using δ18O-S-PO* tracer system. The mean residence time of river water in the Canada Basin was calculated based on the relationship between 228Ra/226Ra)A.R. and the fractions of river runoff in the shelf and deep ocean. Our results showed that the river runoff fractions in the Canada Basin were significantly higher than those in the shelf regions, suggesting that the Canada Basin is a major storage region for Arctic river water. 228Ra activity concentrations in the Chukchi shelf and the Beaufort shelf ranged from 0.16 to 1.22 Bq/m3,lower than those reported for shelves in the low and middle latitudes, indicating the effect of sea ice melt-water. A good positive linear relationship was observed between 228Ra/226Ra)A.R. and the fraction of river runoff for shelf waters, while the 228Ra/226Ra)A.R in the Canada Basin was located below this regressive line. The low 228Ra/226Ra)A.R. in the Canada Basin was ascribed to 228Ra decay during shelf wa-ters transporting to the deep ocean. The residence time of 5.0-11.0 a was estimated for the river water in the Canada Basin, which determined the time response of surface freshening in the North Atlantic to the river runoff into the Arctic Ocean.

  5. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2010-08-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different surface grids and river nodes are modeled using one-dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  6. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  7. Rural Settlement Development and Environment Carrying Capacity Changes in Progo River Basin

    Directory of Open Access Journals (Sweden)

    Su Ritohardoyo

    2016-12-01

    Full Text Available Generally the broader rural settlement the heavier population pressure on agricultural land. It indicates that carrying capacity of the rural environment threatened lower. The spatial distribution of the threat in a river basin is quite important as one of the river basin management inputs. Therefore, this article aims at exposing result of research about influence rural population growth and rural settlement land changes to environment carrying capacity. This research was carried out in the rural area in Progo river basin consists 56 sub districts (34 sub districts part of Jawa Tengah Province, and 22 sub districts part of Yogyakarta Special Region. The whole sub districts are such as unit analysis, and research method is based on secondary data analysis. Several data consist Districts Region in Figure 1997 and 2003 (Temanggung, Magelang, Kulon Progo, Sleman and Bantul such as secondary data analysis. Data analysis employs of frequency and cross tabulation, statistics of regression and test. Result of the research shows that population growth of the rural areas in Progo river basin are about 0.72% annum; or the household growth about 3.15% annum as long as five years (1996-2003. Spatial distribution of the population growth in the upper part of the Progo river basin is higher than in the middle and lower part of the basin. The number proportion of farmer in every sub district area in this river basin have increased from 69.95% in 1997 to 70.81% in the year of 2003. It means that work opportunities broadening are still sluggish. However, the number proportion of farmers in the upper part of the Progo river basin is lower than in the middle and lower part of the basin. The rates of settlement land areas changes (0.32 ha/annum as long as five years (1997-2003 is not as fast as the rates of agricultural land areas changes (0.47 ha/annum. Spatial land settlement areas changes in the lower (6.1 ha/annum and middle parts (2.4 ha/annum faster than

  8. Modeling of Regionalized Emissions (MoRE) into Water Bodies: An Open-Source River Basin Management System

    National Research Council Canada - National Science Library

    Stephan Fuchs; Maria Kaiser; Lisa Kiemle; Steffen Kittlaus; Shari Rothvoß; Snezhina Toshovski; Adrian Wagner; Ramona Wander; Tatyana Weber; Sara Ziegler

    2017-01-01

    .... The river basin management system MoRE (Modeling of Regionalized Emissions) was developed as a flexible open-source instrument which is able to model pathway-specific emissions and river loads on a catchment scale...

  9. The relationship between irrigation water demand and drought in the Yellow River basin

    Science.gov (United States)

    Wang, Yu; Wang, Weihao; Peng, Shaoming; Jiang, Guiqin; Wu, Jian

    2016-10-01

    In order to organize water for drought resistance reasonably, we need to study the relationship between irrigation water demand and meteorological drought in quantitative way. We chose five typical irrigation districts including the Qingtongxia irrigation district, Yellow River irrigation districts of Inner Mongolia in the upper reaches of the Yellow River, the Fen river irrigation district and the Wei river irrigation district in the middle reaches of the Yellow River and the irrigation districts in the lower reaches of the Yellow River as research area. Based on the hydrology, meteorology, groundwater and crop parameters materials from 1956 to 2010 in the Yellow River basin, we selected reconnaissance drought index (RDI) to analyze occurrence and evolution regularity of drought in the five typical irrigation districts, and calculated the corresponding irrigation water demand by using crop water balance equation. The relationship of drought and irrigation water demand in each typical irrigation district was studied by using grey correlation analysis and relevant analysis method, and the quantitative relationship between irrigation water demand and RDI was established in each typical irrigation district. The results showed that the RDI can be applied to evaluate the meteorological drought in the typical irrigation districts of the Yellow River basin. There is significant correlation between the irrigation water demand and RDI, and the grey correlation degree and correlation coefficient increased with increasing crops available effective rainfall. The irrigation water demand of irrigation districts in the upstream, middle and downstream of the Yellow River basin presented different response degrees to drought. The irrigation water demand increased 105 million m3 with the drought increasing one grade (RDI decreasing 0.5) in the Qingtongxia irrigation district and Yellow River irrigation districts of Inner Mongolia. The irrigation water demand increased 219 million m3

  10. Groundwater quality in the Chemung River Basin, New York, 2008

    Science.gov (United States)

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    The second groundwater quality study of the Chemung River Basin in south-central New York was conducted as part of the U.S. Geological Survey 305(b) water-quality-monitoring program. Water samples were collected from five production wells and five private residential wells from October through December 2008. The samples were analyzed to characterize the chemical quality of the groundwater. Five of the wells are screened in sand and gravel aquifers, and five are finished in bedrock aquifers. Two of these wells were also sampled for the first Chemung River Basin study of 2003. Samples were analyzed for 6 physical properties and 217 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and four types of bacterial analyses. Results of the water-quality analyses for individual wells are presented in tables, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were: sodium (one sample), total dissolved solids (one sample), aluminum (one sample), iron (one sample), manganese (four samples), radon-222 (eight samples), trichloroethene (one sample), and bacteria (four samples). The pH of all samples was typically neutral or slightly basic (median 7.5); the median water temperature was 11.0 degrees Celsius (?C). The ions with the highest median concentrations were bicarbonate (median 202 milligrams per liter [mg/L]) and calcium (median 59.0 mg/L). Groundwater in the study area is moderately hard to very hard, but more samples were hard or very hard (121 mg/L as calcium carbonate (CaCO3) or greater) than were moderately hard (61-120 mg/L as Ca

  11. River Gain and Loss Studies for the Red River of the North Basin, North Dakota and Minnesota

    Science.gov (United States)

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act passed by the U.S. Congress in 2000 authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and -quality needs of the Red River of the North (Red River) Basin in North Dakota and of possible options to meet those water needs. To obtain the river gain and loss information needed to properly account for available streamflow within the basin, available river gain and loss studies for the Sheyenne, Turtle, Forest, and Park Rivers in North Dakota and the Wild Rice, Sand Hill, Clearwater, South Branch Buffalo, and Otter Tail Rivers in Minnesota were reviewed. Ground-water discharges for the Sheyenne River in a reach between Lisbon and Kindred, N. Dak., were about 28.8 cubic feet per second in 1963 and about 45.0 cubic feet per second in 1986. Estimated monthly net evaporation losses for additional flows to the Sheyenne River from the Missouri River ranged from 1.4 cubic feet per second in 1963 to 51.0 cubic feet per second in 1976. Maximum water losses for a reach between Harvey and West Fargo, N. Dak., for 1956-96 ranged from about 161 cubic feet per second for 1976 to about 248 cubic feet per second for 1977. Streamflow gains of 1 to 1.5 cubic feet per second per mile were estimated for the Wild Rice, Sand Hill, and Clearwater Rivers in Minnesota. The average ground-water discharge for a 5.2-mile reach of the Otter Tail River in Minnesota was about 14.1 cubic feet per second in August 1994. The same reach lost about 14.1 cubic feet per second between February 1994 and June 1994 and about 21.2 cubic feet per second between August 1994 and August 1995.

  12. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-06-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  13. SURVEY OF COLUMBIA RIVER BASIN STREAMS FOR COLUMBIA PEBBLESNAIL Fluminicola columbiana AND SHORTFACE LANX Fisherola nuttalli

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D. A.; Frest, T. J.

    1993-05-01

    At present, there are only two remaining sizable populations of Columbia pebblesnail Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington; the lower Salmon River and middle Snake River, Idaho; and possibly in Hells Canyon of the Snake River, Idaho, Washington, and Oregon; and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historical range. Large populations of the shortface lanx Fisherola nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach of the Columbia River, Washington; Hells Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde, Washington and Oregon; Imnaha and John Day rivers, Oregon; Bonneville Dam area of the Columbia River, Washington and Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River: Columbia pebblesnail to a population in the Hanford Reach plus six other sites that are separated by large areas of unsuitable habitat from those in the river's major mbutaries shortface lanx to two populations (in the Hanford Reach and near Bonneville Dam) plus nine other sites that are separated by large areas of unsuitable habitat from those in the river's major tributaries.

  14. Assessment of spatial and temporal patterns of green and blue water flows in inland river basins in Northwest China

    Directory of Open Access Journals (Sweden)

    C. F. Zang

    2012-03-01

    Full Text Available In arid and semi-arid regions freshwater resources have become scarcer with increasing demands from socio-economic development and population growth. Until recently, water research and management in these has mainly focused on blue water but ignored green water. Here we report on spatial and temporal patterns of both blue and green water flows simulated by the Soil and Water Assessment Tool (SWAT for the Heihe river basin, the second largest inland river basin in Northwest China. Calibration and validation at two hydrological stations show good performance of the SWAT model in modelling hydrological processes. The total green and blue water flows were 22.09 billion m3 in the 2000s for the Heihe river basin. Blue water flows are larger in upstream sub-basins than in downstream sub-basins mainly due to high precipitation and large areas of glaciers in upstream. Green water flows are distributed more homogeneously among different sub-basins. The green water coefficient was 88.0% in the 2000s for the entire river basin, varying from around 80–90% in up- and mid-stream sub-basins to above 95% in downstream sub-basins. This is much higher than reported green water coefficient in many other river basins. The spatial patterns of green water coefficient were closely linked to dominant land covers (e.g. glaciers in upstream and desert in downstream and climate conditions (e.g. high precipitation in upstream and low precipitation in downstream. There are no clear consistent historical trends of change in green and blue water flows and green water coefficient at both the river basin and sub-basin levels. This study provides insights into green and blue water endowments for the entire Heihe river basin at sub-basin level. The results are helpful for formulating reasonable water policies to improve water resources management in the inland river basins of China.

  15. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian; Smith, R.

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches...... of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements...... are converted to discharge using rating curves of simulated discharge versus observed altimetry. This approach makes it possible to use altimetry data from river cross sections where both in-situ rating curves and accurate river cross section geometry are not available. Model updating based on radar altimetry...

  16. River Mileages and Drainage Areas for Illinois Streams. Volume 2. Illinois River Basin.

    Science.gov (United States)

    1979-12-01

    FOREST 50.2 MADISON STREET RIVER FOREST 50.5 IL PT 56 RIVER FOREST 51.0 C & NW RR RIVER FOREST 51.1 LAKE STREET RIVER FOREST 51.6 CHICAGO AVENUE RIVER ... FOREST 51.9 SILVER CREEK R RIVER FOREST 53.9 DAM S35v40NoRI2E RIVER FOREST 54.2 NORTH PUEBLO AVENUE RIVER FOREST 55.1 GRAND AVENUE RIVER FOREST 55.1...USGS GAGE 05530600 AT RIVER GROVE 451 415546 O75040 RIVER

  17. A snapshot on prokaryotic diversity of the Solimões River basin (Amazon, Brazil).

    Science.gov (United States)

    Toyama, D; Santos-Júnior, C D; Kishi, L T; Oliveira, T C S; Garcia, J W; Sarmento, H; Miranda, F P; Henrique-Silva, F

    2017-05-18

    The Amazon region has the largest hydrographic basin on the planet and 
is well known for its huge biodiversity of plants and animals. However, 
there is a lack of studies on aquatic microbial biodiversity in the 
Solimões River, one of its main water courses. To investigate the 
microbial biodiversity of this region, we performed 16S rRNA gene clone 
libraries from Solimões River and adjacent rivers and lakes. Our question was which microorganisms inhabit the different types of aquatic 
environments in this part of the basin, and how diversity varies among 
these environments (rivers and lakes). The microbial 
diversity generating 13 clone libraries of the bacterial 16S rRNA gene 
and 5 libraries of the archaeal 16S rRNA gene was assessed. Diversity measured by several alpha diversity indices (ACE, Chao, Shannon and Simpson) revealed significant differences in diversity indices between lake and river samples. The site with higher microbial diversity was in the Solimões River (4S), downstream the confluence with Purus River. The most common bacterial taxon was the cosmopolitan Polynucleobacter genus, widely observed in all samples. The phylum Thaumarchaeota was the prevailing archaeal taxon. Our results provide the first insight into the microbial diversity of the world's largest river basin.

  18. Stomach Content of a Juvenile Bolivian River Dolphin (Inia geoffrensis boliviensis) from the Upper Madeira Basin, Bolivia

    NARCIS (Netherlands)

    Aliaga-Rossel, E.; Beerman, A.S.; Sarmiento, J.

    2010-01-01

    The article presents a study about the stomach content of a juvenile Bolivian river dolphin (Inia geoffrensis boliviensis), an endemic subspecies of the Amazon River dolphin, found in the upper Madeira River basin in Bolivia. The study finds that the stomach of Bolivian river dolphin contained a mix

  19. Stomach Content of a Juvenile Bolivian River Dolphin (Inia geoffrensis boliviensis) from the Upper Madeira Basin, Bolivia

    NARCIS (Netherlands)

    Aliaga-Rossel, E.; Beerman, A.S.; Sarmiento, J.

    2010-01-01

    The article presents a study about the stomach content of a juvenile Bolivian river dolphin (Inia geoffrensis boliviensis), an endemic subspecies of the Amazon River dolphin, found in the upper Madeira River basin in Bolivia. The study finds that the stomach of Bolivian river dolphin contained a

  20. Suwannee river basin and estuary integrated science workshop: September 22-24, 2004 Cedar Key, Florida

    Science.gov (United States)

    Katz, Brian; Raabe, Ellen

    2004-01-01

    In response to the growing number of environmental concerns in the mostly pristine Suwannee River Basin and the Suwannee River Estuary system, the States of Florida and Georgia, the Federal government, and other local organizations have identified the Suwannee River as an ecosystem in need of protection because of its unique biota and important water resources. Organizations with vested interests in the region formed a coalition, the Suwannee Basin Interagency Alliance (SBIA), whose goals are to promote coordination in the identification, management, and scientific knowledge of the natural resources in the basin and estuary. To date, an integrated assessment of the physical, biological, and water resources has not been completed. A holistic, multi-disciplinary approach is being pursued to address the research needs in the basin and estuary and to provide supportive data for meeting management objectives of the entire ecosystem. The USGS is well situated to focus on the larger concerns of the basin and estuary by addressing specific research questions linking water supply and quality to ecosystem function and health across county and state boundaries. A strategic plan is being prepared in cooperation with Federal, State, and local agencies to identify and implement studies to address the most compelling research issues and management questions, and to conduct fundamental environmental monitoring studies. The USGS, Suwannee River Water Management District and the Florida Marine Research Institute are co-sponsoring this scientific workshop on the Suwannee River Basin and Estuary to: Discuss current and past research findings, Identify information gaps and research priorities, and Develop an action plan for coordinated and relevant research activities in the future. This workshop builds on the highly successful basin-wide conference sponsored by the Suwannee Basin Interagency Alliance that was held three years ago in Live Oak, Florida. This years workshop will focus on

  1. Prospects for Learning in River Management: Exploring the Initial Implementation of the Water Framework Directive in a Swedish River Basin

    Science.gov (United States)

    Lundmark, Carina; Jonsson, Gunnar

    2014-01-01

    This case study explores the initial implementation of the EU Water Framework Directive (WFD) in the Lule River basin, Sweden, examining how and to what extent administrative procedures enable learning through dialogue and stakeholder collaboration. Theorising on adaptive co-management and social learning is used to structure what is to be learnt,…

  2. Modelling seasonal N and P loads in three contrasting large river basins using global datasets - Mississippi, Mekong and Rhine River

    NARCIS (Netherlands)

    Loos, S.; Middelkoop, H.; Perk, M. van der; Beek, L.P.H. van

    2011-01-01

    Nutrients are important components of the global biochemical cycle, and are key controls of the quality of inland and coastal waters. Quantification of the nutrient fluxes from large river basins